Science.gov

Sample records for electromotive force method

  1. EVALUATION OF IMPRESSED ELECTROMOTIVE FORCE CATHODIC PROTECTION

    DTIC Science & Technology

    Electromotive couples consisting of 0.064 in. x 24 in. x 24 in. bare 7075-T6 aluminum cathodes and 0.064 in. x 2 in. x 3 in. RC-70 titanium or...such a manner that it opposed the galvanic current. In a series of tests wherein the impressed voltage and current was varied from specimen to specimen

  2. Rethinking Faraday's Law for Teaching Motional Electromotive Force

    ERIC Educational Resources Information Center

    Zuza, Kristina; Guisasola, Jenaro; Michelini, Marisa; Santi, Lorenzo

    2012-01-01

    This study shows physicists' discussions on the meaning of Faraday's law where situations involving extended conductors or moving contact points are particularly troublesome. We raise questions to test students' difficulties in applying Faraday's law in motional electromotive force phenomena. We suggest the benefit of analysing these phenomena…

  3. Rethinking Faraday's Law for Teaching Motional Electromotive Force

    ERIC Educational Resources Information Center

    Zuza, Kristina; Guisasola, Jenaro; Michelini, Marisa; Santi, Lorenzo

    2012-01-01

    This study shows physicists' discussions on the meaning of Faraday's law where situations involving extended conductors or moving contact points are particularly troublesome. We raise questions to test students' difficulties in applying Faraday's law in motional electromotive force phenomena. We suggest the benefit of analysing these phenomena…

  4. Temperature evolution of electromotive force from Pt on yttrium-iron-garnet under ferromagnetic resonance

    SciTech Connect

    Ohshima, Ryo; Emoto, Hiroyuki; Shinjo, Teruya; Ando, Yuichiro; Shiraishi, Masashi

    2015-05-07

    Temperature evolution of electromotive force from Pt due to the inverse spin Hall effect is studied. Pure spin current is injected from yttrium-iron-garnet by using spin pumping technique. The electromotive force from the Pt monotonically decreases with decreasing temperature, and it is showed that there is a deviation between the measured and the calculated electromotive forces.

  5. Control of flexible structure using back electromotive force of motor

    NASA Astrophysics Data System (ADS)

    Matsuda, Khoichi; Hatano, Shinji; Fujii, Hironori

    Wave absorbing control for vibration suppression of flexible space structure is studied. In order to implement control method in a realistic system, it is usually necessary that the signals obtained from sensors are led to actuators through the process of the digital computer programmed under the control law. In this study, a torque motor is used not only as the actuator but also the sensor which detects time differentiation of shaft angle and closes a control loop without using the process of the digital computation. The motor is connected to an electronic circuit which includes the frequency-dependent impedance. The back electromotive force (e.m.f.) of the motor is induced when the shaft of the motor rotates and electric current is generated in the circuit. When the current passes through the motor, it creates control torque for the motor, enabling the suppression of the vibration of a beam without using the digital computer. The control method is confirmed to work well through use of the numerical simulation.

  6. An Electromotive Force Measurement System for Alloy Fuels

    SciTech Connect

    Changhu Xing; Colby Jensen; Heng Ban; Robert Mariani; J. Rory Kennedy

    2010-11-01

    The development of advanced nuclear fuels requires a better understanding of the transmutation and micro-structural evolution of the materials. Alloy fuels have the advantage of high thermal conductivity and improved characteristics in fuel-cladding chemical reaction. However, information on thermodynamic and thermophysical properties is limited. The objective of this project is to design and build an experimental system to measure the thermodynamic properties of solid materials from which the understanding of their phase change can be determined. The apparatus was used to measure the electromotive force (EMF) of several materials in order to calibrate and test the system. The EMF of chromel was measured from 100°C to 800°C and compared with theoretical values. Additionally, the EMF measurement of Ni-Fe alloy was performed and compared with the Ni-Fe phase diagram. The prototype system is to be modified eventually and used in a radioactive hot-cell in the future.

  7. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is nomore » strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.« less

  8. Probing university students' understanding of electromotive force in electricity

    NASA Astrophysics Data System (ADS)

    Garzón, Isabel; De Cock, Mieke; Zuza, Kristina; van Kampen, Paul; Guisasola, Jenaro

    2014-01-01

    The goal of this study is to identify students' difficulties with learning the concepts of electromotive force (emf) and potential difference in the context of transitory currents and resistive direct-current circuits. To investigate these difficulties, we developed a questionnaire based on an analysis of the theoretical and epistemological framework of physics, which was then administered to first-year engineering and physics students at universities in Spain, Colombia, and Belgium. The results of the study show that student difficulties seem to be strongly linked to the absence of an analysis of the energy balance within the circuit and that most university students do not clearly understand the usefulness of and the difference between the concepts of potential difference and emf.

  9. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-11-01

    This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of α effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of α, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.

  10. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.

  11. THE MEAN ELECTROMOTIVE FORCE RESULTING FROM MAGNETIC BUOYANCY INSTABILITY

    SciTech Connect

    Davies, C. R.; Hughes, D. W. E-mail: d.w.hughes@leeds.ac.uk

    2011-02-01

    Motivated both by considerations of the generation of large-scale astrophysical magnetic fields and by potential problems with mean magnetic field generation by turbulent convection, we investigate the mean electromotive force (emf) resulting from the magnetic buoyancy instability of a rotating layer of stratified magnetic field, considering both unidirectional and sheared fields. We discuss why the traditional decomposition into {alpha} and {beta} effects is inappropriate in this case, and that it is only consideration of the entire mean emf that is meaningful. By considering a weighted average of the unstable linear eigenmodes, and averaging over the horizontal plane, we obtain depth-dependent emfs. For the simplified case of isothermal, ideal MHD, we are able to obtain an analytic expression for the emf; more generally, the emf has to be determined numerically. We calculate how the emf depends on the various parameters of the problem, particularly the rotation rate and the latitude of the magnetic layer.

  12. Electromotive force and huge magnetoresistance in magnetic tunnel junctions.

    PubMed

    Pham, Nam Hai; Ohya, Shinobu; Tanaka, Masaaki; Barnes, Stewart E; Maekawa, Sadamichi

    2009-03-26

    The electromotive force (e.m.f.) predicted by Faraday's law reflects the forces acting on the charge, -e, of an electron moving through a device or circuit, and is proportional to the time derivative of the magnetic field. This conventional e.m.f. is usually absent for stationary circuits and static magnetic fields. There are also forces that act on the spin of an electron; it has been recently predicted that, for circuits that are in part composed of ferromagnetic materials, there arises an e.m.f. of spin origin even for a static magnetic field. This e.m.f. can be attributed to a time-varying magnetization of the host material, such as the motion of magnetic domains in a static magnetic field, and reflects the conversion of magnetic to electrical energy. Here we show that such an e.m.f. can indeed be induced by a static magnetic field in magnetic tunnel junctions containing zinc-blende-structured MnAs quantum nanomagnets. The observed e.m.f. operates on a timescale of approximately 10(2)-10(3) seconds and results from the conversion of the magnetic energy of the superparamagnetic MnAs nanomagnets into electrical energy when these magnets undergo magnetic quantum tunnelling. As a consequence, a huge magnetoresistance of up to 100,000 per cent is observed for certain bias voltages. Our results strongly support the contention that, in magnetic nanostructures, Faraday's law of induction must be generalized to account for forces of purely spin origin. The huge magnetoresistance and e.m.f. may find potential applications in high sensitivity magnetic sensors, as well as in new active devices such as 'spin batteries'.

  13. An electromotive force series in a borosilicate glass-forming melt

    NASA Technical Reports Server (NTRS)

    Schreiber, H. D.; Balazs, G. B.; Carpenter, B. E.; Kirkley, J. E.; Minnix, L. M.; Jamison, P. L.

    1984-01-01

    An electromotive force series for redox couples was defined as a function of oxygen fugacity in a borosilicate melt at 1150 C. The resulting order of relative reduction potentials can be used to estimate the amounts of redox species in glass during processing. The electromotive force series in this melt is comparable to those in other silicate glass-forming melts and in aqueous systems but differs in detail because of interaction of the solvents with individual redox couples.

  14. Topological electromotive force from domain-wall dynamics in a ferromagnet

    SciTech Connect

    Yang, Shengyuan; Beach, Geoffrey S. D.; Knutson, Carl; Xiao, Di; Zhang, Zhenyu; Tsoi, Maxin; Niu, Qian

    2010-01-01

    We formulate a local gauge-invariant theory for the electromotive force induced by domain-wall dynamics in a ferromagnet. We demonstrate that this emf generation is a real-space topological pumping effect. The integral of the emf over one pumping period is a quantized topological invariant which does not depend on the details of the domain-wall configuration nor on its detailed dynamics. Based on our theory, the full instanta- neous electric potential distribution can be mapped out by standard electrostatic methods. We also provide further details on our recent experiments which confirmed the emf induced by domain-wall dynamics.

  15. Electromotive Force Measurements in the Ternary System Bi-In-Zn

    NASA Astrophysics Data System (ADS)

    Knott, Sabine; Li, Zuoan; Wang, C.-H.; Mikula, Adolf

    2010-12-01

    The thermodynamic properties of the ternary Bi-In-Zn system were determined with the electromotive force (EMF) method using a liquid electrolyte. Four different cross sections with constant In/Bi ratios of 1:2, 1:1, 2:1, and 9:1 were applied to measure the thermodynamic properties of the ternary system in the temperature range between the liquidus temperature of the alloys and 973 K (700 °C). Zinc was added in steps of 5 at. pct from 5 to 90 pct. The partial free energies of Zn in liquid Bi-In-Zn alloys were determined as a function of concentration and temperature. The integral Gibbs free energy and the integral enthalpy of the ternary system at 873 K (600 °C) were calculated by Gibbs-Duhem integration. The ternary interaction parameters were evaluated using the Redlich-Kister-Muggianu polynomials.

  16. In-situ detection of growth striations by crystallization electromotive force measurement during Czochralski crystal growth

    NASA Astrophysics Data System (ADS)

    Zhu, Yunzhong; Ma, Decai; Long, Siwei; Tang, Feng; Lin, Shaopeng; Wang, Biao

    2017-10-01

    Growth striations, as macrodefects of crystalline materials, are mainly caused by convection and temperature fluctuations in growth interface. For decades, striations have been widely regarded as an inherent problem. Even in the well-developed Czochralski method, the striation formation process is difficult to inspect in situ. In view of this long-standing issue, after systematically studying the temperature, weight, and output power during crystal growth and numerically modeling the growth process, we found that the regularity of the growth interface electromotive force (GEMF) is related to the distribution of striations. Furthermore, the GEMF quantifies interface fluctuations (711.2 s, 16.6 μm) and thermal hysteresis (107 s), presenting finer details than those provided by a thermocouple and a load cell. In this paper, GEMF is found to be an outstanding choice for monitoring the crystal growth status in real time. As an additional feedback, a new automatic control method could be developed for reducing growth striations and promoting crystal quality.

  17. Dember and photo-electromotive-force currents in silicon photoconductive detectors

    NASA Astrophysics Data System (ADS)

    Dikmelik, Yamaç; Davidson, Frederic M.

    2004-09-01

    Dember and photo-electromotive-force (PEMF) currents are investigated in silicon photoconductive detectors both theoretically and experimentally. Dember photocurrents were found to dominate the response of high-purity silicon samples with top-surface electrodes to a moving interference pattern. The use of surface electrodes leads to shadowed regions beneath the electrodes, and Dember photocurrents appear under short-circuit conditions. A single-charge-carrier model of the Dember effect is in good qualitative agreement with experimental results. We also show theoretically that the PEMF effect in silicon is weak compared with other semiconductors because of its relatively high intrinsic conductivity.

  18. Electromotive force analysis of current transformer during lightning surge inflow using Fourier series expansion

    NASA Astrophysics Data System (ADS)

    Kim, Youngsun

    2017-05-01

    The most common structure used for current transformers (CTs) consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD) may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC) or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF) characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM). The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.

  19. The effect of electromotive-force generation on electrical properties of thin samarium sulfide films

    SciTech Connect

    Kaminskii, V. V. Kazanin, M. M.; Solov'ev, S. M.; Sharenkova, N. V.; Volodin, N. M.

    2006-06-15

    Electrical properties of thin SmS polycrystalline films with various values of the lattice constant at T = 300-580 K are studied. Specific features of the temperature dependences of electrical conductivity at T > 450 K are revealed. The effect of generation of the electromotive force with magnitude as large as 1.3 V at T = 440-470 K is observed when the films were subjected to the pressure of a spherical indenter. It is shown that it is possible to transform SmS films into a high-resistivity state (with the difference in the resistivity by three orders of magnitude) by applying an electric field with the strength higher than 100 V/cm. All the results obtained are accounted for using a model of the phenomenon of the electromotive-force generation in SmS under uniform heating of the sample and can also be attributed to the variable valence of samarium ions with respect to the lattice defects.

  20. The nonequilibrium electromotive force. I. Measurements in a continuously stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Keizer, Joel; Chang, On-Kok

    1987-10-01

    Based on a statistical thermodynamic theory, it has been predicted [J. Keizer, J. Chem. Phys. 82, 2751 (1985)] that at nonequilibrium steady states the electromotive force (EMF) of an electrochemical cell will differ from the local equilibrium value given by the Nernst equation. We describe here experiments designed to test this prediction for aqueous solutions of Fe2+ and Fe3+ in sulfate buffer. Using a continuously stirred tank reactor driven by a peristaltic pump, a feed solution containing Fe2+ and Fe3+ was mixed with a second feed solution containing the oxidant sodium peroxydisulfate Na2S2O8. The reaction leads to a steady nonequilibrium mixture, which at acidic pH in sulfate buffer is composed of Fe2+ and the ferric sulfate complexes FeSO+4 and Fe(SO4)-2. The EMF of this half-cell was measured vs a saturated calomel reference electrode as a function of residence time in the reactor. These potentials were compared to the Nernst potential calculated on the basis of the concentration ratio of Fe2+ to total Fe3+ at the steady states. The Nernst potential was reproducibly larger than the measured EMF by values that depended on the concentration ratio of Fe2+/Fe3+ in the feed solution and the residence time. The largest deviations were -1.8 mV, which occurred when the Fe2+/Fe3+ ratio was small and the residence time was about 40 s. We have ruled out streaming potentials, junction potentials, and incomplete mixing as the origin of this effect. We show that the dependence of the nonequilibrium portion of the EMF on feed concentrations and residence time is in good agreement with calculations based on methods that are described in the second paper in this series.

  1. Fluctuations of the proton-electromotive force across the inner mitochondrial membrane

    NASA Astrophysics Data System (ADS)

    Procopio, Joaquim; Fornés, José A.

    1997-05-01

    The intermembrane mitochondrial space (IMMS) is delimited by the inner and outer mitochondrial membranes and defines a region of molecular dimension where fluctuations of the number of free protons and of transmembrane voltage can give rise to fluctuations in the proton-electromotive force EPMF across the inner mitochondrial membrane (IMM). We have applied the fluctuation-dissipation theorem to an electrical equivalent circuit consisting of a resistor Rm in parallel with a capacitor Cm representing the passive electrical properties of the IMM, in series with another capacitor Cb representing the proton-buffering power of the IMMS fluid. An access resistance Ra was defined as a link between the capacitor Cb and the membrane. Average EPMF fluctuations across the IMM were calculated for different assumptions concerning the intermembrane space dimensions. The calculated average EPMF fluctuations were in the vicinity of 100 mV for relaxation times in the few-microseconds range. The corresponding fluctuational protonic free energy is about 10 kJ/mole, which is comparable to the binding energy for protons in different transporters. This suggests that fluctuations in EPMF can be of relevance in the universe of forces influencing the molecular machinery embedded in the IMM.

  2. Electromotive Force for Solid Oxide Fuel Cells Using Biomass Produced Gas as Fuel

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Yin, Yan-hong; Gao, Cen; Xia, Chang-rong; Meng, Guang-yao

    2006-08-01

    The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis. Tour program also predicts the concentration of oxygen in the fuel chamber as well as the concentration of equilibrium species such as H2, CO, CO2 and CH4. Compared with using hydrogen as a fuel, the e.m.f. for cells using BPG as the fuels is relative low and strongly influenced by carbon deposition. To remove carbon deposition, the optimum amount of H2O to add is determined at various operating temperatures. Further the e.m.f. for cells based on yttria stabilized zirconia and doped ceria as electrolytes are compared. The study reveals that when using BPG as fuel, the depression of e.m.f. for a SOFC using doped ceria as electrolyte is relatively small when compared with that using Yttria stabilized zirconia.

  3. The influence of helical background fields on current helicity and electromotive force of magnetoconvection

    NASA Astrophysics Data System (ADS)

    Rüdiger, G.; Küker, M.

    2016-07-01

    Motivated by the empirical finding that the known hemispheric rules for the current helicity at the solar surface are not strict, we demonstrate the excitation of small-scale current helicity by the influence of large-scale helical magnetic background fields on nonrotating magnetoconvection. This is shown within a quasilinear analytic theory of driven turbulence and by nonlinear simulations of magnetoconvection that the resulting small-scale current helicity has the same sign as the large-scale current helicity, while the ratio of both pseudoscalars is of the order of the magnetic Reynolds number of the convection. The same models do not provide finite values of the small-scale kinetic helicity. On the other hand, a turbulence-induced electromotive force is produced including the diamagnetic pumping term, as well as the eddy diffusivity but, however, no α effect. It has thus been argued that the relations for the simultaneous existence of small-scale current helicity and α effect do not hold for the model of nonrotating magnetoconvection under consideration. Calculations for various values of the magnetic Prandtl number demonstrate that, for the considered diffusivities, the current helicity increases for growing magnetic Reynolds number, which is not true for the velocity of the diamagnetic pumping, which is in agreement with the results of the quasilinear analytical approximation.

  4. University students’ understanding of the electromotive force concept in the context of electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Zuza, Kristina; De Cock, Mieke; van Kampen, Paul; Bollen, Laurens; Guisasola, Jenaro

    2016-11-01

    In this work, we present research on university students’ understanding of the concept of electromotive force (emf). The work presented here is a continuation of previous research by Garzón et al (2014 Am. J. Phys. 82 72-6) in which university students’ understanding of emf in the contexts of transient current and direct current circuits was analyzed. In the work we present here the investigation focuses on electromagnetic induction phenomena. Three open-ended questions from a broader questionnaire were analyzed in depth. We used phenomenography to define categories and detect lines of reasoning and difficulties in conceptual understanding. Very few students showed a good understanding of the emf concept in electromagnetic induction circuits or an ability to distinguish it from potential difference. Although the prevalences of the responses in the different categories are different, we find that the difficulties are the same in the three universities. Standard instruction does not allow most students to analyze unfamiliar contexts where the answer requires a systemic explanatory model.

  5. Noninvasive detection of unevenly magnetized permanent magnet of a brushless dc motor by characterizing back electromotive force

    NASA Astrophysics Data System (ADS)

    Lee, C. I.; Jang, G. H.

    2009-04-01

    Uneven magnetization of permanent magnets (PMs) is one of the major sources of unbalanced magnetic force and torque ripple, which excite a brushless dc (BLDC) motor. This paper investigates the frequency contents of the back electromotive force (BEMF) due to the unevenly magnetized PMs in a BLDC motor. The magnetic field of a BLDC motor is solved by using the finite element method, and the BEMF is calculated by differentiating the flux linkage with respect to time. The characteristics of BEMF are investigated by using the spectral analysis. Magnetic flux density of the ideally magnetized PMs has the harmonics of the pole-pair number, but unevenly magnetized PMs generate the additional harmonics. This research shows numerically and experimentally that the frequency components of the BEMF are determined by the least common multiple between the frequency contents of magnetic flux density from the PMs and the slot number per phase. It also shows that the magnetized status of the PMs of a BLDC can be noninvasively identified by monitoring the frequencies and the amplitudes of BEMF.

  6. Electro-optical processor for measuring displacement employing the Talbot and the nonsteady-state photo-electromotive force effects.

    PubMed

    Rodriguez-Montero, P; Sánchez-de-la-Llave, D; Mansurova, S

    2014-01-01

    We present a device for measuring displacement based on the Talbot and the nonsteady photo-electromotive force effects. The proposed device does not require any numerical signal processing since its output signal is, in appropriate regions, linearly related to the measured displacement. The proposed system requires an illuminating field with a sinusoidal amplitude distribution and low fringe visibility. The dynamic range can be adjusted according to the illuminating field spatial period or wavelength. Displacements with an estimated resolution better than 10 μm in a dynamic range of 1.5 mm were detected using a sinusoidal amplitude grating with a period d=100 μm.

  7. Novel Approach in Sensorless Speed Control of Salient Axial-Gap Self-Bearing Motor Using Extended Electromotive Force

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang-Dich; Ueno, Satoshi

    Axial-gap self-bearing motor (AGBM) is an electrical combination of an axial flux motor and a thrust magnetic bearing, hence it can support rotation and magnetic levitation without any additional windings. The goal of this paper is utilization of the state observer to research a new capability of sensorless speed control of a salient AGBM. First, analytical and theoretical evaluation for a sensorless speed vector control of a salient AGBM is presented. The approach is based on the estimation of the extended electromotive force (EEMF) through a Luenberger Observer (LO) with help of reference stator voltages, measured stator currents and measured axial displacement. Then, experiment is implemented based on dSpace1104 with two three-phase inverters. The experimental results confirm that the AGBM can simultaneously produce levitation force and rotational torque. Moreover, speed and axial displacement can be independently controlled without speed sensor.

  8. On the nonlinear on-off dynamics of a butterfly valve actuated by an induced electromotive force

    NASA Astrophysics Data System (ADS)

    Kwuimy, C. A. Kitio; Ramakrishnan, S.; Nataraj, C.

    2013-11-01

    In this paper, we study the nonlinear dynamics of a butterfly valve actuated by the induced electromotive force (emf) of a permanent magnet, with a focus on the on-off dynamics of the valve and its nonlinear response under ambient perturbation. The complex interplay between the electromagnetic, hydrodynamic and mechanical forces leads to a fundamentally multiphysical, nonlinear dynamical model for the problem. First, we analyze the stability of the on-off conditions in terms of three critical dynamical parameters - the actuating DC voltage, inlet velocity and the opening angle. Next, the response of the system to perturbations around the equilibrium points is studied in terms of the frequency response using the method of multiple scales. Finally, evidence of fractality is established using Melnikov analysis and a plot of the basins of attraction. The results reported in the article, in addition to being of fundamental theoretical interest, are expected to impact practical design considerations of electromechanical butterfly valves. For a voltage ve>vc, theoretically, the system may undergo bifurcations into the physically infeasible domain α>αm (beyond the physical boundary). Practically however, this jump cannot be realized due to the stopper in the plunger. In other words, the valve will completely close the pipe under this condition, leading to catastrophic behavior. For a voltage ve

  9. Speckle photo-electromotive force in Bi12SiO20: Effect of the speckle size

    NASA Astrophysics Data System (ADS)

    Salazar, Ángel

    2013-07-01

    A study of the speckle photo-electromotive force (PEMF) in a photorefractive sensor of amplitudes of micro-oscillations is presented. The experimental behavior of the first harmonic of the photocurrent generated as a function of the average speckle diameter and the oscillation amplitude of the speckle pattern is analyzed for a sensor implemented with a Bi12SiO20 (BSO) crystal. For a given light intensity, a nearly constant value of the maximum amplitude of the first harmonic was experimentally observed for the range of speckle sizes considered. This experimental result and the linear dependence of the vibration amplitude yielding the maximum of the photocurrent as a function of the speckle diameter were appropriately described by the mathematical model considered. Results show the possibility of adequately selecting the speckle size to optimize the output of speckle PEMF-based sensors depending on the oscillation amplitude to be measured.

  10. Determination of Gibbs Energy of Formation of Molybdenum-Boron Binary System by Electromotive Force Measurement Using Solid Electrolyte

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroaki; Morishita, Masao; Yamamoto, Takeo; Furukawa, Kazuma

    2011-02-01

    The standard Gibbs energies of formation of Mo2B, αMoB, Mo2B5, and MoB4 in the molybdenum-boron binary system were determined by measuring electromotive forces of galvanic cells using an Y2O3-stabilized ZrO2 solid oxide electrolyte. The results are as follows: begin{aligned} Updelta_{{f}} {{G}}^circ ( {{{Mo}}2 {{B}}} )/{{J}} {{mol}}^{ - 1} & = - 193100 + 44.10T ± 700( {1198{{ K to }}1323{{ K}}( {925^circ {{C to }}1050^circ {{C}}} )} ) \\ Updelta_{{f}} {{G}}^circ (α {{MoB}})/{{J}} {{mol}}^{ - 1} & = - 164000 + 26.45T ± 700( {1213{{ K to }}1328{{ K}}( {940^circ {{C to }}1055^circ {{C}}} )} ) \\ Updelta_{{f}} {{G}}^circ ( {{{Mo}}2 {{B}}5 } )/{{J}} {{mol}}^{ - 1} & = - 622500 + 117.0T ± 3000( {1205{{ K to }}1294{{ K}}( {932^circ {{C to }}1021^circ {{C}}} )} ) \\ Updelta_{{f}} {{G}}^circ ( {{{MoB}}4 } )/{{J}} {{mol}}^{ - 1} & = - 387300 + 93.53T ± 3000( {959{{ K to }}1153{{ K}}( {686^circ {{C to }}880^circ {{C}}} )} ) \\ where the standard pressure is 1 bar (100 kPa).

  11. Electromotive force and huge magnetoresistance in magnetic tunnel junctions with zinc-blende MnAs nano-magnets

    NASA Astrophysics Data System (ADS)

    Hai, Pham Nam

    2010-03-01

    For nanostructures such as magnetic nanowires or spin valves, it is theoretically predicted that an electromotive force (emf) arises from a time-varying magnetization in a static magnetic field [1]. This reflects the conversion of magnetic energy to electrical energy. Here we show that such an emf can indeed be induced by a static magnetic field in magnetic tunnel junctions containing zinc-blende (ZB) MnAs quantum nano-magnets. The ZB MnAs nanomagnets are coupled to a NiAs-structure hexagonal MnAs top electrode through an AlAs tunnel barrier, and to a GaAs:Be bottom electrode through a GaAs barrier. Under a static magnetic field, an emf of up to 7 mV was observed for a time scale of 10^2˜10^3 sec. This emf is induced by a co-tunneling process of electrons and magnetization of ZB MnAs nanomagnets subject to a strong Coulomb blockade of 50 meV. Huge magnetoresistance of up to 100,000% is observed for certain bias voltages. Our results strongly suggest that Faraday's Law of induction must be generalized to account for purely spin effects in magnetic nanostructures [2]. The author thanks S. Ohya, M. Tanaka, S.E. Barnes and M. Maekawa for their collaboration.[4pt] [1] S. E. Barnes et al. APL 89, 122507 (2006); PRL 98, 246601 (2007).[0pt] [2] P. N. Hai et al., Nature 458, 489 (2009).

  12. Determination of Gibbs Energy of Mixing of Tungsten-Boron Binary System by Electromotive Force Measurement Using Solid Electrolyte

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroaki; Morishita, Masao; Miyake, Yuta; Hiramatsu, Shusuke

    2017-02-01

    The thermodynamic properties for the tungsten-boron binary system were determined by measuring electromotive forces of galvanic cells using an Y2O3-stabilized ZrO2 solid oxide electrolyte. Assuming that W2B and αWB are the stoichiometric compounds, and W2B5-x and W1-x B3 are the nonstoichiometric compounds having solubility widths of 0.670 ≤ X B ≤ 0.690 and 0.805 ≤ X B ≤ 0.822, respectively, they were treated as the intermediate phases of W0.667B0.333, αW0.50B0.50, W0.330B0.670 W0.310B0.690, and W0.195B0.805 W0.178B0.822. The Gibbs energies of mixing, ∆mix G, determined in the present study are listed as follows: Δ_{mix} G(W_{0.667} B_{0.333} )/{J} {mol}^{ - 1} = {-}78070 + 26.01T ± 70 [1305{-}1422{K}(1032{-}1149° C)], & Δ_{mix} G(α W_{0.50} B_{0.50} )/{J} {mol}^{ - 1} = {-}86140 + 20.19T ± 200 [1310{-}1399{K}(1037{-}1126° C)], & Δ_{mix} G(W_{0.330} B_{0.670} )/{J} {mol}^{ - 1} = {-}78910 + 18.11T ± 200 [1228{-}1410{K}(955{-}1137° C)], & Δ_{mix} G(W_{0.310} B_{0.690} )/{J} {mol}^{ - 1} = {-}77350 + 17.52T ± 500 [1228{-}1410{K}(955{-}1137° C)], & Δ_{mix} G(W_{0.195} B_{0.805} )/{J} {mol}^{ - 1} = {-}63920 + 12.08T ± 500 [1170{-}1340{K}(897{-}1067° C)], & Δ_{mix} G(W_{0.178} B_{0.822} )/{J} {mol}^{ - 1} = {-}60090 + 11.15T ± 200 [1170{-}1340{K}(897{-}1067° C)]. Using the thermodynamic properties determined in the present study, the composition-oxygen partial pressure diagram of the tungsten-boron-oxygen system was constructed under the conditions at 1273 K (1000 °C) and a total pressure of 1 bar (100 kPa). It is useful to understand the oxidation property of tungsten-boron binary alloys.

  13. Determination of Gibbs Energy of Mixing of Tungsten-Boron Binary System by Electromotive Force Measurement Using Solid Electrolyte

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroaki; Morishita, Masao; Miyake, Yuta; Hiramatsu, Shusuke

    2017-06-01

    The thermodynamic properties for the tungsten-boron binary system were determined by measuring electromotive forces of galvanic cells using an Y2O3-stabilized ZrO2 solid oxide electrolyte. Assuming that W2B and αWB are the stoichiometric compounds, and W2B5- x and W1- x B3 are the nonstoichiometric compounds having solubility widths of 0.670 ≤ X B ≤ 0.690 and 0.805 ≤ X B ≤ 0.822, respectively, they were treated as the intermediate phases of W0.667B0.333, αW0.50B0.50, W0.330B0.670 W0.310B0.690, and W0.195B0.805 W0.178B0.822. The Gibbs energies of mixing, ∆mix G, determined in the present study are listed as follows: Δ_{{mix}} G({W}_{0.667} {B}_{0.333} )/{{J}} {{mol}}^{ - 1} = {-}78070 + 26.01T ± 70 [1305{-}1422{{ K}}(1032{-}1149°C)], Δ_{{mix}} G(α {W}_{0.50} {B}_{0.50} )/{{J}} {{mol}}^{ - 1} = {-}86140 + 20.19T ± 200 [1310{-}1399{{ K }}(1037{-}1126°C)], Δ_{{mix}} G({W}_{0.330} {B}_{0.670} )/{{J}} {{mol}}^{ - 1} = {-}78910 + 18.11T ± 200 [1228{-}1410{{ K }}(955{-}1137°C)], ; Δ_{{mix}} G({W}_{0.310} {B}_{0.690} )/{{J}} {{mol}}^{ - 1} = {-}77350 + 17.52T ± 500 [1228{-}1410{{ K }}(955{-}1137°C)], Δ_{{mix}} G({W}_{0.195} {B}_{0.805} )/{{J}} {{mol}}^{ - 1} = {-}63920 + 12.08T ± 500 [1170{-}1340{{ K }}(897{-}1067°C)], Δ_{{mix}} G({W}_{0.178} {B}_{0.822} )/{{J}} {{mol}}^{ - 1} = {-}60090 + 11.15T ± 200 [1170{-}1340{{ K }}(897{-}1067°C)]. Using the thermodynamic properties determined in the present study, the composition-oxygen partial pressure diagram of the tungsten-boron-oxygen system was constructed under the conditions at 1273 K (1000 °C) and a total pressure of 1 bar (100 kPa). It is useful to understand the oxidation property of tungsten-boron binary alloys.

  14. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish.

    PubMed

    Waddell, Joseph C; Rodríguez-Cattáneo, Alejo; Caputi, Angel A; Crampton, William G R

    2016-10-01

    Descriptions of the head-to-tail electric organ discharge (ht-EOD) waveform - typically recorded with electrodes at a distance of approximately 1-2 body lengths from the center of the subject - have traditionally been used to characterize species diversity in gymnotiform electric fish. However, even taxa with relatively simple ht-EODs show spatiotemporally complex fields near the body surface that are determined by site-specific electrogenic properties of the electric organ and electric filtering properties of adjacent tissues and skin. In Brachyhypopomus, a pulse-discharging genus in the family Hypopomidae, the regional characteristics of the electric organ and the role that the complex 'near field' plays in communication and/or electrolocation are not well known. Here we describe, compare, and discuss the functional significance of diversity in the ht-EOD waveforms and near-field spatiotemporal patterns of the electromotive force (emf-EODs) among a species-rich sympatric community of Brachyhypopomus from the upper Amazon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Characterisation of the turbulent electromotive force and its magnetically-mediated quenching in a global EULAG-MHD simulation of solar convection

    NASA Astrophysics Data System (ADS)

    Simard, Corinne; Charbonneau, Paul; Dubé, Caroline

    2016-10-01

    We perform a mean-field analysis of the EULAG-MHD millenium simulation of global magnetohydrodynamical convection presented in Passos and Charbonneau (2014). The turbulent electromotive force (emf) operating in the simulation is assumed to be linearly related to the cyclic axisymmetric mean magnetic field and its first spatial derivatives. At every grid point in the simulation's meridional plane, this assumed relationship involves 27 independent tensorial coefficients. Expanding on Racine et al. (2011), we extract these coefficients from the simulation data through a least-squares minimization procedure based on singular value decomposition. The reconstructed α -tensor shows good agreement with that obtained by Racine et al. (2011), who did not include derivatives of the mean-field in their fit, as well as with the α -tensor extracted by Augustson et al. (2015) from a distinct ASH MHD simulation. The isotropic part of the turbulent magnetic diffusivity tensor β is positive definite and reaches values of 5.0 ×107 m2 s-1 in the middle of the convecting fluid layers. The spatial variations of both αϕϕ and βϕϕ component are well reproduced by expressions obtained under the Second Order Correlation Approximation, with a good matching of amplitude requiring a turbulent correlation time about five times smaller than the estimated turnover time of the small-scale turbulent flow. By segmenting the simulation data into epochs of magnetic cycle minima and maxima, we also measure α - and β -quenching. We find the magnetic quenching of the α -effect to be driven primarily by a reduction of the small-scale flow's kinetic helicity, with variations of the current helicity playing a lesser role in most locations in the simulation domain. Our measurements of turbulent diffusivity quenching are restricted to the βϕϕ component, but indicate a weaker quenching, by a factor of ≃ 1.36, than of the α -effect, which in our simulation drops by a factor of three between

  16. Investigation of the mechanisms of action behind Electromotive Drug Administration (EMDA)

    PubMed Central

    Vásquez, Juan Luis; Miklavčič, Damijan; Hermann, Gregers G.G.; Gehl, Julie

    2016-01-01

    Objective Bladder cancer is a cause of considerable morbidity worldwide. Electromotive Drug Administration is a method that combines intravesical chemotherapy with local electric field application. Electroporation has been suggested among other mechanisms as having a possible role in the therapy, so the goal of the present study was to investigate the electric fields present in the bladder wall during the treatment to determine which mechanisms might be involved. Material and Methods Electromotive Drug Administration involves applying intravesical mitomycin C with direct current of 20 mA delivered through a catheter electrode for 30 min. For numerical electric field computation we built a 3-D nonhomogeneous patient specific model based on CT images and used finite element method simulations to determine the electric fields in the whole body. Results Results indicate that highest electric field in the bladder wall was 37.7 V/m. The mean electric field magnitude in the bladder wall was 3.03 V/m. The mean magnitude of the current density in the bladder wall was 0.61 A/m2. Conclusions The present study shows that electroporation is not the mechanism of action in EMDA. A more likely explanation of the mechanism of action is iontophoretic forces increasing the mitomycin C concentration in the bladder wall. PMID:27635313

  17. Force Method Optimization.

    DTIC Science & Technology

    1980-02-01

    The resulting problem is non-linear, but the use of a linear programming stage is effective in DD IO 1473 EDITION oF I NOV GSIS OSOLETE UNCLASSIFIED...programming techniques reached what was effectively a computational stalemate, the development of optimality criteria methods(’) in the early 70’s appeared to...constraints. In addition, the incorporation of stress and fabricational constraints is effectively based upon the FSD method. Work has been carried on by a

  18. The Electromotive Series and Other Non-Absolute Scales

    NASA Astrophysics Data System (ADS)

    Peckham, Gavin D.

    1998-01-01

    This article describes an analogy which may be used to illustrate the principles that underlie the establishment of non-absolute scales of measurements that are evaluated relative to a chosen reference point. The analogy is interwoven with the establishment of the electromotive series, but may be extended to other parameters such as the Celsius and Fahrenheit temperature scales, potential energies, formation and reaction enthalpies, etc.

  19. Method of Calibrating a Force Balance

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)

    2015-01-01

    A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.

  20. [Intravesical therapy with mitomycin through electromotive drug administration].

    PubMed

    Verri, Cristian; Liberati, Emanuele; Celestino, Francesco; De Carlo, Francesco; Torelli, Fiammetta; Di Stasi, Savino M

    2013-01-01

    In the management of non-muscle invasive bladder cancer (NMIBC), high-level evidence supports the widespread practice of intravesical therapy with mitomycin-C (MMC). Randomized trials showed a significant reduction in short-term recurrence compared with transurethral resection of bladder tumor (TURBT) alone, but little effect on long-term and no impact at all in preventing progression. Electromotive drug administration (EMDA®) offers a means of controlling and enhancing the tissue transport of certain drugs, in order to increase their efficacy. In both laboratory and clinical studies, intravesical electromotive drug administration (EMDA) increases MMC bladder uptake, resulting in an improved clinical efficacy in NMIBC without systemic side effects. New frameworks for treatment of NMIBC - e.g., sequential intravesical BCG and EMDA/MMC, as well as intravesical EMDA/MMC immediately before TURBT - have provided promising preliminary results with higher remission rates and longer remission times, and they are a priority to minimise the costs of disease management. These findings suggest EMDA-enhanced MMC efficacy against urothelial cancer could be a major therapeutic breakthrough in the treatment of NMIBC.

  1. Handbook of Force Management Methods

    DTIC Science & Technology

    1981-04-01

    scheduling. This element of force management is known as the loads/environment spectra survey (L/ESS). 1-2 V I. Due to the complex nature of the process of...the complexity of the data system, the experience of the personnel, and the degree of interface considered necessary to assure an effective transfer...depot level, depending on the complexity of 4-15 the task and available materials and facilities. No attempt is made in the T.O.-3 manual to classify

  2. Integrated force method versus displacement method for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Berke, L.; Gallagher, R. H.

    1991-01-01

    A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EEs) are integrated with the global compatibility conditions (CCs) to form the governing set of equations. In IFM the CCs are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.

  3. Integrated force method versus displacement method for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.

    1990-01-01

    A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EE's) are integrated with the global compatibility conditions (CC's) to form the governing set of equations. In IFM the CC's are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.

  4. Electromotive administration of oxybutynin into the human bladder wall.

    PubMed

    Di Stasi, S M; Giannantoni, A; Massoud, R; Cortese, C; Vespasiani, G; Micali, F

    1997-07-01

    To compare concentrations of oxybutynin in the human bladder wall after either passive delivery (PD) or electromotive administration (EMDA). Tissue sections of human bladder were inserted into a diffusion cell with urothelium exposed to the donor compartment containing oxybutynin (4.5 mg. in 100 ml. NaCl 0.45%) and an anode. Twelve paired experiments, "current 5 mA/no current", were conducted over 15 minutes. Oxybutynin tissue contents were measured and tissue viability, morphology and oxybutynin stability were assessed. Mean oxybutynin tissue concentrations were 3.84 micrograms./gm. in samples exposed to EMDA and 0.87 microgram./gm. in samples exposed to PD (p = 0.0006). The mean coefficients of variation were 57.85% in EMDA experiments and 89.78% in PD experiments. Tissues were viable and undamaged histologically and no oxybutynin structural modification was observed. EMDA enhances oxybutynin administration into viable bladder wall and reduces the variability in drug delivery rate.

  5. Electromotive delivery of mitomycin C into human bladder wall.

    PubMed

    Di Stasi, S M; Vespasiani, G; Giannantoni, A; Massoud, R; Dolci, S; Micali, F

    1997-03-01

    The aim of this investigation was to establish an appropriate tissue pharmacokinetic model to compare concentrations of mitomycin C (MMC) in the human bladder wall after either passive delivery or electromotive administration (EMDA) and to evaluate the effects of EMDA on tissue morphology and MMC structure. Tissue sections of human bladder were inserted into two chamber cells with urothelium exposed to donor compartments containing MMC (10 mg in 100 ml of 0.24% NaCl solution) and an anode and with serosa exposed to receptor compartments containing 100 ml of 0.9% NaCl solution and a cathode. Fourteen paired experiments ("current 5 mA/no current") were conducted over 15 min; MMC tissue content was assessed by high-pressure liquid chromatography. Tissue viability and morphology and MMC stability were assessed by trypan blue exclusion test, tissue pH, histological analysis, and mass spectrometry analysis. MMC concentrations were increased, and variability in drug delivery rate was reduced in all tissue in samples exposed to electric current. Tissues were viable and undamaged histologically, and no MMC structural modification was observed. In conclusion, EMDA enhances administration of MMC into viable bladder wall tissue and reduces the variability in drug delivery rates.

  6. Fidelity of the Integrated Force Method Solution

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale; Halford, Gary; Coroneos, Rula; Patnaik, Surya

    2002-01-01

    The theory of strain compatibility of the solid mechanics discipline was incomplete since St. Venant's 'strain formulation' in 1876. We have addressed the compatibility condition both in the continuum and the discrete system. This has lead to the formulation of the Integrated Force Method. A dual Integrated Force Method with displacement as the primal variable has also been formulated. A modest finite element code (IFM/Analyzers) based on the IFM theory has been developed. For a set of standard test problems the IFM results were compared with the stiffness method solutions and the MSC/Nastran code. For the problems IFM outperformed the existing methods. Superior IFM performance is attributed to simultaneous compliance of equilibrium equation and compatibility condition. MSC/Nastran organization expressed reluctance to accept the high fidelity IFM solutions. This report discusses the solutions to the examples. No inaccuracy was detected in the IFM solutions. A stiffness method code with a small programming effort can be improved to reap the many IFM benefits when implemented with the IFMD elements. Dr. Halford conducted a peer-review on the Integrated Force Method. Reviewers' response is included.

  7. Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1998-01-01

    Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.

  8. Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1998-01-01

    Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.

  9. BOFFO - BOUNDARY FORCE METHOD FOR ORTHOTROPIC MATERIALS

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1994-01-01

    In the field of fracture mechanics, stress-intensity factors are important parameters for predicting fracture strengths and fatigue lives. BOFFO performs stress analysis of two-dimensional linear elastic orthotropic or composite bodies with or without cracks using the Boundary Force Method. The Boundary Force Method is versatile since complex geometries, crack configurations, and load distributions can be analyzed with ease. The BOFFO program is easy to use because only the boundaries of the region of interest are modeled using a built-in mesh generator. Stresses can be computed at any specified point in the body. Stress-intensity factor solutions and strain-energy release rates are computed for both mode I and mixed mode fracture problems. The Boundary Force Method is a numerical technique that uses the fundamental solutions for concentrated forces and moments in an infinite sheet to obtain the solution to the boundary value problem of interest. These fundamental solutions are used in the BOFFO program to exactly satisfy the stress-free conditions on the crack faces. The other boundary conditions are approximately satisfied by applying the appropriate sets of concentrated horizontal and vertical forces and moments along the boundary. The problem configuration is defined using two sets of axes. The global X- and Y-axes define the specimen boundaries, loads, and material properties. The local axes define the crack length and orientation. The user can specify four types of symmetry conditions: symmetry about the X-axis, symmetry about the Y-axis, symmetry about the X- and Y-axes, or no symmetry. The lines of symmetry are not modeled as boundaries. The accuracy of the solution depends on how well the boundary conditions are approximated, which in turn depends on the refinement of the boundary mesh. BOFFO uses the radial-line method for element mesh generation. BOFFO is written in FORTRAN V for execution on CDC CYBER 170 Series computers running NOS. The execution time

  10. BOFFO - BOUNDARY FORCE METHOD FOR ORTHOTROPIC MATERIALS

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1994-01-01

    In the field of fracture mechanics, stress-intensity factors are important parameters for predicting fracture strengths and fatigue lives. BOFFO performs stress analysis of two-dimensional linear elastic orthotropic or composite bodies with or without cracks using the Boundary Force Method. The Boundary Force Method is versatile since complex geometries, crack configurations, and load distributions can be analyzed with ease. The BOFFO program is easy to use because only the boundaries of the region of interest are modeled using a built-in mesh generator. Stresses can be computed at any specified point in the body. Stress-intensity factor solutions and strain-energy release rates are computed for both mode I and mixed mode fracture problems. The Boundary Force Method is a numerical technique that uses the fundamental solutions for concentrated forces and moments in an infinite sheet to obtain the solution to the boundary value problem of interest. These fundamental solutions are used in the BOFFO program to exactly satisfy the stress-free conditions on the crack faces. The other boundary conditions are approximately satisfied by applying the appropriate sets of concentrated horizontal and vertical forces and moments along the boundary. The problem configuration is defined using two sets of axes. The global X- and Y-axes define the specimen boundaries, loads, and material properties. The local axes define the crack length and orientation. The user can specify four types of symmetry conditions: symmetry about the X-axis, symmetry about the Y-axis, symmetry about the X- and Y-axes, or no symmetry. The lines of symmetry are not modeled as boundaries. The accuracy of the solution depends on how well the boundary conditions are approximated, which in turn depends on the refinement of the boundary mesh. BOFFO uses the radial-line method for element mesh generation. BOFFO is written in FORTRAN V for execution on CDC CYBER 170 Series computers running NOS. The execution time

  11. Electromotive Triggering and Single Sweep Analysis of Vestibular Evoked Myogenic Potentials (VEMPs).

    PubMed

    Hecker, Dietmar J; Lohscheller, Joerg; Schorn, Bianca; Koch, Klaus Peter; Schick, Bernhard; Dlugaiczyk, Julia

    2014-01-01

    Cervical (c) and ocular (o) vestibular evoked myogenic potentials (VEMPs) provide important tools for measuring otolith function. However, two major drawbacks of this method are encountered in clinical practice. First, recording of oVEMPs is compromised by small n10 amplitudes. Second, VEMP analysis is currently based on the averaging technique, resulting in a loss of information compared to single sweep analysis. Here, we: 1) developed a novel electromotive trigger mechanism for evoking VEMPs by bone-conducted vibration to the forehead and 2) established maximum entropy extraction of complex wavelet transforms for calculation of phase synchronization between VEMP single sweeps. Both c- and oVEMPs were recorded for n=10 healthy individuals. The oVEMP n10 amplitude was consistently higher (right: 24.84±9.71 μV; left: 27.40±14.55 μV) than previously described. Stable VEMP signals were reached after a smaller number of head taps (oVEMPs 6; cVEMPs 11) compared to current recommendations. Phase synchronization vectors and phase shift values were successfully determined for simulated and clinically recorded VEMPs, providing information about the impact of noise and phase jitter on the VEMP signal. Thus, the proposed method constitutes an easy-to-use approach for the fast detection and analysis of VEMPs in clinical practice.

  12. Integrated Force Method for Indeterminate Structures

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Halford, Gary R.; Patnaik, Surya N.

    2008-01-01

    Two methods of solving indeterminate structural-mechanics problems have been developed as products of research on the theory of strain compatibility. In these methods, stresses are considered to be the primary unknowns (in contrast to strains and displacements being considered as the primary unknowns in some prior methods). One of these methods, denoted the integrated force method (IFM), makes it possible to compute stresses, strains, and displacements with high fidelity by use of modest finite-element models that entail relatively small amounts of computation. The other method, denoted the completed Beltrami Mitchell formulation (CBMF), enables direct determination of stresses in an elastic continuum with general boundary conditions, without the need to first calculate displacements as in traditional methods. The equilibrium equation, the compatibility condition, and the material law are the three fundamental concepts of the theory of structures. For almost 150 years, it has been commonly supposed that the theory is complete. However, until now, the understanding of the compatibility condition remained incomplete, and the compatibility condition was confused with the continuity condition. Furthermore, the compatibility condition as applied to structures in its previous incomplete form was inconsistent with the strain formulation in elasticity.

  13. The hydrophobic force: measurements and methods.

    PubMed

    Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R; Chan, Derek Y C

    2014-09-14

    The hydrophobic force describes the attraction between water-hating molecules (and surfaces) that draws them together, causing aggregation, phase separation, protein folding and many other inherent physical phenomena. Attempts have been made to isolate the range and magnitude of this interaction between extended surfaces for more than four decades, with wildly varying results. In this perspective, we critically analyse the application of common force-measuring techniques to the hydrophobic force conundrum. In doing so, we highlight possible interferences to these measurements and provide physical rationalisation where possible. By analysing the most recent measurements, new approaches to establishing the form of this force become apparent, and we suggest potential future directions to further refine our understanding of this vital, physical force.

  14. Are shear force methods adequately reported?

    PubMed

    Holman, Benjamin W B; Fowler, Stephanie M; Hopkins, David L

    2016-09-01

    This study aimed to determine the detail to which shear force (SF) protocols and methods have been reported in the scientific literature between 2009 and 2015. Articles (n=734) published in peer-reviewed animal and food science journals and limited to only those testing the SF of unprocessed and non-fabricated mammal meats were evaluated. It was found that most of these SF articles originated in Europe (35.3%), investigated bovine species (49.0%), measured m. longissimus samples (55.2%), used tenderometers manufactured by Instron (31.2%), and equipped with Warner-Bratzler blades (68.8%). SF samples were also predominantly thawed prior to cooking (37.1%) and cooked sous vide, using a water bath (50.5%). Information pertaining to blade crosshead speed (47.5%), recorded SF resistance (56.7%), muscle fibre orientation when tested (49.2%), sub-section or core dimension (21.8%), end-point temperature (29.3%), and other factors contributing to SF variation were often omitted. This base failure diminishes repeatability and accurate SF interpretation, and must therefore be rectified. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. A polygonal method for haptic force generation

    SciTech Connect

    Anderson, T. |

    1996-12-31

    Algorithms for computing forces and associated surface deformations (graphical and physical) are given, which, together with a force feedback device can be used to haptically display virtual objects. The Bendable Polygon algorithm, created at Sandia National Labs and the University of New Mexico, for visual rendering of computer generated surfaces is also presented. An implementation using the EIGEN virtual reality environment, and the PHANToM (Trademark) haptic interface, is reported together with suggestions for future research.

  16. Intravesical electromotive drug administration for the treatment of non-infectious chronic cystitis.

    PubMed

    Riedl, C R; Knoll, M; Plas, E; Stephen, R L; Pflüger, H

    1997-01-01

    Seventeen patients with non-infectious chronic cystitis (NICC) (9 with interstitial cystitis, 6 patients with radiation cystitis, 1 with chemocystitis and 1 with lupoid cystitis) were treated with electromotive administration of intravesical lidocaine and dexamethasone followed by hydrodistension of the bladder. Complete resolution of symptoms for an average of 7.5 months was observed in 11 patients (65%), partial improvement in 4 (23.5%). In this series no complications occurred. Electromotive drug administration (EMDA) and cystodistension were well tolerated by all patients. The treatment was performed on an outpatient basis, thus reducing therapeutic costs. The results presented demonstrate that the combination of EMDA and bladder hydrodistension is an effective first-line treatment for NICC patients.

  17. Intravesical electromotive administration of oxybutynin in patients with detrusor hyperreflexia unresponsive to standard anticholinergic regimens.

    PubMed

    Di Stasi, S M; Giannantoni, A; Vespasiani, G; Navarra, P; Capelli, G; Massoud, R; Stephen, R L

    2001-02-01

    About 15% to 20% of patients with detrusor hyperreflexia do not benefit from oral oxybutynin regimens, frequently because of unpleasant side effects. Several reports indicate that intravesical oxybutynin is effective in many of these patients but there are some who still fail to respond. A select group of 10 adults with detrusor hyperreflexia unresponsive to standard oral and intravesical oxybutynin regimens were treated at weekly intervals with 5 mg. oxybutynin orally, or 5 mg. oxybutynin in 100 ml. intravesically for 60 minutes of passive diffusion and for 30 minutes with 5 mA. electrical current. Each treatment (plus oral placebo and 2 intravesical controls) was associated with an 8-hour, full urodynamic monitoring session, and periodic blood and bladder content sampling. There was no significant objective improvement with oral or intravesical passive diffusion oxybutynin. Conversely there was significant improvement in 5 of 6 objective urodynamic measurements with intravesical electromotive oxybutynin. Plasma profiles were a single peak and decay following oral oxybutynin and 2 distinct peaks with intravesical passive diffusion and electromotive oxybutynin. Area under the curve for intravesical passive diffusion were 709 ng. per 8 hours versus oral 1,485 (p <0.05) versus intravesical electromotive 2,781 (p <0.001). Bladder content samples confirmed oxybutynin absorption. Oral oxybutynin caused anticholinergic side effects in 7 of 10 patients. There were no side effects with intravesical passive diffusion or electromotive administrations. Accelerated intravesical administration results in greater bioavailability and increased objective benefits without side effects in previously unresponsive patients compared with oral and intravesical passive diffusion oxybutynin administration.

  18. Measurement methods in atomic force microscopy.

    PubMed

    Torre, Bruno; Canale, Claudio; Ricci, Davide; Braga, Pier Carlo

    2011-01-01

    This chapter is introductory to the measurements: it explains different measurement techniques both for imaging and for force spectroscopy, on which most of the AFM experiments rely. It gives a general overview of the different techniques and of the output expected from the instrument; therefore it is, at a basic level, a good tool to properly start a new experiment. Concepts introduced in this chapter give the base for understanding the applications shown in the following chapters. Subheading 1 introduces the distinction between spectroscopy and imaging experiments and, within the last ones, between DC and AC mode. Subheading 2 is focused on DC mode (contact), explaining the topography and the lateral force channel. Subheading 3 introduces AC mode, both in noncontact and intermittent contact case. Phase imaging and force modulation are also discussed. Subheading 4 explains how the AFM can be used to measure local mechanical and adhesive properties of specimens by means of force spectroscopy technique. An overview on the state of the art and future trends in this field is also given.

  19. Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.

    PubMed

    Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M

    2017-06-14

    In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017. Published by Elsevier B.V.

  20. A New Method of Comparing Forcing Agents in Climate Models

    SciTech Connect

    Kravitz, Benjamin S.; MacMartin, Douglas; Rasch, Philip J.; Jarvis, Andrew

    2015-10-14

    We describe a new method of comparing different climate forcing agents (e.g., CO2, CH4, and solar irradiance) that avoids many of the ambiguities introduced by temperature-related climate feedbacks. This is achieved by introducing an explicit feedback loop external to the climate model that adjusts one forcing agent to balance another while keeping global mean surface temperature constant. Compared to current approaches, this method has two main advantages: (i) the need to define radiative forcing is bypassed and (ii) by maintaining roughly constant global mean temperature, the effects of state dependence on internal feedback strengths are minimized. We demonstrate this approach for several different forcing agents and derive the relationships between these forcing agents in two climate models; comparisons between forcing agents are highly linear in concordance with predicted functional forms. Transitivity of the relationships between the forcing agents appears to hold within a wide range of forcing. The relationships between the forcing agents obtained from this method are consistent across both models but differ from relationships that would be obtained from calculations of radiative forcing, highlighting the importance of controlling for surface temperature feedback effects when separating radiative forcing and climate response.

  1. Advanced Thermal Energy Conversion of Temperature under 300°C by Thermoelectric Conversion Method

    NASA Astrophysics Data System (ADS)

    Ueda, Tadashi; Uchida, Yoshiyuki; Shingu, Hiroyasu

    Many approaches have been developing for energy conversion throughout the world. However, it is difficult to achieve the global warming countermeasure based on “The Kyoto protocol”. Until now effective utilization of low temperature thermal energy (under 300°C) is not advancing one. For example, effective utilization method has not been established for waste heat energy which arise from industry machine tools, automobiles, internal combustion engines and thermal energy from natural environment, etc. In this paper, we reported the experiment for effective utilizing of low temperature (under 300°C) thermal energy conversion. The device used for the measurement is a copper thermo device. Thermo electromotive force of 150mW/cm2 was obtained at 200°C. The obtained thermo electromotive force is about 15 times higher in comparison with generally used alumal-chromal thermocouple. Our aim is that utilizes low temperature thermal energy effectively by converting into electricity.

  2. Electromotive force measurements on cells involving beta-alumina solid electrolyte

    NASA Technical Reports Server (NTRS)

    Choudhury, N. S.

    1973-01-01

    Open-circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta-alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two-phase solid electrolyte may be used to monitor oxygen chemical potentials as low as that corresponding to Al and Al2O3 coexistence (potentials of about 10 to the minus 47th power atm at 1000 K). The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.

  3. Electromotive force measurements on cells involving beta-alumina solid electrolyte

    NASA Technical Reports Server (NTRS)

    Choudhury, N.

    1973-01-01

    Open circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta- alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two phase solid electrolyte can be used to monitor oxygen chemical potentials as low as that corresponding to Al, Al2O3 coexistence. The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.

  4. Integrated Force Method Solution to Indeterminate Structural Mechanics Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.

    2004-01-01

    Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.

  5. Flexible Methods for Future Force Concept Development

    DTIC Science & Technology

    2005-08-01

    this report is included in Appendix A. A second Army method is to stand up a replica of the new system and conduct a unit exercise in simulation, such...information on loading exercises , navigating the map, and deploying and monitoring sensors. 6 I It J_ Map Area Mode Selection Area : Figure 1. Scaled-world...7 -- 7/ Figure 2. Scaled-world tool with sensor feed displayed. The scaled-world tool and events were developed using Java and open-source software

  6. A Method for Implementing Force-Limited Vibration Control

    NASA Technical Reports Server (NTRS)

    Worth, Daniel B.

    1997-01-01

    NASA/GSFC has implemented force-limited vibration control on a controller which can only accept one profile. The method uses a personal computer based digital signal processing board to convert force and/or moment signals into what appears to he an acceleration signal to the controller. This technique allows test centers with older controllers to use the latest force-limited control techniques for random vibration testing. The paper describes the method, hardware, and test procedures used. An example from a test performed at NASA/GSFC is used as a guide.

  7. A novel adaptive force control method for IPMC manipulation

    NASA Astrophysics Data System (ADS)

    Hao, Lina; Sun, Zhiyong; Li, Zhi; Su, Yunquan; Gao, Jianchao

    2012-07-01

    IPMC is a type of electro-active polymer material, also called artificial muscle, which can generate a relatively large deformation under a relatively low input voltage (generally speaking, less than 5 V), and can be implemented in a water environment. Due to these advantages, IPMC can be used in many fields such as biomimetics, service robots, bio-manipulation, etc. Until now, most existing methods for IPMC manipulation are displacement control not directly force control, however, under most conditions, the success rate of manipulations for tiny fragile objects is limited by the contact force, such as using an IPMC gripper to fix cells. Like most EAPs, a creep phenomenon exists in IPMC, of which the generated force will change with time and the creep model will be influenced by the change of the water content or other environmental factors, so a proper force control method is urgently needed. This paper presents a novel adaptive force control method (AIPOF control—adaptive integral periodic output feedback control), based on employing a creep model of which parameters are obtained by using the FRLS on-line identification method. The AIPOF control method can achieve an arbitrary pole configuration as long as the plant is controllable and observable. This paper also designs the POF and IPOF controller to compare their test results. Simulation and experiments of micro-force-tracking tests are carried out, with results confirming that the proposed control method is viable.

  8. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy.

    PubMed

    Tran Khac, Bien Cuong; Chung, Koo-Hyun

    2016-02-01

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8-29% smaller than those obtained from the other two methods. This discrepancy decreased to 3-19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Acoustic radiation force-based elasticity imaging methods

    PubMed Central

    Palmeri, Mark L.; Nightingale, Kathryn R.

    2011-01-01

    Conventional diagnostic ultrasound images portray differences in the acoustic properties of soft tissues, whereas ultrasound-based elasticity images portray differences in the elastic properties of soft tissues (i.e. stiffness, viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathological lesions. Acoustic radiation force-based elasticity imaging methods use acoustic radiation force to transiently deform soft tissues, and the dynamic displacement response of those tissues is measured ultrasonically and is used to estimate the tissue's mechanical properties. Both qualitative images and quantitative elasticity metrics can be reconstructed from these measured data, providing complimentary information to both diagnose and longitudinally monitor disease progression. Recently, acoustic radiation force-based elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric, and commercial implementations of radiation force-based ultrasonic elasticity imaging are beginning to appear on the commercial market. This article provides an overview of acoustic radiation force-based elasticity imaging, including a review of the relevant soft tissue material properties, a review of radiation force-based methods that have been proposed for elasticity imaging, and a discussion of current research and commercial realizations of radiation force based-elasticity imaging technologies. PMID:22419986

  10. Easy and direct method for calibrating atomic force microscopy lateral force measurements

    PubMed Central

    Liu, Wenhua; Bonin, Keith; Guthold, Martin

    2010-01-01

    We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young’s modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever’s lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement. PMID:17614616

  11. Efficient forced vibration reanalysis method for rotating electric machines

    NASA Astrophysics Data System (ADS)

    Saito, Akira; Suzuki, Hiromitsu; Kuroishi, Masakatsu; Nakai, Hideo

    2015-01-01

    Rotating electric machines are subject to forced vibration by magnetic force excitation with wide-band frequency spectrum that are dependent on the operating conditions. Therefore, when designing the electric machines, it is inevitable to compute the vibration response of the machines at various operating conditions efficiently and accurately. This paper presents an efficient frequency-domain vibration analysis method for the electric machines. The method enables the efficient re-analysis of the vibration response of electric machines at various operating conditions without the necessity to re-compute the harmonic response by finite element analyses. Theoretical background of the proposed method is provided, which is based on the modal reduction of the magnetic force excitation by a set of amplitude-modulated standing-waves. The method is applied to the forced response vibration of the interior permanent magnet motor at a fixed operating condition. The results computed by the proposed method agree very well with those computed by the conventional harmonic response analysis by the FEA. The proposed method is then applied to the spin-up test condition to demonstrate its applicability to various operating conditions. It is observed that the proposed method can successfully be applied to the spin-up test conditions, and the measured dominant frequency peaks in the frequency response can be well captured by the proposed approach.

  12. Detection of forced oscillations in power systems with multichannel methods

    SciTech Connect

    Follum, James D.

    2015-09-30

    The increasing availability of high fidelity, geographically dispersed measurements in power systems improves the ability of researchers and engineers to study dynamic behaviors in the grid. One such behavior that is garnering increased attention is the presence of forced oscillations. Power system engineers are interested in forced oscillations because they are often symptomatic of the malfunction or misoperation of equipment. Though the resulting oscillation is not always large in amplitude, the root cause may be serious. In this report, multi-channel forced oscillation detection methods are developed. These methods leverage previously developed detection approaches based on the periodogram and spectral-coherence. Making use of geographically distributed channels of data is shown to improved detection performance and shorten the delay before an oscillation can be detected in the online environment. Results from simulated and measured power system data are presented.

  13. Noncontact method for calibration of lateral forces in scanning force microscopy.

    PubMed

    Wagner, Kyle; Cheng, Peng; Vezenov, Dmitri

    2011-04-19

    This paper describes a noncontact calibration procedure for lateral force microscopy in air and liquids. The procedure is based on the observation that the sensitivity of a force microscope may be calibrated using the raw thermal noise spectrum of the cantilever and its known spring constant, which can be found from the same uncalibrated thermal noise spectrum using Sader's method (Rev. Sci. Instrum.1999, 70, 3967-3969). In addition to the power spectrum of the cantilever thermal noise, this noncontact calibration method only requires knowledge of the plan view dimensions of the cantilever that could be measured using an optical microscope. This method is suitable for in situ force calibration even in viscous fluids through a two-step calibration procedure, where the cantilever thermal spectra are captured both in air and in the desired liquid. The lateral calibration performed with the thermal noise technique agrees well with sensitivity values obtained by the wedge calibration procedure. The approach examined in this paper allows for complete calibration of normal and lateral forces without contacting the surface, eliminating the possibility for any tip damage or contamination during calibration.

  14. Boundary force method for analyzing two-dimensional cracked bodies

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Newman, J. C., Jr.

    1986-01-01

    The Boundary Force Method (BFM) was formulated for the two-dimensional stress analysis of complex crack configurations. In this method, only the boundaries of the region of interest are modeled. The boundaries are divided into a finite number of straight-line segments, and at the center of each segment, concentrated forces and a moment are applied. This set of unknown forces and moments is calculated to satisfy the prescribed boundary conditions of the problem. The elasticity solution for the stress distribution due to concentrated forces and a moment applied at an arbitrary point in a cracked infinite plate are used as the fundamental solution. Thus, the crack need not be modeled as part of the boundary. The formulation of the BFM is described and the accuracy of the method is established by analyzing several crack configurations for which accepted stress-intensity factor solutions are known. The crack configurations investigated include mode I and mixed mode (mode I and II) problems. The results obtained are, in general, within + or - 0.5 percent of accurate numerical solutions. The versatility of the method is demonstrated through the analysis of complex crack configurations for which limited or no solutions are known.

  15. Drag force in wind tunnels: A new method

    NASA Astrophysics Data System (ADS)

    Souza, P. V. S.; Girardi, D.; de Oliveira, P. M. C.

    2017-02-01

    A rigid object of general shape is fixed inside a wind tunnel. The drag force exerted on it by the wind is determined by a new method based on simple basic Physics concepts, provided one has a solver, any solver, for the corresponding dynamic Navier-Stokes equation which determines the wind velocity field around the object. The method is completely general, but here we apply it to the traditional problem of a long cylinder perpendicular to the wind.

  16. Inversion method of seismic forces at fault using finite element

    NASA Astrophysics Data System (ADS)

    Liu, D.; Xie, Z.; Geng, W.; Cai, Y.

    2013-12-01

    Fault slip inversion using seismic dislocation model has been discussed a lot. In this model, seismogenic fault is considered as an interface. However, geological surveys and seismic channel waves reveal that the fault usually possesses thickness. Rock compression tests also show that micro-cracks develop into a belt in which shear fracture plane takes place. Therefore, to simulate the fault as a narrow belt may be more reasonable to reflect mechanical behavior of earthquake source. This study proposes a method to inverse seismic forces at the fault with thickness. The fault is modeled by transversely isotropic material. Three-dimensional finite element models (FEMs) is used to calculate numerical Green's functions for displacements. The Green's functions are generated by imposing unit couples directly to the node pairs at the fault instead of dislocation. The unit couples are added separately in x, y, z directions of the finite element global coordinate system. A pure thrust earthquake is modeled by reducing shear modulus under tectonic stress field. Selected surface displacements induced by this earthquake are used as 'observation data' of the inversion. We combine numerical Green's functions with standard linear inverse methods with Laplace smoothing constraints to estimate seismic forces at the fault. The earthquake which is simulated by damage of shear modulus has the fault model with transversely isotropic material, therefore there exist no normal forces. When the fault material is isotropic and the earthquake is caused by the reduction of shear or Young's modulus, there are normal forces at the fault. This study shows that we can directly inverse three-dimensional seismic forces with the surface deformation caused by earthquakes. This method is feasible for heterogeneous materials and complicated geometry model. [1] Xie, Zhoumin, Inversion method of seismic stress drop by finite element scheme, Doctor Thesis, Peking University, 2013. [2] Hu, C., Zhou, Y

  17. A calibration method for lateral forces for use with colloidal probe force microscopy cantilevers

    NASA Astrophysics Data System (ADS)

    Quintanilla, M. A. S.; Goddard, D. T.

    2008-02-01

    A calibration method is described for colloidal probe cantilevers that enables friction force measurements obtained using lateral force microscopy (LFM) to be quantified. The method is an adaptation of the lever method of Feiler et al. [A. Feiler, P. Attard, and I. Larson, Rev. Sci. Instum. 71, 2746 (2000)] and uses the advantageous positioning of probe particles that are usually offset from the central axis of the cantilever. The main sources of error in the calibration method are assessed, in particular, the potential misalignment of the long axis of the cantilever that ideally should be perpendicular to the photodiode detector. When this is not taken into account, the misalignment is shown to have a significant effect on the cantilever torsional stiffness but not on the lateral photodiode sensitivity. Also, because the friction signal is affected by the topography of the substrate, the method presented is valid only against flat substrates. Two types of particles, 20μm glass beads and UO3 agglomerates attached to silicon tapping mode cantilevers were used to test the method against substrates including glass, cleaved mica, and UO2 single crystals. Comparisons with the lateral compliance method of Cain et al. [R. G. Cain, S. Biggs, and N. W. Page, J. Colloid Interface Sci. 227, 55 (2000)] are also made.

  18. A calibration method for lateral forces for use with colloidal probe force microscopy cantilevers

    SciTech Connect

    Quintanilla, M. A. S.; Goddard, D. T.

    2008-02-15

    A calibration method is described for colloidal probe cantilevers that enables friction force measurements obtained using lateral force microscopy (LFM) to be quantified. The method is an adaptation of the lever method of Feiler et al. [A. Feiler, P. Attard, and I. Larson, Rev. Sci. Instum. 71, 2746 (2000)] and uses the advantageous positioning of probe particles that are usually offset from the central axis of the cantilever. The main sources of error in the calibration method are assessed, in particular, the potential misalignment of the long axis of the cantilever that ideally should be perpendicular to the photodiode detector. When this is not taken into account, the misalignment is shown to have a significant effect on the cantilever torsional stiffness but not on the lateral photodiode sensitivity. Also, because the friction signal is affected by the topography of the substrate, the method presented is valid only against flat substrates. Two types of particles, 20 {mu}m glass beads and UO{sub 3} agglomerates attached to silicon tapping mode cantilevers were used to test the method against substrates including glass, cleaved mica, and UO{sub 2} single crystals. Comparisons with the lateral compliance method of Cain et al. [R. G. Cain, S. Biggs, and N. W. Page, J. Colloid Interface Sci. 227, 55 (2000)] are also made.

  19. Evolution of forced shear flows in polytropic atmospheres: a comparison of forcing methods and energetics

    NASA Astrophysics Data System (ADS)

    Witzke, V.; Silvers, L. J.; Favier, B.

    2016-11-01

    Shear flows are ubiquitous in astrophysical objects including planetary and stellar interiors, where their dynamics can have significant impact on thermochemical processes. Investigating the complex dynamics of shear flows requires numerical calculations that provide a long-time evolution of the system. To achieve a sufficiently long lifetime in a local numerical model, the system has to be forced externally. However, at present, there exist several different forcing methods to sustain large-scale shear flows in local models. In this paper, we examine and compare various methods used in the literature in order to resolve their respective applicability and limitations. These techniques are compared during the exponential growth phase of a shear flow instability, such as the Kelvin-Helmholtz (KH) instability, and some are examined during the subsequent non-linear evolution. A linear stability analysis provides reference for the growth rate of the most unstable modes in the system and a detailed analysis of the energetics provides a comprehensive understanding of the energy exchange during the system's evolution. Finally, we discuss the pros and cons of each forcing method and their relation with natural mechanisms generating shear flows.

  20. Digital atomic force microscope moiré method.

    PubMed

    Liu, Chia-Ming; Chen, Lien-Wen

    2004-11-01

    In this study, a novel digital atomic force microscope (AFM) moiré method is established to measure the displacement and strain fields. The moiré pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by the 2-D wavelet transformation to obtain clear interference moiré patterns. From moiré patterns, the displacement and strain fields can be analyzed. The experimental results show that the digital AFM moiré method is very sensitive and easy to realize in nanoscale measurements.

  1. Evaluation of the sensing block method for dynamic force measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghui; Chen, Hao; Li, Wenzhao; Song, Li

    2017-01-01

    Sensing block method was proposed for the dynamic force measurement by Tanimura et al. in 1994. Comparing with the Split Hopkinson pressure bar (SHPB) technique, it can provide a much longer measuring time for the dynamic properties test of materials. However, the signals recorded by sensing block are always accompanied with additional oscillations. Tanimura et al. discussed the effect of force rising edge on the test results, whereas more research is still needed. In this paper, some more dominant factors have been extracted through dimensional analysis. The finite element simulation has been performed to assess these factors. Base on the analysis and simulation, some valuable results are obtained and some criterions proposed in this paper can be applied in design or selection of the sensing block.

  2. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  3. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  4. Choosing the forcing terms in an inexact Newton method

    SciTech Connect

    Eisenstat, S.C.; Walker, H.F.

    1994-12-31

    An inexact Newton method is a generalization of Newton`s method for solving F(x) = 0, F: {Re}{sup n} {r_arrow} {Re}{sup n}, in which each step reduces the norm of the local linear model of F. At the kth iteration, the norm reduction is usefully expressed by the inexact Newton condition where x{sub k} is the current approximate solution and s{sub k} is the step. In many applications, an {eta}{sub k} is first specified, and then an S{sub k} is found for which the inexact Newton condition holds. Thus {eta}{sub k} is often called a {open_quotes}forcing term{close_quotes}. In practice, the choice of the forcing terms is usually critical to the efficiency of the method and can affect robustness as well. Here, the authors outline several promising choices, discuss theoretical support for them, and compare their performance in a Newton iterative (truncated Newton) method applied to several large-scale problems.

  5. Satellite methods underestimate indirect climate forcing by aerosols

    PubMed Central

    Penner, Joyce E.; Xu, Li; Wang, Minghuai

    2011-01-01

    Satellite-based estimates of the aerosol indirect effect (AIE) are consistently smaller than the estimates from global aerosol models, and, partly as a result of these differences, the assessment of this climate forcing includes large uncertainties. Satellite estimates typically use the present-day (PD) relationship between observed cloud drop number concentrations (Nc) and aerosol optical depths (AODs) to determine the preindustrial (PI) values of Nc. These values are then used to determine the PD and PI cloud albedos and, thus, the effect of anthropogenic aerosols on top of the atmosphere radiative fluxes. Here, we use a model with realistic aerosol and cloud processes to show that empirical relationships for ln(Nc) versus ln(AOD) derived from PD results do not represent the atmospheric perturbation caused by the addition of anthropogenic aerosols to the preindustrial atmosphere. As a result, the model estimates based on satellite methods of the AIE are between a factor of 3 to more than a factor of 6 smaller than model estimates based on actual PD and PI values for Nc. Using ln(Nc) versus ln(AI) (Aerosol Index, or the optical depth times angstrom exponent) to estimate preindustrial values for Nc provides estimates for Nc and forcing that are closer to the values predicted by the model. Nevertheless, the AIE using ln(Nc) versus ln(AI) may be substantially incorrect on a regional basis and may underestimate or overestimate the global average forcing by 25 to 35%. PMID:21808047

  6. Monitoring Method of Cutting Force by Using Additional Spindle Sensors

    NASA Astrophysics Data System (ADS)

    Sarhan, Ahmed Aly Diaa; Matsubara, Atsushi; Sugihara, Motoyuki; Saraie, Hidenori; Ibaraki, Soichi; Kakino, Yoshiaki

    This paper describes a monitoring method of cutting forces for end milling process by using displacement sensors. Four eddy-current displacement sensors are installed on the spindle housing of a machining center so that they can detect the radial motion of the rotating spindle. Thermocouples are also attached to the spindle structure in order to examine the thermal effect in the displacement sensing. The change in the spindle stiffness due to the spindle temperature and the speed is investigated as well. Finally, the estimation performance of cutting forces using the spindle displacement sensors is experimentally investigated by machining tests on carbon steel in end milling operations under different cutting conditions. It is found that the monitoring errors are attributable to the thermal displacement of the spindle, the time lag of the sensing system, and the modeling error of the spindle stiffness. It is also shown that the root mean square errors between estimated and measured amplitudes of cutting forces are reduced to be less than 20N with proper selection of the linear stiffness.

  7. A method of imaging viscoelastic parameters with acoustic radiation force.

    PubMed

    Walker, W F; Fernandez, F J; Negron, L A

    2000-06-01

    Acoustic radiation force has been proposed as a method of interrogating the mechanical properties of tissue. One simple approach applies a series of focused ultrasonic pulses to generate an acoustic radiation force, then processes the echoes returned from these pulses to estimate the radiation-force-induced displacement as a function of time. This process can be repeated at a number of locations to acquire data for image formation. In previous work we have formed images of tissue stiffness by depicting the maximum displacement induced at each tissue location after a finite period of insonification. While these maximum displacement images are able to differentiate materials of disparate mechanical properties, they exploit only a fraction of the information available. In this paper we show that the time-displacement curves acquired from tissue mimicking phantoms exhibit a viscoelastic response which is accurately described by the Voigt model. We describe how the viscous and elastic parameters of this model may be determined from experimental data. Finally, we show phantom images that depict not only the maximum local displacement, but also the viscous and elastic model parameters. These images offer complementary information about the target.

  8. Primal and Dual Integrated Force Methods Used for Stochastic Analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.

    2005-01-01

    At the NASA Glenn Research Center, the primal and dual integrated force methods are being extended for the stochastic analysis of structures. The stochastic simulation can be used to quantify the consequence of scatter in stress and displacement response because of a specified variation in input parameters such as load (mechanical, thermal, and support settling loads), material properties (strength, modulus, density, etc.), and sizing design variables (depth, thickness, etc.). All the parameters are modeled as random variables with given probability distributions, means, and covariances. The stochastic response is formulated through a quadratic perturbation theory, and it is verified through a Monte Carlo simulation.

  9. Control of Liquid Sloshing Container using Active Force Control Method

    NASA Astrophysics Data System (ADS)

    Setyo Purnomo, Didik; Rachmad Anom Besari, Adnan; Darojah, Zaqiatud

    2017-04-01

    This paper presents a robust control method to relieve the sloshing of liquid container transport using Active Force Control (AFC) method. A model of two degree-of-freedom (2-DOF) liquid container transfer was implemented in this research as the main dynamical system to be controlled. The surface of liquid is maintained in a flat position, so that changes the slope of liquid surface countered by changing the acceleration of container. The focus of this research is how to use AFC method being applied to the system, so that it can suppress liquid sloshing. The control scheme were simulated, compare between PID-AFC and pure PID. Simulations has been conducted, the results show that the PID-AFC have superior performance to suppress the sloshing compared with pure PID, especially if disturbance occurred.

  10. PARTIAL RESTRAINING FORCE INTRODUCTION METHOD FOR DESIGNING CONSTRUCTION COUNTERMESURE ON ΔB METHOD

    NASA Astrophysics Data System (ADS)

    Nishiyama, Taku; Imanishi, Hajime; Chiba, Noriyuki; Ito, Takao

    Landslide or slope failure is a three-dimensional movement phenomenon, thus a three-dimensional treatment makes it easier to understand stability. The ΔB method (simplified three-dimensional slope stability analysis method) is based on the limit equilibrium method and equals to an approximate three-dimensional slope stability analysis that extends two-dimensional cross-section stability analysis results to assess stability. This analysis can be conducted using conventional spreadsheets or two-dimensional slope stability computational software. This paper describes the concept of the partial restraining force in-troduction method for designing construction countermeasures using the distribution of the restraining force found along survey lines, which is based on the distribution of survey line safety factors derived from the above-stated analysis. This paper also presents the transverse distributive method of restraining force used for planning ground stabilizing on the basis of the example analysis.

  11. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong

    2016-05-01

    Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this

  12. Method for characterizing nanoscale wear of atomic force microscope tips.

    PubMed

    Liu, Jingjing; Notbohm, Jacob K; Carpick, Robert W; Turner, Kevin T

    2010-07-27

    Atomic force microscopy (AFM) is a powerful tool for studying tribology (adhesion, friction, and lubrication) at the nanoscale and is emerging as a critical tool for nanomanufacturing. However, nanoscale wear is a key limitation of conventional AFM probes that are made of silicon and silicon nitride (SiNx). Here we present a method for systematically quantifying tip wear, which consists of sequential contact-mode AFM scans on ultrananocrystalline diamond surfaces with intermittent measurements of the tip properties using blind reconstruction, adhesion force measurements, and transmission electron microscopy (TEM). We demonstrate direct measurement of volume loss over the wear test and agreement between blind reconstruction and TEM imaging. The geometries of various types of tips were monitored over a scanning distance of approximately 100 mm. The results show multiple failure mechanisms for different materials, including nanoscale fracture of a monolithic Si tip upon initial engagement with the surface, film failure of a SiNx-coated Si tip, and gradual, progressive wear of monolithic SiNx tips consistent with atom-by-atom attrition. Overall, the method provides a quantitative and systematic process for examining tip degradation and nanoscale wear, and the experimental results illustrate the multiple mechanisms that may lead to tip failure.

  13. Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.

  14. Smoothed Biasing Forces Yield Unbiased Free Energies with the Extended-System Adaptive Biasing Force Method.

    PubMed

    Lesage, Adrien; Lelièvre, Tony; Stoltz, Gabriel; Hénin, Jérôme

    2016-12-27

    We report a theoretical description and numerical tests of the extended-system adaptive biasing force method (eABF), together with an unbiased estimator of the free energy surface from eABF dynamics. Whereas the original ABF approach uses its running estimate of the free energy gradient as the adaptive biasing force, eABF is built on the idea that the exact free energy gradient is not necessary for efficient exploration, and that it is still possible to recover the exact free energy separately with an appropriate estimator. eABF does not directly bias the collective coordinates of interest, but rather fictitious variables that are harmonically coupled to them; therefore is does not require second derivative estimates, making it easily applicable to a wider range of problems than ABF. Furthermore, the extended variables present a smoother, coarse-grain-like sampling problem on a mollified free energy surface, leading to faster exploration and convergence. We also introduce CZAR, a simple, unbiased free energy estimator from eABF trajectories. eABF/CZAR converges to the physical free energy surface faster than standard ABF for a wide range of parameters.

  15. Computational Catalysis Using the Artificial Force Induced Reaction Method.

    PubMed

    Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji

    2016-04-19

    The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately

  16. A method for the analysis of the stationary regime of a nonlinear electric circuit under polyharmonic external excitation

    NASA Astrophysics Data System (ADS)

    Volkov, E. A.

    1983-04-01

    A method is proposed for the analysis of the stationary regime of an electric circuit with nonlinearities described by arbitrary analytic functions under the effect of a finite number of harmonic electromotive forces. The method makes it possible to determine the complex amplitudes of harmonics on circuit elements as a power series of the emf amplitudes with coefficients that are functions of circuit-element parameters. The method can easily be programmed, and, on a digital computer, can be used to analyze relatively complex circuits.

  17. 25 CFR 170.605 - When may BIA use force account methods in the IRR Program?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false When may BIA use force account methods in the IRR Program... § 170.605 When may BIA use force account methods in the IRR Program? BIA may use force account methods in the IRR Program unless the tribe elects otherwise to enter into a self-determination contract or...

  18. Method for microbubble characterization using primary radiation force.

    PubMed

    Vos, Hendrik J; Guidi, Francesco; Boni, Enrico; Tortoli, Piero

    2007-07-01

    Medical ultrasound contrast agents (UCAs) have evolved from straight image enhancers to pathophysiological markers and drug delivery vehicles. However, the exact dynamic behavior of the encapsulated bubbles composing UCAs is still not entirely known. In this article, we propose to characterize full populations of UCAs, by looking at the translational effects of ultrasound radiation force on each bubble in a diluted population. The setup involves a sensitive, fully programmable transmitter/receiver and two unconventional, real-time display modes. Such display modes are used to measure the displacements produced by irradiation at frequencies in the range 2-8 MHz and pressures between 150 kPa and 1.5 MPa. The behavior of individual bubbles freely moving in a water tank is clearly observed, and it is shown that it depends on the bubble physical dimensions as well as on the viscoelastic properties of the encapsulation. A new method also is distilled that estimates the viscoelastic properties of bubble encapsulation by fitting the experimental bubble velocities to values simulated by a numerical model based on the modified Herring equation and the Bjerknes force. The fit results are a shear modulus of 18 MPa and a viscosity of 0.23 Pas for a thermoplastic PVC-AN shell. Phospholipid shell elasticity and friction parameter of the experimental contrast agent are estimated as 0.8 N/m and 1 10(-7) kg/s, respectively (shear modulus of 32 MPa and viscosity of 0.19 Pas, assuming 4-nm shell thickness).

  19. Intravesical oxybutynin: mode of action assessed by passive diffusion and electromotive administration with pharmacokinetics of oxybutynin and N-desethyl oxybutynin.

    PubMed

    Di Stasi, S M; Giannantoni, A; Navarra, P; Capelli, G; Storti, L; Porena, M; Stephen, R L

    2001-12-01

    A proportion of patients with detrusor hyperreflexia who are unresponsive to oral oxybutynin often benefit from intravesical oxybutynin instillation. To our knowledge the precise mode of action of this method is obscure. In 12 patients with detrusor hyperreflexia who were previously unresponsive to oral and intravesical passive diffusion of 5 mg. oxybutynin we administered 5 mg. oxybutynin orally as well as increased doses of 15 mg. oxybutynin intravesically with passive diffusion and with 15 mA. associated electric current. Each administration mode per patient was associated with an 8-hour urodynamic monitoring session during which oxybutynin and N-desethyl oxybutynin plasma levels, and intravesical oxybutynin uptake were measured. A dose of 5 mg. oxybutynin orally induced no urodynamic improvement with an area under the plasma concentration time curve of combined N-desethyl oxybutynin plus oxybutynin of 16,297 ng./8 hours and an area under the curve ratio of N-desethyl oxybutynin-to-oxybutynin of 11:1. Passive diffusion oxybutynin resulted in 12 mg. oxybutynin intravesical uptake and significant improvement in 3 of 8 urodynamic measurements, although the area under the curve of combined N-desethyl oxybutynin plus oxybutynin was only 2,123 ng./8 hours and the N-desethyl oxybutynin-to-oxybutynin ratio was 1.1:1.0. Electromotive administration of oxybutynin resulted in almost complete intravesical uptake of the 15 mg. dose, significant improvement in all 8 urodynamic measurements and an increased oxybutynin level versus oral and passive diffusion, although the area under the curve of combined N-desethyl oxybutynin plus oxybutynin was 4,574 ng./8 hours and the N-desethyl oxybutynin-to-oxybutynin ratio was inverted at 1.0:1.4. The oral dose of 5 mg. oxybutynin caused anticholinergic side effects in 8 of the 12 patients. Neither intravesical passive diffusion nor electromotive administration caused side effects with an uptake of 12 and 15 mg., respectively. A large

  20. Novel scanning force microscopy methods for investigation of transcription complexes

    NASA Astrophysics Data System (ADS)

    Guthold, Martin

    1997-11-01

    Scanning force microscopy (SFM) methods were developed to investigate the structure and the dynamics of E. coli transcription complexes. The described techniques will also be applicable to the study of other protein-nucleic acid complexes. First, the deposition process of DNA molecules onto a mica surface was investigated using polymer chain statistics. Conditions were found in which DNA molecules, and also protein-DNA complexes, are able to equilibrate on the surface. These findings imply that DNA and protein-DNA complexes attain a lowest energy state on the surface, and that meaningful structural information can, therefore, be obtained from the corresponding SFM images. Using these imaging conditions, SFM was then used to investigate various transcription complexes. The structures of crucial intermediates in the transcriptional activation of RNA polymeraseċsigma54 by NtrC were visualized and analyzed. Moreover, a new method was pioneered to identify the position of specific subunits in multi- protein assemblies. In this method, a specific subunit is tagged with a short piece of DNA which renders it easily recognizable in SFM images. This technique was employed to determine the positions of the two α subunits and the βsp/prime subunit in RNA polymerase-DNA complexes. Finally, SFM imaging in liquid was used to investigate the dynamics of the specific and non-specific interactions between RNA polymerase and DNA. Image sequences of an RNA polymerase actively transcribing a DNA template were obtained and analyzed. Image sequences of non-specific complexes were also obtained, and showed the RNA polymerase moving along the DNA in a one- dimensional random walk. The latter experiments provide some of the first direct evidence that RNA polymerase diffuses along DNA to facilitate promoter location. Chapters II, III, V and VI of this dissertation include material which has been previously published with co- authors. The co-authors are acknowledged at the beginning of

  1. A rapid method for the evaluation of the ionic permeabilities across epithelial cell membranes.

    PubMed

    Movileanu, L

    1999-02-08

    This short note presents a recipe for the calculation of the ionic permeabilities across epithelial cell membranes. The method requires the Goldman-Hodgkin-Katz formalism as well as the consideration of the equivalent electrical circuit for an epithelial cell. The equivalent electrical circuit is solved in terms of the equivalent electromotive forces coupled in series with the ionic resistances of both cell membranes (apical and basolateral). The present procedure is feasible for any leaky epithelial cell membrane with the condition that this membrane (apical or basolateral) does not contain primary or secondary mechanisms for active transport.

  2. Electromotive force measurements in the combustion wave front during layer-by-layer surface laser sintering of exothermic powder compositions.

    PubMed

    Shishkovskiy, Igor V; Morozov, Yury G; Kuznetsov, Maxim V; Parkin, Ivan P

    2009-05-14

    Electric potentials arise between the combustion wave front and final products during layer-by-layer surface laser sintering of exothermic powder compositions (Ni-Ti, Ni-Al, Ti-Al). By using an analog-digital-analog converter to control the laser movement and hence the exothermic reaction itself, we show that near optimal conditions can be obtained for the formation of layered 3D articles. Comparative results of the structural-phase transformations that occur during laser-controlled SHS in related reaction-capable compositions are also presented.

  3. Performing the triple auto-correlation of picosecond optical pulse train with a photo electromotive force detector

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Mansurova, Svetlana; Moreno Zarate, Pedro; Campos Acosta, Joaquin; Nemov, Sergey A.

    2011-03-01

    vHere, we consider the possibility of involving the photo-EMF detectors in registration of the parameters peculiar to ultrashort optical pulses, and it is compared whit the recently triple correlator via Direct and Cascade Third Harmonic Generation. Knowledge of triple auto-correlation function, whose Fourier transformation shapes the corresponding bispectrum, makes possible recovering such train-average parameters as, for instance, the pulse width and frequency chirp as well as revealing asymmetry of ultra-short pulse envelope. The main advantage of applying the photo-EMF detectors lies in an opportunity to detect triple correlations directly, without any intermediate frequency conversion with optical nonlinear processes in additional crystals. Then, the theory of three-beam-correlations at photosensitive layer of the photo-EMF detector is developed, so that principal possibility of registering the high-order-correlations is demonstrated. It can be done within schematic arrangement including the three-beam Michelson interferometer, so that the obtained high-order-correlations have non-traditional form and need rather specific algorithm for their further processing. Also, the experimental characterizations are presented for gallium arsenide (GaAs) semiconductor and the poly-fluoren 6-co-triphenyldiamine (PF6-TPD) photo-conductor-polymer, which both exhibit the photo-EMF-effect. They both exhibit high-pass transfer functions that give us high vibration stability. This novel approach provides more reliable analyzing train-average parameters of picosecond pulses due to significantly higher level of the output optical signals under processing.

  4. Systems and methods of detecting force and stress using tetrapod nanocrystal

    DOEpatents

    Choi, Charina L.; Koski, Kristie J.; Sivasankar, Sanjeevi; Alivisatos, A. Paul

    2013-08-20

    Systems and methods of detecting force on the nanoscale including methods for detecting force using a tetrapod nanocrystal by exposing the tetrapod nanocrystal to light, which produces a luminescent response by the tetrapod nanocrystal. The method continues with detecting a difference in the luminescent response by the tetrapod nanocrystal relative to a base luminescent response that indicates a force between a first and second medium or stresses or strains experienced within a material. Such systems and methods find use with biological systems to measure forces in biological events or interactions.

  5. Force measuring valve assemblies, systems including such valve assemblies and related methods

    DOEpatents

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  6. A test method for determining adhesion forces and Hamaker constants of cementitious materials using atomic force microscopy

    SciTech Connect

    Lomboy, Gilson; Sundararajan, Sriram; Wang Kejin; Subramaniam, Shankar

    2011-11-15

    A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materials obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.

  7. Tyre rolling kinematics and prediction of tyre forces and moments: part I - theory and method

    NASA Astrophysics Data System (ADS)

    Oertel, Christian; Wei, Yintao

    2012-11-01

    A new method to describe tyre rolling kinematics and how to calculate tyre forces and moments is presented. The Lagrange-Euler method is used to calculate the velocity and contact deformation of a tyre structure under large deformation. The calculation of structure deformation is based on the Lagrange method, while the Euler method is used to analyse the deformation and forces in the contact area. The method to predict tyre forces and moments is built using kinematic theory and nonlinear finite element analysis. A detailed analysis of the tyre tangential contact velocity and the relationships between contact forces, contact areas, lateral forces, and yaw and camber angles has been performed for specific tyres. Research on the parametric sensitivity of tyre lateral forces and self-aligning torque on tread stiffness and friction coefficients is carried out in the second part of this paper.

  8. Intravesical electromotive drug administration for non-muscle invasive bladder cancer.

    PubMed

    Jung, Jae Hung; Gudeloglu, Ahmet; Kiziloz, Halil; Kuntz, Gretchen M; Miller, Alea; Konety, Badrinath R; Dahm, Philipp

    2017-09-12

    Electromotive drug administration (EMDA) is the use of electrical current to improve the delivery of intravesical agents to reduce the risk of recurrence in people with non-muscle invasive bladder cancer (NMIBC). It is unclear how effective this is in comparison to other forms of intravesical therapy. To assess the effects of intravesical EMDA for the treatment of NMIBC. We performed a comprehensive search using multiple databases (CENTRAL, MEDLINE, EMBASE), two clinical trial registries and a grey literature repository. We searched reference lists of relevant publications and abstract proceedings. We applied no language restrictions. The last search was February 2017. We searched for randomised studies comparing EMDA of any intravesical agent used to reduce bladder cancer recurrence in conjunction with transurethral resection of bladder tumour (TURBT). Two review authors independently screened the literature, extracted data, assessed risk of bias and rated quality of evidence (QoE) according to GRADE on a per outcome basis. We included three trials with 672 participants that described five distinct comparisons. The same principal investigator conducted all three trials. All studies used mitomycin C (MMC) as the chemotherapeutic agent for EMDA. 1. Postoperative MMC-EMDA induction versus postoperative Bacillus Calmette-Guérin (BCG) induction: based on one study with 72 participants with carcinoma in situ (CIS) and concurrent pT1 urothelial carcinoma, we are uncertain (very low QoE) about the effect of MMC-EMDA on time to recurrence (risk ratio (RR) 1.06, 95% confidence interval (CI) 0.64 to 1.76; corresponding to 30 more per 1000 participants, 95% CI 180 fewer to 380 more). There was no disease progression in either treatment arm at three months' follow-up. We are uncertain (very low QoE) about serious adverse events (RR 0.75, 95% CI 0.18 to 3.11). 2. Postoperative MMC-EMDA induction versus MMC-passive diffusion (PD) induction: based on one study with 72

  9. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running.

    PubMed

    Samozino, P; Rabita, G; Dorel, S; Slawinski, J; Peyrot, N; Saez de Villarreal, E; Morin, J-B

    2016-06-01

    This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running.

  10. A simple method for producing flattened atomic force microscopy tips.

    PubMed

    Biagioni, P; Farahani, J N; Mühlschlegel, P; Eisler, H-J; Pohl, D W; Hecht, B

    2008-01-01

    We describe a simple and reliable procedure for obtaining a flat plateau on top of standard silicon nitride atomic force microscopy tips by scanning them over the focus of a high-numerical-aperture objective illuminated by near-infrared ultrashort laser pulses. Flattened tips produced this way exhibit a plateau that is parallel to the substrate when the cantilever is mounted. They represent a valid and cost-effective alternative to commercially available plateau tips.

  11. Measurement Methods and Analysis: Forces on Underwater Gliders

    DTIC Science & Technology

    2007-11-02

    resistance. The resistance range will be several M -ohms to fewer than 100 K-ohm. The operation resistance range for a sensor is dependent on the...575.48x2 - 1915.9x + 1973 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0.00 0.50 1.00 1.50 2.00 2.50 Force (lbs) R es is ta nc e (k oh m s) Axial...

  12. Assigning a Price to Radiative Forcing: Methods, Results, and Implications

    NASA Astrophysics Data System (ADS)

    Lutz, D. A.; Howarth, R. B.

    2015-12-01

    Climate change mitigation frameworks have increasingly begun to include components that involve active management of the land surface. Predominantly, these programs focus on the sequestration of greenhouse gasses in vegetation and soils, generating offset credits for projects which demonstrate considerable storage. However, it is widely known that biogeophysical interactions between the land surface and the atmosphere, such as latent and sensible heat flux, albedo radiative forcing, and surface roughness, can in many cases outweigh the influence of greenhouse gas storage on global and local climate. Surface albedo, in particular, has attracted attention in the context of these frameworks because it has been shown to influence the overall climate benefits of high-latitude forest growth through tradeoffs between carbon sequestration and radiative forcing from seasonal snow cover albedo. Here we review a methodology for pricing albedo-related radiative forcing through the use of an integrated assessment model, present the results under several emissions and social preference scenarios, and describe the implications that this pricing methodology may have on forest land management in the Northeastern United States. Additionally, we investigate the consequences of projected decreased winter precipitation on the net climate benefits of snow albedo throughout the state of New Hampshire, USA.

  13. Apparatus and method for continuous electroplating. [Patent application

    DOEpatents

    Conlon, T.P. Jr.; Holmes, S.D.

    1981-11-19

    An apparatus and method are disclosed for performing a continuous electroplating process upon an elongate conductive stock article. A closed housing assembly retaining an electroplating solution and having a conductive housing body and flexible, nonconductive end walls is connected to the positive pole of a source of electromotive force. The end walls have an aperture for receiving the conducting stock article in sliding and sealing contact. The stock article is connected to the negative pole of the source of electromotive force. The conductive housing body and the section of the conductive stock article within the housing body are coextensive, coaxial and spaced a uniform distance apart. The housing body has an inlet at the bottom and an outlet at the top allowing the housing assembly to fill completely with plating solution. The inlet has a reduced nozzle to create turbulence and spiral circulating motion of the plating solution moved by a pump connected by nonconductive conduits. The solution is circulated through an open reservoir. A coolant may be conveyed through the interior in a hollow stock article to cool the surface being electroplated. Different sizes of coaxial metal insert sleeves may be telescopically received in the housing body.

  14. Mixed Methods Approach to Assessing an Informal Buddy Support System for Canadian Forces Reservists

    DTIC Science & Technology

    2011-04-01

    Mixed Methods Approach to Assessing an Informal Buddy Support System for Canadian Forces Reservists Donna I. Pickering...Tara Holton Defence R&D Canada Technical Memorandum DRDC Toronto TM 2011-028 April 2011...Mixed Methods Approach to Assessing an Informal Buddy Support System for Canadian Forces Reservists Donna I. Pickering Tara Holton

  15. Cutting force predication based on integration of symmetric fuzzy number and finite element method.

    PubMed

    Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang

    2014-01-01

    In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force.

  16. Cutting Force Predication Based on Integration of Symmetric Fuzzy Number and Finite Element Method

    PubMed Central

    Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang

    2014-01-01

    In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force. PMID:24790556

  17. Methods for Manipulating CaF Using Optical Polychromatic Forces

    NASA Astrophysics Data System (ADS)

    Eyler, Edward E.; Galica, Scott E.; Aldridge, Leland M.

    2013-06-01

    We are undertaking theoretical and experimental studies of laser deceleration and cooling of molecules using coherent multi-frequency optical forces. A primary objective is to reduce radiative loss into dark states when a pure two-level cycling transition is unavailable. The optical bichromatic force (BCF) can multiply the available velocity change for a given number of radiative cycles, by employing alternating cycles of excitation and stimulated emission from opposing directions. Tests in atomic helium show that when the BCF is combined with frequency chirping, very large decelerations are achieved. We report numerical studies of variations intended to further optimize deceleration, including a 4-color version. We describe progress on experimental tests using the 531 nm B ^2Σ^+leftrightarrow X ^2Σ^+ transition in CaF. We also describe low-cost lasers and electronics developed for these experiments. Several versatile new instruments are based on 32-bit microcontrollers, interfaced to an Android tablet that provides a touch-screen graphical interface. These include a timing/ramp generator, a PZT driver, a temperature controller, and even a phase-synchronized dual 35-4000 MHz rf synthesizer that fits on a 2 1/4" × 4 3/4" board. This research is supported by the National Science Foundation. M.A. Chieda and E.E. Eyler, Phys. Rev. A 86, 053415 (2012); also Phys. Rev. A 84, 063401 (2011).

  18. [Methods of substance abuse prevention in the Armed Forces].

    PubMed

    Fisun, A Ia; Shamreĭ, V K; Marchenko, A A; Sinenchenko, A G; Pastushenkov, A V

    2013-09-01

    Dynamics of substance abuse morbidity in the Armed Forces of the Russian Federation during the last 10 years (2002-2012) was analyzed. Results of performed analysis showed decreasing tendency since 2007 in conscripts (0.07% in 2012) and in contract soldiers (0.3% in 2012). Alcoholism prevailed in the structure of substance abuse in conscripts (0.05%), drug abuses were diagnosed 2,5 times less often (0.02%). In contract soldiers non-alcohol abuses were diagnosed in 0.004% of cases. It is stated that the major aims of substance abuse prevention are qualitative recruiting of military units (especially in troops maintaining the combat readiness) and departments (subunits) of military education, creating conditions for propaganda for healthy lifestyle, prohibition of drugs and psychopharmaceuticals in military units. For early detection of persons liable to substance abuse and facts of drug consumption it is necessary to perform a medical examination with the help of special program apparatus complex (such as "Addicts") and take into account clinical signs of addiction. Besides, it is necessary to introduce planned and unexpected medical examinations of servicemen. Algorithm of measures in case of detection of serviceman with alcohol or drug intoxication is given. In conclusion the main organizational principals of substance abuse prevention in the Armed Forces are given.

  19. The 'Arm Force Field' method to predict manual arm strength based on only hand location and force direction.

    PubMed

    La Delfa, Nicholas J; Potvin, Jim R

    2017-03-01

    This paper describes the development of a novel method (termed the 'Arm Force Field' or 'AFF') to predict manual arm strength (MAS) for a wide range of body orientations, hand locations and any force direction. This method used an artificial neural network (ANN) to predict the effects of hand location and force direction on MAS, and included a method to estimate the contribution of the arm's weight to the predicted strength. The AFF method predicted the MAS values very well (r(2) = 0.97, RMSD = 5.2 N, n = 456) and maintained good generalizability with external test data (r(2) = 0.842, RMSD = 13.1 N, n = 80). The AFF can be readily integrated within any DHM ergonomics software, and appears to be a more robust, reliable and valid method of estimating the strength capabilities of the arm, when compared to current approaches.

  20. Silicon force sensor and method of using the same

    SciTech Connect

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.

    2016-10-04

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  1. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy.

  2. Indirect method for wheel-rail force measurement and derailment evaluation

    NASA Astrophysics Data System (ADS)

    Wei, Lai; Zeng, Jing; Wu, Pingbo; Gao, Hao

    2014-12-01

    Wheel set flange derailment criteria for railway vehicles are derived and the influence of wheel-rail contact parameters is studied. An indirect method for wheel-rail force measurement based on these derailment evaluation criteria is proposed. Laboratory tests for the calibration of strain-force devices on the bearing box are carried out to determine the relationship between the applied force and the measured strain. The simulation package, SIMPACK, is used to develop a passenger car model to generate wheel-rail forces and vibration signals. Different cases are considered in this model to provide an accurate validation of the identified wheel-rail forces. A feasibility test is conducted in the Beijing Loop test line using a passenger car equipped with a set of strain gauges on the wheel set. The comparison of the force time history applied to the instrumented wheel set and that obtained using the indirect method is presented.

  3. Method to derive restoring forces of strained molecules from kinetic measurements.

    PubMed

    Huang, Zhen; Yang, Qing-Zheng; Khvostichenko, Daria; Kucharski, Timothy J; Chen, Joseph; Boulatov, Roman

    2009-02-04

    We report a method to estimate the restoring force of a constrained small molecule and relate changes in its reactivity to this force. Restoring force is a size-invariant measure of molecular strain and offers a conceptual framework to bridge studies of macromolecular reactions by force spectroscopies with those of strained small molecules. We illustrate our method by showing that E stiff stilbene (1,1'-Delta-biindan) with up to 700 pN of force along its C6,C6' axis is accessible by photoisomerization. It reverts thermally to the Z isomer with tau(1/2) approximately 100 ms, probably long enough to be useful for microscale actuation. The quantum yield of photoisomerization and the activation barrier of thermal isomerization of constrained stiff stilbene increase sharply as the restoring force decreases.

  4. An internal force solving method and its application in teaching of mechanics of materials

    NASA Astrophysics Data System (ADS)

    Zhu, Wei-Wei

    2017-09-01

    This paper presents an improved method of positive assumption for internal force solving, and the application process of this improved method is introduced by some examples, matters to be noted in teaching by this improved method are also analyzed. Teaching practice shows that using improved method of positive assumption to solve internal force, can effectively reduce the error rate, improve the students’ ability to analyze the internal force, increase the confidence in mechanics of materials learning, and can produce positive transfer effect for subsequent rated courses learning.

  5. Alternative methods for specification of observed forcing in single-column models and cloud system models

    NASA Astrophysics Data System (ADS)

    Randall, David A.; Cripe, Douglas G.

    1999-10-01

    We discuss alternative methods for prescribing advective tendencies in single-column models (SCMs) and cloud system models. These include "revealed forcing," in which the total advective tendency is prescribed from observations; "horizontal advective forcing," in which the horizontal advective tendencies are prescribed, together with the observed vertical motion which is combined with the predicted sounding to determine the tendencies due to vertical advection; and "relaxation forcing," in which the horizontal advective tendencies are computed by relaxing the sounding toward the observed upstream sounding, with a relaxation timescale determined by the time required for the wind to carry parcels across the grid column. When relaxation forcing is used, the horizontal advective tendencies can be diagnosed from the model output and compared with the corresponding observed tendencies. We present SCM results to illustrate these three forcing methods, based on data from several field experiments in both the tropics and the midlatitudes. Each method is shown to have its strengths and weaknesses. Overall, the results presented here do not show unambiguous differences between revealed forcing and horizontal advective forcing. The two methods appear to be generally comparable. Revealed forcing may therefore be preferred for its simplicity. Relaxation forcing guarantees realistic soundings of the state variables but can produce large errors in parameterized processes which are driven by rates (e.g., fluxes) rather than states. In particular, relaxation forcing gives large errors in the precipitation rate in this model. We demonstrate that relaxation forcing leads to unrealistically high (low) precipitation in versions of the model which tend to produce unrealistically dry (humid) soundings. The observed horizontal advective tendencies in the tropics are so weak, especially for temperature, that small absolute errors in the diabatic tendencies diagnosed with relaxation forcing

  6. Asymptotic approximation method of force reconstruction: Proof of concept

    NASA Astrophysics Data System (ADS)

    Sanchez, J.; Benaroya, H.

    2017-08-01

    An important problem in engineering is the determination of the system input based on the system response. This type of problem is difficult to solve as it is often ill-defined, and produces inaccurate or non-unique results. Current reconstruction techniques typically involve the employment of optimization methods or additional constraints to regularize the problem, but these methods are not without their flaws as they may be sub-optimally applied and produce inadequate results. An alternative approach is developed that draws upon concepts from control systems theory, the equilibrium analysis of linear dynamical systems with time-dependent inputs, and asymptotic approximation analysis. This paper presents the theoretical development of the proposed method. A simple application of the method is presented to demonstrate the procedure. A more complex application to a continuous system is performed to demonstrate the applicability of the method.

  7. Analysis of limit forces on the vehicle wheels using an algorithm of Dynamic Square Method

    NASA Astrophysics Data System (ADS)

    Brukalski, M.

    2016-09-01

    This article presents a method named as Dynamic Square Method (DSM) used for dynamic analysis of a vehicle equipped with a four wheel drive system. This method allows determination of maximum (limit) forces acting on the wheels. Here, the maximum longitudinal forces acting on the wheels are assumed and then used to predict whether they can be achieved by a specific dynamic motion or whether the actual friction forces under a given wheel is large enough to transfer lateral forces. For the analysis of DSM a four wheel vehicle model is used. On the basis of this characteristic it is possible to determine the maximum longitudinal force acting on the wheels of the given axle depending on the lateral acceleration of the vehicle. The results of this analysis may be useful in the development of a control algorithm used for example in active differentials.

  8. A method of assigning socio-economic status classification to British Armed Forces personnel.

    PubMed

    Yoong, S Y; Miles, D; McKinney, P A; Smith, I J; Spencer, N J

    1999-10-01

    The objective of this paper was to develop and evaluate a socio-economic status classification method for British Armed Forces personnel. Two study groups comprising of civilian and Armed Forces families were identified from livebirths delivered between 1 January-30 June 1996 within the Northallerton Health district which includes Catterick Garrison and RAF Leeming. The participants were the parents of babies delivered at a District General Hospital, comprising of 436 civilian and 162 Armed Forces families. A new classification method was successfully used to assign Registrar General's social classification to Armed Forces personnel. Comparison of the two study groups showed a significant difference in social class distribution (p = 0.0001). This study has devised a new method for classifying occupations within the Armed Forces to categories of social class thus permitting comparison with Registrar General's classification.

  9. Improved accuracy for finite element structural analysis via a new integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  10. Improved accuracy for finite element structural analysis via an integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  11. Measurement of Vocal Fold Collision Forces during Phonation: Methods and Preliminary Data

    ERIC Educational Resources Information Center

    Gunter, Heather E.; Howe, Robert D.; Zeitels, Steven M.; Kobler, James B.; Hillman, Robert E.

    2005-01-01

    Forces applied to vocal fold tissue as the vocal folds collide may cause tissue injury that manifests as benign organic lesions. A novel method for measuring this quantity in humans in vivo uses a low-profile force sensor that extends along the length and depth of the glottis. Sensor design facilitates its placement and stabilization so that…

  12. Classifying Force Spectroscopy of DNA Pulling Measurements Using Supervised and Unsupervised Machine Learning Methods.

    PubMed

    Karatay, Durmus U; Zhang, Jie; Harrison, Jeffrey S; Ginger, David S

    2016-04-25

    Dynamic force spectroscopy (DFS) measurements on biomolecules typically require classifying thousands of repeated force spectra prior to data analysis. Here, we study classification of atomic force microscope-based DFS measurements using machine-learning algorithms in order to automate selection of successful force curves. Notably, we collect a data set that has a testable positive signal using photoswitch-modified DNA before and after illumination with UV (365 nm) light. We generate a feature set consisting of six properties of force-distance curves to train supervised models and use principal component analysis (PCA) for an unsupervised model. For supervised classification, we train random forest models for binary and multiclass classification of force-distance curves. Random forest models predict successful pulls with an accuracy of 94% and classify them into five classes with an accuracy of 90%. The unsupervised method using Gaussian mixture models (GMM) reaches an accuracy of approximately 80% for binary classification.

  13. Hydration Forces Between Lipid Bilayers: A Theoretical Overview and a Look on Methods Exploring Dehydration.

    PubMed

    Pfeiffer, Helge

    2015-01-01

    Although, many biological systems fulfil their functions under the condition of excess hydration, the behaviour of bound water as well as the processes accompanying dehydration are nevertheless important to investigate. Dehydration can be a result of applied mechanical pressure, lowered humidity or cryogenic conditions. The effort required to dehydrate a lipid membrane at relatively low degree of hydration can be described by a disjoining pressure which is called hydration pressure or hydration force. This force is short-ranging (a few nm) and is usually considered to be independent of other surface forces, such as ionic or undulation forces. Different theories were developed to explain hydration forces that are usually not consistent with each other and which are also partially in conflict with experimental or numerical data.Over the last decades it has been more and more realised that one experimental method alone is not capable of providing much new insight into the world of such hydration forces. Therefore, research requires the comparison of results obtained from the different methods. This chapter thus deals with an overview on the theory of hydration forces, ranging from polarisation theory to protrusion forces, and presents a selection of experimental techniques appropriate for their characterisation, such as X-ray diffraction, atomic force microscopy and even calorimetry.

  14. Boundary element method for optical force calibration in microfluidic dual-beam optical trap

    NASA Astrophysics Data System (ADS)

    Solmaz, Mehmet E.; Çetin, Barbaros; Baranoǧlu, Besim; Serhathoǧlu, Murat; Biyikli, Necmi

    2015-08-01

    The potential use of optical forces in microfluidic environment enables highly selective bio-particle manipulation. Manipulation could be accomplished via trapping or pushing a particle due to optical field. Empirical determination of optical force is often needed to ensure efficient operation of manipulation. The external force applied to a trapped particle in a microfluidic channel is a combination of optical and drag forces. The optical force can be found by measuring the particle velocity for a certain laser power level and a multiplicative correction factor is applied for the proximity of the particle to the channel surface. This method is not accurate especially for small microfluidic geometries where the particle size is in Mie regime and is comparable to channel cross section. In this work, we propose to use Boundary Element Method (BEM) to simulate fluid flow within the micro-channel with the presence of the particle to predict drag force. Pushing experiments were performed in a dual-beam optical trap and particle's position information was extracted. The drag force acting on the particle was then obtained using BEM and other analytical expressions, and was compared to the calculated optical force. BEM was able to predict the behavior of the optical force due to the inclusion of all the channel walls.

  15. Electrochemical methods for generation of a biological proton motive force

    DOEpatents

    Zeikus, Joseph Gregory; Shin, Hyoun S.; Jain, Mahendra K.

    2008-12-02

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  16. Agreement between the force platform method and the combined method measurements of power output during the loaded countermovement jump.

    PubMed

    Mundy, Peter D; Lake, Jason P; Carden, Patrick J C; Smith, Neal A; Lauder, Mike A

    2016-01-01

    There are two perceived criterion methods for measuring power output during the loaded countermovement jump (CMJ): the force platform method and the combined method (force platform + optoelectronic motion capture system). Therefore, the primary aim of the present study was to assess agreement between the force platform method and the combined method measurements of peak power and mean power output during the CMJ across a spectrum of loads. Forty resistance-trained team sport athletes performed maximal effort CMJ with additional loads of 0 (body mass only), 25, 50, 75 and 100% of body mass (BM). Bias was present for peak velocity, mean velocity, peak power and mean power at all loads investigated, and present for mean force up to 75% of BM. Peak velocity, mean velocity, peak power and mean power 95% ratio limits of agreement were clinically unacceptable at all loads investigated. The 95% ratio limits of agreement were widest at 0% of BM and decreased linearly as load increased. Therefore, the force platform method and the combined method cannot be used interchangeably for measuring power output during the loaded CMJ. As such, if power output is to be meaningfully investigated, a standardised method must be adopted.

  17. Forced unfolding of proteins within cells -- a proteomic method

    NASA Astrophysics Data System (ADS)

    Chase, Brian; Discher, Dennis

    2009-03-01

    Many cellular activities are mediated by conformational changes in proteins or else involve rearrangement of protein assemblies. These motions are now commonly investigated in vitro as well as at the single-molecule level. But we sought to develop an in-cell method to study these motions and to do so on a proteomic scale. We have been especially interested in studying molecular responses in cells under stress, and we initially developed a labeling technique in the simplest human cell, the red blood cell. The premise is to label cysteines with cell-viable, thiol-reactive fluorophores in both stressed and unstressed cells. Then, differential labeling of proteins would indicate that under stress, previously buried cysteine residues become exposed and thus accessible to the fluorescent probe. Fluorescence imaging and saparations provide initial clues to structures and proteins, but Mass Spectrometry precisely maps the sites that are exposed. Subsequent work on recombinants and in modeling is then used to explain the cell-derived findings, and the method has now been applied to several nucleated cell types.

  18. Optimizing Structural Active Control Force Using the Exterior Penalty Function Method

    SciTech Connect

    Tavassoli, Mohammad Reza; Amini, Fereidoun

    2008-07-08

    A new method for optimizing the control force in a closed-open loop control system has been developed. In this method which applies the complete feedback, structural responses including displacement, velocity, acceleration and also the excitation forces are used to determine the required control forces. In a closed-open loop control system, applying control force is equivalent to making changes in the mass, damping and stiffness matrices of the structure and the external force vector. Assuming these changes are linear and proportional to their initial values, the minimization of control force depends on the optimal values of the proportion coefficients. This idea leads to a constrained optimization problem of n-variable, which has been solved by using the exterior penalty function method and the Powell's search algorithm. The peak control force is the objective function of this optimization problem and the proportion coefficients are the design variables. The supposed limitation of the structural responses comprises the constraints of the problem. The effectiveness of the proposed method is demonstrated by some numerical examples.

  19. Development and validation of a method to directly measure the cable force during the hammer throw.

    PubMed

    Brice, Sara M; Ness, Kevin F; Rosemond, Doug; Lyons, Keith; Davis, Mark

    2008-05-01

    The development of cable force during hammer-throw turns is crucial to the throw distance. In this paper, we present a method that is capable of measuring cable force in real time and, as it does not interfere with technique, it is capable of providing immediate feedback to coaches and athletes during training. A strain gauge was mounted on the wires of three hammers to measure the tension in the wire and an elite male hammer thrower executed three throws with each hammer. The output from the gauges was recorded by a data logger positioned on the lower back of the thrower. The throws were captured by three high-speed video cameras and the three-dimensional position of the hammer's head was determined by digitizing the images manually. The five best throws were analysed. The force acting on the hammer's head was calculated from Newton's second law of motion and this was compared with the force measured via the strain gauge. Qualitatively the time dependence of the two forces was essentially the same, although the measured force showed more detail in the troughs of the force-time curves. Quantitatively the average difference between the measured and calculated forces over the five throws was 76 N, which corresponds to a difference of 3.8% for a cable force of 2000 N.

  20. Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Li, Q.; Zhou, P.; Yan, H. J.

    2016-10-01

    In the lattice Boltzmann (LB) method, the forcing scheme, which is used to incorporate an external or internal force into the LB equation, plays an important role. It determines whether the force of the system is correctly implemented in an LB model and affects the numerical accuracy. In this paper we aim to clarify a critical issue about the Chapman-Enskog analysis for a class of forcing schemes in the LB method in which the velocity in the equilibrium density distribution function is given by u =∑αeαfα / ρ , while the actual fluid velocity is defined as u ̂=u +δtF / (2 ρ ) . It is shown that the usual Chapman-Enskog analysis for this class of forcing schemes should be revised so as to derive the actual macroscopic equations recovered from these forcing schemes. Three forcing schemes belonging to the above class are analyzed, among which Wagner's forcing scheme [A. J. Wagner, Phys. Rev. E 74, 056703 (2006), 10.1103/PhysRevE.74.056703] is shown to be capable of reproducing the correct macroscopic equations. The theoretical analyses are examined and demonstrated with two numerical tests, including the simulation of Womersley flow and the modeling of flat and circular interfaces by the pseudopotential multiphase LB model.

  1. Virtual biomechanics: a new method for online reconstruction of force from EMG recordings.

    PubMed

    de Rugy, Aymar; Loeb, Gerald E; Carroll, Timothy J

    2012-12-01

    Current methods to reconstruct muscle contributions to joint torque usually combine electromyograms (EMGs) with cadaver-based estimates of biomechanics, but both are imperfect representations of reality. Here, we describe a new method that enables online force reconstruction in which we optimize a "virtual" representation of muscle biomechanics. We first obtain tuning curves for the five major wrist muscles from the mean rectified EMG during the hold phase of an isometric aiming task when a cursor is driven by actual force recordings. We then apply a custom, gradient-descent algorithm to determine the set of "virtual pulling vectors" that best reach the target forces when combined with the observed muscle activity. When these pulling vectors are multiplied by the rectified and low-pass-filtered (1.3 Hz) EMG of the five muscles online, the reconstructed force provides a close spatiotemporal match to the true force exerted at the wrist. In three separate experiments, we demonstrate that the technique works equally well for surface and fine-wire recordings and is sensitive to biomechanical changes elicited by a modification of the forearm posture. In all conditions tested, muscle tuning curves obtained when the task was performed with feedback of reconstructed force were similar to those obtained when the task was performed with real force feedback. This online force reconstruction technique provides new avenues to study the relationship between neural control and limb biomechanics since the "virtual biomechanics" can be systematically altered at will.

  2. An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field

    SciTech Connect

    Yao, Jin

    2015-02-10

    A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.

  3. A comparison of force reconstruction methods for a lumped mass beam

    SciTech Connect

    Bateman, V.I.; Mayes, R.L.; Carne, T.G.

    1992-11-01

    Two extensions of the force reconstruction method, the Sum of Weighted Accelerations Technique (SWAT), are presented in this paper; and the results are compared to those obtained using SWAT. SWAT requires the use of the structure`s elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two, new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a CALibrated force input). The second technique uses only the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using Time Eliminated Elastic Modes).

  4. A comparison of force reconstruction methods for a lumped mass beam

    SciTech Connect

    Bateman, V.I.; Mayes, R.L.; Carne, T.G.

    1992-01-01

    Two extensions of the force reconstruction method, the Sum of Weighted Accelerations Technique (SWAT), are presented in this paper; and the results are compared to those obtained using SWAT. SWAT requires the use of the structure's elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two, new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a CALibrated force input). The second technique uses only the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using Time Eliminated Elastic Modes).

  5. A Multi-Channel Method for Detecting Periodic Forced Oscillations in Power Systems

    SciTech Connect

    Follum, James D.; Tuffner, Francis K.

    2016-11-14

    Forced oscillations in electric power systems are often symptomatic of equipment malfunction or improper operation. Detecting and addressing the cause of the oscillations can improve overall system operation. In this paper, a multi-channel method of detecting forced oscillations and estimating their frequencies is proposed. The method operates by comparing the sum of scaled periodograms from various channels to a threshold. A method of setting the threshold to specify the detector's probability of false alarm while accounting for the correlation between channels is also presented. Results from simulated and measured power system data indicate that the method outperforms its single-channel counterpart and is suitable for real-world applications.

  6. The Distributed Diagonal Force Decomposition Method for Parallelizing Molecular Dynamics Simulations

    PubMed Central

    Boršnik, Urban; Miller, Benjamin T.; Brooks, Bernard R.; Janežič, Dušanka

    2011-01-01

    Parallelization is an effective way to reduce the computational time needed for molecular dynamics simulations. We describe a new parallelization method, the distributed-diagonal force decomposition method, with which we extend and improve the existing force decomposition methods. Our new method requires less data communication during molecular dynamics simulations than replicated data and current force decomposition methods, increasing the parallel efficiency. It also dynamically load-balances the processors' computational load throughout the simulation. The method is readily implemented in existing molecular dynamics codes and it has been incorporated into the CHARMM program, allowing its immediate use in conjunction with the many molecular dynamics simulation techniques that are already present in the program. We also present the design of the Force Decomposition Machine, a cluster of personal computers and networks that is tailored to running molecular dynamics simulations using the distributed diagonal force decomposition method. The design is expandable and provides various degrees of fault resilience. This approach is easily adaptable to computers with Graphics Processing Units because it is independent of the processor type being used. PMID:21793007

  7. A kernel method for calculating effective radiative forcing in transient climate simulations

    NASA Astrophysics Data System (ADS)

    Larson, E. J. L.; Portmann, R. W.

    2015-12-01

    Effective radiative forcing (ERF) is calculated as the flux change at the top of the atmosphere, after allowing fast adjustments, due to a forcing agent such as greenhouse gasses or volcanic events. Accurate estimates of the ERF are necessary in order to understand the drivers of climate change. ERF cannot be observed directly and is difficult to estimate from indirect observations due to the complexity of climate responses to individual forcing factors. We present a new method of calculating ERF using a kernel populated from a time series of a model variable (e.g. global mean surface temperature) in a CO2 step change experiment. The top of atmosphere (TOA) radiative imbalance has the best noise tolerance for retrieving the ERF of the model variables we tested. We compare the kernel method with the energy balance method for estimating ERF in the CMIP5 models. The energy balance method uses the regression between the TOA imbalance and temperature change in a CO2 step change experiment to estimate the climate feedback parameter. It then assumes the feedback parameter is constant to calculate the forcing time series. This method is sensitive to the number of years chosen for the regression and the nonlinearity in the regression leads to a bias. We quantify the sensitivities and biases of these methods and compare their estimates of forcing. The kernel method is more accurate for models in which a linear fit is a poor approximation for the relationship between temperature change and TOA imbalance.

  8. A nondestructive, reproducible method of measuring joint reaction force at the distal radioulnar joint.

    PubMed

    Canham, Colin D; Schreck, Michael J; Maqsoodi, Noorullah; Doolittle, Madison; Olles, Mark; Elfar, John C

    2015-06-01

    To develop a nondestructive method of measuring distal radioulnar joint (DRUJ) joint reaction force (JRF) that preserves all periarticular soft tissues and more accurately reflects in vivo conditions. Eight fresh-frozen human cadaveric limbs were obtained. A threaded Steinmann pin was placed in the middle of the lateral side of the distal radius transverse to the DRUJ. A second pin was placed into the middle of the medial side of the distal ulna colinear to the distal radial pin. Specimens were mounted onto a tensile testing machine using a custom fixture. A uniaxial distracting force was applied across the DRUJ while force and displacement were simultaneously measured. Force-displacement curves were generated and a best-fit polynomial was solved to determine JRF. All force-displacement curves demonstrated an initial high slope where relatively large forces were required to distract the joint. This ended with an inflection point followed by a linear area with a low slope, where small increases in force generated larger amounts of distraction. Each sample was measured 3 times and there was high reproducibility between repeated measurements. The average baseline DRUJ JRF was 7.5 N (n = 8). This study describes a reproducible method of measuring DRUJ reaction forces that preserves all periarticular stabilizing structures. This technique of JRF measurement may also be suited for applications in the small joints of the wrist and hand. Changes in JRF can alter native joint mechanics and lead to pathology. Reliable methods of measuring these forces are important for determining how pathology and surgical interventions affect joint biomechanics. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    ERIC Educational Resources Information Center

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  10. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    ERIC Educational Resources Information Center

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  11. Unfolding single RNA molecules by mechanical force: A stochastic kinetic method

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Ou-Yang, Zhong-Can

    2004-10-01

    Using simple polymer elastic theory and known RNA free energies, we study the single RNA folding and unfolding on the secondary structure level under mechanical constant force by stochastic kinetic simulation. As a primary application, this method is used to simulate the experiment performed by Liphardt [Science 292, 733 (2001)]. The extension-force curves in equilibrium and kinetic reaction rate constants for folding and unfolding are calculated. Our results show that the agreement between simulation and experimental measurements is satisfactory.

  12. Element Library for Three-Dimensional Stress Analysis by the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.

    1996-01-01

    The Integrated Force Method, a recently developed method for analyzing structures, is extended in this paper to three-dimensional structural analysis. First, a general formulation is developed to generate the stress interpolation matrix in terms of complete polynomials of the required order. The formulation is based on definitions of the stress tensor components in term of stress functions. The stress functions are written as complete polynomials and substituted into expressions for stress components. Then elimination of the dependent coefficients leaves the stress components expressed as complete polynomials whose coefficients are defined as generalized independent forces. Such derived components of the stress tensor identically satisfy homogenous Navier equations of equilibrium. The resulting element matrices are invariant with respect to coordinate transformation and are free of spurious zero-energy modes. The formulation provides a rational way to calculate the exact number of independent forces necessary to arrive at an approximation of the required order for complete polynomials. The influence of reducing the number of independent forces on the accuracy of the response is also analyzed. The stress fields derived are used to develop a comprehensive finite element library for three-dimensional structural analysis by the Integrated Force Method. Both tetrahedral- and hexahedral-shaped elements capable of modeling arbitrary geometric configurations are developed. A number of examples with known analytical solutions are solved by using the developments presented herein. The results are in good agreement with the analytical solutions. The responses obtained with the Integrated Force Method are also compared with those generated by the standard displacement method. In most cases, the performance of the Integrated Force Method is better overall.

  13. Design of a new torque standard machine based on a torque generation method using electromagnetic force

    NASA Astrophysics Data System (ADS)

    Nishino, Atsuhiro; Ueda, Kazunaga; Fujii, Kenichi

    2017-02-01

    To allow the application of torque standards in various industries, we have been developing torque standard machines based on a lever deadweight system, i.e. a torque generation method using gravity. However, this method is not suitable for expanding the low end of the torque range, because of the limitations to the sizes of the weights and moment arms. In this study, the working principle of the torque generation method using an electromagnetic force was investigated by referring to watt balance experiments used for the redefinition of the kilogram. Applying this principle to a rotating coordinate system, an electromagnetic force type torque standard machine was designed and prototyped. It was experimentally demonstrated that SI-traceable torque could be generated by converting electrical power to mechanical power. Thus, for the first time, SI-traceable torque was successfully realized using a method other than that based on the force of gravity.

  14. Improved Boundary Element Methods for Poisson-Boltzmann Electrostatic Potential and Force Calculations.

    PubMed

    Lu, Benzhuo; McCammon, J Andrew

    2007-05-01

    A patch representation differing from the traditional treatments in the boundary element method (BEM) is presented, which we call the constant "node patch" method. Its application to solving the Poisson-Boltzmann equation (PBE) demonstrates considerable improvement in speed compared with the constant element and linear element methods. In addition, for the node-based BEMs, we propose an efficient interpolation method for the calculation of the electrostatic stress tensor and PB force on the solvated molecular surface. This force calculation is simply an O(N) algorithm (N is the number of elements). Moreover, our calculations also show that the geometric factor correction in the boundary integral equations significantly increases the accuracy of the potential solution on the boundary, and thereby the PB force calculation.

  15. Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Decha-Umphai, Kamolphan

    1987-01-01

    Multiple-mode nonlinear free and forced vibration of a beam is analyzed by the finite element method. The geometric nonlinearity is investigated. Inplane displacement and inertia (IDI) are also considered in the formulation. Harmonic force matrix is derived and explained. Nonlinear free vibration can be simply treated as a special case of the general forced vibration by setting the harmonic force matrix equal to zero. The effect of the higher modes is more pronouced for the clamped supported beam than the simply supported one. Beams without IDI yield more effect of the higher modes than the one with IDI. The effects of IDI are to reduce nonlinearity. For beams with end supports restrained from axial movement (immovable cases), only the hardening type nonlinearity is observed. However, beams of small slenderness ratio (L/R = 20) with movable end supports, the softening type nonlinearity is found. The concentrated force case yields a more severe response than the uniformly distributed force case. Finite element results are in good agreement with the solution of simple elliptic response, harmonic balance method, and Runge-Kutte method and experiment.

  16. The method of calculating forced oscillations in nonlinear discrete-time systems under periodic external actions

    NASA Astrophysics Data System (ADS)

    Bryuhanov, Yu. A.

    2010-08-01

    We consider a method for calculating forced oscillations in nonlinear discrete-time systems under periodic external actions. The method is based on representing the stationary oscillations in the form of an invariant set of nonlinear discrete point mappings and allows one to calculate the nonlinear-system response in the steady-state regime. The examples of using this method for calculating forced oscillations in the first- and second-order nonlinear recursive systems under the harmonic-signal action on such systems are presented.

  17. FORCED FIELD EXTRAPOLATION: TESTING A MAGNETOHYDRODYNAMIC (MHD) RELAXATION METHOD WITH A FLUX-ROPE EMERGENCE MODEL

    SciTech Connect

    Zhu, X. S.; Wang, H. N.; Du, Z. L.; Fan, Y. L.

    2013-05-10

    We undertake an attempt to reconstruct the Sun's non-force-free magnetic field. The solar corona is often considered to be magnetohydrostatic. We solve the full MHD equations with a semi-realistic atmosphere model to attain this stationary state. Our method is tested with a Sun-like model which simulates the emergence of a magnetic flux rope passing from below the photosphere into the corona. Detailed diagnostics shows that our method can model the forced field more successfully than the optimization and potential method, but it still needs to be applied to real data.

  18. Method for six-legged robot stepping on obstacles by indirect force estimation

    NASA Astrophysics Data System (ADS)

    Xu, Yilin; Gao, Feng; Pan, Yang; Chai, Xun

    2016-07-01

    Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.

  19. Equation-of-motion approach of spin-motive force

    SciTech Connect

    Yamane, Yuta; Ieda, Jun'ichi; Ohe, Jun-ichiro; Maekawa, Sadamichi; Barnes, Stewart E.

    2011-04-01

    We formulate a quantitative theory of an electromotive force of spin origin, i.e., spin-motive force, by the equation-of-motion approach. In a ferromagnetic metal, electrons couple to the local magnetization via the exchange interaction. The electrons are affected by spin dependent forces due to this interaction and the spin-motive force and the anomalous Hall effect appears. We have revealed that the origin of these phenomena is a misalignment between the conduction electron spin and the local magnetization.

  20. Outflow forces of low-mass embedded objects in Ophiuchus: a quantitative comparison of analysis methods

    NASA Astrophysics Data System (ADS)

    van der Marel, N.; Kristensen, L. E.; Visser, R.; Mottram, J. C.; Yıldız, U. A.; van Dishoeck, E. F.

    2013-08-01

    Context. The outflow force of molecular bipolar outflows is a key parameter in theories of young stellar feedback on their surroundings. The focus of many outflow studies is the correlation between the outflow force, bolometric luminosity, and envelope mass. However, it is difficult to combine the results of different studies in large evolutionary plots over many orders of magnitude due to the range of data quality, analysis methods, and corrections for observational effects, such as opacity and inclination. Aims: We aim to determine the outflow force for a sample of low-luminosity embedded sources. We quantify the influence of the analysis method and the assumptions entering the calculation of the outflow force. Methods: We used the James Clerk Maxwell Telescope to map 12CO J = 3-2 over 2'× 2' regions around 16 Class I sources of a well-defined sample in Ophiuchus at 15″ resolution. The outflow force was then calculated using seven different methods differing, e.g., in the use of intensity-weighted emission and correction factors for inclination. Two well studied outflows (HH 46 and NGC1 333 IRAS4A) are added to the sample and included in the comparison. Results: The results from the analysis methods differ from each other by up to a factor of 6, whereas observational properties and choices in the analysis procedure affect the outflow force by up to a factor of 4. Subtraction of cloud emission and integrating over the remaining profile increases the outflow force at most by a factor of 4 compared to line wing integration. For the sample of Class I objects, bipolar outflows are detected around 13 sources including 5 new detections, where the three nondetections are confused by nearby outflows from other sources. New outflow structures without a clear powering source are discovered at the corners of some of the maps. Conclusions: When combining outflow forces from different studies, a scatter by up to a factor of 5 can be expected. Although the true outflow force

  1. Methodes de calcul des forces aerodynamiques pour les etudes des interactions aeroservoelastiques

    NASA Astrophysics Data System (ADS)

    Biskri, Djallel Eddine

    L'aeroservoelasticite est un domaine ou interagissent la structure flexible d'un avion, l'aerodynamique et la commande de vol. De son cote, la commande du vol considere l'avion comme une structure rigide et etudie l'influence du systeme de commande sur la dynamique de vol. Dans cette these, nous avons code trois nouvelles methodes d'approximation de forces aerodynamiques: Moindres carres corriges, Etat minimal corrige et Etats combines. Dans les deux premieres methodes, les erreurs d'approximation entre les forces aerodynamiques approximees par les methodes classiques et celles obtenues par les nouvelles methodes ont les memes formes analytiques que celles des forces aerodynamiques calculees par LS ou MS. Quant a la troisieme methode, celle-ci combine les formulations des forces approximees avec les methodes standards LS et MS. Les vitesses et frequences de battement et les temps d'executions calcules par les nouvelles methodes versus ceux calcules par les methodes classiques ont ete analyses.

  2. Wheel-slip Control Method for Seeking Maximum Value of Tangential Force between Wheel and Rail

    NASA Astrophysics Data System (ADS)

    Kondo, Keiichiro; Yasuoka, Ikuo; Yamazaki, Osamu; Toda, Shinichi; Nakazawa, Yosuke

    A method for reducing motor torque in proportion to wheel slip is applied to an inverter-driven electric locomotive. The motor torque at wheel-slip speed is less than the torque at the maximum tangential force or the adhesion force. A novel anti-slip control method for seeking the maximum value of the tangential force between the wheel and rail is proposed in this paper. The characteristics of the proposed method are analyzed theoretically to design the torque reduction ratio and the rate of change of the pattern between the wheel-slip speed and motor current. In addition, experimental tests are also carried out to verify that the use of the proposed method increases the traction force of an electric locomotive driven by induction motors and inverters. The experimental test results obtained by using the proposed control method are compared with the experimental results obtained by using a conventional control method. The averaged operational current when using the proposed control method is 10% more than that when using the conventional control method.

  3. Novel Door-opening Method for Six-legged Robots Based on Only Force Sensing

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Jun; Gao, Feng; Pan, Yang

    2017-09-01

    Current door-opening methods are mainly developed on tracked, wheeled and biped robots by applying multi-DOF manipulators and vision systems. However, door-opening methods for six-legged robots are seldom studied, especially using 0-DOF tools to operate and only force sensing to detect. A novel door-opening method for six-legged robots is developed and implemented to the six-parallel-legged robot. The kinematic model of the six-parallel-legged robot is established and the model of measuring the positional relationship between the robot and the door is proposed. The measurement model is completely based on only force sensing. The real-time trajectory planning method and the control strategy are designed. The trajectory planning method allows the maximum angle between the sagittal axis of the robot body and the normal line of the door plane to be 45º. A 0-DOF tool mounted to the robot body is applied to operate. By integrating with the body, the tool has 6 DOFs and enough workspace to operate. The loose grasp achieved by the tool helps release the inner force in the tool. Experiments are carried out to validate the method. The results show that the method is effective and robust in opening doors wider than 1 m. This paper proposes a novel door-opening method for six-legged robots, which notably uses a 0-DOF tool and only force sensing to detect and open the door.

  4. An indirect method to estimate the force output of triceps surae muscle.

    PubMed

    Jizhou Li; Yongjin Zhou; Yong-Ping Zheng

    2014-01-01

    Estimation of force output generated by human muscle is an essential routine of clinical rehabilitation assessment, and could provide considerable insight into rehabilitation, motor control and robotics. Indirect methods for the estimation of force output could be helpful when a bulky and expensive dynamometer is not on hand. Electromyography has been used in previous studies to quantify it in the literature. However, the force output is a summation of the motor unit action potentials, and thus the contributions and performances of superficial and deep-lying muscles could hardly be separated from each other. In this preliminary study, we applied ultrasonography (US) to explore the feasibility of estimating triceps surae force output during isometric plantar flexion with spatial resolution from superficial to deeper muscles. The local deformations of US images are extracted to represent the morphological changes during force generation. It was found US could be utilized to decently (coefficient of determination at 0.875 ± 0.051 and normalized root mean square error 0.160 ± 0.035) estimate the force output and the measured force by a dynamometer.

  5. Comparison of classical and two-stage methods of Barkhausen noise measurement

    NASA Astrophysics Data System (ADS)

    Pal'a, Jozef; Bydžovský, Jan

    2014-07-01

    The purpose of the article was to investigate properties of the two-stage methods of the Barkhausen noise (BN) measurement used in non-destructive testing. The principle of the two-stage method is based on subtraction of two successive instances of the electromotive force (EMF) signal with the same non-stochastic (continuous) component. The subtraction can be accomplished in a hardware (hardware two-stage method) or in a software (software two-stage method). The experiments proved that, with these methods, we are able to significantly suppress the dominant continuous component from the induced EMF signal without using filters and thus simplify the measurement. On the other hand, with the classical one-stage method, to achieve similar suppression of the continuous component and, simultaneously, to not suppress the BN, it was necessary to adjust the cut-off frequency of the high-pass filter.

  6. Using module analysis for multiple choice responses: A new method applied to Force Concept Inventory data

    NASA Astrophysics Data System (ADS)

    Brewe, Eric; Bruun, Jesper; Bearden, Ian G.

    2016-12-01

    We describe Module Analysis for Multiple Choice Responses (MAMCR), a new methodology for carrying out network analysis on responses to multiple choice assessments. This method is used to identify modules of non-normative responses which can then be interpreted as an alternative to factor analysis. MAMCR allows us to identify conceptual modules that are present in student responses that are more specific than the broad categorization of questions that is possible with factor analysis and to incorporate non-normative responses. Thus, this method may prove to have greater utility in helping to modify instruction. In MAMCR the responses to a multiple choice assessment are first treated as a bipartite, student X response, network which is then projected into a response X response network. We then use data reduction and community detection techniques to identify modules of non-normative responses. To illustrate the utility of the method we have analyzed one cohort of postinstruction Force Concept Inventory (FCI) responses. From this analysis, we find nine modules which we then interpret. The first three modules include the following: Impetus Force, More Force Yields More Results, and Force as Competition or Undistinguished Velocity and Acceleration. This method has a variety of potential uses particularly to help classroom instructors in using multiple choice assessments as diagnostic instruments beyond the Force Concept Inventory.

  7. Unilateral Outer Bow Expanded Cervical Headgear Force System: 3D Analysis Using Finite Element Method

    PubMed Central

    Mortezai, Omid; Esmaily, Masomeh; Darvishpour, Hojat

    2015-01-01

    Objectives: Headgears are among the effective orthodontic appliances to achieve treatment goals. Unilateral molar distal movement is sometimes needed during an orthodontic treatment, which can be achieved by an asymmetric headgear. Different unilateral headgears have been introduced. The main goal of this study was to analyze the force system of unilateral expanded outer bow asymmetric headgears by the finite element method (FEM). Materials and Methods: Six 3D finite element models of a mesiodistal slice of the maxilla containing upper first molars, their periodontal ligaments (PDLs), cancellous bone, cortical bone, and a cervical headgear with expanded outer bow attached to maxillary first molars were designed in SolidWorks 2010 and meshed in ANSYS Workbench ver. 12.1. The models were the same except for the degree of outer bow expansion. The outer bow ends were loaded with 2 N force. The distal driving force and the net moment were evaluated. Results: A decrease in the distalizing force in the normal side molar from 1.69 N to 1.37 N was shown by increasing the degree of unilateral expansion. At the same time, the force increased from 2.19 N to 2.49 N in the expanded side molar. A net moment increasing from 2.26 N.mm to 4.64 N.mm was also shown. Conclusion: Unilateral outer bow expansion can produce different distalizing forces in molars, which increase by increasing the expansion. PMID:26622282

  8. Induced Voltage Linear Extraction Method Using an Active Kelvin Bridge for Disturbing Force Self-Sensing.

    PubMed

    Yang, Yuanyuan; Wang, Lei; Tan, Jiubin; Zhao, Bo

    2016-05-20

    This paper presents an induced voltage linear extraction method for disturbing force self-sensing in the application of giant magnetostrictive actuators (GMAs). In this method, a Kelvin bridge combined with an active device is constructed instead of a conventional Wheatstone bridge for extraction of the induced voltage, and an additional GMA is adopted as a reference actuator in the self-sensing circuit in order to balance the circuit bridge. The linear fitting of the measurement data is done according to the linear relationship between the disturbing forces and the integral of the induced voltage. The experimental results confirm the good performance of the proposed method, and the self-sensitivity of the disturbing forces is better than 2.0 (mV·s)/N.

  9. Dynamic Analysis With Stress Mode Animation by the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1997-01-01

    Dynamic animation of stresses and displacements, which complement each other, can be a useful tool in the analysis and design of structural components. At the present time only displacement-mode animation is available through the popular stiffness formulation. This paper attempts to complete this valuable visualization tool by augmenting the existing art with stress mode animation. The reformulated method of forces, which in the literature is known as the integrated force method (IFM), became the analyzer of choice for the development of stress mode animation because stresses are the primary unknowns of its dynamic analysis. Animation of stresses and displacements, which have been developed successfully through the IFM analyzers, is illustrated in several examples along with a brief introduction to IFM dynamic analysis. The usefulness of animation in design optimization is illustrated considering the spacer structure component of the International Space Station as an example. An overview of the integrated force method analysis code (IFM/ANALYZERS) is provided in the appendix.

  10. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1989-01-01

    The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.

  11. Maximum forces sustained during various methods of exiting commercial tractors, trailers and trucks.

    PubMed

    Fathallah, F A; Cotnam, J P

    2000-02-01

    Many commercial vehicles have steps and grab-rails to assist the driver in safely entering/exiting the vehicle. However, many drivers do not use these aids. The purpose of this study was to compare impact forces experienced during various exit methods from commercial equipment. The study investigated impact forces of ten male subjects while exiting two tractors, a step-van, a box-trailer, and a cube-van. The results showed that exiting from cab-level or trailer-level resulted in impact forces as high as 12 times the subject's body weight; whereas, fully utilizing the steps and grab-rails resulted in impact forces less than two times body weight. An approach that emphasizes optimal design of entry/exit aids coupled with driver training and education is expected to minimize exit-related injuries.

  12. Isospin-violating nucleon-nucleon forces using the method of unitary transformation

    SciTech Connect

    Evgeny Epelbaum; Ulf-G. Meissner

    2005-02-01

    Recently, we have derived the leading and subleading isospin-breaking three-nucleon forces using the method of unitary transformation. In the present work we extend this analysis and consider the corresponding two-nucleon forces using the same approach. Certain contributions to the isospin-violating one- and two-pion exchange potential have already been discussed by various groups within the effective field theory framework. Our findings agree with the previously obtained results. In addition, we present the expressions for the subleading charge-symmetry-breaking two-pion exchange potential which were not considered before. These corrections turn out to be numerically important. Together with the three-nucleon force results presented in our previous work, the results of the present study specify completely isospin-violating nuclear force up to the order {Lambda}{sup 5}.

  13. STUDY ON PRACTICAL USE OF DETECTION METHOD OF IMPACT FORCE USING BRIDGE GIRDER STRENGTH

    NASA Astrophysics Data System (ADS)

    Misaki, Norikazu; Sakamoto, Yasuhiko; Ikoma, Noboru

    When information of motor vehicle collision to a steel bridge girder of railway overbridge was received, the accident situation and degree of damage of the girder should be confirmed. However, there is a problem that a train service might be delayed due to time-consuming safety confirmation. Therefore, only to detect impact force inducing deformation, damage and movement of bridge girder, resulting into delay of train service, the strength of bridge girder and harmful impact force were calculated. Simultaneously, a system to detect the harmful impact force was developed and a tolerance for the detection was determined. From the above results, the method to detect the harmful impact force was developed and put into practical use.

  14. Computational optical palpation: micro-scale force mapping using finite-element methods (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Philip; Sampson, David D.; Kennedy, Brendan F.

    2016-03-01

    Accurate quantification of forces, applied to, or generated by, tissue, is key to understanding many biomechanical processes, fabricating engineered tissues, and diagnosing diseases. Many techniques have been employed to measure forces; in particular, tactile imaging - developed to spatially map palpation-mimicking forces - has shown potential in improving the diagnosis of cancer on the macro-scale. However, tactile imaging often involves the use of discrete force sensors, such as capacitive or piezoelectric sensors, whose spatial resolution is often limited to 1-2 mm. Our group has previously presented a type of tactile imaging, termed optical palpation, in which the change in thickness of a compliant layer in contact with tissue is measured using optical coherence tomography, and surface forces are extracted, with a micro-scale spatial resolution, using a one-dimensional spring model. We have also recently combined optical palpation with compression optical coherence elastography (OCE) to quantify stiffness. A main limitation of this work, however, is that a one-dimensional spring model is insufficient in describing the deformation of mechanically heterogeneous tissue with uneven boundaries, generating significant inaccuracies in measured forces. Here, we present a computational, finite-element method, which we term computational optical palpation. In this technique, by knowing the non-linear mechanical properties of the layer, and from only the axial component of displacement measured by phase-sensitive OCE, we can estimate, not only the axial forces, but the three-dimensional traction forces at the layer-tissue interface. We use a non-linear, three-dimensional model of deformation, which greatly increases the ability to accurately measure force and stiffness in complex tissues.

  15. The application of cubic B-spline collocation method in impact force identification

    NASA Astrophysics Data System (ADS)

    Qiao, Baijie; Chen, Xuefeng; Xue, Xiaofeng; Luo, Xinjie; Liu, Ruonan

    2015-12-01

    The accurate real-time characterization of impact event is vital during the life-time of a mechanical product. However, the identified impact force may seriously diverge from the real one due to the unknown noise contaminating the measured data, as well as the ill-conditioned system matrix. In this paper, a regularized cubic B-spline collocation (CBSC) method is developed for identifying the impact force time history, which overcomes the deficiency of the ill-posed problem. The cubic B-spline function by controlling the mesh size of the collocation point has the profile of a typical impact event. The unknown impact force is approximated by a set of translated cubic B-spline functions and then the original governing equation of force identification is reduced to find the coefficient of the basis function at each collocation point. Moreover, a modified regularization parameter selection criterion derived from the generalized cross validation (GCV) criterion for the truncated singular value decomposition (TSVD) is introduced for the CBSC method to determine the optimum regularization number of cubic B-spline functions. In the numerical simulation of a two degrees-of-freedom (DOF) system, the regularized CBSC method is validated under different noise levels and frequency bands of exciting forces. Finally, an impact experiment is performed on a clamped-free shell structure to confirm the performance of the regularized CBSC method. Experimental results demonstrate that the peak relative errors of impact forces based on the regularized CBSC method are below 8%, while those based on the TSVD method are approximately 30%.

  16. Theoretical research and comparison of forces in optical tweezers based on ray optics method and T matrix method

    NASA Astrophysics Data System (ADS)

    Li, Zhenggang; Hu, Huizhu; Fu, ZhenHai; Zhu, Qi; Shen, Yu

    2016-10-01

    Based on ray tracing method of ray optics (RO) theory and T-matrix method of electromagnetic scattering theory, we establish optical trap force model and calculate the optical trap force of trapped microspheres whose size is in the beam wavelength scale. Calculation results of axial and transverse trapping efficiency based on the two models agree qualitatively, but differ quantitatively. Then we introduce a trapping efficiency calculation deviation parameter to characterize the difference between these two methods, and analyze how the deviation parameter is influenced by trapped microsphere radius and trapping beam waist radius. Simulation result shows that best agreement between RO model and T matrix calculation method is met when a strongly focused laser beam traps a large microsphere in near the beam waist plane area. In such cases both ray optics approximation conditions and T matrix method approximate conditions are satisfied. Numerical results coincide well with theoretical expectations.

  17. Damage localization and quantification of composite stratified beam Structures using residual force method

    NASA Astrophysics Data System (ADS)

    Behtani, A.; Bouazzouni, A.; Khatir, S.; Tiachacht, S.; Zhou, Y.-L.; Abdel Wahab, M.

    2017-05-01

    In this paper, the problem of using measured modal parameters to detect and locate damage in beam composite stratified structures with four layers of graphite/epoxy [0°/902°/0°] is investigated. A technique based on the residual force method is applied to composite stratified structure with different boundary conditions, the results of damage detection for several damage cases demonstrate that using residual force method as damage index, the damage location can be identified correctly and the damage extents can be estimated as well.

  18. Current integration force and displacement self-sensing method for cantilevered piezoelectric actuators

    SciTech Connect

    Ivan, Ioan Alexandru; Rakotondrabe, Micky; Lutz, Philippe; Chaillet, Nicolas

    2009-12-15

    This paper presents a new method of self-sensing both of the displacement and the external applied force at the tip of piezoelectric cantilevers. Integrated electric current across piezoelectric actuators is compensated against material nonlinearities (creep, hysteresis) to provide reliable information. We propose to compensate the hysteresis by using the Prandtl-Ishlinskii static approach while an auto regressive and moving average exogenous (ARMAX) model is used to minimize the creep influence. The quasistatic estimation, electronic circuit, and aspects related to long-term charge preservations are described or referenced. As an experiment, we tested the actuator entering in contact with a fixed force sensor. An input signal of 20 V peak-to-peak (10% of maximum range) led to force self-sensing errors inferior to {+-}8%. A final discussion about method accuracy and its limitations is made.

  19. Finite Element Method Based Modeling for Prediction of Cutting Forces in Micro-end Milling

    NASA Astrophysics Data System (ADS)

    Pratap, Tej; Patra, Karali

    2016-04-01

    Micro-end milling is one of the widely used processes for producing micro features/components in micro-fluidic systems, biomedical applications, aerospace applications, electronics and many more fields. However in these applications, the forces generated in the micro-end milling process can cause tool vibration, process instability and even cause tool breakage if not minimized. Therefore, an accurate prediction of cutting forces in micro-end milling is essential. In this work, a finite element method based model is developed using ABAQUS/Explicit 6.12 software for prediction of cutting forces in micro-end milling with due consideration of tool edge radius effect, thermo-mechanical properties and failure parameters of the workpiece material including friction behaviour at tool-chip interface. Experiments have been performed for manufacturing of microchannels on copper plate using 500 µm diameter tungsten carbide micro-end mill and cutting forces are acquired through a dynamometer. Predicted cutting forces in feed and cross feed directions are compared with experimental results and are found to be in good agreements. Results also show that FEM based simulations can be applied to analyze size effects of specific cutting forces in micro-end milling process.

  20. Analysis of force treatment in the pseudopotential lattice Boltzmann equation method

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Zhai, Qinglan; Zheng, Song

    2017-04-01

    In this paper, different force treatments are analyzed in detail for a pseudopotential lattice Boltzmann equation (LBE), and the contribution of third-order error terms to pressure tensor with a force scheme is analyzed by a higher-order Chapman-Enskog expansion technique. From the theoretical analysis, the performance of the original force treatment of Shan-Chen (SC), Ladd, Guo et al., and the exact difference method (EDM) are ɛLadd<ɛGuo<ɛEDM≤ɛSC with the relaxation time τ ≥1 , while ɛLadd<ɛGuo<ɛSC<ɛEDM with τ <1 ; here ɛ is a parameter related to the mechanical stability and the subscripts are the corresponding force scheme. To be consistent with the thermodynamic theory, a force term is introduced to modify the coefficients in the pressure tensor. Some numerical simulations are conducted to show that the predictions of modified force treatment of the pseudopotential LBE are all in good agreement with the analytical solution and other predictions.

  1. Finite Element Method Based Modeling for Prediction of Cutting Forces in Micro-end Milling

    NASA Astrophysics Data System (ADS)

    Pratap, Tej; Patra, Karali

    2017-02-01

    Micro-end milling is one of the widely used processes for producing micro features/components in micro-fluidic systems, biomedical applications, aerospace applications, electronics and many more fields. However in these applications, the forces generated in the micro-end milling process can cause tool vibration, process instability and even cause tool breakage if not minimized. Therefore, an accurate prediction of cutting forces in micro-end milling is essential. In this work, a finite element method based model is developed using ABAQUS/Explicit 6.12 software for prediction of cutting forces in micro-end milling with due consideration of tool edge radius effect, thermo-mechanical properties and failure parameters of the workpiece material including friction behaviour at tool-chip interface. Experiments have been performed for manufacturing of microchannels on copper plate using 500 µm diameter tungsten carbide micro-end mill and cutting forces are acquired through a dynamometer. Predicted cutting forces in feed and cross feed directions are compared with experimental results and are found to be in good agreements. Results also show that FEM based simulations can be applied to analyze size effects of specific cutting forces in micro-end milling process.

  2. Unilateral Outer Bow Expanded Cervical Headgear Force System: 3D Analysis Using Finite Element Method.

    PubMed

    Geramy, Allahyar; Mortezai, Omid; Esmaily, Masomeh; Darvishpour, Hojat

    2015-04-01

    Headgears are among the effective orthodontic appliances to achieve treatment goals. Unilateral molar distal movement is sometimes needed during an orthodontic treatment, which can be achieved by an asymmetric headgear. Different unilateral headgears have been introduced. The main goal of this study was to analyze the force system of unilateral expanded outer bow asymmetric headgears by the finite element method (FEM). Six 3D finite element models of a mesiodistal slice of the maxilla containing upper first molars, their periodontal ligaments (PDLs), cancellous bone, cortical bone, and a cervical headgear with expanded outer bow attached to maxillary first molars were designed in SolidWorks 2010 and meshed in ANSYS Workbench ver. 12.1. The models were the same except for the degree of outer bow expansion. The outer bow ends were loaded with 2 N force. The distal driving force and the net moment were evaluated. A decrease in the distalizing force in the normal side molar from 1.69 N to 1.37 N was shown by increasing the degree of unilateral expansion. At the same time, the force increased from 2.19 N to 2.49 N in the expanded side molar. A net moment increasing from 2.26 N.mm to 4.64 N.mm was also shown. Unilateral outer bow expansion can produce different distalizing forces in molars, which increase by increasing the expansion.

  3. Proteus: a direct forcing method in the simulations of particulate flows

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Gang; Michaelides, Efstathios E.

    2005-01-01

    A new and efficient direct numerical method for the simulation of particulate flows is introduced. The method combines desired elements of the immersed boundary method, the direct forcing method and the lattice Boltzmann method. Adding a forcing term in the momentum equation enforces the no-slip condition on the boundary of a moving particle. By applying the direct forcing scheme, Proteus eliminates the need for the determination of free parameters, such as the stiffness coefficient in the penalty scheme or the two relaxation parameters in the adaptive-forcing scheme. The method presents a significant improvement over the previously introduced immersed-boundary-lattice-Boltzmann method (IB-LBM) where the forcing term was computed using a penalty method and a user-defined parameter. The method allows the enforcement of the rigid body motion of a particle in a more efficient way. Compared to the "bounce-back" scheme used in the conventional LBM, the direct-forcing method provides a smoother computational boundary for particles and is capable of achieving results at higher Reynolds number flows. By using a set of Lagrangian points to track the boundary of a particle, Proteus eliminates any need for the determination of the boundary nodes that are prescribed by the "bounce-back" scheme at every time step. It also makes computations for particles of irregular shapes simpler and more efficient. Proteus has been developed in two- as well as three-dimensions. This new method has been validated by comparing its results with those from experimental measurements for a single sphere settling in an enclosure under gravity. As a demonstration of the efficiency and capabilities of the present method, the settling of a large number (1232) of spherical particles is simulated in a narrow box under two different boundary conditions. It is found that when the no-slip boundary condition is imposed at the front and rear sides of the box the particles motion is significantly hindered

  4. Comparison of retention forces with various fabrication methods and materials in double crowns

    PubMed Central

    Tuna, Meral; Bozdağ, Ergun; Öztürk, Gizem Nur; Bayraktar, Gulsen

    2017-01-01

    PURPOSE The purpose of this study was to analyze the retention force changes and wear behaviours of double-crown systems over long-term use. MATERIALS AND METHODS Ten groups, each consisting of six samples, were evaluated. Specifically, casting gold alloy primary crown - casting gold alloy secondary crown (AA), laser sintering primary crown - laser sintering secondary crown (LL), casting Cr alloy primary crown - casting Cr alloy secondary crown, (CC) zirconia primary crown - electroformed secondary crown (ZA), and CAD/CAM titanium alloy primary crown - CAD/CAM titanium alloy secondary crown (TT) groups were evaluated at cone angles of 4° and 6°. The samples were subjected to 5,000 insertion-separation cycles in artificial saliva, and the retention forces were measured every 500 cycles. The wear levels were analyzed via SEM at the beginning and end of the 5,000 cycles. RESULTS In all samples, the retention forces increased when the conus angle decreased. The highest initial and final retention force values were found in the LL-4° group (32.89 N-32.65 N), and the lowest retention force values were found in the ZA6° group (5.41 N-6.27 N). The ZA groups' samples showed the least change in the retention force, and no wear was observed. In the other groups, wear was observed mostly in the primary crowns. CONCLUSION More predictable, clinically relevant, and less excursive retention forces can be observed in the ZA groups. The retention force values of the LL groups were statically similar to those of the other groups, except the ZA groups. PMID:28874999

  5. A self-force approach to the two-body problem: The Green function method

    NASA Astrophysics Data System (ADS)

    Casals, Marc

    2016-06-01

    The inspiral of a stellar-mass astrophysical object into a massive black hole may be modeled within perturbation theory of General Relativity via the so-called self-force. In this paper, we present a novel method for the calculation of the self-force which is based on the Green function (GF) of the wave equation satisfied by the field created by the smaller object. We review the results in [M. Casals, S. Dolan, A. C. Ottewill and B. Wardell, Phys. Rev. D 88 (2013) 044022; B. Wardell, C. R. Galley, A. Zenginoğlu, M. Casals, S. R. Dolan and A. C. Ottewill, Phys. Rev. D 89 (2014) 084021] on the GF and the self-force on a scalar charge (as a model for the gravitational case) moving on a Schwarzschild black hole spacetime. This GF method offers an appealing geometrical insight into the origin of the self-force and is a promising candidate for practical self-force calculations.

  6. Asymmetric Outer Bow Length and Cervical Headgear Force System: 3D Analysis Using Finite Element Method

    PubMed Central

    Geramy, Allahyar; Hassanpour, Mehdi; Emadian Razavi, Elham sadat

    2015-01-01

    Objectives: This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths. Materials and Methods: Four 3D finite element method (FEM) models of a cervical headgear attached to the maxillary first molars were designed in SolidWorks 2010 software and transferred to ANSYS Workbench ver. 11 software. Models contained the first molars, their periodontal ligament (PDL), cancellous and cortical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with differences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was calculated trigonometrically using data from a volunteer. Results: The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N) and distal (= 1.008 N) forces and also generated moments (5.044 N.mm). Conclusion: As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. Clinical Relevance: A difference range of 1mm to 15 mm of length in cervical headgear can be considered as a safe length of outer bow shortening in clinical use. PMID:26622275

  7. Cogging force rejection method of linear motor based on internal model principle

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Zhenyu; Yang, Tianbo

    2015-02-01

    The cogging force disturbance of linear motor is one of the main factors affecting the positioning accuracy of ultraprecision moving platform. And this drawback could not be completely overcome by improving the design of motor body, such as location modification of permanent magnet array, or optimization design of the shape of teeth-slot. So the active compensation algorithms become prevalent in cogging force rejection area. This paper proposed a control structure based on internal mode principle to attenuate the cogging force of linear motor which deteriorated the accuracy of position, and this structure could make tracking and anti-disturbing performance of close-loop designed respectively. In the first place, the cogging force was seen as the intrinsic property of linear motor and its model constituting controlled object with motor ontology model was obtained by data driven recursive identification method. Then, a control structure was designed to accommodate tracking and anti-interference ability separately by using internal model principle. Finally, the proposed method was verified in a long stroke moving platform driven by linear motor. The experiment results show that, by employing this control strategy, the positioning error caused by cogging force was decreased by 70%.

  8. 25 CFR 170.605 - When may BIA use force account methods in the IRR Program?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false When may BIA use force account methods in the IRR Program? 170.605 Section 170.605 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Service Delivery for Indian Reservation Roads Miscellaneous...

  9. Calculation of atomic forces using the linearized-augmented-plane-wave method

    NASA Astrophysics Data System (ADS)

    Krimmel, H. G.; Ehmann, J.; Elsässer, C.; Fähnle, M.; Soler, J. M.

    1994-09-01

    The force formula of Soler and Williams is implemented in the full-potential linearized-augmented-plane-wave program wien93. The feasibility and accuracy of the method is demonstrated by calculations for the H-point phonon in Mo and Li and for the Γ-point phonon in Si and diamond.

  10. An Immersed Boundary method with divergence-free velocity interpolation and force spreading

    NASA Astrophysics Data System (ADS)

    Bao, Yuanxun; Donev, Aleksandar; Griffith, Boyce E.; McQueen, David M.; Peskin, Charles S.

    2017-10-01

    The Immersed Boundary (IB) method is a mathematical framework for constructing robust numerical methods to study fluid-structure interaction in problems involving an elastic structure immersed in a viscous fluid. The IB formulation uses an Eulerian representation of the fluid and a Lagrangian representation of the structure. The Lagrangian and Eulerian frames are coupled by integral transforms with delta function kernels. The discretized IB equations use approximations to these transforms with regularized delta function kernels to interpolate the fluid velocity to the structure, and to spread structural forces to the fluid. It is well-known that the conventional IB method can suffer from poor volume conservation since the interpolated Lagrangian velocity field is not generally divergence-free, and so this can cause spurious volume changes. In practice, the lack of volume conservation is especially pronounced for cases where there are large pressure differences across thin structural boundaries. The aim of this paper is to greatly reduce the volume error of the IB method by introducing velocity-interpolation and force-spreading schemes with the properties that the interpolated velocity field in which the structure moves is at least C1 and satisfies a continuous divergence-free condition, and that the force-spreading operator is the adjoint of the velocity-interpolation operator. We confirm through numerical experiments in two and three spatial dimensions that this new IB method is able to achieve substantial improvement in volume conservation compared to other existing IB methods, at the expense of a modest increase in the computational cost. Further, the new method provides smoother Lagrangian forces (tractions) than traditional IB methods. The method presented here is restricted to periodic computational domains. Its generalization to non-periodic domains is important future work.

  11. Development of Finite Elements for Two-Dimensional Structural Analysis Using the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.

    1996-01-01

    The Integrated Force Method has been developed in recent years for the analysis of structural mechanics problems. This method treats all independent internal forces as unknown variables that can be calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper a finite element library for analyzing two-dimensional problems by the Integrated Force Method is presented. Triangular- and quadrilateral-shaped elements capable of modeling arbitrary domain configurations are presented. The element equilibrium and flexibility matrices are derived by discretizing the expressions for potential and complementary energies, respectively. The displacement and stress fields within the finite elements are independently approximated. The displacement field is interpolated as it is in the standard displacement method, and the stress field is approximated by using complete polynomials of the correct order. A procedure that uses the definitions of stress components in terms of an Airy stress function is developed to derive the stress interpolation polynomials. Such derived stress fields identically satisfy the equations of equilibrium. Moreover, the resulting element matrices are insensitive to the orientation of local coordinate systems. A method is devised to calculate the number of rigid body modes, and the present elements are shown to be free of spurious zero-energy modes. A number of example problems are solved by using the present library, and the results are compared with corresponding analytical solutions and with results from the standard displacement finite element method. The Integrated Force Method not only gives results that agree well with analytical and displacement method results but also outperforms the displacement method in stress calculations.

  12. Using the method of weighted residuals to compute potentials of mean force

    SciTech Connect

    Cyr, Eric C. . E-mail: ericcyr@uiuc.edu; Bond, Stephen D. . E-mail: sdbond@uiuc.edu

    2007-07-01

    We propose a general framework for approximating the potential of mean force (PMF) along a reaction coordinate in conformational space. This framework, based on the method of weighted residuals, can be viewed as a generalization of thermodynamic integration and direct histogram methods. Using weighted residuals allows for higher-order approximations to the PMF in the form of a global spectral method or a finite element method. In addition, the higher degree of continuity provided by spectral and higher-order elements makes weighted residual methods an attractive choice for use in tandem with biasing force methods. As an analysis tool, the weighted residuals framework provides a context for direct comparison of thermodynamic integration and histogram based methods. For validation of the new method, numerical experiments are performed on two systems: a simple double-well and alanine dipeptide in vacuum. Comparisons between the new weighted residual methods, thermodynamic integration, and WHAM are performed. When configuration space is perfectly sampled the high-order weighted residual methods are found to exhibit exponential convergence. For more realistic sampling, the weighted residual methods performed comparably to the other two. However, results suggest that spectral type methods are more robust with respect to parameter choices describing the solution space.

  13. Flow force and torque on submerged bodies in lattice-Boltzmann methods via momentum exchange.

    PubMed

    Giovacchini, Juan P; Ortiz, Omar E

    2015-12-01

    We review the momentum exchange method to compute the flow force and torque on a submerged body in lattice-Boltzmann methods by presenting an alternative derivation. Our derivation does not depend on a particular implementation of the boundary conditions at the body surface, and it relies on general principles. After the introduction of the momentum exchange method in lattice-Boltzmann methods, some formulations were introduced to compute the fluid force on static and moving bodies. These formulations were introduced in a rather intuitive, ad hoc way. In our derivation, we recover the proposals most frequently used, in some cases with minor corrections, gaining some insight into the two most used formulations. At the end, we present some numerical tests to compare different approaches on a well-known benchmark test that support the correctness of the formulas derived.

  14. Note: A rigid piezo motor with large output force and an effective method to reduce sliding friction force

    SciTech Connect

    Guo, Ying; Lu, Qingyou; Hou, Yubin

    2014-05-15

    We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is <10% of the total static friction force, which can help increase output force greatly. The piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope.

  15. The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

    PubMed Central

    Gandyra, Daniel; Gorb, Stanislav; Barthlott, Wilhelm

    2015-01-01

    Summary We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor) to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1) determination of the water adhesion force and the elasticity of individual hairs (trichomes) of the floating fern Salvinia molesta. (2) The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics) was performed. The method also resulted in the measurement of an elastic modulus (Young’s modulus) for individual hairs of 3.0 × 105 N/cm2, which is within the typical range known for human hair. (3) Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods. PMID:25671147

  16. Joint strength measurements of individual fiber-fiber bonds: An atomic force microscopy based method

    NASA Astrophysics Data System (ADS)

    Schmied, Franz J.; Teichert, Christian; Kappel, Lisbeth; Hirn, Ulrich; Schennach, Robert

    2012-07-01

    We are introducing a method to measure tensile strength of individual fiber-fiber bonds within a breaking force range of 0.01 mN-1 mN as well as the energy consumed during breaking. Until now, such a method was not available. Using a conventional atomic force microscope and a specifically designed sample holder, the desired force and the breaking behavior can be analyzed by two different approaches. First, dynamic loading can be applied, where force-versus-distance curves are employed to determine the proportions of elastic energy and energy dissipated in the bond. Second, static loading is utilized to study viscoelastic behavior and calculate viscoelastic energy contributions. To demonstrate the capability of the proposed method, we are presenting results for breaking strength of kraft pulp fiber-fiber bonds in tensile opening mode. The procedure is by no means restricted to cellulose fibers, it has the potential to quantify joint strength of micrometer-sized fibers in general.

  17. The effects of insertion method and force on hand clearance envelopes for rubber hose insertion tasks.

    PubMed

    Grieshaber, D Christian; Armstrong, Thomas J; Chaffin, Don B; Keyserling, W Monroe; Ashton-Miller, James

    2009-04-01

    The aim of this study was to determine how hand space for manual insertion of flexible hoses is affected by insertion method and force. Adequate space is needed during assembly tasks in which workers join parts together with their hands. Hose installations are an example of such a task. Hand clearance envelopes for insertion tasks that involve cylindrical objects, such as a hose, are currently unavailable in the literature. Participants inserted a flexible 25-mm rubber hose onto a stationary flange using simulated methods similar to those observed in field studies of automotive assembly tasks. Markers placed on the back of the hand and wrists were used to measure postures during the insertion task. Hand clearance envelopes for high-force insertions were significantly larger across methods by an average of 15% for both male (p < .05) and female (p < .01) participants. Rocking insertions resulted in the largest hand clearance envelopes compared with other insertion methods. Rocking and twisting the hose resulted in mean increases in the cross-sectional area of the hand clearance envelopes of 35% and 24%, respectively, compared with the straight push. Differences were significant (p < .05) for male and female participants for both bead height conditions. Both required insertion force and method affect hand clearance envelopes during simulated insertions. These methods can be used by engineers to determine if there is adequate clearance for the hand to grip selected objects.

  18. Ground reaction force comparison of controlled resistance methods to isoinertial loading of the squat exercise - biomed 2010.

    PubMed

    Paulus, David C; Reynolds, Michael C; Schilling, Brian K

    2010-01-01

    The ground reaction force during the concentric (raising) portion of the squat exercise was compared to that of isoinertial loading (free weights) for three pneumatically controlled resistance methods: constant resistance, cam force profile, and proportional force control based on velocity. Constant force control showed lower ground reaction forces than isoinertial loading throughout the range of motion (ROM). The cam force profile exhibited slightly greater ground reaction forces than isoinertial loading at 10 and 40% ROM with fifty-percent greater loading at 70% ROM. The proportional force control consistently elicited greater ground reaction force than isoinertial loading, which progressively ranged from twenty to forty percent increase over isoinertial loading except for being approximately equal at 85% ROM. Based on these preliminary results, the proportional control shows the most promise for providing loading that is comparable in magnitude to isoinertial loading. This technology could optimize resistance exercise for sport-specific training or as a countermeasure to atrophy during spaceflight.

  19. Validation of engineering methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.

    1991-01-01

    This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.

  20. Validation of engineering methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.

    1991-01-01

    This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.

  1. A method of improving the dynamic response of 3D force/torque sensors

    NASA Astrophysics Data System (ADS)

    Osypiuk, Rafał; Piskorowski, Jacek; Kubus, Daniel

    2016-02-01

    In the paper attention is drawn to adverse dynamic properties of filters implemented in commercial measurement systems, force/torque sensors, which are increasingly used in industrial robotics. To remedy the problem, it has been proposed to employ a time-variant filter with appropriately modulated parameters, owing to which it is possible to suppress the amplitude of the transient response and, at the same time, to increase the pulsation of damped oscillations; this results in the improvement of dynamic properties in terms of reducing the duration of transients. This property plays a key role in force control and in the fundamental problem of the robot establishing contact with rigid environment. The parametric filters have been verified experimentally and compared with filters available for force/torque sensors manufactured by JR3. The obtained results clearly indicate the advantages of the proposed solution, which may be an interesting alternative to the classic methods of filtration.

  2. Asymmetric Outer Bow Length and Cervical Headgear Force System: 3D Analysis Using Finite Element Method.

    PubMed

    Geramy, Allahyar; Hassanpour, Mehdi; Emadian Razavi, Elham Sadat

    2015-03-01

    This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths. Four 3D finite element method (FEM) models of a cervical headgear attached to the maxillary first molars were designed in SolidWorks 2010 software and transferred to ANSYS Workbench ver. 11 software. Models contained the first molars, their periodontal ligament (PDL), cancellous and cortical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with differences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was calculated trigonometrically using data from a volunteer. The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N) and distal (= 1.008 N) forces and also generated moments (5.044 N.mm). As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. A difference range of 1mm to 15 mm of length in cervical headgear can be considered as a safe length of outer bow shortening in clinical use.

  3. An ultrasonic method for measuring tensile forces in a seven-wire prestressing strand

    NASA Astrophysics Data System (ADS)

    Chen, Roger H. L.; Wissawapaisal, Komwut

    2002-05-01

    Initial tensile forces applied to prestressing strands undergo progressive time-dependent losses. These prestress losses, if unaccounted for, may cause catastrophic failures of prestressed concrete structures. The main objective of this study is to develop a nondestructive evaluation method for measuring prestress forces in the seven-wire prestressing strands which are widely used in various types of prestressed concrete structures. Experimental investigation was conducted by measuring the ultrasonic waves propagating through 1/2 inch-diameter seven-wire strands subjected to different levels of tensile forces. Theoretical analysis was conducted by considering the acoustoelastic effect and the dispersive behavior of a longitudinal transient wave traveling through a long, stressed, circular rod. Results indicate that the velocities of each frequency component of the traveling waves can be related to the tensile force levels in the strand. The stress wave signals were processed using the Wigner-Ville Transform to identify the arrival times of different frequency components. The analytical and experimental results correlate well and high measurement accuracy is observed. The results show a promising progress in the field of nondestructive measurement of tensile forces in the seven-wire steel strands for post-tensioning concrete members.

  4. Effect of a damping force on dust acoustic waves simulated by particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Gao, Dong-Ning; Zhang, Heng; Zhang, Jie; Li, Zhong-Zheng; Duan, Wen-shan

    2017-04-01

    Damping dust acoustic waves described by the Korteweg-de Vries-type (KdV-type) equation and the nonlinear Schrödinger equation-type (quasi-NLSE) have been studied by the particle-in-cell (PIC) simulation method. The KdV-type equation and the quasi-NLSE with dust-neutral collision are analytically obtained by the reductive perturbation method. The PIC simulation methods for dust acoustic waves with damping force are shown. The PIC simulation results are compared with the analytical one. The relationship of the damping coefficient with the collision frequency is obtained. It is found that amplitudes of KdV-type solitary waves and quasienvelope solitary waves with damping force decrease exponentially.

  5. Full-scale solutions to particle-laden flows: Multidirect forcing and immersed boundary method.

    PubMed

    Luo, Kun; Wang, Zeli; Fan, Jianren; Cen, Kefa

    2007-12-01

    Towards getting the full-scale solutions to particle-laden flows, a multidirect forcing technique and immersed boundary method are proposed in the present work. The immersed solid boundary is represented by Lagrangian points and the no-slip condition is efficiently satisfied by exerting multidirect forcing. The hydrodynamic interactions between the stationary or moving solid boundary and the Newtonian fluid are able to be accurately described. This method is simple but efficient which is validated by simulating the flows around a stationary circular disc at different Reynolds numbers and the free sedimentation of a particle. The predicted results agree well with previous experimental and numerical data. When applying this method to study particle sedimentation near a vertical wall, the rotation shifting phenomenon is observed besides the anomalous rolling and the lateral migration.

  6. The effect of acceleration versus displacement methods on steady-state boundary forces

    NASA Technical Reports Server (NTRS)

    Mcghee, D. S.

    1992-01-01

    This study describes the acceleration and displacement methods for use in the recovery of coupled system boundary forces. A simple two degree of freedom system has been used for illustration. The effect of the choice of method for use with indeterminate or over-constrained boundaries has been investigated. It has specifically looked at results from a simple two dimensional beam problem using both methods. Much work has been done on the effect of Craig-Bampton modal truncation system displacements and forces, however, little work has been done on system level modal truncation. The findings of this study indicate that the effect of this system level truncation is significant. This may be particularly true for the 35 Hz system cutoff frequency that is required by the space shuttle. From this study's findings, recommendations for areas of study with space shuttle payload systems are made.

  7. A fast high-order method to calculate wakefield forces in an electron beam

    SciTech Connect

    Qiang, Ji; Mitchell, Chad; Ryne, Robert D.

    2012-03-22

    In this paper we report on a high-order fast method to numerically calculate wakefield forces in an electron beam given a wake function model. This method is based on a Newton-Cotes quadrature rule for integral approximation and an FFT method for discrete summation that results in an O(Nlog(N)) computational cost, where N is the number of grid points. Using the Simpson quadrature rule with an accuracy of O(h4), where h is the grid size, we present numerical calculation of the wakefields from a resonator wake function model and from a one-dimensional coherent synchrotron radiation (CSR) wake model. Besides the fast speed and high numerical accuracy, the calculation using the direct line density instead of the first derivative of the line density avoids numerical filtering of the electron density function for computing the CSR wakefield force. I. INTRODUCTION

  8. Influence of the 3D inverse dynamic method on the joint forces and moments during gait.

    PubMed

    Dumas, R; Nicol, E; Chèze, L

    2007-10-01

    The joint forces and moments are commonly used in gait analysis. They can be computed by four different 3D inverse dynamic methods proposed in the literature, either based on vectors and Euler angles, wrenches and quaternions, homogeneous matrices, or generalized coordinates and forces. In order to analyze the influence of the inverse dynamic method, the joint forces and moments were computed during gait on nine healthy subjects. A ratio was computed between the relative dispersions (due to the method) and the absolute amplitudes of the gait curves. The influence of the inverse dynamic method was negligible at the ankle (2%) but major at the knee and the hip joints (40%). This influence seems to be due to the dynamic computation rather than the kinematic computation. Compared to the influence of the joint center location, the body segment inertial parameter estimation, and more, the influence of the inverse dynamic method is at least of equivalent importance. This point should be confirmed with other subjects, possibly pathologic, and other movements.

  9. Calculation of force fields of chromium, molybdenum and tungsten hexafluorides and dioxodifluorides by means of the Tikchonov regularization method

    NASA Astrophysics Data System (ADS)

    Kochikov, I. V.; Yagola, A. G.; Kuramshina, G. M.; Kovba, V. M.; Pentin, Yu. A.

    Force fields and mean amplitudes of vibration of chromium, molybdenum and tungsten hexafluorides and dioxodifluorides are calculated using Tikchonov's regularization method and are compared with those for oxotetrafluorides.

  10. A Finite-Element Method Model of Soft Tissue Response to Impulsive Acoustic Radiation Force

    PubMed Central

    Palmeri, Mark L.; Sharma, Amy C.; Bouchard, Richard R.; Nightingale, Roger W.; Nightingale, Kathryn R

    2010-01-01

    Several groups are studying acoustic radiation force and its ability to image the mechanical properties of tissue. Acoustic radiation force impulse (ARFI) imaging is one modality using standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation forces in tissue. The dynamic response of tissue is measured via conventional ultrasonic speckle-tracking methods and provides information about the mechanical properties of tissue. A finite-element method (FEM) model has been developed that simulates the dynamic response of tissues, with and without spherical inclusions, to an impulsive acoustic radiation force excitation from a linear array transducer. These FEM models were validated with calibrated phantoms. Shear wave speed, and therefore elasticity, dictates tissue relaxation following ARFI excitation, but Poisson’s ratio and density do not significantly alter tissue relaxation rates. Increased acoustic attenuation in tissue increases the relative amount of tissue displacement in the near field compared with the focal depth, but relaxation rates are not altered. Applications of this model include improving image quality, and distilling material and structural information from tissue’s dynamic response to ARFI excitation. Future work on these models includes incorporation of viscous material properties and modeling the ultrasonic tracking of displaced scatterers. PMID:16382621

  11. Accurate computation of surface stresses and forces with immersed boundary methods

    NASA Astrophysics Data System (ADS)

    Goza, Andres; Liska, Sebastian; Morley, Benjamin; Colonius, Tim

    2016-09-01

    Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is applied as a post-processing procedure, so that the convergence of the velocity field is unaffected. We demonstrate the efficacy of the method by computing stresses and forces that converge to the physical stresses and forces for several test problems.

  12. A Simple Method for Assessing Upper Limb Force-Velocity Profile in Bench Press.

    PubMed

    Rahmani, Abderrahmane; Samozino, Pierre; Morin, Jean-Benoit; Morel, Baptiste

    2017-06-12

    1) to analyze the reliability and validity of a field computation method based on easy-to-measure data to assess the mean force (F̄) and velocity (v̄) produced during a ballistic bench press movement; and 2) to verify that the force-velocity profile (F-v) obtained with multiple loaded trials is accurately described. Twelve participants performed ballistic bench press against various lifted mass from 30 to 70% of their body mass. For each trial, F̄ and v̄ were determined from an accelerometer (sampling rate: 500Hz; reference method) and a simple computation method based on upper limb mass, barbell flight height and push-off distance. These F̄ and v̄ data were used to establish the F-v relationship for each individual and method. A strong to almost perfect reliability was observed between the two trials (ICC>0.90 for F̄ and 0.80 for v̄, CV%<10%) whatever the considered method. The mechanical variables (F̄, v̄) measured with the two methods, and all the variables extrapolated from the F-v relationships were strongly correlated (r(2) > 0.80, p < 0.001). The practical differences between the two methods for the extrapolated mechanical parameters were all <5% indicating "very probably no differences". The present findings suggest that the simple computation method used here providing valid and reliable information on force and velocity produced during ballistic bench press, in line with those observed in laboratory conditions. This simple method is then a practical tool, which necessitates only three simple parameters (upper limb mass, barbell flight height and push-off distance).

  13. A novel measuring method of clamping force for electrostatic chuck in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Kesheng, Wang; Jia, Cheng; Yin, Zhong; Linhong, Ji

    2016-04-01

    Electrostatic chucks are one of the core components of semiconductor devices. As a key index of electrostatic chucks, the clamping force must be controlled within a reasonable range. Therefore, it is essential to accurately measure the clamping force. To reduce the negative factors influencing measurement precision and repeatability, this article presents a novel method to measure the clamping force and we elaborate both the principle and the key procedure. A micro-force probe component is introduced to monitor, adjust, and eliminate the gap between the wafer and the electrostatic chuck. The contact force between the ruby probe and the wafer is selected as an important parameter to characterize de-chucking, and we have found that the moment of de-chucking can be exactly judged. Moreover, this article derives the formula calibrating equivalent action area of backside gas pressure under real working conditions, which can effectively connect the backside gas pressure at the moment of de-chucking and the clamping force. The experiments were then performed on a self-designed measuring platform. The de-chucking mechanism is discussed in light of our analysis of the experimental data. Determination criteria for de-chucking point are summed up. It is found that the relationship between de-chucking pressure and applied voltage conforms well to quadratic equation. Meanwhile, the result reveals that actual de-chucking behavior is much more complicated than the description given in the classical empirical formula. Project supported by No. 02 National Science and Technology Major Project of China (No. 2011ZX02403-004).

  14. Study on Two Methods for Nonlinear Force-Free Extrapolation Based on Semi-Analytical Field

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, H. Q.; Su, J. T.; Song, M. T.

    2011-03-01

    In this paper, two semi-analytical solutions of force-free fields (Low and Lou, Astrophys. J. 352, 343, 1990) have been used to test two nonlinear force-free extrapolation methods. One is the boundary integral equation (BIE) method developed by Yan and Sakurai ( Solar Phys. 195, 89, 2000), and the other is the approximate vertical integration (AVI) method developed by Song et al. ( Astrophys. J. 649, 1084, 2006). Some improvements have been made to the AVI method to avoid the singular points in the process of calculation. It is found that the correlation coefficients between the first semi-analytical field and extrapolated field using the BIE method, and also that obtained by the improved AVI method, are greater than 90% below a height 10 of the 64×64 lower boundary. For the second semi-analytical field, these correlation coefficients are greater than 80% below the same relative height. Although differences between the semi-analytical solutions and the extrapolated fields exist for both the BIE and AVI methods, these two methods can give reliable results for heights of about 15% of the extent of the lower boundary.

  15. [Methods of microorganism immobilization for dynamic atomic-force studies (review)].

    PubMed

    Kuiukina, M S; Korshunova, I O; Rubtsova, E V; Ivshina, I B

    2014-01-01

    Atomic-force microscopy (AFM) is an efficient method for studying the surface ultrastructure and nanomechanical properties of biological objects (including microorganisms). A correctly selected method of microorganism immobilization (that provides a strong attachment of cells on the surface of a biologically inert substrate and the preservation of their native properties) is an important condition of AFM scanning in a liquid medium. Comparative characteristics of methods of microorganism immobilization (that are applied in dynamic AFM studies) are given in the review. Technologies of mechanical retention and chemical binding of cells to a substrate, as well as protein and immunospecific adsorption, are considered.

  16. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7

    PubMed Central

    Kutov, D. C.; Sulimov, V. B.

    2017-01-01

    Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated. PMID:28191015

  17. The fast multipole method and point dipole moment polarizable force fields

    NASA Astrophysics Data System (ADS)

    Coles, Jonathan P.; Masella, Michel

    2015-01-01

    We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of fast multipole method combined with state-of-the-art chemical models in molecular dynamical systems.

  18. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7.

    PubMed

    Sulimov, A V; Kutov, D C; Katkova, E V; Sulimov, V B

    2017-01-01

    Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  19. The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were Afraid To Ask

    PubMed Central

    2014-01-01

    In the host of numerical schemes devised to calculate free energy differences by way of geometric transformations, the adaptive biasing force algorithm has emerged as a promising route to map complex free-energy landscapes. It relies upon the simple concept that as a simulation progresses, a continuously updated biasing force is added to the equations of motion, such that in the long-time limit it yields a Hamiltonian devoid of an average force acting along the transition coordinate of interest. This means that sampling proceeds uniformly on a flat free-energy surface, thus providing reliable free-energy estimates. Much of the appeal of the algorithm to the practitioner is in its physically intuitive underlying ideas and the absence of any requirements for prior knowledge about free-energy landscapes. Since its inception in 2001, the adaptive biasing force scheme has been the subject of considerable attention, from in-depth mathematical analysis of convergence properties to novel developments and extensions. The method has also been successfully applied to many challenging problems in chemistry and biology. In this contribution, the method is presented in a comprehensive, self-contained fashion, discussing with a critical eye its properties, applicability, and inherent limitations, as well as introducing novel extensions. Through free-energy calculations of prototypical molecular systems, many methodological aspects are examined, from stratification strategies to overcoming the so-called hidden barriers in orthogonal space, relevant not only to the adaptive biasing force algorithm but also to other importance-sampling schemes. On the basis of the discussions in this paper, a number of good practices for improving the efficiency and reliability of the computed free-energy differences are proposed. PMID:25247823

  20. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls.

    PubMed

    Haff, G Gregory; Ruben, Ryan P; Lider, Joshua; Twine, Corey; Cormie, Prue

    2015-02-01

    Twelve female division I collegiate volleyball players were recruited to examine the reliability of several methods for calculating the rate of force development (RFD) during the isometric midthigh clean pull. All subjects were familiarized with the isometric midthigh clean pull and participated in regular strength training. Two isometric midthigh clean pulls were performed with 2 minutes rest between each trail. All measures were performed in a custom isometric testing device that included a step-wise adjustable bar and a force plate for measuring ground reaction forces. The RFD during predetermined time zone bands (0-30, 0-50, 0-90, 0-100, 0-150, 0-200, and 0-250 milliseconds) was then calculated by dividing the force at the end of the band by the band's time interval. The peak RFD was then calculated with the use of 2, 5, 10, 20, 30, and 50 milliseconds sampling windows. The average RFD (avgRFD) was calculated by dividing the peak force (PF) by the time to achieve PF. All data were analyzed with the use of intraclass correlation alpha (ICCα) and the coefficient of variation (CV) and 90% confidence intervals. All predetermined RFD time bands were deemed reliable based on an ICCα >0.95 and a CV <4%. Conversely, the avgRFD failed to meet the reliability standards set for this study. Overall, the method used to assess the RFD during an isometric midthigh clean pull impacts the reliability of the measure and predetermined RFD time bands should be used to quantify the RFD.

  1. The adaptive biasing force method: everything you always wanted to know but were afraid to ask.

    PubMed

    Comer, Jeffrey; Gumbart, James C; Hénin, Jérôme; Lelièvre, Tony; Pohorille, Andrew; Chipot, Christophe

    2015-01-22

    In the host of numerical schemes devised to calculate free energy differences by way of geometric transformations, the adaptive biasing force algorithm has emerged as a promising route to map complex free-energy landscapes. It relies upon the simple concept that as a simulation progresses, a continuously updated biasing force is added to the equations of motion, such that in the long-time limit it yields a Hamiltonian devoid of an average force acting along the transition coordinate of interest. This means that sampling proceeds uniformly on a flat free-energy surface, thus providing reliable free-energy estimates. Much of the appeal of the algorithm to the practitioner is in its physically intuitive underlying ideas and the absence of any requirements for prior knowledge about free-energy landscapes. Since its inception in 2001, the adaptive biasing force scheme has been the subject of considerable attention, from in-depth mathematical analysis of convergence properties to novel developments and extensions. The method has also been successfully applied to many challenging problems in chemistry and biology. In this contribution, the method is presented in a comprehensive, self-contained fashion, discussing with a critical eye its properties, applicability, and inherent limitations, as well as introducing novel extensions. Through free-energy calculations of prototypical molecular systems, many methodological aspects are examined, from stratification strategies to overcoming the so-called hidden barriers in orthogonal space, relevant not only to the adaptive biasing force algorithm but also to other importance-sampling schemes. On the basis of the discussions in this paper, a number of good practices for improving the efficiency and reliability of the computed free-energy differences are proposed.

  2. Efficient evaluation of Casimir force in z-invariant geometries by integral equation methods

    SciTech Connect

    Xiong, Jie L.; Chew, Weng Cho

    2009-10-12

    We introduce an efficient and accurate way to evaluate the Casimir force [H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)] between arbitrary z-invariant structures using integral equation method. It casts the evaluation of mean Maxwell stress tensor to a series of traditional two-dimensional electromagnetic scattering problems. The number of times that the scattering problem needs to be solved is independent of the number of unknowns.

  3. A new Doppler method of assessing left ventricular ejection force in chronic congestive heart failure.

    PubMed

    Isaaz, K; Ethevenot, G; Admant, P; Brembilla, B; Pernot, C

    1989-07-01

    A noninvasive method using Doppler echocardiography was developed to determine the force exerted by the left ventricle in accelerating the blood into the aorta. The value of this new Doppler ejection index in the assessment of left ventricular (LV) performance was tested in 36 patients with chronic congestive heart disease undergoing cardiac catheterization and in 11 age-matched normal control subjects. The 36 patients were subgrouped into 3 groups based on angiographic ejection fraction (LV ejection fraction greater than 60, 41 to 60 and less than or equal to 40%). According to Newton's second law of motion (force = mass X acceleration), the LV ejection force was derived from the product of the mass of blood ejected during the acceleration time with the mean acceleration undergone during that time. In patients with LV ejection fraction less than or equal to 40%, LV ejection force, peak aortic velocity and mean acceleration were severely depressed when compared with the other groups (p less than 0.001). In patients with LV ejection fraction of 41 to 60%, LV ejection force was significantly reduced (22 +/- 3 kdynes) when compared with normal subjects (29 +/- 5 kdynes, p = 0.002) and with patients with LV ejection fraction greater than 60% (29 +/- 7 kdynes, p = 0.009); peak velocity and mean acceleration did not differ between these 3 groups. The LV ejection force showed a good linear correlation with LV ejection fraction (r = 0.86) and a better power fit (r = 0.91). Peak aortic blood velocity and mean acceleration showed less good linear correlations with LV ejection fraction (r = 0.73 and r = 0.66, respectively). The mass of blood ejected during the acceleration time also showed a weak linear correlation with LV ejection fraction (r = 0.64). An LV ejection force less than 20 kdynes was associated with a depressed LV performance (LV ejection fraction less than 50%) with 91% sensitivity and 90% specificity. Thus, these findings suggest that LV ejection force is a new

  4. An individual and dynamic Body Segment Inertial Parameter validation method using ground reaction forces.

    PubMed

    Hansen, Clint; Venture, Gentiane; Rezzoug, Nasser; Gorce, Philippe; Isableu, Brice

    2014-05-07

    Over the last decades a variety of research has been conducted with the goal to improve the Body Segment Inertial Parameters (BSIP) estimations but to our knowledge a real validation has never been completely successful, because no ground truth is available. The aim of this paper is to propose a validation method for a BSIP identification method (IM) and to confirm the results by comparing them with recalculated contact forces using inverse dynamics to those obtained by a force plate. Furthermore, the results are compared with the recently proposed estimation method by Dumas et al. (2007). Additionally, the results are cross validated with a high velocity overarm throwing movement. Throughout conditions higher correlations, smaller metrics and smaller RMSE can be found for the proposed BSIP estimation (IM) which shows its advantage compared to recently proposed methods as of Dumas et al. (2007). The purpose of the paper is to validate an already proposed method and to show that this method can be of significant advantage compared to conventional methods.

  5. Daniell method for power spectral density estimation in atomic force microscopy

    SciTech Connect

    Labuda, Aleksander

    2016-03-15

    An alternative method for power spectral density (PSD) estimation—the Daniell method—is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion—the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum.

  6. Atomic Force Microscope Cantilever Flexural Stiffness Calibration: Toward a Standard Traceable Method

    PubMed Central

    Gates, Richard S.; Reitsma, Mark G.; Kramar, John A.; Pratt, Jon R.

    2011-01-01

    The evolution of the atomic force microscope into a useful tool for measuring mechanical properties of surfaces at the nanoscale has spurred the need for more precise and accurate methods for calibrating the spring constants of test cantilevers. Groups within international standards organizations such as the International Organization for Standardization and the Versailles Project on Advanced Materials and Standards (VAMAS) are conducting studies to determine which methods are best suited for these calibrations and to try to improve the reproducibility and accuracy of these measurements among different laboratories. This paper expands on a recent mini round robin within VAMAS Technical Working Area 29 to measure the spring constant of a single batch of triangular silicon nitride cantilevers sent to three international collaborators. Calibration techniques included reference cantilever, added mass, and two forms of thermal methods. Results are compared to measurements traceable to the International System of Units provided by an electrostatic force balance. A series of guidelines are also discussed for procedures that can improve the running of round robins in atomic force microscopy. PMID:26989594

  7. A new method for calculation of acting forces on a deformable droplet in shear flow

    NASA Astrophysics Data System (ADS)

    Suh, Youngho; Lee, Changhoon

    2011-11-01

    A numerical method for calculating drag and lift acting on a deformable droplet in linear shear flow is presented. In this study, a level set approach is adopted to handle deformation and break-off of the interfaces. In order to determine the acting force on a droplet in shear flow field, we adopt feedback forces which can maintain the droplet at a fixed position with efficient handling of deformation. The presented method is applied for numerical simulation of spherical, deformed, and oscillating droplets in uniform flow, and the numerical results are favorably compared with the data reported in the literature [Dandy and Leal, JFM (1989)], [Feng and Beard, J. Atmos. Sci. (1991)]. The computation demonstrates that the shape of droplet deforms from sphere to oblate ellipsoid by increasing the Reynolds and Weber numbers. For large inertial effects at high Reynolds number, the droplet eventually breaks up into smaller droplets. Based on the numerical results, drag and lift forces acting on a droplet are observed to strongly depend on the deformation. Also, the present method is proven to be applicable to a three- dimensional deformation of droplet in the shear flow, which cannot be properly analyzed by the previous studies. Authors acknowledge support from ERC program sponsored by National Research Foundation of Korea.

  8. Force-Field Based Quasi-Chemical Method for Rapid Evaluation of Binary Phase Diagrams.

    PubMed

    Sweere, Augustinus J M; Fraaije, Johannes G E M

    2015-11-05

    We present the Pair Configurations to Molecular Activity Coefficients (PAC-MAC) method. The method is based on the pair sampling technique of Blanco (Fan, C. F.; Olafson, B. D.; Blanco, M.; Hsu, S. L. Application of Molecular Simulation to Derive Phase Diagrams of Binary Mixtures. Macromolecules 1992, 25, 3667-3676) with an extension that takes the packing of the molecules into account by a free energy model. The intermolecular energy is calculated using classical force fields. PAC-MAC is able to predict activity coefficients and corresponding vapor-liquid equilibrium diagrams at least 4 orders of magnitude faster than molecular simulations. The accuracy of the PAC-MAC method is tested by comparing the results with experimental data and with the results of the COSMO-SAC model (Lin, S.-T.; Sandler, S. I. A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model. Ind. Eng. Chem. Res. 2002, 41, 899-913). PAC-MAC (using the OPLS-aa force field) is shown to be comparable in accuracy to COSMO-SAC, at the considerable advantage that PAC-MAC in principle does not require quantum calculation, provided proper force fields to be available.

  9. Comparison of Two Methods for the Generation of Spatially Modulated Ultrasound Radiation Force

    PubMed Central

    Elegbe, Etana C.; Menon, Manoj G.; McAleavey, Stephen A.

    2012-01-01

    Spatially modulated ultrasound radiation force (SMURF) imaging is an elastographic technique that involves generating a radiation force beam with a lateral intensity variation of a defined spatial frequency. This results in a shear wave of known wavelength. By using the displacements induced by the shear wave and standard Doppler or speckle-tracking methods, the shear wave frequency, and thus material shear modulus, is estimated. In addition to generating a pushing beam pattern with a specified lateral intensity variation, it is generally desirable to induce larger displacements so that the displacement data signal-to-noise ratio is higher. We provide an analysis of two beam forming methods for generating SMURF in an elastic material: the focal Fraunhofer and intersecting plane wave methods. Both techniques generate beams with a defined spatial frequency. However, as a result of the trade-offs associated with each technique, the peak acoustic intensity outputs in the region of interest differs for the same combinations of parameters (e.g., the focal depth, the width of the area of interest, and ultrasonic attenuation coefficient). Assuming limited transducer drive voltage, we provide a decision plot to determine which of the two techniques yields the greater pushing force for a specific configuration. PMID:21768019

  10. A method to study precision grip control in viscoelastic force fields using a robotic gripper.

    PubMed

    Lambercy, Olivier; Metzger, Jean-Claude; Santello, Marco; Gassert, Roger

    2015-01-01

    Instrumented objects and multipurpose haptic displays have commonly been used to investigate sensorimotor control of grasping and manipulation. A major limitation of these devices, however, is the extent to which the experimenter can vary the interaction dynamics to fully probe sensorimotor control mechanisms. We propose a novel method to study precision grip control using a grounded robotic gripper with two moving, mechanically coupled finger pads instrumented with force sensors. The device is capable of stably rendering virtual mechanical properties with a wide dynamic range of achievable impedances. Eight viscoelastic force fields with different combinations of stiffness and damping parameters were implemented, and tested on eight healthy subjects performing 30 consecutive repetitions of a grasp, hold, and release task with time and position constraints. Rates of thumb and finger force were found to be highly correlated (r>0.9) during grasping, revealing that, despite the mechanical coupling of the two finger pads, subjects performed grasping movements in a physiological fashion. Subjects quickly adapted to the virtual dynamics (within seven trials), but, depending on the presented force field condition, used different control strategies to correctly perform the task. The proof of principle presented in this paper underscores the potential of such a one-degree-of-freedom robotic gripper to study neural control of grasping, and to provide novel insights on sensorimotor control mechanisms.

  11. Forcing the statistical regionalization method WETTREG with large scale models of different resolution: A sensitivity study

    NASA Astrophysics Data System (ADS)

    Spekat, A.; Baumgart, S.; Kreienkamp, F.; Enke, W.

    2010-09-01

    The statistical regionalization method WETTREG is making use of the assumption that future climate changes are linked to changes in large scale atmospheric patterns. The frequency distributions of those patterns and their time-dependency are identified in the output fields of dynamical climate models and applied to force WETTREG. Thus, the magnitude and the time evolution of high-resolution climate signals for time horizons far into the 21st century can be computed. The model results employed to force WETTREG include the GCMS ECHAM5C, HadCM3C and CNRM. Additionally results from the dynamical regional models CLM, DMI, HadRM, RACMO and REMO, nested into one or more of these global models, are used in their pattern-generating capacity to force WETTREG. The study yield insight concerning the forcing-dependent sensitivity of WETTREG as well as the bandwidth of climate change signals. Recent results for the German State of Hesse will be presented in an intercomparison study.

  12. Artificial Force Induced Reaction Method for Systematic Determination of Complex Reaction Mechanisms.

    PubMed

    Sameera, W M C; Kumar Sharma, Akhilesh; Maeda, Satoshi; Morokuma, Keiji

    2016-10-01

    Nowadays, computational studies are very important for the elucidation of reaction mechanisms and selectivity of complex reactions. However, traditional computational methods usually require an estimated reaction path, mainly driven by limited experimental implications, intuition, and assumptions of stationary points. However, the artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy can be used for unbiased and automatic reaction path searches for complex reactions. In this account, we highlight applications of the AFIR method to a variety of reactions (organic, organometallic, enzymatic, and photochemical) of complex molecular systems. In addition, the AFIR method has been successfully used to rationalise the origin of stereo- and regioselectivity. The AFIR method can be applied from small to large molecular systems, and will be a very useful tool for the study of complex molecular problems in many areas of chemistry, biology, and material sciences.

  13. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces.

    PubMed

    Maeda, Satoshi; Harabuchi, Yu; Takagi, Makito; Taketsugu, Tetsuya; Morokuma, Keiji

    2016-10-01

    In this account, a technical overview of the artificial force induced reaction (AFIR) method is presented. The AFIR method is one of the automated reaction-path search methods developed by the authors, and has been applied extensively to a variety of chemical reactions, such as organocatalysis, organometallic catalysis, and photoreactions. There are two modes in the AFIR method, i.e., a multicomponent mode and a single-component mode. The former has been applied to bimolecular and multicomponent reactions and the latter to unimolecular isomerization and dissociation reactions. Five numerical examples are presented for an Aldol reaction, a Claisen rearrangement, a Co-catalyzed hydroformylation, a fullerene structure search, and a nonradiative decay path search in an electronically excited naphthalene molecule. Finally, possible applications of the AFIR method are discussed. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Indirect (source-free) integration method. II. Self-force consistent radial fall

    NASA Astrophysics Data System (ADS)

    Ritter, Patxi; Aoudia, Sofiane; Spallicci, Alessandro D. A. M.; Cordier, Stéphane

    2016-12-01

    We apply our method of indirect integration, described in Part I, at fourth order, to the radial fall affected by the self-force (SF). The Mode-Sum regularization is performed in the Regge-Wheeler gauge using the equivalence with the harmonic gauge for this orbit. We consider also the motion subjected to a self-consistent and iterative correction determined by the SF through osculating stretches of geodesics. The convergence of the results confirms the validity of the integration method. This work complements and justifies the analysis and the results appeared in [Int. J. Geom. Meth. Mod. Phys. 11 (2014) 1450090].

  15. Exact solutions to the KDV-Burgers equation with forcing term using Tanh-Coth method

    NASA Astrophysics Data System (ADS)

    Chukkol, Yusuf Buba; Mohamad, Mohd Nor; Muminov, Mukhiddin I.

    2017-08-01

    In this paper, tanh-coth method was applied to derive the exact travelling wave solutions to the Korteweg-de-Vries and Burgers equation with forcing term(fKDVB). Solutions that are linear combination of solitary and shock wave solutions, and periodic wave solutions are obtained, by reducing the equation to the homogeneous type using a wave transformation. The method with the help of symbolic computation tool box provides a systematic way of solving many physical models involving nonlinear partial differential equations in mathematical physics.

  16. Effective method to measure back emfs and their harmonics of permanent magnet ac motors

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Bi, C.; Lin, S.

    2006-04-01

    As the HDD spindle motors become smaller and smaller, the back electromotive forces (emfs) measurement faces the new challenges due to their low inertias and small sizes. This article proposes a novel method to measure the back emfs and their harmonic components of PM ac motors only through a freewheeling procedure. To eliminate the influence of the freewheeling deceleration, the phase flux linkages are employed to obtain the back emf amplitudes and phases of the fundamental and harmonic components by using finite Fourier series analysis. The proposed method makes the freewheeling measurement of the back emfs and their harmonics accurate and fast. It is especially useful for the low inertia PM ac motors, such as spindle motors for small form factor HDDs.

  17. A resolution study for electrostatic force microscopy on bimetallic samples using the boundary element method.

    PubMed

    Shen, Yongxing; Lee, Minhwan; Lee, Wonyoung; Barnett, David M; Pinsky, Peter M; Prinz, Friedrich B

    2008-01-23

    Electrostatic force microscopy (EFM) is a special design of non-contact atomic force microscopy used for detecting electrostatic interactions between the probe tip and the sample. Its resolution is limited by the finite probe size and the long-range characteristics of electrostatic forces. Therefore, quantitative analysis is crucial to understanding the relationship between the actual local surface potential distribution and the quantities obtained from EFM measurements. To study EFM measurements on bimetallic samples with surface potential inhomogeneities as a special case, we have simulated such measurements using the boundary element method and calculated the force component and force gradient component that would be measured by amplitude modulation (AM) EFM and frequency modulation (FM) EFM, respectively. Such analyses have been performed for inhomogeneities of various shapes and sizes, for different tip-sample separations and tip geometries, for different applied voltages, and for different media (e.g., vacuum or water) in which the experiment is performed. For a sample with a surface potential discontinuity, the FM-EFM resolution expression agrees with the literature; however, the simulation for AM-EFM suggests the existence of an optimal tip radius of curvature in terms of resolution. On the other hand, for samples with strip- and disk-shaped surface potential inhomogeneities, we have obtained quantitative expressions for the detectability size requirements as a function of experimental conditions for both AM- and FM-EFMs, which suggest that a larger tip radius of curvature is moderately favored for detecting the presence of such inhomogeneities.

  18. Influence of model complexity and problem formulation on the forces in the knee calculated using optimization methods

    PubMed Central

    2013-01-01

    Background Predictions of the forces transmitted by the redundant force-bearing structures in the knee are often performed using optimization methods considering only moment equipollence as a result of simplified knee modeling without ligament contributions. The current study aimed to investigate the influence of model complexity (with or without ligaments), problem formulation (moment equipollence with or without force equipollence) and optimization criteria on the prediction of the forces transmitted by the force-bearing structures in the knee. Methods Ten healthy young male adults walked in a gait laboratory while their kinematic and ground reaction forces were measured simultaneously. A validated 3D musculoskeletal model of the locomotor system with a knee model that included muscles, ligaments and articular surfaces was used to calculate the joint resultant forces and moments, and subsequently the forces transmitted in the considered force-bearing structures via optimization methods. Three problem formulations with eight optimization criteria were evaluated. Results Among the three problem formulations, simultaneous consideration of moment and force equipollence for the knee model with ligaments and articular contacts predicted contact forces (first peak: 3.3-3.5 BW; second peak: 3.2-4.2 BW; swing: 0.3 BW) that were closest to previously reported theoretical values (2.0-4.0 BW) and in vivo data telemetered from older adults with total knee replacements (about 2.8 BW during stance; 0.5 BW during swing). Simultaneous consideration of moment and force equipollence also predicted more physiological ligament forces (< 1.0 BW), which appeared to be independent of the objective functions used. Without considering force equipollence, the calculated contact forces varied from 1.0 to 4.5 BW and were as large as 2.5 BW during swing phase; the calculated ACL forces ranged from 1 BW to 3.7 BW, and those of the PCL from 3 BW to 7 BW. Conclusions Model complexity and problem

  19. Alternative method to control radiative vortex forces in a magneto-optical trap

    SciTech Connect

    Kiersnowski, K.; Kawalec, T.; Dohnalik, T.

    2006-06-15

    We present an experimental and theoretical study of controlling the atomic spatial distributions in a magneto-optical trap (MOT). With a diaphragm we can vary the waist and power of one of the cooling laser beams and we can change parameters of large-diameter, parallelogram-shaped atomic orbits. We show that the radiative force generated by the repumping MOT laser has to be taken into consideration. Computer simulations of atomic trajectories explain the observed spatial structures, and we employ these simulations to present potential applications of controlling the diaphragm diameter as a function of time. A potential use of controlled vortex forces seems to have a great significance in recently presented important new methods to investigate cold atom collisions in the MOT, which were recently published.

  20. A direct micropipette-based calibration method for atomic force microscope cantilevers

    PubMed Central

    Liu, Baoyu; Yu, Yan; Yao, Da-Kang; Shao, Jin-Yu

    2009-01-01

    In this report, we describe a direct method for calibrating atomic force microscope (AFM) cantilevers with the micropipette aspiration technique (MAT). A closely fitting polystyrene bead inside a micropipette is driven by precisely controlled hydrostatic pressures to apply known loads on the sharp tip of AFM cantilevers, thus providing a calibration at the most functionally relevant position. The new method is capable of calibrating cantilevers with spring constants ranging from 0.01 to hundreds of newtons per meter. Under appropriate loading conditions, this new method yields measurement accuracy and precision both within 10%, with higher performance for softer cantilevers. Furthermore, this method may greatly enhance the accuracy and precision of calibration for colloidal probes. PMID:19566228

  1. A rate adaptive control method for Improving the imaging speed of atomic force microscopy.

    PubMed

    Wang, Yanyan; Wan, Jiahuan; Hu, Xiaodong; Xu, Linyan; Wu, Sen; Hu, Xiaotang

    2015-08-01

    A simple rate adaptive control method is proposed to improve the imaging speed of the atomic force microscope (AFM) in the paper. Conventionally, the probe implemented on the AFM scans the sample surface at a constant rate, resulting in low time efficiency. Numerous attempts have been made to realize high-speed AFMs, while little efforts are put into changing the constant-rate scanning. Here we report a rate adaptive control method based on variable-rate scanning. The method automatically sets the imaging speed for the x scanner through the analysis of the tracking errors in the z direction at each scanning point, thus improving the dynamic tracking performance of the z scanner. The development and functioning of the rate adaptive method are demonstrated, as well as how the approach significantly achieves faster scans and a higher resolution AFM imaging.

  2. Digital phase-shifting atomic force microscope Moiré method

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Ming; Chen, Lien-Wen

    2005-04-01

    In this study, the digital atomic force microscope (AFM) Moiré method with phase-shifting technology is established to measure the in-plane displacement and strain fields. The Moiré pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by two-dimensional wavelet transformation to obtain the clear interference Moiré patterns. The four-step phase-shifting method is realized by translating the phase of the virtual reference grating from 0 to 2π. The principle of the digital AFM Moiré method and the phase-shifting technology are described in detail. Experimental results show that this method is convenient to use and efficient in realizing the microscale measurement.

  3. Magnetic Forces Simulation of Bulk HTS over Permanent Magnetic Railway with Numerical Method

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Zhuang, Shujun

    2012-10-01

    Magnetic levitation forces of bulk high temperature superconductor (HTS) above two types permanent magnet railway (PMR) is simulated using finite element method (FEM). The models are formulated by H-formulation and resolving codes is developed using Finite Element Program Generator (FEPG). The E- J power law is used to describe the electrical field vs. current density nonlinear characteristic of HTS. The applied magnetic fields induced by the PMR are calculated by the standard analysis method with the equivalent surface current model. By the method, the calculation formulation of magnetic fields generated by Halbach PMR and symmetrical PMR is derived respectively. The simulation results show that the finite element dynamic mesh rebuilding problem of HTS magnetic levitation transportation system comprised of bulk HTS and PMR can be easily avoided by the methods.

  4. A direct micropipette-based calibration method for atomic force microscope cantilevers.

    PubMed

    Liu, Baoyu; Yu, Yan; Yao, Da-Kang; Shao, Jin-Yu

    2009-06-01

    In this report, we describe a direct method for calibrating atomic force microscope (AFM) cantilevers with the micropipette aspiration technique (MAT). A closely fitting polystyrene bead inside a micropipette is driven by precisely controlled hydrostatic pressures to apply known loads on the sharp tip of AFM cantilevers, thus providing a calibration at the most functionally relevant position. The new method is capable of calibrating cantilevers with spring constants ranging from 0.01 to hundreds of newtons per meter. Under appropriate loading conditions, this new method yields measurement accuracy and precision both within 10%, with higher performance for softer cantilevers. Furthermore, this method may greatly enhance the accuracy and precision of calibration for colloidal probes.

  5. A method for embedding circular force-free flux ropes in potential magnetic fields

    SciTech Connect

    Titov, V. S.; Török, T.; Mikic, Z.; Linker, J. A.

    2014-08-01

    We propose a method for constructing approximate force-free equilibria in pre-eruptive configurations in which a thin force-free flux rope is embedded into a locally bipolar-type potential magnetic field. The flux rope is assumed to have a circular-arc axis, a circular cross-section, and electric current that is either concentrated in a thin layer at the boundary of the rope or smoothly distributed across it with a maximum of the current density at the center. The entire solution is described in terms of the magnetic vector potential in order to facilitate the implementation of the method in numerical magnetohydrodynamic (MHD) codes that evolve the vector potential rather than the magnetic field itself. The parameters of the flux rope can be chosen so that its subsequent MHD relaxation under photospheric line-tied boundary conditions leads to nearly exact numerical equilibria. To show the capabilities of our method, we apply it to several cases with different ambient magnetic fields and internal flux-rope structures. These examples demonstrate that the proposed method is a useful tool for initializing data-driven simulations of solar eruptions.

  6. A novel method to calculate the mechanical properties of cancer cells based on atomic force microscopy.

    PubMed

    Zhang, Tianbiao; Zhao, Ying; Tong, Zhaoxue; Guan, Yifu

    2016-01-01

    Mechanical properties, as the inherent characteristics of cells, play a critical role in many essential physiological processes, including cell differentiation, migration, and growth. The mechanical properties of cells are one of the criteria that help to determine whether the tissue contains lesions at the single cell level, and it is very important for the early prevention and accurate diagnosis of diseases. Atomic force microscopy (AFM) makes it possible to measure the mechanical properties at single cell level in physiological state. This paper presents a novel method to calculate the mechanical properties of cancer cells more accurately through Atomic force microscopy. A new induced equation of Hertz's model, called differential Hertz's model, has been proposed to calculate the mechanical properties of cancer cells. Moreover, the substrate effect has also been effectively reduced through comparing the calculated mechanical properties of cell at different cell surface areas. The results indicate that the method utilized to calculate the mechanical properties of cells can effectively eliminate the errors in calculation, caused by the thermal drift of AFM system and the substrate effect, and thus improve the calculation accuracy. The mechanical properties calculated by our method in this study are closer to the actual value. Thus, this method shows potential for use in establishing a standard library of Young's modulus.

  7. Perspectives on the simulation of protein–surface interactions using empirical force field methods

    PubMed Central

    Latour, Robert A.

    2014-01-01

    Protein–surface interactions are of fundamental importance for a broad range of applications in the fields of biomaterials and biotechnology. Present experimental methods are limited in their ability to provide a comprehensive depiction of these interactions at the atomistic level. In contrast, empirical force field based simulation methods inherently provide the ability to predict and visualize protein–surface interactions with full atomistic detail. These methods, however, must be carefully developed, validated, and properly applied before confidence can be placed in results from the simulations. In this perspectives paper, I provide an overview of the critical aspects that I consider being of greatest importance for the development of these methods, with a focus on the research that my combined experimental and molecular simulation groups have conducted over the past decade to address these issues. These critical issues include the tuning of interfacial force field parameters to accurately represent the thermodynamics of interfacial behavior, adequate sampling of these types of complex molecular systems to generate results that can be comparable with experimental data, and the generation of experimental data that can be used for simulation results evaluation and validation. PMID:25028242

  8. A method for atomic force microscopy cantilever stiffness calibration under heavy fluid loading.

    PubMed

    Kennedy, Scott J; Cole, Daniel G; Clark, Robert L

    2009-12-01

    This work presents a method for force calibration of rectangular atomic force microscopy (AFM) microcantilevers under heavy fluid loading. Theoretical modeling of the thermal response of microcantilevers is discussed including a fluid-structure interaction model of the cantilever-fluid system that incorporates the results of the fluctuation-dissipation theorem. This model is curve fit to the measured thermal response of a cantilever in de-ionized water and a cost function is used to quantify the difference between the theoretical model and measured data. The curve fit is performed in a way that restricts the search space to parameters that reflect heavy fluid loading conditions. The resulting fitting parameters are used to calibrate the cantilever. For comparison, cantilevers are calibrated using Sader's method in air and the thermal noise method in both air and water. For a set of eight cantilevers ranging in stiffness from 0.050 to 5.8 N/m, the maximum difference between Sader's calibration performed in air and the new method performed in water was 9.4%. A set of three cantilevers that violate the aspect ratio assumption associated with the fluid loading model (length-to-width ratios less than 3.5) ranged in stiffness from 0.85 to 4.7 N/m and yielded differences as high as 17.8%.

  9. Measure and characterization of lameness in gestating sows using force plate, kinematic, and accelerometer methods.

    PubMed

    Conte, S; Bergeron, R; Gonyou, H; Brown, J; Rioja-Lang, F C; Connor, L; Devillers, N

    2014-12-01

    pair of legs and weight shifting are good indicators of lameness. Multivariate analysis on fore and hind legs showed independency between variables related to animals in movement (measures from kinematics) and variables related to static animals (measures from the force plate and accelerometers). Therefore, both static and dynamic methods need to be used to detect various lame sows.

  10. Animal models of post-ischemic forced use rehabilitation: methods, considerations, and limitations

    PubMed Central

    2013-01-01

    Many survivors of stroke experience arm impairments, which can severely impact their quality of life. Forcing use of the impaired arm appears to improve functional recovery in post-stroke hemiplegic patients, however the mechanisms underlying improved recovery remain unclear. Animal models of post-stroke rehabilitation could prove critical to investigating such mechanisms, however modeling forced use in animals has proven challenging. Potential problems associated with reported experimental models include variability between stroke methods, rehabilitation paradigms, and reported outcome measures. Herein, we provide an overview of commonly used stroke models, including advantages and disadvantages of each with respect to studying rehabilitation. We then review various forced use rehabilitation paradigms, and highlight potential difficulties and translational problems. Lastly, we discuss the variety of functional outcome measures described by experimental researchers. To conclude, we outline ongoing challenges faced by researchers, and the importance of translational communication. Many stroke patients rely critically on rehabilitation of post-stroke impairments, and continued effort toward progression of rehabilitative techniques is warranted to ensure best possible treatment of the devastating effects of stroke. PMID:23343500

  11. Methods for reduction of cohesive forces between carrier and drug in DPI formulation.

    PubMed

    Desai, Swapnil S; Aher, Abhijeet A; Kadaskar, Preeti T

    2013-11-01

    Dry powder inhaler (DPI) has become a well accepted drug delivery for pulmonary system to treat many related diseases including symptomatic and life threatening diseases. Successful delivery of dry powder to the lung requires careful consideration of powder production process, formulation and inhaler device. The formulation of DPI mostly comprises of lactose as a carrier for drug delivery. In DPI formulation, particulate interactions within the formulation govern both the drug dissociation from carrier particles and the disaggregation of drug into primary particles with a capacity to penetrate deep into lung. Two contradictory requirements must be fulfilled for this type of dry powder formulation. On one hand, adhesion between carrier and drug must be sufficient for the blend drug/carrier to be stable. On the other hand, adhesion drug/carrier has to be weak enough to enable the release of drug from carrier during patient inhalation. Thus the carrier use restricted due to detachment problem. Different methods are proposed to reduce the cohesive forces between drug and carrier to desired level. Various studies conducted for understanding the mechanism of deposition into lungs and making formulation with optimum carrier drug cohesive force. This review provides information on various processes involved in reducing the cohesive forces between drug and carrier, to a required level.

  12. Temperature rise, sea level rise and increased radiative forcing - an application of cointegration methods

    NASA Astrophysics Data System (ADS)

    Schmith, Torben; Thejll, Peter; Johansen, Søren

    2016-04-01

    We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.

  13. Animal models of post-ischemic forced use rehabilitation: methods, considerations, and limitations.

    PubMed

    Livingston-Thomas, Jessica M; Tasker, R Andrew

    2013-01-23

    Many survivors of stroke experience arm impairments, which can severely impact their quality of life. Forcing use of the impaired arm appears to improve functional recovery in post-stroke hemiplegic patients, however the mechanisms underlying improved recovery remain unclear. Animal models of post-stroke rehabilitation could prove critical to investigating such mechanisms, however modeling forced use in animals has proven challenging. Potential problems associated with reported experimental models include variability between stroke methods, rehabilitation paradigms, and reported outcome measures. Herein, we provide an overview of commonly used stroke models, including advantages and disadvantages of each with respect to studying rehabilitation. We then review various forced use rehabilitation paradigms, and highlight potential difficulties and translational problems. Lastly, we discuss the variety of functional outcome measures described by experimental researchers. To conclude, we outline ongoing challenges faced by researchers, and the importance of translational communication. Many stroke patients rely critically on rehabilitation of post-stroke impairments, and continued effort toward progression of rehabilitative techniques is warranted to ensure best possible treatment of the devastating effects of stroke.

  14. Dual-Force ISOMAP: A New Relevance Feedback Method for Medical Image Retrieval

    PubMed Central

    Shen, Hualei; Tao, Dacheng; Ma, Dianfu

    2013-01-01

    With great potential for assisting radiological image interpretation and decision making, content-based image retrieval in the medical domain has become a hot topic in recent years. Many methods to enhance the performance of content-based medical image retrieval have been proposed, among which the relevance feedback (RF) scheme is one of the most promising. Given user feedback information, RF algorithms interactively learn a user’s preferences to bridge the “semantic gap” between low-level computerized visual features and high-level human semantic perception and thus improve retrieval performance. However, most existing RF algorithms perform in the original high-dimensional feature space and ignore the manifold structure of the low-level visual features of images. In this paper, we propose a new method, termed dual-force ISOMAP (DFISOMAP), for content-based medical image retrieval. Under the assumption that medical images lie on a low-dimensional manifold embedded in a high-dimensional ambient space, DFISOMAP operates in the following three stages. First, the geometric structure of positive examples in the learned low-dimensional embedding is preserved according to the isometric feature mapping (ISOMAP) criterion. To precisely model the geometric structure, a reconstruction error constraint is also added. Second, the average distance between positive and negative examples is maximized to separate them; this margin maximization acts as a force that pushes negative examples far away from positive examples. Finally, the similarity propagation technique is utilized to provide negative examples with another force that will pull them back into the negative sample set. We evaluate the proposed method on a subset of the IRMA medical image dataset with a RF-based medical image retrieval framework. Experimental results show that DFISOMAP outperforms popular approaches for content-based medical image retrieval in terms of accuracy and stability. PMID:24391891

  15. Electrostatic force microscopy as a broadly applicable method for characterizing pyroelectric materials.

    PubMed

    Martin-Olmos, Cristina; Stieg, Adam Z; Gimzewski, James K

    2012-06-15

    A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices.

  16. A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy.

    PubMed

    Santos, Sergio; Guang, Li; Souier, Tewfik; Gadelrab, Karim; Chiesa, Matteo; Thomson, Neil H

    2012-04-01

    We provide a method to characterize the tip radius of an atomic force microscopy in situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the smaller the value of free amplitude required to observe a transition, the sharper the tip. This general behavior is remarkably independent of the properties of the sample and cantilever characteristics and shows the strong dependence of the transitions on the tip radius. The main advantage of this method is rapid in situ characterization. Rapid in situ characterization enables one to continuously monitor the tip size during experiments. Further, we show how to reproducibly shape the tip from a given initial size to any chosen larger size. This approach combined with the in situ tip size monitoring enables quantitative comparison of materials measurements between samples. These methods are set to allow quantitative data acquisition and make direct data comparison readily available in the community.

  17. In situ calibrating optical tweezers with sinusoidal-wave drag force method

    NASA Astrophysics Data System (ADS)

    Li, Di; Zhou, Jin-Hua; Hu, Xin-Yao; Zhong, Min-Cheng; Gong, Lei; Wang, Zi-Qiang; Wang, Hao-Wei; Li, Yin-Mei

    2015-11-01

    We introduce a corrected sinusoidal-wave drag force method (SDFM) into optical tweezers to calibrate the trapping stiffness of the optical trap and conversion factor (CF) of photodetectors. First, the theoretical analysis and experimental result demonstrate that the correction of SDFM is necessary, especially the error of no correction is up to 11.25% for a bead of 5 μm in diameter. Second, the simulation results demonstrate that the SDFM has a better performance in the calibration of optical tweezers than the triangular-wave drag force method (TDFM) and power spectrum density method (PSDM) at the same signal-to-noise ratio or trapping stiffness. Third, in experiments, the experimental standard deviations of calibration of trapping stiffness and CF with the SDFM are about less than 50% of TDFM and PSDM especially at low laser power. Finally, the experiments of stretching DNA verify that the in situ calibration with the SDFM improves the measurement stability and accuracy. Project supported by the National Natural Science Foundation of China (Grant Nos. 11302220, 11374292, and 31100555) and the National Basic Research Program of China (Grant No. 2011CB910402).

  18. Trajectory Tracking of a Planer Parallel Manipulator by Using Computed Force Control Method

    NASA Astrophysics Data System (ADS)

    Bayram, Atilla

    2017-03-01

    Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of manipulators can be used in many applications such as in high-speed machine tools, tuning machine for feeding, sensitive cutting, assembly and packaging. This paper presents a special type of planar parallel manipulator with three degrees of freedom. It is constructed as a variable geometry truss generally known planar Stewart platform. The reachable and orientation workspaces are obtained for this manipulator. The inverse kinematic analysis is solved for the trajectory tracking according to the redundancy and joint limit avoidance. Then, the dynamics model of the manipulator is established by using Virtual Work method. The simulations are performed to follow the given planar trajectories by using the dynamic equations of the variable geometry truss manipulator and computed force control method. In computed force control method, the feedback gain matrices for PD control are tuned with fixed matrices by trail end error and variable ones by means of optimization with genetic algorithm.

  19. A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy

    SciTech Connect

    Santos, Sergio; Guang Li; Souier, Tewfik; Gadelrab, Karim; Chiesa, Matteo; Thomson, Neil H.

    2012-04-15

    We provide a method to characterize the tip radius of an atomic force microscopy in situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the smaller the value of free amplitude required to observe a transition, the sharper the tip. This general behavior is remarkably independent of the properties of the sample and cantilever characteristics and shows the strong dependence of the transitions on the tip radius. The main advantage of this method is rapid in situ characterization. Rapid in situ characterization enables one to continuously monitor the tip size during experiments. Further, we show how to reproducibly shape the tip from a given initial size to any chosen larger size. This approach combined with the in situ tip size monitoring enables quantitative comparison of materials measurements between samples. These methods are set to allow quantitative data acquisition and make direct data comparison readily available in the community.

  20. Electrostatic force microscopy as a broadly applicable method for characterizing pyroelectric materials

    NASA Astrophysics Data System (ADS)

    Martin-Olmos, Cristina; Stieg, Adam Z.; Gimzewski, James K.

    2012-06-01

    A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices.

  1. Trajectory Tracking of a Planer Parallel Manipulator by Using Computed Force Control Method

    NASA Astrophysics Data System (ADS)

    Bayram, Atilla

    2017-03-01

    Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of manipulators can be used in many applications such as in high-speed machine tools, tuning machine for feeding, sensitive cutting, assembly and packaging. This paper presents a special type of planar parallel manipulator with three degrees of freedom. It is constructed as a variable geometry truss generally known planar Stewart platform. The reachable and orientation workspaces are obtained for this manipulator. The inverse kinematic analysis is solved for the trajectory tracking according to the redundancy and joint limit avoidance. Then, the dynamics model of the manipulator is established by using Virtual Work method. The simulations are performed to follow the given planar trajectories by using the dynamic equations of the variable geometry truss manipulator and computed force control method. In computed force control method, the feedback gain matrices for PD control are tuned with fixed matrices by trail end error and variable ones by means of optimization with genetic algorithm.

  2. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOEpatents

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  3. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOEpatents

    Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.

    1995-11-07

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.

  4. Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method.

    PubMed

    Corbetta, Alessandro; Muntean, Adrian; Vafayi, Kiamars

    2015-04-01

    Focusing on a specific crowd dynamics situation, including real life experiments and measurements, our paper targets a twofold aim: (1) we present a Bayesian probabilistic method to estimate the value and the uncertainty (in the form of a probability density function) of parameters in crowd dynamic models from the experimental data; and (2) we introduce a fitness measure for the models to classify a couple of model structures (forces) according to their fitness to the experimental data, preparing the stage for a more general model-selection and validation strategy inspired by probabilistic data analysis. Finally, we review the essential aspects of our experimental setup and measurement technique.

  5. Semiempirical method for prediction of aerodynamic forces and moments on a steadily spinning light airplane

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Taylor, Lawrence W., Jr.

    1987-01-01

    A semi-empirical method is presented for the estimation of aerodynamic forces and moments acting on a steadily spinning (rotating) light airplane. The airplane is divided into wing, body, and tail surfaces. The effect of power is ignored. The strip theory is employed for each component of the spinning airplane to determine its contribution to the total aerodynamic coefficients. Then, increments to some of the coefficients which account for centrifugal effect are estimated. The results are compared to spin tunnel rotary balance test data.

  6. Study on the AFM Force Spectroscopy method for elastic modulus measurement of living cells

    NASA Astrophysics Data System (ADS)

    Demichelis, A.; Pavarelli, S.; Mortati, L.; Sassi, G.; Sassi, M.

    2013-09-01

    The cell elasticity gives information about its pathological state and metastatic potential. The aim of this paper is to study the AFM Force Spectroscopy technique with the future goal of realizing a reference method for accurate elastic modulus measurement in the elasticity range of living cells. This biological range has not been yet explored with a metrological approach. Practical hints are given for the realization of a Sylgard elasticity scale. Systematic effects given by the sample curing thickness and nanoindenter geometry have been found with regards of the measured elastic modulus. AFM measurement reproducibility better than 20% is obtained in the entire investigated elastic modulus scale of 101 - 104 kPa.

  7. a Method for Preview Vibration Control of Systems Having Forcing Inputs and Rapidly-Switched Dampers

    NASA Astrophysics Data System (ADS)

    ElBeheiry, E. M.

    1998-07-01

    In a variety of applications, especially in large scale dynamic systems, the mechanization of different vibration control elements in different locations would be decided by limitations placed on the modal vibration of the system and the inherent dynamic coupling between its modes. Also, the quality of vibration control to the economy of producing the whole system would be another trade-off leading to a mix of passive, active and semi-active vibration control elements in one system. This termactiveis limited to externally powered vibration control inputs and the termsemi-activeis limited to rapidly switched dampers. In this article, an optimal preview control method is developed for application to dynamic systems having active and semi-active vibration control elements mechanized at different locations in one system. The system is then a piecewise (bilinear) controller in which two independent sets of control inputs appear additively and multiplicatively. Calculus of variations along with the Hamiltonian approach are employed for the derivation of this method. In essence, it requires the active elements to be ideal force generators and the switched dampers to have the property of on-line variation of the damping characteristics to pre-determined limits. As the dampers switch during operation the whole system's structure differs, and then values of the active forcing inputs are adapted to match these rapid changes. Strictly speaking, each rapidly switched damper has pre-known upper and lower damping levels and it can take on any in-between value. This in-between value is to be determined by the method as long as the damper tracks a pre-known fully active control demand. In every damping state of each semi-active damper the method provides the optimal matching values of the active forcing inputs. The method is shown to have the feature of solving simple standard matrix equations to obtain closed form solutions. A comprehensive 9-DOF tractor semi-trailer model is used

  8. A method based on infrared detection for determining the moisture content of ceramic plaster materials.

    PubMed

    Macias-Melo, E V; Aguilar-Castro, K M; Alvarez-Lemus, M A; Flores-Prieto, J J

    2015-09-01

    In this work, we describe a methodology for developing a mathematical model based on infrared (IR) detection to determine the moisture content (M) in solid samples. For this purpose, an experimental setup was designed, developed and calibrated against the gravimetric method. The experimental arrangement allowed for the simultaneous measurement of M and the electromotive force (EMF), fitting the experimental variables as much as possible. These variables were correlated by a mathematical model, and the obtained correlation was M=1.12×exp(3.47×EMF), ±2.54%. This finding suggests that it is feasible to measure the moisture content when it has greater values than 2.54%. The proposed methodology could be used for different conditions of temperature, relative humidity and drying rates to evaluate the influence of these variables on the amount of energy received by the IR detector. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Series-connected multi-cell operation of lithium-ion cells by floating method

    NASA Astrophysics Data System (ADS)

    Takei, Katsuhito; Kobayashi, Yo; Miyashiro, Hajime; Kumai, Kazuma; Terada, Nobuyuki; Iwahori, Toru; Tanaka, Toshikatsu

    The resistance to damage during overcharge and overdischarge of a single cell and the possibility of series-connected multi-cell operation have been investigated using a commercialized lithium-ion cell. The single cell showed sufficient cycleability in overcharge up to 4.5 V and small reversible capacity in overdischarge under 2.5 V. An overdischarged cell below 0 V did not generate subsequent electromotive force and behaved like a resistor of an electron conductor. Multi-cell operations including imbalanced cells both in a preshifted state-of-charge between +30 and -5% and in various ambient temperatures were performed for over 1000 cycles of charge/discharge by the floating method.

  10. Lubrication forces in air and accommodation coefficient measured by a thermal damping method using an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Honig, Christopher D. F.; Sader, John E.; Mulvaney, Paul; Ducker, William A.

    2010-05-01

    By analysis of the thermally driven oscillation of an atomic force microscope (AFM) cantilever, we have measured both the damping and static forces acting on a sphere near a flat plate immersed in gas. By varying the proximity of the sphere to the plate, we can continuously vary the Knudsen number (Kn) at constant pressure, thereby accessing the slip flow, transition, and molecular regimes at a single pressure. We use measurements in the slip-flow regime to determine the combined slip length (on both sphere and plate) and the tangential momentum accommodation coefficient, σ . For ambient air at 1 atm between two methylated glass solids, the inverse damping is linear with separation and the combined slip length on both surfaces is 250nm±100nm , which corresponds to σ=0.77±0.24 . At small separations (Kn>0.4) the measured inverse damping is no longer linear with separation, and is observed to exhibit reasonable agreement with the Vinogradova formula.

  11. Propositions for the Analysis of Commutation Phenomena and Modeling of Universal Motors Using the State Function Method

    NASA Astrophysics Data System (ADS)

    Niwa, Yuta; Akiyama, Yuji; Naruta, Tomokazu

    We carried out FEM simulations for modeling ultra-high-speed universal motors by using the state function method and analyzed the phenomenon of commutator sparking, the characteristics of the air gap surface, and the contact condition or contact resistance of the brushes and commutator bars. Thus, we could quantitatively analyze commutator sparking and investigate the configuration of the iron core. The results of FEM analysis were used to develop a model for predicting the configuration of the iron core and for estimating the electromotive force generated by the transformer, armature reaction field, spark voltage, contact resistance between the rotating brushes, and changes in the gap permeance. The results of our simulation were experimental results. This confirmed the validity of our analysis method. Thus, an ultra-high-speed, high-capacity of 1.5kw motor rotating at 30,000rpm can be designed for use in vacuum cleaners.

  12. Examination of biogenic selenium-containing nanosystems based on polyelectrolyte complexes by atomic force, Kelvin probe force and electron microscopy methods

    SciTech Connect

    Sukhanova, T. E. Vylegzhanina, M. E.; Valueva, S. V.; Volkov, A. Ya.; Kutin, A. A.; Temiryazeva, M. P.; Temiryazev, A. G.

    2016-06-17

    The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsules and outside them.

  13. A generalized harmonic balance method for forced non-linear oscillations: the subharmonic cases

    NASA Astrophysics Data System (ADS)

    Wu, J. J.

    1992-12-01

    This paper summarizes and extends results in two previous papers, published in conference proceedings, on a variant of the generalized harmonic balance method (GHB) and its application to obtain subharmonic solutions of forced non-linear oscillation problems. This method was introduced as an alternative to the method of multiple scales, and it essentially consists of two parts. First, the part of the multiple scales method used to reduce the problem to a set of differential equations is used to express the solution as a sum of terms of various harmonics with unknown, time dependent coefficients. Second, the form of solution so obtained is substituted into the original equation and the coefficients of each harmonic are set to zero. Key equations of approximations for a subharmonic case are derived for the cases of both "small" damping and excitations, and "Large" damping and excitations, which are shown to be identical, in the intended order of approximation, to those obtained by Nayfeh using the method of multiple scales. Detailed numerical formulations, including the derivation of the initial conditions, are presented, as well as some numerical results for the frequency-response relations and the time evolution of various harmonic components. Excellent agreement is demonstrated between results by GHB and by integrating the original differential equation directly. The improved efficiency in obtaining numerical solutions using GHB as compared with integrating the original differential equation is demonstrated also. For the case of large damping and excitations and for non-trivial solutions, it is noted that there exists a threshold value of the force beyond which no subharmonic excitations are possible.

  14. Evaluation of slice shear force as an objective method of assessing beef longissimus tenderness.

    PubMed

    Shackelford, S D; Wheeler, T L; Koohmaraie, M

    1999-10-01

    Experiments were conducted to develop an optimal protocol for measurement of slice shear force (SSF) and to evaluate SSF as an objective method of assessing beef longissimus tenderness. Whereas six cylindrical, 1.27-cm-diameter cores are typically removed from each steak for Warner-Bratzler shear force (WBSF) determination, a single 1-cm-thick, 5-cm-long slice is removed from the lateral end of each longissimus steak for SSF. For either technique, samples are removed parallel to the muscle fiber orientation and sheared across the fibers. Whereas WBSF uses a V-shaped blade, SSF uses a flat blade with the same thickness (1.016 mm) and degree of bevel (half-round) on the shearing edge. In Exp. 1, longissimus steaks were acquired from 60 beef carcasses to determine the effects of belt grill cooking rate (very rapid vs. rapid) and conditions of SSF measurement (hot vs cold) on the relationship of SSF with trained sensory panel (TSP) tenderness rating. Slice shear force was more strongly correlated with TSP tenderness rating when SSF measurement was conducted immediately after cooking (r = -.74 to -.76) than when steaks were chilled (24 h, 4 degrees C) before SSF measurement (r = -.57 to -.72). When SSF measurement was conducted immediately after cooking, the relationship of SSF with TSP tenderness rating did not differ among the belt grill cooking protocols used to cook the SSF steak. In Exp. 2, longissimus steaks were acquired from 479 beef carcasses to compare the ability of SSF and WBSF of 1.27-cm-diameter cores to predict TSP tenderness ratings. Slice shear force was more strongly correlated with sensory panel tenderness rating than was WBSF (r = -.82 vs -.77). In Exp. 3, longissimus steaks were acquired from 110 beef carcasses to evaluate the repeatability (.91) of SSF over a broad range of tenderness. Slice shear force is a more rapid, more accurate, and technically less difficult technique than WBSF. Use of the SSF technique could facilitate the collection of

  15. A simple molecular mechanics potential for μm scale graphene simulations from the adaptive force matching method

    NASA Astrophysics Data System (ADS)

    Wei, Dongshan; Song, Yang; Wang, Feng

    2011-05-01

    A simple molecular mechanics force field for graphene (PPBE-G) was created by force matching the density functional theory Perdew-Burke-Ernzerhof forces using the adaptive force matching method recently developed in our group. The PPBE-G potential was found to provide significantly more accurate forces than other existing force fields. Several properties of graphene, such as Young's modulus, bending rigidity, and thermal conductivity, have been studied with our potential. The calculated properties are in good agreement with corresponding density functional theory and experimental values. The thermal conductivity calculated with reverse non-equilibrium molecular dynamics depends sensitively on graphene size thus requiring the simulation of large sheets for convergence. Since the PPBE-G potential only contains simple additive energy expressions, it is very computationally efficient and is capable of modeling large graphene sheets in the μm length scale.

  16. Cinemechanometry (CMM): A method to determine the forces that drive morphogenetic movements from time-lapse images.

    PubMed

    Cranston, P Graham; Veldhuis, Jim H; Narasimhan, Sriram; Brodland, G Wayne

    2010-09-01

    Although cell-level mechanical forces are crucial to tissue self-organization in contexts ranging from embryo development to cancer metastases to regenerative engineering, the absence of methods to map them over time has been a major obstacle to new understanding. Here, we present a technique for constructing detailed, dynamic maps of the forces driving morphogenetic events from time-lapse images. Forces in the cell are considered to be separable into unknown active driving forces and known passive forces, where actomyosin systems and microtubules contribute primarily to the first group and intermediate filaments and cytoplasm to the latter. A finite-element procedure is used to estimate the field of forces that must be applied to the passive components to produce their observed incremental deformations. This field is assumed to be generated by active forces resolved along user-defined line segments whose location, often along cell edges, is informed by the underlying biology. The magnitudes and signs of these forces are determined by a mathematical inverse method. The efficacy of the approach is demonstrated using noisy synthetic data from a cross section of a generic invagination and from a planar aggregate that involves two cell types, edge forces that vary with time and a neighbor change.

  17. The Australian Defence Force Mental Health Prevalence and Wellbeing Study: design and methods

    PubMed Central

    Hooff, Miranda Van; McFarlane, Alexander C.; Davies, Christopher E.; Searle, Amelia K.; Fairweather-Schmidt, A. Kate; Verhagen, Alan; Benassi, Helen; Hodson, Stephanie E.

    2014-01-01

    Background The Australian Defence Force (ADF) Mental Health Prevalence and Wellbeing Study (MHPWS) is the first study of mental disorder prevalence in an entire military population. Objective The MHPWS aims to establish mental disorder prevalence, refine current ADF mental health screening methods, and identify specific occupational factors that influence mental health. This paper describes the design, sampling strategies, and methodology used in this study. Method At Phase 1, approximately half of all regular Navy, Army, and Air Force personnel (n=24,481) completed self-report questionnaires. At Phase 2, a stratified sub-sample (n=1,798) completed a structured diagnostic interview to detect mental disorder. Based on data from non-responders, data were weighted to represent the entire ADF population (n=50,049). Results One in five ADF members met criteria for a 12-month mental disorder (22%). The most common disorder category was anxiety disorders (14.8%), followed by affective (9.5%) and alcohol disorders (5.2%). At risk ADF sub-groups were Army personnel, and those in the lower ranks. Deployment status did not have an impact on mental disorder rates. Conclusion This study has important implications for mental health service delivery for Australian and international military personnel as well as contemporary veterans. PMID:25206944

  18. Development and implementation of a coupled computational muscle force optimization bone shape adaptation modeling method.

    PubMed

    Florio, C S

    2015-04-01

    Improved methods to analyze and compare the muscle-based influences that drive bone strength adaptation can aid in the understanding of the wide array of experimental observations about the effectiveness of various mechanical countermeasures to losses in bone strength that result from age, disuse, and reduced gravity environments. The coupling of gradient-based and gradientless numerical optimization routines with finite element methods in this work results in a modeling technique that determines the individual magnitudes of the muscle forces acting in a multisegment musculoskeletal system and predicts the improvement in the stress state uniformity and, therefore, strength, of a targeted bone through simulated local cortical material accretion and resorption. With a performance-based stopping criteria, no experimentally based or system-based parameters, and designed to include the direct and indirect effects of muscles attached to the targeted bone as well as to its neighbors, shape and strength alterations resulting from a wide range of boundary conditions can be consistently quantified. As demonstrated in a representative parametric study, the developed technique effectively provides a clearer foundation for the study of the relationships between muscle forces and the induced changes in bone strength. Its use can lead to the better control of such adaptive phenomena.

  19. Application of Design of Experiment Method for Thrust Force Minimization in Step-feed Micro Drilling

    PubMed Central

    Kim, Dong-Woo; Cho, Myeong-Woo; Seo, Tae-Il; Lee, Eung-Sug

    2008-01-01

    Micro drilled holes are utilized in many of today's fabrication processes. Precision production processes in industries are trending toward the use of smaller holes with higher aspect ratios, and higher speed operation for micro deep hole drilling. However, undesirable characteristics related to micro drilling such as small signal-to-noise ratios, wandering drill motion, high aspect ratio, and excessive cutting forces can be observed when cutting depth increases. In this study, the authors attempt to minimize the thrust forces in the step-feed micro drilling process by application of the DOE (Design of Experiment) method. Taking into account the drilling thrust, three cutting parameters, feedrate, step-feed, and cutting speed, are optimized based on the DOE method. For experimental studies, an orthogonal array L27(313) is generated and ANOVA (Analysis of Variance) is carried out. Based on the results it is determined that the sequence of factors affecting drilling thrusts corresponds to feedrate, step-feed, and spindle rpm. A combination of optimal drilling conditions is also identified. In particular, it is found in this study that the feedrate is the most important factor for micro drilling thrust minimization. PMID:27879704

  20. An efficient algorithm using matrix methods to solve wind tunnel force-balance equations

    NASA Technical Reports Server (NTRS)

    Smith, D. L.

    1972-01-01

    An iterative procedure applying matrix methods to accomplish an efficient algorithm for automatic computer reduction of wind-tunnel force-balance data has been developed. Balance equations are expressed in a matrix form that is convenient for storing balance sensitivities and interaction coefficient values for online or offline batch data reduction. The convergence of the iterative values to a unique solution of this system of equations is investigated, and it is shown that for balances which satisfy the criteria discussed, this type of solution does occur. Methods for making sensitivity adjustments and initial load effect considerations in wind-tunnel applications are also discussed, and the logic for determining the convergence accuracy limits for the iterative solution is given. This more efficient data reduction program is compared with the technique presently in use at the NASA Langley Research Center, and computational times on the order of one-third or less are demonstrated by use of this new program.

  1. Multidisciplinary Design Optimization for Aeropropulsion Engines and Solid Modeling/Animation via the Integrated Forced Methods

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grant closure report is organized in the following four chapters: Chapter describes the two research areas Design optimization and Solid mechanics. Ten journal publications are listed in the second chapter. Five highlights is the subject matter of chapter three. CHAPTER 1. The Design Optimization Test Bed CometBoards. CHAPTER 2. Solid Mechanics: Integrated Force Method of Analysis. CHAPTER 3. Five Highlights: Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft. Neural Network and Regression Soft Model Extended for PX-300 Aircraft Engine. Engine with Regression and Neural Network Approximators Designed. Cascade Optimization Strategy with Neural network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design. Neural Network and Regression Approximations Used in Aircraft Design.

  2. A multipole accelerated desingularized method for computing nonlinear wave forces on bodies

    SciTech Connect

    Scorpio, S.M.; Beck, R.F.

    1996-12-31

    Nonlinear wave forces on offshore structures are investigated. The fluid motion is computed using an Euler-Lagrange time domain approach. Nonlinear free surface boundary conditions are stepped forward in time using an accurate and stable integration technique. The field equation with mixed boundary conditions that result at each time step are solved at N nodes using a desingularized boundary integral method with multipole acceleration. Multipole accelerated solutions require O(N) computational effort and computer storage while conventional solvers require O(N{sup 2}) effort and storage for an iterative solution and O(N{sup 3}) effort for direct inversion of the influence matrix. These methods are applied to the three dimensional problem of wave diffraction by a vertical cylinder.

  3. Contrast discrimination by the methods of adjustment and two-alternative forced choice.

    PubMed

    Laming, Donald

    2013-11-01

    Fifty years after the advent of signal-detection theory, some visual scientists still adhere to the notion of a high, fixed threshold. Indeed, experienced observers are able to deliver consistent settings of thresholds using the method of adjustment, but those settings are different from the thresholds obtained with two-alternative forced choice (2AFC) procedures. This article illustrates the difference by reference to four existing studies of contrast discrimination. All four sets of data show clear subthreshold facilitation, but the method of adjustment produces a rectilinear characteristic that corresponds to the use of different criteria over different ranges of contrast, whereas 2AFC procedures produce a curvilinear characteristic with generally lower thresholds. This article proposes a theoretical explanation for the difference.

  4. A finite-volume numerical method to calculate fluid forces and rotordynamic coefficients in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1992-01-01

    A numerical method to calculate rotordynamic coefficients of seals is presented. The flow in a seal is solved by using a finite-volume formulation of the full Navier-Stokes equations with appropriate turbulence models. The seal rotor is perturbed along a diameter such that the position of the rotor is a sinusoidal function of time. The resulting flow domain changes with time, and the time-dependent flow in the seal is solved using a space conserving moving grid formulation. The time-varying fluid pressure reaction forces are then linked with the rotor center displacement, velocity and acceleration to yield the rotordynamic coefficients. Results for an annular seal are presented, and compared with experimental data and other more simplified numerical methods.

  5. Method for preparing ultra-pure zirconium and hafnium tetrafluorides

    SciTech Connect

    Pastor, R.C.; Robinson, M.

    1986-03-25

    A method is described for separating iron impurities from an impure metal halide in which the impure metal halide is heated to a temperature sufficient to form a metal halide vapor, the vapor being separated from the impure metal halide and condensed to form purified metal halide having a reduced iron contant. The improvement described here consists of: utilizing electromotive series displacement by contacting a melt containing the impure metal halide with a pure metal, the electromotive series displacement causing the plating out of 3d metal impurities.

  6. A method for the on-site determination of prestressing forces using long-gauge fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, H.; Glisic, B.

    2014-07-01

    Structural health monitoring (SHM) consists of the continuous or periodic measurement of structural parameters and their analysis with the aim of deducing information about the performance and health condition of a structure. The significant increase in the construction of prestressed concrete bridges motivated this research on an SHM method for the on-site determination of the distribution of prestressing forces along prestressed concrete beam structures. The estimation of the distribution of forces is important as it can give information regarding the overall performance and structural integrity of the bridge. An inadequate transfer of the designed prestressing forces to the concrete cross-section can lead to a reduced capacity of the bridge and consequently malfunction or failure at lower loads than predicted by design. This paper researches a universal method for the determination of the distribution of prestressing forces along concrete beam structures at the time of transfer of the prestressing force (e.g., at the time of prestressing or post-tensioning). The method is based on the use of long-gauge fiber optic sensors, and the sensor network is similar (practically identical) to the one used for damage identification. The method encompasses the determination of prestressing forces at both healthy and cracked cross-sections, and for the latter it can yield information about the condition of the cracks. The method is validated on-site by comparison to design forces through the application to two structures: (1) a deck-stiffened arch and (2) a curved continuous girder. The uncertainty in the determination of prestressing forces was calculated and the comparison with the design forces has shown very good agreement in most of the structures’ cross-sections, but also helped identify some unusual behaviors. The method and its validation are presented in this paper.

  7. Forced degradation of nepafenac: Development and validation of stability indicating UHPLC method.

    PubMed

    Runje, Mislav; Babić, Sandra; Meštrović, Ernest; Nekola, Irena; Dujmić-Vučinić, Željka; Vojčić, Nina

    2016-05-10

    This paper presents stability study of the nonsteroidal anti-inflammatory drug (NSAID) nepafenac. In order to investigate stability of nepafenac, it was subjected to forced degradation under different stress conditions: acid and base hydrolysis, oxidation, humidity, heat and light. A novel stability indicating reverse phase ultra high performance liquid chromatographic (UHPLC) method coupled to ultraviolet detector has been developed to separate nepafenac and all related compounds (2-aminobenzophenone, Cl-thionepafenac, thionepafenac, Cl-nepafenac, hydroxy-nepafenac, and cyclic-nepafenac). Efficient chromatographic separation was achieved on a Waters Acquity BEH C18 stationary phase with a gradient elution. Quantification was carried out at 235 nm at a flow rate of 0.6 mL/min(-1). The resolution between nepafenac and six potential impurities is found to be greater than 2.0. The developed method was validated with respect to specificity, LOD, LOQ, linearity, precision, accuracy and robustness. The r(2) values for nepafenac and six potential impurities were all greater than 0.999. The developed method is capable to detect impurities of nepafenac at a level of 0.005% with respect to test concentration of 1.0mg/mL. Significant degradation is observed in acid, base and oxidative degradation conditions and degradation products (DPs) were identified using mass spectrometry analysis; two of them were found to be a known process related impurities (hydroxy- and cyclic-nepafenac) whereas four degradation products were identified as new degradation impurities. The forced degradation samples were assayed against a qualified reference standard and the mass balance was found to be close to 99.5%. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Comparison of Methods to Obtain Force-Field Parameters for Metal Sites.

    PubMed

    Hu, LiHong; Ryde, Ulf

    2011-08-09

    We have critically examined and compared various ways to obtain standard harmonic molecular mechanics (MM) force-field parameters for metal sites in proteins, using the 12 most common Zn(2+) sites as test cases. We show that the parametrization of metal sites is hard to treat with automatic methods. The choice of method is a compromise between speed and accuracy and therefore depends on the intended use of the parameters. If the metal site is not of central interest in the investigation, for example, a structural metal far from the active site, a simple and fast parametrization is normally enough, using either a nonbonded model with restraints or a bonded parametrization based on the method of Seminario. On the other hand, if the metal site is of central interest in the investigation, a more accurate method is needed to give quantitative results, for example, the method by Norrby and Liljefors. The former methods are semiautomatic and can be performed in seconds, once a quantum mechanical (QM) geometry optimization and frequency calculation has been performed, whereas the latter method typically takes several days and requires significant human intervention. All approaches require a careful selection of the atom types used. For a nonbonded model, standard atom types can be used, whereas for a bonded model, it is normally wise to use special atom types for each metal ligand. For accurate results, new atom types for all atoms in the metal site can be used. Atomic charges should also be considered. Typically, QM restrained electrostatic potential charges are accurate and easy to obtain once the QM calculation is performed, and they allow for charge transfer within the complex. For negatively charged complexes, it should be checked that hydrogen atoms of the ligands get proper charges. Finally, water ligands pose severe problems for bonded models in force fields that ignore nonbonded interactions for atoms separated by two bonds. Complexes with a single water ligand

  9. Assessing the failure of continuum formula for solid-solid drag force using discrete element method in large size ratios

    NASA Astrophysics Data System (ADS)

    Jalali, Payman; Hyppänen, Timo

    2017-06-01

    In loose or moderately-dense particle mixtures, the contact forces between particles due to successive collisions create average volumetric solid-solid drag force between different granular phases (of different particle sizes). The derivation of the mathematical formula for this drag force is based on the homogeneity of mixture within the calculational control volume. This assumption especially fails when the size ratio of particles grows to a large value of 10 or greater. The size-driven inhomogeneity is responsible to the deviation of intergranular force from the continuum formula. In this paper, we have implemented discrete element method (DEM) simulations to obtain the volumetric mean force exchanged between the granular phases with the size ratios greater than 10. First, the force is calculated directly from DEM averaged over a proper time window. Second, the continuum formula is applied to calculate the drag forces using the DEM quantities. We have shown the two volumetric forces are in good agreement as long as the homogeneity condition is maintained. However, the relative motion of larger particles in a cloud of finer particles imposes the inhomogeneous distribution of finer particles around the larger ones. We have presented correction factors to the volumetric force from continuum formula.

  10. The Australian Defence Force Mental Health Prevalence and Wellbeing Study: design and methods.

    PubMed

    Hooff, Miranda Van; McFarlane, Alexander C; Davies, Christopher E; Searle, Amelia K; Fairweather-Schmidt, A Kate; Verhagen, Alan; Benassi, Helen; Hodson, Stephanie E

    2014-01-01

    The Australian Defence Force (ADF) Mental Health Prevalence and Wellbeing Study (MHPWS) is the first study of mental disorder prevalence in an entire military population. The MHPWS aims to establish mental disorder prevalence, refine current ADF mental health screening methods, and identify specific occupational factors that influence mental health. This paper describes the design, sampling strategies, and methodology used in this study. At Phase 1, approximately half of all regular Navy, Army, and Air Force personnel (n=24,481) completed self-report questionnaires. At Phase 2, a stratified sub-sample (n=1,798) completed a structured diagnostic interview to detect mental disorder. Based on data from non-responders, data were weighted to represent the entire ADF population (n=50,049). One in five ADF members met criteria for a 12-month mental disorder (22%). The most common disorder category was anxiety disorders (14.8%), followed by affective (9.5%) and alcohol disorders (5.2%). At risk ADF sub-groups were Army personnel, and those in the lower ranks. Deployment status did not have an impact on mental disorder rates. This study has important implications for mental health service delivery for Australian and international military personnel as well as contemporary veterans.

  11. A force evaluation free method to N-body problems: Binary interaction approximation

    NASA Astrophysics Data System (ADS)

    Oikawa, S.

    2016-03-01

    We recently proposed the binary interaction approximation (BIA) to N-body problems, which, in principle, excludes the interparticle force evaluation if the exact solutions are known for the corresponding two-body problems such as the Coulombic and gravitational interactions. In this article, a detailed introduction to the BIA is given, including the error analysis to give the expressions for the approximation error in the total angular momentum and the total energy of the entire system. It is shown that, although the energy conservation of the BIA scheme is worse than the 4th order Hermite integrator (HMT4) for similar elapsed, or the wall-clock times, the individual errors in position and in velocity are much better than HMT4. The energy error correction scheme to the BIA is also introduced that does not deteriorate the individual errors in position and in velocity. It is suggested that the BIA scheme is applicable to the tree method, the particle-mesh (PM), and the particle-particle-particle-mesh (PPPM) schemes simply by replacing the force evaluation and the conventional time integrator with the BIA scheme.

  12. Investigation of multi-junction solar cells using electrostatic force microscopy methods.

    PubMed

    Moczała, M; Sosa, N; Topol, A; Gotszalk, T

    2014-06-01

    Multi-junction III-V solar cells are designed to have a much broader absorption of the solar spectrum than Si-based or single junctions, thus yield the highest conversion. The conversion efficiency can be further scaled with sun concentration. The ability of high conversion efficiencies makes multi-junction prime candidates for fine-tuning explorations aimed at getting closer to the theoretical efficiencies. In this paper, we report on electrostatic force microscopy (EFM) measurements of the built-in potential of multi-junction III-V semiconductor-based solar cells. Kelvin probe force microscopy (KPFM) was employed to qualitatively study the width and electrical properties of individual junctions, i.e., built-in potential, activity, and thickness of the p-n junctions. In addition, the voltage drops across individual solar cell p-n junctions were measured using Kelvin probe microscopy under various operation conditions: dark; illuminated; short-circuit; and biased. We present a method which enables the measurement of a working structure, while focusing on the electrical characteristics of an individual junction by virtue of selecting the spectral range of the illumination used. We show that these pragmatic studies can provide a feedback to improve photovoltaic device design, particularly of operation under a current mismatched situation. This new analysis technique offers additional insights into behavior of the multi-junction solar cell and shows promise for further progress in this field.

  13. Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods

    PubMed Central

    Bizarro, C. V.; Alemany, A.; Ritort, F.

    2012-01-01

    RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na+]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg2+ salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100-fold concentration for small molecular constructs. PMID:22492710

  14. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation

    NASA Astrophysics Data System (ADS)

    Vrijsen, N. H.; Jansen, J. W.; Compter, J. C.; Lomonova, E. A.

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.

  15. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation.

    PubMed

    Vrijsen, N H; Jansen, J W; Compter, J C; Lomonova, E A

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.

  16. Force Management Methods Task II. Volume I. Summary and Analysis Considerations

    DTIC Science & Technology

    1980-11-01

    iiDi’stLII.J TABLE OF CONTENTS SECTION PAGE INTRODUCTION 1 2 FORCE MANAGEMENT OVERVIEW 2 K 2.1 FORCE MANAGEMENT DEFINITION 4 2.2 FORCE MANAGEMENT ELEMENTS...34A w toIW W" r z a . 0a to, to co f. go-I I % at,, o" -, .... w a 1.45.4 -- - to~1.. S. h - .ar.. ]h. 2.1 FORCE MANAGEMENT DEFINITION The MIL-STD-1530A

  17. Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1988-01-01

    The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.

  18. Visual and digital comparative tooth colour assessment methods and atomic force microscopy surface roughness.

    PubMed

    Grundlingh, A A; Grossman, E S; Shrivastava, S; Witcomb, M J

    2013-10-01

    This study compared digital and visual colour tooth colour assessment methods in a sample of 99 teeth consisting of incisors, canines and pre-molars. The teeth were equally divided between Control, Ozicure Oxygen Activator bleach and Opalescence Quick bleach and subjected to three treatments. Colour readings were recorded at nine intervals by two assessment methods, VITA Easyshade and VITAPAN 3D MASTER TOOTH GUIDE, giving a total of 1782 colour readings. Descriptive and statistical analysis was undertaken using a GLM test for Analysis of Variance for a Fractional Design set at a significance of P < 0.05. Atomic force micros copy was used to examine treated ename surfaces and establish surface roughness. Visual tooth colour assessment showed significance for the independent variables of treatment, number of treatments, tooth type and the combination tooth type and treatment. Digital colour assessment indicated treatment and tooth type to be of significance in tooth colour change. Poor agreement was found between visual and digital colour assessment methods for Control and Ozicure Oxygen Activator treatments. Surface roughness values increased two-fold for Opalescence Quick specimens over the two other treatments, implying that increased light scattering improved digital colour reading. Both digital and visual colour matching methods should be used in tooth bleaching studies to complement each other and to compensate for deficiencies.

  19. Method and apparatus for simulating gravitational forces on a living organism

    NASA Technical Reports Server (NTRS)

    Thornton, W. E. (Inventor)

    1983-01-01

    A method and apparatus for simulating gravitational forces on a living organism wherein a series of negative pressures are externally applied to successive length-wise sections of a lower limb of the organism. The pressures decreasing progressively with distance of said limb sections from the heart of the organism. A casing defines a chamber adapted to contain the limb of the organism and is rigidified to resist collapse upon the application of negative pressures to the interior of the chamber. Seals extend inwardly from the casing for effective engagement with the limb of the organism and, in cooperation with the limb, subdivide the chamber into a plurality of compartments each in negative pressure communicating relation with the limb.

  20. Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop.

    PubMed

    Sali, Andrej; Berman, Helen M; Schwede, Torsten; Trewhella, Jill; Kleywegt, Gerard; Burley, Stephen K; Markley, John; Nakamura, Haruki; Adams, Paul; Bonvin, Alexandre M J J; Chiu, Wah; Peraro, Matteo Dal; Di Maio, Frank; Ferrin, Thomas E; Grünewald, Kay; Gutmanas, Aleksandras; Henderson, Richard; Hummer, Gerhard; Iwasaki, Kenji; Johnson, Graham; Lawson, Catherine L; Meiler, Jens; Marti-Renom, Marc A; Montelione, Gaetano T; Nilges, Michael; Nussinov, Ruth; Patwardhan, Ardan; Rappsilber, Juri; Read, Randy J; Saibil, Helen; Schröder, Gunnar F; Schwieters, Charles D; Seidel, Claus A M; Svergun, Dmitri; Topf, Maya; Ulrich, Eldon L; Velankar, Sameer; Westbrook, John D

    2015-07-07

    Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models?

  1. Application of a finite volume based method of lines to turbulent forced convection in circular tubes

    SciTech Connect

    Campo, A.; Tebeest, K.; Lacoa, U.; Morales, J.C.

    1996-10-01

    A semianalytic analysis of in-tube turbulent forced convection is performed whose special computational feature is the combination of the method of lines, the finite volume technique, and a radial coordinate transformation. First, a numerical solution of the momentum equation was obtained by a simple Runge-Kutta integration scheme. Second, the energy equation was reformulated into a system of ordinary differential equations of first order. Each equation in the system controls the temperature along a line in a mesh consisting of concentric lines. Reliable analytic solutions for the temperature distribution of fluids in the region of thermal development can be determined for combinations of Reynolds and Prandtl numbers. Predicted results for the distributions of mean bulk temperature and local Nusselt numbers for air, water, and oils compare satisfactorily with the available experimental data.

  2. Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method

    NASA Technical Reports Server (NTRS)

    Chander, R.

    1990-01-01

    The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.

  3. A discrete-forcing immersed boundary method for the fluid-structure interaction of an elastic slender body

    NASA Astrophysics Data System (ADS)

    Lee, Injae; Choi, Haecheon

    2015-01-01

    We present an immersed boundary (IB) method for the simulation of flow around an elastic slender body. The present method is based on the discrete-forcing IB method for a stationary, rigid body proposed by Kim, Kim and Choi (2001) [25]. The discrete-forcing approach is used to relieve the limitation on the computational time step size. The incompressible Navier-Stokes equations are implicitly coupled with the dynamic equation for an elastic slender body motion. The first is solved in the Eulerian coordinate and the latter is described in the Lagrangian coordinate. The elastic slender body is modeled as a thin and flexible solid and is segmented by finite number of thin blocks. Each block is moved by external and internal forces such as the hydrodynamic, elastic and buoyancy forces, where the hydrodynamic force is obtained directly from the discrete forcing used in the IB method. All the spatial derivative terms are discretized with the second-order central difference scheme. The present method is applied to three different fluid-structure interaction problems: flows around a flexible filament, a flapping flag in a free stream, and a flexible flapping wing in normal hovering, respectively. Computations are performed at maximum CFL numbers of 0.75-1. The results obtained agree very well with those from previous studies.

  4. Multipolar Ewald Methods, 2: Applications Using a Quantum Mechanical Force Field

    PubMed Central

    2015-01-01

    A fully quantum mechanical force field (QMFF) based on a modified “divide-and-conquer” (mDC) framework is applied to a series of molecular simulation applications, using a generalized Particle Mesh Ewald method extended to multipolar charge densities. Simulation results are presented for three example applications: liquid water, p-nitrophenylphosphate reactivity in solution, and crystalline N,N-dimethylglycine. Simulations of liquid water using a parametrized mDC model are compared to TIP3P and TIP4P/Ew water models and experiment. The mDC model is shown to be superior for cluster binding energies and generally comparable for bulk properties. Examination of the dissociative pathway for dephosphorylation of p-nitrophenylphosphate shows that the mDC method evaluated with the DFTB3/3OB and DFTB3/OPhyd semiempirical models bracket the experimental barrier, whereas DFTB2 and AM1/d-PhoT QM/MM simulations exhibit deficiencies in the barriers, the latter for which is related, in part, to the anomalous underestimation of the p-nitrophenylate leaving group pKa. Simulations of crystalline N,N-dimethylglycine are performed and the overall structure and atomic fluctuations are compared with the experiment and the general AMBER force field (GAFF). The QMFF, which was not parametrized for this application, was shown to be in better agreement with crystallographic data than GAFF. Our simulations highlight some of the application areas that may benefit from using new QMFFs, and they demonstrate progress toward the development of accurate QMFFs using the recently developed mDC framework. PMID:25691830

  5. Multipolar Ewald methods, 2: applications using a quantum mechanical force field.

    PubMed

    Giese, Timothy J; Panteva, Maria T; Chen, Haoyuan; York, Darrin M

    2015-02-10

    A fully quantum mechanical force field (QMFF) based on a modified “divide-and-conquer” (mDC) framework is applied to a series of molecular simulation applications, using a generalized Particle Mesh Ewald method extended to multipolar charge densities. Simulation results are presented for three example applications: liquid water, p-nitrophenylphosphate reactivity in solution, and crystalline N,N-dimethylglycine. Simulations of liquid water using a parametrized mDC model are compared to TIP3P and TIP4P/Ew water models and experiment. The mDC model is shown to be superior for cluster binding energies and generally comparable for bulk properties. Examination of the dissociative pathway for dephosphorylation of p-nitrophenylphosphate shows that the mDC method evaluated with the DFTB3/3OB and DFTB3/OPhyd semiempirical models bracket the experimental barrier, whereas DFTB2 and AM1/d-PhoT QM/MM simulations exhibit deficiencies in the barriers, the latter for which is related, in part, to the anomalous underestimation of the p-nitrophenylate leaving group pKa. Simulations of crystalline N,N-dimethylglycine are performed and the overall structure and atomic fluctuations are compared with the experiment and the general AMBER force field (GAFF). The QMFF, which was not parametrized for this application, was shown to be in better agreement with crystallographic data than GAFF. Our simulations highlight some of the application areas that may benefit from using new QMFFs, and they demonstrate progress toward the development of accurate QMFFs using the recently developed mDC framework.

  6. Nuclear spin imaging with hyperpolarized nuclei created by brute force method

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayoshi; Kunimatsu, Takayuki; Fujiwara, Mamoru; Kohri, Hideki; Ohta, Takeshi; Utsuro, Masahiko; Yosoi, Masaru; Ono, Satoshi; Fukuda, Kohji; Takamatsu, Kunihiko; Ueda, Kunihiro; Didelez, Jean-P.; Prossati, Giorgio; de Waard, Arlette

    2011-05-01

    We have been developing a polarized HD target for particle physics at the SPring-8 under the leadership of the RCNP, Osaka University for the past 5 years. Nuclear polarizaton is created by means of the brute force method which uses a high magnetic field (~17 T) and a low temperature (~ 10 mK). As one of the promising applications of the brute force method to life sciences we started a new project, "NSI" (Nuclear Spin Imaging), where hyperpolarized nuclei are used for the MRI (Magnetic Resonance Imaging). The candidate nuclei with spin ½hslash are 3He, 13C, 15N, 19F, 29Si, and 31P, which are important elements for the composition of the biomolecules. Since the NMR signals from these isotopes are enhanced by orders of magnitudes, the spacial resolution in the imaging would be much more improved compared to the practical MRI used so far. Another advantage of hyperpolarized MRI is that the MRI is basically free from the radiation, while the problems of radiation exposure caused by the X-ray CT or PET (Positron Emission Tomography) cannot be neglected. In fact, the risk of cancer for Japanese due to the radiation exposure through these diagnoses is exceptionally high among the advanced countries. As the first step of the NSI project, we are developing a system to produce hyperpolarized 3He gas for the diagnosis of serious lung diseases, for example, COPD (Chronic Obstructive Pulmonary Disease). The system employs the same 3He/4He dilution refrigerator and superconducting solenoidal coil as those used for the polarized HD target with some modification allowing the 3He Pomeranchuk cooling and the following rapid melting of the polarized solid 3He to avoid the depolarization. In this report, the present and future steps of our project will be outlined with some latest experimental results.

  7. Comparison of an EMG-based and a stress-based method to predict shoulder muscle forces.

    PubMed

    Engelhardt, Christoph; Malfroy Camine, Valérie; Ingram, David; Müllhaupt, Philippe; Farron, Alain; Pioletti, Dominique; Terrier, Alexandre

    2015-01-01

    The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior-inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.

  8. Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field

    DOE PAGES

    Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.; ...

    2017-02-01

    We developed a new modified embedded-atom method (MEAM) force field for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997)], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquidmore » density, self-diffusivity, viscosity, and vapor-liquid surface tension. We show that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.« less

  9. Method to measure the force to pull and to break pin bones of fish.

    PubMed

    Balaban, Murat O; Jie, Hubert; Yin Yee, Yin; Alçiçek, Zayde

    2015-02-01

    A texture measurement device was modified to measure the force required to pull pin bones from King salmon (Oncorhynchus tshawytscha), snapper (Pagrus auratus), and kahawai (Arripis trutta). Pulled bones were also subjected to tension to measure the breaking force. For all fish, the pulling force depended on the size of the fish, and on the length of the pin bone (P < 0.05). In general, larger fish required greater pulling force to remove pin bones. For example, fresh small salmon (about 1500 g whole) required 600 g on average to pull pin bones, and large fish (about 3700 g whole) required 850 g. Longer bones required greater pulling force. The breaking force followed the same trend. In general, the breaking force was greater than the pulling force. This allows the removal of the bones without breaking them. There was no statistically significant (P > 0.05) difference between the forces (both pulling and breaking) from fresh and frozen/thawed samples, although in general frozen/thawed samples required less force to pull. With the quantification of pulling and breaking forces for pin bones, it is possible to design and build better, "more intelligent" pin bone removal equipment. © 2015 Institute of Food Technologists®

  10. A New Method for Characterization of Natural Zeolites and Organic Nanostructure Using Atomic Force Microscopy

    PubMed Central

    Fuoco, Domenico

    2012-01-01

    In order to study and develop an economical solution to environmental pollution in water, a wide variety of materials have been investigated. Natural zeolites emerge from that research as the best in class of this category. Zeolites are natural materials which are relatively abundant and non biodegradable, economical and serve to perform processes of environmental remediation. This paper contains a full description of a new method to characterize the superficial properties of natural zeolites of exotic provenience (Caribbean Islets) with atomic force microscopy (AFM). AFM works with the simplicity of the optical microscope and the high resolution typical of a transmission electron microscope (TEM). If the sample is conductive, structural information of mesoporous material is obtained using scanning and transmission electron microscopy (SEM and TEM), otherwise the sample has to be processed through the grafitation technique, but this procedure induces errors of topography. Therefore, the existing AFM method, to observe zeolite powders, is made in a liquid cell-head scanner. This work confirms that it is possible to use an ambient air-head scanner to obtain a new kind of microtopography. Once optimized, this new method will allow investigation of organic micelles, a very soft nanostructure of cetyltriammonium bromide (CTAB), upon an inorganic surface such as natural zeolites. The data also demonstrated some correlation between SEM microphotographies and AFM 3D images. PMID:28348297

  11. A method to characterize in vivo tendon force-strain relationship by combining ultrasonography, motion capture and loading rates.

    PubMed

    Gerus, Pauline; Rao, Guillaume; Berton, Eric

    2011-08-11

    The ultrasonography contributes to investigate in vivo tendon force-strain relationship during isometric contraction. In previous studies, different methods are available to estimate the tendon strain, using different loading rates and models to fit the tendon force-strain relationship. This study was aimed to propose a standard method to characterize the in vivo tendon force-strain relationship. We investigated the influence on the force-strain relationship for medialis gastrocnemius (MG) of (1) one method which takes into account probe and joint movements to estimate the instantaneous tendon length, (2) models used to fit the force-strain relationship for uniaxial test (polynomial vs. Ogden), and (3) the loading rate on tendon strain. Subjects performed ramp-up contraction during isometric contractions at two different target speeds: 1.5s and minimal time with ultrasound probe fixed over the muscle-tendon junction of the MG muscle. The used method requires three markers on ultrasound probe and a marker on calcaneum to take into account all movements, and was compared to the strain estimated using ultrasound images only. The method using ultrasound image only overestimated the tendon strain from 40% of maximal force. The polynomial model showed similar fitting results than the Ogden model (R²=0.98). A loading rate effect was found on tendon strain, showing a higher strain when loading rate decreases. The characterization of tendon force-strain relationship needs to be standardized by taking into account all movements to estimate tendon strain and controlling the loading rate. The polynomial model appears to be appropriate to represent the tendon force-strain relationship.

  12. A free energy-based surface tension force model for simulation of multiphase flows by level-set method

    NASA Astrophysics Data System (ADS)

    Yuan, H. Z.; Chen, Z.; Shu, C.; Wang, Y.; Niu, X. D.; Shu, S.

    2017-09-01

    In this paper, a free energy-based surface tension force (FESF) model is presented for accurately resolving the surface tension force in numerical simulation of multiphase flows by the level set method. By using the analytical form of order parameter along the normal direction to the interface in the phase-field method and the free energy principle, FESF model offers an explicit and analytical formulation for the surface tension force. The only variable in this formulation is the normal distance to the interface, which can be substituted by the distance function solved by the level set method. On one hand, as compared to conventional continuum surface force (CSF) model in the level set method, FESF model introduces no regularized delta function, due to which it suffers less from numerical diffusions and performs better in mass conservation. On the other hand, as compared to the phase field surface tension force (PFSF) model, the evaluation of surface tension force in FESF model is based on an analytical approach rather than numerical approximations of spatial derivatives. Therefore, better numerical stability and higher accuracy can be expected. Various numerical examples are tested to validate the robustness of the proposed FESF model. It turns out that FESF model performs better than CSF model and PFSF model in terms of accuracy, stability, convergence speed and mass conservation. It is also shown in numerical tests that FESF model can effectively simulate problems with high density/viscosity ratio, high Reynolds number and severe topological interfacial changes.

  13. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages

    DOE PAGES

    Mones, Letif; Jones, Andrew; Götz, Andreas W.; ...

    2015-02-03

    We present the implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis usingmore » various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies.« less

  14. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages

    SciTech Connect

    Mones, Letif; Jones, Andrew; Götz, Andreas W.; Laino, Teodoro; Walker, Ross C.; Leimkuhler, Ben; Csányi, Gábor; Bernstein, Noam

    2015-02-03

    We present the implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies.

  15. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages

    DOE PAGES

    Mones, Letif; Jones, Andrew; Götz, Andreas W.; ...

    2015-02-03

    We present the implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis usingmore » various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies.« less

  16. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages

    PubMed Central

    Mones, Letif; Jones, Andrew; Götz, Andreas W; Laino, Teodoro; Walker, Ross C; Leimkuhler, Ben; Csányi, Gábor; Bernstein, Noam

    2015-01-01

    The implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER are presented. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25649827

  17. Extension of volcanic forcing data back to 100 BC using the Analog method

    NASA Astrophysics Data System (ADS)

    Wagner, Sebastian; Zorita, Eduardo

    2013-04-01

    Present reconstructions of volcanic forcing to be used for climate simulations so far extend back until 500 AD for stratospheric aerosol sulphate injection (Gao et al., 2008), and back until 800 AD for aerosol optical depth and effective radius (Crowley et al. 2012; ICI5 data set). Here, we aim to extent the volcanic data set of Crowley et al. (2012) back to 100 BC. This data sets originally starts in 800 AD, for aerosol optical depth and effective radius. The method we apply is the Analog method, using information in the already existing reconstruction and extending it back in time by using information of long volcanic sulphate contained in Greenland and Antarctic Ice cores published in previous studies. The reconstruction of the volcanic forcing in first millennium is based on the search of analogs in the second millennium. The pool of analogs includes the ICI5 data set for the period 800-2000 AD. The basic philosophy is to find volcanic events with the same or similar magnitude in terms of volcanic sulphate deposition in Greenland and Antarctic ice cores. For the Northern Hemisphere the estimated maximum total stratospheric sulphate loading from Zielinski (1995) is used. For the Southern Hemisphere the Plummer et al. (2012) data set and the Ferris et al. (2011) data set are used in terms of sulphate deposition. To ensure that the volcanic event was large enough in magnitude, a certain threshold is applied to the analog selection. The extension, i.e. the analog search, is carried out separately for the four different latitudinal bands of the ICI5 data set. The method can be applied when better records than the Zielinski et al. (1995), record for the Northern Hemisphere become available. The analogs are selected based on the comparison between the information contained in the ice cores in the pre-800 AD period and post-800 AD period. For each event in the pre-800 AD period (the target), the most similar event (the analog) in the post-800 AD pool in terms of ice

  18. Free Energy Landscapes of Alanine Dipeptide in Explicit Water Reproduced by the Force-Switching Wolf Method.

    PubMed

    Yonezawa, Yasushige; Fukuda, Ikuo; Kamiya, Narutoshi; Shimoyama, Hiromitsu; Nakamura, Haruki

    2011-05-10

    Precise and rapid calculation of long-range interactions is of crucial importance for molecular dynamics (MD) and Monte Carlo simulations. Instead of the Ewald method or its high speed variant, PME, we applied our novel method, called the force-switching Wolf method, to computation of the free energy landscapes of a short peptide in explicit water. Wolf and co-workers showed that long-range electrostatic energy under a periodic boundary condition can be well reproduced even by truncating the contribution from the distant charges, when the charge neutrality is taken into account. We recently applied the procedure proposed by Wolf and co-workers to a mathematically consistent MD theory by means of a force-switching scheme, and we show that the total electrostatic energy for sodium chloride liquid was well conserved and stable during the MD simulation with the force-switching Wolf method. Our current results for an aqueous peptide solution with a series of canonical and multicanonical molecular dynamics simulations show that the force-switching Wolf method is not only in good accordance with the energies and forces calculated by the conventional PME method but also properly reproduces the solvation and the free energy landscapes of the peptide at 300 K.

  19. Integrated force method - Compatibility conditions of structural mechanics for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.

    1991-01-01

    The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's, (2) the cluster or field CC's, and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown. The utilization of CC's has resulted in the novel integrated force method (IFM). The solution that is obtained by the IFM converges with a significantly fewer number of elements, compared to the stiffness and the hybrid methods.

  20. Vibrational energy levels of difluorodioxirane computed with variational and perturbative methods from a hybrid force field.

    PubMed

    Ramakrishnan, Raghunathan; Carrington, Tucker

    2014-02-05

    We have computed vibrational energy levels of difluorodioxirane (CF2O2). For the potential, a Taylor expansion in normal coordinates is used. The CCSD(T) and MP2 methods and correlation consistent basis sets of quadruple-zeta quality are used to determine the force constants. The vibrational Schrödinger equation was solved using both a variational method and second order perturbation theory. The Watson kinetic energy operator and a discrete variable representation were used with the DEWE (E. Mátyus, G. Czakó, B.T. Sutcliffe and A.G. Császár, J. Chem. Phys. 127 (2007) 084102) computer program to do the variational calculations. For the variational calculations, the average absolute deviation of fundamentals, with respect to experimental values, is less than 3 cm(-1). Perturbative results are almost as good. About 300 vibrational levels were computed. (16)O→(18)O isotopic shifts have also been calculated variationally for the lowest 75 vibrational energy levels and are compared to experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. A method for continuous monitoring of the Ground Reaction Force during daily activity

    NASA Technical Reports Server (NTRS)

    Whalen, Robert; Quintana, Jason; Emery, Jeff

    1993-01-01

    Theoretical models and experimental studies of bone remodeling have identified peak cyclic force levels (or cyclic tissue strain energy density), number of daily loading cycles, and load (strain) rate as possible contributors to bone modeling and remodeling stimulus. To test our theoretical model and further investigate the influence of mechanical forces on bone density, we have focused on the calcaneus as a model site loaded by calcaneal surface tractions which are predominantly determined by the magnitude of the external ground reaction force (GRF).

  2. Active Design Method for the Static Characteristics of a Piezoelectric Six-Axis Force/Torque Sensor

    PubMed Central

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2014-01-01

    To address the bottleneck issues of an elastic-style six-axis force/torque sensor (six-axis force sensor), this work proposes a no-elastic piezoelectric six-axis force sensor. The operating principle of the piezoelectric six-axis force sensor is analyzed, and a structural model is constructed. The static-active design theory of the piezoelectric six-axis force sensor is established, including a static analytical/mathematical model and numerical simulation model (finite element model). A piezoelectric six-axis force sensor experimental prototype is developed according to the analytical mathematical model and numerical simulation model, and selected static characteristic parameters (including sensitivity, isotropic degree and cross-coupling) are tested using this model with three approaches. The measured results are in agreement with the analytical results from the static-active design method. Therefore, this study has successfully established a foundation for further research into the piezoelectric multi-axis force sensor and an overall design approach based on static characteristics. PMID:24451460

  3. Effect of Ligation Method on Maxillary Arch Force/Moment Systems for a Simulated Lingual Incisor Malalignment

    PubMed Central

    Seru, Surbhi; Romanyk, Dan L; Toogood, Roger W; Carey, Jason P; Major, Paul W

    2014-01-01

    Introduction: The objectives of this study were to determine whether there is a difference in the magnitude of forces and moments produced by elastic ligation when compared to passive ligation, and whether these forces and moments propagate differently along the arch for the two ligation types. A lingual incisor malalignment was used in this study. Methods: The Orthodontic Simulator (OSIM) was used to quantify the three-dimensional forces and moments applied on the teeth given a lingually displaced incisor. A repeated measures MANOVA was performed to statistically analyze the data. Results: The interaction factor illustrated convincing evidence that there is a difference in maximum force and moment values for all outcome variables between ligation types considering all tooth positions along the arch. The mean differences for FX and FY between ligation types were found to be clinically significant, with values for elastic ligation consistently higher than passive ligation. Conclusion: It was found that the maximum forces and moments produced by elastic ligation are greater than those produced by passive ligation and that the magnitude of this difference for the mesiodistal and buccolingual forces is clinically relevant. Additionally, it was determined that elastic ligation causes forces and moments to propagate further along the arch than passive ligation for all outcome variables. PMID:25400715

  4. Evaluation of electric belt grill, forced-air convection oven, and electric broiler cookery methods for beef tenderness research.

    PubMed

    Lawrence, T E; King, D A; Obuz, E; Yancey, E J; Dikeman, M E

    2001-07-01

    Five muscles from USDA Select beef carcasses were cooked on an electric belt grill at three temperatures (93, 117, and 163°C), in a forced-air convection oven, and on an electric broiler to determine effects of cooking treatment and muscle on Warner-Bratzler shear force values, cooking traits (cooking loss, cooking time, and endpoint temperature), and repeatability of duplicate measurements. All cooking treatments allowed shear force differences to be detected (P<0.05) among the five muscles, although the differences were inconsistent. Neither longissimus lumborum nor semitendinosus shear values differed among the five cooking treatments; however, shear values for biceps femoris, deep pectoralis, and gluteus medius differed (P<0.05) among cooking treatments. Belt grill cooking resulted in the highest shear force repeatability (R=0.70 to 0.89) for the longissimus lumborum. All cooking methods provided acceptable repeatability (R⩾0.60) of shear values for the biceps femoris and semitendinosus. The electric broiler was the only cooking treatment that resulted in acceptable repeatability of shear force measurements for all five muscles. It is not recommended to use the gluteus medius to test treatment effects on shear force values. Belt grill or electric broiler cooking are recommended for shear force evaluations.

  5. A standardized method for measuring the force required to join wire harnesses and sparkplugs.

    PubMed

    Drinkaus, P; Armstrong, T; Foulke, J; Malone, G

    2010-07-01

    Understanding the forces required to insert a sparkplug wire (wire) onto a sparkplug (plug), independent of worker variation, is important for ergonomists, engineers, and designers. This paper describes a methodology for measuring the forces required to seat a wire onto a plug. A three-axis programmable mill was used to insert wires onto plugs mounted on a force transducer. Inflection points and slopes of the force-displacement curves were found to correspond to mechanical events as the plug and wire were joined. These events were further isolated by dissecting the wires to better understand the force contribution of each wire component. Liner superposition was then used to show that each of these force elements may be added to estimate the total force required to seat a wire onto a plug. This methodology may be used to quantify the effects of design choices, lubricants (wet and dry), and pre-working on axial insertion forces associated with sparkplugs and other insertions. This paper does not address worker abilities or variation, however, the methodology and equipment described may provide a foundation for the exploration of worker ability, variation and work techniques.

  6. Use of Special Operations Forces in United Nations Missions: a Method to Resolve Complexity

    DTIC Science & Technology

    2015-05-21

    his book Black Hawk Down asserted that the SOF forces in Somalia executed operations with such speed and authority...contribution of SOF to the conduct of peace operations? 43 Mark Bowden, Black Hawk Down: A...3, 1993, Task Force Ranger mounted one more mission to capture some of Aidid’s lieutenants, an episode now commonly referred to as Black Hawk Down

  7. Female Labour Force Participation in Developing Countries: A Critique of Current Definitions and Data Collection Methods.

    ERIC Educational Resources Information Center

    Anker, Richard

    1983-01-01

    This article discusses the difficulties involved in obtaining accurate labor force data for Third World women, from the point of view of interviewers, respondents, and labor statisticians or economists. Suggestions are then made regarding alternative definitions of the labor force and survey questionnaire structures in order to overcome some of…

  8. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOEpatents

    Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

    1999-03-09

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

  9. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOEpatents

    Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong

    1999-01-01

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  10. Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system.

    PubMed

    Hsieh, Hong-Jung; Hu, Chih-Chung; Lu, Tung-Wu; Lu, Hsuan-Lun; Kuo, Mei-Ying; Kuo, Chien-Chung; Hsu, Horng-Chaung

    2016-06-07

    Robot-based joint-testing systems (RJTS) can be used to perform unconstrained laxity tests, measuring the stiffness of a degree of freedom (DOF) of the joint at a fixed flexion angle while allowing the other DOFs unconstrained movement. Previous studies using the force-position hybrid (FPH) control method proposed by Fujie et al. (J Biomech Eng 115(3):211-7, 1993) focused on anterior/posterior tests. Its convergence and applicability on other clinically relevant DOFs such as valgus/varus have not been demonstrated. The current s1tudy aimed to develop a 6-DOF RJTS using an industrial robot, to propose two new force-position hybrid control methods, and to evaluate the performance of the methods and FPH in controlling the RJTS for anterior/posterior and valgus/varus laxity tests of the knee joint. An RJTS was developed using an industrial 6-DOF robot with a 6-component load-cell attached at the effector. The performances of FPH and two new control methods, namely force-position alternate control (FPA) and force-position hybrid control with force-moment control (FPHFM), for unconstrained anterior/posterior and valgus/varus laxity tests were evaluated and compared with traditional constrained tests (CT) in terms of the number of control iterations, total time and the constraining forces and moments. As opposed to CT, the other three control methods successfully reduced the constraining forces and moments for both anterior/posterior and valgus/varus tests, FPHFM being the best followed in order by FPA and FPH. FPHFM had root-mean-squared constraining forces and moments of less than 2.2 N and 0.09 Nm, respectively at 0° flexion, and 2.3 N and 0.14 Nm at 30° flexion. The corresponding values for FPH were 8.5 N and 0.33 Nm, and 11.5 N and 0.45 Nm, respectively. Given the same control parameters including the compliance matrix, FPHFM and FPA reduced the constraining loads of FPH at the expense of additional control iterations, and thus increased total time, FPA

  11. Prediction of forces and moments for flight vehicle control effectors. Part 1: Validation of methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.

    1990-01-01

    Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.

  12. An improved direct-forcing immersed boundary method for fluid-structure interaction of a flexible filament

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Zhu, Xiaojue

    2012-11-01

    We present an improved immersed boundary method for the simulation of fluid structure interaction (FSI) of a slender body. Our numerical method is based on the one proposed by Wang and Zhang (J. Comput. Phys. 30:3479-3499, 2011). Although an accurate prediction of total force can be achieved by using this method, unphysical spatial oscillation is observed in the force distribution. This oscillation is detrimental to the prediction of structure response in FSI. In this work, several modifications are made to improve this method. Firstly, the implicit forcing is replaced by an explicit forcing. Secondly, a more consistent way of computing each component of the forcing on a staggered mesh is proposed. Thirdly, for a slender body of zero thickness, the discrete delta-function with a ``negative-tail'' is adopted for the interpolation at the endpoints. Numerical simulations are performed to test the efficacy of the modifications. It is found that the measures taken successfully reduce the oscillation and the results obtained agree well with those from the literatures. This work was supported by NSFC 10872201.

  13. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  14. A method for myocardial contraction force reconstruction for tissue viability assessment

    NASA Astrophysics Data System (ADS)

    Linte, Cristian A.; Peters, Terry M.; Samani, Abbas

    2006-03-01

    Myocardial infarction results in myocardial necrosis, usually caused by an imbalance in the oxygen supply and demand to myocardial tissue. To our knowledge there is no technique that can provide quantitative direct information concerning the intensity, extent and location of the infarction. Contraction forces generated by cardiac tissues represent a quantitative and direct measure of the myocardial functionality, since it is expected that infarcted tissue generate little or no contraction force. Our objective is to develop a biomechanics based reconstruction technique to image myocardial contraction forces, for the purpose of assessing the viability of cardiac tissues. This technique is designed to reconstruct the contraction forces by inverting myocardial tissue displacement data acquired throughout heart beat cycles using conventional imaging techniques. Recognizing that myocardial contraction force distribution is 3D, we assumed an axisymmetric myocardial geometry to demonstrate the concept. With this assumption, the inversion algorithm was developed and implemented in 2D space. As a preliminary analysis, a simulation involving a 2D representation of myocardial wall tissue was carried out. The tissue was modeled as a homogeneous material with isotropic and linear elastic material properties. Assuming an axisymmetric contraction force distribution, a finite element analysis was performed on the tissue model, and a 2D displacement field was generated. The developed inversion algorithm was then employed to reconstruct the force distribution, which was ultimately compared to the original force field. The reconstruction error, estimated as the difference between the two force fields and normalized by the magnitude of the reference distribution, averaged to +/-10%. Results demonstrate that our myocardial contraction force reconstruction algorithm is reasonably accurate and robust.

  15. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence

    NASA Astrophysics Data System (ADS)

    Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.

    2015-04-01

    Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that

  16. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence

    SciTech Connect

    Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.

    2015-04-21

    Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that

  17. Pomeranchuk cell for hyperpolarized 3He based on the brute force method

    NASA Astrophysics Data System (ADS)

    Makino, Seiji; Tanaka, Masayoshi; Ueda, Kunihiro; Fujiwara, Mamoru; Fujimura, Hisako; Yosoi, Masaru; Ohta, Takeshi; Frossati, Giorgio; de Waard, Arlette; Rouille, Gerard

    2014-09-01

    MRI (Magnetic Resonance Imaging) has been used for the medical diagnosis as a radiation-free imaging equipment. Since the proton has been mainly used for medical MRI, usefulness has been rather restrictive. As an example for expanding the range of applicability, MRI with hyperpolarized 3He gas has been used for the lung disease. Here, ``hyperpolarized'' means ``polarized higher than the thermal equilibrium polarization.'' For producing a large amount of hyperpolarized 3He gas at a time, we have been developing a hyperpolarization technique based on the brute force method which uses an ultralow temperature of a few mK and a strong magnetic field around 17 T in combination with the principle of the Pomeranchuk cooling. The Pomeranchuk cell made with non-metallic materials of small heat capacity is attached to the 3He/4He dilution refrigerator using a sintered silver allowing large heat conduction. After the sensors to monitor the temperature and pressure of 3He are calibrated and the Pomeranchuk cell is constructed, the system is tested. Then, the solidification of 3He and the measurement of NMR (Nuclear Magnetic Resonance) signals of 3He under the magnetic field of 17 T are carried out. The current status is reported in this talk.

  18. Transition Metal Complexes of Naproxen: Synthesis, Characterization, Forced Degradation Studies, and Analytical Method Verification

    PubMed Central

    Hasan, Md. Sharif; Kayesh, Ruhul; Begum, Farida; Rahman, S. M. Abdur

    2016-01-01

    The aim of our current research was to synthesize some transition metal complexes of Naproxen, determine their physical properties, and examine their relative stability under various conditions. Characterizations of these complexes were done by 1H-NMR, Differential Scanning Calorimetry (DSC), FT-IR, HPLC, and scanning electron microscope (SEM). Complexes were subjected to acidic, basic, and aqueous hydrolysis as well as oxidation, reduction, and thermal degradation. Also the reversed phase high-performance liquid chromatography (RP-HPLC) method of Naproxen outlined in USP was verified for the Naproxen-metal complexes, with respect to accuracy, precision, solution stability, robustness, and system suitability. The melting points of the complexes were higher than that of the parent drug molecule suggesting their thermal stability. In forced degradation study, complexes were found more stable than the Naproxen itself in all conditions: acidic, basic, oxidation, and reduction media. All the HPLC verification parameters were found within the acceptable value. Therefore, it can be concluded from the study that the metal complexes of Naproxen can be more stable drug entity and offer better efficacy and longer shelf life than the parent Naproxen. PMID:27034891

  19. A comparison of force fields and calculation methods for vibration intervals of isotopic H3(+) molecules

    NASA Astrophysics Data System (ADS)

    Carney, G. D.; Adler-Golden, S. M.; Lesseski, D. C.

    1986-04-01

    This paper reports (1) improved values for low-lying vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) calculated using the variational method and Simons-Parr-Finlan (1973) representations of the Carney-Porter (1976) and Dykstra-Swope (1979) ab initio H3(+) potential energy surfaces, (2) quartic normal coordinate force fields for isotopic H3(+) molecules, (3) comparisons of variational and second-order perturbation theory, and (4) convergence properties of the Lai-Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) for these potential surfaces are 6.9 (Carney-Porter) and 1.2/cm (Dykstra-Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10/cm for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed 't' coordinate Hamiltonian for these molecules, except in the case of H2D(+).

  20. Measurement of the thermal diffusivity of liquids by the forced Rayleigh scattering method: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Nagasaka, Y.; Hatakeyama, T.; Okuda, M.; Nagashima, A.

    1988-07-01

    This article is devoted to the theory and experiment of the forced Rayleigh scattering method for measurement of thermal diffusivity of liquids which can be employed in the form of an instrument operated optically in a contact-free manner. The theoretical considerations included are: (1) effect of cell wall, (2) effect of dye, (3) effect of Gaussian beam intensity distribution, (4) effect of heating duration time, and (5) effect of coupled dye and wall for a heavily absorbing sample. The errors caused by inadequate setting of optical conditions are also analyzed: (1) effects of grating thickness and (2) effects of initial temperature amplitude. Experimental verifications of the theory have been carried out through the measurements on toluene and water as standard reference substances. As a result of these experiments and theory, the criteria for optimum measuring conditions became available. To demonstrate the applicability of the present theory and the apparatus, the thermal diffusivities of toluene and methanol have been measured near room temperature under atmospheric pressure. The accuracy of the present measurement is estimated to be ±3%.

  1. Acoustic radiation force impulse imaging of vulnerable plaques: a finite element method parametric analysis

    PubMed Central

    Doherty, Joshua R.; Dumont, Douglas M.; Trahey, Gregg E.; Palmeri, Mark L.

    2012-01-01

    Plaque rupture is the most common cause of complications such as stroke and coronary heart failure. Recent histopathological evidence suggests that several plaque features, including a large lipid core and a thin fibrous cap, are associated with plaques most at risk for rupture. Acoustic Radiation Force Impulse (ARFI) imaging, a recently developed ultrasound-based elasticity imaging technique, shows promise for imaging these features noninvasively. Clinically, this could be used to distinguish vulnerable plaques, for which surgical intervention may be required, from those less prone to rupture. In this study, a parametric analysis using Finite-Element Method (FEM) models was performed to simulate ARFI imaging of five different carotid artery plaques across a wide range of material properties. It was demonstrated that ARFI could resolve the softer lipid pool from the surrounding, stiffer media and fibrous cap and was most dependent upon the stiffness of the lipid pool component. Stress concentrations due to an ARFI excitation were located in the media and fibrous cap components. In all cases, the maximum Von Mises stress was < 1.2 kPa. In comparing these results with others investigating plaque rupture, it is concluded that while the mechanisms may be different, the Von Mises stresses imposed by ARFI are orders of magnitude lower than the stresses associated with blood pressure. PMID:23122224

  2. A comparison of reconstruction methods for undersampled atomic force microscopy images.

    PubMed

    Luo, Yufan; Andersson, Sean B

    2015-12-18

    Non-raster scanning and undersampling of atomic force microscopy (AFM) images is a technique for improving imaging rate and reducing the amount of tip-sample interaction needed to produce an image. Generation of the final image can be done using a variety of image processing techniques based on interpolation or optimization. The choice of reconstruction method has a large impact on the quality of the recovered image and the proper choice depends on the sample under study. In this work we compare interpolation through the use of inpainting algorithms with reconstruction based on optimization through the use of the basis pursuit algorithm commonly used for signal recovery in compressive sensing. Using four different sampling patterns found in non-raster AFM, namely row subsampling, spiral scanning, Lissajous scanning, and random scanning, we subsample data from existing images and compare reconstruction performance against the original image. The results illustrate that inpainting generally produces superior results when the image contains primarily low frequency content while basis pursuit is better when the images have mixed, but sparse, frequency content. Using support vector machines, we then classify images based on their frequency content and sparsity and, from this classification, develop a fast decision strategy to select a reconstruction algorithm to be used on subsampled data. The performance of the classification and decision test are demonstrated on test AFM images.

  3. A comparison of reconstruction methods for undersampled atomic force microscopy images

    NASA Astrophysics Data System (ADS)

    Luo, Yufan; Andersson, Sean B.

    2015-12-01

    Non-raster scanning and undersampling of atomic force microscopy (AFM) images is a technique for improving imaging rate and reducing the amount of tip-sample interaction needed to produce an image. Generation of the final image can be done using a variety of image processing techniques based on interpolation or optimization. The choice of reconstruction method has a large impact on the quality of the recovered image and the proper choice depends on the sample under study. In this work we compare interpolation through the use of inpainting algorithms with reconstruction based on optimization through the use of the basis pursuit algorithm commonly used for signal recovery in compressive sensing. Using four different sampling patterns found in non-raster AFM, namely row subsampling, spiral scanning, Lissajous scanning, and random scanning, we subsample data from existing images and compare reconstruction performance against the original image. The results illustrate that inpainting generally produces superior results when the image contains primarily low frequency content while basis pursuit is better when the images have mixed, but sparse, frequency content. Using support vector machines, we then classify images based on their frequency content and sparsity and, from this classification, develop a fast decision strategy to select a reconstruction algorithm to be used on subsampled data. The performance of the classification and decision test are demonstrated on test AFM images.

  4. An Unroofing Method to Observe the Cytoskeleton Directly at Molecular Resolution Using Atomic Force Microscopy

    PubMed Central

    Usukura, Eiji; Narita, Akihiro; Yagi, Akira; Ito, Shuichi; Usukura, Jiro

    2016-01-01

    An improved unroofing method enabled the cantilever of an atomic force microscope (AFM) to reach directly into a cell to visualize the intracellular cytoskeletal actin filaments, microtubules, clathrin coats, and caveolae in phosphate-buffered saline (PBS) at a higher resolution than conventional electron microscopy. All of the actin filaments clearly exhibited a short periodicity of approximately 5–6 nm, which was derived from globular actins linked to each other to form filaments, as well as a long helical periodicity. The polarity of the actin filaments appeared to be determined by the shape of the periodic striations. Microtubules were identified based on their thickness. Clathrin coats and caveolae were observed on the cytoplasmic surface of cell membranes. The area containing clathrin molecules and their terminal domains was directly visualized. Characteristic ridge structures located at the surface of the caveolae were observed at high resolution, similar to those observed with electron microscopy (EM). Overall, unroofing allowed intracellular AFM imaging in a liquid environment with a level of quality equivalent or superior to that of EM. Thus, AFMs are anticipated to provide cutting-edge findings in cell biology and histology. PMID:27273367

  5. Physically weighted approximations of unsteady aerodynamic forces using the minimum-state method

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay; Hoadley, Sherwood Tiffany

    1991-01-01

    The Minimum-State Method for rational approximation of unsteady aerodynamic force coefficient matrices, modified to allow physical weighting of the tabulated aerodynamic data, is presented. The approximation formula and the associated time-domain, state-space, open-loop equations of motion are given, and the numerical procedure for calculating the approximation matrices, with weighted data and with various equality constraints are described. Two data weighting options are presented. The first weighting is for normalizing the aerodynamic data to maximum unit value of each aerodynamic coefficient. The second weighting is one in which each tabulated coefficient, at each reduced frequency value, is weighted according to the effect of an incremental error of this coefficient on aeroelastic characteristics of the system. This weighting yields a better fit of the more important terms, at the expense of less important ones. The resulting approximate yields a relatively low number of aerodynamic lag states in the subsequent state-space model. The formulation forms the basis of the MIST computer program which is written in FORTRAN for use on the MicroVAX computer and interfaces with NASA's Interaction of Structures, Aerodynamics and Controls (ISAC) computer program. The program structure, capabilities and interfaces are outlined in the appendices, and a numerical example which utilizes Rockwell's Active Flexible Wing (AFW) model is given and discussed.

  6. MIST - MINIMUM-STATE METHOD FOR RATIONAL APPROXIMATION OF UNSTEADY AERODYNAMIC FORCE COEFFICIENT MATRICES

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1994-01-01

    Various control analysis, design, and simulation techniques of aeroservoelastic systems require the equations of motion to be cast in a linear, time-invariant state-space form. In order to account for unsteady aerodynamics, rational function approximations must be obtained to represent them in the first order equations of the state-space formulation. A computer program, MIST, has been developed which determines minimum-state approximations of the coefficient matrices of the unsteady aerodynamic forces. The Minimum-State Method facilitates the design of lower-order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena such as the outboard-wing acceleration response to gust velocity. Engineers using this program will be able to calculate minimum-state rational approximations of the generalized unsteady aerodynamic forces. Using the Minimum-State formulation of the state-space equations, they will be able to obtain state-space models with good open-loop characteristics while reducing the number of aerodynamic equations by an order of magnitude more than traditional approaches. These low-order state-space mathematical models are good for design and simulation of aeroservoelastic systems. The computer program, MIST, accepts tabular values of the generalized aerodynamic forces over a set of reduced frequencies. It then determines approximations to these tabular data in the LaPlace domain using rational functions. MIST provides the capability to select the denominator coefficients in the rational approximations, to selectably constrain the approximations without increasing the problem size, and to determine and emphasize critical frequency ranges in determining the approximations. MIST has been written to allow two types data weighting options. The first weighting is a traditional normalization of the aerodynamic data to the maximum unit value of each aerodynamic coefficient. The second allows weighting the

  7. Long-Time Convergence of an Adaptive Biasing Force Method: The Bi-Channel Case

    NASA Astrophysics Data System (ADS)

    Lelièvre, T.; Minoukadeh, K.

    2011-10-01

    We present convergence results for an adaptive algorithm to compute free energies, namely the adaptive biasing force (ABF) method (D arve and P ohorille in J Chem Phys 115(20):9169-9183, 2001; H énin and C hipot in J Chem Phys 121:2904, 2004). The free energy is the effective potential associated to a so-called reaction coordinate ξ( q), where q = ( q 1, … , q 3 N ) is the position vector of an N-particle system. Computing free energy differences remains an important challenge in molecular dynamics due to the presence of metastable regions in the potential energy surface. The ABF method uses an on-the-fly estimate of the free energy to bias dynamics and overcome metastability. Using entropy arguments and logarithmic Sobolev inequalities, previous results have shown that the rate of convergence of the ABF method is limited by the metastable features of the canonical measures conditioned to being at fixed values of ξ (L elièvre et al. in Nonlinearity 21(6):1155-1181, 2008). In this paper, we present an improvement on the existing results in the presence of such metastabilities, which is a generic case encountered in practice. More precisely, we study the so-called bi-channel case, where two channels along the reaction coordinate direction exist between an initial and final state, the channels being separated from each other by a region of very low probability. With hypotheses made on `channel-dependent' conditional measures, we show on a bi-channel model, which we introduce, that the convergence of the ABF method is, in fact, not limited by metastabilities in directions orthogonal to ξ under two crucial assumptions: (i) exchange between the two channels is possible for some values of ξ and (ii) the free energy is a good bias in each channel. This theoretical result supports recent numerical experiments (M inoukadeh et al. in J Chem Theory Comput 6:1008-1017, 2010), where the efficiency of the ABF approach is demonstrated for such a multiple-channel situation.

  8. Local Viscoelastic Properties of Live Cells Investigated Using Dynamic and Quasi-Static Atomic Force Microscopy Methods

    PubMed Central

    Cartagena, Alexander; Raman, Arvind

    2014-01-01

    The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estimated from such dynamic and traditional quasi-static techniques are poorly understood. In this work we quantitatively reconstruct the local force and dissipation gradients (viscoelasticity) on live fibroblast cells in buffer solutions using Lorentz force excited cantilevers and present a careful comparison between mechanical properties (local stiffness and damping) extracted using dynamic and quasi-static force spectroscopy methods. The results highlight the dependence of measured viscoelastic properties on both the frequency at which the chosen technique operates as well as the interactions with subcellular components beyond certain indentation depth, both of which are responsible for differences between the viscoelasticity property maps acquired using the dynamic AFM method against the quasi-static measurements. PMID:24606928

  9. Force-extension curves for broken-rod macromolecules: Dramatic effects of different probing methods for two and three rods

    SciTech Connect

    Alexeev, A. V.; Maltseva, D. V.; Ivanov, V. A.; Klushin, L. I.; Skvortsov, A. M.

    2015-04-28

    We study force-extension curves of a single semiflexible chain consisting of several rigid rods connected by flexible spacers. The atomic force microscopy and laser optical or magnetic tweezers apparatus stretching these rod-coil macromolecules are discussed. In addition, the stretching by external isotropic force is analyzed. The main attention is focused on computer simulation and analytical results. We demonstrate that the force-extension curves for rod-coil chains composed of two or three rods of equal length differ not only quantitatively but also qualitatively in different probe methods. These curves have an anomalous shape for a chain of two rods. End-to-end distributions of rod-coil chains are calculated by Monte Carlo method and compared with analytical equations. The influence of the spacer’s length on the force-extension curves in different probe methods is analyzed. The results can be useful for interpreting experiments on the stretching of rod-coil block-copolymers.

  10. Improving lateral resolution of electrostatic force microscopy by multifrequency method under ambient conditions

    NASA Astrophysics Data System (ADS)

    Ding, X. D.; An, J.; Xu, J. B.; Li, C.; Zeng, R. Y.

    2009-06-01

    A multifrequency scanning probe technique which can enhance the spatial resolution of electrostatic force microscopy (EFM) in amplitude-modulation mode under ambient conditions is demonstrated. The first eigenmode of a cantilever is used for topographic imaging, while the second eigenmode is resonantly excited with a sinusoidal modulation voltage applied to the cantilever to measure electrostatic force in lift mode. Two-dimensional images and spectra of electrostatic force are obtained. The lateral resolution of the multifrequency EFM is demonstrated to be better than 15 nm and a theoretical explanation is postulated.

  11. An Improved Calibration Method for Hydrazine Monitors for the United States Air Force

    SciTech Connect

    Korsah, K

    2003-07-07

    This report documents the results of Phase 1 of the ''Air Force Hydrazine Detector Characterization and Calibration Project''. A method for calibrating model MDA 7100 hydrazine detectors in the United States Air Force (AF) inventory has been developed. The calibration system consists of a Kintek 491 reference gas generation system, a humidifier/mixer system which combines the dry reference hydrazine gas with humidified diluent or carrier gas to generate the required humidified reference for calibrations, and a gas sampling interface. The Kintek reference gas generation system itself is periodically calibrated using an ORNL-constructed coulometric titration system to verify the hydrazine concentration of the sample atmosphere in the interface module. The Kintek reference gas is then used to calibrate the hydrazine monitors. Thus, coulometric titration is only used to periodically assess the performance of the Kintek reference gas generation system, and is not required for hydrazine monitor calibrations. One advantage of using coulometric titration for verifying the concentration of the reference gas is that it is a primary standard (if used for simple solutions), thereby guaranteeing, in principle, that measurements will be traceable to SI units (i.e., to the mole). The effect of humidity of the reference gas was characterized by using the results of concentrations determined by coulometric titration to develop a humidity correction graph for the Kintek 491 reference gas generation system. Using this calibration method, calibration uncertainty has been reduced by 50% compared to the current method used to calibrate hydrazine monitors in the Air Force inventory and calibration time has also been reduced by more than 20%. Significant findings from studies documented in this report are the following: (1) The Kintek 491 reference gas generation system (generator, humidifier and interface module) can be used to calibrate hydrazine detectors. (2) The Kintek system output

  12. An improved method to determine neuromuscular properties using force laws - From single muscle to applications in human movements.

    PubMed

    Siebert, T; Sust, M; Thaller, S; Tilp, M; Wagner, H

    2007-04-01

    We evaluate an improved method for individually determining neuromuscular properties in vivo. The method is based on Hill's equation used as a force law combined with Newton's equation of motion. To ensure the range of validity of Hill's equation, we first perform detailed investigations on in vitro single muscles. The force-velocity relation determined with the model coincides well with results obtained by standard methods (r=.99) above 20% of the isometric force. In addition, the model-predicted force curves during work loop contractions very well agree with measurements (mean difference: 2-3%). Subsequently, we deduce theoretically under which conditions it is possible to combine several muscles of the human body to model muscles. This leads to a model equation for human leg extension movements containing parameters for the muscle properties and for the activation. To numerically determine these invariant neuromuscular properties we devise an experimental method based on concentric and isometric leg extensions. With this method we determine individual muscle parameters from experiments such that the simulated curves agree well with experiments (r=.99). A reliability test with 12 participants revealed correlations r=.72-.91 for the neuromuscular parameters (p<.01). Predictions of similar movements under different conditions show mean errors of about 5%. In addition, we present applications in sports practise and theory.

  13. Direct measurement of cell detachment force on single cells using a new electromechanical method.

    PubMed

    Francis, G W; Fisher, L R; Gamble, R A; Gingell, D

    1987-05-01

    We describe a new device in which an accurately measured force is applied to individual adherent cells while the topography of the adhesion zone is simultaneously monitored. The force is applied via a flexible glass micropipette, attached by suction to the cell under study, and is calculated directly from the measured pipette deflection. Regions of close contact in the adhesion zone are observed using interference reflection microscopy. We have used the device to measure the force required to detach human red blood cells from hydrophobic and hydrophilic glass surfaces, and to detach Dictyostelium discoideum amoebae from a hydrophobic glass surface. The measured forces per unit length of contact perimeter are within an order of magnitude of the tensions required for membrane rupture.

  14. A new method to assess temporal features of gait initiation with a single force plate.

    PubMed

    Moineau, Bastien; Boisgontier, Matthieu P; Barbieri, Guillaume; Nougier, Vincent

    2014-01-01

    The aim of this study was to investigate whether time of toe-off and heel-contact during gait initiation could be assessed with a single force plate. Twenty subjects performed ten self-paced gait initiations and seven other subjects performed ten gait initiations in four new conditions (slow, fast, obstacle and splint). Several force-plate parameters were measured with a single force plate, and actual toe-off and heel-contact were assessed with a motion analysis system. Results showed strong temporal correlations and closeness (r=.86-.99, mean error=3-86 ms) between two force-plate parameters and the kinematics events (toe-off and heel-contact). These new parameters may be of interest to easily measure duration of anticipatory postural adjustments and swing phase during clinical assessments.

  15. A flexible tactile sensor calibration method based on an air-bearing six-dimensional force measurement platform

    NASA Astrophysics Data System (ADS)

    Huang, Bin

    2015-07-01

    A number of common issues related to the process of flexible tactile sensor calibration are discussed in this paper, and an estimate of the accuracy of classical calibration methods, as represented by a weight-pulley device, is presented. A flexible tactile sensor calibration method that is based on a six-dimensional force measurement is proposed on the basis of a theoretical analysis. A high-accuracy flexible tactile sensor calibration bench based on the air-bearing six-dimensional force measurement principle was developed to achieve a technically challenging measurement accuracy of 2% full scale (FS) for three-dimensional (3D) flexible tactile sensor calibration. The experimental results demonstrate that the accuracy of the air-bearing six-dimensional force measurement platform can reach 0.2% FS. Thus, the system satisfies the 3D flexible tactile sensor calibration requirement of 2% FS.

  16. A flexible tactile sensor calibration method based on an air-bearing six-dimensional force measurement platform.

    PubMed

    Huang, Bin

    2015-07-01

    A number of common issues related to the process of flexible tactile sensor calibration are discussed in this paper, and an estimate of the accuracy of classical calibration methods, as represented by a weight-pulley device, is presented. A flexible tactile sensor calibration method that is based on a six-dimensional force measurement is proposed on the basis of a theoretical analysis. A high-accuracy flexible tactile sensor calibration bench based on the air-bearing six-dimensional force measurement principle was developed to achieve a technically challenging measurement accuracy of 2% full scale (FS) for three-dimensional (3D) flexible tactile sensor calibration. The experimental results demonstrate that the accuracy of the air-bearing six-dimensional force measurement platform can reach 0.2% FS. Thus, the system satisfies the 3D flexible tactile sensor calibration requirement of 2% FS.

  17. Comparison of retention forces with various fabrication methods and materials in double crowns.

    PubMed

    Çelik Güven, Melahat; Tuna, Meral; Bozdağ, Ergun; Öztürk, Gizem Nur; Bayraktar, Gulsen

    2017-08-01

    The purpose of this study was to analyze the retention force changes and wear behaviours of double-crown systems over long-term use. Ten groups, each consisting of six samples, were evaluated. Specifically, casting gold alloy primary crown - casting gold alloy secondary crown (AA), laser sintering primary crown - laser sintering secondary crown (LL), casting Cr alloy primary crown - casting Cr alloy secondary crown, (CC) zirconia primary crown - electroformed secondary crown (ZA), and CAD/CAM titanium alloy primary crown - CAD/CAM titanium alloy secondary crown (TT) groups were evaluated at cone angles of 4° and 6°. The samples were subjected to 5,000 insertion-separation cycles in artificial saliva, and the retention forces were measured every 500 cycles. The wear levels were analyzed via SEM at the beginning and end of the 5,000 cycles. In all samples, the retention forces increased when the conus angle decreased. The highest initial and final retention force values were found in the LL-4° group (32.89 N-32.65 N), and the lowest retention force values were found in the ZA6° group (5.41 N-6.27 N). The ZA groups' samples showed the least change in the retention force, and no wear was observed. In the other groups, wear was observed mostly in the primary crowns. More predictable, clinically relevant, and less excursive retention forces can be observed in the ZA groups. The retention force values of the LL groups were statically similar to those of the other groups, except the ZA groups.

  18. Woodstove for heated air forced into a secondary combustion chamber and method of operating same

    SciTech Connect

    Hall, R.E.; Spolek, G.A.; Wasser, J.H.; Butts, N.L.

    1991-04-16

    This patent describes a woodstove comprising a primary combustion chamber for receiving a load of wood fuel, a secondary combustion chamber in fluid flow relation with the primary chamber, fan means for forcing air from outside the woodstove into the secondary chamber, the air from outside the woodstove forced into the secondary chamber being heated prior to entering the secondary chamber, and means for controlling the fan means in response to the temperature of gases in the secondary chamber.

  19. Integrated Planning for the Air Force Senior Leader Workforce. Background and Methods

    DTIC Science & Technology

    2005-01-01

    Matters Office AFSLMO Air Force Senior Leader Management Office C2ISR command, control, intelligence, surveillance, and reconnaissance CMDB Command...as follows, using proxies available in the Air Force’s Command Manpower Data Base ( CMDB ). 2 Size. Organizational size was defined as the number of...organization. 2 For the analysis reported here, we used the CMDB as of the end of FY 2002. 3 Given the wide variations found in organizational sizes, we

  20. Image method in the calculation of the van der Waals force between an atom and a conducting surface

    NASA Astrophysics Data System (ADS)

    de Melo e Souza, Reinaldo; Kort-Kamp, W. J. M.; Sigaud, C.; Farina, C.

    2013-05-01

    After a brief survey of van der Waals forces, we review a method recently proposed by Eberlein and Zietal to compute the dispersion van der Waals interaction between a neutral but polarizable atom and a perfectly conducting surface of arbitrary shape. This method has the advantage of relating the quantum problem to a corresponding classical one in electrostatics in an enlightening way so that all one needs is to compute an appropriate Green function. We show how the image method of electrostatics can be conveniently used together with the Eberlein and Zietal method (when the image solution is known). We then illustrate this method in some simple but important cases, including the atom-sphere system. Finally, we present an original result for the van der Waals force between an atom and a boss hat made of a grounded conducting material.

  1. A method of measuring finger force with the Kin-Com dynamometer.

    PubMed

    Kondo, I; Fukuda, M; Souma, M; Oda, A; Iwata, M; Saito, S; Bar-Or, O

    1999-01-01

    The purpose of this study was to determine whether the force of a finger could be measured with a new system based on an attachment to the Kin-Com dynamometer, and to define the reproducibility of the finger force measurement. Eleven male subjects (age, 27.6 +/- 6.12 years) took part. All were free of orthopedic problems in the tested hand. Mean forces of the index and little finger for concentric and eccentric motion were measured using the new system. Overall coefficients of variation (OCVs) were calculated as an index of reproducibility. The reproducibility of force curves was considered good when an OCV was less than 20%. The OCVs for mean force of the index finger and for eccentric motion of the little finger were less than the 20% standard, at 10.7 and 14.0, respectively. The OCV for concentric motion of the little finger was greater than 20%. The findings suggest that measurement of finger force is feasible with the new Kin-Com attachment.

  2. A new method to include the gravitational forces in a finite element model of the scoliotic spine.

    PubMed

    Clin, Julien; Aubin, Carl-Éric; Lalonde, Nadine; Parent, Stefan; Labelle, Hubert

    2011-08-01

    The distribution of stresses in the scoliotic spine is still not well known despite its biomechanical importance in the pathomechanisms and treatment of scoliosis. Gravitational forces are one of the sources of these stresses. Existing finite element models (FEMs), when considering gravity, applied these forces on a geometry acquired from radiographs while the patient was already subjected to gravity, which resulted in a deformed spine different from the actual one. A new method to include gravitational forces on a scoliotic trunk FEM and compute the stresses in the spine was consequently developed. The 3D geometry of three scoliotic patients was acquired using a multi-view X-ray 3D reconstruction technique and surface topography. The FEM of the patients' trunk was created using this geometry. A simulation process was developed to apply the gravitational forces at the centers of gravity of each vertebra level. First the "zero-gravity" geometry was determined by applying adequate upwards forces on the initial geometry. The stresses were reset to zero and then the gravity forces were applied to compute the geometry of the spine subjected to gravity. An optimization process was necessary to find the appropriate zero-gravity and gravity geometries. The design variables were the forces applied on the model to find the zero-gravity geometry. After optimization the difference between the vertebral positions acquired from radiographs and the vertebral positions simulated with the model was inferior to 3 mm. The forces and compressive stresses in the scoliotic spine were then computed. There was an asymmetrical load in the coronal plane, particularly, at the apices of the scoliotic curves. Difference of mean compressive stresses between concavity and convexity of the scoliotic curves ranged between 0.1 and 0.2 MPa. In conclusion, a realistic way of integrating gravity in a scoliotic trunk FEM was developed and stresses due to gravity were explicitly computed. This is a

  3. Accuracies of southwell and force/stiffness methods in the prediction of buckling strength of hypersonic aircraft wing tubular panels

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1987-01-01

    Accuracies of the Southwell method and the force/stiffness (F/S) method are examined when the methods were used in the prediction of buckling loads of hypersonic aircraft wing tubular panels, based on nondestructive buckling test data. Various factors affecting the accuracies of the two methods were discussed. Effects of load cutoff point in the nondestructive buckling tests on the accuracies of the two methods were discussed in great detail. For the tubular panels under pure compression, the F/S method was found to give more accurate buckling load predictions than the Southwell method, which excessively overpredicts the buckling load. It was found that the Southwell method required a higher load cutoff point, as compared with the F/S method. In using the F/S method for predicting the buckling load of tubular panels under pure compression, the load cutoff point of approximately 50 percent of the critical load could give reasonably accurate predictions.

  4. Effects of Hip Implant Modular Neck Material and Assembly Method on Fatigue Life and Distraction Force.

    PubMed

    Aljenaei, Fahad; Catelas, Isabelle; Louati, Hakim; Beaulé, Paul E; Nganbe, Michel

    2016-11-16

    Hip implant neck fractures and adverse tissue reactions associated with fretting-corrosion damage at modular interfaces are a major source of concern. Therefore, there is an urgent clinical need to develop accurate in vitro test procedures to better understand, predict, and prevent in vivo implant failures. This study aimed to simulate in vivo fatigue fracture and distraction of modular necks in an in vitro setting, and to assess the effects of neck material (Ti6Al4V vs. CoCrMo) and assembly method (hand vs. impact) on the fatigue life and distraction of the necks. Fatigue tests were performed on the cementless PROFEMUR® Total Hip Modular Neck System under two different loads and number of cycles: 2.3 kN for 5 million cycles, and 7.0 kN for 1.3 million cycles. The developed in vitro simulation setup successfully reproduced in vivo modular neck fracture mode and location. Neck failure occurred at the neck-stem taper and the fracture ran from the distal lateral neck surface to the proximal medial entry point of the neck into the stem. None of the necks failed under the 2.3 kN load. However, all hand-assembled Ti6Al4V necks failed under the 7.0 kN load. In contrast, none of the hand-assembled CoCrMo necks and impact-assembled necks (Ti6Al4V or CoCrMo) failed under this higher load. In conclusion, Ti6Al4V necks were more susceptible to fatigue failure than CoCrMo necks. In addition, impact assembly substantially improved the fatigue life of Ti6Al4V necks and also led to overall higher distraction forces for both neck materials. Overall, this study shows that the material and assembly method can affect the fatigue strength of modular necks. Finally, improper implant assembly during surgery may result in diminished modular neck survivability and increased failure rates. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  5. Implementation of a Serial Replica Exchange Method in a Physics-Based United-Residue (UNRES) Force Field.

    PubMed

    Shen, Hujun; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A

    2008-08-01

    The kinetic-trapping problem in simulating protein folding can be overcome by using a Replica Exchange Method (REM). However, in implementing REM in molecular dynamics simulations, synchronization between processors on parallel computers is required, and communication between processors limits its ability to sample conformational space in a complex system efficiently. To minimize communication between processors during the simulation, a Serial Replica Exchange Method (SREM) has been proposed recently by Hagan et al. (J. Phys. Chem. B2007, 111, 1416-1423). Here, we report the implementation of this new SREM algorithm with our physics-based united-residue (UNRES) force field. The method has been tested on the protein 1E0L with a temperature-independent UNRES force field and on terminally blocked deca-alanine (Ala(10)) and 1GAB with the recently introduced temperature-dependent UNRES force field. With the temperature-independent force field, SREM reproduces the results of REM but is more efficient in terms of wall-clock time and scales better on distributed-memory machines. However, exact application of SREM to the temperature-dependent UNRES algorithm requires the determination of a four-dimensional distribution of UNRES energy components instead of a one-dimensional energy distribution for each temperature, which is prohibitively expensive. Hence, we assumed that the temperature dependence of the force field can be ignored for neighboring temperatures. This version of SREM worked for Ala(10) which is a simple system but failed to reproduce the thermodynamic results as well as regular REM on the more complex 1GAB protein. Hence, SREM can be applied to the temperature-independent but not to the temperature-dependent UNRES force field.

  6. Muscle force and muscle torque in humans require different methods when adjusting for differences in body size.

    PubMed

    Jaric, Slobodan; Radosavljevic-Jaric, Snezana; Johansson, Hakan

    2002-07-01

    Different methods for adjusting muscle strength ( S) to normalise for differences in various estimates of body size [such as body mass ( m) or, infrequently, some other anthropometrical measurements] have been either proposed or applied when presenting the results of muscle function tests in various medical, ergonomic, and sport related studies. However, the fact that the relationship between S and body size may differ when muscle torque (measured using a standard isokinetic apparatus) and muscle force (measured using a dynamometer) are recorded has not been taken into account. To address this problem, we tested both muscle force and muscle torque under isometric conditions in six different muscle groups. The relationship assumed between S and m was S=k.m(b) and, according to a simple mechanical model based on geometrical similarity we developed, the exponential parameter b would be expected to equal 1.00 and 0.67 for torque and force, respectively. The experimentally obtained values for the parameter b were higher for muscle torque than for muscle force in five out of the six muscle groups tested ( P=0.068; Wilcoxon matched pairs test). Despite a relatively wide scatter, the mean (SD) values were also close to those predicted, being b=0.67 (0.19) (corresponding to the allometric scaling method) and b=1.02 (0.34) (corresponding to the ratio standards method) for muscle force and for muscle torque, respectively. Therefore, we concluded that the ratio standards and allometric scaling should be employed to adjust S for body size when muscle torque and muscle force, respectively, are tested.

  7. Pork tenderness estimation by taste panel, Warner-Bratzler shear force and on-line methods.

    PubMed

    Van Oeckel, M J; Warnants, N; Boucqué, C V

    1999-12-01

    The extent to which modification of Warner-Bratzler shear force (WBSF) determinations, relating to storage and preparation of the meat, aperture of the V-shaped cutting blade and shearing velocity, improve the relationship with sensory tenderness perception of pork was studied. Additionally four on-line methods: pH1, FOP1 (light scattering), PQM1 (conductivity) and DDLT (Double Density Light Transmission), were evaluated for their ability to predict tenderness. Sensory tenderness evaluation was conducted on 120 frozen (at -18°C for several months) samples of m. longissimus thoracis et lumborum. After overnight thawing, the meat was grilled to an internal temperature of 74°C and scored on an eight-point scale, from extremely tough to extremely tender. The standard WBSF procedure (protocol A) consisted of heating fresh meat samples (stored for 48 h at 4°C post slaughter) at 75°C for 50 min, cooling in cold tap water for 40 min, taking cylindrical cores parallel to the fibre direction, and shearing at a velocity of 200 mm/min with a blade aperture of 60°. For the prediction of sensory tenderness, the WBSF standard procedure (protocol A) showed the lowest variance (R(2)=15%) and the highest standard error of the estimate (SEE=0.97 N) compared to the other WBSF protocols. A decrease in shearing velocity, from 200 to 100 mm/min and, a replacement of the cutting blade with an aperture of 60° by one with an aperture of 30° led to improvements of R(2) (respectively, 19% vs. 13% and 47% vs. 23%) and SEE (respectively, 0.93 N vs. 0.97 N and 0.80 N vs. 0.97 N) and thus were better predictors of tenderness. A blade aperture of 30° instead of 60° also led to considerably lower WBSF values (22.1 N vs. 30.0 N). Freezing, frozen storage and thawing of the meat, prior to WBSF measurement, resulted in higher shear force values (32.7 N vs. 28.7 N) and a better prediction of tenderness, R(2) (25% vs. 15%) and SEE (0.94 N vs. 1.00 N). Furthermore, preparing the frozen stored

  8. Development of the method of an electrohydrodynamic force effect on a boundary layer for active control of aerodynamic flows

    NASA Astrophysics Data System (ADS)

    Aleshin, B. S.; Khomich, V. Yu.; Chernyshev, S. L.

    2016-12-01

    The results of investigations on the possibility of an electrohydrodynamic force effect on a gas flow implemented with the help of a barrier discharge are presented. A new method of controlling the laminar flow around a base with suppression of instabilities of the incoming flow due to electrohydrodynamic force action on the boundary layer near the forward edge of a swept wing is proposed. An efficient multidischarge actuator system is developed and created for active control of aerodynamic flows with induced-air-flow characteristics exceeding the world analogues.

  9. Full nonlinear treatment of the global thermospheric wind system. Part 1: Mathematical method and analysis of forces

    NASA Technical Reports Server (NTRS)

    Blum, P. W.; Harris, I.

    1973-01-01

    The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all the nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In part 1 the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analysed.

  10. Forces in bolted joints: analysis methods and test results utilized for nuclear core applications (LWBR Development Program)

    SciTech Connect

    Crescimanno, P.J.; Keller, K.L.

    1981-03-01

    Analytical methods and test data employed in the core design of bolted joints for the LWBR core are presented. The effects of external working loads, thermal expansion, and material stress relaxation are considered in the formulation developed to analyze joint performance. Extensions of these methods are also provided for bolted joints having both axial and bending flexibilities, and for the effect of plastic deformation on internal forces developed in a bolted joint. Design applications are illustrated by examples.

  11. Method and Apparatus for the Quantification of Particulate Adhesion Forces on Various Substrates

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Atkins, Brad M.; Connell, John W.

    2011-01-01

    Mitigation strategies for lunar dust adhesion have typically been limited to qualitative analysis. This technical memorandum describes the generation and operation of an adhesion testing device capable of quantitative assessment of adhesion forces between particulates and substrates. An aerosolization technique is described to coat a surface with a monolayer of particulates. Agitation of this surface, via sonication, causes particles to dislodge and be gravitationally fed into an optical particle counter. Experimentally determined adhesion force values are compared to forces calculated from van der Waals interactions and are used to calculate the work of adhesion using Johnson-Kendall-Roberts (JKR) theory. Preliminary results indicate that a reduction in surface energy and available surface area, through topographical modification, improve mitigation of particulate adhesion.

  12. Method and apparatus for hybrid position/force control of multi-arm cooperating robots

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A. (Inventor)

    1989-01-01

    Two or more robotic arms having end effectors rigidly attached to an object to be moved are disclosed. A hybrid position/force control system is provided for driving each of the robotic arms. The object to be moved is represented as having a total mass that consists of the actual mass of the object to be moved plus the mass of the moveable arms that are rigidly attached to the moveable object. The arms are driven in a positive way by the hybrid control system to assure that each arm shares in the position/force applied to the object. The burden of actuation is shared by each arm in a non-conflicting way as the arm independently control the position of, and force upon, a designated point on the object.

  13. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining

    PubMed Central

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-01-01

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing. PMID:27854322

  14. A method for quantifying the force dependence of initiation by T7 RNA polymerase

    NASA Astrophysics Data System (ADS)

    Kalafut, Bennett S.; Skinner, Gary M.; Visscher, Koen

    2009-08-01

    To access the genetic code to be transcribed to RNA, RNA polymerases must first open a "transcription bubble" in the DNA. Structural studies suggest that the minimal model of initiation by T7 bacterophage RNA polymerase (T7 RNAP) consists of two distinct steps: initial binding, in which the T7 RNAP binds to and bends the DNA, and opening, achieved by "scrunching" of the DNA. Since both steps involve mechanical deformation of the DNA, both may be affected by downstream DNA tension. Using an oscillating two-bead optical tweezers assay, we have measured the lifetime of single T7 RNAP-DNA initation complexes under tension. Global maximumlikelihood fitting of force-dependent and non-force-dependent versions of this minimal model shows that there is no conclusively discernible force-dependence of initiation in the measured 0-2 pN DNA tension range.

  15. Friction force microscopy as an alternative method to probe molecular interactions

    NASA Astrophysics Data System (ADS)

    Lekka, Małgorzata; Kulik, Andrzej J.; Jeney, Sylvia; Raczkowska, Joanna; Lekki, Janusz; Budkowski, Andrzej; Forró, László

    2005-07-01

    Friction force microscopy was applied to study protein-carbohydrate interactions that are important in many cellular recognition processes. The expression and structure of carbohydrates can be investigated using lectins as molecular probes since they recognize different types of sugar molecules. Lectins (concanavalin A and lentil lectin, recognizing mannose-type carbohydrates) were attached to the probing tip and carboxypeptidase Y (possessing complementary carbohydrates) was immobilized on a modified glass surface using microcontact printing. The results obtained from friction force maps and dependencies on the loading rate (measured in a physiological buffer) were divided in two distinct groups. The first group of results obtained for lectin-protein complexes was assigned to molecular recognition events, whereas the other including all control measurements was attributed to nonspecific interaction. All results presented here indicate that friction force microscopy can be successfully employed to study recognition processes.

  16. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.

    PubMed

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-11-16

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  17. Phonon dispersion relations of Sb2S3 and Bi2S3 using the supercell force-constant method

    NASA Astrophysics Data System (ADS)

    Gan, Chee Kwan; Chua, Kun Ting Eddie; Liu, Yun

    2015-03-01

    We present a lattice dynamical study on the orthorhombic antimony sulphide (Sb2S3) and bismuth sulphide (Bi2S3) using the supercell force-constant method. We find that the slow decay of the interatomic force constants for these compounds in the Pnma setting critically demand the use of a large supercell of 2 × 4 × 2 that consists of 320 atoms. To enable a practical calculation the space group information is fully utilized where only inequivalent atoms within the primitive cell are displaced for the force calculations. The effect of Born effective charges is incorporated into the method. We compare our results with that obtained from the density-functional perturbation theory. We found that smaller supercells could lead to unphysical acoustic phonon softening and lifting of the degeneracies along high symmetry directions. Our results provide a proper guideline for the use of the supercell force-constant method: the supercell size must be carefully be tested along with other parameters such as the kinetic energy cutoff, the Brillouin zone sampling or the self-consistent convergence criteria.

  18. Novel Method of Measuring Cantilever Deflection during an AFM Force Measurement

    PubMed Central

    Hlady, V.; Pierce, M.; Pungor, A.

    2012-01-01

    A combination of a reflection interference contrast microscope (RICM) and the atomic force microscope (AFM) was used to monitor the cantilever–surface separation distance during force measurements using the streptavidin–biotin recognition pairs. The RICM showed that the cantilever loses contact with the surface before the final rupture of the adhesive bonds is measured by the AFM detection system. This finding suggests that the immobilization of biotin by physisorbed albumin and subsequent binding of streptavidin might have created a cross-linked protein network whose cohesion is tested by the AFM cantilever with the immobilized biotin ligands. PMID:25132721

  19. A program for calculating load coefficient matrices utilizing the force summation method, L218 (LOADS). Volume 1: Engineering and usage

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Anderson, L. R.

    1979-01-01

    The LOADS program L218, a digital computer program that calculates dynamic load coefficient matrices utilizing the force summation method, is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: translational and rotational accelerations, velocities, and displacements; panel aerodynamic forces; net panel forces; shears and moments. Program usage and a brief description of the analysis used are presented. A description of the design and structure of the program to aid those who will maintain and/or modify the program in the future is included.

  20. Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field

    NASA Astrophysics Data System (ADS)

    Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.; Carter, Emily A.; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.

    2017-02-01

    A new modified embedded-atom method (MEAM) force field is developed for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997), 10.1103/PhysRevLett.79.2482], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquid density, self-diffusivity, viscosity, and vapor-liquid surface tension. It is shown that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.

  1. A molecular mechanics valence force field for sulfonamides derived by ab initio methods

    SciTech Connect

    Nicholas, J.B.; Burke, B.J.; Hopfinger, A.J. ); Vance, R.; Martin, E. )

    1991-11-28

    Molecular mechanics valence force field parameters for the sulfonamide group, SO[sub 2]NH, have been derived from ab initio calculations at the RHF/6-31G* level of theory. The force field parameters were designed to be used in conjunction with existing parameters from the MM2/MMP2 force field. The new parameters are demonstrated to accurately reproduce the ab initio optimized geometries of four molecules that contain the sulfonamide group. The strategy used in force field parametrization is discussed. The conformational flexibility of the sulfonamide group has been investigated. Calculations at the RHF/6-31G* level reveal the existence of two stable conformers and that interconversion is achieved by nitrogen inversion rather than rotation about the S-N bond. The energetic effects of expanding the basis set to 6-31G** and of including MP2 and MP3 corrections for electron correlation are discussed. The geometries and Mulliken charges for the ab initio optimized structures are also reported.

  2. Variation in Quarters Dispositions A Force Protection and Readiness Issue Explanations and Control Method

    DTIC Science & Technology

    1999-08-01

    15 Validity and Reliability ---------------------------- 16 Ethical Considerations...concentrate on Air Force MTFs and providers. Ethical Considerations Variation in Quarters Rates 19 No individual patient or provider data were gathered... GMO Physician 309.89 .0000 Over Family Practice 682.06 .0000 Over Aeromed Physician

  3. 11B Infantryman Special Forces (Russian). Method for Determining Language Objectives and Criteria, Volume XI.

    ERIC Educational Resources Information Center

    Setzler, Hubert H., Jr.; And Others

    The job position of infantryman of special forces as performed in Russian is described in terms of terminal skill objectives (TSOs) and enabling objectives (EOs). This analysis is part of the communication/language objectives-based system (C/LOBS), which supports the front-end analysis efforts of the Defense Language Institute Foreign Language…

  4. Method and system for measuring gate valve clearances and seating force

    DOEpatents

    Casada, Donald A.; Haynes, Howard D.; Moyers, John C.; Stewart, Brian K.

    1996-01-01

    Valve clearances and seating force, as well as other valve operational parameters, are determined by measuring valve stem rotation during opening and closing operations of a translatable gate valve. The magnitude of the stem rotation, and the relative difference between the stem rotation on opening and closing provides valuable data on the valve internals in a non-intrusive manner.

  5. Method and system for measuring gate valve clearances and seating force

    DOEpatents

    Casada, D.A.; Haynes, H.D.; Moyers, J.C.; Stewart, B.K.

    1996-01-30

    Valve clearances and seating force, as well as other valve operational parameters, are determined by measuring valve stem rotation during opening and closing operations of a translatable gate valve. The magnitude of the stem rotation, and the relative difference between the stem rotation on opening and closing provides valuable data on the valve internals in a non-intrusive manner. 8 figs.

  6. Acquisition and deconvolution of seismic signals by different methods to perform direct ground-force measurements

    NASA Astrophysics Data System (ADS)

    Poletto, Flavio; Schleifer, Andrea; Zgauc, Franco; Meneghini, Fabio; Petronio, Lorenzo

    2016-12-01

    We present the results of a novel borehole-seismic experiment in which we used different types of onshore-transient-impulsive and non-impulsive-surface sources together with direct ground-force recordings. The ground-force signals were obtained by baseplate load cells located beneath the sources, and by buried soil-stress sensors installed in the very shallow-subsurface together with accelerometers. The aim was to characterize the source's emission by its complex impedance, function of the near-field vibrations and soil stress components, and above all to obtain appropriate deconvolution operators to remove the signature of the sources in the far-field seismic signals. The data analysis shows the differences in the reference measurements utilized to deconvolve the source signature. As downgoing waves, we process the signals of vertical seismic profiles (VSP) recorded in the far-field approximation by an array of permanent geophones cemented at shallow-medium depth outside the casing of an instrumented well. We obtain a significant improvement in the waveform of the radiated seismic-vibrator signals deconvolved by ground force, similar to that of the seismograms generated by the impulsive sources, and demonstrates that the results obtained by different sources present low values in their repeatability norm. The comparison evidences the potentiality of the direct ground-force measurement approach to effectively remove the far-field source signature in VSP onshore data, and to increase the performance of permanent acquisition installations for time-lapse application purposes.

  7. Precise and direct method for the measurement of the torsion spring constant of the atomic force microscopy cantilevers

    SciTech Connect

    Jarząbek, D. M.

    2015-01-15

    A direct method for the evaluation of the torsional spring constants of the atomic force microscope cantilevers is presented in this paper. The method uses a nanoindenter to apply forces at the long axis of the cantilever and in the certain distance from it. The torque vs torsion relation is then evaluated by the comparison of the results of the indentations experiments at different positions on the cantilever. Next, this relation is used for the precise determination of the torsional spring constant of the cantilever. The statistical analysis shows that the standard deviation of the calibration measurements is equal to approximately 1%. Furthermore, a simple method for calibration of the photodetector’s lateral response is proposed. The overall procedure of the lateral calibration constant determination has the accuracy approximately equal to 10%.

  8. Precise and direct method for the measurement of the torsion spring constant of the atomic force microscopy cantilevers.

    PubMed

    Jarząbek, D M

    2015-01-01

    A direct method for the evaluation of the torsional spring constants of the atomic force microscope cantilevers is presented in this paper. The method uses a nanoindenter to apply forces at the long axis of the cantilever and in the certain distance from it. The torque vs torsion relation is then evaluated by the comparison of the results of the indentations experiments at different positions on the cantilever. Next, this relation is used for the precise determination of the torsional spring constant of the cantilever. The statistical analysis shows that the standard deviation of the calibration measurements is equal to approximately 1%. Furthermore, a simple method for calibration of the photodetector's lateral response is proposed. The overall procedure of the lateral calibration constant determination has the accuracy approximately equal to 10%.

  9. Precise and direct method for the measurement of the torsion spring constant of the atomic force microscopy cantilevers

    NASA Astrophysics Data System (ADS)

    Jarząbek, D. M.

    2015-01-01

    A direct method for the evaluation of the torsional spring constants of the atomic force microscope cantilevers is presented in this paper. The method uses a nanoindenter to apply forces at the long axis of the cantilever and in the certain distance from it. The torque vs torsion relation is then evaluated by the comparison of the results of the indentations experiments at different positions on the cantilever. Next, this relation is used for the precise determination of the torsional spring constant of the cantilever. The statistical analysis shows that the standard deviation of the calibration measurements is equal to approximately 1%. Furthermore, a simple method for calibration of the photodetector's lateral response is proposed. The overall procedure of the lateral calibration constant determination has the accuracy approximately equal to 10%.

  10. Effective method to control the levitation force and levitation height in a superconducting maglev system

    NASA Astrophysics Data System (ADS)

    Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia

    2015-11-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).

  11. Computed Tomography Analysis of Postsurgery Femoral Component Rotation Based on a Force Sensing Device Method versus Hypothetical Rotational Alignment Based on Anatomical Landmark Methods: A Pilot Study.

    PubMed

    Kreuzer, Stefan W; Pourmoghaddam, Amir; Leffers, Kevin J; Johnson, Clint W; Dettmer, Marius

    2016-01-01

    Rotation of the femoral component is an important aspect of knee arthroplasty, due to its effects on postsurgery knee kinematics and associated functional outcomes. It is still debated which method for establishing rotational alignment is preferable in orthopedic surgery. We compared force sensing based femoral component rotation with traditional anatomic landmark methods to investigate which method is more accurate in terms of alignment to the true transepicondylar axis. Thirty-one patients underwent computer-navigated total knee arthroplasty for osteoarthritis with femoral rotation established via a force sensor. During surgery, three alternative hypothetical femoral rotational alignments were assessed, based on transepicondylar axis, anterior-posterior axis, or the utilization of a posterior condyles referencing jig. Postoperative computed tomography scans were obtained to investigate rotation characteristics. Significant differences in rotation characteristics were found between rotation according to DKB and other methods (P < 0.05). Soft tissue balancing resulted in smaller deviation from anatomical epicondylar axis than any other method. 77% of operated knees were within a range of ±3° of rotation. Only between 48% and 52% of knees would have been rotated appropriately using the other methods. The current results indicate that force sensors may be valuable for establishing correct femoral rotation.

  12. Computed Tomography Analysis of Postsurgery Femoral Component Rotation Based on a Force Sensing Device Method versus Hypothetical Rotational Alignment Based on Anatomical Landmark Methods: A Pilot Study

    PubMed Central

    Kreuzer, Stefan W.; Pourmoghaddam, Amir; Leffers, Kevin J.; Johnson, Clint W.; Dettmer, Marius

    2016-01-01

    Rotation of the femoral component is an important aspect of knee arthroplasty, due to its effects on postsurgery knee kinematics and associated functional outcomes. It is still debated which method for establishing rotational alignment is preferable in orthopedic surgery. We compared force sensing based femoral component rotation with traditional anatomic landmark methods to investigate which method is more accurate in terms of alignment to the true transepicondylar axis. Thirty-one patients underwent computer-navigated total knee arthroplasty for osteoarthritis with femoral rotation established via a force sensor. During surgery, three alternative hypothetical femoral rotational alignments were assessed, based on transepicondylar axis, anterior-posterior axis, or the utilization of a posterior condyles referencing jig. Postoperative computed tomography scans were obtained to investigate rotation characteristics. Significant differences in rotation characteristics were found between rotation according to DKB and other methods (P < 0.05). Soft tissue balancing resulted in smaller deviation from anatomical epicondylar axis than any other method. 77% of operated knees were within a range of ±3° of rotation. Only between 48% and 52% of knees would have been rotated appropriately using the other methods. The current results indicate that force sensors may be valuable for establishing correct femoral rotation. PMID:26881086

  13. Bimanual Elbow Robotic Orthoses: Preliminary Investigations on an Impairment Force-Feedback Rehabilitation Method

    PubMed Central

    Herrnstadt, Gil; Alavi, Nezam; Randhawa, Bubblepreet Kaur; Boyd, Lara A.; Menon, Carlo

    2015-01-01

    Modern rehabilitation practices have begun integrating robots, recognizing their significant role in recovery. New and alternative stroke rehabilitation treatments are essential to enhance efficacy and mitigate associated health costs. Today’s robotic interventions can play a significant role in advancing rehabilitation. In addition, robots have an inherent ability to perform tasks accurately and reliably and are typically well suited to measure and quantify performance. Most rehabilitation strategies predominantly target activation of the paretic arm. However, bimanual upper-limb rehabilitation research suggests potential in enhancing functional recovery. Moreover, studies suggest that limb coordination and synchronization can improve treatment efficacy. In this preliminary study, we aimed to investigate and validate our user-driven bimanual system in a reduced intensity rehab practice. A bimanual wearable robotic device (BWRD) with a Master–Slave configuration for the elbow joint was developed to carry out the investigation. The BWRD incorporates position and force sensors for which respective control loops are implemented, and offers varying modes of operation ranging from passive to active training. The proposed system enables the perception of the movements, as well as the forces applied by the hemiparetic arm, with the non-hemiparetic arm. Eight participants with chronic unilateral stroke were recruited to participate in a total of three 1-h sessions per participant, delivered in a week. Participants underwent pre- and post-training functional assessments along with proprioceptive measures. The post-assessment was performed at the end of the last training session. The protocol was designed to engage the user in an assortment of static and dynamic arm matching and opposing tasks. The training incorporates force-feedback movements, force-feedback positioning, and force matching tasks with same and opposite direction movements. We are able to suggest

  14. Study of a quadrupole ion trap with damping force by the two-point one block method.

    PubMed

    Seddighi Chaharborj, S; Phang, P S; Sadat Kiai, S M; Majid, Z A; Abu Bakar, M R; Fudziah, I

    2012-06-30

    The capabilities and performances of a quadrupole ion trap under damping force based on collisional cooling is of particular importance in high-resolution mass spectrometry and should be analyzed by Mathieu's differential solutions. These solutions describe the stability and instability of the ion's trajectories confined in quadrupole devices. One of the methods for solving Mathieu's differential equation is a two-point one block method. In this case, Mathieu's stability diagram, trapping parameters a(z) and q(z) and the secular frequency of the ion motion w(z), can be derived in a precise manner. The two-point one block method (TPOBM) of Adams Moulton type is presented to study these parameters with and without the effect of damping force and compared to the 5th-order Runge-Kutta method (RKM5). The simulated results show that the TPOBM is more accurate and 10 times faster than the RKM5. The physical properties of the confined ions in the r and z axes are illustrated and the fractional mass resolutions m/Δm of the confined ions in the first stability region were analyzed by the RKM5 and the TPOBM. The Lagrange interpolation polynomial was applied in the derivation of the proposed method. The proposed method will be utilized to obtain a series solution directly without reducing it to first order equations. The problem was tested with the ion trajectories in real time with and without the effect of damping force using constant step size. Numerical results from the two-point one block method have been compared with the fifth order Runge-Kutta method. The proposed two-point one block method has a potential application to solve complicated linear and nonlinear equations of the charged particle confinement in a quadrupole field especially in fine tuning accelerators, and, generally speaking, in physics of high energy. Copyright © 2012 John Wiley & Sons, Ltd.

  15. A generalised multiple-mass based method for the determination of the live mass of a force transducer

    NASA Astrophysics Data System (ADS)

    Montalvão, Diogo; Baker, Thomas; Ihracska, Balazs; Aulaqi, Muhammad

    2017-01-01

    Many applications in Experimental Modal Analysis (EMA) require that the sensors' masses are known. This is because the added mass from sensors will affect the structural mode shapes, and in particular its natural frequencies. EMA requires the measurement of the exciting forces at given coordinates, which is often made using piezoelectric force transducers. In such a case, the live mass of the force transducer, i.e. the mass as 'seen' by the structure in perpendicular directions must be measured somehow, so that compensation methods like mass cancelation can be performed. This however presents a problem on how to obtain an accurate measurement for the live mass. If the system is perfectly calibrated, then a reasonably accurate estimate can be made using a straightforward method available in most classical textbooks based on Newton's second law. However, this is often not the case (for example when the transducer's sensitivity changed over time, when it is unknown or when the connection influences the transmission of the force). In a self-calibrating iterative method, both the live mass and calibration factor are determined, but this paper shows that the problem may be ill-conditioned, producing misleading results if certain conditions are not met. Therefore, a more robust method is presented and discussed in this paper, reducing the ill-conditioning problems and the need to know the calibration factors beforehand. The three methods will be compared and discussed through numerical and experimental examples, showing that classical EMA still is a field of research that deserves the attention from scientists and engineers.

  16. Development of method for experimental determination of wheel-rail contact forces and contact point position by using instrumented wheelset

    NASA Astrophysics Data System (ADS)

    Bižić, Milan B.; Petrović, Dragan Z.; Tomić, Miloš C.; Djinović, Zoran V.

    2017-07-01

    This paper presents the development of a unique method for experimental determination of wheel-rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel-rail contact forces Q and Y and their ratio Y/Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y/Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel-rail contact forces and contact point position using IWS.

  17. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path–Force Matching QM/MM Method

    PubMed Central

    Zhou, Y.; Ojeda-May, P.; Nagaraju, M.; Pu, J.

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) has been developed. In RP–FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP–FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  18. Elastic Critical Axial Force for the Torsional-Flexural Buckling of Thin-Walled Metal Members: An Approximate Method

    NASA Astrophysics Data System (ADS)

    Kováč, Michal

    2015-03-01

    Thin-walled centrically compressed members with non-symmetrical or mono-symmetrical cross-sections can buckle in a torsional-flexural buckling mode. Vlasov developed a system of governing differential equations of the stability of such member cases. Solving these coupled equations in an analytic way is only possible in simple cases. Therefore, Goľdenvejzer introduced an approximate method for the solution of this system to calculate the critical axial force of torsional-flexural buckling. Moreover, this can also be used in cases of members with various boundary conditions in bending and torsion. This approximate method for the calculation of critical force has been adopted into norms. Nowadays, we can also solve governing differential equations by numerical methods, such as the finite element method (FEM). Therefore, in this paper, the results of the approximate method and the FEM were compared to each other, while considering the FEM as a reference method. This comparison shows any discrepancies of the approximate method. Attention was also paid to when and why discrepancies occur. The approximate method can be used in practice by considering some simplifications, which ensure safe results.

  19. A comparison of two methods of measuring static coefficient of friction at low normal forces: a pilot study.

    PubMed

    Seo, Na Jin; Armstrong, Thomas J; Drinkaus, Philip

    2009-01-01

    This study compares two methods for estimating static friction coefficients for skin. In the first method, referred to as the 'tilt method', a hand supporting a flat object is tilted until the object slides. The friction coefficient is estimated as the tangent of the angle of the object at the slip. The second method estimates the friction coefficient as the pull force required to begin moving a flat object over the surface of the hand, divided by object weight. Both methods were used to estimate friction coefficients for 12 subjects and three materials (cardboard, aluminium, rubber) against a flat hand and against fingertips. No differences in static friction coefficients were found between the two methods, except for that of rubber, where friction coefficient was 11% greater for the tilt method. As with previous studies, the friction coefficients varied with contact force and contact area. Static friction coefficient data are needed for analysis and design of objects that are grasped or manipulated with the hand. The tilt method described in this study can easily be used by ergonomic practitioners to estimate static friction coefficients in the field in a timely manner.

  20. Numerical analysis of the wave force acting on a cylinder in regular waves using the MPS method

    NASA Astrophysics Data System (ADS)

    Song, Xuemin; Shibata, Kazuya; Nihei, Yasunori; Koshizuka, Seiichi

    2016-03-01

    We simulated the interactions between a second-order Stokes wave and vertical circular cylinder in a three-dimensional numerical wave tank using the moving particle semi-implicit method. The numerical wave tank was modified to generate a series of Stokes waves. Fluid-structure interactions were simulated under the same wave conditions as the model experiments. We compared the hydrodynamic coefficients obtained by the simulations with those of the experiment to validate this method. We also simulated the wave force around a free surface using the developed method in different wave conditions.

  1. A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; Morton, M.; Draper, N.; Line, W.

    2001-01-01

    This paper proposes a new concept in force balance calibration. An overview of the state-of-the-art in force balance calibration is provided with emphasis on both the load application system and the experimental design philosophy. Limitations of current systems are detailed in the areas of data quality and productivity. A unique calibration loading system integrated with formal experimental design techniques has been developed and designated as the Single-Vector Balance Calibration System (SVS). This new concept addresses the limitations of current systems. The development of a quadratic and cubic calibration design is presented. Results from experimental testing are compared and contrasted with conventional calibration systems. Analyses of data are provided that demonstrate the feasibility of this concept and provide new insights into balance calibration.

  2. Tracking unfolding and refolding reactions of single proteins using atomic force microscopy methods.

    PubMed

    Bujalowski, Paul J; Oberhauser, Andres F

    2013-04-01

    During the last two decades single-molecule manipulation techniques such as atomic force microscopy (AFM) has risen to prominence through their unique capacity to provide fundamental information on the structure and function of biomolecules. Here we describe the use of single-molecule AFM to track protein unfolding and refolding pathways, enzymatic catalysis and the effects of osmolytes and chaperones on protein stability and folding. We will outline the principles of operation for two different AFM pulling techniques: length clamp and force-clamp and discuss prominent applications. We provide protocols for the construction of polyproteins which are amenable for AFM experiments, the preparation of different coverslips, choice and calibration of AFM cantilevers. We also discuss the selection criteria for AFM recordings, the calibration of AFM cantilevers, protein sample preparations and analysis of the obtained data.

  3. Response spectrum method for extreme wave loading with higher order components of drag force

    NASA Astrophysics Data System (ADS)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Mohammad Ali, Dastan Diznab; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-01-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  4. Response spectrum method for extreme wave loading with higher order components of drag force

    NASA Astrophysics Data System (ADS)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Ali, Dastan Diznab Mohammad; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-03-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  5. The Cost of a Military Person-Year. A Method for Computing Savings from Force Reductions

    DTIC Science & Technology

    2007-01-01

    civilianization decisions that involve forced military career terminations offer some kind of buyout or compensation, typically at a much lower level than...is not how a service would act in reality. However, since there are many ways of managing the retention rates through promo- tion boards and buyouts ...military posi- tions and offering equitable buyouts to the affected personnel. However, this conclusion must be weighed against the important

  6. Assessing Capabilities and Risks in Air Force Programming. Framework, Metrics, and Methods

    DTIC Science & Technology

    2009-01-01

    phased force deployment data UTC unit type code VBA Microsoft® Visual Basic® for Applications 1 ChAPteR One Introduction Perhaps no act each year defines... VBA ) and the General Algebraic Modeling System (GAMS).2 As described earlier, the calculation is a linear programming optimization. This computa...contingencies. Next, VBA code assembles and records this information in text files and GAMS code. GAMS code is selected during execution with- out the need for

  7. FINCAP Analysis: A Method for Financial Capability Analysis of Air Force Contractors

    DTIC Science & Technology

    1979-03-01

    conditions. Product obsolescence, political conditions, and DoD policy are a few of the factors affecting future sales mix. The technological position of...supplementary information and schedules reporting: (1) Accounting policies (2) Accounts receivable (3) Inventories (4) Property and other fixed assets...manufacturing, purchasing, and * 1This discussion is not an official statement of Air Force policy . L6 _I-i quality assurance capabilities needed to

  8. Turbulence model choice for the calculation of drag forces when using the CFD method.

    PubMed

    Zaïdi, H; Fohanno, S; Taïar, R; Polidori, G

    2010-02-10

    The aim of this work is to specify which model of turbulence is the most adapted in order to predict the drag forces that a swimmer encounters during his movement in the fluid environment. For this, a Computational Fluid Dynamics (CFD) analysis has been undertaken with a commercial CFD code (Fluent). The problem was modelled as 3D and in steady hydrodynamic state. The 3D geometry of the swimmer was created by means of a complete laser scanning of the swimmer's body contour. Two turbulence models were tested, namely the standard k-epsilon model with a specific treatment of the fluid flow area near the swimmer's body contour, and the standard k-omega model. The comparison of numerical results with experimental measurements of drag forces shows that the standard k-omega model accurately predicts the drag forces while the standard k-epsilon model underestimates their values. The standard k-omega model also enabled to capture the vortex structures developing at the swimmer's back and buttocks in underwater swimming; the same vortices had been visualized by flow visualization experiments carried out at the INSEP (National Institute for Sport and Physical Education in Paris) with the French national swimming team. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1995-01-01

    The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.

  10. Thermodynamic properties of hydrogen dissociation reaction from the small system method and reactive force field ReaxFF

    NASA Astrophysics Data System (ADS)

    Trinh, Thuat T.; Meling, Nora; Bedeaux, Dick; Kjelstrup, Signe

    2017-03-01

    We present thermodynamic properties of the H2 dissociation reaction by means of the Small System Method (SSM) using Reactive Force Field (ReaxFF) simulations. Thermodynamic correction factors, partial molar enthalpies and heat capacities of the reactant and product were obtained in the high temperature range; up to 30,000 K. The results obtained from the ReaxFF potential agree well with previous results obtained with a three body potential (TBP). This indicates that the popular reactive force field method can be combined well with the newly developed SSM in realistic simulations of chemical reactions. The approach may be useful in the study of heat and mass transport in combination with chemical reactions.

  11. Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Pan, Shi; Jiang, Yuchi

    2006-12-01

    According to the electromagnetic momentum interpretation due to Minkowski, the optical trapping force is determined by momentum transfer. The computation details related to computing the forces of optical radiation pressure on small particles using the scattered field three-dimensional (3D) grid finite difference time domain (FDTD) algorithm are presented. The technique is based on propagating the focused electromagnetic fields through the grid and determining the changes in the optical energy flow with and without the trapped object in the system. The Richards `Wolf vector field equations are applied to the scattered FDTD approach to specify an incident focused beam. We show computational results for a high refractive index particle. These results are in agreement with published experiments and are similar to other computational methods. Compared with some other calculation results using the FDTD method, our results are more consistent with the results measured.

  12. The Analysis of Aircraft Structures as Space Frameworks. Method Based on the Forces in the Longitudinal Members

    NASA Technical Reports Server (NTRS)

    Wagner, Herbert

    1929-01-01

    The following examples do not take up the discussion of viewpoints to be heeded in determining the design of a framework for given external conditions. Rather they are methods for determining the forces in airplane fuselages and wings, though similar considerations are applied to certain simple cases of a different kind. The object of this treatise is to summarize and amplify these considerations from definite viewpoints.

  13. Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion

    NASA Astrophysics Data System (ADS)

    Mees, Maarten J.; Pourtois, Geoffrey; Neyts, Erik C.; Thijsse, Barend J.; Stesmans, André

    2012-04-01

    Monte Carlo (MC) methods have a long-standing history as partners of molecular dynamics (MD) to simulate the evolution of materials at the atomic scale. Among these techniques, the uniform-acceptance force-bias Monte Carlo (UFMC) method [G. Dereli, Mol. Simul.10.1080/08927029208022490 8, 351 (1992)] has recently attracted attention [M. Timonova , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.144107 81, 144107 (2010)] thanks to its apparent capacity of being able to simulate physical processes in a reduced number of iterations compared to classical MD methods. The origin of this efficiency remains, however, unclear. In this work we derive a UFMC method starting from basic thermodynamic principles, which leads to an intuitive and unambiguous formalism. The approach includes a statistically relevant time step per Monte Carlo iteration, showing a significant speed-up compared to MD simulations. This time-stamped force-bias Monte Carlo (tfMC) formalism is tested on both simple one-dimensional and three-dimensional systems. Both test-cases give excellent results in agreement with analytical solutions and literature reports. The inclusion of a time scale, the simplicity of the method, and the enhancement of the time step compared to classical MD methods make this method very appealing for studying the dynamics of many-particle systems.

  14. Behavioral Counseling Interventions Expert Forum: Overview and Primer on U.S. Preventive Services Task Force Methods.

    PubMed

    Curry, Susan J; Whitlock, Evelyn P

    2015-09-01

    The importance of behavioral counseling as a clinical preventive service derives from the social and economic burden of preventable disease in the U.S., the central role behavioral risk factors play as leading causes of premature morbidity and mortality, and the promise of the healthcare visit as a teachable moment for behavioral counseling support. In November 2013, the U.S. Preventive Services Task Force convened an expert forum on behavioral counseling interventions. The forum brought together NIH, CDC, and Agency for Healthcare Research and Quality leaders, leading behavioral counseling researchers, and members of the U.S. Preventive Services Task Force to discuss issues related to optimizing evidence-based behavioral counseling recommendations. This paper provides an overview of the methods used by the Task Force to develop counseling recommendations. Special focus is on the development and evaluation of evidence from systematic reviews. Assessment of the net benefit of a behavioral counseling intervention, based on the evidence review, determines the recommendation statement and accompanying letter grade. A recent Task Force recommendation on screening and behavioral counseling interventions in primary care to reduce alcohol misuse provides a brief example.

  15. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method

    NASA Astrophysics Data System (ADS)

    Adamcik, Jozef; Lara, Cecile; Usov, Ivan; Jeong, Jae Sun; Ruggeri, Francesco S.; Dietler, Giovanni; Lashuel, Hilal A.; Hamley, Ian W.; Mezzenga, Raffaele

    2012-07-01

    We report the investigation of the mechanical properties of different types of amyloid fibrils by the peak force quantitative nanomechanical (PF-QNM) technique. We demonstrate that this technique correctly measures the Young's modulus independent of the polymorphic state and the cross-sectional structural details of the fibrils, and we show that values for amyloid fibrils assembled from heptapeptides, α-synuclein, Aβ(1-42), insulin, β-lactoglobulin, lysozyme, ovalbumin, Tau protein and bovine serum albumin all fall in the range of 2-4 GPa.

  16. Force and deflection sensor with shell membrane and optical gratings and method of manufacture

    NASA Technical Reports Server (NTRS)

    Park, Yong-Lae (Inventor); Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Cutkosky, Mark R. (Inventor); Chau, Kelvin K (Inventor)

    2011-01-01

    A sensor for force is formed from an elastomeric cylinder having a region with apertures. The apertures have passageways formed between them, and an optical fiber is introduced into these passageways, where the optical fiber has a grating for measurement of tension positioned in the passageways between apertures. Optionally, a temperature measurement sensor is placed in or around the elastomer for temperature correction, and if required, a copper film may be deposited in the elastomer for reduced sensitivity to spot temperature variations in the elastomer near the sensors.

  17. Expert Estimate Method of Generating Maintenance and Manpower Data for Proposed Air Force Systems: Users Guide.

    DTIC Science & Technology

    1980-03-01

    0R R 0"LPO. NUMBER UTHQR1 CONTRACT DR GRANT NUMBER,j 9 PER’CRMING ORGANI ZATION NAME AND ADDRESS 10 PROGRAM ELE MENT. PROJECT T ASiK Systms eseach...was to revise a prototype users guide for collecttng expert estimates of maintenance, manpower, and training data for new or proposed Air Force...systems. The revision of the users guide was based on three separate efforts: a review of recent expert estimate studies, an application of the expert

  18. A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy.

    PubMed

    Mullin, Nic; Hobbs, Jamie K

    2014-11-01

    Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner et al. that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in situ in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson et al. We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used.

  19. Calculation of reaction forces in the boiler supports using the method of equivalent stiffness of membrane wall.

    PubMed

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan

    2014-01-01

    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of "Milano" boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.

  20. A balanced-force finite-element method for surface-tension-driven interfacial flows using interface-capturing approaches

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Gomes, Jefferson; Pain, Christopher; Matar, Omar

    2013-11-01

    Interfacial flows with surface tension are often found in industrial and practical engineering applications, including bubbles, droplets, liquid film and jets. Accurate modelling of such flows is challenging due to their highly complex dynamics, which often involve changes of interfacial topology. We present a balanced-force finite-element method with adaptive unstructured meshes for interfacial flows. The method uses a mixed control-volume and finite element formulation, which ensures the surface tension forces, and the resulting pressure gradients, are exactly balanced, minimising the spurious velocities often found in numerical simulations of such flows. A volume-of-fluid-type method is employed for interface capturing based on a compressive control-volume advection method, and second-order finite element methods. A distance function is reconstructed from the volume fraction on the unstructured meshes, which provides accurate estimation of the curvature. Numerical examples of an equilibrium drop and dynamics of bubbles (droplets) are presented to demonstrate the capability of this method.

  1. Calculation of Reaction Forces in the Boiler Supports Using the Method of Equivalent Stiffness of Membrane Wall

    PubMed Central

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan

    2014-01-01

    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of “Milano” boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized. PMID:24959612

  2. A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy

    SciTech Connect

    Mullin, Nic Hobbs, Jamie K.

    2014-11-15

    Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner et al. that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in situ in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson et al. We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used.

  3. Method for recovering metal from waste stream

    SciTech Connect

    Greenberg, B.

    1991-09-10

    This patent describes a method for recovering metal from a waste stream to render the waste stream suitable for discharge. It comprises passing a waste stream comprised of heavy metal salts in dilute solution into a cathode chamber of an anion exchange membrane delineated electrolytic cell, wherein the metals are selected from the group having a standard reduction potential more negative than that of hydrogen in the electromotive force series and the heavy metal ion concentration of the solution is less than about 10,000 parts per million of dissolved material; subjecting the waste stream to high current density electrolysis at up to about 25 volts to enhance the controlled regular formation of a noncompressible metal hydrous oxide crystalline precipitate in the cathode chamber; separating the precipitate from the waste stream; and splitting the clarified liquid waste stream so that a portion of the clarified liquid waste stream is discharged and a portion is returned downstream for commingling with the metal ion-containing waste stream for further treatment.

  4. Developing a musculoskeletal model of the primate skull: predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods.

    PubMed

    Shi, Junfen; Curtis, Neil; Fitton, Laura C; O'Higgins, Paul; Fagan, Michael J

    2012-10-07

    An accurate, dynamic, functional model of the skull that can be used to predict muscle forces, bite forces, and joint reaction forces would have many uses across a broad range of disciplines. One major issue however with musculoskeletal analyses is that of muscle activation pattern indeterminacy. A very large number of possible muscle force combinations will satisfy a particular functional task. This makes predicting physiological muscle recruitment patterns difficult. Here we describe in detail the process of development of a complex multibody computer model of a primate skull (Macaca fascicularis), that aims to predict muscle recruitment patterns during biting. Using optimisation criteria based on minimisation of muscle stress we predict working to balancing side muscle force ratios, peak bite forces, and joint reaction forces during unilateral biting. Validation of such models is problematic; however we have shown comparable working to balancing muscle activity and TMJ reaction ratios during biting to those observed in vivo and that peak predicted bite forces compare well to published experimental data. To our knowledge the complexity of the musculoskeletal model is greater than any previously reported for a primate. This complexity, when compared to more simple representations provides more nuanced insights into the functioning of masticatory muscles. Thus, we have shown muscle activity to vary throughout individual muscle groups, which enables them to function optimally during specific masticatory tasks. This model will be utilised in future studies into the functioning of the masticatory apparatus.

  5. First order derivative spectrophotometric method for the determination of benidipine hydrochloride pharmaceutical preparations and forced degradation study

    NASA Astrophysics Data System (ADS)

    Karasaka, Ayça

    2015-06-01

    A simple and rapid first order derivative spectrophotometric method was developed for the determination of benidipine hydrochloride in pure form and pharmaceutical preparations. For the first derivative spectrophotometric method, the distances between two extremum values l (peak-to-peak amplitudes), 230.2/241.5 nm. The proposed method was validated according to the ICH guidelines with respect to linearity, limit of detection, limit of quantification, accuracy, precision (intra- and inter-day) and recovery were evaluated. The linearity of the method was in the range of 0.2-2.0 μg/mL. Limits of detection and quantification were 0.58 and 1.73 μg/mL, respectively. The proposed method was successfully applied to the analysis of pharmaceutical preparations. In addition, forced degradation studies were performed on the benidipine hydrochloride drag substance. The drug substance was exposed to the stress conditions of hydrolysis (acid and base).

  6. Atomic force microscope cantilever spring constant evaluation for higher mode oscillations: A kinetostatic method

    SciTech Connect

    Tseytlin, Yakov M.

    2008-02-15

    Our previous study of the particle mass sensor has shown a large ratio (up to thousands) between the spring constants of a rectangular cantilever in higher mode vibration and at the static bending or natural mode vibration. This has been proven by us through the derived nodal point position equation. That solution is good for a cantilever with the free end in noncontact regime and the probe shifted from the end to an effective section and contacting a soft object. Our further research shows that the same nodal position equation with the proper frequency equations may be used for the same spring constant ratio estimation if the vibrating at higher mode cantilever's free end has a significant additional mass clamped to it or that end is in permanent contact with an elastic or hard measurand object (reference cantilever). However, in the latter case, the spring constant ratio is much smaller (in tens) than in other mentioned cases at equal higher (up to fourth) vibration modes. We also present the spring constant ratio for a vibrating at higher eigenmode V-shaped cantilever, which is now in wide use for atomic force microscopy. The received results on the spring constant ratio are in good (within a few percent) agreement with the theoretical and experimental data published by other researchers. The knowledge of a possible spring constant transformation is important for the proper calibration and use of an atomic force microscope with vibrating cantilever in the higher eigenmodes for measurement and imaging with enlarged resolution.

  7. Impact Force Suppression for Redundant Legged Biped Robot Based on Unified Decoupling Control Method

    NASA Astrophysics Data System (ADS)

    Shibata, Masaaki; Tasaki, Go; Natori, Takeshi

    A swinging leg of a biped robot landing, impact force usually occurs between the sole and the ground, and then it causes instability of the gait. The paper describes the advantages of adopting redundant legs to the robot in order to conquer the difficulty, and proposes a novel way of the motion control for the redundant legged biped robot. In general, each leg of a conventional biped robot consists of 3 joints, namely, hip, knee and ankle in the sagittal plane. On the other hand, the proposed robot has been added extra joints, and thereby has redundancy in terms of degrees-of-freedom. Since the redundant leg can select its arbitrary posture, regardless of the tip position, the structure enables to move the position of the center of mass (COM) of the leg independently. The impact force is suppressed by controlling the COM acceleration of the landing leg. In order to achieve the decoupled motions between the tip and the COM, the unified decoupling controller is introduced. The controller includes three types of the disturbance observers together, and both desired motions are realized consequently. The validity of the proposed approach is confirmed in physical experimental results.

  8. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-02-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.

  9. Comparison between Mean Forces and Swarms-of-Trajectories String Methods.

    PubMed

    Maragliano, Luca; Roux, Benoît; Vanden-Eijnden, Eric

    2014-02-11

    The original formulation of the string method in collective variable space is compared with a recent variant called string method with swarms-of-trajectories. The assumptions made in the original method are revisited and the significance of the minimum free energy path (MFEP) is discussed in the context of reactive events. These assumptions are compared to those made in the string method with swarms-of-trajectories, and shown to be equivalent in a certain regime: in particular an expression for the path identified by the swarms-of-trajectories method is given and shown to be closely related to the MFEP. Finally, the algorithmic aspects of both methods are compared.

  10. Pseudo-dynamic analysis of a cemented hip arthroplasty using a force method based on the Newmark algorithm.

    PubMed

    Ramos, A; Talaia, P; Queirós de Melo, F J

    2016-01-01

    The main goal of this work was to develop an approached model to study dynamic behavior and prediction of the stress distribution in an in vitro Charnley cemented hip arthroplasty. An alternative version of the described pseudo-dynamic procedure is proposed by using the time integration Newmark algorithm. An internal restoring force vector is numerically calculated from the displacement, velocity, and acceleration vectors. A numerical model of hip replacement was developed to analyze the deformation of a dynamically stressed structure for all time steps. The experimental measurement of resulting internal forces generated in the structure (internal restoring force vector) is the second fundamental step of the pseudo-dynamic procedure. These data (as a feedback) are used by the time integration algorithm, which allows updating of the structure's shape for the next displacement, velocity, and acceleration vectors. In the field of Biomechanics, the potentialities of this method contribute to the determination of a dynamically equivalent in vitro stress field of a cemented hip prosthesis; implant fitted in patients with a normal mobility or practice sports. Consequences of the stress distribution in the implant zone that underwent cyclic fatigue loads were also discussed by using a finite element model. Application of this method in Biomechanics appears as a useful tool in the approximate stress field characterization of the peak stress state. Results show a peak value around two times the static situation, more for making possible the prediction of future damage and a programed clinical examination in patients using hip prosthesis.

  11. Smoothed Particle Hydrodynamics Continuous Boundary Force method for Navier-Stokes equations subject to Robin boundary condition

    SciTech Connect

    Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre M.

    2014-02-15

    Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel Continuous Boundary Force (CBF) method is proposed for solving the Navier-Stokes equations subject to Robin boundary condition. In the CBF method, the Robin boundary condition at boundary is replaced by the homogeneous Neumann boundary condition at the boundary and a volumetric force term added to the momentum conservation equation. Smoothed Particle Hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two-dimensional and three-dimensional flows in domains bounded by flat and curved boundaries subject to various forms of the Robin boundary condition. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite element method. Taken the no-slip boundary condition as a special case of slip boundary condition, we demonstrate that the SPH-CBF method describes accurately both no-slip and slip conditions.

  12. Performance evaluation of direct forced-air total solids and Kjeldahl total nitrogen methods: 1990 through 1995.

    PubMed

    Lynch, J M; Barbano, D M; Healy, P A; Fleming, J R

    1997-01-01

    Results from collaborative studies of the performance of the direct forced-air oven-drying method for determination of milk total solids content (AOAC Method 990.20) and the Kjeldahl total nitrogen method for determination of milk total nitrogen content (AOAC Method 991.20) were published in 1989 and 1990, respectively. Method performance was characterized by using the harmonized ISO/IU-PAC/AOAC guidelines for method validation, and the methods now have final action status. During 1990 through 1995, the split sample collaborative study format was used to monitor the performance of these methods as part of a multilaboratory quality assurance program. Seven blind duplicate milk materials were sent from a central laboratory once every 2 months to participating laboratories. Data were analyzed with the same statistical procedures used in the original collaborative studies. Compared with the original collaborative study, the repeatability and reproducibility of the oven-drying method improved over time. For the Kjeldahl total nitrogen method, within-laboratory repeatability improved slightly, whereas between-laboratory reproducibility was similar to but not always as good as in the original study. The results demonstrate that the statistical protocol for collaborative studies can be used effectively as the basis for a multilaboratory quality assurance program and that the method performance achieved in a collaborative study can be maintained and even improved with time.

  13. New method for oblique impact dynamics research of a flexible beam with large overall motion considering impact friction force

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Li, L.; Zhang, D. G.; Hong, J. Z.

    2016-08-01

    A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid modeling method, dynamic equations of the system, which include all states (before, during, and after the collision) are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.

  14. Simple Criteria to Determine the Set of Key Parameters of the DRPE Method by a Brute-force Attack

    NASA Astrophysics Data System (ADS)

    Nalegaev, S. S.; Petrov, N. V.

    Known techniques of breaking Double Random Phase Encoding (DRPE), which bypass the resource-intensive brute-force method, require at least two conditions: the attacker knows the encryption algorithm; there is an access to the pairs of source and encoded images. Our numerical results show that for the accurate recovery by numerical brute-force attack, someone needs only some a priori information about the source images, which can be quite general. From the results of our numerical experiments with optical data encryption DRPE with digital holography, we have proposed four simple criteria for guaranteed and accurate data recovery. These criteria can be applied, if the grayscale, binary (including QR-codes) or color images are used as a source.

  15. New modified weight function for the dissipative force in the DPD method to increase the Schmidt number

    NASA Astrophysics Data System (ADS)

    Yaghoubi, S.; Shirani, E.; Pishevar, A. R.; Afshar, Y.

    2015-04-01

    To simulate liquid fluid flows with high Schmidt numbers (Sc), one needs to use a modified version of the Dissipative Particle Dynamics (DPD) method. Recently the modifications made by others for the weight function of dissipative forces, enables DPD simulations for Sc, up to 10. In this paper, we introduce a different dissipative force weight function for DPD simulations that allows achieving a solution with higher values of Sc and improving the dynamic characteristics of the simulating fluid. Moreover, by reducing the energy of DPD particles, even higher values of Sc can be achieved. Finally, using the new proposed weight function and kBT =0.2 , the Sc values can reach up to 200.

  16. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.

    PubMed

    Liu, Cui; Wang, Yang; Zhao, Dongxia; Gong, Lidong; Yang, Zhongzhi

    2014-02-01

    The integrity of the genetic information is constantly threatened by oxidizing agents. Oxidized guanines have all been linked to different types of cancers. Theoretical approaches supplement the assorted experimental techniques, and bring new sight and opportunities to investigate the underlying microscopic mechanics. Unfortunately, there is no specific force field to DNA system including oxidized guanines. Taking high level ab initio calculations as benchmark, we developed the ABEEMσπ fluctuating charge force field, which uses multiple fluctuating charges per atom. And it was applied to study the energies, structures and mutations of base pairs containing oxidized guanines. The geometries were obtained in reference to other studies or using B3LYP/6-31+G* level optimization, which is more rational and timesaving among 24 quantum mechanical methods selected and tested by this work. The energies were determined at MP2/aug-cc-pVDZ level with BSSE corrections. Results show that the constructed potential function can accurately simulate the change of H-bond and the buckled angle formed by two base planes induced by oxidized guanine, and it provides reliable information of hydrogen bonding, stacking interaction and the mutation processes. The performance of ABEEMσπ polarizable force field in predicting the bond lengths, bond angles, dipole moments etc. is generally better than those of the common force fields. And the accuracy of ABEEMσπ PFF is close to that of the MP2 method. This shows that ABEEMσπ model is a reliable choice for further research of dynamics behavior of DNA fragment including oxidized guanine.

  17. Atomic force microscopy based nanoassay: a new method to study α-Synuclein-dopamine bioaffinity interactions

    NASA Astrophysics Data System (ADS)

    Corvaglia, Stefania; Sanavio, Barbara; Hong Enriquez, Rolando P.; Sorce, Barbara; Bosco, Alessandro; Scaini, Denis; Sabella, Stefania; Pompa, Pier Paolo; Scoles, Giacinto; Casalis, Loredana

    2014-06-01

    Intrinsically Disordered Proteins (IDPs) are characterized by the lack of well-defined 3-D structure and show high conformational plasticity. For this reason, they are a strong challenge for the traditional characterization of structure, supramolecular assembly and biorecognition phenomena. We show here how the fine tuning of protein orientation on a surface turns useful in the reliable testing of biorecognition interactions of IDPs, in particular α-Synuclein. We exploited atomic force microscopy (AFM) for the selective, nanoscale confinement of α-Synuclein on gold to study the early stages of α-Synuclein aggregation and the effect of small molecules, like dopamine, on the aggregation process. Capitalizing on the high sensitivity of AFM topographic height measurements we determined, for the first time in the literature, the dissociation constant of dopamine-α-Synuclein adducts.

  18. Atomic force microscopy based nanoassay: a new method to study α-Synuclein-dopamine bioaffinity interactions

    NASA Astrophysics Data System (ADS)

    Corvaglia, Stefania; Sanavio, Barbara; Sorce, Barbara; Bosco, Alessandro; Sabella, Stefania; Pompa, Pierpaolo; Scoles, Giacinto; Casalis, Loredana

    2015-03-01

    Intrinsically Disordered Proteins (IDPs) are characterized by the lack of well-defined 3-D structure and show high conformational plasticity. For this reason, they are a strong challenge for the traditional characterization of structure, supramolecular assembly and biorecognition phenomena. We show here how the fine tuning of protein orientation on a surface turns useful in the reliable testing of biorecognition interactions of IDPs, in particular α-Synuclein. We exploited atomic force microscopy (AFM) for the selective, nanoscale confinement of α-Synuclein on gold to study the early stages of α-Synuclein aggregation and the effect of small molecules, like dopamine, on the aggregation process. Capitalizing on the high sensitivity of AFM topographic height measurements we determined, for the first time in the literature, the dissociation constant of dopamine- α-Synuclein adducts.

  19. Method for Cleanly and Precisely Breaking Off a Rock Core Using a Radial Compressive Force

    NASA Technical Reports Server (NTRS)

    Richardson, Megan; Lin, Justin

    2011-01-01

    The Mars Sample Return mission has the goal to drill, break off, and retain rock core samples. After some results gained from rock core mechanics testing, the realization that scoring teeth would cleanly break off the core after only a few millimeters of penetration, and noting that rocks are weak in tension, the idea was developed to use symmetric wedging teeth in compression to weaken and then break the core at the contact plane. This concept was developed as a response to the break-off and retention requirements. The wedges wrap around the estimated average diameter of the core to get as many contact locations as possible, and are then pushed inward, radially, through the core towards one another. This starts a crack and begins to apply opposing forces inside the core to propagate the crack across the plane of contact. The advantage is in the simplicity. Only two teeth are needed to break five varieties of Mars-like rock cores with limited penetration and reasonable forces. Its major advantage is that it does not require any length of rock to be attached to the parent in order to break the core at the desired location. Test data shows that some rocks break off on their own into segments or break off into discs. This idea would grab and retain a disc, push some discs upward and others out, or grab a segment, break it at the contact plane, and retain the portion inside of the device. It also does this with few moving parts in a simple, space-efficient design. This discovery could be implemented into a coring drill bit to precisely break off and retain any size rock core.

  20. Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows

    NASA Astrophysics Data System (ADS)

    Bassenne, Maxime; Urzay, Javier; Park, George I.; Moin, Parviz

    2016-03-01

    This study investigates control-based forcing methods for incompressible homogeneous-isotropic turbulence forced linearly in physical space which result in constant turbulent kinetic energy, constant turbulent dissipation (also constant enstrophy), or a combination of the two based on a least-squares error minimization. The methods consist of proportional controllers embedded in the forcing coefficients. During the transient, the controllers adjust the forcing coefficients such that the controlled quantity achieves very early a minimal relative error with respect to its target stationary value. Comparisons of these forcing methods are made with the non-controlled approaches of Rosales and Meneveau ["Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties," Phys. Fluids 17, 095106 (2005)] and Carroll and Blanquart ["A proposed modification to Lundgren's physical space velocity forcing method for isotropic turbulence," Phys. Fluids 25, 105114 (2013)], using direct numerical simulations (DNS) and large-eddy simulations (LES). The results indicate that the proposed constant-energetics forcing methods shorten the transient period from a user-defined artificial flow field to Navier-Stokes turbulence while maintaining steadier statistics. Additionally, the proposed method of constant kinetic-energy forcing behaves more robustly in coarse LES when initial conditions are employed that favor the occurrence of subgrid-scale backscatter, whereas the other approaches fail to provide physical turbulent flow fields. For illustration, the proposed forcing methods are applied to dilute particle-laden homogeneous-isotropic turbulent flows; the results serve to highlight the influences of the forcing strategies on the disperse-phase statistics.

  1. Threshold estimation in two-alternative forced-choice (2AFC) tasks: the Spearman-Kärber method.

    PubMed

    Ulrich, Rolf; Miller, Jeff

    2004-04-01

    The Spearman-Kärber method can be used to estimate the threshold value or difference limen in two-alternative forced-choice tasks. This method yields a simple estimator for the difference limen and its standard error, so that both can be calculated with a pocket calculator. In contrast to previous estimators, the present approach does not require any assumptions about the shape of the true underlying psychometric function. The performance of this new nonparametric estimator is compared with the standard technique of probit analysis. The Spearman-Kärber method appears to be a valuable addition to the toolbox of psychophysical methods, because it is most accurate for estimating the mean (i.e., absolute and difference thresholds) and dispersion of the psychometric function, although it is not optimal for estimating percentile-based parameters of this function.

  2. A new two-alternative forced choice method for the unbiased characterization of perceptual bias and discriminability.

    PubMed

    Jogan, Matjaž; Stocker, Alan A

    2014-03-13

    Perception is often biased by secondary stimulus attributes (e.g., stimulus noise, attention, or spatial context). A correct quantitative characterization of perceptual bias is essential for testing hypotheses about the underlying perceptual mechanisms and computations. We demonstrate that the standard two-alternative forced choice (2AFC) method can lead to incorrect estimates of perceptual bias. We present a new 2AFC method that solves this problem by asking subjects to judge the relative perceptual distances between the test and each of two reference stimuli. Naïve subjects can easily perform this task. We successfully validated the new method with a visual motion-discrimination experiment. We demonstrate that the method permits an efficient and accurate characterization of perceptual bias and simultaneously provides measures of discriminability for both the reference and test stimulus, all from a single stimulus condition. This makes it an attractive choice for the characterization of perceptual bias and discriminability in a wide variety of psychophysical experiments.

  3. Adjusting and positioning method with high displacement resolution for large-load worktable based on the invariable restoring force

    NASA Astrophysics Data System (ADS)

    Huang, Jingzhi; Sun, Tao; Gu, Wei; Wen, Zhongpu; Guo, Tenghui

    2015-02-01

    With the fast development of the advanced equipment manufacturing toward precision and ultra-precision trend, especially with the continuously improving of the aviation engine's performance, the problem of high displacement resolution for the large-load two-dimension adjusting and positioning worktable used for the aeroengine assembling become evident. A method was proposed which is based on the invariable restoring force, and the adjusting and positioning physical model was established. The experiment results indicate that under the occasion of a load with 508 kilogram, the worktable has got a displacement resolution of 0.3μm after using the improved method compared to 1.4μm of the traditional method. The improved method could meet the requirements of aviation engine assembling worktable.

  4. Drift-oscillatory steering with the forward-reverse method for calculating the potential of mean force

    NASA Astrophysics Data System (ADS)

    Nategholeslam, Mostafa; Holland, Bryan W.; Gray, C. G.; Tomberli, Bruno

    2011-02-01

    We present a method that enables the use of the forward-reverse (FR) method of Kosztin on a broader range of problems in soft matter physics. Our method, which we call the oscillating forward-reverse (OFR) method, adds an oscillatory steering potential to the constant velocity steering potential of the FR method. This enables the calculation of the potential of mean force (PMF) in a single unidirectional oscillatory drift, rather than multiple drifts in both directions as required by the FR method. By following small forward perturbations with small reverse perturbations, the OFR method is able to generate a piecewise reverse path that follows the piecewise forward path much more closely than any practical set of paths used in the FR method. We calculate the PMF for four different systems: a dragged Brownian oscillator, a pair of atoms in a Lennard-Jones liquid, a Na+-Cl- ion pair in an aqueous solution, and a deca-alanine molecule being stretched in an implicit solvent. In all cases, the PMF results are in good agreement with those published previously using various other methods, and, to our knowledge, we give for the first time PMFs calculated by nonequilibrium methods for the Lennard-Jones and Na+-Cl- systems.

  5. The molecular yo-yo method: Live jump detection improves throughput of single-molecule force spectroscopy for out-of-equilibrium transitions

    NASA Astrophysics Data System (ADS)

    Mack, A. H.; Schlingman, D. J.; Kamenetska, M.; Collins, R.; Regan, L.; Mochrie, S. G. J.

    2013-08-01

    By monitoring multiple molecular transitions, force-clamp, and trap-position-clamp methods have led to precise determinations of the free energies and free energy landscapes for molecular states populated in equilibrium at the same or similar forces. Here, we present a powerful new elaboration of the force-clamp and force-jump methods, applicable to transitions far from equilibrium. Specifically, we have implemented a live jump detection and force-clamp algorithm that intelligently adjusts and maintains the force on a single molecule in response to the measured state of that molecule. We are able to collect hundreds of individual molecular transitions at different forces, many times faster than previously, permitting us to accurately determine force-dependent lifetime distributions and reaction rates. Application of our method to unwinding and rewinding the nucleosome inner turn, using optical tweezers reveals experimental lifetime distributions that comprise a statistically meaningful number of transitions, and that are accurately single exponential. These measurements significantly reduce the error in the previously measured rates, and demonstrate the existence of a single, dominant free energy barrier at each force studied. A key benefit of the molecular yo-yo method for nucleosomes is that it reduces as far as possible the time spent in the tangentially bound state, which minimizes the loss of nucleosomes by dissociation.

  6. The molecular yo-yo method: live jump detection improves throughput of single-molecule force spectroscopy for out-of-equilibrium transitions.

    PubMed

    Mack, A H; Schlingman, D J; Kamenetska, M; Collins, R; Regan, L; Mochrie, S G J

    2013-08-01

    By monitoring multiple molecular transitions, force-clamp, and trap-position-clamp methods have led to precise determinations of the free energies and free energy landscapes for molecular states populated in equilibrium at the same or similar forces. Here, we present a powerful new elaboration of the force-clamp and force-jump methods, applicable to transitions far from equilibrium. Specifically, we have implemented a live jump detection and force-clamp algorithm that intelligently adjusts and maintains the force on a single molecule in response to the measured state of that molecule. We are able to collect hundreds of individual molecular transitions at different forces, many times faster than previously, permitting us to accurately determine force-dependent lifetime distributions and reaction rates. Application of our method to unwinding and rewinding the nucleosome inner turn, using optical tweezers reveals experimental lifetime distributions that comprise a statistically meaningful number of transitions, and that are accurately single exponential. These measurements significantly reduce the error in the previously measured rates, and demonstrate the existence of a single, dominant free energy barrier at each force studied. A key benefit of the molecular yo-yo method for nucleosomes is that it reduces as far as possible the time spent in the tangentially bound state, which minimizes the loss of nucleosomes by dissociation.

  7. A method for the direct measurement of surface tension of collected atmospherically relevant aerosol particles using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hritz, Andrew D.; Raymond, Timothy M.; Dutcher, Dabrina D.

    2016-08-01

    Accurate estimates of particle surface tension are required for models concerning atmospheric aerosol nucleation and activation. However, it is difficult to collect the volumes of atmospheric aerosol required by typical instruments that measure surface tension, such as goniometers or Wilhelmy plates. In this work, a method that measures, ex situ, the surface tension of collected liquid nanoparticles using atomic force microscopy is presented. A film of particles is collected via impaction and is probed using nanoneedle tips with the atomic force microscope. This micro-Wilhelmy method allows for direct measurements of the surface tension of small amounts of sample. This method was verified using liquids, whose surface tensions were known. Particles of ozone oxidized α-pinene, a well-characterized system, were then produced, collected, and analyzed using this method to demonstrate its applicability for liquid aerosol samples. It was determined that oxidized α-pinene particles formed in dry conditions have a surface tension similar to that of pure α-pinene, and oxidized α-pinene particles formed in more humid conditions have a surface tension that is significantly higher.

  8. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.

    PubMed

    Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping

    2015-05-01

    We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.

  9. The Robust Separation Projection Method for Predicting Monthly Losses of Air Force Enlisted Personnel

    DTIC Science & Technology

    1991-01-01

    forecasting models called robust models, which use well-known methods of robust linear regression and medians to extract trend and seasonal effects from...William S., Susan J. Devlin, and Irma J. Terpenning , The SABL Statistical and Graphical Methods , and The Details of the SABL Transformation, Decomposition...and Calendar Methods , Bell Laboratories, Murray Hill, 1981. Cleveland, William S., Douglas M. Dunn, and Irma J. Terpenning , SABL--A Resistant Seasonal

  10. A numerical method to solve the Stokes problem with a punctual force in source term

    NASA Astrophysics Data System (ADS)

    Lacouture, Loïc

    2015-03-01

    The aim of this note is to present a numerical method to solve the Stokes problem in a bounded domain with a Dirac source term, which preserves optimality for any approximation order by the finite-element method. It is based on the knowledge of a fundamental solution to the associated operator over the whole space. This method is motivated by the modeling of the movement of active thin structures in a viscous fluid.

  11. Instrumentation and Methods to Measure Dynamic Forces During Exercise Using the Horizontal Exercise Machine

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    1999-01-01

    It is hypothesized that bone loss experienced by astronauts in zero gravity conditions may be curtailed by appropriate exercise. According to Wolf's law, bone regenerates when muscles produce stresses by pulling on the bone during daily activity and/or exercise on Earth. To use this theory to prevent or decrease bone loss, one needs to quantify musculoskeletal loads and relate them to bone density changes. In the context of the space program, it is desirable to determine musculoskeletal loads during exercise so that one may make similar measurements on Earth and in space. In this manner, load measurements on Earth may be used as reference to generate similar loads during exercise in space. A research project to investigate the effects of high-resistive exercise to decrease bone density loss underzero-gravity conditions is being carried out in Life Sciences Research Laboratories at NASA JSC. The project consists of a bed-rest study whereby subjects remain in horizontal position for seventeen weeks. During the study, a subset of those subjects executes a regime of resistive exercises in the horizontal exercise machine (HEM). The HEM was designed so that subjects remain horizontal while exercising to minimize gravity loading even during exercise. Bone density of each subject is measured throughout the duration of their participation. The objective of the study is to determine if the resistive exercises are effective in diminishing or eliminating bone loss. My participation in this project relates to instrumentation, measurement, and processing of signals from displacement sensors (optical encoders) and load-cells. Measurement of displacements will be used to determine the motion of the body during exercise, and load measurements will be used (along with displacement data) to determine forces and torques exerted on each section of the body during exercise. Further, I have assisted in specifying new sensors to be added to the HEM and to a new prototype resistive

  12. The role of climatic forcings in variations of Portuguese temperature: A comparison of spectral and statistical methods

    NASA Astrophysics Data System (ADS)

    Morozova, Anna L.; Barlyaeva, Tatiana V.

    2016-11-01

    Monthly series of temperature parameters measured by three Portuguese meteorological stations from 1888 to 2001 were used to study the effect of different climatic forcings. Three types of external forcings were considered: anthropogenic greenhouse gases and aerosols, volcanic aerosols, and solar and geomagnetic activity variations. Long-term variations of the temperature and other parameters with characteristic periods of decades were studied by various methods including the seasonal-trend decomposition based on LOESS (LOcally wEighted regreSSion), correlation and multiple regression analyses, and wavelet/wavelet coherence analyses. Obtained results confirm the statistical dependence of the temperature variations on the volcanic and the anthropogenic influence as well as variability that can be associated with the solar activity impact. In particular, surprisingly strong bi-decadal cycles were observed in temperature series whereas the observed decadal cycles are weaker and transient. Another interesting finding is the apparent non-stationarity of the relations between the solar and atmospheric parameters probably related to periods of strong/weak global circulation or frequent/occasional volcanic eruptions or interaction between the external forcing and internal atmospheric variability.

  13. Electrostatic force analysis, optical measurements, and structural characterization of zinc oxide colloidal quantum dots synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Choi, Min S.; Meshik, Xenia; Mukherjee, Souvik; Farid, Sidra; Doan, Samuel; Covnot, Leigha; Dutta, Mitra; Stroscio, Michael A.

    2015-11-01

    ZnO quantum dots (QDs) are used in a variety of applications due to several desirable characteristics, including a wide band gap, luminescence, and biocompatibility. Wurtzite ZnO QDs also exhibit a spontaneous polarization along the growth axis, leading to large electric fields. In this work, ZnO QDs around 7 nm in diameter are synthesized using the sol-gel method. Their size and structure are confirmed using photoluminescence, Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. Additionally, electrostatic force microscopy (EFM) is used to measure the amplitude change in the probe which is associated with the electric field produced by ZnO immobilized by layer-by-layer synthesis technique. The measured electrostatic field of 10 8 V/m is comparable to theoretically predicted value. Additionally, the strength of the electrostatic field is shown to depend on the orientation of the QD's c-axis. These results demonstrate a unique technique of quantifying ZnO's electric force using EFM.

  14. Developing a 3D Constrained Variational Analysis Method to Calculate Large Scale Forcing Data and the Applications

    NASA Astrophysics Data System (ADS)

    Tang, S.; Zhang, M. H.

    2014-12-01

    Large-scale forcing data (vertical velocities and advective tendencies) are important atmospheric fields to drive single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulations (LES), but they are difficult to calculate accurately. The current 1-dimensional constrained variational analysis (1D CVA) method (Zhang and Lin, 1997) used by the Atmospheric Radiation Measurement (ARM) program is limited to represent the average of a sounding network domain. We extended the original 1D CVA algorithm into 3-dimensional along with other improvements, calculated gridded large-scale forcing data, apparent heating sources (Q1) and moisture sinks (Q2), and compared with 5 reanalyses: ERA-Interim, NCEP CFSR, MERRA, JRA55 and NARR for a mid-latitude spring cyclone case. The results from a case study for in March 3rd 2000 at the Southern Great Plain (SGP) show that reanalyses generally captured the structure of the mid-latitude cyclone, but they have serious biases in the 2nd order derivative terms (divergences and horizontal derivations) at regional scales of less than a few hundred kilometers. Our algorithm provides a set of atmospheric fields consistent with the observed constraint variables at the surface and top of the atmosphere better than reanalyses. The analyzed atmospheric fields can be used in SCM, CRM and LES to provide 3-dimensional dynamical forcing, or be used to evaluate reanalyses or model simulations.

  15. Study on the description method of upper limb's muscle force levels during simulated in-orbit operations

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Li, DongXu; Liu, ZhiZhen; Liu, Liang

    2013-03-01

    The dexterous upper limb serves as the most important tool for astronauts to implement in-orbit experiments and operations. This study developed a simulated weightlessness experiment and invented new measuring equipment to quantitatively evaluate the muscle ability of the upper limb. Isometric maximum voluntary contractions (MVCs) and surface electromyography (sEMG) signals of right-handed pushing at the three positions were measured for eleven subjects. In order to enhance the comprehensiveness and accuracy of muscle force assessment, the study focused on signal processing techniques. We applied a combination method, which consists of time-, frequency-, and bi-frequency-domain analyses. Time- and frequency-domain analyses estimated the root mean square (RMS) and median frequency (MDF) of sEMG signals, respectively. Higher order spectra (HOS) of bi-frequency domain evaluated the maximum bispectrum amplitude ( B max), Gaussianity level (Sg) and linearity level (S l ) of sEMG signals. Results showed that B max, S l , and RMS values all increased as force increased. MDF and Sg values both declined as force increased. The research demonstrated that the combination method is superior to the conventional time- and frequency-domain analyses. The method not only described sEMG signal amplitude and power spectrum, but also deeper characterized phase coupling information and non-Gaussianity and non-linearity levels of sEMG, compared to two conventional analyses. The finding from the study can aid ergonomist to estimate astronaut muscle performance, so as to optimize in-orbit operation efficacy and minimize musculoskeletal injuries.

  16. Nano-mechanical characterization of disassembling amyloid fibrils using the Peak Force QNM method.

    PubMed

    Wang, Wenpin; Guo, Zongxia; Sun, Jing; Li, Zhibo

    2017-02-01

    The comprehensive understanding of disassembly mechanism of amyloid fibrils requires nano-scale characterization of the mechanical properties of amyloid fibrils during the disassembly process. In this work, gemini surfactant C12 C6 C12 Br2 micelles were used as a probe to disassemble Aβ(1-40) fibrils. The microstructure evolution and nano-mechanical properties of Aβ(1-40) fibrils during the disassembly process were systematically investigated by the Peak Force Quantitative Nano-mechanical (PF-QNM) technique. The results show an obvious decrease in Young's modulus of mature fibrils with high β-sheet contents (2.4 ± 1.0 GPa) in comparison to the resulting peptide/surfactant complexes (1.1 ± 0.8 GPa) with loose surface structures. Interestingly, the Young's modulus of spherical peptide/surfactant complexes on the core was more than 3 GPa. This strategy can be used as a standard protocol to investigate the interaction mechanism between amyloid fibrils and small molecules, which may open up new possibilities to explore the mechanism of relevant human diseases.

  17. Driving force analysis of the agricultural water footprint in China based on the LMDI method.

    PubMed

    Zhao, Chunfu; Chen, Bin

    2014-11-04

    China's water scarcity problems have become more severe because of the unprecedented economic development and population explosion. Considering agriculture's large share of water consumption, obtaining a clear understanding of Chinese agricultural consumptive water use plays a key role in addressing China's water resource stress and providing appropriate water mitigation policies. We account for the Chinese agricultural water footprint from 1990 to 2009 based on bottom up approach. Then, the underlying driving forces are decomposed into diet structure effect, efficiency effect, economic activity effect, and population effect, and analyzed by applying a log-mean Divisia index (LMDI) model. The results reveal that the Chinese agricultural water footprint has risen from the 94.1 Gm3 in 1990 to 141 Gm3 in 2009. The economic activity effect is the largest positive contributor to promoting the water footprint growth, followed by the population effect and diet structure effect. Although water efficiency improvement as a significant negative effect has reduced overall water footprint, the water footprint decline from water efficiency improvement cannot compensate for the huge increase from the three positive driving factors. The combination of water efficiency improvement and dietary structure adjustment is the most effective approach for controlling the Chinese agricultural water footprint's further growth.

  18. An extended version of Boyd's force field method applicable to heteroatomic molecules. Part 1. Adenine and uracil

    NASA Astrophysics Data System (ADS)

    Espinosa-Müller, A. W.; Bravo, A. N.

    The force field method developed by Boyd is extended to include molecules containing atoms other than C and H (e.g., N, O, P, S, Cl, Br,…). A new set of force field parameters is determined in order to redefine the potential energy functions that govern the dynamics of the internal (valence coordinates) degrees of freedom of a molecule. It is shown that the minimum of the partial potential energy surface is significantly affected by electrostatic intramolecular interactions. In this regard the non-bonded interactions appears to be less important than the dipole-dipole type interactions for a given interatomic distance when heteroatoms are present in the molecular framework. The reliability of the extended method as regards minimized structure, vibrational spectra and thermodynamic properties has been checked for more than 20 polyatomic molecules. From the correlation between calculated and experimental properties it is concluded that the method has good potential for further applications on polyatomic molecules with increasing size and topological compexities such as adenine and uracil.

  19. Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part I. Atomic force microscopy.

    PubMed

    Balashev, K; Jensen, T R; Kjaer, K; Bjørnholm, T

    2001-05-01

    Mono-layers of lipids and their interaction with surface active enzymes (lipases) have been studied for more than a century. During the past decade new insight into this area has been obtained due to the development of scanning probe microscopy. This novel method provides direct microscopic information about the system in question and allows in situ investigations under near physiological conditions. In the present review the theory, experimental set-up and sample requirements of atomic force microscopy (AFM) are described. An overview of recent results is also presented with special emphasis on lipase hydrolysis and kinetics investigated in situ using AFM.

  20. Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy.

    PubMed

    Chao, Yuanqing; Zhang, Tong

    2011-10-01

    Fixation ability of five common fixation solutions, including 2.5% glutaraldehyde, 10% formalin, 4% paraformaldehyde, methanol/acetone (1:1), and ethanol/acetic acid (3:1) were evaluated by using atomic force microscopy in the present study. Three model bacteria, i.e., Escherichia coli, Pseudomonas putida, and Bacillus subtilis were applied to observe the above fixation methods for the morphology preservation of bacterial cells and surface ultrastructures. All the fixation methods could effectively preserve cell morphology. However, for preserving bacterial surface ultrastructures, the methods applying aldehyde fixations performed much better than those using alcohols, since the alcohols could detach the surface filaments (i.e., flagella and pili) significantly. Based on the quantitative and qualitative assessments, the 2.5% glutaraldehyde was proposed as a promising fixation solution both for observing morphology of both bacterial cell and surface ultrastructures, while the methonal/acetone mixture was the worst fixation solution which may obtain unreliable results.

  1. Orthodontic forces generated by a simulated archwire appliance evaluated by the finite element method.

    PubMed

    Fotos, P G; Spyrakos, C C; Bernard, D O

    1990-01-01

    The finite element method has been used to determine the stress distribution generated by the initial placement of a simulated preset bracket-type orthodontic appliance utilizing titanium-nickel alloy archwire.

  2. Numerical manifold method for the forced vibration of thin plates during bending.

    PubMed

    Jun, Ding; Song, Chen; Wei-Bin, Wen; Shao-Ming, Luo; Xia, Huang

    2014-01-01

    A novel numerical manifold method was derived from the cubic B-spline basis function. The new interpolation function is characterized by high-order coordination at the boundary of a manifold element. The linear elastic-dynamic equation used to solve the bending vibration of thin plates was derived according to the principle of minimum instantaneous potential energy. The method for the initialization of the dynamic equation and its solution process were provided. Moreover, the analysis showed that the calculated stiffness matrix exhibited favorable performance. Numerical results showed that the generalized degrees of freedom were significantly fewer and that the calculation accuracy was higher for the manifold method than for the conventional finite element method.

  3. Numerical Manifold Method for the Forced Vibration of Thin Plates during Bending

    PubMed Central

    Jun, Ding; Song, Chen; Wei-Bin, Wen; Shao-Ming, Luo; Xia, Huang

    2014-01-01

    A novel numerical manifold method was derived from the cubic B-spline basis function. The new interpolation function is characterized by high-order coordination at the boundary of a manifold element. The linear elastic-dynamic equation used to solve the bending vibration of thin plates was derived according to the principle of minimum instantaneous potential energy. The method for the initialization of the dynamic equation and its solution process were provided. Moreover, the analysis showed that the calculated stiffness matrix exhibited favorable performance. Numerical results showed that the generalized degrees of freedom were significantly fewer and that the calculation accuracy was higher for the manifold method than for the conventional finite element method. PMID:24883403

  4. A Design Method of Force Dependent Velocity Bilateral Control Based on Gyrator Property

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Takahiro; Kuwahara, Hiroaki; Ohnishi, Kouhei

    This paper proposes a bilateral control method for a teleoperation system with different sizes and work volumes. In the proposed controller, transformer-type bilateral control and gyrator-type bilateral control are integrated. The proposed control method can be used for the control of the motion of a slave robot; this involves intuitive manipulation of the master robot despite the structural difference between the master and slave.

  5. A New Method for Reconstruction of Coronal Force-Free Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Yi, Sibaek; Choe, Gwangson; Lim, Daye; Kim, Kap-Sung

    2016-04-01

    We present a new method for coronal magnetic field reconstruction based on vector magnetogram data. This method belongs to a variational method in that the magnetic energy of the system is decreased as the iteration proceeds. We employ a vector potential rather than the magnetic field vector in order to be free from the numerical divergence B problem. Whereas most methods employing three components of the magnetic field vector overspecify the boundary conditions, we only impose the normal components of magnetic field and current density as the bottom boundary conditions. Previous methods using a vector potential need to adjust the bottom boundary conditions continually, but we fix the bottom boundary conditions once and for all. To minimize the effect of the obscure lateral and top boundary conditions, we have adopted a nested grid system, which can accommodate as large as a computational domain without consuming as much computational resources. At the top boundary, we have implemented the source surface condition. We have tested our method with the analytic solution by Low & Lou (1990) as a reference. When the solution is given only at the bottom boundary, our method excels in most figures of merits devised by Schrijver et al. (2006). We have also applied our method to the active region AR 11974, in which two M class flares and a halo CME took place. Our reconstructed field shows three sigmoid structures in the lower corona and two interwound flux tubes in the upper corona. The former seem to cause the observed flares and the latter seem to be responsible for the global eruption, i.e., the CME.

  6. The extended wedge method: Atomic force microscope friction calibration for improved tolerance to instrument misalignments, tip offset, and blunt probes

    SciTech Connect

    Khare, H. S.; Burris, D. L.

    2013-05-15

    One of the major challenges in understanding and controlling friction is the difficulty in bridging the length and time scales of macroscale contacts and those of the single asperity interactions they comprise. While the atomic force microscope (AFM) offers a unique ability to probe tribological surfaces in a wear-free single-asperity contact, instrument calibration challenges have limited the usefulness of this technique for quantitative nanotribological studies. A number of lateral force calibration techniques have been proposed and used, but none has gained universal acceptance due to practical considerations, configuration limitations, or sensitivities to unknowable error sources. This paper describes a simple extension of the classic wedge method of AFM lateral force calibration which: (1) allows simultaneous calibration and measurement on any substrate, thus eliminating prior tip damage and confounding effects of instrument setup adjustments; (2) is insensitive to adhesion, PSD cross-talk, transducer/piezo-tube axis misalignment, and shear-center offset; (3) is applicable to integrated tips and colloidal probes; and (4) is generally applicable to any reciprocating friction coefficient measurement. The method was applied to AFM measurements of polished carbon (99.999% graphite) and single crystal MoS{sub 2} to demonstrate the technique. Carbon and single crystal MoS{sub 2} had friction coefficients of {mu}= 0.20 {+-} 0.04 and {mu}= 0.006 {+-} 0.001, respectively, against an integrated Si probe. Against a glass colloidal sphere, MoS{sub 2} had a friction coefficient of {mu}= 0.005 {+-} 0.001. Generally, the measurement uncertainties ranged from 10%-20% and were driven by the effect of actual frictional variation on the calibration rather than calibration error itself (i.e., due to misalignment, tip-offset, or probe radius).

  7. Potential of the pseudo-inverse method as a constrained static optimization for musculo-tendon forces prediction.

    PubMed

    Moissenet, Florent; Chèze, Laurence; Dumas, Raphaël

    2012-06-01

    Inverse dynamics combined with a constrained static optimization analysis has often been proposed to solve the muscular redundancy problem. Typically, the optimization problem consists in a cost function to be minimized and some equality and inequality constraints to be fulfilled. Penalty-based and Lagrange multipliers methods are common optimization methods for the equality constraints management. More recently, the pseudo-inverse method has been introduced in the field of biomechanics. The purpose of this paper is to evaluate the ability and the efficiency of this new method to solve the muscular redundancy problem, by comparing respectively the musculo-tendon forces prediction and its cost-effectiveness against common optimization methods. Since algorithm efficiency and equality constraints fulfillment highly belong to the optimization method, a two-phase procedure is proposed in order to identify and compare the complexity of the cost function, the number of iterations needed to find a solution and the computational time of the penalty-based method, the Lagrange multipliers method and pseudo-inverse method. Using a 2D knee musculo-skeletal model in an isometric context, the study of the cost functions isovalue curves shows that the solution space is 2D with the penalty-based method, 3D with the Lagrange multipliers method and 1D with the pseudo-inverse method. The minimal cost function area (defined as the area corresponding to 5% over the minimal cost) obtained for the pseudo-inverse method is very limited and along the solution space line, whereas the minimal cost function area obtained for other methods are larger or more complex. Moreover, when using a 3D lower limb musculo-skeletal model during a gait cycle simulation, the pseudo-inverse method provides the lowest number of iterations while Lagrange multipliers and pseudo-inverse method have almost the same computational time. The pseudo-inverse method, by providing a better suited cost function and an

  8. Relationship of Source Selection Methods to Contract Outcomes: an Analysis of Air Force Source Selection

    DTIC Science & Technology

    2015-12-01

    Specifically, our data analysis explores the relationship of source selection methods to the contract outcomes of procurement administrative lead ...Postgraduate School PALT Procurement Administrative Lead Time PBA Performance Based Acquisition SBA Small Business Act TASC Total Administrative Services...anecdotal evidence, which can lead to confusion. Consider, for example, the terminology involved in the discussion. Despite the specificity of the

  9. Using Module Analysis for Multiple Choice Responses: A New Method Applied to Force Concept Inventory Data

    ERIC Educational Resources Information Center

    Brewe, Eric; Bruun, Jesper; Bearden, Ian G.

    2016-01-01

    We describe "Module Analysis for Multiple Choice Responses" (MAMCR), a new methodology for carrying out network analysis on responses to multiple choice assessments. This method is used to identify modules of non-normative responses which can then be interpreted as an alternative to factor analysis. MAMCR allows us to identify conceptual…

  10. Using Module Analysis for Multiple Choice Responses: A New Method Applied to Force Concept Inventory Data

    ERIC Educational Resources Information Center

    Brewe, Eric; Bruun, Jesper; Bearden, Ian G.

    2016-01-01

    We describe "Module Analysis for Multiple Choice Responses" (MAMCR), a new methodology for carrying out network analysis on responses to multiple choice assessments. This method is used to identify modules of non-normative responses which can then be interpreted as an alternative to factor analysis. MAMCR allows us to identify conceptual…

  11. The Application of Decision Analysis Methods to Source Selection in the United States Air Force

    DTIC Science & Technology

    1991-08-01

    Specifically, Multiattribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP) are applied to source selection within the United States Air... Multiattribute Utility Theory , Analytic 137 Heirarchy Process, Source Selection, System Acquisition 16. PRICE CODE 17. SECURITY CLASSIFICATION 18 SECURITY...decision analysis methods to the selection of the ’best" contractor for defense systems acquisition. Specifically, Multiattribute Utility Theory (MAUT

  12. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope

    SciTech Connect

    Sader, John E.; Lu, Jianing; Mulvaney, Paul

    2014-11-15

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied – in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry – neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  13. Polymer sequencing by molecular machines: a framework for predicting the resolving power of a sliding contact force spectroscopy sequencing method.

    PubMed

    Dunlop, Alex; Bowman, Kate; Aarstad, Olav; Skjåk-Bræk, Gudmund; Stokke, Bjørn T; Round, Andrew N

    2017-10-02

    We evaluate an AFM-based single molecule force spectroscopy method for mapping sequences in otherwise difficult to sequence heteropolymers, including glycosylated proteins and glycans. The sliding contact force spectroscopy (SCFS) method exploits a sliding contact made between a nanopore threaded over a polymer axle and an AFM probe. We find that for sliding α- and β-cyclodextrin nanopores over a wide range of hydrophilic monomers, the free energy of sliding is proportional to the sum of two dimensionless, easily calculable parameters representing the relative partitioning of the monomer inside the nanopore or in the aqueous phase, and the friction arising from sliding the nanopore over the monomer. Using this relationship we calculate sliding energies for nucleic acids, amino acids, glycan and synthetic monomers and predict on the basis of these calculations that SCFS will detect N- and O-glycosylation of proteins and patterns of sidechains in glycans. For these applications, SCFS offers an alternative to sequence mapping by mass spectrometry or newly-emerging nanopore technologies that may be easily implemented using a standard AFM.

  14. A NEW IMPLEMENTATION OF THE MAGNETOHYDRODYNAMICS-RELAXATION METHOD FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION IN THE SOLAR CORONA

    SciTech Connect

    Jiang Chaowei; Feng Xueshang E-mail: fengx@spaceweather.ac.cn

    2012-04-20

    The magnetic field in the solar corona is usually extrapolated from a photospheric vector magnetogram using a nonlinear force-free field (NLFFF) model. NLFFF extrapolation needs considerable effort to be devoted to its numerical realization. In this paper, we present a new implementation of the magnetohydrodynamics (MHD) relaxation method for NLFFF extrapolation. The magnetofrictional approach, which is introduced for speeding the relaxation of the MHD system, is realized for the first time by the spacetime conservation-element and solution-element scheme. A magnetic field splitting method is used to further improve the computational accuracy. The bottom boundary condition is prescribed by incrementally changing the transverse field to match the magnetogram, and all other artificial boundaries of the computational box are simply fixed. We examine the code using two types of NLFFF benchmark tests, the Low and Lou semi-analytic force-free solutions and a more realistic solar-like case constructed by van Ballegooijen et al. The results show that our implementation is successful and versatile for extrapolations of either the relatively simple cases or the rather complex cases that need significant rebuilding of the magnetic topology, e.g., a flux rope. We also compute a suite of metrics to quantitatively analyze the results and demonstrate that the performance of our code in extrapolation accuracy basically reaches the same level of the present best-performing code, i.e., that developed by Wiegelmann.

  15. Efficient Simulation Method for Polarizable Protein Force Fields: Application to the Simulation of BPTI in Liquid Water

    SciTech Connect

    Harder, Edward; Kim, Byungchan; Friesner, Richard A.; Berne, Bruce J.

    2005-01-31

    A methodology for large scale molecular dynamics simulation of a solvated polarizable protein, using a combination of permanent and inducible point dipoles with fluctuating and fixed charges, is discussed and applied to the simulation of water solvated bovine pancreatic trypsin inhibitor (BPTI). The electrostatic forces are evaluated using a generalized form of the P3M Ewald method which includes point dipoles in addition to point charge sites. The electrostatic configuration is propagated along with the nuclei during the course of the simulation using an extended Lagrangian formalism. For the system size studied, 20000 atoms, this method gives only a marginal computational overhead relative to nonpolarizable potential models (1.23-1.45) per time step of simulation. The models employ a newly developed polarizable dipole force field for the protein1 with two commonly used water models TIP4P-FQ and RPOL. Performed at constant energy and constant volume (NVE) using the velocity Verlet algorithm, the simulations show excellent energy conservation and run stably for their 2 ns duration. To characterize the accuracy of the solvation models the protein structure is analyzed. The simulated structures remain within 1 Å of the experimental crystal structure for the duration of the simulation in line with the nonpolarizable OPLS-AA model.

  16. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope.

    PubMed

    Sader, John E; Lu, Jianing; Mulvaney, Paul

    2014-11-01

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied - in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry - neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  17. A Study of Method Development, Validation, and Forced Degradation for Simultaneous Quantification of Paracetamol and Ibuprofen in Pharmaceutical Dosage Form by RP-HPLC Method

    PubMed Central

    Jahan, Md. Sarowar; Islam, Md. Jahirul; Begum, Rehana; Kayesh, Ruhul; Rahman, Asma

    2014-01-01

    A rapid and stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method was developed for simultaneous quantification of paracetamol and ibuprofen in their combined dosage form especially to get some more advantages over other methods already developed for this combination. The method was validated according to United States Pharmacopeia (USP) guideline with respect to accuracy, precision, specificity, linearity, solution stability, robustness, sensitivity, and system suitability. Forced degradation study was validated according to International Conference on Harmonisation (ICH). For this, an isocratic condition of mobile phase comprising phosphate buffer (pH 6.8) and acetonitrile in a ratio of 65:35, v/v at a flow rate of 0.7 mL/minute over RP C18 (octadecylsilane (ODS), 150 × 4.6 mm, 5 μm, Phenomenex Inc.) column at ambient temperature was maintained. The method showed excellent linear response with correlation coefficient (R2) values of 0.999 and 1.0 for paracetamol and ibuprofen respectively, which were within the limit of correlation coefficient (R2 > 0.995). The percent recoveries for two drugs were found within the acceptance limit of (97.0–103.0%). Intra-and inter-day precision studies of the new method were less than the maximum allowable limit percentage of relative standard deviation (%RSD) ≤ 2.0. Forced degradation of the drug product was carried out as per the ICH guidelines with a view to establishing the stability-indicating property of this method and providing useful information about the degradation pathways, degradation products, and how the quality of a drug substance and drug product changes with time under the influence of various stressing conditions. The degradation of ibuprofen was within the limit (5–20%, according to the guideline of ICH), while paracetamol showed <20% degradation in oxidation and basic condition. PMID:25452691

  18. A Study of Method Development, Validation, and Forced Degradation for Simultaneous Quantification of Paracetamol and Ibuprofen in Pharmaceutical Dosage Form by RP-HPLC Method.

    PubMed

    Jahan, Md Sarowar; Islam, Md Jahirul; Begum, Rehana; Kayesh, Ruhul; Rahman, Asma

    2014-01-01

    A rapid and stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method was developed for simultaneous quantification of paracetamol and ibuprofen in their combined dosage form especially to get some more advantages over other methods already developed for this combination. The method was validated according to United States Pharmacopeia (USP) guideline with respect to accuracy, precision, specificity, linearity, solution stability, robustness, sensitivity, and system suitability. Forced degradation study was validated according to International Conference on Harmonisation (ICH). For this, an isocratic condition of mobile phase comprising phosphate buffer (pH 6.8) and acetonitrile in a ratio of 65:35, v/v at a flow rate of 0.7 mL/minute over RP C18 (octadecylsilane (ODS), 150 × 4.6 mm, 5 μm, Phenomenex Inc.) column at ambient temperature was maintained. The method showed excellent linear response with correlation coefficient (R (2)) values of 0.999 and 1.0 for paracetamol and ibuprofen respectively, which were within the limit of correlation coefficient (R (2) > 0.995). The percent recoveries for two drugs were found within the acceptance limit of (97.0-103.0%). Intra-and inter-day precision studies of the new method were less than the maximum allowable limit percentage of relative standard deviation (%RSD) ≤ 2.0. Forced degradation of the drug product was carried out as per the ICH guidelines with a view to establishing the stability-indicating property of this method and providing useful information about the degradation pathways, degradation products, and how the quality of a drug substance and drug product changes with time under the influence of various stressing conditions. The degradation of ibuprofen was within the limit (5-20%, according to the guideline of ICH), while paracetamol showed <20% degradation in oxidation and basic condition.

  19. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d′) in Yes-No and forced-choice tasks

    PubMed Central

    Lesmes, Luis A.; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A.; Albright, Thomas D.

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold—the signal intensity corresponding to a pre-defined sensitivity level (d′ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks—(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10–0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods. PMID:26300798

  20. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d') in Yes-No and forced-choice tasks.

    PubMed

    Lesmes, Luis A; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A; Albright, Thomas D

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold-the signal intensity corresponding to a pre-defined sensitivity level (d' = 1)-in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks-(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection-the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10-0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods.

  1. Microfluidic devices, systems, and methods for quantifying particles using centrifugal force

    DOEpatents

    Schaff, Ulrich Y.; Sommer, Gregory J.; Singh, Anup K.

    2015-11-17

    Embodiments of the present invention are directed toward microfluidic systems, apparatus, and methods for measuring a quantity of cells in a fluid. Examples include a differential white blood cell measurement using a centrifugal microfluidic system. A method may include introducing a fluid sample containing a quantity of cells into a microfluidic channel defined in part by a substrate. The quantity of cells may be transported toward a detection region defined in part by the substrate, wherein the detection region contains a density media, and wherein the density media has a density lower than a density of the cells and higher than a density of the fluid sample. The substrate may be spun such that at least a portion of the quantity of cells are transported through the density media. Signals may be detected from label moieties affixed to the cells.

  2. Two-capacitor method for study of photoelectromotive force in semiconductors

    SciTech Connect

    Bodrova, T.K.; Davydov, I.A.; Protasov, Y.V.; Seregin, V.T.

    1986-08-01

    This paper presents a method for measurement of photo emf on the surface or within a semiconductor and in metal-semiconductor and metal dielectric-semiconductor structures that uses, instead of a single Kelvin vibrating capacitor, two capacitors in series: a fixed capacitor with the specimen on one of its plates and a vibrating capacitor, which converts the dc signal to ac. The sensitivity of the circuit which is determined by the ratio of the capacitor values and the noise level of the EVP-8M capacitive vibrating-reed converter (less than 50 uV) is equal to 0.3 mV. The method facilitates studies in the high vacuum and in various media.

  3. Stability-Indicating Method and LC-MS-MS Characterization of Forced Degradation Products of Sofosbuvir.

    PubMed

    Nebsen, M; Elzanfaly, Eman S

    2016-07-19

    Sofosbuvir is a novel direct acting antiviral agent against hepatitis C virus. In the present work, a rapid, specific and reproducible isocratic reversed phase high performance liquid chromatography (RP-HPLC) method has been developed and validated for the determination of sofosbuvir in the presence of its stressed degradation products. Sobosbuvir was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per international conference on harmonization (ICH) conditions. The drug showed degradation under oxidative, photolysis, acid and base hydrolysis stress conditions. However, it was stable under thermal and neutral hydrolysis stress conditions. Chromatographic separation of the drug from its degradation products was performed on Inertsil ODS-3 C18 (250 mm × 4.6 mm i.d., 5 µm) column using a green mobile phase of methanol:water 70:30 (v/v). The degradation products were characterized by LC-MS-MS and the fragmentation pathways were proposed. The developed method was validated as per ICH guidelines. No previous method was reported regarding the degradation behavior of sofosbuvir.

  4. Evolution of terrace risers along the upper Rhine graben inferred from morphologic dating methods: evidence of climatic and tectonic forcing

    NASA Astrophysics Data System (ADS)

    Nivière, B.; Marquis, Guy

    2000-06-01

    We show that morphologic dating techniques that have been applied successfully in arid and semi-arid areas are also suitable for slowly evolving scarps that are usually found in temperate climate environments. We have attempted two morphologic approaches, based on diffusion, to relate the present-day shape of an abandoned terrace riser to its age. The first assumes a model of scarp degradation based on a diffusive process (the D method). The second evaluates the state of scarp degradation using the slope distribution (the SD method) along a topographic profile. By using a manmade scarp of known age, we have obtained a mass diffusivity close to 1.4m2ka-1 when the area experiences a temperate climate characterized by a continuous vegetation cover. However, this value decreases during glacial episodes, probably on account of the permafrost. Even though the SD method requires an age correction that can be easily computed, only this method reveals that at several profiles a later scarp reactivation event has occurred. Indeed, along several profiles, the slope distribution was best fitted by two offset Gaussian curves, suggesting that some scarps have undergone a complex evolution that cannot be modelled with a single diffusive process. This scarp reactivation may correspond to a new incisive episode and allows one to estimate the vertical incision rate along the terrace riser. Applied to a Wurmian terrace riser of the upper Rhine valley (NE France), this approach reveals that the vertical incision rate ranges from 0.2 to 0.85mmyr-1 between 35 and 15ka and that the terrace bevelling occurred during two episodes related to climatic forcing. Moreover, we can identify a component of tectonic forcing evidenced by an increase to the north of vertical incision rate and Rhine stream-power. Another major result is showing that this terrace riser is not isochronous along its strike and that younger portions result from lateral incision of a 30ka pre-existing scarp.

  5. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  6. Force sensor

    DOEpatents

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  7. Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration

    DOEpatents

    Zeikus, Gregory J.; Shin, Hyoun S.; Jain, Mahendra K.

    2002-01-01

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial, cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  8. Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration

    DOEpatents

    Zeikus, Joseph G.; Park, Doo

    2001-01-01

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  9. A comparison of methods for computing the sigma-coordinate pressure gradient force for flow over sloped terrain in a hybrid theta-sigma model

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Uccellini, L. W.

    1983-01-01

    In connection with the employment of the sigma coordinates introduced by Phillips (1957), problems can arise regarding an accurate finite-difference computation of the pressure gradient force. Over steeply sloped terrain, the calculation of the sigma-coordinate pressure gradient force involves computing the difference between two large terms of opposite sign which results in large truncation error. To reduce the truncation error, several finite-difference methods have been designed and implemented. The present investigation has the objective to provide another method of computing the sigma-coordinate pressure gradient force. Phillips' method is applied for the elimination of a hydrostatic component to a flux formulation. The new technique is compared with four other methods for computing the pressure gradient force. The work is motivated by the desire to use an isentropic and sigma-coordinate hybrid model for experiments designed to study flow near mountainous terrain.

  10. A Robot-Assisted Surgical System Using a Force-Image Control Method for Pedicle Screw Insertion

    PubMed Central

    Tian, Wei; Han, Xiaoguang; Liu, Bo; Liu, Yajun; Hu, Ying; Han, Xiao; Xu, Yunfeng; Fan, Mingxing; Jin, Haiyang

    2014-01-01

    Objective To introduce a robot-assisted surgical system for spinal posterior fixation that can automatically recognize the drilling state and stop potential cortical penetration with force and image information and to further evaluate the accuracy and safety of the robot for sheep vertebra pedicle screw placement. Methods The Robotic Spinal Surgery System (RSSS) was composed of an optical tracking system, a navigation and planning system, and a surgical robot equipped with a 6-DOF force/torque sensor. The robot used the image message and force signals to sense the different operation states and to prevent potential cortical penetration in the pedicle screw insertion operation. To evaluate the accuracy and safety of the RSSS, 32 screw insertions were conducted. Furthermore, six trajectories were deliberately planned incorrectly to explore whether the robot could recognize the different drilling states and immediately prevent cortical penetration. Results All 32 pedicle screws were placed in the pedicle without any broken pedicle walls. Compared with the preoperative planning, the average deviations of the entry points in the axial and sagittal views were 0.50±0.33 and 0.65±0.40 mm, and the average deviations of the angles in the axial and sagittal views were 1.9±0.82° and 1.48±1.2°. The robot successfully recognized the different drilling states and prevented potential cortical penetration. In the deliberately incorrectly planned trajectory experiments, the robot successfully prevented the cortical penetration. Conclusion These results verified the RSSS’s accuracy and safety, which supported its potential use for the spinal surgery. PMID:24466043

  11. Computationally exact methods for stochastic periodic dynamics: Spatiotemporal dispersal and temporally forced transmission.

    PubMed

    Ross, J V

    2010-01-07

    The dynamics of many diseases and populations possess distinct recurring phases. For example, many species breed only during a subset of the year and the infection dynamics of many pathogens have transmission rates that vary with season. Here I investigate computational methods for studying transient and long-term behaviour of stochastic models which have periodic phases-several different potential techniques for studying long-term behaviour will be contrasted. I illustrate the results with two studies: The first is of a spatially realistic metapopulation model of malleefowl (Leipoa ocellata), a species which disperses only during a quarter of the year; this model is used to highlight the advantages and disadvantages of the particular methods presented. The second study is of a model for disease dynamics which incorporates seasonality in both the rate of within-population transmission and also in the rate of transmission effected via aerosol importation. This model has applications to studying disease invasion and persistence in captive-breeding populations. We demonstrate, via comparison to appropriately matched models with constant transmission rates and also no aerosol transmission, that seasonality and aerosol importation may alter control choices, with possibly an increase in the threshold population size for local control surveillance, transfer of importance to limiting aerosol transmission, and the use of temporally targetted surveillance. The methodology presented is the gold-standard for dealing with many phased processes in ecology and epidemiology, but its application is limited to systems of small size.

  12. LC-MS/MS method for the characterization of the forced degradation products of Entecavir.

    PubMed

    Ramesh, Thippani; Rao, Pothuraju Nageswara; Rao, Ramisetti Nageswara

    2014-02-01

    A rapid, specific, and reliable isocratic LC-MS/MS method has been developed and validated for the identification and characterization of the stressed degradation products of Entecavir (ETV). ETV, an antiviral drug, was subjected to hydrolysis (acidic, alkaline, and neutral), oxidation, photolysis and thermal stress, as per the international conference on harmonization specified conditions. The drug showed extensive degradation under oxidative and acid hydrolysis stress conditions. However, it was stable to thermal, acidic, neutral, and photolysis stress conditions. A total of five degradation products were observed and the chromatographic separation of the drug and its degradation products were achieved on a Waters Symmetry C18 (250 mm × 4.6 mm, id, 5 μm) column using 20 mM ammonium acetate (pH 3)/acetonitrile (50:50, v/v) as a mobile phase. The degradation products were characterized by LC-MS/MS and its fragmentation pathways were proposed. The LC-MS method was validated with respect to specificity, linearity, accuracy, and precision. No previous reports were found in the literature regarding the degradation behavior of ETV.

  13. A comparison of assessment methods of hand activity and force for use in calculating the ACGIH(R) hand activity level (HAL) TLV(R).

    PubMed

    Wurzelbacher, Steve; Burt, Susan; Crombie, Ken; Ramsey, Jessica; Luo, Lian; Allee, Steve; Jin, Yan

    2010-07-01

    This article compares several methods that were used for determining hand activity level and force in a large prospective ergonomics study. The first goal of this analysis was to determine the degree of correlation between hand activity/ force ratings using different assessment methods. The second goal was to determine if the hand activity/force methods were functionally equivalent for the purpose of calculating the ACGIH(R) hand activity level (HAL) threshold limit value (TLV(R)). A final goal was to investigate reasons for potential differences between methods. More than 700 task analyses were conducted on 484 workers at three study locations. Hand activity was assessed by two methods, including a trained observer on site using a 10-point visual analog scale for hand activity level and by offsite video analysis of the same task to calculate the frequency of exertions and the work/recovery ratio. Hand force was assessed by two on-site methods: ratings of perceived exertion (RPE) using a modified Borg CR-10 scale by a trained observer and RPE by the worker performing the task. The two methods for assessing hand activity level were correlated (Spearman rank = 0.49) and produced main TLV result categories (below Action Limit, Action Limit, TLV) with percent of exact agreement ranging from 71 to 91% and weighted Kappa ranging from 0.61 to 0.75. The two RPE methods for assessing hand force were correlated (Spearman rank ranging from 0.47 to 0.69) and produced TLVs with percent of exact agreement ranging from 64 to 83% and weighted Kappa ranging from 0.52 to 0.62. Differences between methods may be explained by a number of task and subject variables that were significantly associated with higher levels of hand activity and force. In summary, this study found substantial agreement between two methods for assessing hand activity level and moderate agreement between two methods for assessing hand force.

  14. a Normal Mode Expansion Method for the Undamped Forced Vibration of Linear Piezoelectric Solid

    NASA Astrophysics Data System (ADS)

    LIU, D.-C.

    2000-06-01

    A normal mode expansion method for the vibrational responses of non-homogeneous linear piezoelectric materials without damping is presented. It can be applied directly to arbitrary piezoelectric composites, which are widely used in vibrational and acoustic sensor/actuator/transmitter applications. In the present article it is shown that if the normal modes are given, the displacement field can be expanded as the linear superposition of normal modes, while the modal coefficients can be represented in terms of surface and volume integrals directly over the six types of distributed excitations without solving the quasi-static solution explicitly. The present treatment is a modification of an earlier work by Liu [11] using a different definition of the so-called quasi-static solution, and the damping effect has been neglected for simplicity. A simple example is given to exemplify the application of the present formulation.

  15. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.

    PubMed

    Wen, L; Wang, T M; Wu, G H; Liang, J H

    2012-09-01

    We implement a mackerel (Scomber scombrus) body-shaped robot, programmed to display the three most typical body/caudal fin undulatory kinematics (i.e. anguilliform, carangiform and thunniform), in order to biomimetically investigate hydrodynamic issues not easily tackled experimentally with live fish. The robotic mackerel, mounted on a servo towing system and initially at rest, can determine its self-propelled speed by measuring the external force acting upon it and allowing for the simultaneous measurement of power, flow field and self-propelled speed. Experimental results showed that the robotic swimmer with thunniform kinematics achieved a faster final swimming speed (St = 0.424) relative to those with carangiform (St = 0.43) and anguilliform kinematics (St = 0.55). The thrust efficiency, estimated from a digital particle image velocimetry (DPIV) flow field, showed that the robotic swimmer with thunniform kinematics is more efficient (47.3%) than those with carangiform (31.4%) and anguilliform kinematics (26.6%). Furthermore, the DPIV measurements illustrate that the large-scale characteristics of the flow pattern generated by the robotic swimmer with both anguilliform and carangiform kinematics were wedge-like, double-row wake structures. Additionally, a typical single-row reverse Karman vortex was produced by the robotic swimmer using thunniform kinematics. Finally, we discuss this novel force-feedback-controlled experimental method, and review the relative self-propelled hydrodynamic results of the robot when utilizing the three types of undulatory kinematics.

  16. A unified method for inference of tokamak equilibria and validation of force-balance models based on Bayesian analysis

    NASA Astrophysics Data System (ADS)

    von Nessi, G. T.; Hole, M. J.; the MAST Team

    2013-05-01

    A new method, based on Bayesian analysis, is presented which unifies the inference of plasma equilibria parameters in a tokamak with the ability to quantify differences between inferred equilibria and Grad-Shafranov (GS) force-balance solutions. At the heart of this technique is the new concept of weak observation, which allows multiple forward models to be associated with a single diagnostic observation. This new idea subsequently provides a means by which the space of GS solutions can be efficiently characterized via a prior distribution. The posterior evidence (a normalization constant of the inferred posterior distribution) is also inferred in the analysis and is used as a proxy for determining how relatively close inferred equilibria are to force-balance for different discharges/times. These points have been implemented in a code called BEAST (Bayesian equilibrium analysis and simulation tool), which uses a special implementation of Skilling’s nested sampling algorithm (Skilling 2006 Bayesian Anal. 1 833-59) to perform sampling and evidence calculations on high-dimensional, non-Gaussian posteriors. Initial BEAST equilibrium inference results are presented for two high-performance MAST discharges.

  17. A method for nonlinear modal analysis and synthesis: Application to harmonically forced and self-excited mechanical systems

    NASA Astrophysics Data System (ADS)

    Krack, Malte; Panning-von Scheidt, Lars; Wallaschek, Jörg

    2013-12-01

    The recently developed generalized Fourier-Galerkin method is complemented by a numerical continuation with respect to the kinetic energy, which extends the framework to the investigation of modal interactions resulting in folds of the nonlinear modes. In order to enhance the practicability regarding the investigation of complex large-scale systems, it is proposed to provide analytical gradients and exploit sparsity of the nonlinear part of the governing algebraic equations. A novel reduced order model (ROM) is developed for those regimes where internal resonances are absent. The approach allows for an accurate approximation of the multi-harmonic content of the resonant mode and accounts for the contributions of the off-resonant modes in their linearized forms. The ROM facilitates the efficient analysis of self-excited limit cycle oscillations, frequency response functions and the direct tracing of forced resonances. The ROM is equipped with a large parameter space including parameters associated with linear damping and near-resonant harmonic forcing terms. An important objective of this paper is to demonstrate the broad applicability of the proposed overall methodology. This is achieved by selected numerical examples including finite element models of structures with strongly nonlinear, non-conservative contact constraints.

  18. Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods.

    PubMed

    Caetano, J V; Percin, M; van Oudheusden, B W; Remes, B; de Wagter, C; de Croon, G C H E; de Visser, C C

    2015-08-20

    An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both methods as applied to a 17.4 gram FWMAV capable of controlled flight. A comprehensive analysis of various error sources is performed. The effects of different factors, e.g., measurement errors, error propagation, numerical differentiation, filtering frequency selection, and structural eigenmode interference, are assessed. For the forces obtained from free flight experiments it is shown that a data acquisition frequency below 200 Hz and an accuracy in the position measurements lower than ± 0.2 mm may considerably hinder determination of the unsteady forces. In general, the force component parallel to the fuselage determined by the two methods compares well for identical flight conditions; however, a significant difference was observed for the forces along the stroke plane of the wings. This was found to originate from the restrictions applied by the clamp to the dynamic oscillations observed in free flight and from the structural resonance of the clamped FWMAV structure, which generates loads that cannot be distinguished from the external forces. Furthermore, the clamping position was found to have a pronounced influence on the eigenmodes of the structure, and this effect should be taken into account for accurate force measurements.

  19. Source-free integration method for black hole perturbations and self-force computation: Radial fall

    NASA Astrophysics Data System (ADS)

    Aoudia, Sofiane; Spallicci, Alessandro D. A. M.

    2011-03-01

    Perturbations of Schwarzschild-Droste black holes in the Regge-Wheeler gauge benefit from the availability of a wave equation and from the gauge invariance of the wave function, but lack smoothness. Nevertheless, the even perturbations belong to the C0 continuity class, if the wave function and its derivatives satisfy specific conditions on the discontinuities, known as jump conditions, at the particle position. These conditions suggest a new way for dealing with finite element integration in the time domain. The forward time value in the upper node of the (t,r*) grid cell is obtained by the linear combination of the three preceding node values and of analytic expressions based on the jump conditions. The numerical integration does not deal directly with the source term, the associated singularities and the potential. This amounts to an indirect integration of the wave equation. The known wave forms at infinity are recovered and the wave function at the particle position is shown. In this series of papers, the radial trajectory is dealt with first, being this method of integration applicable to generic orbits of EMRI (Extreme Mass Ratio Inspiral).

  20. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    DOEpatents

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.