Science.gov

Sample records for electromotive force method

  1. Rethinking Faraday's Law for Teaching Motional Electromotive Force

    ERIC Educational Resources Information Center

    Zuza, Kristina; Guisasola, Jenaro; Michelini, Marisa; Santi, Lorenzo

    2012-01-01

    This study shows physicists' discussions on the meaning of Faraday's law where situations involving extended conductors or moving contact points are particularly troublesome. We raise questions to test students' difficulties in applying Faraday's law in motional electromotive force phenomena. We suggest the benefit of analysing these phenomena…

  2. Temperature evolution of electromotive force from Pt on yttrium-iron-garnet under ferromagnetic resonance

    SciTech Connect

    Ohshima, Ryo; Emoto, Hiroyuki; Shinjo, Teruya; Ando, Yuichiro; Shiraishi, Masashi

    2015-05-07

    Temperature evolution of electromotive force from Pt due to the inverse spin Hall effect is studied. Pure spin current is injected from yttrium-iron-garnet by using spin pumping technique. The electromotive force from the Pt monotonically decreases with decreasing temperature, and it is showed that there is a deviation between the measured and the calculated electromotive forces.

  3. Emergence of electromotive force in precession-less rigid motion of deformed domain wall

    NASA Astrophysics Data System (ADS)

    Farajollahpour, Tohid; Darmiani, Narges; Phirouznia, Arash

    2016-08-01

    Recently it has been recognized that the electromotive force (emf) can be induced just by the spin precession where the generation of the electromotive force has been considered as a real-space topological pumping effect. It has been shown that the amount of the electromotive force is independent of the functionality of the localized moments. It was also demonstrated that the rigid domain wall (DW) motion cannot generate electromotive force in the system. Based on real-space topological pumping approach in the current study we show that the electromotive force can be induced by rigid motion of a deformed DW. We also demonstrate that the generated electromotive force strongly depends on the DW bulging. Meanwhile results show that the DW bulging leads to generation of the electromotive force both along the axis of the DW motion and normal to the direction of motion.

  4. Study of the mechanism of crystallization electromotive force during growth of congruent LiNbO 3 using a micro-pulling-down method

    NASA Astrophysics Data System (ADS)

    Koh, Shinji; Uda, Satoshi; Nishida, Masahiro; Huang, Xinming

    2006-12-01

    We have investigated the crystallization electromotive force (EMF) during the growth of congruent LiNbO 3 (LN) by exploiting the features of a micro-pulling-down ( μ-PD) method. The electric potential distribution around the growth interface that was measured in the μ-PD system was attributed to the Seebeck effect and several mV of crystallization EMF. The mechanism of the crystallization EMF during the growth of congruent LN from the melt was explained using a model wherein segregation of the ionic species in the melt formed a net ionic charge at the growth interface resulting in the development of an EMF. Redistribution of the net ionic charge, which was analyzed on the basis of a one-dimensional differential equation that included electric-field-driven transport in the melt, well reproduced the experimental data of the nonlinear dependence of crystallization EMF on the growth rate. We concluded that the crystallization EMF occurred during crystal growth of the congruent LN owing to the ionic-charge accumulation at the growth interface.

  5. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-11-01

    This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of α effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of α, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other. PMID:26651796

  6. Probing university students' understanding of electromotive force in electricity

    NASA Astrophysics Data System (ADS)

    Garzón, Isabel; De Cock, Mieke; Zuza, Kristina; van Kampen, Paul; Guisasola, Jenaro

    2014-01-01

    The goal of this study is to identify students' difficulties with learning the concepts of electromotive force (emf) and potential difference in the context of transitory currents and resistive direct-current circuits. To investigate these difficulties, we developed a questionnaire based on an analysis of the theoretical and epistemological framework of physics, which was then administered to first-year engineering and physics students at universities in Spain, Colombia, and Belgium. The results of the study show that student difficulties seem to be strongly linked to the absence of an analysis of the energy balance within the circuit and that most university students do not clearly understand the usefulness of and the difference between the concepts of potential difference and emf.

  7. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-11-01

    This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of α effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of α, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.

  8. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.

  9. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is nomore » strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.« less

  10. THE MEAN ELECTROMOTIVE FORCE RESULTING FROM MAGNETIC BUOYANCY INSTABILITY

    SciTech Connect

    Davies, C. R.; Hughes, D. W. E-mail: d.w.hughes@leeds.ac.uk

    2011-02-01

    Motivated both by considerations of the generation of large-scale astrophysical magnetic fields and by potential problems with mean magnetic field generation by turbulent convection, we investigate the mean electromotive force (emf) resulting from the magnetic buoyancy instability of a rotating layer of stratified magnetic field, considering both unidirectional and sheared fields. We discuss why the traditional decomposition into {alpha} and {beta} effects is inappropriate in this case, and that it is only consideration of the entire mean emf that is meaningful. By considering a weighted average of the unstable linear eigenmodes, and averaging over the horizontal plane, we obtain depth-dependent emfs. For the simplified case of isothermal, ideal MHD, we are able to obtain an analytic expression for the emf; more generally, the emf has to be determined numerically. We calculate how the emf depends on the various parameters of the problem, particularly the rotation rate and the latitude of the magnetic layer.

  11. Measuring the thermodynamic properties of saturated solid solutions in the Ag2Te-Bi-Bi2Te3 system by the electromotive force method

    NASA Astrophysics Data System (ADS)

    Prokhorenko, M. V.; Moroz, M. V.; Demchenko, P. Yu.

    2015-08-01

    The temperature dependence of the electromotive force (EMF) of Ag|AgI|glass Ag2GeS3|D galvanic elements (where Ag, D are galvanic element electrodes, D is equilibrium three-phase alloys in the Ag2Te-Bi-Bi2Te3 system, AgI|glass Ag2GeS3 is a two-layer membrane with purely ionic (Ag+) conductivity) is studied in the range of 490-550 K. Analytical equations are obtained for the temperature dependences of the Gibbs energies of the formation of saturated solid solutions of the Bi14Te6, Bi2Te, BiTe, and Bi2Te phases from elements in the Ag2Te-Bi-Bi2Te3 system. E( T) analytical equations are used to calculate the standardstate thermodynamic functions of saturated solid solutions of the Bi14Te6, Bi2Te, BiTe, and Bi2Te3 phases in the Ag2Te-Bi-Bi2Te3 system.

  12. Induction of electromotive force by an autonomously moving magnetic bot.

    PubMed

    Sailapu, Sunil Kumar; Chattopadhyay, Arun

    2014-02-01

    We report the observation of the induction of electromotive force (emf) into a Faraday coil by an autonomously moving composite magnetic particle in aqueous medium. The particle consisted of a micron-sized polymer sphere, which was decorated with catalytic Pd nanoparticles (NPs) and attached to a micron-scale (N-42 grade) rare-earth magnet. The Pd NPs catalytically decomposed H2 O2 to generate O2 , resulting in buoyancy-driven vertical motion of the particle, while the micromagnet induced emf during the flight. Because a small volume of ethanol was layered on top of the liquid, the bubble burst when the particle ascended to the top and thus nearly continuous vertical motion was achieved. Spikes of alternating electrical signal could be observed up to 20 times per minute. The signal was sufficiently strong to illuminate light-emitting diodes following appropriate amplification. This distinctive approach is expected to pave the way to developing synthetic bots which are autonomously propelled, generating their own signal for running complex circuitry. PMID:24492970

  13. Thermodynamic properties of liquid Au–Cu–Sn alloys determined from electromotive force measurements

    PubMed Central

    Guo, Zhongnan; Hindler, Michael; Yuan, Wenxia; Mikula, Adolf

    2011-01-01

    The thermodynamic properties of the ternary Au–Cu–Sn system were determined with the electromotive force (EMF) method using a liquid electrolyte. Three different cross-sections with constant Au:Cu ratios of 3:1, 1:1, and 1:3 were applied to measure the thermodynamic properties of the ternary system in the temperature range between the liquidus temperature of the alloys and 1023 K. The partial free energies of Sn in liquid Au–Cu–Sn alloys were obtained from EMF data. The integral Gibbs free energy and the integral enthalpy at 900 K were calculated by Gibbs–Duhem integration. The ternary interaction parameters were evaluated using the Redlich–Kister–Muggianu polynomial. PMID:22039311

  14. Ferromagnetic-resonance induced electromotive forces in Ni81Fe19 | p-type diamond

    NASA Astrophysics Data System (ADS)

    Fukui, Naoki; Morishita, Hiroki; Kobayashi, Satoshi; Miwa, Shinji; Mizuochi, Norikazu; Suzuki, Yoshishige

    2016-10-01

    We report on direct-current (DC) electromotive forces (emfs) in a nickel-iron alloy (Ni81 Fe19) | p-type diamond under the ferromagnetic resonance of the Ni81Fe19 layer at room temperature. The observed DC emfs take its maximum around the ferromagnetic resonant frequency of the Ni81Fe19, and their signs are reversed by reversing the direction of an externally-applied magnetic field; it shows that the observed DC emfs are spin-related emfs.

  15. Experimental study of radiation induced electromotive force effects on mineral insulated cables

    NASA Astrophysics Data System (ADS)

    Van Nieuwenhove, R.; Vermeeren, L.

    2003-11-01

    Measurements of radiation induced electromotive force (RIEMF) effects on mineral insulated cables in a pure gamma field and in a combined neutron and gamma field are presented and compared to model calculations. The effect of materials in the immediate surroundings of the cable, as predicted by the model calculations, is clearly demonstrated. In a fission reactor environment, delayed current contributions due to the neutron activation and subsequent beta emission in base materials as well as in impurities such as Mn are clearly observed and are well reproduced by model calculations. The prediction of the gamma induced current component was severely complicated by its strong sensitivity to the detailed geometry and the spectrum and the directivity of the gamma field. Although the RIEMF effect on MI cables can therefore in general not be completely eliminated, some guidelines are provided to minimize them.

  16. Bicarbonate effects, electromotive forces and potassium effluxes in rabbit and guinea-pig gall-bladder.

    PubMed

    Cremaschi, D; Meyer, G; Rossetti, C

    1983-02-01

    The stimulating effect of external HCO3- on Na+ salt transport has been examined in rabbit and guinea-pig gall-bladder by electrophysiological methods, as a sequel to a previous study carried out by radiochemical techniques. At steady state, cell K+ activity was found to be significantly reduced in the presence of HCO3-, whereas cell Na+ activity significantly increased; in parallel the apical membrane p.d. was depolarized; K+ equilibrium potential was higher than membrane p.d. in every case. The apical p.d. dependence on K+ was unaffected by HCO3-, but in the guinea-pig it was affected by Cl-. Rapid increases in HCO3- concentration on the luminal side caused a depolarization of the apical p.d. of the guinea-pig within about 30 sec, an effect that did not occur if the tissue was pre-treated with 10(-4) M-acetazolamide; the epithelial resistance and apical/basolateral resistance ratio were unchanged in all cases. The primary action of HCO3- is confirmed to be on the apical membrane; an HCO3- conductance does not seem to be present at this level, either in the rabbit or guinea-pig, nor does HCO3- affect Na+ influx through the apical conductive pathway, so that all the stimulating effects of the anion are confirmed to be on the neutral transports of Na+ salts; in spite of this, the apical electromotive force is modified due to the changed cell K+ activity. The rapid depolarization caused by the anion in the guinea-pig is in agreement with an HCO3- electrogenic secretion and/or a basolateral conductance for the anion. Polyelectrolyte dissociation from protons increases in the absence of external HCO3-: the negative charges are mainly counterbalanced by bound Na+ in the rabbit and by free K+ in the guinea-pig. K+ leakage from the cell into the lumen is calculated to be minimal in the rabbit and all K+ lost could be reabsorbed through the paracellular pathways; K+ efflux to the subepithelial layer via conductive routes is insufficient to account for the over-all K

  17. The influence of helical background fields on current helicity and electromotive force of magnetoconvection

    NASA Astrophysics Data System (ADS)

    Rüdiger, G.; Küker, M.

    2016-07-01

    Motivated by the empirical finding that the known hemispheric rules for the current helicity at the solar surface are not strict, we demonstrate the excitation of small-scale current helicity by the influence of large-scale helical magnetic background fields on nonrotating magnetoconvection. This is shown within a quasilinear analytic theory of driven turbulence and by nonlinear simulations of magnetoconvection that the resulting small-scale current helicity has the same sign as the large-scale current helicity, while the ratio of both pseudoscalars is of the order of the magnetic Reynolds number of the convection. The same models do not provide finite values of the small-scale kinetic helicity. On the other hand, a turbulence-induced electromotive force is produced including the diamagnetic pumping term, as well as the eddy diffusivity but, however, no α effect. It has thus been argued that the relations for the simultaneous existence of small-scale current helicity and α effect do not hold for the model of nonrotating magnetoconvection under consideration. Calculations for various values of the magnetic Prandtl number demonstrate that, for the considered diffusivities, the current helicity increases for growing magnetic Reynolds number, which is not true for the velocity of the diamagnetic pumping, which is in agreement with the results of the quasilinear analytical approximation.

  18. The nonequilibrium electromotive force. II. Theory for a continuously stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Keizer, Joel

    1987-10-01

    In previous work [J. Keizer, J. Chem. Phys. 82, 2751 (1985)] we used statistical nonequilibrium thermodynamics to predict a non-Nernstian component to the electromotive force (EMF) for half-reactions involving reactants at nonequilibrium steady states. In this paper we present a simple theory for calculating the nonequilibrium component of the EMF based on the elementary transport processes occurring in a continuously stirred tank reactor (CSTR). The calculations utilize the density-density correlation function, which is obtained from the statistical theory of nonequilibrium thermodynamics. This gives rise to an expression for the second partial derivatives of the generalized entropy, or sigma function, which is used to calculate generalized chemical potentials. The generalized chemical potentials are related to the EMF through a generalization of the Nernst equation. The calculations presented here depend on the residence time in the CSTR, reaction rate constants, feed line concentrations in the CSTR, and the diffusion constants of reactants and products. A characteristic diffusion length is used to represent the length scale below which turbulent mixing effects are not important. Calculations with the theory are carried out for several different reaction mechanisms, including A+B⇄C; A+B⇄C, D+E⇄B; A+B⇄2B; and A+B→C+D, A+D→C+E. Values of the nonequilibrium EMF depend on the mechanism as well as all of the transport parameters cited above. For a plausible choice of the diffusion length, corrections to the Nernst formula can be as large as 10-15 mV. Specific calculations for the reaction of Fe2+ with S2O2-8 are shown in the preceding paper to agree with experimental measurements on this system in a CSTR.

  19. Microelectrode studies in toad urinary bladder epithelium. effects of Na concentration changes in the mucosal solution on equivalent electromotive forces

    PubMed Central

    1980-01-01

    Microelectrode techniques were employed to measure membrane potentials, the electrical resistance of the cell membranes, and the shunt pathway, and to compute the equivalent electromotive forces (EMF) at both cell borders in toad urinary bladder epithelium before and after reductions in mucosal sodium concentration. Basal electrical parameters were not significantly different from those obtained with impalements from the serosal side, indicating that mucosal impalements do not produce significant leaks in the apical membrane. A decrease in mucosal Na concentration caused the cellular resistance to increase and both apical and basolateral EMF to depolarize. When Na was reduced from 112 to 2.4 mM in bladders with spontaneously different baseline values of transepithelial potential difference (Vms), a direct relationship was found between the change in Vms brought about by the Na reduction and the base-line Vms before the change. A direct relationship was also found by plotting the change in EMF at the apical or basolateral border caused by a mucosal Na reduction with the corresponding base-line EMF before the change. These results indicate that resting apical membrane EMF (and, therefore, resting apical membrane potential) is determined by the Na selectivity of the apical membrane, whereas basolateral EMF is at least in part the result of rheogenic Na transport. These results are consistent with data of others that suggested a link between the activity of the basolateral Na pump and apical Na conductance. PMID:6770033

  20. Electromotive force and current in a superconducting solenoid with limited length induced by a bar magnet and a monopole

    NASA Astrophysics Data System (ADS)

    Ma, Lianxi

    The magnetic flux ΦB, electromotive force, EMF, and current Iin, induced by a moving magnetic bar and an imaginary magnetic monopole in a superconducting solenoid of multiple turns and length L, are numerically calculated. The magnetic field of the bar magnet is approximated with the magnetic field along z axis of a solenoid with length l and radius a and current I, while the magnetic field of the monopole is supposed to be inversely proportional to r2. Calculations show that, for a bar magnet, ΦB and Iin essentially saturate when the bar moves inside superconducting solenoid, so EMF is zero while Iin is constant. EMF is only induced when the bar enters and exits the solenoid and Iin is zero after the bar leaves the solenoid. For a magnetic monopole, ΦB is discontinuous (from positive maximum to negative maximum) when the it moves through each turn of the superconducting solenoid, but EMF caused by dΦB /dt is continuous while the EMF induced by the a moving monopole is a delta function (moving monopole produces a ring-shaped E field). The total EMFTot in solenoid is the superposition of EMF of each turn of coil and the plateau appears. The current Iin continues to grow while the monopole leaves the solenoid. Thanks to Dr. Liancun Zheng and Mr. Lin Liu for verifying my calculation.

  1. Determination of Gibbs Energy of Formation of Molybdenum-Boron Binary System by Electromotive Force Measurement Using Solid Electrolyte

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroaki; Morishita, Masao; Yamamoto, Takeo; Furukawa, Kazuma

    2011-02-01

    The standard Gibbs energies of formation of Mo2B, αMoB, Mo2B5, and MoB4 in the molybdenum-boron binary system were determined by measuring electromotive forces of galvanic cells using an Y2O3-stabilized ZrO2 solid oxide electrolyte. The results are as follows: begin{aligned} Updelta_{{f}} {{G}}^circ ( {{{Mo}}2 {{B}}} )/{{J}} {{mol}}^{ - 1} & = - 193100 + 44.10T ± 700( {1198{{ K to }}1323{{ K}}( {925^circ {{C to }}1050^circ {{C}}} )} ) \\ Updelta_{{f}} {{G}}^circ (α {{MoB}})/{{J}} {{mol}}^{ - 1} & = - 164000 + 26.45T ± 700( {1213{{ K to }}1328{{ K}}( {940^circ {{C to }}1055^circ {{C}}} )} ) \\ Updelta_{{f}} {{G}}^circ ( {{{Mo}}2 {{B}}5 } )/{{J}} {{mol}}^{ - 1} & = - 622500 + 117.0T ± 3000( {1205{{ K to }}1294{{ K}}( {932^circ {{C to }}1021^circ {{C}}} )} ) \\ Updelta_{{f}} {{G}}^circ ( {{{MoB}}4 } )/{{J}} {{mol}}^{ - 1} & = - 387300 + 93.53T ± 3000( {959{{ K to }}1153{{ K}}( {686^circ {{C to }}880^circ {{C}}} )} ) \\ where the standard pressure is 1 bar (100 kPa).

  2. Multichannel Registration of Nonstationary Subterranean Electromotive Forces as Lightning Precursors in the Avacha Bay Territory (Kamchatka): Case Study during Night of July 21(22), 2015

    NASA Astrophysics Data System (ADS)

    Bobrovskiy, Vadim

    2016-04-01

    We explore the results of the subterranean electric measurements obtained by exploiting of multi-electrode systems at the division of atmosphere and tectonosphere. Subterranean electromotive forces have been recorded in the surface soils during thunderstorm, one of which is the rarest phenomena in the territory of the Avacha Bay. Lightning occurred at distances of 15-18 km from subterranean electric stations. From WWLLN sferics we've got the lightning locations and time of registration. Pulse variations of the subterranean electromotive forces have been observed 1-15 minutes before the lightning strikes in the territory of Avacha Bay. We have investigated variations of subterranean electromotive forces and concluded that there is sufficiently distinct dependence between location of a subterranean electric station and location of a lightning strike. A peak in subterranean electric signals has been found 1-15 minutes prior to self-organization of lightning phenomena. The report sums recent activities in the field and propose the necessity to set subterranean multi-electrode systems for further research in thunderstorm/lightning active regions of the Earth as Kamchatka peninsula is not an active lightning region to make a progress in fulfilling such a task.

  3. Electromotive force generation using the dynamic response of Ni0Mn28.5Ga21.5 magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Bruno, N.; Ciocanel, C.; Feigenbaum, H.

    2011-04-01

    Magnetic Shape Memory Alloys (MSMAs) are materials that respond to a change in either compressive stress or magnetic field, and can be used for applications such as actuation, sensing, and power harvesting. MSMA prismatic specimens are usually loaded magneto-mechanically by a compressive stress applied along the longest side of the specimen and by a magnetic field applied normal to the direction of the compressive stress. Karaman et al. proved the viability of using MSMAs, specifically NiMnGa single crystals, for energy harvesting applications using up to 5 Hz of cyclic stress. The group proposed a simple mathematical model to predict electrical voltage output generated by the material during the shape recovery process. The voltage output predicted by the model matched well with experimental results recorded at low frequencies1. The magnetization reversal responsible for the voltage output has been approximated by Karaman et al. does not use the constitutive relations for the magneto-mechanical behavior of the material, such as that proposed by Kiefer and Lagoudas2,3. This work presents simulated and experimental results describing the electromotive force (EMF) producing capabilities of a NiMnGa magnetic shape memory alloy (MSMA) at frequencies of up to 10 Hz. Unlike previous work, the current paper uses the constitutive model developed by Kiefer and Lagoudas2-4 and the corresponding magnetization relations to theoretically predict the voltage output of the material. COMSOL Multiphysics 3.5a and Simulink were used to generate the simulated results for different constant bias magnetic fields and frequencies of excitation, partial reorientation strains and stress amplitudes. Simulated results are compared to experimental data and the reasons for data match/mismatch are discussed.

  4. Characterisation of the turbulent electromotive force and its magnetically-mediated quenching in a global EULAG-MHD simulation of solar convection

    NASA Astrophysics Data System (ADS)

    Simard, Corinne; Charbonneau, Paul; Dubé, Caroline

    2016-10-01

    We perform a mean-field analysis of the EULAG-MHD millenium simulation of global magnetohydrodynamical convection presented in Passos and Charbonneau (2014). The turbulent electromotive force (emf) operating in the simulation is assumed to be linearly related to the cyclic axisymmetric mean magnetic field and its first spatial derivatives. At every grid point in the simulation's meridional plane, this assumed relationship involves 27 independent tensorial coefficients. Expanding on Racine et al. (2011), we extract these coefficients from the simulation data through a least-squares minimization procedure based on singular value decomposition. The reconstructed α -tensor shows good agreement with that obtained by Racine et al. (2011), who did not include derivatives of the mean-field in their fit, as well as with the α -tensor extracted by Augustson et al. (2015) from a distinct ASH MHD simulation. The isotropic part of the turbulent magnetic diffusivity tensor β is positive definite and reaches values of 5.0 ×107 m2 s-1 in the middle of the convecting fluid layers. The spatial variations of both αϕϕ and βϕϕ component are well reproduced by expressions obtained under the Second Order Correlation Approximation, with a good matching of amplitude requiring a turbulent correlation time about five times smaller than the estimated turnover time of the small-scale turbulent flow. By segmenting the simulation data into epochs of magnetic cycle minima and maxima, we also measure α - and β -quenching. We find the magnetic quenching of the α -effect to be driven primarily by a reduction of the small-scale flow's kinetic helicity, with variations of the current helicity playing a lesser role in most locations in the simulation domain. Our measurements of turbulent diffusivity quenching are restricted to the βϕϕ component, but indicate a weaker quenching, by a factor of ≃ 1.36, than of the α -effect, which in our simulation drops by a factor of three between

  5. Investigation of the mechanisms of action behind Electromotive Drug Administration (EMDA)

    PubMed Central

    Vásquez, Juan Luis; Miklavčič, Damijan; Hermann, Gregers G.G.; Gehl, Julie

    2016-01-01

    Objective Bladder cancer is a cause of considerable morbidity worldwide. Electromotive Drug Administration is a method that combines intravesical chemotherapy with local electric field application. Electroporation has been suggested among other mechanisms as having a possible role in the therapy, so the goal of the present study was to investigate the electric fields present in the bladder wall during the treatment to determine which mechanisms might be involved. Material and Methods Electromotive Drug Administration involves applying intravesical mitomycin C with direct current of 20 mA delivered through a catheter electrode for 30 min. For numerical electric field computation we built a 3-D nonhomogeneous patient specific model based on CT images and used finite element method simulations to determine the electric fields in the whole body. Results Results indicate that highest electric field in the bladder wall was 37.7 V/m. The mean electric field magnitude in the bladder wall was 3.03 V/m. The mean magnitude of the current density in the bladder wall was 0.61 A/m2. Conclusions The present study shows that electroporation is not the mechanism of action in EMDA. A more likely explanation of the mechanism of action is iontophoretic forces increasing the mitomycin C concentration in the bladder wall. PMID:27635313

  6. Investigation of the mechanisms of action behind Electromotive Drug Administration (EMDA)

    PubMed Central

    Vásquez, Juan Luis; Miklavčič, Damijan; Hermann, Gregers G.G.; Gehl, Julie

    2016-01-01

    Objective Bladder cancer is a cause of considerable morbidity worldwide. Electromotive Drug Administration is a method that combines intravesical chemotherapy with local electric field application. Electroporation has been suggested among other mechanisms as having a possible role in the therapy, so the goal of the present study was to investigate the electric fields present in the bladder wall during the treatment to determine which mechanisms might be involved. Material and Methods Electromotive Drug Administration involves applying intravesical mitomycin C with direct current of 20 mA delivered through a catheter electrode for 30 min. For numerical electric field computation we built a 3-D nonhomogeneous patient specific model based on CT images and used finite element method simulations to determine the electric fields in the whole body. Results Results indicate that highest electric field in the bladder wall was 37.7 V/m. The mean electric field magnitude in the bladder wall was 3.03 V/m. The mean magnitude of the current density in the bladder wall was 0.61 A/m2. Conclusions The present study shows that electroporation is not the mechanism of action in EMDA. A more likely explanation of the mechanism of action is iontophoretic forces increasing the mitomycin C concentration in the bladder wall.

  7. Pulse-Width Control in Ladder Structure Four-Phase Rectifier for AC-Electromotive

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Myatez, S. V.; Langeman, E. G.; Schurov, N. I.

    2016-04-01

    Based on these studies the ways of power factor of the single-phase rectifiers operating in a single-phase AC network improving are suggested. The ladder four-phase rectifier is offered as a technical mean using a pulse-width method of controlling the rectified voltage. The pulse-width control efficiency as a way of the power factor rectifier with a ladder structure for AC electromotive improving is evaluated.

  8. Method of Calibrating a Force Balance

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)

    2015-01-01

    A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.

  9. Cutting Force Control Applying Sensorless Cutting Force Monitoring Method

    NASA Astrophysics Data System (ADS)

    Kurihara, Daisuke; Kakinuma, Yasuhiro; Katsura, Seiichiro

    Intelligent machine tools require the functions of high-accurate process monitoring and adaptive control to fit the optimum process condition in each workpieces. For realizing these functions, the various techniques to monitor the cutting process and control it using additional sensors have been proposed and widely studied. Authors propose the sensorless cutting force control method using parallel disturbance observer. The performance of our proposed method is evaluated through simulation and experiments using a linear motor driving table.

  10. [Intravesical therapy with mitomycin through electromotive drug administration].

    PubMed

    Verri, Cristian; Liberati, Emanuele; Celestino, Francesco; De Carlo, Francesco; Torelli, Fiammetta; Di Stasi, Savino M

    2013-01-01

    In the management of non-muscle invasive bladder cancer (NMIBC), high-level evidence supports the widespread practice of intravesical therapy with mitomycin-C (MMC). Randomized trials showed a significant reduction in short-term recurrence compared with transurethral resection of bladder tumor (TURBT) alone, but little effect on long-term and no impact at all in preventing progression. Electromotive drug administration (EMDA®) offers a means of controlling and enhancing the tissue transport of certain drugs, in order to increase their efficacy. In both laboratory and clinical studies, intravesical electromotive drug administration (EMDA) increases MMC bladder uptake, resulting in an improved clinical efficacy in NMIBC without systemic side effects. New frameworks for treatment of NMIBC - e.g., sequential intravesical BCG and EMDA/MMC, as well as intravesical EMDA/MMC immediately before TURBT - have provided promising preliminary results with higher remission rates and longer remission times, and they are a priority to minimise the costs of disease management. These findings suggest EMDA-enhanced MMC efficacy against urothelial cancer could be a major therapeutic breakthrough in the treatment of NMIBC.

  11. Integrated force method versus displacement method for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.

    1990-01-01

    A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EE's) are integrated with the global compatibility conditions (CC's) to form the governing set of equations. In IFM the CC's are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.

  12. Fidelity of the Integrated Force Method Solution

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale; Halford, Gary; Coroneos, Rula; Patnaik, Surya

    2002-01-01

    The theory of strain compatibility of the solid mechanics discipline was incomplete since St. Venant's 'strain formulation' in 1876. We have addressed the compatibility condition both in the continuum and the discrete system. This has lead to the formulation of the Integrated Force Method. A dual Integrated Force Method with displacement as the primal variable has also been formulated. A modest finite element code (IFM/Analyzers) based on the IFM theory has been developed. For a set of standard test problems the IFM results were compared with the stiffness method solutions and the MSC/Nastran code. For the problems IFM outperformed the existing methods. Superior IFM performance is attributed to simultaneous compliance of equilibrium equation and compatibility condition. MSC/Nastran organization expressed reluctance to accept the high fidelity IFM solutions. This report discusses the solutions to the examples. No inaccuracy was detected in the IFM solutions. A stiffness method code with a small programming effort can be improved to reap the many IFM benefits when implemented with the IFMD elements. Dr. Halford conducted a peer-review on the Integrated Force Method. Reviewers' response is included.

  13. Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1998-01-01

    Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.

  14. BOFFO - BOUNDARY FORCE METHOD FOR ORTHOTROPIC MATERIALS

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1994-01-01

    In the field of fracture mechanics, stress-intensity factors are important parameters for predicting fracture strengths and fatigue lives. BOFFO performs stress analysis of two-dimensional linear elastic orthotropic or composite bodies with or without cracks using the Boundary Force Method. The Boundary Force Method is versatile since complex geometries, crack configurations, and load distributions can be analyzed with ease. The BOFFO program is easy to use because only the boundaries of the region of interest are modeled using a built-in mesh generator. Stresses can be computed at any specified point in the body. Stress-intensity factor solutions and strain-energy release rates are computed for both mode I and mixed mode fracture problems. The Boundary Force Method is a numerical technique that uses the fundamental solutions for concentrated forces and moments in an infinite sheet to obtain the solution to the boundary value problem of interest. These fundamental solutions are used in the BOFFO program to exactly satisfy the stress-free conditions on the crack faces. The other boundary conditions are approximately satisfied by applying the appropriate sets of concentrated horizontal and vertical forces and moments along the boundary. The problem configuration is defined using two sets of axes. The global X- and Y-axes define the specimen boundaries, loads, and material properties. The local axes define the crack length and orientation. The user can specify four types of symmetry conditions: symmetry about the X-axis, symmetry about the Y-axis, symmetry about the X- and Y-axes, or no symmetry. The lines of symmetry are not modeled as boundaries. The accuracy of the solution depends on how well the boundary conditions are approximated, which in turn depends on the refinement of the boundary mesh. BOFFO uses the radial-line method for element mesh generation. BOFFO is written in FORTRAN V for execution on CDC CYBER 170 Series computers running NOS. The execution time

  15. Integrated Force Method for Indeterminate Structures

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Halford, Gary R.; Patnaik, Surya N.

    2008-01-01

    Two methods of solving indeterminate structural-mechanics problems have been developed as products of research on the theory of strain compatibility. In these methods, stresses are considered to be the primary unknowns (in contrast to strains and displacements being considered as the primary unknowns in some prior methods). One of these methods, denoted the integrated force method (IFM), makes it possible to compute stresses, strains, and displacements with high fidelity by use of modest finite-element models that entail relatively small amounts of computation. The other method, denoted the completed Beltrami Mitchell formulation (CBMF), enables direct determination of stresses in an elastic continuum with general boundary conditions, without the need to first calculate displacements as in traditional methods. The equilibrium equation, the compatibility condition, and the material law are the three fundamental concepts of the theory of structures. For almost 150 years, it has been commonly supposed that the theory is complete. However, until now, the understanding of the compatibility condition remained incomplete, and the compatibility condition was confused with the continuity condition. Furthermore, the compatibility condition as applied to structures in its previous incomplete form was inconsistent with the strain formulation in elasticity.

  16. Multilevel summation method for electrostatic force evaluation.

    PubMed

    Hardy, David J; Wu, Zhe; Phillips, James C; Stone, John E; Skeel, Robert D; Schulten, Klaus

    2015-02-10

    The multilevel summation method (MSM) offers an efficient algorithm utilizing convolution for evaluating long-range forces arising in molecular dynamics simulations. Shifting the balance of computation and communication, MSM provides key advantages over the ubiquitous particle–mesh Ewald (PME) method, offering better scaling on parallel computers and permitting more modeling flexibility, with support for periodic systems as does PME but also for semiperiodic and nonperiodic systems. The version of MSM available in the simulation program NAMD is described, and its performance and accuracy are compared with the PME method. The accuracy feasible for MSM in practical applications reproduces PME results for water property calculations of density, diffusion constant, dielectric constant, surface tension, radial distribution function, and distance-dependent Kirkwood factor, even though the numerical accuracy of PME is higher than that of MSM. Excellent agreement between MSM and PME is found also for interface potentials of air–water and membrane–water interfaces, where long-range Coulombic interactions are crucial. Applications demonstrate also the suitability of MSM for systems with semiperiodic and nonperiodic boundaries. For this purpose, simulations have been performed with periodic boundaries along directions parallel to a membrane surface but not along the surface normal, yielding membrane pore formation induced by an imbalance of charge across the membrane. Using a similar semiperiodic boundary condition, ion conduction through a graphene nanopore driven by an ion gradient has been simulated. Furthermore, proteins have been simulated inside a single spherical water droplet. Finally, parallel scalability results show the ability of MSM to outperform PME when scaling a system of modest size (less than 100 K atoms) to over a thousand processors, demonstrating the suitability of MSM for large-scale parallel simulation. PMID:25691833

  17. Multilevel Summation Method for Electrostatic Force Evaluation

    PubMed Central

    2015-01-01

    The multilevel summation method (MSM) offers an efficient algorithm utilizing convolution for evaluating long-range forces arising in molecular dynamics simulations. Shifting the balance of computation and communication, MSM provides key advantages over the ubiquitous particle–mesh Ewald (PME) method, offering better scaling on parallel computers and permitting more modeling flexibility, with support for periodic systems as does PME but also for semiperiodic and nonperiodic systems. The version of MSM available in the simulation program NAMD is described, and its performance and accuracy are compared with the PME method. The accuracy feasible for MSM in practical applications reproduces PME results for water property calculations of density, diffusion constant, dielectric constant, surface tension, radial distribution function, and distance-dependent Kirkwood factor, even though the numerical accuracy of PME is higher than that of MSM. Excellent agreement between MSM and PME is found also for interface potentials of air–water and membrane–water interfaces, where long-range Coulombic interactions are crucial. Applications demonstrate also the suitability of MSM for systems with semiperiodic and nonperiodic boundaries. For this purpose, simulations have been performed with periodic boundaries along directions parallel to a membrane surface but not along the surface normal, yielding membrane pore formation induced by an imbalance of charge across the membrane. Using a similar semiperiodic boundary condition, ion conduction through a graphene nanopore driven by an ion gradient has been simulated. Furthermore, proteins have been simulated inside a single spherical water droplet. Finally, parallel scalability results show the ability of MSM to outperform PME when scaling a system of modest size (less than 100 K atoms) to over a thousand processors, demonstrating the suitability of MSM for large-scale parallel simulation. PMID:25691833

  18. Are shear force methods adequately reported?

    PubMed

    Holman, Benjamin W B; Fowler, Stephanie M; Hopkins, David L

    2016-09-01

    This study aimed to determine the detail to which shear force (SF) protocols and methods have been reported in the scientific literature between 2009 and 2015. Articles (n=734) published in peer-reviewed animal and food science journals and limited to only those testing the SF of unprocessed and non-fabricated mammal meats were evaluated. It was found that most of these SF articles originated in Europe (35.3%), investigated bovine species (49.0%), measured m. longissimus samples (55.2%), used tenderometers manufactured by Instron (31.2%), and equipped with Warner-Bratzler blades (68.8%). SF samples were also predominantly thawed prior to cooking (37.1%) and cooked sous vide, using a water bath (50.5%). Information pertaining to blade crosshead speed (47.5%), recorded SF resistance (56.7%), muscle fibre orientation when tested (49.2%), sub-section or core dimension (21.8%), end-point temperature (29.3%), and other factors contributing to SF variation were often omitted. This base failure diminishes repeatability and accurate SF interpretation, and must therefore be rectified. PMID:27107727

  19. Are shear force methods adequately reported?

    PubMed

    Holman, Benjamin W B; Fowler, Stephanie M; Hopkins, David L

    2016-09-01

    This study aimed to determine the detail to which shear force (SF) protocols and methods have been reported in the scientific literature between 2009 and 2015. Articles (n=734) published in peer-reviewed animal and food science journals and limited to only those testing the SF of unprocessed and non-fabricated mammal meats were evaluated. It was found that most of these SF articles originated in Europe (35.3%), investigated bovine species (49.0%), measured m. longissimus samples (55.2%), used tenderometers manufactured by Instron (31.2%), and equipped with Warner-Bratzler blades (68.8%). SF samples were also predominantly thawed prior to cooking (37.1%) and cooked sous vide, using a water bath (50.5%). Information pertaining to blade crosshead speed (47.5%), recorded SF resistance (56.7%), muscle fibre orientation when tested (49.2%), sub-section or core dimension (21.8%), end-point temperature (29.3%), and other factors contributing to SF variation were often omitted. This base failure diminishes repeatability and accurate SF interpretation, and must therefore be rectified.

  20. A New Method of Comparing Forcing Agents in Climate Models

    SciTech Connect

    Kravitz, Benjamin S.; MacMartin, Douglas; Rasch, Philip J.; Jarvis, Andrew

    2015-10-14

    We describe a new method of comparing different climate forcing agents (e.g., CO2, CH4, and solar irradiance) that avoids many of the ambiguities introduced by temperature-related climate feedbacks. This is achieved by introducing an explicit feedback loop external to the climate model that adjusts one forcing agent to balance another while keeping global mean surface temperature constant. Compared to current approaches, this method has two main advantages: (i) the need to define radiative forcing is bypassed and (ii) by maintaining roughly constant global mean temperature, the effects of state dependence on internal feedback strengths are minimized. We demonstrate this approach for several different forcing agents and derive the relationships between these forcing agents in two climate models; comparisons between forcing agents are highly linear in concordance with predicted functional forms. Transitivity of the relationships between the forcing agents appears to hold within a wide range of forcing. The relationships between the forcing agents obtained from this method are consistent across both models but differ from relationships that would be obtained from calculations of radiative forcing, highlighting the importance of controlling for surface temperature feedback effects when separating radiative forcing and climate response.

  1. A Simple Method for Measuring Linguopalatal Contact Force During Speech

    NASA Astrophysics Data System (ADS)

    Tsuji, Ryunosuke; Matsumuta, Masafumi; Niikawa, Takuya; Nohara, Kanji; Tachimura, Takashi; Wada, Takeshi; Chihara, Kunihiro

    This paper proposes a using probe for measuring of contact force between tongue and palatal, during speech. We developed a 0.03 mm-thick stainless steel tongue force probe with a 3x5 mm force sensor at the tip. Linguopalatal contact force was measured by inserting the probe into the oral cavity. Contact force was measured at the following three locations. Based on the coordinate and measurement obtained at the three points, the action point of tongue force was calculated by the weighted mean. Linguopalatal contact force was measured in four adult men and women without articulation disorder and in three adult men with articulation disorders. Results showed that the action point of tongue force in subjects with articulation disorders was further toward the pharynx than that in subjects without articulation disorders. Linguopalatal contact pressure was then measured again by asking the subjects with articulation disorders to wear a palatal augmentation prosthesis (PAP) to compensate for insufficient linguopalatal contact force. The action point of tongue force became better approximated to that of subjects without articulation disorders. Given these results, our simple method for measuring linguopalatal contact force using a tongue force probe appears to be a promising tool for speech therapists treating articulation disorders.

  2. Integrated Force Method Solution to Indeterminate Structural Mechanics Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.

    2004-01-01

    Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.

  3. Method and apparatus for shaping and enhancing acoustical levitation forces

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Berge, L. H.; Reiss, D. A.; Johnson, J. L. (Inventor)

    1980-01-01

    A method and apparatus for enhancing and shaping acoustical levitation forces in a single-axis acoustic resonance system wherein specially shaped drivers and reflectors are utilized to enhance to levitation force and better contain fluid substance by means of field shaping is described.

  4. Method and apparatus for shaping and enhancing acoustical levitation forces

    NASA Astrophysics Data System (ADS)

    Oran, W. A.; Berge, L. H.; Reiss, D. A.; Johnson, J. L.

    1980-08-01

    A method and apparatus for enhancing and shaping acoustical levitation forces in a single-axis acoustic resonance system wherein specially shaped drivers and reflectors are utilized to enhance to levitation force and better contain fluid substance by means of field shaping is described.

  5. Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy

    PubMed Central

    Illek, Esther; Giessibl, Franz J

    2012-01-01

    Summary In frequency-modulation atomic force microscopy the direct observable is the frequency shift of an oscillating cantilever in a force field. This frequency shift is not a direct measure of the actual force, and thus, to obtain the force, deconvolution methods are necessary. Two prominent methods proposed by Sader and Jarvis (Sader–Jarvis method) and Giessibl (matrix method) are investigated with respect to the deconvolution quality. Both methods show a nontrivial dependence of the deconvolution quality on the oscillation amplitude. The matrix method exhibits spikelike features originating from a numerical artifact. By interpolation of the data, the spikelike features can be circumvented. The Sader–Jarvis method has a continuous amplitude dependence showing two minima and one maximum, which is an inherent property of the deconvolution algorithm. The optimal deconvolution depends on the ratio of the amplitude and the characteristic decay length of the force for the Sader–Jarvis method. However, the matrix method generally provides the higher deconvolution quality. PMID:22496997

  6. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy.

    PubMed

    Tran Khac, Bien Cuong; Chung, Koo-Hyun

    2016-02-01

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8-29% smaller than those obtained from the other two methods. This discrepancy decreased to 3-19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method.

  7. Using force fields methods for locating transition structures

    NASA Astrophysics Data System (ADS)

    Jensen, Frank

    2003-11-01

    A previously proposed strategy of using force field methods for generating approximations to the geometry of transition structures is extended to also estimating an approximate Hessian matrix. These two components allow an automated method for locating first order saddle points, which is an essential requisite for studying chemical reactions of systems with many degrees of freedom. The efficiency of using an approximate force field Hessian matrix for initiating the geometry optimization is compared with the use of an exact Hessian. The force field Hessian in general requires more geometry steps to converge, but the additional computational cost is offset by the savings from not calculating the exact Hessian at the initial geometry.

  8. A Method for Implementing Force-Limited Vibration Control

    NASA Technical Reports Server (NTRS)

    Worth, Daniel B.

    1997-01-01

    NASA/GSFC has implemented force-limited vibration control on a controller which can only accept one profile. The method uses a personal computer based digital signal processing board to convert force and/or moment signals into what appears to he an acceleration signal to the controller. This technique allows test centers with older controllers to use the latest force-limited control techniques for random vibration testing. The paper describes the method, hardware, and test procedures used. An example from a test performed at NASA/GSFC is used as a guide.

  9. Easy and direct method for calibrating atomic force microscopy lateral force measurements.

    PubMed

    Liu, Wenhua; Bonin, Keith; Guthold, Martin

    2007-06-01

    We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young's modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever's lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement.

  10. Easy and direct method for calibrating atomic force microscopy lateral force measurements

    PubMed Central

    Liu, Wenhua; Bonin, Keith; Guthold, Martin

    2010-01-01

    We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young’s modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever’s lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement. PMID:17614616

  11. Acoustic radiation force-based elasticity imaging methods

    PubMed Central

    Palmeri, Mark L.; Nightingale, Kathryn R.

    2011-01-01

    Conventional diagnostic ultrasound images portray differences in the acoustic properties of soft tissues, whereas ultrasound-based elasticity images portray differences in the elastic properties of soft tissues (i.e. stiffness, viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathological lesions. Acoustic radiation force-based elasticity imaging methods use acoustic radiation force to transiently deform soft tissues, and the dynamic displacement response of those tissues is measured ultrasonically and is used to estimate the tissue's mechanical properties. Both qualitative images and quantitative elasticity metrics can be reconstructed from these measured data, providing complimentary information to both diagnose and longitudinally monitor disease progression. Recently, acoustic radiation force-based elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric, and commercial implementations of radiation force-based ultrasonic elasticity imaging are beginning to appear on the commercial market. This article provides an overview of acoustic radiation force-based elasticity imaging, including a review of the relevant soft tissue material properties, a review of radiation force-based methods that have been proposed for elasticity imaging, and a discussion of current research and commercial realizations of radiation force based-elasticity imaging technologies. PMID:22419986

  12. Electromotive force measurements on cells involving beta-alumina solid electrolyte

    NASA Technical Reports Server (NTRS)

    Choudhury, N.

    1973-01-01

    Open circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta- alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two phase solid electrolyte can be used to monitor oxygen chemical potentials as low as that corresponding to Al, Al2O3 coexistence. The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.

  13. Electromotive force measurements on cells involving beta-alumina solid electrolyte

    NASA Technical Reports Server (NTRS)

    Choudhury, N. S.

    1973-01-01

    Open-circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta-alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two-phase solid electrolyte may be used to monitor oxygen chemical potentials as low as that corresponding to Al and Al2O3 coexistence (potentials of about 10 to the minus 47th power atm at 1000 K). The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.

  14. An improved method for determining force balance calibration accuracy

    NASA Astrophysics Data System (ADS)

    Ferris, Alice T.

    The results of an improved statistical method used at Langley Research Center for determining and stating the accuracy of a force balance calibration are presented. The application of the method for initial loads, initial load determination, auxiliary loads, primary loads, and proof loads is described. The data analysis is briefly addressed.

  15. Detection of forced oscillations in power systems with multichannel methods

    SciTech Connect

    Follum, James D.

    2015-09-30

    The increasing availability of high fidelity, geographically dispersed measurements in power systems improves the ability of researchers and engineers to study dynamic behaviors in the grid. One such behavior that is garnering increased attention is the presence of forced oscillations. Power system engineers are interested in forced oscillations because they are often symptomatic of the malfunction or misoperation of equipment. Though the resulting oscillation is not always large in amplitude, the root cause may be serious. In this report, multi-channel forced oscillation detection methods are developed. These methods leverage previously developed detection approaches based on the periodogram and spectral-coherence. Making use of geographically distributed channels of data is shown to improved detection performance and shorten the delay before an oscillation can be detected in the online environment. Results from simulated and measured power system data are presented.

  16. Boundary force method for analyzing two-dimensional cracked bodies

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Newman, J. C., Jr.

    1986-01-01

    The Boundary Force Method (BFM) was formulated for the two-dimensional stress analysis of complex crack configurations. In this method, only the boundaries of the region of interest are modeled. The boundaries are divided into a finite number of straight-line segments, and at the center of each segment, concentrated forces and a moment are applied. This set of unknown forces and moments is calculated to satisfy the prescribed boundary conditions of the problem. The elasticity solution for the stress distribution due to concentrated forces and a moment applied at an arbitrary point in a cracked infinite plate are used as the fundamental solution. Thus, the crack need not be modeled as part of the boundary. The formulation of the BFM is described and the accuracy of the method is established by analyzing several crack configurations for which accepted stress-intensity factor solutions are known. The crack configurations investigated include mode I and mixed mode (mode I and II) problems. The results obtained are, in general, within + or - 0.5 percent of accurate numerical solutions. The versatility of the method is demonstrated through the analysis of complex crack configurations for which limited or no solutions are known.

  17. Initial testing of two DEMI (Driesbach Electromotive Inc. ) Model 4E zinc-air rechargeable cells

    SciTech Connect

    Hardin, J.E.; Martin, M.E.

    1989-10-23

    The purpose of this document is to report the results of INEL laboratory testing of two DEMI 4E Aerobic Power Battery Cells (collectively designated Pack 46 in INEL records). The 4E Aerobic Power Battery is a secondary battery developed privately by Driesbach Electromotive Inc. (DEMI). The battery employs zinc as the anode and a bifunctional air cathode. This testing was performed as the first phase of a cooperative agreement between INEL and DEMI leading to the construction and testing of electric vehicle-size cells, to be followed eventually by a battery pack. 3 refs., 3 figs., 5 tabs.

  18. Reproducing kernel particle method for free and forced vibration analysis

    NASA Astrophysics Data System (ADS)

    Zhou, J. X.; Zhang, H. Y.; Zhang, L.

    2005-01-01

    A reproducing kernel particle method (RKPM) is presented to analyze the natural frequencies of Euler-Bernoulli beams as well as Kirchhoff plates. In addition, RKPM is also used to predict the forced vibration responses of buried pipelines due to longitudinal travelling waves. Two different approaches, Lagrange multipliers as well as transformation method , are employed to enforce essential boundary conditions. Based on the reproducing kernel approximation, the domain of interest is discretized by a set of particles without the employment of a structured mesh, which constitutes an advantage over the finite element method. Meanwhile, RKPM also exhibits advantages over the classical Rayleigh-Ritz method and its counterparts. Numerical results presented here demonstrate the effectiveness of this novel approach for both free and forced vibration analysis.

  19. A moiré method of visualizing electromagnetic force lines

    NASA Astrophysics Data System (ADS)

    Yuk, K. C.; Lee, T. H.; Chang, S.

    2008-08-01

    We propose a simple moiré method of visualizing electromagnetic force lines. The indicial equation is first derived for the tangent (or normal) curve to the electric field (or magnetic induction) around two parallel-line charges (or currents). The derived equation is then shown to have a one-to-one correspondence with that of the moiré fringe formed by two overlapped radial gratings. Since the tangent (or normal) curve to the electric field (or the magnetic induction) corresponds to the direction of the electric (or magnetic) force on a test charge (or current), the radial grating moirés can be used for the visualization of electric (or magnetic) force lines.

  20. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  1. A calibration method for lateral forces for use with colloidal probe force microscopy cantilevers

    SciTech Connect

    Quintanilla, M. A. S.; Goddard, D. T.

    2008-02-15

    A calibration method is described for colloidal probe cantilevers that enables friction force measurements obtained using lateral force microscopy (LFM) to be quantified. The method is an adaptation of the lever method of Feiler et al. [A. Feiler, P. Attard, and I. Larson, Rev. Sci. Instum. 71, 2746 (2000)] and uses the advantageous positioning of probe particles that are usually offset from the central axis of the cantilever. The main sources of error in the calibration method are assessed, in particular, the potential misalignment of the long axis of the cantilever that ideally should be perpendicular to the photodiode detector. When this is not taken into account, the misalignment is shown to have a significant effect on the cantilever torsional stiffness but not on the lateral photodiode sensitivity. Also, because the friction signal is affected by the topography of the substrate, the method presented is valid only against flat substrates. Two types of particles, 20 {mu}m glass beads and UO{sub 3} agglomerates attached to silicon tapping mode cantilevers were used to test the method against substrates including glass, cleaved mica, and UO{sub 2} single crystals. Comparisons with the lateral compliance method of Cain et al. [R. G. Cain, S. Biggs, and N. W. Page, J. Colloid Interface Sci. 227, 55 (2000)] are also made.

  2. Evolution of forced shear flows in polytropic atmospheres: A comparison of forcing methods and energetics

    NASA Astrophysics Data System (ADS)

    Witzke, V.; Silvers, L. J.; Favier, B.

    2016-08-01

    Shear flows are ubiquitous in astrophysical objects including planetary and stellar interiors, where their dynamics can have significant impact on thermo-chemical processes. Investigating the complex dynamics of shear flows requires numerical calculations that provide a long time evolution of the system. To achieve a sufficiently long lifetime in a local numerical model the system has to be forced externally. However, at present, there exist several different forcing methods to sustain large-scale shear flows in local models. In this paper we examine and compare various methods used in the literature in order to resolve their respective applicability and limitations. These techniques are compared during the exponential growth phase of a shear flow instability, such as the Kelvin-Helmholtz (KH) instability, and some are examined during the subsequent non-linear evolution. A linear stability analysis provides reference for the growth rate of the most unstable modes in the system and a detailed analysis of the energetics provides a comprehensive understanding of the energy exchange during the system's evolution. Finally, we discuss the pros and cons of each forcing method and their relation with natural mechanisms generating shear flows.

  3. Evolution of forced shear flows in polytropic atmospheres: a comparison of forcing methods and energetics

    NASA Astrophysics Data System (ADS)

    Witzke, V.; Silvers, L. J.; Favier, B.

    2016-11-01

    Shear flows are ubiquitous in astrophysical objects including planetary and stellar interiors, where their dynamics can have significant impact on thermochemical processes. Investigating the complex dynamics of shear flows requires numerical calculations that provide a long-time evolution of the system. To achieve a sufficiently long lifetime in a local numerical model, the system has to be forced externally. However, at present, there exist several different forcing methods to sustain large-scale shear flows in local models. In this paper, we examine and compare various methods used in the literature in order to resolve their respective applicability and limitations. These techniques are compared during the exponential growth phase of a shear flow instability, such as the Kelvin-Helmholtz (KH) instability, and some are examined during the subsequent non-linear evolution. A linear stability analysis provides reference for the growth rate of the most unstable modes in the system and a detailed analysis of the energetics provides a comprehensive understanding of the energy exchange during the system's evolution. Finally, we discuss the pros and cons of each forcing method and their relation with natural mechanisms generating shear flows.

  4. Forced vibration of flexible body systems. A dynamic stiffness method

    NASA Astrophysics Data System (ADS)

    Liu, T. S.; Lin, J. C.

    1993-10-01

    Due to the development of high speed machinery, robots, and aerospace structures, the research of flexible body systems undergoing both gross motion and elastic deformation has seen increasing importance. The finite element method and modal analysis are often used in formulating equations of motion for dynamic analysis of the systems which entail time domain, forced vibration analysis. This study develops a new method based on dynamic stiffness to investigate forced vibration of flexible body systems. In contrast to the conventional finite element method, shape functions and stiffness matrices used in this study are derived from equations of motion for continuum beams. Hence, the resulting shape functions are named as dynamic shape functions. By applying the dynamic shape functions, the mass and stiffness matrices of a beam element are derived. The virtual work principle is employed to formulate equations of motion. Not only the coupling of gross motion and elastic deformation, but also the stiffening effect of axial forces is taken into account. Simulation results of a cantilever beam, a rotating beam, and a slider crank mechanism are compared with the literature to verify the proposed method.

  5. Force-free magnetic fields - The magneto-frictional method

    NASA Technical Reports Server (NTRS)

    Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.

    1986-01-01

    The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.

  6. Modeling enzymatic transition states by force field methods

    NASA Astrophysics Data System (ADS)

    Hansen, M. B.; Jensen, H. J. A.; Jensen, F.

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5prime-monophosphate decarboxylase enzyme. The dependence of the TS geometry on the flexibility of the system has been probed by fixing layers of atoms around the active site and using increasingly larger nonbonded cutoffs. The variability over the 20 structures is found to decrease as the system is made more flexible. Relative energies have been calculated by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part of this variation is due to changes in the enzyme structure at distances more than 5 Å from the active site. There are significant differences between the results obtained by pure quantum methods and those from mixed quantum and molecular mechanics methods.

  7. Choosing the forcing terms in an inexact Newton method

    SciTech Connect

    Eisenstat, S.C.; Walker, H.F.

    1994-12-31

    An inexact Newton method is a generalization of Newton`s method for solving F(x) = 0, F: {Re}{sup n} {r_arrow} {Re}{sup n}, in which each step reduces the norm of the local linear model of F. At the kth iteration, the norm reduction is usefully expressed by the inexact Newton condition where x{sub k} is the current approximate solution and s{sub k} is the step. In many applications, an {eta}{sub k} is first specified, and then an S{sub k} is found for which the inexact Newton condition holds. Thus {eta}{sub k} is often called a {open_quotes}forcing term{close_quotes}. In practice, the choice of the forcing terms is usually critical to the efficiency of the method and can affect robustness as well. Here, the authors outline several promising choices, discuss theoretical support for them, and compare their performance in a Newton iterative (truncated Newton) method applied to several large-scale problems.

  8. 25 CFR 170.605 - When may BIA use force account methods in the IRR Program?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false When may BIA use force account methods in the IRR Program... § 170.605 When may BIA use force account methods in the IRR Program? BIA may use force account methods... before using a force account under this situation. The applicable FAR and Federal law apply to BIA...

  9. The magnetofection method: using magnetic force to enhance gene delivery.

    PubMed

    Plank, Christian; Schillinger, Ulrike; Scherer, Franz; Bergemann, Christian; Rémy, Jean-Serge; Krötz, Florian; Anton, Martina; Lausier, Jim; Rosenecker, Joseph

    2003-05-01

    In order to enhance and target gene delivery we have previously established a novel method, termed magnetofection, which uses magnetic force acting on gene vectors that are associated with magnetic particles. Here we review the benefits, the mechanism and the potential of the method with regard to overcoming physical limitations to gene delivery. Magnetic particle chemistry and physics are discussed, followed by a detailed presentation of vector formulation and optimization work. While magnetofection does not necessarily improve the overall performance of any given standard gene transfer method in vitro, its major potential lies in the extraordinarily rapid and efficient transfection at low vector doses and the possibility of remotely controlled vector targeting in vivo.

  10. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong

    2016-05-01

    Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this

  11. Gap engineering using Hellmann-Feynmann forces: method and applications

    NASA Astrophysics Data System (ADS)

    Prasai, Kiran; Biawas, Parthapratim; Drabold, D. A.

    Materials with optimized band gap are needed in many specialized applications. In this talk, we demonstrate that Hellmann-Feynman forces associated with the gap states can be used to find atomic coordinates that yield desired electronic density of states. Using tight-binding models, we show that this approach may be used to arrive at electronically designed models of amorphous silicon and carbon. We provide a simple recipe to include a priori electronic information in the formation of computer models of materials, and prove that this information may have profound structural consequences. We'll briefly discuss implementation of the method in ab-initio molecular dynamics simulations and highlight the latest feats of the method ranging from modeling amorphous semi-conducting materials to understanding the structure and properties of memory materials. K. Prasai, P. Biswas, and D. A. Drabold, Scientific reports, 5 (2015).

  12. Upwind finite-volume method for natural and forced convection

    SciTech Connect

    Pan, D.; Chang, C.H. . Inst. of Aeronautics and Astronautics)

    1994-03-01

    A third-order upwind finite-volume method was applied to solve the incompressible Navier-Stokes equations via the use of artificial compressibility. The energy equation and the source terms representing thermal buoyancy are included in the system. The inviscid fluxes are evaluated by a MUSCL-type flux difference upwind scheme based on the inviscid eigensystem. An implicit approximate factorization (AF) scheme was used for time integration, and subiterations at each time step can be applied to obtain time accuracy. Various steady and unsteady tests are performed to validate the present method, including problems in natural convection and forced convection, and in particular the complex flow field over two circular cylinders displaced normally to free stream.

  13. Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.

  14. Force evaluation in the lattice Boltzmann method involving curved geometry

    NASA Astrophysics Data System (ADS)

    Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi

    2002-04-01

    The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum-exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second-order accuracy based on our recent works [Mei et al., J. Comput. Phys. 155, 307 (1999); ibid. 161, 680 (2000)]. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.

  15. Physical methods in nanoscale science with the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Schaffer, Tilman Erich

    1998-12-01

    The atomic force microscope (AFM) has opened up a wide gate to the nanoscopic world. Since its invention twelve years ago, it has allowed researchers to advance to new science. The extent of this advancement is strongly coupled to the sophistication of AFM instrumentation and to the methods with which AFMs are used. New AFMs and methods are needed to push the limits. Chapter 1 and 2 introduce such new AFMs with low-noise and high-speed characteristics. The AFM presented in Chapter 2 has a focused spot size of 1.6 m m in diameter and is capable of using cantilevers much smaller than previously possible. Chapter 3 discusses the physics of the detection system and gives methods for improving the detection sensitivity. Thermal motion of the cantilever, usually contributing to the noise in a measurement, is a method for probing the oscillatory hydration potential at a calcite-water interface in Chapter 4. Chapter 5 establishes a method of measuring the three-dimensional electromagnetic field over a surface and comparing the data to micro-magnetic models. Biomineralization of marine abalone nacre is the subject of interdisciplinary Chapter 6, where a variety of microscopic and statistical methods distinguish between two competing models of nacre growth.

  16. PARTIAL RESTRAINING FORCE INTRODUCTION METHOD FOR DESIGNING CONSTRUCTION COUNTERMESURE ON ΔB METHOD

    NASA Astrophysics Data System (ADS)

    Nishiyama, Taku; Imanishi, Hajime; Chiba, Noriyuki; Ito, Takao

    Landslide or slope failure is a three-dimensional movement phenomenon, thus a three-dimensional treatment makes it easier to understand stability. The ΔB method (simplified three-dimensional slope stability analysis method) is based on the limit equilibrium method and equals to an approximate three-dimensional slope stability analysis that extends two-dimensional cross-section stability analysis results to assess stability. This analysis can be conducted using conventional spreadsheets or two-dimensional slope stability computational software. This paper describes the concept of the partial restraining force in-troduction method for designing construction countermeasures using the distribution of the restraining force found along survey lines, which is based on the distribution of survey line safety factors derived from the above-stated analysis. This paper also presents the transverse distributive method of restraining force used for planning ground stabilizing on the basis of the example analysis.

  17. Computational Catalysis Using the Artificial Force Induced Reaction Method.

    PubMed

    Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji

    2016-04-19

    The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately

  18. Computational Catalysis Using the Artificial Force Induced Reaction Method.

    PubMed

    Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji

    2016-04-19

    The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately

  19. Novel scanning force microscopy methods for investigation of transcription complexes

    NASA Astrophysics Data System (ADS)

    Guthold, Martin

    1997-11-01

    Scanning force microscopy (SFM) methods were developed to investigate the structure and the dynamics of E. coli transcription complexes. The described techniques will also be applicable to the study of other protein-nucleic acid complexes. First, the deposition process of DNA molecules onto a mica surface was investigated using polymer chain statistics. Conditions were found in which DNA molecules, and also protein-DNA complexes, are able to equilibrate on the surface. These findings imply that DNA and protein-DNA complexes attain a lowest energy state on the surface, and that meaningful structural information can, therefore, be obtained from the corresponding SFM images. Using these imaging conditions, SFM was then used to investigate various transcription complexes. The structures of crucial intermediates in the transcriptional activation of RNA polymeraseċsigma54 by NtrC were visualized and analyzed. Moreover, a new method was pioneered to identify the position of specific subunits in multi- protein assemblies. In this method, a specific subunit is tagged with a short piece of DNA which renders it easily recognizable in SFM images. This technique was employed to determine the positions of the two α subunits and the βsp/prime subunit in RNA polymerase-DNA complexes. Finally, SFM imaging in liquid was used to investigate the dynamics of the specific and non-specific interactions between RNA polymerase and DNA. Image sequences of an RNA polymerase actively transcribing a DNA template were obtained and analyzed. Image sequences of non-specific complexes were also obtained, and showed the RNA polymerase moving along the DNA in a one- dimensional random walk. The latter experiments provide some of the first direct evidence that RNA polymerase diffuses along DNA to facilitate promoter location. Chapters II, III, V and VI of this dissertation include material which has been previously published with co- authors. The co-authors are acknowledged at the beginning of

  20. Dendrite growth under forced convection: analysis methods and experimental tests

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Galenko, P. K.

    2014-08-01

    An analysis is given of the nonisothermal growth of a dendrite crystal under forced fluid flow in a binary system. The theoretical model utilized employs a free moving crystal-liquid interface and makes use of the Oseen approximation for the equations of motion of the liquid. A criterion for the stable growth of two-dimensional and three-dimensional parabolic dendrites is derived under the assumption of an anisotropic surface tension at the crystal-liquid interface, which generalizes the previous known results for the stable growth of a dendrite with convection in a one-component fluid and for the growth of a dendrite in a two-component system at rest. The criterion obtained within the Oseen hydrodynamic approximation is extended to arbitrary Peclet numbers and dendrite growth with convection in a nonisothermal multicomponent system. Model predictions are compared with experimental data on crystal growth kinetics in droplets processed in electromagnetic and electrostatic levitation facilities. Theoretical and simulation methods currently being developed are applied to crystallization processes under earthly and reduced gravity conditions.

  1. A novel force field parameter optimization method based on LSSVR for ECEPP.

    PubMed

    Liu, Yunling; Tao, Lan; Lu, Jianjun; Xu, Shuo; Ma, Qin; Duan, Qingling

    2011-03-23

    In this paper, we propose a novel force field parameter optimization method based on LSSVR and optimize the torsion energy parameters of ECEPP force field. In this method force field parameter optimization problem is turned into a support vector regression problem. Protein samples for regression model training are chosen from Protein Data Bank. The experiments show that the optimized force-field parameters make both α-helix and β-hairpin structures more consistent with the experimental implications than the original parameters.

  2. Method of generating and measuring static small force using down-slope component of gravity.

    PubMed

    Fujii, Yusaku

    2007-06-01

    A method of generating and measuring static small forces at the micro-Newton level is proposed. In the method, the down-slope component of gravity acting on a mass on an inclined plane is used as a static force. To realize a linear motion of the mass with a small friction, an aerostatic linear bearing is used. The forces acting on the mass, such as the down-slope component of gravity and the dynamic frictional force, are determined by the levitation mass method. In an experiment, a static small force of approximately 183 microN is generated and measured with a standard uncertainty of approximately 2 microN.

  3. Geometrical force constraint method for vessel and x-ray angiogram simulation.

    PubMed

    Song, Shuang; Yang, Jian; Fan, Jingfan; Cong, Weijian; Ai, Danni; Zhao, Yitian; Wang, Yongtian

    2016-01-01

    This study proposes a novel geometrical force constraint method for 3-D vasculature modeling and angiographic image simulation. For this method, space filling force, gravitational force, and topological preserving force are proposed and combined for the optimization of the topology of the vascular structure. The surface covering force and surface adhesion force are constructed to drive the growth of the vasculature on any surface. According to the combination effects of the topological and surface adhering forces, a realistic vasculature can be effectively simulated on any surface. The image projection of the generated 3-D vascular structures is simulated according to the perspective projection and energy attenuation principles of X-rays. Finally, the simulated projection vasculature is fused with a predefined angiographic mask image to generate a realistic angiogram. The proposed method is evaluated on a CT image and three generally utilized surfaces. The results fully demonstrate the effectiveness and robustness of the proposed method. PMID:26890908

  4. A test method for determining adhesion forces and Hamaker constants of cementitious materials using atomic force microscopy

    SciTech Connect

    Lomboy, Gilson; Sundararajan, Sriram; Wang Kejin; Subramaniam, Shankar

    2011-11-15

    A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materials obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.

  5. Force measuring valve assemblies, systems including such valve assemblies and related methods

    DOEpatents

    DeWall, Kevin George; Garcia, Humberto Enrique; McKellar, Michael George

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  6. Systems and methods of detecting force and stress using tetrapod nanocrystal

    DOEpatents

    Choi, Charina L.; Koski, Kristie J.; Sivasankar, Sanjeevi; Alivisatos, A. Paul

    2013-08-20

    Systems and methods of detecting force on the nanoscale including methods for detecting force using a tetrapod nanocrystal by exposing the tetrapod nanocrystal to light, which produces a luminescent response by the tetrapod nanocrystal. The method continues with detecting a difference in the luminescent response by the tetrapod nanocrystal relative to a base luminescent response that indicates a force between a first and second medium or stresses or strains experienced within a material. Such systems and methods find use with biological systems to measure forces in biological events or interactions.

  7. Assigning a Price to Radiative Forcing: Methods, Results, and Implications

    NASA Astrophysics Data System (ADS)

    Lutz, D. A.; Howarth, R. B.

    2015-12-01

    Climate change mitigation frameworks have increasingly begun to include components that involve active management of the land surface. Predominantly, these programs focus on the sequestration of greenhouse gasses in vegetation and soils, generating offset credits for projects which demonstrate considerable storage. However, it is widely known that biogeophysical interactions between the land surface and the atmosphere, such as latent and sensible heat flux, albedo radiative forcing, and surface roughness, can in many cases outweigh the influence of greenhouse gas storage on global and local climate. Surface albedo, in particular, has attracted attention in the context of these frameworks because it has been shown to influence the overall climate benefits of high-latitude forest growth through tradeoffs between carbon sequestration and radiative forcing from seasonal snow cover albedo. Here we review a methodology for pricing albedo-related radiative forcing through the use of an integrated assessment model, present the results under several emissions and social preference scenarios, and describe the implications that this pricing methodology may have on forest land management in the Northeastern United States. Additionally, we investigate the consequences of projected decreased winter precipitation on the net climate benefits of snow albedo throughout the state of New Hampshire, USA.

  8. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running.

    PubMed

    Samozino, P; Rabita, G; Dorel, S; Slawinski, J; Peyrot, N; Saez de Villarreal, E; Morin, J-B

    2016-06-01

    This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running.

  9. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running.

    PubMed

    Samozino, P; Rabita, G; Dorel, S; Slawinski, J; Peyrot, N; Saez de Villarreal, E; Morin, J-B

    2016-06-01

    This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running. PMID:25996964

  10. Methods for Manipulating CaF Using Optical Polychromatic Forces

    NASA Astrophysics Data System (ADS)

    Eyler, Edward E.; Galica, Scott E.; Aldridge, Leland M.

    2013-06-01

    We are undertaking theoretical and experimental studies of laser deceleration and cooling of molecules using coherent multi-frequency optical forces. A primary objective is to reduce radiative loss into dark states when a pure two-level cycling transition is unavailable. The optical bichromatic force (BCF) can multiply the available velocity change for a given number of radiative cycles, by employing alternating cycles of excitation and stimulated emission from opposing directions. Tests in atomic helium show that when the BCF is combined with frequency chirping, very large decelerations are achieved. We report numerical studies of variations intended to further optimize deceleration, including a 4-color version. We describe progress on experimental tests using the 531 nm B ^2Σ^+leftrightarrow X ^2Σ^+ transition in CaF. We also describe low-cost lasers and electronics developed for these experiments. Several versatile new instruments are based on 32-bit microcontrollers, interfaced to an Android tablet that provides a touch-screen graphical interface. These include a timing/ramp generator, a PZT driver, a temperature controller, and even a phase-synchronized dual 35-4000 MHz rf synthesizer that fits on a 2 1/4" × 4 3/4" board. This research is supported by the National Science Foundation. M.A. Chieda and E.E. Eyler, Phys. Rev. A 86, 053415 (2012); also Phys. Rev. A 84, 063401 (2011).

  11. [Methods of substance abuse prevention in the Armed Forces].

    PubMed

    Fisun, A Ia; Shamreĭ, V K; Marchenko, A A; Sinenchenko, A G; Pastushenkov, A V

    2013-09-01

    Dynamics of substance abuse morbidity in the Armed Forces of the Russian Federation during the last 10 years (2002-2012) was analyzed. Results of performed analysis showed decreasing tendency since 2007 in conscripts (0.07% in 2012) and in contract soldiers (0.3% in 2012). Alcoholism prevailed in the structure of substance abuse in conscripts (0.05%), drug abuses were diagnosed 2,5 times less often (0.02%). In contract soldiers non-alcohol abuses were diagnosed in 0.004% of cases. It is stated that the major aims of substance abuse prevention are qualitative recruiting of military units (especially in troops maintaining the combat readiness) and departments (subunits) of military education, creating conditions for propaganda for healthy lifestyle, prohibition of drugs and psychopharmaceuticals in military units. For early detection of persons liable to substance abuse and facts of drug consumption it is necessary to perform a medical examination with the help of special program apparatus complex (such as "Addicts") and take into account clinical signs of addiction. Besides, it is necessary to introduce planned and unexpected medical examinations of servicemen. Algorithm of measures in case of detection of serviceman with alcohol or drug intoxication is given. In conclusion the main organizational principals of substance abuse prevention in the Armed Forces are given.

  12. Cutting Force Predication Based on Integration of Symmetric Fuzzy Number and Finite Element Method

    PubMed Central

    Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang

    2014-01-01

    In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force. PMID:24790556

  13. Adhesion forces in interactive mixtures for dry powder inhalers--evaluation of a new measuring method.

    PubMed

    Lohrmann, Maike; Kappl, Michael; Butt, Hans-Juergen; Urbanetz, Nora Anne; Lippold, Bernhard Christian

    2007-09-01

    Dry powder inhalers mostly contain carrier based formulations where micronized drug particles are adhered to coarse carrier particles. The performance of the dry powder inhaler depends on the inhaler device, the inhalation manoeuvre and the formulation. The most important factor influencing the behaviour of the formulation is the adhesion force acting between the active ingredient and the carrier particles, which can be measured using different methods, for example the centrifuge technique or atomic force microscopy. In this study the tensile strength method, usually applied to determine cohesion forces between powder particles of one material, is optimized for adhesion force measurements between powder particles of unlike materials. Adhesion force measurements between the carrier materials lactose or mannitol and the drug substance salbutamol sulphate using the tensile strength method and the atomic force microscopy show higher values with increasing relative humidity. Consequently, the fine particle fraction determined using the Next Generation Impactor decreases with increasing relative humidity as a result of the enhanced interparticle interactions.

  14. Silicon force sensor and method of using the same

    DOEpatents

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.

    2016-10-04

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  15. An assessment of methods for computing radiative forcing in climate models

    NASA Astrophysics Data System (ADS)

    Chung, Eui-Seok; Soden, Brian J.

    2015-07-01

    Because the radiative forcing is rarely computed separately when performing climate model simulations, several alternative methods have been developed to estimate both the instantaneous (or direct) forcing and the adjusted forcing. The adjusted forcing accounts for the radiative impact arising from the adjustment of climate variables to the instantaneous forcing, independent of any surface warming. Using climate model experiments performed for CMIP5, we find the adjusted forcing for 4 × CO2 ranges from roughly 5.5-9 W m-2 in current models. This range is shown to be consistent between different methods of estimating the adjusted forcing. Decomposition using radiative kernels and offline double-call radiative transfer calculations indicates that the spread receives a substantial contribution (roughly 50%) from intermodel differences in the instantaneous component of the radiative forcing. Moreover, nearly all of the spread in adjusted forcing can be accounted for by differences in the instantaneous forcing and stratospheric adjustment, implying that tropospheric adjustments to CO2 play only a secondary role. This suggests that differences in modeling radiative transfer are responsible for substantial differences in the projected climate response and underscores the need to archive double-call radiative transfer calculations of the instantaneous forcing as a routine diagnostic.

  16. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy.

  17. Analysis of limit forces on the vehicle wheels using an algorithm of Dynamic Square Method

    NASA Astrophysics Data System (ADS)

    Brukalski, M.

    2016-09-01

    This article presents a method named as Dynamic Square Method (DSM) used for dynamic analysis of a vehicle equipped with a four wheel drive system. This method allows determination of maximum (limit) forces acting on the wheels. Here, the maximum longitudinal forces acting on the wheels are assumed and then used to predict whether they can be achieved by a specific dynamic motion or whether the actual friction forces under a given wheel is large enough to transfer lateral forces. For the analysis of DSM a four wheel vehicle model is used. On the basis of this characteristic it is possible to determine the maximum longitudinal force acting on the wheels of the given axle depending on the lateral acceleration of the vehicle. The results of this analysis may be useful in the development of a control algorithm used for example in active differentials.

  18. Spin-motive force due to a gyrating magnetic vortex.

    PubMed

    Tanabe, K; Chiba, D; Ohe, J; Kasai, S; Kohno, H; Barnes, S E; Maekawa, S; Kobayashi, K; Ono, T

    2012-05-22

    A change of magnetic flux through a circuit induces an electromotive force. By analogy, a recently predicted force that results from the motion of non-uniform spin structures has been termed the spin-motive force. Although recent experiments seem to confirm its presence, a direct signature of the spin-motive force has remained elusive. Here we report the observation of a real-time spin-motive force produced by the gyration of a magnetic vortex core. We find a good agreement between the experimental results, theory and micromagnetic simulations, which taken as a whole provide strong evidence in favour of a spin-motive force.

  19. The effect of bracket type and ligation method upon forces exerted by orthodontic archwires.

    PubMed

    Rock, W P; Wilson, H J

    1989-08-01

    The effects of bracket type and ligation method upon the forces exerted at 1.5-mm deflection by three archwire materials were measured in a simulated clinical situation. Significant force differences were found when archwires were used in standard edgewise or straightwire brackets, respectively, and also when Alastik modules were used for ligation instead of steel ligatures.

  20. Measurement of Vocal Fold Collision Forces during Phonation: Methods and Preliminary Data

    ERIC Educational Resources Information Center

    Gunter, Heather E.; Howe, Robert D.; Zeitels, Steven M.; Kobler, James B.; Hillman, Robert E.

    2005-01-01

    Forces applied to vocal fold tissue as the vocal folds collide may cause tissue injury that manifests as benign organic lesions. A novel method for measuring this quantity in humans in vivo uses a low-profile force sensor that extends along the length and depth of the glottis. Sensor design facilitates its placement and stabilization so that…

  1. Improved accuracy for finite element structural analysis via an integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  2. Improved accuracy for finite element structural analysis via a new integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  3. Feasibility study on common methods for wave force estimation of deep water combined breakwaters

    NASA Astrophysics Data System (ADS)

    Yu, Dingyong; Tang, Peng; Song, Qingguo

    2015-08-01

    China's newly enacted Breakwater Design Specifications (JTS154-2011) explicitly state that breakwaters with water depths greater than 20 m are categorized as deep-water breakwaters, and emphasize that design principles, methods and construction requirements are different from those of common shallow water breakwaters. However, the specifications do not make any mention of how to choose wave force calculation methods of deep-water breakwaters. To study the feasibility of different formulae for wave force estimation of deep water combined breakwaters, the wave force calculated by the Sainflou's, Goda's, modified Goda's and specifications' methods are compared for various water depths and wave heights in this paper. The calculated results are also compared with experimental data. The total horizontal forcing and the pattern of pressure distributions are presented. Comparisons show that the wave pressure distributions by the four methods are similar, but the total horizontal forces are different. The results obtained by the Goda's method and the specified formulae are much closer to the experimental data. As for the wave force estimation for the deepwater mixed embankment foundation bed parapet, the Goda's formula is applied in the case with a water depth of less than 42 m. The Specifications method is suitable for standing waves. In the wave force estimates of breastworks, Sainflou's and the modified Gaoda's formulae are no longer applicable for the foundation bed of mixed embankment.

  4. Hydration Forces Between Lipid Bilayers: A Theoretical Overview and a Look on Methods Exploring Dehydration.

    PubMed

    Pfeiffer, Helge

    2015-01-01

    Although, many biological systems fulfil their functions under the condition of excess hydration, the behaviour of bound water as well as the processes accompanying dehydration are nevertheless important to investigate. Dehydration can be a result of applied mechanical pressure, lowered humidity or cryogenic conditions. The effort required to dehydrate a lipid membrane at relatively low degree of hydration can be described by a disjoining pressure which is called hydration pressure or hydration force. This force is short-ranging (a few nm) and is usually considered to be independent of other surface forces, such as ionic or undulation forces. Different theories were developed to explain hydration forces that are usually not consistent with each other and which are also partially in conflict with experimental or numerical data.Over the last decades it has been more and more realised that one experimental method alone is not capable of providing much new insight into the world of such hydration forces. Therefore, research requires the comparison of results obtained from the different methods. This chapter thus deals with an overview on the theory of hydration forces, ranging from polarisation theory to protrusion forces, and presents a selection of experimental techniques appropriate for their characterisation, such as X-ray diffraction, atomic force microscopy and even calorimetry.

  5. Electrochemical methods for generation of a biological proton motive force

    DOEpatents

    Zeikus, Joseph Gregory; Shin, Hyoun S.; Jain, Mahendra K.

    2008-12-02

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  6. Apparatus and method for continuous electroplating. [Patent application

    DOEpatents

    Conlon, T.P. Jr.; Holmes, S.D.

    1981-11-19

    An apparatus and method are disclosed for performing a continuous electroplating process upon an elongate conductive stock article. A closed housing assembly retaining an electroplating solution and having a conductive housing body and flexible, nonconductive end walls is connected to the positive pole of a source of electromotive force. The end walls have an aperture for receiving the conducting stock article in sliding and sealing contact. The stock article is connected to the negative pole of the source of electromotive force. The conductive housing body and the section of the conductive stock article within the housing body are coextensive, coaxial and spaced a uniform distance apart. The housing body has an inlet at the bottom and an outlet at the top allowing the housing assembly to fill completely with plating solution. The inlet has a reduced nozzle to create turbulence and spiral circulating motion of the plating solution moved by a pump connected by nonconductive conduits. The solution is circulated through an open reservoir. A coolant may be conveyed through the interior in a hollow stock article to cool the surface being electroplated. Different sizes of coaxial metal insert sleeves may be telescopically received in the housing body.

  7. Optimizing Structural Active Control Force Using the Exterior Penalty Function Method

    SciTech Connect

    Tavassoli, Mohammad Reza; Amini, Fereidoun

    2008-07-08

    A new method for optimizing the control force in a closed-open loop control system has been developed. In this method which applies the complete feedback, structural responses including displacement, velocity, acceleration and also the excitation forces are used to determine the required control forces. In a closed-open loop control system, applying control force is equivalent to making changes in the mass, damping and stiffness matrices of the structure and the external force vector. Assuming these changes are linear and proportional to their initial values, the minimization of control force depends on the optimal values of the proportion coefficients. This idea leads to a constrained optimization problem of n-variable, which has been solved by using the exterior penalty function method and the Powell's search algorithm. The peak control force is the objective function of this optimization problem and the proportion coefficients are the design variables. The supposed limitation of the structural responses comprises the constraints of the problem. The effectiveness of the proposed method is demonstrated by some numerical examples.

  8. Optimizing Structural Active Control Force Using the Exterior Penalty Function Method

    NASA Astrophysics Data System (ADS)

    Tavassoli, Mohammad Reza; Amini, Fereidoun

    2008-07-01

    A new method for optimizing the control force in a closed-open loop control system has been developed. In this method which applies the complete feedback, structural responses including displacement, velocity, acceleration and also the excitation forces are used to determine the required control forces. In a closed-open loop control system, applying control force is equivalent to making changes in the mass, damping and stiffness matrices of the structure and the external force vector. Assuming these changes are linear and proportional to their initial values, the minimization of control force depends on the optimal values of the proportion coefficients. This idea leads to a constrained optimization problem of n-variable, which has been solved by using the exterior penalty function method and the Powell's search algorithm. The peak control force is the objective function of this optimization problem and the proportion coefficients are the design variables. The supposed limitation of the structural responses comprises the constraints of the problem. The effectiveness of the proposed method is demonstrated by some numerical examples.

  9. Development and validation of a method to directly measure the cable force during the hammer throw.

    PubMed

    Brice, Sara M; Ness, Kevin F; Rosemond, Doug; Lyons, Keith; Davis, Mark

    2008-05-01

    The development of cable force during hammer-throw turns is crucial to the throw distance. In this paper, we present a method that is capable of measuring cable force in real time and, as it does not interfere with technique, it is capable of providing immediate feedback to coaches and athletes during training. A strain gauge was mounted on the wires of three hammers to measure the tension in the wire and an elite male hammer thrower executed three throws with each hammer. The output from the gauges was recorded by a data logger positioned on the lower back of the thrower. The throws were captured by three high-speed video cameras and the three-dimensional position of the hammer's head was determined by digitizing the images manually. The five best throws were analysed. The force acting on the hammer's head was calculated from Newton's second law of motion and this was compared with the force measured via the strain gauge. Qualitatively the time dependence of the two forces was essentially the same, although the measured force showed more detail in the troughs of the force-time curves. Quantitatively the average difference between the measured and calculated forces over the five throws was 76 N, which corresponds to a difference of 3.8% for a cable force of 2000 N.

  10. Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method.

    PubMed

    Akin-Ojo, Omololu; Song, Yang; Wang, Feng

    2008-08-14

    A new method called adaptive force matching (AFM) has been developed that is capable of producing high quality force fields for condensed phase simulations. This procedure involves the parametrization of force fields to reproduce ab initio forces obtained from condensed phase quantum-mechanics/molecular-mechanics (QM/MM) calculations. During the procedure, the MM part of the QM/MM is iteratively improved so as to approach ab initio quality. In this work, the AFM method has been tested to parametrize force fields for liquid water so that the resulting force fields reproduce forces calculated using the ab initio MP2 and the Kohn-Sham density functional theory with the Becke-Lee-Yang-Parr (BLYP) and Becke three-parameter LYP (B3LYP) exchange correlation functionals. The AFM force fields generated in this work are very simple to evaluate and are supported by most molecular dynamics (MD) codes. At the same time, the quality of the forces predicted by the AFM force fields rivals that of very expensive ab initio calculations and are found to successfully reproduce many experimental properties. The site-site radial distribution functions (RDFs) obtained from MD simulations using the force field generated from the BLYP functional through AFM compare favorably with the previously published RDFs from Car-Parrinello MD simulations with the same functional. Technical aspects of AFM such as the optimal QM cluster size, optimal basis set, and optimal QM method to be used with the AFM procedure are discussed in this paper.

  11. Prediction of metallic nano-optical trapping forces by finite element-boundary integral method.

    PubMed

    Pan, Xiao-Min; Xu, Kai-Jiang; Yang, Ming-Lin; Sheng, Xin-Qing

    2015-03-01

    The hybrid of finite element and boundary integral (FE-BI) method is employed to predict nano-optical trapping forces of arbitrarily shaped metallic nanostructures. A preconditioning strategy is proposed to improve the convergence of the iterative solution. Skeletonization is employed to speed up the design and optimization where iteration has to be repeated for each beam configuration. The radiation pressure force (RPF) is computed by vector flux of the Maxwell's stress tensor. Numerical simulations are performed to validate the developed method in analyzing the plasmonic effects as well as the optical trapping forces. It is shown that the proposed method is capable of predicting the trapping forces of complex metallic nanostructures accurately and efficiently.

  12. An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field

    SciTech Connect

    Yao, Jin

    2015-02-10

    A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.

  13. Methods for imaging DNA in liquid with lateral molecular-force microscopy

    NASA Astrophysics Data System (ADS)

    Harniman, R. L.; Vicary, J. A.; Hörber, J. K. H.; Picco, L. M.; Miles, M. J.; Antognozzi, M.

    2012-03-01

    Shear force microscopy is not normally associated with the imaging of biomolecules in a liquid environment. Here we show that the recently developed scattered evanescent wave (SEW) detection system, combined with custom-designed vertically oriented cantilevers (VOCs), can reliably produce true non-contact images in liquid of DNA molecules. The range of cantilever spring constants for successful shear force imaging was experimentally identified between 0.05 and 0.09 N m-1. Images of λ-DNA adsorbed on mica in distilled water were obtained at scan rates of 8000 pixels s-1. A new constant-height force mapping mode for VOCs is also presented. This method is shown to control the vertical position of the tip in the sample plane with better than 1 nm accuracy. The force mode is demonstrated by mapping the shear force above λ-DNA molecules adsorbed on mica in a liquid environment at different tip-sample separations.

  14. Thermal imbalance force modelling for a GPS satellite using the finite element method

    NASA Technical Reports Server (NTRS)

    Vigue, Yvonne; Schutz, Bob E.

    1991-01-01

    Methods of analyzing the perturbation due to thermal radiation and determining its effects on the orbits of GPS satellites are presented, with emphasis on the FEM technique to calculate satellite solar panel temperatures which are used to determine the magnitude and direction of the thermal imbalance force. Although this force may not be responsible for all of the force mismodeling, conditions may work in combination with the thermal imbalance force to produce such accelerations on the order of 1.e-9 m/sq s. If submeter accurate orbits and centimeter-level accuracy for geophysical applications are desired, a time-dependent model of the thermal imbalance force should be used, especially when satellites are eclipsing, where the observed errors are larger than for satellites in noneclipsing orbits.

  15. A comparison of force reconstruction methods for a lumped mass beam

    SciTech Connect

    Bateman, V.I.; Mayes, R.L.; Carne, T.G.

    1992-11-01

    Two extensions of the force reconstruction method, the Sum of Weighted Accelerations Technique (SWAT), are presented in this paper; and the results are compared to those obtained using SWAT. SWAT requires the use of the structure`s elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two, new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a CALibrated force input). The second technique uses only the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using Time Eliminated Elastic Modes).

  16. A comparison of force reconstruction methods for a lumped mass beam

    SciTech Connect

    Bateman, V.I.; Mayes, R.L.; Carne, T.G.

    1992-01-01

    Two extensions of the force reconstruction method, the Sum of Weighted Accelerations Technique (SWAT), are presented in this paper; and the results are compared to those obtained using SWAT. SWAT requires the use of the structure's elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two, new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a CALibrated force input). The second technique uses only the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using Time Eliminated Elastic Modes).

  17. A kernel method for calculating effective radiative forcing in transient climate simulations

    NASA Astrophysics Data System (ADS)

    Larson, E. J. L.; Portmann, R. W.

    2015-12-01

    Effective radiative forcing (ERF) is calculated as the flux change at the top of the atmosphere, after allowing fast adjustments, due to a forcing agent such as greenhouse gasses or volcanic events. Accurate estimates of the ERF are necessary in order to understand the drivers of climate change. ERF cannot be observed directly and is difficult to estimate from indirect observations due to the complexity of climate responses to individual forcing factors. We present a new method of calculating ERF using a kernel populated from a time series of a model variable (e.g. global mean surface temperature) in a CO2 step change experiment. The top of atmosphere (TOA) radiative imbalance has the best noise tolerance for retrieving the ERF of the model variables we tested. We compare the kernel method with the energy balance method for estimating ERF in the CMIP5 models. The energy balance method uses the regression between the TOA imbalance and temperature change in a CO2 step change experiment to estimate the climate feedback parameter. It then assumes the feedback parameter is constant to calculate the forcing time series. This method is sensitive to the number of years chosen for the regression and the nonlinearity in the regression leads to a bias. We quantify the sensitivities and biases of these methods and compare their estimates of forcing. The kernel method is more accurate for models in which a linear fit is a poor approximation for the relationship between temperature change and TOA imbalance.

  18. Element Library for Three-Dimensional Stress Analysis by the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.

    1996-01-01

    The Integrated Force Method, a recently developed method for analyzing structures, is extended in this paper to three-dimensional structural analysis. First, a general formulation is developed to generate the stress interpolation matrix in terms of complete polynomials of the required order. The formulation is based on definitions of the stress tensor components in term of stress functions. The stress functions are written as complete polynomials and substituted into expressions for stress components. Then elimination of the dependent coefficients leaves the stress components expressed as complete polynomials whose coefficients are defined as generalized independent forces. Such derived components of the stress tensor identically satisfy homogenous Navier equations of equilibrium. The resulting element matrices are invariant with respect to coordinate transformation and are free of spurious zero-energy modes. The formulation provides a rational way to calculate the exact number of independent forces necessary to arrive at an approximation of the required order for complete polynomials. The influence of reducing the number of independent forces on the accuracy of the response is also analyzed. The stress fields derived are used to develop a comprehensive finite element library for three-dimensional structural analysis by the Integrated Force Method. Both tetrahedral- and hexahedral-shaped elements capable of modeling arbitrary geometric configurations are developed. A number of examples with known analytical solutions are solved by using the developments presented herein. The results are in good agreement with the analytical solutions. The responses obtained with the Integrated Force Method are also compared with those generated by the standard displacement method. In most cases, the performance of the Integrated Force Method is better overall.

  19. Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Decha-Umphai, Kamolphan

    1987-01-01

    Multiple-mode nonlinear free and forced vibration of a beam is analyzed by the finite element method. The geometric nonlinearity is investigated. Inplane displacement and inertia (IDI) are also considered in the formulation. Harmonic force matrix is derived and explained. Nonlinear free vibration can be simply treated as a special case of the general forced vibration by setting the harmonic force matrix equal to zero. The effect of the higher modes is more pronouced for the clamped supported beam than the simply supported one. Beams without IDI yield more effect of the higher modes than the one with IDI. The effects of IDI are to reduce nonlinearity. For beams with end supports restrained from axial movement (immovable cases), only the hardening type nonlinearity is observed. However, beams of small slenderness ratio (L/R = 20) with movable end supports, the softening type nonlinearity is found. The concentrated force case yields a more severe response than the uniformly distributed force case. Finite element results are in good agreement with the solution of simple elliptic response, harmonic balance method, and Runge-Kutte method and experiment.

  20. A calibration method for optical trap force by use of electrokinetic phenomena

    NASA Astrophysics Data System (ADS)

    Yu, Youli; Zhang, Zhenxi; Zhang, Xiaolin

    2006-09-01

    An experimental method for calibration of optical trap force upon cells by use of electrokinetic phenomena is demonstrated. An electronkinetic sample chamber system (ESCS) is designed instead of a common sample chamber and a costly automatism stage, thus the experimental setup is simpler and cheaper. Experiments indicate that the range of the trap force measured by this method is piconewton and sub-piconewton, which makes it fit for study on non-damage interaction between light and biological particles with optical tweezers especially. Since this method is relevant to particle electric charge, by applying an alternating electric field, the new method may overcome the problem of correcting drag force and allow us to measure simultaneously optical trap stiffness and particle electric charge.

  1. Method for six-legged robot stepping on obstacles by indirect force estimation

    NASA Astrophysics Data System (ADS)

    Xu, Yilin; Gao, Feng; Pan, Yang; Chai, Xun

    2016-07-01

    Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.

  2. Method for Six-Legged Robot Stepping on Obstacles by Indirect Force Estimation

    NASA Astrophysics Data System (ADS)

    Xu, Yilin; Gao, Feng; Pan, Yang; Chai, Xun

    2016-04-01

    Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.

  3. FORCED FIELD EXTRAPOLATION: TESTING A MAGNETOHYDRODYNAMIC (MHD) RELAXATION METHOD WITH A FLUX-ROPE EMERGENCE MODEL

    SciTech Connect

    Zhu, X. S.; Wang, H. N.; Du, Z. L.; Fan, Y. L.

    2013-05-10

    We undertake an attempt to reconstruct the Sun's non-force-free magnetic field. The solar corona is often considered to be magnetohydrostatic. We solve the full MHD equations with a semi-realistic atmosphere model to attain this stationary state. Our method is tested with a Sun-like model which simulates the emergence of a magnetic flux rope passing from below the photosphere into the corona. Detailed diagnostics shows that our method can model the forced field more successfully than the optimization and potential method, but it still needs to be applied to real data.

  4. When is the mode-summation method of calculating van der Waals force valid?

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Arvind

    2015-03-01

    Most calculations of van der Waals forces and Casimir forces can be categorized as variations of two ``proto methods'': (1) Lifshitz theory, and (2) mode summation method. In the Lifshitz theory, by which I include the subsequent generalization by Dzyaloshinskii, Lifshitz, and Pitaevskii [Adv. Phys. 10, 165 (1961); See also Zheng and Narayanaswamy, Phys. Rev. A 83, 042504 (2011)] the dispersion force is expressed in terms of the (dyadic) Green's function of the vector Helmholtz equation. In the mode summation method [see Casimir, Proc. Kon. Ned. Akad. Wetensch. 51, 793 (1948); Van Kampen, Nijboer, and Schram, Phys. Lett. A 26, 307 (1968)], the free energy of a configuration of objects is expressed in terms of the sum of the free energies of each of the possible electromagnetic modes. The derivative of this free energy with respect to variation of relative positions between the objects yields the force between two objects. However, we raised questions about the validity of the mode summation method when calculating van der Waals forces in dissipative media [see Narayanaswamy and Zheng, Phys. Rev. A 88, 012502 (2013) and Ninham, Parsegian, and Weiss, J. Stat. Phys. 2, 323 (1970)]. In this talk, I want to start a discussion about the validity of the mode summation method.

  5. Outflow forces of low-mass embedded objects in Ophiuchus: a quantitative comparison of analysis methods

    NASA Astrophysics Data System (ADS)

    van der Marel, N.; Kristensen, L. E.; Visser, R.; Mottram, J. C.; Yıldız, U. A.; van Dishoeck, E. F.

    2013-08-01

    Context. The outflow force of molecular bipolar outflows is a key parameter in theories of young stellar feedback on their surroundings. The focus of many outflow studies is the correlation between the outflow force, bolometric luminosity, and envelope mass. However, it is difficult to combine the results of different studies in large evolutionary plots over many orders of magnitude due to the range of data quality, analysis methods, and corrections for observational effects, such as opacity and inclination. Aims: We aim to determine the outflow force for a sample of low-luminosity embedded sources. We quantify the influence of the analysis method and the assumptions entering the calculation of the outflow force. Methods: We used the James Clerk Maxwell Telescope to map 12CO J = 3-2 over 2'× 2' regions around 16 Class I sources of a well-defined sample in Ophiuchus at 15″ resolution. The outflow force was then calculated using seven different methods differing, e.g., in the use of intensity-weighted emission and correction factors for inclination. Two well studied outflows (HH 46 and NGC1 333 IRAS4A) are added to the sample and included in the comparison. Results: The results from the analysis methods differ from each other by up to a factor of 6, whereas observational properties and choices in the analysis procedure affect the outflow force by up to a factor of 4. Subtraction of cloud emission and integrating over the remaining profile increases the outflow force at most by a factor of 4 compared to line wing integration. For the sample of Class I objects, bipolar outflows are detected around 13 sources including 5 new detections, where the three nondetections are confused by nearby outflows from other sources. New outflow structures without a clear powering source are discovered at the corners of some of the maps. Conclusions: When combining outflow forces from different studies, a scatter by up to a factor of 5 can be expected. Although the true outflow force

  6. Melnikov's method at a saddle-node and the dynamics of the forced Josephson junction

    SciTech Connect

    Schecter, S.

    1987-11-01

    A version of Melnikov's method is developed for time-periodic perturbations of a planar vector field having a separatrix loop at a saddle-node. The method is applied to the forced pendulum, or josephson junction, equation ..beta..phi+phi+sin=rho+epsilonsin..omega..t.

  7. A pre-conditioned implicit direct forcing based immersed boundary method for incompressible viscous flows

    NASA Astrophysics Data System (ADS)

    Park, Hyunwook; Pan, Xiaomin; Lee, Changhoon; Choi, Jung-Il

    2016-06-01

    A novel immersed boundary (IB) method based on an implicit direct forcing (IDF) scheme is developed for incompressible viscous flows. The key idea for the present IDF method is to use a block LU decomposition technique in momentum equations with Taylor series expansion to construct the implicit IB forcing in a recurrence form, which imposes more accurate no-slip boundary conditions on the IB surface. To accelerate the IB forcing convergence during the iterative procedure, a pre-conditioner matrix is introduced in the recurrence formulation of the IB forcing. A Jacobi-type parameter is determined in the pre-conditioner matrix by minimizing the Frobenius norm of the matrix function representing the difference between the IB forcing solution matrix and the pre-conditioner matrix. In addition, the pre-conditioning parameter is restricted due to the numerical stability in the recurrence formulation. Consequently, the present pre-conditioned IDF (PIDF) enables accurate calculation of the IB forcing within a few iterations. We perform numerical simulations of two-dimensional flows around a circular cylinder and three-dimensional flows around a sphere for low and moderate Reynolds numbers. The result shows that PIDF yields a better imposition of no-slip boundary conditions on the IB surfaces for low Reynolds number with a fairly larger time step than IB methods with different direct forcing schemes due to the implicit treatment of the diffusion term for determining the IB forcing. Finally, we demonstrate the robustness of the present PIDF scheme by numerical simulations of flow around a circular array of cylinders, flows around a falling sphere, and two sedimenting spheres in gravity.

  8. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1989-01-01

    The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.

  9. Induced Voltage Linear Extraction Method Using an Active Kelvin Bridge for Disturbing Force Self-Sensing

    PubMed Central

    Yang, Yuanyuan; Wang, Lei; Tan, Jiubin; Zhao, Bo

    2016-01-01

    This paper presents an induced voltage linear extraction method for disturbing force self-sensing in the application of giant magnetostrictive actuators (GMAs). In this method, a Kelvin bridge combined with an active device is constructed instead of a conventional Wheatstone bridge for extraction of the induced voltage, and an additional GMA is adopted as a reference actuator in the self-sensing circuit in order to balance the circuit bridge. The linear fitting of the measurement data is done according to the linear relationship between the disturbing forces and the integral of the induced voltage. The experimental results confirm the good performance of the proposed method, and the self-sensitivity of the disturbing forces is better than 2.0 (mV·s)/N. PMID:27213399

  10. Dynamic Analysis With Stress Mode Animation by the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1997-01-01

    Dynamic animation of stresses and displacements, which complement each other, can be a useful tool in the analysis and design of structural components. At the present time only displacement-mode animation is available through the popular stiffness formulation. This paper attempts to complete this valuable visualization tool by augmenting the existing art with stress mode animation. The reformulated method of forces, which in the literature is known as the integrated force method (IFM), became the analyzer of choice for the development of stress mode animation because stresses are the primary unknowns of its dynamic analysis. Animation of stresses and displacements, which have been developed successfully through the IFM analyzers, is illustrated in several examples along with a brief introduction to IFM dynamic analysis. The usefulness of animation in design optimization is illustrated considering the spacer structure component of the International Space Station as an example. An overview of the integrated force method analysis code (IFM/ANALYZERS) is provided in the appendix.

  11. Computational optical palpation: micro-scale force mapping using finite-element methods (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Philip; Sampson, David D.; Kennedy, Brendan F.

    2016-03-01

    Accurate quantification of forces, applied to, or generated by, tissue, is key to understanding many biomechanical processes, fabricating engineered tissues, and diagnosing diseases. Many techniques have been employed to measure forces; in particular, tactile imaging - developed to spatially map palpation-mimicking forces - has shown potential in improving the diagnosis of cancer on the macro-scale. However, tactile imaging often involves the use of discrete force sensors, such as capacitive or piezoelectric sensors, whose spatial resolution is often limited to 1-2 mm. Our group has previously presented a type of tactile imaging, termed optical palpation, in which the change in thickness of a compliant layer in contact with tissue is measured using optical coherence tomography, and surface forces are extracted, with a micro-scale spatial resolution, using a one-dimensional spring model. We have also recently combined optical palpation with compression optical coherence elastography (OCE) to quantify stiffness. A main limitation of this work, however, is that a one-dimensional spring model is insufficient in describing the deformation of mechanically heterogeneous tissue with uneven boundaries, generating significant inaccuracies in measured forces. Here, we present a computational, finite-element method, which we term computational optical palpation. In this technique, by knowing the non-linear mechanical properties of the layer, and from only the axial component of displacement measured by phase-sensitive OCE, we can estimate, not only the axial forces, but the three-dimensional traction forces at the layer-tissue interface. We use a non-linear, three-dimensional model of deformation, which greatly increases the ability to accurately measure force and stiffness in complex tissues.

  12. Evaluation of Three Methods for Determining EMG-Muscle Force Parameter Estimates for the Shoulder Muscles

    PubMed Central

    Gatti, Christopher J.; Doro, Lisa Case; Langenderfer, Joseph E.; Mell, Amy G.; Maratt, Joseph D.; Carpenter, James E.; Hughes, Richard E.

    2008-01-01

    Background Accurate prediction of in vivo muscle forces is essential for relevant analyses of musculoskeletal biomechanics. The purpose of this study was to evaluate three methods for predicting muscle forces of the shoulder by comparing calculated muscle parameters, which relate electromyographic activity to muscle forces. Methods Thirteen subjects performed sub-maximal, isometric contractions consisting of six actions about the shoulder and two actions about the elbow. Electromyography from 12 shoulder muscles and internal shoulder moments were used to determine muscle parameters using traditional multiple linear regression, principal-components regression, and a sequential muscle parameter determination process using principal-components regression. Muscle parameters were evaluated based on their sign (positive or negative), standard deviations, and error between the measured and predicted internal shoulder moments. Findings It was found that no method was superior with respect to all evaluation criteria. The sequential principal-components regression method most frequently produced muscle parameters that could be used to estimate muscle forces, multiple regression best predicted the measured internal shoulder moments, and the results of principal-components regression fell between those of sequential principal-components regression and multiple regression. Interpretation The selection of a muscle parameter estimation method should be based on the importance of the evaluation criteria. Sequential principal-components regression should be used if a greater number of physiologically accurate muscle forces are desired, while multiple regression should be used for a more accurate prediction of measured internal shoulder moments. However, all methods produced muscle parameters which can be used to predict in vivo muscle forces of the shoulder. PMID:17945401

  13. Equation-of-motion approach of spin-motive force

    SciTech Connect

    Yamane, Yuta; Ieda, Jun'ichi; Ohe, Jun-ichiro; Maekawa, Sadamichi; Barnes, Stewart E.

    2011-04-01

    We formulate a quantitative theory of an electromotive force of spin origin, i.e., spin-motive force, by the equation-of-motion approach. In a ferromagnetic metal, electrons couple to the local magnetization via the exchange interaction. The electrons are affected by spin dependent forces due to this interaction and the spin-motive force and the anomalous Hall effect appears. We have revealed that the origin of these phenomena is a misalignment between the conduction electron spin and the local magnetization.

  14. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    ERIC Educational Resources Information Center

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  15. Radiative forcing due to anthropogenic greenhouse gas emissions from Finland: methods for estimating forcing of a country or an activity.

    PubMed

    Monni, Suvi; Korhonen, Riita; Savolainen, Ilkka

    2003-03-01

    The objective of this study was to assess the radiative forcing due to Finnish anthropogenic greenhouse gas emissions in three scenarios. All the Kyoto Protocol gases, i.e., CO(2), CH(4), N(2)O, and fluorinated gases, were included. The calculations showed that forcing due to Finnish emissions will increase in the case of all gases except methane by the year 2100. In 1990, radiative forcing due to Finland's emission history of all Kyoto Protocol gases was 3.2 mW/m(2), of which 71% was due to carbon dioxide, 17% to methane, and the rest to nitrous oxide. In 1990 the share of fluorinated gases was negligible. The share of methane in radiative forcing is decreasing, whereas the shares of carbon dioxide and of fluorinated gases are increasing and that of nitrous oxide remains nearly constant. The nonlinear features concerning additional concentrations in the atmosphere and radiative forcing due to emissions caused by a single country or activity are also considered. Radiative forcing due to Finnish emissions was assessed with two different approaches, the marginal forcing approach and the averaged forcing approach. The impact of the so-called background scenario, i.e., the scenario for concentration caused by global emissions, was also estimated. The difference between different forcing models at its highest was 40%, and the averaged forcing approach appeared to be the more recommendable. The effect of background concentrations in the studied cases was up to 11%. Hence, the choice of forcing model and background scenario should be given particular attention.

  16. Finite Element Method Based Modeling for Prediction of Cutting Forces in Micro-end Milling

    NASA Astrophysics Data System (ADS)

    Pratap, Tej; Patra, Karali

    2016-04-01

    Micro-end milling is one of the widely used processes for producing micro features/components in micro-fluidic systems, biomedical applications, aerospace applications, electronics and many more fields. However in these applications, the forces generated in the micro-end milling process can cause tool vibration, process instability and even cause tool breakage if not minimized. Therefore, an accurate prediction of cutting forces in micro-end milling is essential. In this work, a finite element method based model is developed using ABAQUS/Explicit 6.12 software for prediction of cutting forces in micro-end milling with due consideration of tool edge radius effect, thermo-mechanical properties and failure parameters of the workpiece material including friction behaviour at tool-chip interface. Experiments have been performed for manufacturing of microchannels on copper plate using 500 µm diameter tungsten carbide micro-end mill and cutting forces are acquired through a dynamometer. Predicted cutting forces in feed and cross feed directions are compared with experimental results and are found to be in good agreements. Results also show that FEM based simulations can be applied to analyze size effects of specific cutting forces in micro-end milling process.

  17. Proteus: a direct forcing method in the simulations of particulate flows

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Gang; Michaelides, Efstathios E.

    2005-01-01

    A new and efficient direct numerical method for the simulation of particulate flows is introduced. The method combines desired elements of the immersed boundary method, the direct forcing method and the lattice Boltzmann method. Adding a forcing term in the momentum equation enforces the no-slip condition on the boundary of a moving particle. By applying the direct forcing scheme, Proteus eliminates the need for the determination of free parameters, such as the stiffness coefficient in the penalty scheme or the two relaxation parameters in the adaptive-forcing scheme. The method presents a significant improvement over the previously introduced immersed-boundary-lattice-Boltzmann method (IB-LBM) where the forcing term was computed using a penalty method and a user-defined parameter. The method allows the enforcement of the rigid body motion of a particle in a more efficient way. Compared to the "bounce-back" scheme used in the conventional LBM, the direct-forcing method provides a smoother computational boundary for particles and is capable of achieving results at higher Reynolds number flows. By using a set of Lagrangian points to track the boundary of a particle, Proteus eliminates any need for the determination of the boundary nodes that are prescribed by the "bounce-back" scheme at every time step. It also makes computations for particles of irregular shapes simpler and more efficient. Proteus has been developed in two- as well as three-dimensions. This new method has been validated by comparing its results with those from experimental measurements for a single sphere settling in an enclosure under gravity. As a demonstration of the efficiency and capabilities of the present method, the settling of a large number (1232) of spherical particles is simulated in a narrow box under two different boundary conditions. It is found that when the no-slip boundary condition is imposed at the front and rear sides of the box the particles motion is significantly hindered

  18. Note: A rigid piezo motor with large output force and an effective method to reduce sliding friction force

    SciTech Connect

    Guo, Ying; Lu, Qingyou; Hou, Yubin

    2014-05-15

    We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is <10% of the total static friction force, which can help increase output force greatly. The piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope.

  19. Note: A rigid piezo motor with large output force and an effective method to reduce sliding friction force.

    PubMed

    Guo, Ying; Hou, Yubin; Lu, Qingyou

    2014-05-01

    We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is <10% of the total static friction force, which can help increase output force greatly. The piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope.

  20. Asymmetric Outer Bow Length and Cervical Headgear Force System: 3D Analysis Using Finite Element Method

    PubMed Central

    Geramy, Allahyar; Hassanpour, Mehdi; Emadian Razavi, Elham sadat

    2015-01-01

    Objectives: This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths. Materials and Methods: Four 3D finite element method (FEM) models of a cervical headgear attached to the maxillary first molars were designed in SolidWorks 2010 software and transferred to ANSYS Workbench ver. 11 software. Models contained the first molars, their periodontal ligament (PDL), cancellous and cortical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with differences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was calculated trigonometrically using data from a volunteer. Results: The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N) and distal (= 1.008 N) forces and also generated moments (5.044 N.mm). Conclusion: As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. Clinical Relevance: A difference range of 1mm to 15 mm of length in cervical headgear can be considered as a safe length of outer bow shortening in clinical use. PMID:26622275

  1. A self-force approach to the two-body problem: The Green function method

    NASA Astrophysics Data System (ADS)

    Casals, Marc

    2016-06-01

    The inspiral of a stellar-mass astrophysical object into a massive black hole may be modeled within perturbation theory of General Relativity via the so-called self-force. In this paper, we present a novel method for the calculation of the self-force which is based on the Green function (GF) of the wave equation satisfied by the field created by the smaller object. We review the results in [M. Casals, S. Dolan, A. C. Ottewill and B. Wardell, Phys. Rev. D 88 (2013) 044022; B. Wardell, C. R. Galley, A. Zenginoğlu, M. Casals, S. R. Dolan and A. C. Ottewill, Phys. Rev. D 89 (2014) 084021] on the GF and the self-force on a scalar charge (as a model for the gravitational case) moving on a Schwarzschild black hole spacetime. This GF method offers an appealing geometrical insight into the origin of the self-force and is a promising candidate for practical self-force calculations.

  2. Cogging force rejection method of linear motor based on internal model principle

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Zhenyu; Yang, Tianbo

    2015-02-01

    The cogging force disturbance of linear motor is one of the main factors affecting the positioning accuracy of ultraprecision moving platform. And this drawback could not be completely overcome by improving the design of motor body, such as location modification of permanent magnet array, or optimization design of the shape of teeth-slot. So the active compensation algorithms become prevalent in cogging force rejection area. This paper proposed a control structure based on internal mode principle to attenuate the cogging force of linear motor which deteriorated the accuracy of position, and this structure could make tracking and anti-disturbing performance of close-loop designed respectively. In the first place, the cogging force was seen as the intrinsic property of linear motor and its model constituting controlled object with motor ontology model was obtained by data driven recursive identification method. Then, a control structure was designed to accommodate tracking and anti-interference ability separately by using internal model principle. Finally, the proposed method was verified in a long stroke moving platform driven by linear motor. The experiment results show that, by employing this control strategy, the positioning error caused by cogging force was decreased by 70%.

  3. Development of Finite Elements for Two-Dimensional Structural Analysis Using the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.

    1996-01-01

    The Integrated Force Method has been developed in recent years for the analysis of structural mechanics problems. This method treats all independent internal forces as unknown variables that can be calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper a finite element library for analyzing two-dimensional problems by the Integrated Force Method is presented. Triangular- and quadrilateral-shaped elements capable of modeling arbitrary domain configurations are presented. The element equilibrium and flexibility matrices are derived by discretizing the expressions for potential and complementary energies, respectively. The displacement and stress fields within the finite elements are independently approximated. The displacement field is interpolated as it is in the standard displacement method, and the stress field is approximated by using complete polynomials of the correct order. A procedure that uses the definitions of stress components in terms of an Airy stress function is developed to derive the stress interpolation polynomials. Such derived stress fields identically satisfy the equations of equilibrium. Moreover, the resulting element matrices are insensitive to the orientation of local coordinate systems. A method is devised to calculate the number of rigid body modes, and the present elements are shown to be free of spurious zero-energy modes. A number of example problems are solved by using the present library, and the results are compared with corresponding analytical solutions and with results from the standard displacement finite element method. The Integrated Force Method not only gives results that agree well with analytical and displacement method results but also outperforms the displacement method in stress calculations.

  4. Flow force and torque on submerged bodies in lattice-Boltzmann methods via momentum exchange.

    PubMed

    Giovacchini, Juan P; Ortiz, Omar E

    2015-12-01

    We review the momentum exchange method to compute the flow force and torque on a submerged body in lattice-Boltzmann methods by presenting an alternative derivation. Our derivation does not depend on a particular implementation of the boundary conditions at the body surface, and it relies on general principles. After the introduction of the momentum exchange method in lattice-Boltzmann methods, some formulations were introduced to compute the fluid force on static and moving bodies. These formulations were introduced in a rather intuitive, ad hoc way. In our derivation, we recover the proposals most frequently used, in some cases with minor corrections, gaining some insight into the two most used formulations. At the end, we present some numerical tests to compare different approaches on a well-known benchmark test that support the correctness of the formulas derived. PMID:26764848

  5. Flow force and torque on submerged bodies in lattice-Boltzmann methods via momentum exchange.

    PubMed

    Giovacchini, Juan P; Ortiz, Omar E

    2015-12-01

    We review the momentum exchange method to compute the flow force and torque on a submerged body in lattice-Boltzmann methods by presenting an alternative derivation. Our derivation does not depend on a particular implementation of the boundary conditions at the body surface, and it relies on general principles. After the introduction of the momentum exchange method in lattice-Boltzmann methods, some formulations were introduced to compute the fluid force on static and moving bodies. These formulations were introduced in a rather intuitive, ad hoc way. In our derivation, we recover the proposals most frequently used, in some cases with minor corrections, gaining some insight into the two most used formulations. At the end, we present some numerical tests to compare different approaches on a well-known benchmark test that support the correctness of the formulas derived.

  6. The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness.

    PubMed

    Gandyra, Daniel; Walheim, Stefan; Gorb, Stanislav; Barthlott, Wilhelm; Schimmel, Thomas

    2015-01-01

    We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor) to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1) determination of the water adhesion force and the elasticity of individual hairs (trichomes) of the floating fern Salvinia molesta. (2) The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics) was performed. The method also resulted in the measurement of an elastic modulus (Young's modulus) for individual hairs of 3.0 × 10(5) N/cm(2), which is within the typical range known for human hair. (3) Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods.

  7. A new method of simultaneously measuring the applanation force and area as applied to tonometer prototype

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyong; Ma, Jianguo

    2006-11-01

    A new method for simultaneous measuring the applanation force and area and a device based on this method are presented for intraocular pressure measurement. A photoelectric probe transducer acting as applalation area detector converted the diminished quantity of light returned from applanation surface of the cone prism into one electronic signal, and a micro strain gauge acting as applation force detector converted changing load related to the resilient force of the eye into another electronic signal. A 16-bit single-chip microprocessor with E2PROM in the electronic circuit played the role of a nucleus, which stored the program instructions and the interrelated data. Laboratory experiments were carried out on a stimulated cornea clamped in a Perspex chamber connected to a hydraulic manometer to obtain intraocular pressure at different levels. Preliminary trials were carried out comparing the values obtained with those of the Goldmann tonometer. Diminished quantity of the light is directly proportional to the applanation area of the cornea and the changing load detected by strain gauge is equated to the resilient force of the eye. A new kind of tonometer can be constructed based on this principle. Experimental results on a stimulated eyeball showed the present tonometer reading has good agreement with that of the Goldmann tonometer. Further study including clinical trials and application is required to evaluate the accuracy and usefulness of this method.

  8. Local force variations caused by isoelectric impurities: Method of determination from first principles

    NASA Astrophysics Data System (ADS)

    Kunc, K.

    1983-02-01

    It is shown how the variation of lattice dynamical force constants caused by substitutional isoelectronic impurities can be evaluated ab initio. The approach, illustrated on the example of Al in GaAs, is based on local density functional and uses ionic pseudopotentials of Al, Ga, As as the only input; Hellmann-Feynman theorem is applied in order to extract from self-consistent electronic charge densities the forces acting on atoms in periodic patterns in which entire planes of impurities are displaced. The defect-induced variations of inter planar force constants are converted into the inter atomic ones, which can be compared with those determined by phenomenological models from the measured local mode frequencies. A method is presented which allows to account for the effect of relaxation without requiring an explicit determination of the latter. Particular problems resulting from dealing with entire plane of defects are discussed and an estimate for relaxation is given.

  9. A method of improving the dynamic response of 3D force/torque sensors

    NASA Astrophysics Data System (ADS)

    Osypiuk, Rafał; Piskorowski, Jacek; Kubus, Daniel

    2016-02-01

    In the paper attention is drawn to adverse dynamic properties of filters implemented in commercial measurement systems, force/torque sensors, which are increasingly used in industrial robotics. To remedy the problem, it has been proposed to employ a time-variant filter with appropriately modulated parameters, owing to which it is possible to suppress the amplitude of the transient response and, at the same time, to increase the pulsation of damped oscillations; this results in the improvement of dynamic properties in terms of reducing the duration of transients. This property plays a key role in force control and in the fundamental problem of the robot establishing contact with rigid environment. The parametric filters have been verified experimentally and compared with filters available for force/torque sensors manufactured by JR3. The obtained results clearly indicate the advantages of the proposed solution, which may be an interesting alternative to the classic methods of filtration.

  10. Validation of engineering methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.

    1991-01-01

    This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.

  11. A Consistent Projection Method for Multi-Fluid Flows with Continuous Surface Force on a Collocated Mesh

    NASA Astrophysics Data System (ADS)

    Ni, M. J.

    2010-03-01

    A comparison study of algorithm on a rectangular collocated mesh is conducted for variable density Navier-Stokes equations with continuous surface forces. The algorithms include the original projection method (AI-TI) with the surface force calculated only in the predictor steps, the named balanced-force projection method (AII-TIV) with the surface force and the pressure gradient calculated together, and a consistent projection method (AIII-TVII) developed in this paper. Detailed comparisons are also conducted among the techniques for calculation of the pressure gradient and surface force at a cell center. A consistent projection method updates the velocity at a cell center in a very difference way with the balanced-force projection formula. A conservative interpolation is used to update the velocity a cell center, which is further used to obtain the sum of the pressure gradient and the surface force.

  12. Computational modeling of healing: an application of the material force method.

    PubMed

    Kuhl, E; Steinmann, P

    2004-06-01

    The basic aim of the present contribution is the qualitative simulation of healing phenomena typically encountered in hard and soft tissue mechanics. The mechanical framework is provided by the theory of open system thermodynamics, which will be formulated in the spatial as well as in the material motion context. While the former typically aims at deriving the density and the spatial motion deformation field in response to given spatial forces, the latter will be applied to determine the material forces in response to a given density and material deformation field. We derive a general computational framework within the finite element context that will serve to evaluate both the spatial and the material motion problem. However, once the spatial motion problem has been solved, the solution of the material motion problem represents a mere post-processing step and is thus extremely cheap from a computational point of view. The underlying algorithm will be elaborated systematically by means of two prototype geometries subjected to three different representative loading scenarios, tension, torsion, and bending. Particular focus will be dedicated to the discussion of the additional information provided by the material force method. Since the discrete material node point forces typically point in the direction of potential material deposition, they can be interpreted as a driving force for the healing mechanism.

  13. ICFF: a new method to incorporate implicit flexibility into an internal coordinate force field.

    PubMed

    Katritch, Vsevolod; Totrov, Maxim; Abagyan, Ruben

    2003-01-30

    We introduce a new method to accurately "project" a Cartesian force field onto an internal coordinate molecular model with fixed-bond geometry. The algorithm automatically generates the Internal Coordinate Force Field (ICFF), which is a close approximation of the "source" Cartesian force field. The ICFF method reduces the number of free variables in a model by at least 10-fold and facilitates the fast convergence of geometry optimizations, an advantage that is critical for many applications such as the docking of flexible ligands or conformational modeling of macromolecules. Although covalent geometry is fixed in an ICFF model, implicit flexibility is incorporated into the force field parameters in the following two ways. First, we formulate an empirical torsion energy term in ICFF as a sixfold Fourier series and develop a procedure to calculate the Fourier coefficients from the conformational energy profiles of the fully flexible Cartesian model. The ICFF torsion parameters thus represent not only torsion component of the source force field, but also bond bending, bond stretching, and "1-4" van der Waals interactions. Second, we use a soft polynomial repulsion function for "1-5" and "1-6" interactions to mimic the flexibility of bonds, connecting these atoms. Also, we suggest a way to use a local part of the Cartesian force field to automatically generate fixed covalent geometries, compatible with the ICFF energy function. Here, we present an implementation of the ICFF algorithm, which employs the MMFF94s Cartesian force field as a "source." Extensive benchmarking of ICFF with a representative set of organic molecules demonstrates that the implicit flexibility model accurately reproduces MMFF94s equilibrium conformational energy differences (RMSD approximately 0.64 kcal) and, most importantly, detailed torsion energy profiles (RMSD approximately 0.37 kcal). This accuracy is characteristic of the method, because all the ICFF parameters (except one scaling factor in

  14. A fast high-order method to calculate wakefield forces in an electron beam

    SciTech Connect

    Qiang, Ji; Mitchell, Chad; Ryne, Robert D.

    2012-03-22

    In this paper we report on a high-order fast method to numerically calculate wakefield forces in an electron beam given a wake function model. This method is based on a Newton-Cotes quadrature rule for integral approximation and an FFT method for discrete summation that results in an O(Nlog(N)) computational cost, where N is the number of grid points. Using the Simpson quadrature rule with an accuracy of O(h4), where h is the grid size, we present numerical calculation of the wakefields from a resonator wake function model and from a one-dimensional coherent synchrotron radiation (CSR) wake model. Besides the fast speed and high numerical accuracy, the calculation using the direct line density instead of the first derivative of the line density avoids numerical filtering of the electron density function for computing the CSR wakefield force. I. INTRODUCTION

  15. New method of space debris cleaning based on light negative force: tractor laser

    NASA Astrophysics Data System (ADS)

    Sun, Qiongge; Gao, Long; Li, Chen

    2016-01-01

    This paper presents a new way of space debris removal and protection, that is, using tractor laser, which based on light negative force, to achieve space debris cleaning and shielded. Tractor laser is traceable from the theory of optical tweezers, accompanied with non-diffraction beam. These kind of optical beams have the force named negative force pointing to optical source, this will bring the object along the trajectory of laser beam moving to the optical source. The negative force leads to the new method to convey and sampling the space micro-objects. In this paper, the application of tractor laser in the space debris collection and protection of 1cm is studied. The application of the several tractor beams in the space debris and sample collection is discussed. The proposed method can reduce the requirements of the laser to the satellite platform, and realize the collection of space debris, make the establishment of the space garbage station possible, and help to study the spatial non contact sample transmission and reduce the risk of space missions.

  16. Accurate computation of surface stresses and forces with immersed boundary methods

    NASA Astrophysics Data System (ADS)

    Goza, Andres; Liska, Sebastian; Morley, Benjamin; Colonius, Tim

    2016-09-01

    Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is applied as a post-processing procedure, so that the convergence of the velocity field is unaffected. We demonstrate the efficacy of the method by computing stresses and forces that converge to the physical stresses and forces for several test problems.

  17. Structure prediction of an S-layer protein by the mean force method

    NASA Astrophysics Data System (ADS)

    Horejs, C.; Pum, D.; Sleytr, U. B.; Tscheliessnig, R.

    2008-02-01

    S-layer proteins have a wide range of application potential due to their characteristic features concerning self-assembling, assembling on various surfaces, and forming of isoporous structures with functional groups located on the surface in an identical position and orientation. Although considerable knowledge has been experimentally accumulated on the structure, biochemistry, assemble characteristics, and genetics of S-layer proteins, no structural model at atomic resolution has been available so far. Therefore, neither the overall folding of the S-layer proteins—their tertiary structure—nor the exact amino acid or domain allocations in the lattices are known. In this paper, we describe the tertiary structure prediction for the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2. This calculation was based on its amino acid sequence using the mean force method (MF method) achieved by performing molecular dynamic simulations. This method includes mainly the thermodynamic aspects of protein folding as well as steric constraints of the amino acids and is therefore independent of experimental structure analysis problems resulting from biochemical properties of the S-layer proteins. Molecular dynamic simulations were performed in vacuum using the simulation software NAMD. The obtained tertiary structure of SbsB was systematically analyzed by using the mean force method, whereas the verification of the structure is based on calculating the global free energy minimum of the whole system. This corresponds to the potential of mean force, which is the thermodynamically most favorable conformation of the protein. Finally, an S-layer lattice was modeled graphically using CINEMA4D and compared with scanning force microscopy data down to a resolution of 1nm. The results show that this approach leads to a thermodynamically favorable atomic model of the tertiary structure of the protein, which could be verified by both the MF Method and the lattice model.

  18. Automatic approaching method for atomic force microscope using a Gaussian laser beam.

    PubMed

    Han, Cheolsu; Lee, Haiwon; Chung, Chung Choo

    2009-07-01

    In this paper, a criterion for a fast automatic approach method in conventional atomic force microscope is introduced. There are currently two approach methods: automatic and semiautomatic methods. However, neither of them provides a high approach speed to enable the avoidance of possible damage to tips or samples. Industrial atomic force microscope requires a high approach speed and good repeatability for inspecting a large volume. Recently, a rapid automatic engagement method was reported to improve the approach speed. However, there was no information on how to determine the safe distance. This lack of information increases the chance for damage to occur in calibrating optimal approach speed. In this paper, we show that the proposed criterion can be used for decision making in determining mode transitions from fast motion to slow motion. The criterion is calculated based on the average intensity of a Gaussian laser beam. The tip-sample distance where the average intensity becomes the maximum value is used for the criterion. We explain the effects of the beam spot size and the window size on the average intensity. From experimental results with an optical head used in a commercial atomic force microscope, we observed that the mean and standard deviation (of the distance at which intensity is the maximum for the 25 experiments) are 194.0 and 15.0 microm, respectively, for a rectangular cantilever (or 224.8 and 12.6 microm for a triangular cantilever). Numerical simulation and experimental results are in good agreement.

  19. A novel measuring method of clamping force for electrostatic chuck in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Kesheng, Wang; Jia, Cheng; Yin, Zhong; Linhong, Ji

    2016-04-01

    Electrostatic chucks are one of the core components of semiconductor devices. As a key index of electrostatic chucks, the clamping force must be controlled within a reasonable range. Therefore, it is essential to accurately measure the clamping force. To reduce the negative factors influencing measurement precision and repeatability, this article presents a novel method to measure the clamping force and we elaborate both the principle and the key procedure. A micro-force probe component is introduced to monitor, adjust, and eliminate the gap between the wafer and the electrostatic chuck. The contact force between the ruby probe and the wafer is selected as an important parameter to characterize de-chucking, and we have found that the moment of de-chucking can be exactly judged. Moreover, this article derives the formula calibrating equivalent action area of backside gas pressure under real working conditions, which can effectively connect the backside gas pressure at the moment of de-chucking and the clamping force. The experiments were then performed on a self-designed measuring platform. The de-chucking mechanism is discussed in light of our analysis of the experimental data. Determination criteria for de-chucking point are summed up. It is found that the relationship between de-chucking pressure and applied voltage conforms well to quadratic equation. Meanwhile, the result reveals that actual de-chucking behavior is much more complicated than the description given in the classical empirical formula. Project supported by No. 02 National Science and Technology Major Project of China (No. 2011ZX02403-004).

  20. Daniell method for power spectral density estimation in atomic force microscopy.

    PubMed

    Labuda, Aleksander

    2016-03-01

    An alternative method for power spectral density (PSD) estimation--the Daniell method--is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion--the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum. PMID:27036781

  1. Method of simultaneous measurement of two direction force and temperature using FBG sensor head.

    PubMed

    Kisała, Piotr; Cięszczyk, Sławomir

    2015-04-01

    This paper presents a method for measuring two components of bending force and temperature using one sensor head. Indirect inference based on the spectra of two fiber Bragg gratings (FBGs) placed on a cantilever beam is used. The method was developed during work on the inverse problem of determining a nonuniform stress distribution based on FBG spectra. A gradient in the FBG stress profile results in a characteristic shape of its reflective spectrum. The simultaneous measurements of force and temperature were possible through the use of an appropriate layout of the sensor head. The spectral characteristics of the sensor's gratings do not retain full symmetry, which is due to the geometry of the sensor's head and the related difference in the distribution of the axial stress of the gratings. In the proposed approach, the change in width of the sum of the normalized transmission spectra was used to determine the value of the applied force. In the presented method, an increase in the sensitivity of this change to the force is obtained relative to the other known systems. A change in the spectral width was observed for an increase in bending forces from 0 to 150 N. The sensitivity coefficient of the spectral width to force, defined as the ratio of the change of the spectral half-width to the change in force was 2.6e-3  nm/N for the first grating and 1.2e-3  nm/N for the second grating. However, the sensitivity of the whole sensor system was 5.8e-3  nm/N, which is greater than the sum of the sensitivities of the individual gratings. For the purpose of this work, a station with a thermal chamber has been designed with a bracket on which fiber optic transducers have been mounted for use in further measurements. The sensor head in this experiment is considered to be a universal device with potential applications in other types of optical sensors, and it can be treated as a module for development through its multiplication on a single optical fiber. PMID

  2. Study on Two Methods for Nonlinear Force-Free Extrapolation Based on Semi-Analytical Field

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, H. Q.; Su, J. T.; Song, M. T.

    2011-03-01

    In this paper, two semi-analytical solutions of force-free fields (Low and Lou, Astrophys. J. 352, 343, 1990) have been used to test two nonlinear force-free extrapolation methods. One is the boundary integral equation (BIE) method developed by Yan and Sakurai ( Solar Phys. 195, 89, 2000), and the other is the approximate vertical integration (AVI) method developed by Song et al. ( Astrophys. J. 649, 1084, 2006). Some improvements have been made to the AVI method to avoid the singular points in the process of calculation. It is found that the correlation coefficients between the first semi-analytical field and extrapolated field using the BIE method, and also that obtained by the improved AVI method, are greater than 90% below a height 10 of the 64×64 lower boundary. For the second semi-analytical field, these correlation coefficients are greater than 80% below the same relative height. Although differences between the semi-analytical solutions and the extrapolated fields exist for both the BIE and AVI methods, these two methods can give reliable results for heights of about 15% of the extent of the lower boundary.

  3. Another method to compute the thermodynamic Casimir force in lattice models

    NASA Astrophysics Data System (ADS)

    Hasenbusch, Martin

    2009-12-01

    We discuss a method that allows us to compute the thermodynamic Casimir force at a given temperature in lattice models by performing a single Monte Carlo simulation. It is analogous to the one used by de Forcrand and co-workers in the study of ‘t Hooft loops and the interface tension in SU(N) lattice gauge models in four dimensions. We test the method at the example of thin films in the XY universality class. In particular we simulate the improved two-component ϕ4 model on the simple cubic lattice. This allows us to compare with our previous study, where we have computed the Casimir force by numerically integrating energy densities over the inverse temperature.

  4. Numerical Modeling of Tsunami Bore Attenuation and Extreme Hydrodynamic Impact Forces Using the SPH Method

    NASA Astrophysics Data System (ADS)

    Piche, Steffanie

    Understanding the impact of coastal forests on the propagation of rapidly advancing onshore tsunami bores is difficult due to complexity of this phenomenon and the large amount of parameters which must be considered. The research presented in the thesis focuses on understanding the protective effect of the coastal forest on the forces generated by the tsunami and its ability to reduce the propagation and velocity of the incoming tsunami bore. Concern for this method of protecting the coast from tsunamis is based on the effectiveness of the forest and its ability to withstand the impact forces caused by both the bore and the debris carried along by it. The devastation caused by the tsunami has been investigated in recent examples such as the 2011 Tohoku Tsunami in Japan and the Indian Ocean Tsunami which occurred in 2004. This research examines the reduction of the spatial extent of the tsunami bore inundation and runup due to the presence of the coastal forest, and attempts to quantify the impact forces induced by the tsunami bores and debris impact on the structures. This research work was performed using a numerical model based on the Smoothed Particle Hydrodynamics (SPH) method which is a single-phase three-dimensional model. The simulations performed in this study were separated into three sections. The first section focused on the reduction of the extent of the tsunami inundation and the magnitude of the bore velocity by the coastal forest. This section included the analysis of the hydrodynamic forces acting on the individual trees. The second section involved the numerical modeling of some of the physical laboratory experiments performed by researchers at the University of Ottawa, in cooperation with colleagues from the Ocean, Coastal and River Engineering Lab at the National Research Council, Ottawa, in an attempt to validate the movement and impact forces of floating driftwood on a column. The final section modeled the movement and impact of floating debris

  5. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls.

    PubMed

    Haff, G Gregory; Ruben, Ryan P; Lider, Joshua; Twine, Corey; Cormie, Prue

    2015-02-01

    Twelve female division I collegiate volleyball players were recruited to examine the reliability of several methods for calculating the rate of force development (RFD) during the isometric midthigh clean pull. All subjects were familiarized with the isometric midthigh clean pull and participated in regular strength training. Two isometric midthigh clean pulls were performed with 2 minutes rest between each trail. All measures were performed in a custom isometric testing device that included a step-wise adjustable bar and a force plate for measuring ground reaction forces. The RFD during predetermined time zone bands (0-30, 0-50, 0-90, 0-100, 0-150, 0-200, and 0-250 milliseconds) was then calculated by dividing the force at the end of the band by the band's time interval. The peak RFD was then calculated with the use of 2, 5, 10, 20, 30, and 50 milliseconds sampling windows. The average RFD (avgRFD) was calculated by dividing the peak force (PF) by the time to achieve PF. All data were analyzed with the use of intraclass correlation alpha (ICCα) and the coefficient of variation (CV) and 90% confidence intervals. All predetermined RFD time bands were deemed reliable based on an ICCα >0.95 and a CV <4%. Conversely, the avgRFD failed to meet the reliability standards set for this study. Overall, the method used to assess the RFD during an isometric midthigh clean pull impacts the reliability of the measure and predetermined RFD time bands should be used to quantify the RFD. PMID:25259470

  6. The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were Afraid To Ask

    PubMed Central

    2014-01-01

    In the host of numerical schemes devised to calculate free energy differences by way of geometric transformations, the adaptive biasing force algorithm has emerged as a promising route to map complex free-energy landscapes. It relies upon the simple concept that as a simulation progresses, a continuously updated biasing force is added to the equations of motion, such that in the long-time limit it yields a Hamiltonian devoid of an average force acting along the transition coordinate of interest. This means that sampling proceeds uniformly on a flat free-energy surface, thus providing reliable free-energy estimates. Much of the appeal of the algorithm to the practitioner is in its physically intuitive underlying ideas and the absence of any requirements for prior knowledge about free-energy landscapes. Since its inception in 2001, the adaptive biasing force scheme has been the subject of considerable attention, from in-depth mathematical analysis of convergence properties to novel developments and extensions. The method has also been successfully applied to many challenging problems in chemistry and biology. In this contribution, the method is presented in a comprehensive, self-contained fashion, discussing with a critical eye its properties, applicability, and inherent limitations, as well as introducing novel extensions. Through free-energy calculations of prototypical molecular systems, many methodological aspects are examined, from stratification strategies to overcoming the so-called hidden barriers in orthogonal space, relevant not only to the adaptive biasing force algorithm but also to other importance-sampling schemes. On the basis of the discussions in this paper, a number of good practices for improving the efficiency and reliability of the computed free-energy differences are proposed. PMID:25247823

  7. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls.

    PubMed

    Haff, G Gregory; Ruben, Ryan P; Lider, Joshua; Twine, Corey; Cormie, Prue

    2015-02-01

    Twelve female division I collegiate volleyball players were recruited to examine the reliability of several methods for calculating the rate of force development (RFD) during the isometric midthigh clean pull. All subjects were familiarized with the isometric midthigh clean pull and participated in regular strength training. Two isometric midthigh clean pulls were performed with 2 minutes rest between each trail. All measures were performed in a custom isometric testing device that included a step-wise adjustable bar and a force plate for measuring ground reaction forces. The RFD during predetermined time zone bands (0-30, 0-50, 0-90, 0-100, 0-150, 0-200, and 0-250 milliseconds) was then calculated by dividing the force at the end of the band by the band's time interval. The peak RFD was then calculated with the use of 2, 5, 10, 20, 30, and 50 milliseconds sampling windows. The average RFD (avgRFD) was calculated by dividing the peak force (PF) by the time to achieve PF. All data were analyzed with the use of intraclass correlation alpha (ICCα) and the coefficient of variation (CV) and 90% confidence intervals. All predetermined RFD time bands were deemed reliable based on an ICCα >0.95 and a CV <4%. Conversely, the avgRFD failed to meet the reliability standards set for this study. Overall, the method used to assess the RFD during an isometric midthigh clean pull impacts the reliability of the measure and predetermined RFD time bands should be used to quantify the RFD.

  8. A new Doppler method of assessing left ventricular ejection force in chronic congestive heart failure.

    PubMed

    Isaaz, K; Ethevenot, G; Admant, P; Brembilla, B; Pernot, C

    1989-07-01

    A noninvasive method using Doppler echocardiography was developed to determine the force exerted by the left ventricle in accelerating the blood into the aorta. The value of this new Doppler ejection index in the assessment of left ventricular (LV) performance was tested in 36 patients with chronic congestive heart disease undergoing cardiac catheterization and in 11 age-matched normal control subjects. The 36 patients were subgrouped into 3 groups based on angiographic ejection fraction (LV ejection fraction greater than 60, 41 to 60 and less than or equal to 40%). According to Newton's second law of motion (force = mass X acceleration), the LV ejection force was derived from the product of the mass of blood ejected during the acceleration time with the mean acceleration undergone during that time. In patients with LV ejection fraction less than or equal to 40%, LV ejection force, peak aortic velocity and mean acceleration were severely depressed when compared with the other groups (p less than 0.001). In patients with LV ejection fraction of 41 to 60%, LV ejection force was significantly reduced (22 +/- 3 kdynes) when compared with normal subjects (29 +/- 5 kdynes, p = 0.002) and with patients with LV ejection fraction greater than 60% (29 +/- 7 kdynes, p = 0.009); peak velocity and mean acceleration did not differ between these 3 groups. The LV ejection force showed a good linear correlation with LV ejection fraction (r = 0.86) and a better power fit (r = 0.91). Peak aortic blood velocity and mean acceleration showed less good linear correlations with LV ejection fraction (r = 0.73 and r = 0.66, respectively). The mass of blood ejected during the acceleration time also showed a weak linear correlation with LV ejection fraction (r = 0.64). An LV ejection force less than 20 kdynes was associated with a depressed LV performance (LV ejection fraction less than 50%) with 91% sensitivity and 90% specificity. Thus, these findings suggest that LV ejection force is a new

  9. Molecular recognition of DNA-protein complexes: a straightforward method combining scanning force and fluorescence microscopy.

    PubMed

    Sanchez, Humberto; Kanaar, Roland; Wyman, Claire

    2010-06-01

    Combining scanning force and fluorescent microscopy allows simultaneous identification of labeled biomolecules and analysis of their nanometer level architectural arrangement. Fluorescent polystyrene nano-spheres were used as reliable objects for alignment of optical and topographic images. This allowed the precise localization of different fluorescence particles within complex molecular assemblies whose structure was mapped in nanometer detail topography. Our experiments reveal the versatility of this method for analysis of proteins and protein-DNA complexes.

  10. An individual and dynamic Body Segment Inertial Parameter validation method using ground reaction forces.

    PubMed

    Hansen, Clint; Venture, Gentiane; Rezzoug, Nasser; Gorce, Philippe; Isableu, Brice

    2014-05-01

    Over the last decades a variety of research has been conducted with the goal to improve the Body Segment Inertial Parameters (BSIP) estimations but to our knowledge a real validation has never been completely successful, because no ground truth is available. The aim of this paper is to propose a validation method for a BSIP identification method (IM) and to confirm the results by comparing them with recalculated contact forces using inverse dynamics to those obtained by a force plate. Furthermore, the results are compared with the recently proposed estimation method by Dumas et al. (2007). Additionally, the results are cross validated with a high velocity overarm throwing movement. Throughout conditions higher correlations, smaller metrics and smaller RMSE can be found for the proposed BSIP estimation (IM) which shows its advantage compared to recently proposed methods as of Dumas et al. (2007). The purpose of the paper is to validate an already proposed method and to show that this method can be of significant advantage compared to conventional methods.

  11. Daniell method for power spectral density estimation in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander

    2016-03-01

    An alternative method for power spectral density (PSD) estimation—the Daniell method—is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion—the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum.

  12. Quantitative Evaluation of Peptide-Material Interactions by a Force Mapping Method: Guidelines for Surface Modification.

    PubMed

    Mochizuki, Masahito; Oguchi, Masahiro; Kim, Seong-Oh; Jackman, Joshua A; Ogawa, Tetsu; Lkhamsuren, Ganchimeg; Cho, Nam-Joon; Hayashi, Tomohiro

    2015-07-28

    Peptide coatings on material surfaces have demonstrated wide application across materials science and biotechnology, facilitating the development of nanobio interfaces through surface modification. A guiding motivation in the field is to engineer peptides with a high and selective binding affinity to target materials. Herein, we introduce a quantitative force mapping method in order to evaluate the binding affinity of peptides to various hydrophilic oxide materials by atomic force microscopy (AFM). Statistical analysis of adhesion forces and probabilities obtained on substrates with a materials contrast enabled us to simultaneously compare the peptide binding affinity to different materials. On the basis of the experimental results and corresponding theoretical analysis, we discuss the role of various interfacial forces in modulating the strength of peptide attachment to hydrophilic oxide solid supports as well as to gold. The results emphasize the precision and robustness of our approach to evaluating the adhesion strength of peptides to solid supports, thereby offering guidelines to improve the design and fabrication of peptide-coated materials.

  13. An automatic method to generate force-field parameters for hetero-compounds.

    PubMed

    Nilsson, Kristina; Lecerof, David; Sigfridsson, Emma; Ryde, Ulf

    2003-02-01

    A program, Hess2FF, has been developed that automatically constructs parameter and topology files to be used in crystallographic refinement for any molecule, based on a Hessian (force-constant) matrix estimated by any method. The program is tested by redefining hetero-compounds in five different proteins: the inhibitor N-methylmesoporphyrin bound to ferrochelatase, the haem group and its axial ligands in cyctochrome c(553), the active-site metal ion in iron superoxide dismutase, the catalytic zinc ion in alcohol dehydrogenase with a bound trifluoroethanol molecule and the 5'-deoxyadenosyl group in methylmalonyl coenzyme A mutase. It is shown that the resulting structures are improved in several aspects. In particular, the free R(free) factor always decreases and it is shown that a 1.70 A structure of cyctochrome c(553) becomes more similar to a high-resolution (0.97 A) structure of the same protein after re-refinement with Hess2FF. Thus, the force field used in crystallographic refinement significantly affects the final structure and therefore should be published together with the structure to ensure reproducibility. Various methods of obtaining the Hessian matrix employed by Hess2FF are discussed and some recommendations are given. Hess2FF allows the user to divide the atoms of the molecule into atom types that share the same force-field parameters. However, it seems to be favourable to assign a separate type to each atom, which can be performed automatically.

  14. Methods for thermochemical convection in Earth's mantle with force-balanced plates

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. P.; van Keken, P. E.

    2007-11-01

    Models of convection in the mantle can be used to study the effects of differentiation and remixing on the geochemical evolution of the Earth. Implementation of melting and degassing at mid-ocean ridges and subduction zones requires an adequate approximation of plate tectonics as well as temperature-dependent rheology. We have developed a new two-dimensional cylindrical model that combines a force-balance method for energetically consistent stiff plates with tracer-discretized chemical buoyancy. Basaltic crust is extracted at distinct spreading centers and is subducted into the lower mantle. We find that the unmodified implementation of the force-balance equations in a full cylinder causes occasional spurious rotations by amplification of numerical discretization errors. The method is stable if a single internal symmetry boundary condition is used, but this causes artificial pooling of dense crust near the boundary where it is easily disrupted. This results in artificially enhanced remixing of dense crust. We modify the force-balance equations to damp net lateral plate movement. The energetic consistency of this modification is then demonstrated by comparison to a one-plate, single convection cell calculation. With the removal of the symmetry boundary condition a more continuous rate of crustal pooling is observed. This suggests that models with symmetry boundary conditions may overpredict the rate of pooling and remixing of ancient crust.

  15. Nonlinear force-free extrapolation of the coronal magnetic field based on the magnetohydrodynamic relaxation method

    SciTech Connect

    Inoue, S.; Magara, T.; Choe, G. S.; Kim, K. S.; Pandey, V. S.; Shiota, D.; Kusano, K.

    2014-01-01

    We develop a nonlinear force-free field (NLFFF) extrapolation code based on the magnetohydrodynamic (MHD) relaxation method. We extend the classical MHD relaxation method in two important ways. First, we introduce an algorithm initially proposed by Dedner et al. to effectively clean the numerical errors associated with ∇ · B . Second, the multigrid type method is implemented in our NLFFF to perform direct analysis of the high-resolution magnetogram data. As a result of these two implementations, we successfully extrapolated the high resolution force-free field introduced by Low and Lou with better accuracy in a drastically shorter time. We also applied our extrapolation method to the MHD solution obtained from the flux-emergence simulation by Magara. We found that NLFFF extrapolation may be less effective for reproducing areas higher than a half-domain, where some magnetic loops are found in a state of continuous upward expansion. However, an inverse S-shaped structure consisting of the sheared and twisted loops formed in the lower region can be captured well through our NLFFF extrapolation method. We further discuss how well these sheared and twisted fields are reconstructed by estimating the magnetic topology and twist quantitatively.

  16. ACOUSTIC RADIATION FORCE-DRIVEN ASSESSMENT OF MYOCARDIAL ELASTICITY USING THE DISPLACEMENT RATIO RATE (DRR) METHOD

    PubMed Central

    Bouchard, Richard R.; Hsu, Stephen J.; Palmeri, Mark L.; Rouze, Ned C.; Nightingale, Kathryn R.; Trahey, Gregg E.

    2011-01-01

    A noninvasive method of characterizing myocardial stiffness could have significant implications in diagnosing cardiac disease. Acoustic radiation force (ARF)–driven techniques have demonstrated their ability to discern elastic properties of soft tissue. For the purpose of myocardial elasticity imaging, a novel ARF-based imaging technique, the displacement ratio rate (DRR) method, was developed to rank the relative stiffnesses of dynamically varying tissue. The basis and performance of this technique was demonstrated through numerical and phantom imaging results. This new method requires a relatively small temporal (<1 ms) and spatial (tenths of mm2) sampling window and appears to be independent of applied ARF magnitude. The DRR method was implemented in two in vivo canine studies, during which data were acquired through the full cardiac cycle by imaging directly on the exposed epicardium. These data were then compared with results obtained by acoustic radiation force impulse (ARFI) imaging and shear wave velocimetry, with the latter being used as the gold standard. Through the cardiac cycle, velocimetry results portray a range of shear wave velocities from 0.76–1.97 m/s, with the highest velocities observed during systole and the lowest observed during diastole. If a basic shear wave elasticity model is assumed, such a velocity result would suggest a period of increased stiffness during systole (when compared with diastole). Despite drawbacks of the DRR method (i.e., sensitivity to noise and limited stiffness range), its results predicted a similar cyclic stiffness variation to that offered by velocimetry while being insensitive to variations in applied radiation force. PMID:21645966

  17. Alternative method to control radiative vortex forces in a magneto-optical trap

    SciTech Connect

    Kiersnowski, K.; Kawalec, T.; Dohnalik, T.

    2006-06-15

    We present an experimental and theoretical study of controlling the atomic spatial distributions in a magneto-optical trap (MOT). With a diaphragm we can vary the waist and power of one of the cooling laser beams and we can change parameters of large-diameter, parallelogram-shaped atomic orbits. We show that the radiative force generated by the repumping MOT laser has to be taken into consideration. Computer simulations of atomic trajectories explain the observed spatial structures, and we employ these simulations to present potential applications of controlling the diaphragm diameter as a function of time. A potential use of controlled vortex forces seems to have a great significance in recently presented important new methods to investigate cold atom collisions in the MOT, which were recently published.

  18. Central-force decomposition of spline-based modified embedded atom method potential

    NASA Astrophysics Data System (ADS)

    Winczewski, S.; Dziedzic, J.; Rybicki, J.

    2016-10-01

    Central-force decompositions are fundamental to the calculation of stress fields in atomic systems by means of Hardy stress. We derive expressions for a central-force decomposition of the spline-based modified embedded atom method (s-MEAM) potential. The expressions are subsequently simplified to a form that can be readily used in molecular-dynamics simulations, enabling the calculation of the spatial distribution of stress in systems treated with this novel class of empirical potentials. We briefly discuss the properties of the obtained decomposition and highlight further computational techniques that can be expected to benefit from the results of this work. To demonstrate the practicability of the derived expressions, we apply them to calculate stress fields due to an edge dislocation in bcc Mo, comparing their predictions to those of linear elasticity theory.

  19. Dynamic analysis of radial force density in brushless DC motor using 3-D equivalent magnetic circuit network method

    SciTech Connect

    Hur, J.; Chun, Y.D.; Lee, J.; Hyun, D.S.

    1998-09-01

    The distribution of radial force density in brushless permanent magnet DC motor is not uniform in axial direction. The analysis of radial force density has to consider the 3-D shape of teeth and overhand, because the radial force density causes vibration and acts on the surface of teeth inconstantly. For the analysis, a new 3-D equivalent magnetic circuit network method is used to account the rotor movement without remesh. The radial force density is calculated and analyzed by Maxwell stress tensor and discrete Fourier transform (DFT) respectively. The results of 3-D equivalent magnetic circuit method have been compared with the results of 3-D FEM.

  20. A direct micropipette-based calibration method for atomic force microscope cantilevers

    PubMed Central

    Liu, Baoyu; Yu, Yan; Yao, Da-Kang; Shao, Jin-Yu

    2009-01-01

    In this report, we describe a direct method for calibrating atomic force microscope (AFM) cantilevers with the micropipette aspiration technique (MAT). A closely fitting polystyrene bead inside a micropipette is driven by precisely controlled hydrostatic pressures to apply known loads on the sharp tip of AFM cantilevers, thus providing a calibration at the most functionally relevant position. The new method is capable of calibrating cantilevers with spring constants ranging from 0.01 to hundreds of newtons per meter. Under appropriate loading conditions, this new method yields measurement accuracy and precision both within 10%, with higher performance for softer cantilevers. Furthermore, this method may greatly enhance the accuracy and precision of calibration for colloidal probes. PMID:19566228

  1. Perspectives on the simulation of protein–surface interactions using empirical force field methods

    PubMed Central

    Latour, Robert A.

    2014-01-01

    Protein–surface interactions are of fundamental importance for a broad range of applications in the fields of biomaterials and biotechnology. Present experimental methods are limited in their ability to provide a comprehensive depiction of these interactions at the atomistic level. In contrast, empirical force field based simulation methods inherently provide the ability to predict and visualize protein–surface interactions with full atomistic detail. These methods, however, must be carefully developed, validated, and properly applied before confidence can be placed in results from the simulations. In this perspectives paper, I provide an overview of the critical aspects that I consider being of greatest importance for the development of these methods, with a focus on the research that my combined experimental and molecular simulation groups have conducted over the past decade to address these issues. These critical issues include the tuning of interfacial force field parameters to accurately represent the thermodynamics of interfacial behavior, adequate sampling of these types of complex molecular systems to generate results that can be comparable with experimental data, and the generation of experimental data that can be used for simulation results evaluation and validation. PMID:25028242

  2. Efficient Methods for Handling Long-Range Forces in Particle-Particle Simulations

    NASA Astrophysics Data System (ADS)

    Fangohr, Hans; Price, Andrew R.; Cox, Simon J.; de Groot, Peter A. J.; Daniell, Geoffrey J.; Thomas, Ken S.

    2000-08-01

    A number of problems arise when long-range forces, such as those governed by Bessel functions, are used in particle-particle simulations. If a simple cutoff for the interaction is used, the system may find an equilibrium configuration at zero temperature that is not a regular lattice yet has an energy lower than the theoretically predicted minimum for the physical system. We demonstrate two methods to overcome these problems in Monte Carlo and molecular dynamics simulations. The first uses a smoothed potential to truncate the interaction in a single unit cell: this is appropriate for phenomenological characterisations, but may be applied to any potential. The second is a new method for summing the unmodified potential in an infinitely tiled periodic system, which is in excess of 20,000 times faster than previous naive methods which add periodic images in shells of increasing radius: this is suitable for quantitative studies. Finally, we show that numerical experiments which do not handle the long-range force carefully may give misleading results: both of our proposed methods overcome these problems.

  3. A method for atomic force microscopy cantilever stiffness calibration under heavy fluid loading

    SciTech Connect

    Kennedy, Scott J.; Cole, Daniel G.; Clark, Robert L.

    2009-12-15

    This work presents a method for force calibration of rectangular atomic force microscopy (AFM) microcantilevers under heavy fluid loading. Theoretical modeling of the thermal response of microcantilevers is discussed including a fluid-structure interaction model of the cantilever-fluid system that incorporates the results of the fluctuation-dissipation theorem. This model is curve fit to the measured thermal response of a cantilever in de-ionized water and a cost function is used to quantify the difference between the theoretical model and measured data. The curve fit is performed in a way that restricts the search space to parameters that reflect heavy fluid loading conditions. The resulting fitting parameters are used to calibrate the cantilever. For comparison, cantilevers are calibrated using Sader's method in air and the thermal noise method in both air and water. For a set of eight cantilevers ranging in stiffness from 0.050 to 5.8 N/m, the maximum difference between Sader's calibration performed in air and the new method performed in water was 9.4%. A set of three cantilevers that violate the aspect ratio assumption associated with the fluid loading model (length-to-width ratios less than 3.5) ranged in stiffness from 0.85 to 4.7 N/m and yielded differences as high as 17.8%.

  4. A method for atomic force microscopy cantilever stiffness calibration under heavy fluid loading.

    PubMed

    Kennedy, Scott J; Cole, Daniel G; Clark, Robert L

    2009-12-01

    This work presents a method for force calibration of rectangular atomic force microscopy (AFM) microcantilevers under heavy fluid loading. Theoretical modeling of the thermal response of microcantilevers is discussed including a fluid-structure interaction model of the cantilever-fluid system that incorporates the results of the fluctuation-dissipation theorem. This model is curve fit to the measured thermal response of a cantilever in de-ionized water and a cost function is used to quantify the difference between the theoretical model and measured data. The curve fit is performed in a way that restricts the search space to parameters that reflect heavy fluid loading conditions. The resulting fitting parameters are used to calibrate the cantilever. For comparison, cantilevers are calibrated using Sader's method in air and the thermal noise method in both air and water. For a set of eight cantilevers ranging in stiffness from 0.050 to 5.8 N/m, the maximum difference between Sader's calibration performed in air and the new method performed in water was 9.4%. A set of three cantilevers that violate the aspect ratio assumption associated with the fluid loading model (length-to-width ratios less than 3.5) ranged in stiffness from 0.85 to 4.7 N/m and yielded differences as high as 17.8%.

  5. Adaptive method for real-time gait phase detection based on ground contact forces.

    PubMed

    Yu, Lie; Zheng, Jianbin; Wang, Yang; Song, Zhengge; Zhan, Enqi

    2015-01-01

    A novel method is presented to detect real-time gait phases based on ground contact forces (GCFs) measured by force sensitive resistors (FSRs). The traditional threshold method (TM) sets a threshold to divide the GCFs into on-ground and off-ground statuses. However, TM is neither an adaptive nor real-time method. The threshold setting is based on body weight or the maximum and minimum GCFs in the gait cycles, resulting in different thresholds needed for different walking conditions. Additionally, the maximum and minimum GCFs are only obtainable after data processing. Therefore, this paper proposes a proportion method (PM) that calculates the sums and proportions of GCFs wherein the GCFs are obtained from FSRs. A gait analysis is then implemented by the proposed gait phase detection algorithm (GPDA). Finally, the PM reliability is determined by comparing the detection results between PM and TM. Experimental results demonstrate that the proposed PM is highly reliable in all walking conditions. In addition, PM could be utilized to analyze gait phases in real time. Finally, PM exhibits strong adaptability to different walking conditions.

  6. A method for embedding circular force-free flux ropes in potential magnetic fields

    SciTech Connect

    Titov, V. S.; Török, T.; Mikic, Z.; Linker, J. A.

    2014-08-01

    We propose a method for constructing approximate force-free equilibria in pre-eruptive configurations in which a thin force-free flux rope is embedded into a locally bipolar-type potential magnetic field. The flux rope is assumed to have a circular-arc axis, a circular cross-section, and electric current that is either concentrated in a thin layer at the boundary of the rope or smoothly distributed across it with a maximum of the current density at the center. The entire solution is described in terms of the magnetic vector potential in order to facilitate the implementation of the method in numerical magnetohydrodynamic (MHD) codes that evolve the vector potential rather than the magnetic field itself. The parameters of the flux rope can be chosen so that its subsequent MHD relaxation under photospheric line-tied boundary conditions leads to nearly exact numerical equilibria. To show the capabilities of our method, we apply it to several cases with different ambient magnetic fields and internal flux-rope structures. These examples demonstrate that the proposed method is a useful tool for initializing data-driven simulations of solar eruptions.

  7. Measure and characterization of lameness in gestating sows using force plate, kinematic, and accelerometer methods.

    PubMed

    Conte, S; Bergeron, R; Gonyou, H; Brown, J; Rioja-Lang, F C; Connor, L; Devillers, N

    2014-12-01

    pair of legs and weight shifting are good indicators of lameness. Multivariate analysis on fore and hind legs showed independency between variables related to animals in movement (measures from kinematics) and variables related to static animals (measures from the force plate and accelerometers). Therefore, both static and dynamic methods need to be used to detect various lame sows. PMID:25403203

  8. Temperature rise, sea level rise and increased radiative forcing - an application of cointegration methods

    NASA Astrophysics Data System (ADS)

    Schmith, Torben; Thejll, Peter; Johansen, Søren

    2016-04-01

    We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.

  9. Alternative Methods for Measuring Scapular Muscles Protraction and Retraction Maximal Isometric Forces

    PubMed Central

    Roush, James R.; Davies, George J.; Ellenbecker, Todd S.; Rauh, Mitchell J.

    2009-01-01

    Background The importance of the scapular stabilizing muscles has led to an increased interest in quantitative measurements of their strength. Few studies have measured isometric or concentric isokinetic forces. Additionally, limited reports exist on the reliability of objective measures for testing scapular protraction and retraction muscle strength or scapular testing that does not involve the glenohumeral joint. Objective To determine the reliability of four new methods of measuring the maximal isometric strength of key scapular stabilizing muscles for the actions of protraction and retraction, both with and without the involvement of the glenohumeral (GH) joint. Methods The Isobex® stationary tension dynamometer was used to measure the maximal isometric force (kg) on thirty healthy females (ages 22–26 years). Three measures were taken for each method that was sequentially randomized for three separate testing sessions on three nonconsecutive days. Results Intraclass correlations (ICC2,3) for intrasession reliability and (ICC3,3) for intersession reliability ranged from 0.95 to 0.98, and 0.94 to 0.96 respectively. The standard errors of measurement (95% confidence interval [CI]) were narrow. Scatter grams for both protraction and retraction testing methods demonstrated a significant relationship, 0.92 for protraction (95% CI 0.83 to 0.96) and 0.93 for retraction (95% CI 0.87 to 0.97). Bland-Altman plots indicated good agreement between the two methods for measuring protraction strength but a weaker agreement for the two methods measuring retraction strength. Discussion/Conclusion The four new methods assessed in this study indicate reliable options for measuring scapular protraction or retraction isometric strength with or without involving the GH joint for young healthy females. PMID:21509104

  10. Dual-Force ISOMAP: A New Relevance Feedback Method for Medical Image Retrieval

    PubMed Central

    Shen, Hualei; Tao, Dacheng; Ma, Dianfu

    2013-01-01

    With great potential for assisting radiological image interpretation and decision making, content-based image retrieval in the medical domain has become a hot topic in recent years. Many methods to enhance the performance of content-based medical image retrieval have been proposed, among which the relevance feedback (RF) scheme is one of the most promising. Given user feedback information, RF algorithms interactively learn a user’s preferences to bridge the “semantic gap” between low-level computerized visual features and high-level human semantic perception and thus improve retrieval performance. However, most existing RF algorithms perform in the original high-dimensional feature space and ignore the manifold structure of the low-level visual features of images. In this paper, we propose a new method, termed dual-force ISOMAP (DFISOMAP), for content-based medical image retrieval. Under the assumption that medical images lie on a low-dimensional manifold embedded in a high-dimensional ambient space, DFISOMAP operates in the following three stages. First, the geometric structure of positive examples in the learned low-dimensional embedding is preserved according to the isometric feature mapping (ISOMAP) criterion. To precisely model the geometric structure, a reconstruction error constraint is also added. Second, the average distance between positive and negative examples is maximized to separate them; this margin maximization acts as a force that pushes negative examples far away from positive examples. Finally, the similarity propagation technique is utilized to provide negative examples with another force that will pull them back into the negative sample set. We evaluate the proposed method on a subset of the IRMA medical image dataset with a RF-based medical image retrieval framework. Experimental results show that DFISOMAP outperforms popular approaches for content-based medical image retrieval in terms of accuracy and stability. PMID:24391891

  11. Semiempirical method for prediction of aerodynamic forces and moments on a steadily spinning light airplane

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Taylor, Lawrence W., Jr.

    1987-01-01

    A semi-empirical method is presented for the estimation of aerodynamic forces and moments acting on a steadily spinning (rotating) light airplane. The airplane is divided into wing, body, and tail surfaces. The effect of power is ignored. The strip theory is employed for each component of the spinning airplane to determine its contribution to the total aerodynamic coefficients. Then, increments to some of the coefficients which account for centrifugal effect are estimated. The results are compared to spin tunnel rotary balance test data.

  12. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOEpatents

    Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.

    1995-11-07

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.

  13. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOEpatents

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  14. Cluster variational method for nuclear matter with the three-body force

    SciTech Connect

    Takano, M.; Togashi, H.; Yamamuro, S.; Nakazato, K.; Suzuki, H.

    2012-11-12

    We report the current status of our project to construct a new nuclear equation of state (EOS), which may be used for supernova numerical simulations, based on the cluster variational method starting from the realistic nuclear Hamiltonian. We also take into account a higher-order correction to the energy of the nuclear three-body force (TBF). The nuclear EOSs with and without the higher-order TBF correction at zero temperature are very close to each other, when parameters are readjusted so as to reproduce the empirical saturation data.

  15. Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method.

    PubMed

    Corbetta, Alessandro; Muntean, Adrian; Vafayi, Kiamars

    2015-04-01

    Focusing on a specific crowd dynamics situation, including real life experiments and measurements, our paper targets a twofold aim: (1) we present a Bayesian probabilistic method to estimate the value and the uncertainty (in the form of a probability density function) of parameters in crowd dynamic models from the experimental data; and (2) we introduce a fitness measure for the models to classify a couple of model structures (forces) according to their fitness to the experimental data, preparing the stage for a more general model-selection and validation strategy inspired by probabilistic data analysis. Finally, we review the essential aspects of our experimental setup and measurement technique.

  16. Study on the AFM Force Spectroscopy method for elastic modulus measurement of living cells

    NASA Astrophysics Data System (ADS)

    Demichelis, A.; Pavarelli, S.; Mortati, L.; Sassi, G.; Sassi, M.

    2013-09-01

    The cell elasticity gives information about its pathological state and metastatic potential. The aim of this paper is to study the AFM Force Spectroscopy technique with the future goal of realizing a reference method for accurate elastic modulus measurement in the elasticity range of living cells. This biological range has not been yet explored with a metrological approach. Practical hints are given for the realization of a Sylgard elasticity scale. Systematic effects given by the sample curing thickness and nanoindenter geometry have been found with regards of the measured elastic modulus. AFM measurement reproducibility better than 20% is obtained in the entire investigated elastic modulus scale of 101 - 104 kPa.

  17. A body-force based method to generate supersonic equilibrium turbulent boundary layer profiles

    NASA Astrophysics Data System (ADS)

    Waindim, M.; Gaitonde, D. V.

    2016-01-01

    We further develop a simple counterflow body force-based approach to generate an equilibrium spatially developing turbulent boundary layer suitable for Direct Numerical Simulations (DNS) or Large Eddy Simulations (LES) of viscous-inviscid interactions. The force essentially induces a small separated region in an incoming specified laminar boundary layer. The resulting unstable shear layer then transitions and breaks down to yield the desired unsteady profile. The effects of wall thermal conditions are explored to demonstrate the capability of the method for both fixed wall and adiabatic wall conditions. We then describe an efficient method to select parameters that ensure transition by examining precursor signatures using generalized stability variables. These precursors are shown to be evident in a computational domain spanning only a small region around the trip and can also be detected using 2D simulations. Finally, the method is tested for different Mach numbers ranging from 1.7 to 2.9, with emphasis on flow field surveys, Reynolds stresses, and energy spectra. These results provide guidance on boundary conditions for desired boundary layer thickness at each Mach number. The consequences of using a much lower Reynolds number in computation relative to experiment are evident at the higher Mach number, where a self sustaining turbulent boundary layer is more difficult to obtain.

  18. Electrostatic force microscopy as a broadly applicable method for characterizing pyroelectric materials

    NASA Astrophysics Data System (ADS)

    Martin-Olmos, Cristina; Stieg, Adam Z.; Gimzewski, James K.

    2012-06-01

    A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices.

  19. In situ calibrating optical tweezers with sinusoidal-wave drag force method

    NASA Astrophysics Data System (ADS)

    Li, Di; Zhou, Jin-Hua; Hu, Xin-Yao; Zhong, Min-Cheng; Gong, Lei; Wang, Zi-Qiang; Wang, Hao-Wei; Li, Yin-Mei

    2015-11-01

    We introduce a corrected sinusoidal-wave drag force method (SDFM) into optical tweezers to calibrate the trapping stiffness of the optical trap and conversion factor (CF) of photodetectors. First, the theoretical analysis and experimental result demonstrate that the correction of SDFM is necessary, especially the error of no correction is up to 11.25% for a bead of 5 μm in diameter. Second, the simulation results demonstrate that the SDFM has a better performance in the calibration of optical tweezers than the triangular-wave drag force method (TDFM) and power spectrum density method (PSDM) at the same signal-to-noise ratio or trapping stiffness. Third, in experiments, the experimental standard deviations of calibration of trapping stiffness and CF with the SDFM are about less than 50% of TDFM and PSDM especially at low laser power. Finally, the experiments of stretching DNA verify that the in situ calibration with the SDFM improves the measurement stability and accuracy. Project supported by the National Natural Science Foundation of China (Grant Nos. 11302220, 11374292, and 31100555) and the National Basic Research Program of China (Grant No. 2011CB910402).

  20. Electrostatic force microscopy as a broadly applicable method for characterizing pyroelectric materials.

    PubMed

    Martin-Olmos, Cristina; Stieg, Adam Z; Gimzewski, James K

    2012-06-15

    A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices. PMID:22595697

  1. Electrostatic force microscopy as a broadly applicable method for characterizing pyroelectric materials.

    PubMed

    Martin-Olmos, Cristina; Stieg, Adam Z; Gimzewski, James K

    2012-06-15

    A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices.

  2. A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy.

    PubMed

    Santos, Sergio; Guang, Li; Souier, Tewfik; Gadelrab, Karim; Chiesa, Matteo; Thomson, Neil H

    2012-04-01

    We provide a method to characterize the tip radius of an atomic force microscopy in situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the smaller the value of free amplitude required to observe a transition, the sharper the tip. This general behavior is remarkably independent of the properties of the sample and cantilever characteristics and shows the strong dependence of the transitions on the tip radius. The main advantage of this method is rapid in situ characterization. Rapid in situ characterization enables one to continuously monitor the tip size during experiments. Further, we show how to reproducibly shape the tip from a given initial size to any chosen larger size. This approach combined with the in situ tip size monitoring enables quantitative comparison of materials measurements between samples. These methods are set to allow quantitative data acquisition and make direct data comparison readily available in the community.

  3. Side-Wall Measurement using Tilt-Scanning Method in Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Murayama, Ken; Gonda, Satoshi; Koyanagi, Hajime; Terasawa, Tsuneo; Hosaka, Sumio

    2006-06-01

    We have developed a novel atomic force microscope (AFM) measurement technique which can examine sidewalls of fine patterns on wafers. This technique uses a sharpen tip tilted at an angle in combination with digital probing mode operation, and is thus referred as “tilt-step-in” mode operation. This method allows one to measure sidewall shape moving along tilted tip axis. We analyzed the slip condition between the tip and the sample using a simple spring-mass system model and finite element method (FEM) with several parameters, such as moving direction, stiffness of tip and cantilever, sidewall angle and frictional coefficient. To verify this method, we then measured several reference samples with perpendicular sidewalls and 105° undercuts. By using this technique three dimensional (3-D) images of low-k etch structure of semiconductor device patterns with 88° sidewall and line edge roughness of ArF resist were clearly observed.

  4. An analytical mathematical method for calculation of the dynamic wheel-rail impact force caused by wheel flat

    NASA Astrophysics Data System (ADS)

    Bogdevicius, Marijonas; Zygiene, Rasa; Bureika, Gintautas; Dailydka, Stasys

    2016-05-01

    The simplified method to determine a vertical impact force of wheel with flat and rail interaction is presented in this article. The presented simplified method can be used to identify maximum contact force and its distribution in the contact length between the damaged wheel and the rail. The vertical impact force depends on geometrical parameters of the rail and wheel with flat, speed of vehicle and the angle of deviation of rail. This article demonstrates the influence of wheel with flat geometrical parameters, speed of vehicle to maximum contact force and its distribution in the contact zone. The obtained values of the simplified method for determination of a vertical contact force are compared with the results obtained from field measurements.

  5. Force control of ionic polymer-metal composite actuators with cellular actuator method

    NASA Astrophysics Data System (ADS)

    Inoue, Yushiro; Kamamichi, Norihiro

    2014-03-01

    Ionic polymer-metal composite (IPMC) is one of the electro-active polymer materials which respond to electric stimuli with shape change. IPMC actuators can be activated with simple driving circuit and common control approach; however, dynamic characteristics change from environmental conditions such as the temperature or humidity. The output force of IPMC is very small, and the stress relaxation exists depending on the type of the counter-ions in the electrolyte. Therefore, it is desirable to construct robust controllers and connection of multiple actuator units to obtain stable and large output force. In this study, we apply a control method for cellular actuators to solve above problems. The cellular actuator is a concept of the actuators which consist of multiple actuator units. The actuator units connect in parallel or series, and each unit is controlled by distributed controllers, which are switched ON/OFF state stochastically depending on the broadcast error signal which is generated in the central controller. In this paper, we verify the control performance of the cellular actuator method through numerical simulations. In the simulations, we assume that the one hundred units of IPMC connected in parallel, the output force is controlled to the desired value. The control performance is investigated in the case of some mixed ratio of units whose counter-ions are Sodium (Na) ion or Tetraethylammonium (TEA). As a result of simulation, it was confirmed that the tracking performance is improved by combining the fast response actuator units of Na ions and the large output actuator units of TEA ions.

  6. The Australian Defence Force Mental Health Prevalence and Wellbeing Study: design and methods

    PubMed Central

    Hooff, Miranda Van; McFarlane, Alexander C.; Davies, Christopher E.; Searle, Amelia K.; Fairweather-Schmidt, A. Kate; Verhagen, Alan; Benassi, Helen; Hodson, Stephanie E.

    2014-01-01

    Background The Australian Defence Force (ADF) Mental Health Prevalence and Wellbeing Study (MHPWS) is the first study of mental disorder prevalence in an entire military population. Objective The MHPWS aims to establish mental disorder prevalence, refine current ADF mental health screening methods, and identify specific occupational factors that influence mental health. This paper describes the design, sampling strategies, and methodology used in this study. Method At Phase 1, approximately half of all regular Navy, Army, and Air Force personnel (n=24,481) completed self-report questionnaires. At Phase 2, a stratified sub-sample (n=1,798) completed a structured diagnostic interview to detect mental disorder. Based on data from non-responders, data were weighted to represent the entire ADF population (n=50,049). Results One in five ADF members met criteria for a 12-month mental disorder (22%). The most common disorder category was anxiety disorders (14.8%), followed by affective (9.5%) and alcohol disorders (5.2%). At risk ADF sub-groups were Army personnel, and those in the lower ranks. Deployment status did not have an impact on mental disorder rates. Conclusion This study has important implications for mental health service delivery for Australian and international military personnel as well as contemporary veterans. PMID:25206944

  7. Wave system fitting: A new method for force measurements in shock tunnels with long test duration

    NASA Astrophysics Data System (ADS)

    Luo, Changtong; Wang, Yunpeng; Wang, Chun; Jiang, Zonglin

    2015-10-01

    Force measurements in shock tunnels are difficult due to the existence of vibrations excited by a sudden aerodynamic loading. Accelerometer inertia compensation could reduce its negative effect to some extent, but has inherent problems. A new signal decomposition method, wave system fitting (WSF), is proposed to remove vibration waves of low frequency. The WSF is accelerometer-free. It decomposes the balance signal and can separate vibration waves without the influence on the DC component, and it does work no matter the cycle of the sample signal is complete or not. As a standard signal post-processing tool in JF-12, the application results show that it works reliably with high accuracy, and it can also explain puzzling signals encountered in JF-12. WSF method is especially useful and irreplaceable whenever only a few cycles of a periodic signal could be obtained, as is usual for shock tunnels.

  8. An efficient algorithm using matrix methods to solve wind tunnel force-balance equations

    NASA Technical Reports Server (NTRS)

    Smith, D. L.

    1972-01-01

    An iterative procedure applying matrix methods to accomplish an efficient algorithm for automatic computer reduction of wind-tunnel force-balance data has been developed. Balance equations are expressed in a matrix form that is convenient for storing balance sensitivities and interaction coefficient values for online or offline batch data reduction. The convergence of the iterative values to a unique solution of this system of equations is investigated, and it is shown that for balances which satisfy the criteria discussed, this type of solution does occur. Methods for making sensitivity adjustments and initial load effect considerations in wind-tunnel applications are also discussed, and the logic for determining the convergence accuracy limits for the iterative solution is given. This more efficient data reduction program is compared with the technique presently in use at the NASA Langley Research Center, and computational times on the order of one-third or less are demonstrated by use of this new program.

  9. Multidisciplinary Design Optimization for Aeropropulsion Engines and Solid Modeling/Animation via the Integrated Forced Methods

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grant closure report is organized in the following four chapters: Chapter describes the two research areas Design optimization and Solid mechanics. Ten journal publications are listed in the second chapter. Five highlights is the subject matter of chapter three. CHAPTER 1. The Design Optimization Test Bed CometBoards. CHAPTER 2. Solid Mechanics: Integrated Force Method of Analysis. CHAPTER 3. Five Highlights: Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft. Neural Network and Regression Soft Model Extended for PX-300 Aircraft Engine. Engine with Regression and Neural Network Approximators Designed. Cascade Optimization Strategy with Neural network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design. Neural Network and Regression Approximations Used in Aircraft Design.

  10. Analysis of driving efficiency for LRV wheels using forced-slip method

    NASA Astrophysics Data System (ADS)

    Liang, Zhongchao; Gao, Haibo; Ding, Liang; Deng, Zongquan; Qu, Jianjun

    2014-11-01

    To investigate and improve the mobility of the Lunar Roving Vehicle (LRV), it is necessary to consider the mechanical properties of the interaction between the wheels and the ground. In this paper, a new solution method, the forced-slip solution method, which uses a semi-empirical approach, was presented. That is, given the wheel's vertical load and drawbar pull or driving torque as known input values, the unknown slip ratio can be resolved. The alternative method involves predicting the mechanics for a given slip ratio. The proposed method correlates better with actual wheel movements, and by studying a single wheel, this solution method can also be used to resolve the mechanical properties of the front and rear wheels in a four-wheel-drive (4WD) LRV configuration. It can also be used to consider the multi-pass effect of the rear wheels on lunar soil. The calculation results show that the 4WD LRV driving efficiency varies with the position of the center of mass. Thus, the LRV driving efficiency can be optimized by adjusting the position of its center of mass.

  11. A method for the on-site determination of prestressing forces using long-gauge fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, H.; Glisic, B.

    2014-07-01

    Structural health monitoring (SHM) consists of the continuous or periodic measurement of structural parameters and their analysis with the aim of deducing information about the performance and health condition of a structure. The significant increase in the construction of prestressed concrete bridges motivated this research on an SHM method for the on-site determination of the distribution of prestressing forces along prestressed concrete beam structures. The estimation of the distribution of forces is important as it can give information regarding the overall performance and structural integrity of the bridge. An inadequate transfer of the designed prestressing forces to the concrete cross-section can lead to a reduced capacity of the bridge and consequently malfunction or failure at lower loads than predicted by design. This paper researches a universal method for the determination of the distribution of prestressing forces along concrete beam structures at the time of transfer of the prestressing force (e.g., at the time of prestressing or post-tensioning). The method is based on the use of long-gauge fiber optic sensors, and the sensor network is similar (practically identical) to the one used for damage identification. The method encompasses the determination of prestressing forces at both healthy and cracked cross-sections, and for the latter it can yield information about the condition of the cracks. The method is validated on-site by comparison to design forces through the application to two structures: (1) a deck-stiffened arch and (2) a curved continuous girder. The uncertainty in the determination of prestressing forces was calculated and the comparison with the design forces has shown very good agreement in most of the structures’ cross-sections, but also helped identify some unusual behaviors. The method and its validation are presented in this paper.

  12. Forced degradation of nepafenac: Development and validation of stability indicating UHPLC method.

    PubMed

    Runje, Mislav; Babić, Sandra; Meštrović, Ernest; Nekola, Irena; Dujmić-Vučinić, Željka; Vojčić, Nina

    2016-05-10

    This paper presents stability study of the nonsteroidal anti-inflammatory drug (NSAID) nepafenac. In order to investigate stability of nepafenac, it was subjected to forced degradation under different stress conditions: acid and base hydrolysis, oxidation, humidity, heat and light. A novel stability indicating reverse phase ultra high performance liquid chromatographic (UHPLC) method coupled to ultraviolet detector has been developed to separate nepafenac and all related compounds (2-aminobenzophenone, Cl-thionepafenac, thionepafenac, Cl-nepafenac, hydroxy-nepafenac, and cyclic-nepafenac). Efficient chromatographic separation was achieved on a Waters Acquity BEH C18 stationary phase with a gradient elution. Quantification was carried out at 235 nm at a flow rate of 0.6 mL/min(-1). The resolution between nepafenac and six potential impurities is found to be greater than 2.0. The developed method was validated with respect to specificity, LOD, LOQ, linearity, precision, accuracy and robustness. The r(2) values for nepafenac and six potential impurities were all greater than 0.999. The developed method is capable to detect impurities of nepafenac at a level of 0.005% with respect to test concentration of 1.0mg/mL. Significant degradation is observed in acid, base and oxidative degradation conditions and degradation products (DPs) were identified using mass spectrometry analysis; two of them were found to be a known process related impurities (hydroxy- and cyclic-nepafenac) whereas four degradation products were identified as new degradation impurities. The forced degradation samples were assayed against a qualified reference standard and the mass balance was found to be close to 99.5%. PMID:26871279

  13. Comparison of Methods to Obtain Force-Field Parameters for Metal Sites.

    PubMed

    Hu, LiHong; Ryde, Ulf

    2011-08-01

    We have critically examined and compared various ways to obtain standard harmonic molecular mechanics (MM) force-field parameters for metal sites in proteins, using the 12 most common Zn(2+) sites as test cases. We show that the parametrization of metal sites is hard to treat with automatic methods. The choice of method is a compromise between speed and accuracy and therefore depends on the intended use of the parameters. If the metal site is not of central interest in the investigation, for example, a structural metal far from the active site, a simple and fast parametrization is normally enough, using either a nonbonded model with restraints or a bonded parametrization based on the method of Seminario. On the other hand, if the metal site is of central interest in the investigation, a more accurate method is needed to give quantitative results, for example, the method by Norrby and Liljefors. The former methods are semiautomatic and can be performed in seconds, once a quantum mechanical (QM) geometry optimization and frequency calculation has been performed, whereas the latter method typically takes several days and requires significant human intervention. All approaches require a careful selection of the atom types used. For a nonbonded model, standard atom types can be used, whereas for a bonded model, it is normally wise to use special atom types for each metal ligand. For accurate results, new atom types for all atoms in the metal site can be used. Atomic charges should also be considered. Typically, QM restrained electrostatic potential charges are accurate and easy to obtain once the QM calculation is performed, and they allow for charge transfer within the complex. For negatively charged complexes, it should be checked that hydrogen atoms of the ligands get proper charges. Finally, water ligands pose severe problems for bonded models in force fields that ignore nonbonded interactions for atoms separated by two bonds. Complexes with a single water ligand

  14. Multi-Sphere Method for modeling spacecraft electrostatic forces and torques

    NASA Astrophysics Data System (ADS)

    Stevenson, Daan; Schaub, Hanspeter

    2013-01-01

    The use of electrostatic (Coulomb) actuation for formation flying is attractive because non-renewable fuel reserves are not depleted and plume impingement issues are avoided. Prior analytical electrostatic force models used for Coulomb formations assume spherical spacecraft shapes, which include mutual capacitance and induced effects. However, this framework does not capture any orientation-dependent forces or torques on generic spacecraft geometries encountered during very close operations and docking scenarios. The Multi-Sphere Method (MSM) uses a collection of finite spheres to represent a complex shape and analytically approximate the Coulomb interaction with other charged bodies. Finite element analysis software is used as a truth model to determine the optimal sphere locations and radii. The model is robust to varying system parameters such as prescribed voltages and external shape size. Using the MSM, faster-than-realtime electrostatic simulation of six degree of freedom relative spacecraft motion is feasible, which is crucial for the development of robust relative position and orientation control algorithms in local space situational awareness applications. To demonstrate this ability, the rotation of a cylindrical craft in deep space is simulated, while charge control from a neighboring spacecraft is used to de-spin the object. Using a 1 m diameter craft separated by 10 m from a 3 by 1 m cylindrical craft in deep space, a 2 °/s initial rotation rate can be removed from the cylinder within 3 days, using electric potentials up to 30 kV.

  15. Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods.

    PubMed

    Bizarro, C V; Alemany, A; Ritort, F

    2012-08-01

    RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na(+)]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg(2+) salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100-fold concentration for small molecular constructs. PMID:22492710

  16. Investigation of multi-junction solar cells using electrostatic force microscopy methods.

    PubMed

    Moczała, M; Sosa, N; Topol, A; Gotszalk, T

    2014-06-01

    Multi-junction III-V solar cells are designed to have a much broader absorption of the solar spectrum than Si-based or single junctions, thus yield the highest conversion. The conversion efficiency can be further scaled with sun concentration. The ability of high conversion efficiencies makes multi-junction prime candidates for fine-tuning explorations aimed at getting closer to the theoretical efficiencies. In this paper, we report on electrostatic force microscopy (EFM) measurements of the built-in potential of multi-junction III-V semiconductor-based solar cells. Kelvin probe force microscopy (KPFM) was employed to qualitatively study the width and electrical properties of individual junctions, i.e., built-in potential, activity, and thickness of the p-n junctions. In addition, the voltage drops across individual solar cell p-n junctions were measured using Kelvin probe microscopy under various operation conditions: dark; illuminated; short-circuit; and biased. We present a method which enables the measurement of a working structure, while focusing on the electrical characteristics of an individual junction by virtue of selecting the spectral range of the illumination used. We show that these pragmatic studies can provide a feedback to improve photovoltaic device design, particularly of operation under a current mismatched situation. This new analysis technique offers additional insights into behavior of the multi-junction solar cell and shows promise for further progress in this field.

  17. A Force Concept Correlation Study with Instructional Methods, Anxiety, Perceptions of Difficulty and Student Background Variables.

    ERIC Educational Resources Information Center

    Grim, Nancy C.

    This paper reports on a study that used Hestenes' Force Concept Inventory (FCI) to describe Newtonian force concepts and misconception belief systems held by preservice teachers in physical science and physics students attending an urban university in Chicago, Illinois. Results indicate that constructivist instruction in force concepts was of…

  18. Visual and digital comparative tooth colour assessment methods and atomic force microscopy surface roughness.

    PubMed

    Grundlingh, A A; Grossman, E S; Shrivastava, S; Witcomb, M J

    2013-10-01

    This study compared digital and visual colour tooth colour assessment methods in a sample of 99 teeth consisting of incisors, canines and pre-molars. The teeth were equally divided between Control, Ozicure Oxygen Activator bleach and Opalescence Quick bleach and subjected to three treatments. Colour readings were recorded at nine intervals by two assessment methods, VITA Easyshade and VITAPAN 3D MASTER TOOTH GUIDE, giving a total of 1782 colour readings. Descriptive and statistical analysis was undertaken using a GLM test for Analysis of Variance for a Fractional Design set at a significance of P < 0.05. Atomic force micros copy was used to examine treated ename surfaces and establish surface roughness. Visual tooth colour assessment showed significance for the independent variables of treatment, number of treatments, tooth type and the combination tooth type and treatment. Digital colour assessment indicated treatment and tooth type to be of significance in tooth colour change. Poor agreement was found between visual and digital colour assessment methods for Control and Ozicure Oxygen Activator treatments. Surface roughness values increased two-fold for Opalescence Quick specimens over the two other treatments, implying that increased light scattering improved digital colour reading. Both digital and visual colour matching methods should be used in tooth bleaching studies to complement each other and to compensate for deficiencies.

  19. Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1988-01-01

    The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.

  20. Application of the non-equilibrium statistical operator method (NESOM) to dissipation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Mo, M. Y.; Kantorovich, L.

    2001-02-01

    We apply the non-equilibrium statistical operator method to non-contact atomic force microscopy, considering explicitly the statistical effects of (classical) vibrations of surface atoms and associated energy transfer from the tip to the surface. We derive several, physically and mathematically equivalent, forms of the equation of motion for the tip, each containing a friction term due to the so-called intrinsic mechanism of energy dissipation first suggested by Gauthier and Tsukada. Our exact treatment supports the results of some earlier work which were all approximate. We also demonstrate, using the same theory, that the distribution function of the tip in the coordinate-momentum phase subspace is governed by the Fokker-Planck equation and should be considered as strongly peaked around the exact values t and t of the momentum and the position of the tip, respectively.

  1. Application of a finite volume based method of lines to turbulent forced convection in circular tubes

    SciTech Connect

    Campo, A.; Tebeest, K.; Lacoa, U.; Morales, J.C.

    1996-10-01

    A semianalytic analysis of in-tube turbulent forced convection is performed whose special computational feature is the combination of the method of lines, the finite volume technique, and a radial coordinate transformation. First, a numerical solution of the momentum equation was obtained by a simple Runge-Kutta integration scheme. Second, the energy equation was reformulated into a system of ordinary differential equations of first order. Each equation in the system controls the temperature along a line in a mesh consisting of concentric lines. Reliable analytic solutions for the temperature distribution of fluids in the region of thermal development can be determined for combinations of Reynolds and Prandtl numbers. Predicted results for the distributions of mean bulk temperature and local Nusselt numbers for air, water, and oils compare satisfactorily with the available experimental data.

  2. Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop.

    PubMed

    Sali, Andrej; Berman, Helen M; Schwede, Torsten; Trewhella, Jill; Kleywegt, Gerard; Burley, Stephen K; Markley, John; Nakamura, Haruki; Adams, Paul; Bonvin, Alexandre M J J; Chiu, Wah; Peraro, Matteo Dal; Di Maio, Frank; Ferrin, Thomas E; Grünewald, Kay; Gutmanas, Aleksandras; Henderson, Richard; Hummer, Gerhard; Iwasaki, Kenji; Johnson, Graham; Lawson, Catherine L; Meiler, Jens; Marti-Renom, Marc A; Montelione, Gaetano T; Nilges, Michael; Nussinov, Ruth; Patwardhan, Ardan; Rappsilber, Juri; Read, Randy J; Saibil, Helen; Schröder, Gunnar F; Schwieters, Charles D; Seidel, Claus A M; Svergun, Dmitri; Topf, Maya; Ulrich, Eldon L; Velankar, Sameer; Westbrook, John D

    2015-07-01

    Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models? PMID:26095030

  3. Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop

    PubMed Central

    Sali, Andrej; Berman, Helen M.; Schwede, Torsten; Trewhella, Jill; Kleywegt, Gerard; Burley, Stephen K.; Markley, John; Nakamura, Haruki; Adams, Paul; Bonvin, Alexandre M.J.J.; Chiu, Wah; Dal Peraro, Matteo; Di Maio, Frank; Ferrin, Thomas E.; Grünewald, Kay; Gutmanas, Aleksandras; Henderson, Richard; Hummer, Gerhard; Iwasaki, Kenji; Johnson, Graham; Lawson, Catherine L.; Meiler, Jens; Marti-Renom, Marc A.; Montelione, Gaetano T.; Nilges, Michael; Nussinov, Ruth; Patwardhan, Ardan; Rappsilber, Juri; Read, Randy J.; Saibil, Helen; Schröder, Gunnar F.; Schwieters, Charles D.; Seidel, Claus A. M.; Svergun, Dmitri; Topf, Maya; Ulrich, Eldon L.; Velankar, Sameer; Westbrook, John D.

    2016-01-01

    Summary Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models? PMID:26095030

  4. Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method

    NASA Technical Reports Server (NTRS)

    Chander, R.

    1990-01-01

    The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.

  5. Method and apparatus for simulating gravitational forces on a living organism

    NASA Technical Reports Server (NTRS)

    Thornton, W. E. (Inventor)

    1983-01-01

    A method and apparatus for simulating gravitational forces on a living organism wherein a series of negative pressures are externally applied to successive length-wise sections of a lower limb of the organism. The pressures decreasing progressively with distance of said limb sections from the heart of the organism. A casing defines a chamber adapted to contain the limb of the organism and is rigidified to resist collapse upon the application of negative pressures to the interior of the chamber. Seals extend inwardly from the casing for effective engagement with the limb of the organism and, in cooperation with the limb, subdivide the chamber into a plurality of compartments each in negative pressure communicating relation with the limb.

  6. Nuclear spin imaging with hyperpolarized nuclei created by brute force method

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayoshi; Kunimatsu, Takayuki; Fujiwara, Mamoru; Kohri, Hideki; Ohta, Takeshi; Utsuro, Masahiko; Yosoi, Masaru; Ono, Satoshi; Fukuda, Kohji; Takamatsu, Kunihiko; Ueda, Kunihiro; Didelez, Jean-P.; Prossati, Giorgio; de Waard, Arlette

    2011-05-01

    We have been developing a polarized HD target for particle physics at the SPring-8 under the leadership of the RCNP, Osaka University for the past 5 years. Nuclear polarizaton is created by means of the brute force method which uses a high magnetic field (~17 T) and a low temperature (~ 10 mK). As one of the promising applications of the brute force method to life sciences we started a new project, "NSI" (Nuclear Spin Imaging), where hyperpolarized nuclei are used for the MRI (Magnetic Resonance Imaging). The candidate nuclei with spin ½hslash are 3He, 13C, 15N, 19F, 29Si, and 31P, which are important elements for the composition of the biomolecules. Since the NMR signals from these isotopes are enhanced by orders of magnitudes, the spacial resolution in the imaging would be much more improved compared to the practical MRI used so far. Another advantage of hyperpolarized MRI is that the MRI is basically free from the radiation, while the problems of radiation exposure caused by the X-ray CT or PET (Positron Emission Tomography) cannot be neglected. In fact, the risk of cancer for Japanese due to the radiation exposure through these diagnoses is exceptionally high among the advanced countries. As the first step of the NSI project, we are developing a system to produce hyperpolarized 3He gas for the diagnosis of serious lung diseases, for example, COPD (Chronic Obstructive Pulmonary Disease). The system employs the same 3He/4He dilution refrigerator and superconducting solenoidal coil as those used for the polarized HD target with some modification allowing the 3He Pomeranchuk cooling and the following rapid melting of the polarized solid 3He to avoid the depolarization. In this report, the present and future steps of our project will be outlined with some latest experimental results.

  7. Forced expirations against a variable resistance: a new chest physiotherapy method in cystic fibrosis.

    PubMed

    Oberwaldner, B; Evans, J C; Zach, M S

    1986-01-01

    Twenty patients with cystic fibrosis (CF) were trained to mobilize intrabronchial secretions by a new method of positive expiratory pressure mask (PEP mask) physiotherapy (PT). Patients repeatedly expired forcefully through the PEP mask; expiratory resistance was varied by eight different internal diameter resistors at the outlet. Forced vital capacity with the mask (FVCPEP) was determined for each resistor and was compared with the one measured without the instrument (FVC); simultaneously the sustained expiratory pressure (SEP) developed against the resistance was recorded. After training, each patient exceeded FVC with one or more resistors; "optimum" FVCPEP was 124 +/- 16% FVC at a SEP of 61 +/- 21 cm H2O. Using the PEP mask, patients cleared a higher percentage of their daily sputum volume than with conventional PT (78 +/- 22% versus 53 +/- 17%, p less than 0.01). In 11 patients (subgroup 1), multiple aspects of lung function were measured at the beginning of the study, after 10 months with PEP mask PT, after two further months without using the mask but with conventional PT, and after six more months with PEP mask PT. Results showed significantly increased expiratory flow rates, significantly decreased hyperinflation and airway instability with PEP mask PT, and a marked decline of lung function without it. The remaining nine patients (subgroup 2) entered into the same protocol; based on findings in subgroup 1 and on ethical considerations, however, the control period without PEP mask PT was then omitted, resulting in a steady and statistically significant improvement of lung function over the entire observation period. In the course of preliminary trials, two children transiently used a suboptimal resistance (FVCPEP less than FVC) and responded with a deterioration of lung function. By dilating airways and evacuating trapped gas, this method of PEP mask PT improves lung function and mucus clearance in CF. Thorough practice with the technique and frequent

  8. Multipolar Ewald Methods, 2: Applications Using a Quantum Mechanical Force Field

    PubMed Central

    2015-01-01

    A fully quantum mechanical force field (QMFF) based on a modified “divide-and-conquer” (mDC) framework is applied to a series of molecular simulation applications, using a generalized Particle Mesh Ewald method extended to multipolar charge densities. Simulation results are presented for three example applications: liquid water, p-nitrophenylphosphate reactivity in solution, and crystalline N,N-dimethylglycine. Simulations of liquid water using a parametrized mDC model are compared to TIP3P and TIP4P/Ew water models and experiment. The mDC model is shown to be superior for cluster binding energies and generally comparable for bulk properties. Examination of the dissociative pathway for dephosphorylation of p-nitrophenylphosphate shows that the mDC method evaluated with the DFTB3/3OB and DFTB3/OPhyd semiempirical models bracket the experimental barrier, whereas DFTB2 and AM1/d-PhoT QM/MM simulations exhibit deficiencies in the barriers, the latter for which is related, in part, to the anomalous underestimation of the p-nitrophenylate leaving group pKa. Simulations of crystalline N,N-dimethylglycine are performed and the overall structure and atomic fluctuations are compared with the experiment and the general AMBER force field (GAFF). The QMFF, which was not parametrized for this application, was shown to be in better agreement with crystallographic data than GAFF. Our simulations highlight some of the application areas that may benefit from using new QMFFs, and they demonstrate progress toward the development of accurate QMFFs using the recently developed mDC framework. PMID:25691830

  9. Multipolar Ewald methods, 2: applications using a quantum mechanical force field.

    PubMed

    Giese, Timothy J; Panteva, Maria T; Chen, Haoyuan; York, Darrin M

    2015-02-10

    A fully quantum mechanical force field (QMFF) based on a modified “divide-and-conquer” (mDC) framework is applied to a series of molecular simulation applications, using a generalized Particle Mesh Ewald method extended to multipolar charge densities. Simulation results are presented for three example applications: liquid water, p-nitrophenylphosphate reactivity in solution, and crystalline N,N-dimethylglycine. Simulations of liquid water using a parametrized mDC model are compared to TIP3P and TIP4P/Ew water models and experiment. The mDC model is shown to be superior for cluster binding energies and generally comparable for bulk properties. Examination of the dissociative pathway for dephosphorylation of p-nitrophenylphosphate shows that the mDC method evaluated with the DFTB3/3OB and DFTB3/OPhyd semiempirical models bracket the experimental barrier, whereas DFTB2 and AM1/d-PhoT QM/MM simulations exhibit deficiencies in the barriers, the latter for which is related, in part, to the anomalous underestimation of the p-nitrophenylate leaving group pKa. Simulations of crystalline N,N-dimethylglycine are performed and the overall structure and atomic fluctuations are compared with the experiment and the general AMBER force field (GAFF). The QMFF, which was not parametrized for this application, was shown to be in better agreement with crystallographic data than GAFF. Our simulations highlight some of the application areas that may benefit from using new QMFFs, and they demonstrate progress toward the development of accurate QMFFs using the recently developed mDC framework.

  10. Hysterically damped free and forced vibrations of axial and torsional bars by a closed form exact method

    NASA Astrophysics Data System (ADS)

    Kang, Jae-Hoon

    2016-09-01

    Hysterically damped free and forced vibrations of axial and torsional bars are investigated using a closed form exact method. The method is exact and yields closed form expressions for the vibratory displacements. This is in contrast with the well known eigenfunction superposition method which requires expressing the distributed forcing functions and the displacement response functions as infinite sums of free vibration eigenfunctions. The hysterically damped free vibration frequencies and corresponding damped mode shapes are calculated and plotted instead of undamped free vibration and mode shapes which is typically computed and applied in vibration problems. The hysterically damped natural frequency equations are exactly derived. Accurate axial or torsional amplitude vs. forcing frequency curves showing the forced response due to distributed loading are displayed with various hysteretic damping parameters.

  11. A discrete-forcing immersed boundary method for the fluid-structure interaction of an elastic slender body

    NASA Astrophysics Data System (ADS)

    Lee, Injae; Choi, Haecheon

    2015-01-01

    We present an immersed boundary (IB) method for the simulation of flow around an elastic slender body. The present method is based on the discrete-forcing IB method for a stationary, rigid body proposed by Kim, Kim and Choi (2001) [25]. The discrete-forcing approach is used to relieve the limitation on the computational time step size. The incompressible Navier-Stokes equations are implicitly coupled with the dynamic equation for an elastic slender body motion. The first is solved in the Eulerian coordinate and the latter is described in the Lagrangian coordinate. The elastic slender body is modeled as a thin and flexible solid and is segmented by finite number of thin blocks. Each block is moved by external and internal forces such as the hydrodynamic, elastic and buoyancy forces, where the hydrodynamic force is obtained directly from the discrete forcing used in the IB method. All the spatial derivative terms are discretized with the second-order central difference scheme. The present method is applied to three different fluid-structure interaction problems: flows around a flexible filament, a flapping flag in a free stream, and a flexible flapping wing in normal hovering, respectively. Computations are performed at maximum CFL numbers of 0.75-1. The results obtained agree very well with those from previous studies.

  12. Comparison of an EMG-based and a stress-based method to predict shoulder muscle forces.

    PubMed

    Engelhardt, Christoph; Malfroy Camine, Valérie; Ingram, David; Müllhaupt, Philippe; Farron, Alain; Pioletti, Dominique; Terrier, Alexandre

    2015-01-01

    The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior-inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.

  13. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method

    NASA Astrophysics Data System (ADS)

    Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko

    2010-06-01

    We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.

  14. Identifying a robust method to build RCMs ensemble as climate forcing for hydrological impact models

    NASA Astrophysics Data System (ADS)

    Olmos Giménez, P.; García Galiano, S. G.; Giraldo-Osorio, J. D.

    2016-06-01

    The regional climate models (RCMs) improve the understanding of the climate mechanism and are often used as climate forcing to hydrological impact models. Rainfall is the principal input to the water cycle, so special attention should be paid to its accurate estimation. However, climate change projections of rainfall events exhibit great divergence between RCMs. As a consequence, the rainfall projections, and the estimation of uncertainties, are better based in the combination of the information provided by an ensemble approach from different RCMs simulations. Taking into account the rainfall variability provided by different RCMs, the aims of this work are to evaluate the performance of two novel approaches based on the reliability ensemble averaging (REA) method for building RCMs ensembles of monthly precipitation over Spain. The proposed methodologies are based on probability density functions (PDFs) considering the variability of different levels of information, on the one hand of annual and seasonal rainfall, and on the other hand of monthly rainfall. The sensitivity of the proposed approaches, to two metrics for identifying the best ensemble building method, is evaluated. The plausible future scenario of rainfall for 2021-2050 over Spain, based on the more robust method, is identified. As a result, the rainfall projections are improved thus decreasing the uncertainties involved, to drive hydrological impacts models and therefore to reduce the cumulative errors in the modeling chain.

  15. Extension of volcanic forcing data back to 100 BC using the Analog method

    NASA Astrophysics Data System (ADS)

    Wagner, Sebastian; Zorita, Eduardo

    2013-04-01

    Present reconstructions of volcanic forcing to be used for climate simulations so far extend back until 500 AD for stratospheric aerosol sulphate injection (Gao et al., 2008), and back until 800 AD for aerosol optical depth and effective radius (Crowley et al. 2012; ICI5 data set). Here, we aim to extent the volcanic data set of Crowley et al. (2012) back to 100 BC. This data sets originally starts in 800 AD, for aerosol optical depth and effective radius. The method we apply is the Analog method, using information in the already existing reconstruction and extending it back in time by using information of long volcanic sulphate contained in Greenland and Antarctic Ice cores published in previous studies. The reconstruction of the volcanic forcing in first millennium is based on the search of analogs in the second millennium. The pool of analogs includes the ICI5 data set for the period 800-2000 AD. The basic philosophy is to find volcanic events with the same or similar magnitude in terms of volcanic sulphate deposition in Greenland and Antarctic ice cores. For the Northern Hemisphere the estimated maximum total stratospheric sulphate loading from Zielinski (1995) is used. For the Southern Hemisphere the Plummer et al. (2012) data set and the Ferris et al. (2011) data set are used in terms of sulphate deposition. To ensure that the volcanic event was large enough in magnitude, a certain threshold is applied to the analog selection. The extension, i.e. the analog search, is carried out separately for the four different latitudinal bands of the ICI5 data set. The method can be applied when better records than the Zielinski et al. (1995), record for the Northern Hemisphere become available. The analogs are selected based on the comparison between the information contained in the ice cores in the pre-800 AD period and post-800 AD period. For each event in the pre-800 AD period (the target), the most similar event (the analog) in the post-800 AD pool in terms of ice

  16. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages.

    PubMed

    Mones, Letif; Jones, Andrew; Götz, Andreas W; Laino, Teodoro; Walker, Ross C; Leimkuhler, Ben; Csányi, Gábor; Bernstein, Noam

    2015-04-01

    The implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER are presented. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies.

  17. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages

    PubMed Central

    Mones, Letif; Jones, Andrew; Götz, Andreas W; Laino, Teodoro; Walker, Ross C; Leimkuhler, Ben; Csányi, Gábor; Bernstein, Noam

    2015-01-01

    The implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER are presented. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25649827

  18. A robust force field based method for calculating conformational energies of charged drug-like molecules.

    PubMed

    Poehlsgaard, Jacob; Harpsøe, Kasper; Jørgensen, Flemming Steen; Olsen, Lars

    2012-02-27

    The binding affinity of a drug-like molecule depends among other things on the availability of the bioactive conformation. If the bioactive conformation has a significantly higher energy than the global minimum energy conformation, then the molecule is unlikely to bind to its target. Determination of the global minimum energy conformation and calculation of conformational penalties of binding is a prerequisite for prediction of reliable binding affinities. Here, we present a simple and computationally efficient procedure to estimate the global energy minimum for a wide variety of structurally diverse molecules, including polar and charged compounds. Identifying global energy minimum conformations of such compounds with force field methods is problematic due to the exaggeration of intramolecular electrostatic interactions. We demonstrate that the global energy minimum conformations of zwitterionic compounds generated by conformational analysis with modified electrostatics are good approximations of the conformational distributions predicted by experimental data and with molecular dynamics performed in explicit solvent. Finally the method is used to calculate conformational penalties for zwitterionic GluA2 agonists and to filter false positives from a docking study. PMID:21985436

  19. Integrated force method - Compatibility conditions of structural mechanics for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.

    1991-01-01

    The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's, (2) the cluster or field CC's, and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown. The utilization of CC's has resulted in the novel integrated force method (IFM). The solution that is obtained by the IFM converges with a significantly fewer number of elements, compared to the stiffness and the hybrid methods.

  20. Anharmonic force fields from analytic second derivatives: Method and application to methyl bromide

    NASA Astrophysics Data System (ADS)

    Schneider, Winfried; Thiel, Walter

    1989-05-01

    An efficient finite difference procedure is described for calculating anharmonic normal-coordinate force constants from quantum-chemical analytic second derivatives. Displacements along normal coordinates are used to generate those cubic and quartic force constants which are needed in a second-order perturbation treatment of anharmonicity. The anharmonic force field of methyl bromide is predicted, and the calculated spectroscopic constants compared with experimental data.

  1. Calculation of the vibrational spectra of cytosine derivatives by the CNDO/2 force method. Part III. Planar vibrations of cytosine

    NASA Astrophysics Data System (ADS)

    Kuczera, Krzysztof; Szczesniak, Marian; Szczepaniak, Krystyna

    1988-02-01

    Calculations of harmonic force constants by the CNDO/2 FORCE method with Pulay's empirical correction are performed for the amino-keto-N 4H and amino-enol tautomeric forms of cytosine. Frequencies, normal modes and fundamental transition absorption intensities for in-plane vibrations are found. On the bases of the calculations assignments of IR absorption bands of nitrogen and argon matrix spectra of cytosine to normal vibrational modes of the two tautomers are proposed.

  2. A method based on infrared detection for determining the moisture content of ceramic plaster materials.

    PubMed

    Macias-Melo, E V; Aguilar-Castro, K M; Alvarez-Lemus, M A; Flores-Prieto, J J

    2015-09-01

    In this work, we describe a methodology for developing a mathematical model based on infrared (IR) detection to determine the moisture content (M) in solid samples. For this purpose, an experimental setup was designed, developed and calibrated against the gravimetric method. The experimental arrangement allowed for the simultaneous measurement of M and the electromotive force (EMF), fitting the experimental variables as much as possible. These variables were correlated by a mathematical model, and the obtained correlation was M=1.12×exp(3.47×EMF), ±2.54%. This finding suggests that it is feasible to measure the moisture content when it has greater values than 2.54%. The proposed methodology could be used for different conditions of temperature, relative humidity and drying rates to evaluate the influence of these variables on the amount of energy received by the IR detector.

  3. A method based on infrared detection for determining the moisture content of ceramic plaster materials.

    PubMed

    Macias-Melo, E V; Aguilar-Castro, K M; Alvarez-Lemus, M A; Flores-Prieto, J J

    2015-09-01

    In this work, we describe a methodology for developing a mathematical model based on infrared (IR) detection to determine the moisture content (M) in solid samples. For this purpose, an experimental setup was designed, developed and calibrated against the gravimetric method. The experimental arrangement allowed for the simultaneous measurement of M and the electromotive force (EMF), fitting the experimental variables as much as possible. These variables were correlated by a mathematical model, and the obtained correlation was M=1.12×exp(3.47×EMF), ±2.54%. This finding suggests that it is feasible to measure the moisture content when it has greater values than 2.54%. The proposed methodology could be used for different conditions of temperature, relative humidity and drying rates to evaluate the influence of these variables on the amount of energy received by the IR detector. PMID:25887842

  4. Propositions for the Analysis of Commutation Phenomena and Modeling of Universal Motors Using the State Function Method

    NASA Astrophysics Data System (ADS)

    Niwa, Yuta; Akiyama, Yuji; Naruta, Tomokazu

    We carried out FEM simulations for modeling ultra-high-speed universal motors by using the state function method and analyzed the phenomenon of commutator sparking, the characteristics of the air gap surface, and the contact condition or contact resistance of the brushes and commutator bars. Thus, we could quantitatively analyze commutator sparking and investigate the configuration of the iron core. The results of FEM analysis were used to develop a model for predicting the configuration of the iron core and for estimating the electromotive force generated by the transformer, armature reaction field, spark voltage, contact resistance between the rotating brushes, and changes in the gap permeance. The results of our simulation were experimental results. This confirmed the validity of our analysis method. Thus, an ultra-high-speed, high-capacity of 1.5kw motor rotating at 30,000rpm can be designed for use in vacuum cleaners.

  5. Prediction of forces and moments for flight vehicle control effectors. Part 1: Validation of methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.

    1990-01-01

    Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.

  6. A symplectic analytical wave based method for the wave propagation and steady state forced vibration of rectangular thin plates

    NASA Astrophysics Data System (ADS)

    Ma, Yongbin; Zhang, Yahui; Kennedy, David

    2015-03-01

    A semi-analytical method is used to investigate the wave propagation characteristics and steady state forced vibration response for rectangular thin plates. By way of a rigorous but simple derivation, the governing differential equations for transverse vibration of rectangular thin plates are first converted into Hamiltonian canonical equations. Following the method of separation of variables, a symplectic eigenproblem is formed whose solution gives analytically the dispersion equation and the wave mode shape. Using the wave modes, i.e. the wave propagation parameters and wave shapes, and combining the directly excited waves, the wave propagation within the plate and the wave reflection at the boundary, the forced response of the plate can be computed in the wave domain with high precision and high efficiency. The present method is based on the basic elasticity equations of the plate, and can give the symplectic analytical solutions for the wave modes for any combination of simple boundary conditions along the plate edges. The present method eliminates the limitation of the traditional analytical wave propagation method which can only obtain wave modes for plates with two opposite edges simply supported. In contrast to numerical wave propagation methods, the present method provides symplectic analytical solutions for the wave modes, and hence the computations are of high precision and well conditioned. Also, continuously distributed external forces can be easily considered. In the numerical examples, the wave propagation characteristics are analyzed for plates with three different combinations of boundary conditions, i.e. with two opposite edges either both simply supported, or both clamped, or one simply supported and the other clamped. The steady state forced responses are also computed for plates excited by point forces, as well as for line and area distributed forces, for the three combinations of boundary conditions. Comparison of the present results with

  7. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOEpatents

    Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong

    1999-01-01

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  8. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOEpatents

    Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

    1999-03-09

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

  9. Effect of Ligation Method on Maxillary Arch Force/Moment Systems for a Simulated Lingual Incisor Malalignment

    PubMed Central

    Seru, Surbhi; Romanyk, Dan L; Toogood, Roger W; Carey, Jason P; Major, Paul W

    2014-01-01

    Introduction: The objectives of this study were to determine whether there is a difference in the magnitude of forces and moments produced by elastic ligation when compared to passive ligation, and whether these forces and moments propagate differently along the arch for the two ligation types. A lingual incisor malalignment was used in this study. Methods: The Orthodontic Simulator (OSIM) was used to quantify the three-dimensional forces and moments applied on the teeth given a lingually displaced incisor. A repeated measures MANOVA was performed to statistically analyze the data. Results: The interaction factor illustrated convincing evidence that there is a difference in maximum force and moment values for all outcome variables between ligation types considering all tooth positions along the arch. The mean differences for FX and FY between ligation types were found to be clinically significant, with values for elastic ligation consistently higher than passive ligation. Conclusion: It was found that the maximum forces and moments produced by elastic ligation are greater than those produced by passive ligation and that the magnitude of this difference for the mesiodistal and buccolingual forces is clinically relevant. Additionally, it was determined that elastic ligation causes forces and moments to propagate further along the arch than passive ligation for all outcome variables. PMID:25400715

  10. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  11. An Unroofing Method to Observe the Cytoskeleton Directly at Molecular Resolution Using Atomic Force Microscopy

    PubMed Central

    Usukura, Eiji; Narita, Akihiro; Yagi, Akira; Ito, Shuichi; Usukura, Jiro

    2016-01-01

    An improved unroofing method enabled the cantilever of an atomic force microscope (AFM) to reach directly into a cell to visualize the intracellular cytoskeletal actin filaments, microtubules, clathrin coats, and caveolae in phosphate-buffered saline (PBS) at a higher resolution than conventional electron microscopy. All of the actin filaments clearly exhibited a short periodicity of approximately 5–6 nm, which was derived from globular actins linked to each other to form filaments, as well as a long helical periodicity. The polarity of the actin filaments appeared to be determined by the shape of the periodic striations. Microtubules were identified based on their thickness. Clathrin coats and caveolae were observed on the cytoplasmic surface of cell membranes. The area containing clathrin molecules and their terminal domains was directly visualized. Characteristic ridge structures located at the surface of the caveolae were observed at high resolution, similar to those observed with electron microscopy (EM). Overall, unroofing allowed intracellular AFM imaging in a liquid environment with a level of quality equivalent or superior to that of EM. Thus, AFMs are anticipated to provide cutting-edge findings in cell biology and histology. PMID:27273367

  12. A comparison of force fields and calculation methods for vibration intervals of isotopic H3(+) molecules

    NASA Astrophysics Data System (ADS)

    Carney, G. D.; Adler-Golden, S. M.; Lesseski, D. C.

    1986-04-01

    This paper reports (1) improved values for low-lying vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) calculated using the variational method and Simons-Parr-Finlan (1973) representations of the Carney-Porter (1976) and Dykstra-Swope (1979) ab initio H3(+) potential energy surfaces, (2) quartic normal coordinate force fields for isotopic H3(+) molecules, (3) comparisons of variational and second-order perturbation theory, and (4) convergence properties of the Lai-Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) for these potential surfaces are 6.9 (Carney-Porter) and 1.2/cm (Dykstra-Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10/cm for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed 't' coordinate Hamiltonian for these molecules, except in the case of H2D(+).

  13. Transition Metal Complexes of Naproxen: Synthesis, Characterization, Forced Degradation Studies, and Analytical Method Verification

    PubMed Central

    Hasan, Md. Sharif; Kayesh, Ruhul; Begum, Farida; Rahman, S. M. Abdur

    2016-01-01

    The aim of our current research was to synthesize some transition metal complexes of Naproxen, determine their physical properties, and examine their relative stability under various conditions. Characterizations of these complexes were done by 1H-NMR, Differential Scanning Calorimetry (DSC), FT-IR, HPLC, and scanning electron microscope (SEM). Complexes were subjected to acidic, basic, and aqueous hydrolysis as well as oxidation, reduction, and thermal degradation. Also the reversed phase high-performance liquid chromatography (RP-HPLC) method of Naproxen outlined in USP was verified for the Naproxen-metal complexes, with respect to accuracy, precision, solution stability, robustness, and system suitability. The melting points of the complexes were higher than that of the parent drug molecule suggesting their thermal stability. In forced degradation study, complexes were found more stable than the Naproxen itself in all conditions: acidic, basic, oxidation, and reduction media. All the HPLC verification parameters were found within the acceptable value. Therefore, it can be concluded from the study that the metal complexes of Naproxen can be more stable drug entity and offer better efficacy and longer shelf life than the parent Naproxen. PMID:27034891

  14. An Unroofing Method to Observe the Cytoskeleton Directly at Molecular Resolution Using Atomic Force Microscopy.

    PubMed

    Usukura, Eiji; Narita, Akihiro; Yagi, Akira; Ito, Shuichi; Usukura, Jiro

    2016-01-01

    An improved unroofing method enabled the cantilever of an atomic force microscope (AFM) to reach directly into a cell to visualize the intracellular cytoskeletal actin filaments, microtubules, clathrin coats, and caveolae in phosphate-buffered saline (PBS) at a higher resolution than conventional electron microscopy. All of the actin filaments clearly exhibited a short periodicity of approximately 5-6 nm, which was derived from globular actins linked to each other to form filaments, as well as a long helical periodicity. The polarity of the actin filaments appeared to be determined by the shape of the periodic striations. Microtubules were identified based on their thickness. Clathrin coats and caveolae were observed on the cytoplasmic surface of cell membranes. The area containing clathrin molecules and their terminal domains was directly visualized. Characteristic ridge structures located at the surface of the caveolae were observed at high resolution, similar to those observed with electron microscopy (EM). Overall, unroofing allowed intracellular AFM imaging in a liquid environment with a level of quality equivalent or superior to that of EM. Thus, AFMs are anticipated to provide cutting-edge findings in cell biology and histology. PMID:27273367

  15. Acoustic radiation force impulse imaging of vulnerable plaques: a finite element method parametric analysis

    PubMed Central

    Doherty, Joshua R.; Dumont, Douglas M.; Trahey, Gregg E.; Palmeri, Mark L.

    2012-01-01

    Plaque rupture is the most common cause of complications such as stroke and coronary heart failure. Recent histopathological evidence suggests that several plaque features, including a large lipid core and a thin fibrous cap, are associated with plaques most at risk for rupture. Acoustic Radiation Force Impulse (ARFI) imaging, a recently developed ultrasound-based elasticity imaging technique, shows promise for imaging these features noninvasively. Clinically, this could be used to distinguish vulnerable plaques, for which surgical intervention may be required, from those less prone to rupture. In this study, a parametric analysis using Finite-Element Method (FEM) models was performed to simulate ARFI imaging of five different carotid artery plaques across a wide range of material properties. It was demonstrated that ARFI could resolve the softer lipid pool from the surrounding, stiffer media and fibrous cap and was most dependent upon the stiffness of the lipid pool component. Stress concentrations due to an ARFI excitation were located in the media and fibrous cap components. In all cases, the maximum Von Mises stress was < 1.2 kPa. In comparing these results with others investigating plaque rupture, it is concluded that while the mechanisms may be different, the Von Mises stresses imposed by ARFI are orders of magnitude lower than the stresses associated with blood pressure. PMID:23122224

  16. Transition Metal Complexes of Naproxen: Synthesis, Characterization, Forced Degradation Studies, and Analytical Method Verification.

    PubMed

    Hasan, Md Sharif; Kayesh, Ruhul; Begum, Farida; Rahman, S M Abdur

    2016-01-01

    The aim of our current research was to synthesize some transition metal complexes of Naproxen, determine their physical properties, and examine their relative stability under various conditions. Characterizations of these complexes were done by 1H-NMR, Differential Scanning Calorimetry (DSC), FT-IR, HPLC, and scanning electron microscope (SEM). Complexes were subjected to acidic, basic, and aqueous hydrolysis as well as oxidation, reduction, and thermal degradation. Also the reversed phase high-performance liquid chromatography (RP-HPLC) method of Naproxen outlined in USP was verified for the Naproxen-metal complexes, with respect to accuracy, precision, solution stability, robustness, and system suitability. The melting points of the complexes were higher than that of the parent drug molecule suggesting their thermal stability. In forced degradation study, complexes were found more stable than the Naproxen itself in all conditions: acidic, basic, oxidation, and reduction media. All the HPLC verification parameters were found within the acceptable value. Therefore, it can be concluded from the study that the metal complexes of Naproxen can be more stable drug entity and offer better efficacy and longer shelf life than the parent Naproxen. PMID:27034891

  17. Measurement of the thermal diffusivity of liquids by the forced Rayleigh scattering method: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Nagasaka, Y.; Hatakeyama, T.; Okuda, M.; Nagashima, A.

    1988-07-01

    This article is devoted to the theory and experiment of the forced Rayleigh scattering method for measurement of thermal diffusivity of liquids which can be employed in the form of an instrument operated optically in a contact-free manner. The theoretical considerations included are: (1) effect of cell wall, (2) effect of dye, (3) effect of Gaussian beam intensity distribution, (4) effect of heating duration time, and (5) effect of coupled dye and wall for a heavily absorbing sample. The errors caused by inadequate setting of optical conditions are also analyzed: (1) effects of grating thickness and (2) effects of initial temperature amplitude. Experimental verifications of the theory have been carried out through the measurements on toluene and water as standard reference substances. As a result of these experiments and theory, the criteria for optimum measuring conditions became available. To demonstrate the applicability of the present theory and the apparatus, the thermal diffusivities of toluene and methanol have been measured near room temperature under atmospheric pressure. The accuracy of the present measurement is estimated to be ±3%.

  18. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence

    SciTech Connect

    Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.

    2015-04-21

    Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that

  19. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence

    NASA Astrophysics Data System (ADS)

    Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.

    2015-04-01

    Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that

  20. Variance of a potential of mean force obtained using the weighted histogram analysis method.

    PubMed

    Cukier, Robert I

    2013-11-27

    A potential of mean force (PMF) that provides the free energy of a thermally driven system along some chosen reaction coordinate (RC) is a useful descriptor of systems characterized by complex, high dimensional potential energy surfaces. Umbrella sampling window simulations use potential energy restraints to provide more uniform sampling along a RC so that potential energy barriers that would otherwise make equilibrium sampling computationally difficult can be overcome. Combining the results from the different biased window trajectories can be accomplished using the Weighted Histogram Analysis Method (WHAM). Here, we provide an analysis of the variance of a PMF along the reaction coordinate. We assume that the potential restraints used for each window lead to Gaussian distributions for the window reaction coordinate densities and that the data sampling in each window is from an equilibrium ensemble sampled so that successive points are statistically independent. Also, we assume that neighbor window densities overlap, as required in WHAM, and that further-than-neighbor window density overlap is negligible. Then, an analytic expression for the variance of the PMF along the reaction coordinate at a desired level of spatial resolution can be generated. The variance separates into a sum over all windows with two kinds of contributions: One from the variance of the biased window density normalized by the total biased window density and the other from the variance of the local (for each window's coordinate range) PMF. Based on the desired spatial resolution of the PMF, the former variance can be minimized relative to that from the latter. The method is applied to a model system that has features of a complex energy landscape evocative of a protein with two conformational states separated by a free energy barrier along a collective reaction coordinate. The variance can be constructed from data that is already available from the WHAM PMF construction.

  1. MIST - MINIMUM-STATE METHOD FOR RATIONAL APPROXIMATION OF UNSTEADY AERODYNAMIC FORCE COEFFICIENT MATRICES

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1994-01-01

    Various control analysis, design, and simulation techniques of aeroservoelastic systems require the equations of motion to be cast in a linear, time-invariant state-space form. In order to account for unsteady aerodynamics, rational function approximations must be obtained to represent them in the first order equations of the state-space formulation. A computer program, MIST, has been developed which determines minimum-state approximations of the coefficient matrices of the unsteady aerodynamic forces. The Minimum-State Method facilitates the design of lower-order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena such as the outboard-wing acceleration response to gust velocity. Engineers using this program will be able to calculate minimum-state rational approximations of the generalized unsteady aerodynamic forces. Using the Minimum-State formulation of the state-space equations, they will be able to obtain state-space models with good open-loop characteristics while reducing the number of aerodynamic equations by an order of magnitude more than traditional approaches. These low-order state-space mathematical models are good for design and simulation of aeroservoelastic systems. The computer program, MIST, accepts tabular values of the generalized aerodynamic forces over a set of reduced frequencies. It then determines approximations to these tabular data in the LaPlace domain using rational functions. MIST provides the capability to select the denominator coefficients in the rational approximations, to selectably constrain the approximations without increasing the problem size, and to determine and emphasize critical frequency ranges in determining the approximations. MIST has been written to allow two types data weighting options. The first weighting is a traditional normalization of the aerodynamic data to the maximum unit value of each aerodynamic coefficient. The second allows weighting the

  2. An Improved Calibration Method for Hydrazine Monitors for the United States Air Force

    SciTech Connect

    Korsah, K

    2003-07-07

    This report documents the results of Phase 1 of the ''Air Force Hydrazine Detector Characterization and Calibration Project''. A method for calibrating model MDA 7100 hydrazine detectors in the United States Air Force (AF) inventory has been developed. The calibration system consists of a Kintek 491 reference gas generation system, a humidifier/mixer system which combines the dry reference hydrazine gas with humidified diluent or carrier gas to generate the required humidified reference for calibrations, and a gas sampling interface. The Kintek reference gas generation system itself is periodically calibrated using an ORNL-constructed coulometric titration system to verify the hydrazine concentration of the sample atmosphere in the interface module. The Kintek reference gas is then used to calibrate the hydrazine monitors. Thus, coulometric titration is only used to periodically assess the performance of the Kintek reference gas generation system, and is not required for hydrazine monitor calibrations. One advantage of using coulometric titration for verifying the concentration of the reference gas is that it is a primary standard (if used for simple solutions), thereby guaranteeing, in principle, that measurements will be traceable to SI units (i.e., to the mole). The effect of humidity of the reference gas was characterized by using the results of concentrations determined by coulometric titration to develop a humidity correction graph for the Kintek 491 reference gas generation system. Using this calibration method, calibration uncertainty has been reduced by 50% compared to the current method used to calibrate hydrazine monitors in the Air Force inventory and calibration time has also been reduced by more than 20%. Significant findings from studies documented in this report are the following: (1) The Kintek 491 reference gas generation system (generator, humidifier and interface module) can be used to calibrate hydrazine detectors. (2) The Kintek system output

  3. Force-extension curves for broken-rod macromolecules: Dramatic effects of different probing methods for two and three rods

    SciTech Connect

    Alexeev, A. V.; Maltseva, D. V.; Ivanov, V. A.; Klushin, L. I.; Skvortsov, A. M.

    2015-04-28

    We study force-extension curves of a single semiflexible chain consisting of several rigid rods connected by flexible spacers. The atomic force microscopy and laser optical or magnetic tweezers apparatus stretching these rod-coil macromolecules are discussed. In addition, the stretching by external isotropic force is analyzed. The main attention is focused on computer simulation and analytical results. We demonstrate that the force-extension curves for rod-coil chains composed of two or three rods of equal length differ not only quantitatively but also qualitatively in different probe methods. These curves have an anomalous shape for a chain of two rods. End-to-end distributions of rod-coil chains are calculated by Monte Carlo method and compared with analytical equations. The influence of the spacer’s length on the force-extension curves in different probe methods is analyzed. The results can be useful for interpreting experiments on the stretching of rod-coil block-copolymers.

  4. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods.

    PubMed

    Cartagena, Alexander; Raman, Arvind

    2014-03-01

    The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estimated from such dynamic and traditional quasi-static techniques are poorly understood. In this work we quantitatively reconstruct the local force and dissipation gradients (viscoelasticity) on live fibroblast cells in buffer solutions using Lorentz force excited cantilevers and present a careful comparison between mechanical properties (local stiffness and damping) extracted using dynamic and quasi-static force spectroscopy methods. The results highlight the dependence of measured viscoelastic properties on both the frequency at which the chosen technique operates as well as the interactions with subcellular components beyond certain indentation depth, both of which are responsible for differences between the viscoelasticity property maps acquired using the dynamic AFM method against the quasi-static measurements.

  5. Design of a piezoresistive triaxial force sensor probe using the sidewall doping method

    NASA Astrophysics Data System (ADS)

    Kan, Tetsuo; Takahashi, Hidetoshi; Binh-Khiem, Nguyen; Aoyama, Yuichiro; Takei, Yusuke; Noda, Kentaro; Matsumoto, Kiyoshi; Shimoyama, Isao

    2013-03-01

    In this study, we propose a triaxial force measurement sensor probe with piezoresistors fabricated via sidewall doping using rapid thermal diffusion. The device was developed as a tool for measuring micronewton-level forces as vector quantities. The device consists of a 15 µm thick cantilever, two sensing beams and four wiring beams. The length and width of the cantilever are 1240 µm and 140 µm, respectively, with a beam span of 1200 µm and a width of 10-15 µm. The piezoresistors are formed at the root of the cantilever and the sidewalls of the two sensing beams. The sensor spring constants for each axis were measured at kx = 1.5 N m-1, ky = 3.5 N m-1 and kz = 0.64 N m-1. We confirmed that our device was capable of measuring triaxial forces with a minimum detectable force at the submicronewton level.

  6. An improved method to determine neuromuscular properties using force laws - From single muscle to applications in human movements.

    PubMed

    Siebert, T; Sust, M; Thaller, S; Tilp, M; Wagner, H

    2007-04-01

    We evaluate an improved method for individually determining neuromuscular properties in vivo. The method is based on Hill's equation used as a force law combined with Newton's equation of motion. To ensure the range of validity of Hill's equation, we first perform detailed investigations on in vitro single muscles. The force-velocity relation determined with the model coincides well with results obtained by standard methods (r=.99) above 20% of the isometric force. In addition, the model-predicted force curves during work loop contractions very well agree with measurements (mean difference: 2-3%). Subsequently, we deduce theoretically under which conditions it is possible to combine several muscles of the human body to model muscles. This leads to a model equation for human leg extension movements containing parameters for the muscle properties and for the activation. To numerically determine these invariant neuromuscular properties we devise an experimental method based on concentric and isometric leg extensions. With this method we determine individual muscle parameters from experiments such that the simulated curves agree well with experiments (r=.99). A reliability test with 12 participants revealed correlations r=.72-.91 for the neuromuscular parameters (p<.01). Predictions of similar movements under different conditions show mean errors of about 5%. In addition, we present applications in sports practise and theory.

  7. Combined dynamic stiffness matrix and precise time integration method for transient forced vibration response analysis of beams

    NASA Astrophysics Data System (ADS)

    Tang, Bin

    2008-01-01

    A method has been developed for determining the transient response of a beam. The beam is divided into several continuous Timoshenko beam elements. The overall dynamic stiffness matrix is assembled in turn. Using Leung's equation, we derive the overall mass and stiffness matrices which are more suitable for response analysis than the overall dynamic stiffness matrix. The forced vibration of the beam is computed by the precise time integration method. Three illustrative beams are discussed to evaluate the performance of the current method. Solutions calculated by the finite element method and theoretical analysis are also enumerated for comparison. In these examples, we have found that the current method can solve the forced vibration of structures with a higher precision.

  8. A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models

    NASA Astrophysics Data System (ADS)

    Vuolo, M. R.; Schulz, M.; Balkanski, Y.; Takemura, T.

    2013-07-01

    The quantification and understanding of direct aerosol forcing is essential in the study of climate. One of the main issues that makes its quantification difficult is the lack of a complete comprehension of the role of the aerosol and clouds vertical distribution. This work aims at reducing the incertitude of aerosol forcing due to the vertical superposition of several short-lived atmospheric components, in particular different aerosols species and clouds. We propose a method to quantify the contribution of different parts of the atmospheric column to the forcing, and to evaluate model differences by isolating the effect of radiative interactions only. Any microphysical or thermo-dynamical interactions between aerosols and clouds are deactivated in the model, to isolate the effects of radiative flux coupling. We investigate the contribution of aerosol above, below and in clouds, by using added diagnostics in the aerosol-climate model LMDz. We also compute the difference between the forcing of the ensemble of the aerosols and the sum of the forcings from individual species, in clear-sky. This difference is found to be moderate on global average (14%) but can reach high values regionally (up to 100%). The non-additivity of forcing already for clear-sky conditions shows, that in addition to represent well the amount of individual aerosol species, it is critical to capture the vertical distribution of all aerosols. Nonlinear effects are even more important when superposing aerosols and clouds. Four forcing computations are performed, one where the full aerosol 3-D distribution is used, and then three where aerosols are confined to regions above, inside and below clouds respectively. We find that the forcing of aerosols depends crucially on the presence of clouds and on their position relative to that of the aerosol, in particular for black carbon (BC). We observe a strong enhancement of the forcing of BC above clouds, attenuation for BC below clouds, and a moderate

  9. Lubrication forces in dense granular flow with interstitial fluid: A simulation study with Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Baran, Oleh; Ertas, Deniz; Halsey, Thomas; Zhou, Fuping

    2007-03-01

    Using three-dimensional molecular dynamics simulations, we study steady gravity-driven flows of frictional inelastic spheres of diameter d and density ρg down an incline, interacting through two-body lubrication forces in addition to granular contact forces. Scaling arguments suggest that, in 3D, these forces constitute the dominant perturbation of an interstitial fluid for small Reynolds number Re and low fluid densityρ. Two important parameters that characterize the strength of the lubrication forces are fluid viscosity and grain roughness. We observe that incline flows with lubrication forces exhibit a packing density that decreases with increasing distance from the surface. As the incline angle is increased, this results in a severely dilated basal layer that looks like ``hydroplaning'' similar to that observed in geological subaqueous debris flows. This is surprising since the model explicitly disallows any buildup of fluid pressure in the base of the flow, and suggests that hydroplaning might have other contributing factors besides this traditional explanation. The local packing density is still determined by the dimensionless strain rate I≡γ1ptd√ρg/p , where p is the average normal stress, obeying a ``dilatancy law'' similar to dry granular flows.

  10. Influence on isotope effect calculations of the method of obtaining force constants from vibrational data

    SciTech Connect

    Goodson, D.Z.; Sarpal, S.K.; Bopp, P.; Wolfsberg, M.

    1982-01-01

    Reduced isotopic partition function ratios (s/sub 2//s/sub 1/)f are employed in the calculation of isotope effects on thermodynamic equilibrium constrants. The quadratic force constants of the molecular force field are needed to evaluate (s/sub 2//s/sub 1/)f. Often these force constants are directly deduced from observed fundamentals in vibrational spectra and the (s/sub 2//s/sub 1/)f values so obtained are labeled (ANHARM). In a theroretically more valid procedure that is more difficult, one corrects observed fundamentals for anharmonicity on the basis of observed overtone and combination bands and then deduces force constants from these observed harmonic frequencies. The (s/sub 2//s/sub 1/)f values obtained from these force constants are labeled (HARM). (HARM) values and (ANHARM) values are evaluated and the isotope effects calculated with these values are discussed. It is concluded that the consistent use of (ANHARM) values in such calculations is a valid procedure.

  11. Pork tenderness estimation by taste panel, Warner-Bratzler shear force and on-line methods.

    PubMed

    Van Oeckel, M J; Warnants, N; Boucqué, C V

    1999-12-01

    The extent to which modification of Warner-Bratzler shear force (WBSF) determinations, relating to storage and preparation of the meat, aperture of the V-shaped cutting blade and shearing velocity, improve the relationship with sensory tenderness perception of pork was studied. Additionally four on-line methods: pH1, FOP1 (light scattering), PQM1 (conductivity) and DDLT (Double Density Light Transmission), were evaluated for their ability to predict tenderness. Sensory tenderness evaluation was conducted on 120 frozen (at -18°C for several months) samples of m. longissimus thoracis et lumborum. After overnight thawing, the meat was grilled to an internal temperature of 74°C and scored on an eight-point scale, from extremely tough to extremely tender. The standard WBSF procedure (protocol A) consisted of heating fresh meat samples (stored for 48 h at 4°C post slaughter) at 75°C for 50 min, cooling in cold tap water for 40 min, taking cylindrical cores parallel to the fibre direction, and shearing at a velocity of 200 mm/min with a blade aperture of 60°. For the prediction of sensory tenderness, the WBSF standard procedure (protocol A) showed the lowest variance (R(2)=15%) and the highest standard error of the estimate (SEE=0.97 N) compared to the other WBSF protocols. A decrease in shearing velocity, from 200 to 100 mm/min and, a replacement of the cutting blade with an aperture of 60° by one with an aperture of 30° led to improvements of R(2) (respectively, 19% vs. 13% and 47% vs. 23%) and SEE (respectively, 0.93 N vs. 0.97 N and 0.80 N vs. 0.97 N) and thus were better predictors of tenderness. A blade aperture of 30° instead of 60° also led to considerably lower WBSF values (22.1 N vs. 30.0 N). Freezing, frozen storage and thawing of the meat, prior to WBSF measurement, resulted in higher shear force values (32.7 N vs. 28.7 N) and a better prediction of tenderness, R(2) (25% vs. 15%) and SEE (0.94 N vs. 1.00 N). Furthermore, preparing the frozen stored

  12. Pork tenderness estimation by taste panel, Warner-Bratzler shear force and on-line methods.

    PubMed

    Van Oeckel, M J; Warnants, N; Boucqué, C V

    1999-12-01

    The extent to which modification of Warner-Bratzler shear force (WBSF) determinations, relating to storage and preparation of the meat, aperture of the V-shaped cutting blade and shearing velocity, improve the relationship with sensory tenderness perception of pork was studied. Additionally four on-line methods: pH1, FOP1 (light scattering), PQM1 (conductivity) and DDLT (Double Density Light Transmission), were evaluated for their ability to predict tenderness. Sensory tenderness evaluation was conducted on 120 frozen (at -18°C for several months) samples of m. longissimus thoracis et lumborum. After overnight thawing, the meat was grilled to an internal temperature of 74°C and scored on an eight-point scale, from extremely tough to extremely tender. The standard WBSF procedure (protocol A) consisted of heating fresh meat samples (stored for 48 h at 4°C post slaughter) at 75°C for 50 min, cooling in cold tap water for 40 min, taking cylindrical cores parallel to the fibre direction, and shearing at a velocity of 200 mm/min with a blade aperture of 60°. For the prediction of sensory tenderness, the WBSF standard procedure (protocol A) showed the lowest variance (R(2)=15%) and the highest standard error of the estimate (SEE=0.97 N) compared to the other WBSF protocols. A decrease in shearing velocity, from 200 to 100 mm/min and, a replacement of the cutting blade with an aperture of 60° by one with an aperture of 30° led to improvements of R(2) (respectively, 19% vs. 13% and 47% vs. 23%) and SEE (respectively, 0.93 N vs. 0.97 N and 0.80 N vs. 0.97 N) and thus were better predictors of tenderness. A blade aperture of 30° instead of 60° also led to considerably lower WBSF values (22.1 N vs. 30.0 N). Freezing, frozen storage and thawing of the meat, prior to WBSF measurement, resulted in higher shear force values (32.7 N vs. 28.7 N) and a better prediction of tenderness, R(2) (25% vs. 15%) and SEE (0.94 N vs. 1.00 N). Furthermore, preparing the frozen stored

  13. Implementation of a Serial Replica Exchange Method in a Physics-Based United-Residue (UNRES) Force Field.

    PubMed

    Shen, Hujun; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A

    2008-08-01

    The kinetic-trapping problem in simulating protein folding can be overcome by using a Replica Exchange Method (REM). However, in implementing REM in molecular dynamics simulations, synchronization between processors on parallel computers is required, and communication between processors limits its ability to sample conformational space in a complex system efficiently. To minimize communication between processors during the simulation, a Serial Replica Exchange Method (SREM) has been proposed recently by Hagan et al. (J. Phys. Chem. B2007, 111, 1416-1423). Here, we report the implementation of this new SREM algorithm with our physics-based united-residue (UNRES) force field. The method has been tested on the protein 1E0L with a temperature-independent UNRES force field and on terminally blocked deca-alanine (Ala(10)) and 1GAB with the recently introduced temperature-dependent UNRES force field. With the temperature-independent force field, SREM reproduces the results of REM but is more efficient in terms of wall-clock time and scales better on distributed-memory machines. However, exact application of SREM to the temperature-dependent UNRES algorithm requires the determination of a four-dimensional distribution of UNRES energy components instead of a one-dimensional energy distribution for each temperature, which is prohibitively expensive. Hence, we assumed that the temperature dependence of the force field can be ignored for neighboring temperatures. This version of SREM worked for Ala(10) which is a simple system but failed to reproduce the thermodynamic results as well as regular REM on the more complex 1GAB protein. Hence, SREM can be applied to the temperature-independent but not to the temperature-dependent UNRES force field.

  14. Implementation of a Serial Replica Exchange Method in a Physics-Based United-Residue (UNRES) Force Field

    PubMed Central

    Shen, Hujun; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    The kinetic-trapping problem in simulating protein folding can be overcome by using a Replica Exchange Method (REM). However, in implementing REM in molecular dynamics simulations, synchronization between processors on parallel computers is required, and communication between processors limits its ability to sample conformational space in a complex system efficiently. To minimize communication between processors during the simulation, a Serial Replica Exchange Method (SREM) has been proposed recently by Hagan et al. (J. Phys. Chem. B 2007, 111, 1416–1423). Here, we report the implementation of this new SREM algorithm with our physics-based united-residue (UNRES) force field. The method has been tested on the protein 1E0L with a temperature-independent UNRES force field and on terminally blocked deca-alanine (Ala10) and 1GAB with the recently introduced temperature-dependent UNRES force field. With the temperature-independent force field, SREM reproduces the results of REM but is more efficient in terms of wall-clock time and scales better on distributed-memory machines. However, exact application of SREM to the temperature-dependent UNRES algorithm requires the determination of a four-dimensional distribution of UNRES energy components instead of a one-dimensional energy distribution for each temperature, which is prohibitively expensive. Hence, we assumed that the temperature dependence of the force field can be ignored for neighboring temperatures. This version of SREM worked for Ala10 which is a simple system but failed to reproduce the thermodynamic results as well as regular REM on the more complex 1GAB protein. Hence, SREM can be applied to the temperature-independent but not to the temperature-dependent UNRES force field. PMID:20011673

  15. Accuracies of southwell and force/stiffness methods in the prediction of buckling strength of hypersonic aircraft wing tubular panels

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1987-01-01

    Accuracies of the Southwell method and the force/stiffness (F/S) method are examined when the methods were used in the prediction of buckling loads of hypersonic aircraft wing tubular panels, based on nondestructive buckling test data. Various factors affecting the accuracies of the two methods were discussed. Effects of load cutoff point in the nondestructive buckling tests on the accuracies of the two methods were discussed in great detail. For the tubular panels under pure compression, the F/S method was found to give more accurate buckling load predictions than the Southwell method, which excessively overpredicts the buckling load. It was found that the Southwell method required a higher load cutoff point, as compared with the F/S method. In using the F/S method for predicting the buckling load of tubular panels under pure compression, the load cutoff point of approximately 50 percent of the critical load could give reasonably accurate predictions.

  16. Method and Apparatus for the Quantification of Particulate Adhesion Forces on Various Substrates

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Atkins, Brad M.; Connell, John W.

    2011-01-01

    Mitigation strategies for lunar dust adhesion have typically been limited to qualitative analysis. This technical memorandum describes the generation and operation of an adhesion testing device capable of quantitative assessment of adhesion forces between particulates and substrates. An aerosolization technique is described to coat a surface with a monolayer of particulates. Agitation of this surface, via sonication, causes particles to dislodge and be gravitationally fed into an optical particle counter. Experimentally determined adhesion force values are compared to forces calculated from van der Waals interactions and are used to calculate the work of adhesion using Johnson-Kendall-Roberts (JKR) theory. Preliminary results indicate that a reduction in surface energy and available surface area, through topographical modification, improve mitigation of particulate adhesion.

  17. Method and apparatus for hybrid position/force control of multi-arm cooperating robots

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A. (Inventor)

    1989-01-01

    Two or more robotic arms having end effectors rigidly attached to an object to be moved are disclosed. A hybrid position/force control system is provided for driving each of the robotic arms. The object to be moved is represented as having a total mass that consists of the actual mass of the object to be moved plus the mass of the moveable arms that are rigidly attached to the moveable object. The arms are driven in a positive way by the hybrid control system to assure that each arm shares in the position/force applied to the object. The burden of actuation is shared by each arm in a non-conflicting way as the arm independently control the position of, and force upon, a designated point on the object.

  18. Full nonlinear treatment of the global thermospheric wind system. Part 1: Mathematical method and analysis of forces

    NASA Technical Reports Server (NTRS)

    Blum, P. W.; Harris, I.

    1973-01-01

    The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all the nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In part 1 the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analysed.

  19. Forces in bolted joints: analysis methods and test results utilized for nuclear core applications (LWBR Development Program)

    SciTech Connect

    Crescimanno, P.J.; Keller, K.L.

    1981-03-01

    Analytical methods and test data employed in the core design of bolted joints for the LWBR core are presented. The effects of external working loads, thermal expansion, and material stress relaxation are considered in the formulation developed to analyze joint performance. Extensions of these methods are also provided for bolted joints having both axial and bending flexibilities, and for the effect of plastic deformation on internal forces developed in a bolted joint. Design applications are illustrated by examples.

  20. Method and system for measuring gate valve clearances and seating force

    DOEpatents

    Casada, Donald A.; Haynes, Howard D.; Moyers, John C.; Stewart, Brian K.

    1996-01-01

    Valve clearances and seating force, as well as other valve operational parameters, are determined by measuring valve stem rotation during opening and closing operations of a translatable gate valve. The magnitude of the stem rotation, and the relative difference between the stem rotation on opening and closing provides valuable data on the valve internals in a non-intrusive manner.

  1. Method and system for measuring gate valve clearances and seating force

    DOEpatents

    Casada, D.A.; Haynes, H.D.; Moyers, J.C.; Stewart, B.K.

    1996-01-30

    Valve clearances and seating force, as well as other valve operational parameters, are determined by measuring valve stem rotation during opening and closing operations of a translatable gate valve. The magnitude of the stem rotation, and the relative difference between the stem rotation on opening and closing provides valuable data on the valve internals in a non-intrusive manner. 8 figs.

  2. Effective method to control the levitation force and levitation height in a superconducting maglev system

    NASA Astrophysics Data System (ADS)

    Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia

    2015-11-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).

  3. Precise and direct method for the measurement of the torsion spring constant of the atomic force microscopy cantilevers

    SciTech Connect

    Jarząbek, D. M.

    2015-01-15

    A direct method for the evaluation of the torsional spring constants of the atomic force microscope cantilevers is presented in this paper. The method uses a nanoindenter to apply forces at the long axis of the cantilever and in the certain distance from it. The torque vs torsion relation is then evaluated by the comparison of the results of the indentations experiments at different positions on the cantilever. Next, this relation is used for the precise determination of the torsional spring constant of the cantilever. The statistical analysis shows that the standard deviation of the calibration measurements is equal to approximately 1%. Furthermore, a simple method for calibration of the photodetector’s lateral response is proposed. The overall procedure of the lateral calibration constant determination has the accuracy approximately equal to 10%.

  4. Precise and direct method for the measurement of the torsion spring constant of the atomic force microscopy cantilevers.

    PubMed

    Jarząbek, D M

    2015-01-01

    A direct method for the evaluation of the torsional spring constants of the atomic force microscope cantilevers is presented in this paper. The method uses a nanoindenter to apply forces at the long axis of the cantilever and in the certain distance from it. The torque vs torsion relation is then evaluated by the comparison of the results of the indentations experiments at different positions on the cantilever. Next, this relation is used for the precise determination of the torsional spring constant of the cantilever. The statistical analysis shows that the standard deviation of the calibration measurements is equal to approximately 1%. Furthermore, a simple method for calibration of the photodetector's lateral response is proposed. The overall procedure of the lateral calibration constant determination has the accuracy approximately equal to 10%.

  5. Bimanual elbow robotic orthoses: preliminary investigations on an impairment force-feedback rehabilitation method.

    PubMed

    Herrnstadt, Gil; Alavi, Nezam; Randhawa, Bubblepreet Kaur; Boyd, Lara A; Menon, Carlo

    2015-01-01

    Modern rehabilitation practices have begun integrating robots, recognizing their significant role in recovery. New and alternative stroke rehabilitation treatments are essential to enhance efficacy and mitigate associated health costs. Today's robotic interventions can play a significant role in advancing rehabilitation. In addition, robots have an inherent ability to perform tasks accurately and reliably and are typically well suited to measure and quantify performance. Most rehabilitation strategies predominantly target activation of the paretic arm. However, bimanual upper-limb rehabilitation research suggests potential in enhancing functional recovery. Moreover, studies suggest that limb coordination and synchronization can improve treatment efficacy. In this preliminary study, we aimed to investigate and validate our user-driven bimanual system in a reduced intensity rehab practice. A bimanual wearable robotic device (BWRD) with a Master-Slave configuration for the elbow joint was developed to carry out the investigation. The BWRD incorporates position and force sensors for which respective control loops are implemented, and offers varying modes of operation ranging from passive to active training. The proposed system enables the perception of the movements, as well as the forces applied by the hemiparetic arm, with the non-hemiparetic arm. Eight participants with chronic unilateral stroke were recruited to participate in a total of three 1-h sessions per participant, delivered in a week. Participants underwent pre- and post-training functional assessments along with proprioceptive measures. The post-assessment was performed at the end of the last training session. The protocol was designed to engage the user in an assortment of static and dynamic arm matching and opposing tasks. The training incorporates force-feedback movements, force-feedback positioning, and force matching tasks with same and opposite direction movements. We are able to suggest

  6. Bimanual Elbow Robotic Orthoses: Preliminary Investigations on an Impairment Force-Feedback Rehabilitation Method

    PubMed Central

    Herrnstadt, Gil; Alavi, Nezam; Randhawa, Bubblepreet Kaur; Boyd, Lara A.; Menon, Carlo

    2015-01-01

    Modern rehabilitation practices have begun integrating robots, recognizing their significant role in recovery. New and alternative stroke rehabilitation treatments are essential to enhance efficacy and mitigate associated health costs. Today’s robotic interventions can play a significant role in advancing rehabilitation. In addition, robots have an inherent ability to perform tasks accurately and reliably and are typically well suited to measure and quantify performance. Most rehabilitation strategies predominantly target activation of the paretic arm. However, bimanual upper-limb rehabilitation research suggests potential in enhancing functional recovery. Moreover, studies suggest that limb coordination and synchronization can improve treatment efficacy. In this preliminary study, we aimed to investigate and validate our user-driven bimanual system in a reduced intensity rehab practice. A bimanual wearable robotic device (BWRD) with a Master–Slave configuration for the elbow joint was developed to carry out the investigation. The BWRD incorporates position and force sensors for which respective control loops are implemented, and offers varying modes of operation ranging from passive to active training. The proposed system enables the perception of the movements, as well as the forces applied by the hemiparetic arm, with the non-hemiparetic arm. Eight participants with chronic unilateral stroke were recruited to participate in a total of three 1-h sessions per participant, delivered in a week. Participants underwent pre- and post-training functional assessments along with proprioceptive measures. The post-assessment was performed at the end of the last training session. The protocol was designed to engage the user in an assortment of static and dynamic arm matching and opposing tasks. The training incorporates force-feedback movements, force-feedback positioning, and force matching tasks with same and opposite direction movements. We are able to suggest

  7. Bimanual elbow robotic orthoses: preliminary investigations on an impairment force-feedback rehabilitation method.

    PubMed

    Herrnstadt, Gil; Alavi, Nezam; Randhawa, Bubblepreet Kaur; Boyd, Lara A; Menon, Carlo

    2015-01-01

    Modern rehabilitation practices have begun integrating robots, recognizing their significant role in recovery. New and alternative stroke rehabilitation treatments are essential to enhance efficacy and mitigate associated health costs. Today's robotic interventions can play a significant role in advancing rehabilitation. In addition, robots have an inherent ability to perform tasks accurately and reliably and are typically well suited to measure and quantify performance. Most rehabilitation strategies predominantly target activation of the paretic arm. However, bimanual upper-limb rehabilitation research suggests potential in enhancing functional recovery. Moreover, studies suggest that limb coordination and synchronization can improve treatment efficacy. In this preliminary study, we aimed to investigate and validate our user-driven bimanual system in a reduced intensity rehab practice. A bimanual wearable robotic device (BWRD) with a Master-Slave configuration for the elbow joint was developed to carry out the investigation. The BWRD incorporates position and force sensors for which respective control loops are implemented, and offers varying modes of operation ranging from passive to active training. The proposed system enables the perception of the movements, as well as the forces applied by the hemiparetic arm, with the non-hemiparetic arm. Eight participants with chronic unilateral stroke were recruited to participate in a total of three 1-h sessions per participant, delivered in a week. Participants underwent pre- and post-training functional assessments along with proprioceptive measures. The post-assessment was performed at the end of the last training session. The protocol was designed to engage the user in an assortment of static and dynamic arm matching and opposing tasks. The training incorporates force-feedback movements, force-feedback positioning, and force matching tasks with same and opposite direction movements. We are able to suggest

  8. Semi-in situ atomic force microscopy imaging of intracellular neurofilaments under physiological conditions through the 'sandwich' method.

    PubMed

    Sato, Fumiya; Asakawa, Hitoshi; Fukuma, Takeshi; Terada, Sumio

    2016-08-01

    Neurofilaments are intermediate filament proteins specific for neurons and characterized by formation of biochemically stable, obligate heteropolymers in vivo While purified or reassembled neurofilaments have been subjected to morphological analyses by electron microscopy and atomic force microscopy, there has been a need for direct imaging of cytoplasmic genuine intermediate filaments with minimal risk of artefactualization. In this study, we applied the modified 'cells on glass sandwich' method to exteriorize intracellular neurofilaments, reducing the risk of causing artefacts through sample preparation. SW13vim(-) cells were double transduced with neurofilament medium polypeptide (NF-M) and alpha-internexin (α-inx). Cultured cells were covered with a cationized coverslip after prestabilization with tannic acid to form a sandwich and then split into two. After confirming that neurofilaments could be deposited on ventral plasma membranes exposed via unroofing, we performed atomic force microscopy imaging semi-in situ in aqueous solution. The observed thin filaments, considered to retain native structures of the neurofilaments, exhibited an approximate periodicity of 50-60 nm along their length. Their structural property appeared to reflect the morphology formed by their constituents, i.e. NF-M and α-inx. The success of semi-in situ atomic force microscopy of exposed bona fide assembled neurofilaments through separating the sandwich suggests that it can be an effective and alternative method for investigating cytoplasmic intermediate filaments under physiological conditions by atomic force microscopy.

  9. A method to determine the two-point contact zone and transfer of wheel-rail forces in a turnout

    NASA Astrophysics Data System (ADS)

    Ren, Zunsong; Sun, Shouguang; Xie, Gang

    2010-10-01

    A practical method to determine the zone of two contact points and the transfer of wheel-rail forces between two rails in a turnout is presented in this paper. The method is based on a wheel-rail elastic penetration assumption and used to study a turnout system for a 200 km/h high-speed railway in China. Rail profiles in a number of key sections in the turnout are identified first, and profiles in other sections are then obtained by interpolation between key sections. The track is modelled as flexible with rails and sleepers represented by beams and the interaction between the vehicle and turnout is simulated for cases of the vehicle passing the turnout. Results are mainly presented for two-point contact positions and the characteristics of the wheel-rail forces transference. It is found that the heights of the switch and crossing rail top have significant effects on the wheel-rail contact forces. Finally, the optimised top height for the crossing rails is proposed to reduce the system dynamic force in the turnout system.

  10. Tracking Unfolding and Refolding Reactions of Single Proteins using Atomic Force Microscopy Methods

    PubMed Central

    Bujalowski, Paul J.; Oberhauser, Andres F.

    2013-01-01

    During the last two decades single-molecule manipulation techniques such as atomic force microscopy (AFM) has risen to prominence through their unique capacity to provide fundamental information on the structure and function of biomolecules. Here we describe the use of single-molecule AFM to track protein unfolding and refolding pathways, enzymatic catalysis and the effects of osmolytes and chaperones on protein stability and folding. We will outline the principles of operation for two different AFM pulling techniques: length clamp and force-clamp discuss prominent applications. We provide protocols for the construction of polyproteins which are amenable for AFM experiments, the preparation of different coverslips, choice and calibration of AFM cantilevers. We also discuss the selection criteria for AFM recordings, the calibration of AFM cantilevers, protein sample preparations and analysis of the obtained data. PMID:23523554

  11. Tracking unfolding and refolding reactions of single proteins using atomic force microscopy methods.

    PubMed

    Bujalowski, Paul J; Oberhauser, Andres F

    2013-04-01

    During the last two decades single-molecule manipulation techniques such as atomic force microscopy (AFM) has risen to prominence through their unique capacity to provide fundamental information on the structure and function of biomolecules. Here we describe the use of single-molecule AFM to track protein unfolding and refolding pathways, enzymatic catalysis and the effects of osmolytes and chaperones on protein stability and folding. We will outline the principles of operation for two different AFM pulling techniques: length clamp and force-clamp and discuss prominent applications. We provide protocols for the construction of polyproteins which are amenable for AFM experiments, the preparation of different coverslips, choice and calibration of AFM cantilevers. We also discuss the selection criteria for AFM recordings, the calibration of AFM cantilevers, protein sample preparations and analysis of the obtained data.

  12. A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; Morton, M.; Draper, N.; Line, W.

    2001-01-01

    This paper proposes a new concept in force balance calibration. An overview of the state-of-the-art in force balance calibration is provided with emphasis on both the load application system and the experimental design philosophy. Limitations of current systems are detailed in the areas of data quality and productivity. A unique calibration loading system integrated with formal experimental design techniques has been developed and designated as the Single-Vector Balance Calibration System (SVS). This new concept addresses the limitations of current systems. The development of a quadratic and cubic calibration design is presented. Results from experimental testing are compared and contrasted with conventional calibration systems. Analyses of data are provided that demonstrate the feasibility of this concept and provide new insights into balance calibration.

  13. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1995-01-01

    The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.

  14. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path–Force Matching QM/MM Method

    PubMed Central

    Zhou, Y.; Ojeda-May, P.; Nagaraju, M.; Pu, J.

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) has been developed. In RP–FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP–FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  15. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path-Force Matching QM/MM Method.

    PubMed

    Zhou, Y; Ojeda-May, P; Nagaraju, M; Pu, J

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path-force matching (RP-FM) has been developed. In RP-FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP-FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  16. Computed Tomography Analysis of Postsurgery Femoral Component Rotation Based on a Force Sensing Device Method versus Hypothetical Rotational Alignment Based on Anatomical Landmark Methods: A Pilot Study.

    PubMed

    Kreuzer, Stefan W; Pourmoghaddam, Amir; Leffers, Kevin J; Johnson, Clint W; Dettmer, Marius

    2016-01-01

    Rotation of the femoral component is an important aspect of knee arthroplasty, due to its effects on postsurgery knee kinematics and associated functional outcomes. It is still debated which method for establishing rotational alignment is preferable in orthopedic surgery. We compared force sensing based femoral component rotation with traditional anatomic landmark methods to investigate which method is more accurate in terms of alignment to the true transepicondylar axis. Thirty-one patients underwent computer-navigated total knee arthroplasty for osteoarthritis with femoral rotation established via a force sensor. During surgery, three alternative hypothetical femoral rotational alignments were assessed, based on transepicondylar axis, anterior-posterior axis, or the utilization of a posterior condyles referencing jig. Postoperative computed tomography scans were obtained to investigate rotation characteristics. Significant differences in rotation characteristics were found between rotation according to DKB and other methods (P < 0.05). Soft tissue balancing resulted in smaller deviation from anatomical epicondylar axis than any other method. 77% of operated knees were within a range of ±3° of rotation. Only between 48% and 52% of knees would have been rotated appropriately using the other methods. The current results indicate that force sensors may be valuable for establishing correct femoral rotation. PMID:26881086

  17. The Analysis of Aircraft Structures as Space Frameworks. Method Based on the Forces in the Longitudinal Members

    NASA Technical Reports Server (NTRS)

    Wagner, Herbert

    1929-01-01

    The following examples do not take up the discussion of viewpoints to be heeded in determining the design of a framework for given external conditions. Rather they are methods for determining the forces in airplane fuselages and wings, though similar considerations are applied to certain simple cases of a different kind. The object of this treatise is to summarize and amplify these considerations from definite viewpoints.

  18. Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion

    NASA Astrophysics Data System (ADS)

    Mees, Maarten J.; Pourtois, Geoffrey; Neyts, Erik C.; Thijsse, Barend J.; Stesmans, André

    2012-04-01

    Monte Carlo (MC) methods have a long-standing history as partners of molecular dynamics (MD) to simulate the evolution of materials at the atomic scale. Among these techniques, the uniform-acceptance force-bias Monte Carlo (UFMC) method [G. Dereli, Mol. Simul.10.1080/08927029208022490 8, 351 (1992)] has recently attracted attention [M. Timonova , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.144107 81, 144107 (2010)] thanks to its apparent capacity of being able to simulate physical processes in a reduced number of iterations compared to classical MD methods. The origin of this efficiency remains, however, unclear. In this work we derive a UFMC method starting from basic thermodynamic principles, which leads to an intuitive and unambiguous formalism. The approach includes a statistically relevant time step per Monte Carlo iteration, showing a significant speed-up compared to MD simulations. This time-stamped force-bias Monte Carlo (tfMC) formalism is tested on both simple one-dimensional and three-dimensional systems. Both test-cases give excellent results in agreement with analytical solutions and literature reports. The inclusion of a time scale, the simplicity of the method, and the enhancement of the time step compared to classical MD methods make this method very appealing for studying the dynamics of many-particle systems.

  19. Behavioral Counseling Interventions Expert Forum: Overview and Primer on U.S. Preventive Services Task Force Methods.

    PubMed

    Curry, Susan J; Whitlock, Evelyn P

    2015-09-01

    The importance of behavioral counseling as a clinical preventive service derives from the social and economic burden of preventable disease in the U.S., the central role behavioral risk factors play as leading causes of premature morbidity and mortality, and the promise of the healthcare visit as a teachable moment for behavioral counseling support. In November 2013, the U.S. Preventive Services Task Force convened an expert forum on behavioral counseling interventions. The forum brought together NIH, CDC, and Agency for Healthcare Research and Quality leaders, leading behavioral counseling researchers, and members of the U.S. Preventive Services Task Force to discuss issues related to optimizing evidence-based behavioral counseling recommendations. This paper provides an overview of the methods used by the Task Force to develop counseling recommendations. Special focus is on the development and evaluation of evidence from systematic reviews. Assessment of the net benefit of a behavioral counseling intervention, based on the evidence review, determines the recommendation statement and accompanying letter grade. A recent Task Force recommendation on screening and behavioral counseling interventions in primary care to reduce alcohol misuse provides a brief example.

  20. Various methods for extracting forces on a moving plate using Time-Resolved Particle Image Velocimetry (TR-PIV)

    NASA Astrophysics Data System (ADS)

    Rival, D.; Schoenweitz, D.; Tropea, C.

    2009-11-01

    It is often very challenging or even impossible to measure the forces directly on swimming or flying animals. For this reason traditional control-volume methods are used to estimate the unsteady forces on the body in question. TR-PIV systems allow for the measurement of the full spatial and temporal velocity field in the control volume as well as along the bounding control surfaces. The corresponding pressure field can be integrated from the complete velocity-field data set. However, the measurement of the velocity field in the proximity of the body’s surface is at times cumbersome due to shadows and reflections. An alternate control-volume formulationfootnotetextJ. Z. Wu, Z.-L. Pan and X.-Y. Lu, ``Unsteady fluid-dynamic force solely in terms of control-surface integral,” Phys. of Fluids 17, 098102 (2005) eliminates the need for velocity measurements in the proximity of the body. This method has been tested and compared to the traditional control-volume technique for a generic pitching and plunging flat plate in a hover chamber. The advantages and disadvantages of these methods are discussed in the context of their measurement accuracy.

  1. Force and deflection sensor with shell membrane and optical gratings and method of manufacture

    NASA Technical Reports Server (NTRS)

    Park, Yong-Lae (Inventor); Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Cutkosky, Mark R. (Inventor); Chau, Kelvin K (Inventor)

    2011-01-01

    A sensor for force is formed from an elastomeric cylinder having a region with apertures. The apertures have passageways formed between them, and an optical fiber is introduced into these passageways, where the optical fiber has a grating for measurement of tension positioned in the passageways between apertures. Optionally, a temperature measurement sensor is placed in or around the elastomer for temperature correction, and if required, a copper film may be deposited in the elastomer for reduced sensitivity to spot temperature variations in the elastomer near the sensors.

  2. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method

    NASA Astrophysics Data System (ADS)

    Adamcik, Jozef; Lara, Cecile; Usov, Ivan; Jeong, Jae Sun; Ruggeri, Francesco S.; Dietler, Giovanni; Lashuel, Hilal A.; Hamley, Ian W.; Mezzenga, Raffaele

    2012-07-01

    We report the investigation of the mechanical properties of different types of amyloid fibrils by the peak force quantitative nanomechanical (PF-QNM) technique. We demonstrate that this technique correctly measures the Young's modulus independent of the polymorphic state and the cross-sectional structural details of the fibrils, and we show that values for amyloid fibrils assembled from heptapeptides, α-synuclein, Aβ(1-42), insulin, β-lactoglobulin, lysozyme, ovalbumin, Tau protein and bovine serum albumin all fall in the range of 2-4 GPa.

  3. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-02-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.

  4. Atomic force microscope cantilever spring constant evaluation for higher mode oscillations: A kinetostatic method

    SciTech Connect

    Tseytlin, Yakov M.

    2008-02-15

    Our previous study of the particle mass sensor has shown a large ratio (up to thousands) between the spring constants of a rectangular cantilever in higher mode vibration and at the static bending or natural mode vibration. This has been proven by us through the derived nodal point position equation. That solution is good for a cantilever with the free end in noncontact regime and the probe shifted from the end to an effective section and contacting a soft object. Our further research shows that the same nodal position equation with the proper frequency equations may be used for the same spring constant ratio estimation if the vibrating at higher mode cantilever's free end has a significant additional mass clamped to it or that end is in permanent contact with an elastic or hard measurand object (reference cantilever). However, in the latter case, the spring constant ratio is much smaller (in tens) than in other mentioned cases at equal higher (up to fourth) vibration modes. We also present the spring constant ratio for a vibrating at higher eigenmode V-shaped cantilever, which is now in wide use for atomic force microscopy. The received results on the spring constant ratio are in good (within a few percent) agreement with the theoretical and experimental data published by other researchers. The knowledge of a possible spring constant transformation is important for the proper calibration and use of an atomic force microscope with vibrating cantilever in the higher eigenmodes for measurement and imaging with enlarged resolution.

  5. Calculation of reaction forces in the boiler supports using the method of equivalent stiffness of membrane wall.

    PubMed

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan

    2014-01-01

    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of "Milano" boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized. PMID:24959612

  6. A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy

    SciTech Connect

    Mullin, Nic Hobbs, Jamie K.

    2014-11-15

    Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner et al. that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in situ in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson et al. We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used.

  7. Calculation of Reaction Forces in the Boiler Supports Using the Method of Equivalent Stiffness of Membrane Wall

    PubMed Central

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan

    2014-01-01

    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of “Milano” boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized. PMID:24959612

  8. Calculation of reaction forces in the boiler supports using the method of equivalent stiffness of membrane wall.

    PubMed

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan

    2014-01-01

    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of "Milano" boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.

  9. Comparison between Mean Forces and Swarms-of-Trajectories String Methods.

    PubMed

    Maragliano, Luca; Roux, Benoît; Vanden-Eijnden, Eric

    2014-02-11

    The original formulation of the string method in collective variable space is compared with a recent variant called string method with swarms-of-trajectories. The assumptions made in the original method are revisited and the significance of the minimum free energy path (MFEP) is discussed in the context of reactive events. These assumptions are compared to those made in the string method with swarms-of-trajectories, and shown to be equivalent in a certain regime: in particular an expression for the path identified by the swarms-of-trajectories method is given and shown to be closely related to the MFEP. Finally, the algorithmic aspects of both methods are compared.

  10. Theoretical studies of vibrational energies and force constants of diatomic electronic states using algebraic approach and variational method

    NASA Astrophysics Data System (ADS)

    Sun, Weiguo; Hou, Shilin

    2002-05-01

    An algebraic method (AM) is proposed to study the accurate vibrational constants and energies based on an accurate limited experimental/theoretical input data set, and a potential variational method (PVM) is suggested to generate reliable force constants, rotational spectrum constants and rovibrational energies for a diatomic molecular electronic state based on the second order perturbation theory. The vibrational force constants fn's used to evaluate the rotational spectrum constants are determined variationally. The AM generates accurate vibrational constants and energies using standard algebraic approach without any mathematical and/or physical approximations. The accuracy of the AM vibrational constants and energies is uniquely dependent on the quality of the input experimental/theoretical data. Both the AM and the PVM have been applied to study 10 diatomic electronic states of H2, N2, O2, and Br2 molecules. These example studies show that: 1.) the AM not only reproduce the input energies, but also generate the Ev's of high vibrational excited states which may be difficult to obtain experimentally or theoretically; 2.) the PVM vibrational force constants fn's may be used to measure the relative chemical bond strengths of different diatomic electronic states for a molecule quantitatively.

  11. Pseudo-dynamic analysis of a cemented hip arthroplasty using a force method based on the Newmark algorithm.

    PubMed

    Ramos, A; Talaia, P; Queirós de Melo, F J

    2016-01-01

    The main goal of this work was to develop an approached model to study dynamic behavior and prediction of the stress distribution in an in vitro Charnley cemented hip arthroplasty. An alternative version of the described pseudo-dynamic procedure is proposed by using the time integration Newmark algorithm. An internal restoring force vector is numerically calculated from the displacement, velocity, and acceleration vectors. A numerical model of hip replacement was developed to analyze the deformation of a dynamically stressed structure for all time steps. The experimental measurement of resulting internal forces generated in the structure (internal restoring force vector) is the second fundamental step of the pseudo-dynamic procedure. These data (as a feedback) are used by the time integration algorithm, which allows updating of the structure's shape for the next displacement, velocity, and acceleration vectors. In the field of Biomechanics, the potentialities of this method contribute to the determination of a dynamically equivalent in vitro stress field of a cemented hip prosthesis; implant fitted in patients with a normal mobility or practice sports. Consequences of the stress distribution in the implant zone that underwent cyclic fatigue loads were also discussed by using a finite element model. Application of this method in Biomechanics appears as a useful tool in the approximate stress field characterization of the peak stress state. Results show a peak value around two times the static situation, more for making possible the prediction of future damage and a programed clinical examination in patients using hip prosthesis. PMID:25483822

  12. Conservative self-force correction to the innermost stable circular orbit: Comparison with multiple post-Newtonian-based methods

    NASA Astrophysics Data System (ADS)

    Favata, Marc

    2011-01-01

    Barack and Sago [Phys. Rev. Lett. 102, 191101 (2009)PRLTAO0031-900710.1103/PhysRevLett.102.191101] have recently computed the shift of the innermost stable circular orbit (ISCO) of the Schwarzschild spacetime due to the conservative self-force that arises from the finite-mass of an orbiting test-particle. This calculation of the ISCO shift is one of the first concrete results of the self-force program, and provides an exact (fully relativistic) point of comparison with approximate post-Newtonian (PN) computations of the ISCO. Here this exact ISCO shift is compared with nearly all known PN-based methods. These include both “nonresummed” and “resummed” approaches (the latter reproduce the test-particle limit by construction). The best agreement with the exact (Barack-Sago) result is found when the pseudo-4PN coefficient of the effective-one-body (EOB) metric is fit to numerical relativity simulations. However, if one considers uncalibrated methods based only on the currently known 3PN-order conservative dynamics, the best agreement is found from the gauge-invariant ISCO condition of Blanchet and Iyer [Classical Quantum GravityCQGRDG0264-9381 20, 755 (2003)10.1088/0264-9381/20/4/309], which relies only on the (nonresummed) 3PN equations of motion. This method reproduces the exact test-particle limit without any resummation. A comparison of PN methods with the ISCO in the equal-mass case (computed via sequences of numerical relativity initial-data sets) is also performed. Here a (different) nonresummed method also performs very well (as was previously shown). These results suggest that the EOB approach—while exactly incorporating the conservative test-particle dynamics and having several other important advantages—does not (in the absence of calibration) incorporate conservative self-force effects more accurately than standard PN methods. I also consider how the conservative self-force ISCO shift, combined in some cases with numerical relativity

  13. Conservative self-force correction to the innermost stable circular orbit: Comparison with multiple post-Newtonian-based methods

    SciTech Connect

    Favata, Marc

    2011-01-15

    Barack and Sago [Phys. Rev. Lett. 102, 191101 (2009)] have recently computed the shift of the innermost stable circular orbit (ISCO) of the Schwarzschild spacetime due to the conservative self-force that arises from the finite-mass of an orbiting test-particle. This calculation of the ISCO shift is one of the first concrete results of the self-force program, and provides an exact (fully relativistic) point of comparison with approximate post-Newtonian (PN) computations of the ISCO. Here this exact ISCO shift is compared with nearly all known PN-based methods. These include both 'nonresummed' and 'resummed' approaches (the latter reproduce the test-particle limit by construction). The best agreement with the exact (Barack-Sago) result is found when the pseudo-4PN coefficient of the effective-one-body (EOB) metric is fit to numerical relativity simulations. However, if one considers uncalibrated methods based only on the currently known 3PN-order conservative dynamics, the best agreement is found from the gauge-invariant ISCO condition of Blanchet and Iyer [Classical Quantum Gravity 20, 755 (2003)], which relies only on the (nonresummed) 3PN equations of motion. This method reproduces the exact test-particle limit without any resummation. A comparison of PN methods with the ISCO in the equal-mass case (computed via sequences of numerical relativity initial-data sets) is also performed. Here a (different) nonresummed method also performs very well (as was previously shown). These results suggest that the EOB approach - while exactly incorporating the conservative test-particle dynamics and having several other important advantages - does not (in the absence of calibration) incorporate conservative self-force effects more accurately than standard PN methods. I also consider how the conservative self-force ISCO shift, combined in some cases with numerical relativity computations of the ISCO, can be used to constrain our knowledge of (1) the EOB effective metric, (2

  14. Method for Cleanly and Precisely Breaking Off a Rock Core Using a Radial Compressive Force

    NASA Technical Reports Server (NTRS)

    Richardson, Megan; Lin, Justin

    2011-01-01

    The Mars Sample Return mission has the goal to drill, break off, and retain rock core samples. After some results gained from rock core mechanics testing, the realization that scoring teeth would cleanly break off the core after only a few millimeters of penetration, and noting that rocks are weak in tension, the idea was developed to use symmetric wedging teeth in compression to weaken and then break the core at the contact plane. This concept was developed as a response to the break-off and retention requirements. The wedges wrap around the estimated average diameter of the core to get as many contact locations as possible, and are then pushed inward, radially, through the core towards one another. This starts a crack and begins to apply opposing forces inside the core to propagate the crack across the plane of contact. The advantage is in the simplicity. Only two teeth are needed to break five varieties of Mars-like rock cores with limited penetration and reasonable forces. Its major advantage is that it does not require any length of rock to be attached to the parent in order to break the core at the desired location. Test data shows that some rocks break off on their own into segments or break off into discs. This idea would grab and retain a disc, push some discs upward and others out, or grab a segment, break it at the contact plane, and retain the portion inside of the device. It also does this with few moving parts in a simple, space-efficient design. This discovery could be implemented into a coring drill bit to precisely break off and retain any size rock core.

  15. New method for oblique impact dynamics research of a flexible beam with large overall motion considering impact friction force

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Li, L.; Zhang, D. G.; Hong, J. Z.

    2016-08-01

    A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid modeling method, dynamic equations of the system, which include all states (before, during, and after the collision) are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.

  16. New modified weight function for the dissipative force in the DPD method to increase the Schmidt number

    NASA Astrophysics Data System (ADS)

    Yaghoubi, S.; Shirani, E.; Pishevar, A. R.; Afshar, Y.

    2015-04-01

    To simulate liquid fluid flows with high Schmidt numbers (Sc), one needs to use a modified version of the Dissipative Particle Dynamics (DPD) method. Recently the modifications made by others for the weight function of dissipative forces, enables DPD simulations for Sc, up to 10. In this paper, we introduce a different dissipative force weight function for DPD simulations that allows achieving a solution with higher values of Sc and improving the dynamic characteristics of the simulating fluid. Moreover, by reducing the energy of DPD particles, even higher values of Sc can be achieved. Finally, using the new proposed weight function and kBT =0.2 , the Sc values can reach up to 200.

  17. Performance evaluation of direct forced-air total solids and Kjeldahl total nitrogen methods: 1990 through 1995.

    PubMed

    Lynch, J M; Barbano, D M; Healy, P A; Fleming, J R

    1997-01-01

    Results from collaborative studies of the performance of the direct forced-air oven-drying method for determination of milk total solids content (AOAC Method 990.20) and the Kjeldahl total nitrogen method for determination of milk total nitrogen content (AOAC Method 991.20) were published in 1989 and 1990, respectively. Method performance was characterized by using the harmonized ISO/IU-PAC/AOAC guidelines for method validation, and the methods now have final action status. During 1990 through 1995, the split sample collaborative study format was used to monitor the performance of these methods as part of a multilaboratory quality assurance program. Seven blind duplicate milk materials were sent from a central laboratory once every 2 months to participating laboratories. Data were analyzed with the same statistical procedures used in the original collaborative studies. Compared with the original collaborative study, the repeatability and reproducibility of the oven-drying method improved over time. For the Kjeldahl total nitrogen method, within-laboratory repeatability improved slightly, whereas between-laboratory reproducibility was similar to but not always as good as in the original study. The results demonstrate that the statistical protocol for collaborative studies can be used effectively as the basis for a multilaboratory quality assurance program and that the method performance achieved in a collaborative study can be maintained and even improved with time.

  18. Comparison between Mean Forces and Swarms-of-Trajectories String Methods.

    PubMed

    Maragliano, Luca; Roux, Benoît; Vanden-Eijnden, Eric

    2014-02-11

    The original formulation of the string method in collective variable space is compared with a recent variant called string method with swarms-of-trajectories. The assumptions made in the original method are revisited and the significance of the minimum free energy path (MFEP) is discussed in the context of reactive events. These assumptions are compared to those made in the string method with swarms-of-trajectories, and shown to be equivalent in a certain regime: in particular an expression for the path identified by the swarms-of-trajectories method is given and shown to be closely related to the MFEP. Finally, the algorithmic aspects of both methods are compared. PMID:26580029

  19. A new two-alternative forced choice method for the unbiased characterization of perceptual bias and discriminability.

    PubMed

    Jogan, Matjaž; Stocker, Alan A

    2014-03-13

    Perception is often biased by secondary stimulus attributes (e.g., stimulus noise, attention, or spatial context). A correct quantitative characterization of perceptual bias is essential for testing hypotheses about the underlying perceptual mechanisms and computations. We demonstrate that the standard two-alternative forced choice (2AFC) method can lead to incorrect estimates of perceptual bias. We present a new 2AFC method that solves this problem by asking subjects to judge the relative perceptual distances between the test and each of two reference stimuli. Naïve subjects can easily perform this task. We successfully validated the new method with a visual motion-discrimination experiment. We demonstrate that the method permits an efficient and accurate characterization of perceptual bias and simultaneously provides measures of discriminability for both the reference and test stimulus, all from a single stimulus condition. This makes it an attractive choice for the characterization of perceptual bias and discriminability in a wide variety of psychophysical experiments.

  20. Adjusting and positioning method with high displacement resolution for large-load worktable based on the invariable restoring force

    NASA Astrophysics Data System (ADS)

    Huang, Jingzhi; Sun, Tao; Gu, Wei; Wen, Zhongpu; Guo, Tenghui

    2015-02-01

    With the fast development of the advanced equipment manufacturing toward precision and ultra-precision trend, especially with the continuously improving of the aviation engine's performance, the problem of high displacement resolution for the large-load two-dimension adjusting and positioning worktable used for the aeroengine assembling become evident. A method was proposed which is based on the invariable restoring force, and the adjusting and positioning physical model was established. The experiment results indicate that under the occasion of a load with 508 kilogram, the worktable has got a displacement resolution of 0.3μm after using the improved method compared to 1.4μm of the traditional method. The improved method could meet the requirements of aviation engine assembling worktable.

  1. A method for the direct measurement of surface tension of collected atmospherically relevant aerosol particles using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hritz, Andrew D.; Raymond, Timothy M.; Dutcher, Dabrina D.

    2016-08-01

    Accurate estimates of particle surface tension are required for models concerning atmospheric aerosol nucleation and activation. However, it is difficult to collect the volumes of atmospheric aerosol required by typical instruments that measure surface tension, such as goniometers or Wilhelmy plates. In this work, a method that measures, ex situ, the surface tension of collected liquid nanoparticles using atomic force microscopy is presented. A film of particles is collected via impaction and is probed using nanoneedle tips with the atomic force microscope. This micro-Wilhelmy method allows for direct measurements of the surface tension of small amounts of sample. This method was verified using liquids, whose surface tensions were known. Particles of ozone oxidized α-pinene, a well-characterized system, were then produced, collected, and analyzed using this method to demonstrate its applicability for liquid aerosol samples. It was determined that oxidized α-pinene particles formed in dry conditions have a surface tension similar to that of pure α-pinene, and oxidized α-pinene particles formed in more humid conditions have a surface tension that is significantly higher.

  2. Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows

    NASA Astrophysics Data System (ADS)

    Bassenne, Maxime; Urzay, Javier; Park, George I.; Moin, Parviz

    2016-03-01

    This study investigates control-based forcing methods for incompressible homogeneous-isotropic turbulence forced linearly in physical space which result in constant turbulent kinetic energy, constant turbulent dissipation (also constant enstrophy), or a combination of the two based on a least-squares error minimization. The methods consist of proportional controllers embedded in the forcing coefficients. During the transient, the controllers adjust the forcing coefficients such that the controlled quantity achieves very early a minimal relative error with respect to its target stationary value. Comparisons of these forcing methods are made with the non-controlled approaches of Rosales and Meneveau ["Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties," Phys. Fluids 17, 095106 (2005)] and Carroll and Blanquart ["A proposed modification to Lundgren's physical space velocity forcing method for isotropic turbulence," Phys. Fluids 25, 105114 (2013)], using direct numerical simulations (DNS) and large-eddy simulations (LES). The results indicate that the proposed constant-energetics forcing methods shorten the transient period from a user-defined artificial flow field to Navier-Stokes turbulence while maintaining steadier statistics. Additionally, the proposed method of constant kinetic-energy forcing behaves more robustly in coarse LES when initial conditions are employed that favor the occurrence of subgrid-scale backscatter, whereas the other approaches fail to provide physical turbulent flow fields. For illustration, the proposed forcing methods are applied to dilute particle-laden homogeneous-isotropic turbulent flows; the results serve to highlight the influences of the forcing strategies on the disperse-phase statistics.

  3. Instrumentation and Methods to Measure Dynamic Forces During Exercise Using the Horizontal Exercise Machine

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    1999-01-01

    It is hypothesized that bone loss experienced by astronauts in zero gravity conditions may be curtailed by appropriate exercise. According to Wolf's law, bone regenerates when muscles produce stresses by pulling on the bone during daily activity and/or exercise on Earth. To use this theory to prevent or decrease bone loss, one needs to quantify musculoskeletal loads and relate them to bone density changes. In the context of the space program, it is desirable to determine musculoskeletal loads during exercise so that one may make similar measurements on Earth and in space. In this manner, load measurements on Earth may be used as reference to generate similar loads during exercise in space. A research project to investigate the effects of high-resistive exercise to decrease bone density loss underzero-gravity conditions is being carried out in Life Sciences Research Laboratories at NASA JSC. The project consists of a bed-rest study whereby subjects remain in horizontal position for seventeen weeks. During the study, a subset of those subjects executes a regime of resistive exercises in the horizontal exercise machine (HEM). The HEM was designed so that subjects remain horizontal while exercising to minimize gravity loading even during exercise. Bone density of each subject is measured throughout the duration of their participation. The objective of the study is to determine if the resistive exercises are effective in diminishing or eliminating bone loss. My participation in this project relates to instrumentation, measurement, and processing of signals from displacement sensors (optical encoders) and load-cells. Measurement of displacements will be used to determine the motion of the body during exercise, and load measurements will be used (along with displacement data) to determine forces and torques exerted on each section of the body during exercise. Further, I have assisted in specifying new sensors to be added to the HEM and to a new prototype resistive

  4. The molecular yo-yo method: Live jump detection improves throughput of single-molecule force spectroscopy for out-of-equilibrium transitions

    NASA Astrophysics Data System (ADS)

    Mack, A. H.; Schlingman, D. J.; Kamenetska, M.; Collins, R.; Regan, L.; Mochrie, S. G. J.

    2013-08-01

    By monitoring multiple molecular transitions, force-clamp, and trap-position-clamp methods have led to precise determinations of the free energies and free energy landscapes for molecular states populated in equilibrium at the same or similar forces. Here, we present a powerful new elaboration of the force-clamp and force-jump methods, applicable to transitions far from equilibrium. Specifically, we have implemented a live jump detection and force-clamp algorithm that intelligently adjusts and maintains the force on a single molecule in response to the measured state of that molecule. We are able to collect hundreds of individual molecular transitions at different forces, many times faster than previously, permitting us to accurately determine force-dependent lifetime distributions and reaction rates. Application of our method to unwinding and rewinding the nucleosome inner turn, using optical tweezers reveals experimental lifetime distributions that comprise a statistically meaningful number of transitions, and that are accurately single exponential. These measurements significantly reduce the error in the previously measured rates, and demonstrate the existence of a single, dominant free energy barrier at each force studied. A key benefit of the molecular yo-yo method for nucleosomes is that it reduces as far as possible the time spent in the tangentially bound state, which minimizes the loss of nucleosomes by dissociation.

  5. Developing a 3D Constrained Variational Analysis Method to Calculate Large Scale Forcing Data and the Applications

    NASA Astrophysics Data System (ADS)

    Tang, S.; Zhang, M. H.

    2014-12-01

    Large-scale forcing data (vertical velocities and advective tendencies) are important atmospheric fields to drive single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulations (LES), but they are difficult to calculate accurately. The current 1-dimensional constrained variational analysis (1D CVA) method (Zhang and Lin, 1997) used by the Atmospheric Radiation Measurement (ARM) program is limited to represent the average of a sounding network domain. We extended the original 1D CVA algorithm into 3-dimensional along with other improvements, calculated gridded large-scale forcing data, apparent heating sources (Q1) and moisture sinks (Q2), and compared with 5 reanalyses: ERA-Interim, NCEP CFSR, MERRA, JRA55 and NARR for a mid-latitude spring cyclone case. The results from a case study for in March 3rd 2000 at the Southern Great Plain (SGP) show that reanalyses generally captured the structure of the mid-latitude cyclone, but they have serious biases in the 2nd order derivative terms (divergences and horizontal derivations) at regional scales of less than a few hundred kilometers. Our algorithm provides a set of atmospheric fields consistent with the observed constraint variables at the surface and top of the atmosphere better than reanalyses. The analyzed atmospheric fields can be used in SCM, CRM and LES to provide 3-dimensional dynamical forcing, or be used to evaluate reanalyses or model simulations.

  6. Force sensor

    DOEpatents

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  7. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  8. Examining single-source secondary impacts estimated from brute-force, decoupled direct method, and advanced plume treatment approaches

    NASA Astrophysics Data System (ADS)

    Kelly, James T.; Baker, Kirk R.; Napelenok, Sergey L.; Roselle, Shawn J.

    2015-06-01

    In regulatory assessments, there is a need for reliable estimates of the impacts of precursor emissions from individual sources on secondary PM2.5 (particulate matter with aerodynamic diameter less than 2.5 microns) and ozone. Three potential methods for estimating these impacts using Eulerian grid photochemical models are the brute-force (B-F) method, the decoupled direct method (DDM), and advanced plume treatment (APT). Here, we systematically inter-compare and assess the B-F, DDM, and APT approaches using hypothetical sources in a consistent modeling platform for a wide range of source conditions (i.e., emissions amount and composition, location within two California air basins, and stack parameters). The impacts of NOx and VOC sources on ozone and SO2 sources on PM2.5 sulfate calculated by these methods are in general agreement. The agreement is evident in the similar magnitudes, spatial patterns, and strong correlations among the impacts. This result, along with previous model evaluations based on similar Eulerian grid modeling, builds confidence in the reliability of the impact estimates. Disagreement among methods is evident in calculations of PM2.5 nitrate impacts associated with NH3 and NOx sources. Numerical instabilities in DDM sensitivity calculations compromise the nitrate impact estimates from that approach. The B-F and APT methods, which use brute-force differencing to identify impacts, are affected by numerical artifacts to a lesser degree than (H)DDM, with the artifacts being more prominent for APT than B-F. Overall, our results indicate that the (H)DDM, B-F, and APT approaches are viable for use in estimating single-source impacts for ozone and secondary PM2.5 sulfate, while the B-F method appears to be the most reliable for estimating nitrate impacts. There is a need for additional field study measurements to better constrain model estimates of single-source secondary impacts.

  9. Study on the description method of upper limb's muscle force levels during simulated in-orbit operations

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Li, DongXu; Liu, ZhiZhen; Liu, Liang

    2013-03-01

    The dexterous upper limb serves as the most important tool for astronauts to implement in-orbit experiments and operations. This study developed a simulated weightlessness experiment and invented new measuring equipment to quantitatively evaluate the muscle ability of the upper limb. Isometric maximum voluntary contractions (MVCs) and surface electromyography (sEMG) signals of right-handed pushing at the three positions were measured for eleven subjects. In order to enhance the comprehensiveness and accuracy of muscle force assessment, the study focused on signal processing techniques. We applied a combination method, which consists of time-, frequency-, and bi-frequency-domain analyses. Time- and frequency-domain analyses estimated the root mean square (RMS) and median frequency (MDF) of sEMG signals, respectively. Higher order spectra (HOS) of bi-frequency domain evaluated the maximum bispectrum amplitude ( B max), Gaussianity level (Sg) and linearity level (S l ) of sEMG signals. Results showed that B max, S l , and RMS values all increased as force increased. MDF and Sg values both declined as force increased. The research demonstrated that the combination method is superior to the conventional time- and frequency-domain analyses. The method not only described sEMG signal amplitude and power spectrum, but also deeper characterized phase coupling information and non-Gaussianity and non-linearity levels of sEMG, compared to two conventional analyses. The finding from the study can aid ergonomist to estimate astronaut muscle performance, so as to optimize in-orbit operation efficacy and minimize musculoskeletal injuries.

  10. Numerical Manifold Method for the Forced Vibration of Thin Plates during Bending

    PubMed Central

    Jun, Ding; Song, Chen; Wei-Bin, Wen; Shao-Ming, Luo; Xia, Huang

    2014-01-01

    A novel numerical manifold method was derived from the cubic B-spline basis function. The new interpolation function is characterized by high-order coordination at the boundary of a manifold element. The linear elastic-dynamic equation used to solve the bending vibration of thin plates was derived according to the principle of minimum instantaneous potential energy. The method for the initialization of the dynamic equation and its solution process were provided. Moreover, the analysis showed that the calculated stiffness matrix exhibited favorable performance. Numerical results showed that the generalized degrees of freedom were significantly fewer and that the calculation accuracy was higher for the manifold method than for the conventional finite element method. PMID:24883403

  11. A Design Method of Force Dependent Velocity Bilateral Control Based on Gyrator Property

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Takahiro; Kuwahara, Hiroaki; Ohnishi, Kouhei

    This paper proposes a bilateral control method for a teleoperation system with different sizes and work volumes. In the proposed controller, transformer-type bilateral control and gyrator-type bilateral control are integrated. The proposed control method can be used for the control of the motion of a slave robot; this involves intuitive manipulation of the master robot despite the structural difference between the master and slave.

  12. Screening Method for calculating Global Warming Potential through computational and experimental investigations of radiative forcing and atmospheric lifetime

    NASA Astrophysics Data System (ADS)

    Bevington, C. B.; Betowski, D.; Ottinger, D.; Sheppard, M.; Elrod, M. J.; Offenberg, J.; Hetfield, C.; Libelo, E. L.

    2011-12-01

    The universe of chemical substances in commerce that may have significant atmospheric impacts such as global warming potential, ozone depletion potential, and ozone creation potential is not well defined. Staff from the U.S. E.P.A. have developed a screening method and evaluated chemicals using criteria indicative of potential atmospheric impact. Screening criteria included physical chemical properties such as boiling point and vapor pressure as well as structural characteristics such as molecular weight and number of halogen atoms. Preliminary results show that there are over 1,000 chemicals with a 100-year time horizon Global Warming Potential (GWP) of greater than 1 and over 700 chemicals with a GWP of greater than 10, relative to a value of 1 for CO2. The primary goal of this scoping project is to calculate the GWP for each of these chemicals. GWP is calculated using three primary inputs: molecular weight, atmospheric lifetime, and radiative forcing. Where available, experimentally derived radiative forcing and atmospheric lifetime values have been identified and are utilized. Surprisingly, measured values were only available for approximately 20% of chemicals. Where measured data were not available, values were estimated in various ways. Besides calculating these values, characterizing the accuracy and efficacy of these various estimation methods, is also of interest. Radiative efficiency was calculated using quantum mechanical ab initio methods, utilizing Gaussian software. In addition, a preliminary Quantitative Structure Activity Relationship (QSAR) building on the work of Bera et al's "Design strategies to minimize the radiative efficiency of global warming molecules" (2010) was used to estimate radiative forcing for over 800 fluorinated chemicals. For atmospheric lifetime, QSARs were used to estimate OH rate constants and atmospheric lifetime values. Recognizing the limitations and uncertainty introduced by using QSARs for atmospheric lifetime estimation

  13. Direct method for magnetostriction coefficient measurement based on atomic force microscope, illustrated by the example of Tb-Co film

    NASA Astrophysics Data System (ADS)

    Lima, B. L. S.; Maximino, F. L.; Santos, J. C.; Santos, A. D.

    2015-12-01

    This paper presents a method based on the Atomic Force Microscopy technique for direct measurement of magnetostriction coefficient of amorphous Tb-Co films deposited on Si(100) substrate. The magnetostriction coefficient of the film is determined by AFM measuring the deflection of the sample when applying a magnetic field. In order to maximize the deflection of the sample, in-plane magnetic anisotropy was induced by heat treatment under a magnetic field of 5 kOe. The value obtained for the saturation magnetostriction is 204×10-6 for the Tb23Co77 film.

  14. Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part I. Atomic force microscopy.

    PubMed

    Balashev, K; Jensen, T R; Kjaer, K; Bjørnholm, T

    2001-05-01

    Mono-layers of lipids and their interaction with surface active enzymes (lipases) have been studied for more than a century. During the past decade new insight into this area has been obtained due to the development of scanning probe microscopy. This novel method provides direct microscopic information about the system in question and allows in situ investigations under near physiological conditions. In the present review the theory, experimental set-up and sample requirements of atomic force microscopy (AFM) are described. An overview of recent results is also presented with special emphasis on lipase hydrolysis and kinetics investigated in situ using AFM.

  15. Utilizing Force Field Methods to Explore Potential Energy Landscapes of Flexible Biomolecules

    NASA Astrophysics Data System (ADS)

    Davis, Zachary S.; Carr, Joanne M.; Tan, Ivan Y. W.; Wales, David J.; Zwier, Timothy S.

    2012-06-01

    Spectroscopic studies of single conformations of flexible biomolecules are providing considerable new physical insight to their conformational preferences. Such studies are done against a backdrop of a full potential energy surface (PES) that has great complexity, often containing thousands of minima and an even greater number of transition states separating them. Often the relationship between experiment and the full PES is unclear. In this context, it would be extremely helpful to have predictions and summaries of the PES that enable comparisons from one molecule to the next, and of one molecule under different conditions. By utilizing the speed of force field calculations, the potential energy surface may be thoroughly explored, including both minima and transition states, in a computationally inexpensive manner. As minima and transition states are found, they are added to a disconnectivity graph, a summary of the entire potential energy surface in which the different minima are connected to one another by one or more transition states, which are grouped by energy. Disconnectivity graphs have been prepared for the flexible hexamide Z-(Gly)_5-NHMe (where the Z-cap is a benzocarboxy substituent), which has been studied experimentally in isolated form using single-conformation spectroscopy. Disconnectivity graphs of both the isolated and solvated molecule provide insight to the solvent-induced conformational differences. In addition, the peptide Ac-Phe-Ala-NHMe has been modeled using all α-amino acids, all β-amino acids, and all γ-amino acids. As the flexibility and complexity of the triamide increases, the disconnectivity graphs illuminate changes in the relationships between different conformational families as well as any changes in the height of the barriers between those families. These results will be compared to previous results from single-conformation spectroscopy on this series.

  16. The extended wedge method: Atomic force microscope friction calibration for improved tolerance to instrument misalignments, tip offset, and blunt probes

    SciTech Connect

    Khare, H. S.; Burris, D. L.

    2013-05-15

    One of the major challenges in understanding and controlling friction is the difficulty in bridging the length and time scales of macroscale contacts and those of the single asperity interactions they comprise. While the atomic force microscope (AFM) offers a unique ability to probe tribological surfaces in a wear-free single-asperity contact, instrument calibration challenges have limited the usefulness of this technique for quantitative nanotribological studies. A number of lateral force calibration techniques have been proposed and used, but none has gained universal acceptance due to practical considerations, configuration limitations, or sensitivities to unknowable error sources. This paper describes a simple extension of the classic wedge method of AFM lateral force calibration which: (1) allows simultaneous calibration and measurement on any substrate, thus eliminating prior tip damage and confounding effects of instrument setup adjustments; (2) is insensitive to adhesion, PSD cross-talk, transducer/piezo-tube axis misalignment, and shear-center offset; (3) is applicable to integrated tips and colloidal probes; and (4) is generally applicable to any reciprocating friction coefficient measurement. The method was applied to AFM measurements of polished carbon (99.999% graphite) and single crystal MoS{sub 2} to demonstrate the technique. Carbon and single crystal MoS{sub 2} had friction coefficients of {mu}= 0.20 {+-} 0.04 and {mu}= 0.006 {+-} 0.001, respectively, against an integrated Si probe. Against a glass colloidal sphere, MoS{sub 2} had a friction coefficient of {mu}= 0.005 {+-} 0.001. Generally, the measurement uncertainties ranged from 10%-20% and were driven by the effect of actual frictional variation on the calibration rather than calibration error itself (i.e., due to misalignment, tip-offset, or probe radius).

  17. The extended wedge method: atomic force microscope friction calibration for improved tolerance to instrument misalignments, tip offset, and blunt probes.

    PubMed

    Khare, H S; Burris, D L

    2013-05-01

    One of the major challenges in understanding and controlling friction is the difficulty in bridging the length and time scales of macroscale contacts and those of the single asperity interactions they comprise. While the atomic force microscope (AFM) offers a unique ability to probe tribological surfaces in a wear-free single-asperity contact, instrument calibration challenges have limited the usefulness of this technique for quantitative nanotribological studies. A number of lateral force calibration techniques have been proposed and used, but none has gained universal acceptance due to practical considerations, configuration limitations, or sensitivities to unknowable error sources. This paper describes a simple extension of the classic wedge method of AFM lateral force calibration which: (1) allows simultaneous calibration and measurement on any substrate, thus eliminating prior tip damage and confounding effects of instrument setup adjustments; (2) is insensitive to adhesion, PSD cross-talk, transducer/piezo-tube axis misalignment, and shear-center offset; (3) is applicable to integrated tips and colloidal probes; and (4) is generally applicable to any reciprocating friction coefficient measurement. The method was applied to AFM measurements of polished carbon (99.999% graphite) and single crystal MoS2 to demonstrate the technique. Carbon and single crystal MoS2 had friction coefficients of μ = 0.20 ± 0.04 and μ = 0.006 ± 0.001, respectively, against an integrated Si probe. Against a glass colloidal sphere, MoS2 had a friction coefficient of μ = 0.005 ± 0.001. Generally, the measurement uncertainties ranged from 10%-20% and were driven by the effect of actual frictional variation on the calibration rather than calibration error itself (i.e., due to misalignment, tip-offset, or probe radius).

  18. Potential of the pseudo-inverse method as a constrained static optimization for musculo-tendon forces prediction.

    PubMed

    Moissenet, Florent; Chèze, Laurence; Dumas, Raphaël

    2012-06-01

    Inverse dynamics combined with a constrained static optimization analysis has often been proposed to solve the muscular redundancy problem. Typically, the optimization problem consists in a cost function to be minimized and some equality and inequality constraints to be fulfilled. Penalty-based and Lagrange multipliers methods are common optimization methods for the equality constraints management. More recently, the pseudo-inverse method has been introduced in the field of biomechanics. The purpose of this paper is to evaluate the ability and the efficiency of this new method to solve the muscular redundancy problem, by comparing respectively the musculo-tendon forces prediction and its cost-effectiveness against common optimization methods. Since algorithm efficiency and equality constraints fulfillment highly belong to the optimization method, a two-phase procedure is proposed in order to identify and compare the complexity of the cost function, the number of iterations needed to find a solution and the computational time of the penalty-based method, the Lagrange multipliers method and pseudo-inverse method. Using a 2D knee musculo-skeletal model in an isometric context, the study of the cost functions isovalue curves shows that the solution space is 2D with the penalty-based method, 3D with the Lagrange multipliers method and 1D with the pseudo-inverse method. The minimal cost function area (defined as the area corresponding to 5% over the minimal cost) obtained for the pseudo-inverse method is very limited and along the solution space line, whereas the minimal cost function area obtained for other methods are larger or more complex. Moreover, when using a 3D lower limb musculo-skeletal model during a gait cycle simulation, the pseudo-inverse method provides the lowest number of iterations while Lagrange multipliers and pseudo-inverse method have almost the same computational time. The pseudo-inverse method, by providing a better suited cost function and an

  19. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope.

    PubMed

    Sader, John E; Lu, Jianing; Mulvaney, Paul

    2014-11-01

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied - in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry - neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  20. Studies on the Vibrational and Rovibrational Energies and Vibrational Force Constants of Diatomic Molecular States Using Algebraic and Variational Methods

    NASA Astrophysics Data System (ADS)

    Sun, Weiguo; Hou, Shilin; Feng, Hao; Ren, Weiyi

    2002-09-01

    Alternative expressions for vibrational and rotational spectrum constants and energies of diatomic molecular electronic states based on perturbation theory are suggested. An algebraic method (AM) is proposed to generate a converged full vibrational spectrum from limited energy data, and a potential variational method (PVM) is suggested to produce the vibrational force constants fn and rotational spectrum constants using the perturbation formulae and the AM vibrational constants. The AM and PVM have been applied to study 10 diatomic electronic states: the X1Σ g+ and C1Π u- states of H 2; the X1Σ g+, A3Σ u+, B' 3Σ u-, and B3Π g states of N 2; the X3Σ g-, A3Σ u+, and c1Σ u- states of O 2; and the X1Σ g+ state of Br 2. Calculations show that (1) the AM Eυ max converges to the correct molecular dissociation energy; (2) the AM not only reproduce the input energies, but also generate the Eυ's of high vibrational excited states which may be difficult to obtain experimentally or theoretically; (3) the PVM vibrational force constants fn may be used to measure the relative chemical bondstrengths of different diatomic electronic states for a molecule quantitatively.

  1. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope

    SciTech Connect

    Sader, John E.; Lu, Jianing; Mulvaney, Paul

    2014-11-15

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied – in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry – neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  2. Microfluidic devices, systems, and methods for quantifying particles using centrifugal force

    SciTech Connect

    Schaff, Ulrich Y.; Sommer, Gregory J.; Singh, Anup K.

    2015-11-17

    Embodiments of the present invention are directed toward microfluidic systems, apparatus, and methods for measuring a quantity of cells in a fluid. Examples include a differential white blood cell measurement using a centrifugal microfluidic system. A method may include introducing a fluid sample containing a quantity of cells into a microfluidic channel defined in part by a substrate. The quantity of cells may be transported toward a detection region defined in part by the substrate, wherein the detection region contains a density media, and wherein the density media has a density lower than a density of the cells and higher than a density of the fluid sample. The substrate may be spun such that at least a portion of the quantity of cells are transported through the density media. Signals may be detected from label moieties affixed to the cells.

  3. A method of noncontact suspension of rotating bodies using electromagnetic forces

    NASA Astrophysics Data System (ADS)

    Filatov, Alexei V.; Maslen, Eric H.; Gillies, George T.

    2002-02-01

    We propose and demonstrate a method of noncontact dynamically stabilized suspension which utilizes a combination of static interaction between permanent magnets and dynamic interaction between room-temperature conductors and magnets. The suspension features a combination of properties that are not collectively provided by any of the prior technologies, including load capacity and stiffness sufficient for many applications, low rotational loss, high efficiency, high reliability, and robustness to the system parameter variations and external disturbances. The rotational loss is expected to be virtually zero if only axial loading is applied: a condition which is very easy to satisfy in stationary applications if the rotation axis is vertical. The suspension is stable for any speed above a certain critical value. The validity of this method has been demonstrated by building and testing a prototype in which noncontact suspension of a 3.2 kg rotor is achieved when it rotates at spin speeds above 18 Hz.

  4. Investigation of the nanoscale elastic recovery of a polymer using an atomic force microscopy-based method

    NASA Astrophysics Data System (ADS)

    Geng, Yanquan; Yan, Yongda; Hu, Zhenjiang; Zhao, Xuesen

    2016-01-01

    An atomic force microscopy (AFM)-based method to reveal the elastic recovery behavior of a polymer material after the nanoscratching process is presented. The machined depth during scratching is obtained by monitoring the position of the piezoceramic tube (PZT) of the AFM system. By comparison with the measured depth of the nanogroove, the elastic recovery of the machined depth can be achieved. Experiments are also undertaken to study the effects of the scratching velocity and the applied normal load on the elastic recovery of the machined depth when scratching on polycarbonate (PC). Results show that the elastic recovery rate has a logarithmically proportional relationship to the scratching velocity, while it has little change with the variation of the applied normal load. In addition, the constitutive model of the polymer material is also used to verify the obtained conclusions, indicating that this is a potential method for measuring the elastic recovery of the material under the mechanical process on the nanoscale.

  5. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d′) in Yes-No and forced-choice tasks

    PubMed Central

    Lesmes, Luis A.; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A.; Albright, Thomas D.

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold—the signal intensity corresponding to a pre-defined sensitivity level (d′ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks—(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10–0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods. PMID:26300798

  6. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d') in Yes-No and forced-choice tasks.

    PubMed

    Lesmes, Luis A; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A; Albright, Thomas D

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold-the signal intensity corresponding to a pre-defined sensitivity level (d' = 1)-in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks-(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection-the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10-0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods.

  7. Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration

    DOEpatents

    Zeikus, Joseph G.; Park, Doo

    2001-01-01

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  8. Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration

    DOEpatents

    Zeikus, Gregory J.; Shin, Hyoun S.; Jain, Mahendra K.

    2002-01-01

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial, cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  9. Evolution of terrace risers along the upper Rhine graben inferred from morphologic dating methods: evidence of climatic and tectonic forcing

    NASA Astrophysics Data System (ADS)

    Nivière, B.; Marquis, Guy

    2000-06-01

    We show that morphologic dating techniques that have been applied successfully in arid and semi-arid areas are also suitable for slowly evolving scarps that are usually found in temperate climate environments. We have attempted two morphologic approaches, based on diffusion, to relate the present-day shape of an abandoned terrace riser to its age. The first assumes a model of scarp degradation based on a diffusive process (the D method). The second evaluates the state of scarp degradation using the slope distribution (the SD method) along a topographic profile. By using a manmade scarp of known age, we have obtained a mass diffusivity close to 1.4m2ka-1 when the area experiences a temperate climate characterized by a continuous vegetation cover. However, this value decreases during glacial episodes, probably on account of the permafrost. Even though the SD method requires an age correction that can be easily computed, only this method reveals that at several profiles a later scarp reactivation event has occurred. Indeed, along several profiles, the slope distribution was best fitted by two offset Gaussian curves, suggesting that some scarps have undergone a complex evolution that cannot be modelled with a single diffusive process. This scarp reactivation may correspond to a new incisive episode and allows one to estimate the vertical incision rate along the terrace riser. Applied to a Wurmian terrace riser of the upper Rhine valley (NE France), this approach reveals that the vertical incision rate ranges from 0.2 to 0.85mmyr-1 between 35 and 15ka and that the terrace bevelling occurred during two episodes related to climatic forcing. Moreover, we can identify a component of tectonic forcing evidenced by an increase to the north of vertical incision rate and Rhine stream-power. Another major result is showing that this terrace riser is not isochronous along its strike and that younger portions result from lateral incision of a 30ka pre-existing scarp.

  10. A Study of Method Development, Validation, and Forced Degradation for Simultaneous Quantification of Paracetamol and Ibuprofen in Pharmaceutical Dosage Form by RP-HPLC Method.

    PubMed

    Jahan, Md Sarowar; Islam, Md Jahirul; Begum, Rehana; Kayesh, Ruhul; Rahman, Asma

    2014-01-01

    A rapid and stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method was developed for simultaneous quantification of paracetamol and ibuprofen in their combined dosage form especially to get some more advantages over other methods already developed for this combination. The method was validated according to United States Pharmacopeia (USP) guideline with respect to accuracy, precision, specificity, linearity, solution stability, robustness, sensitivity, and system suitability. Forced degradation study was validated according to International Conference on Harmonisation (ICH). For this, an isocratic condition of mobile phase comprising phosphate buffer (pH 6.8) and acetonitrile in a ratio of 65:35, v/v at a flow rate of 0.7 mL/minute over RP C18 (octadecylsilane (ODS), 150 × 4.6 mm, 5 μm, Phenomenex Inc.) column at ambient temperature was maintained. The method showed excellent linear response with correlation coefficient (R (2)) values of 0.999 and 1.0 for paracetamol and ibuprofen respectively, which were within the limit of correlation coefficient (R (2) > 0.995). The percent recoveries for two drugs were found within the acceptance limit of (97.0-103.0%). Intra-and inter-day precision studies of the new method were less than the maximum allowable limit percentage of relative standard deviation (%RSD) ≤ 2.0. Forced degradation of the drug product was carried out as per the ICH guidelines with a view to establishing the stability-indicating property of this method and providing useful information about the degradation pathways, degradation products, and how the quality of a drug substance and drug product changes with time under the influence of various stressing conditions. The degradation of ibuprofen was within the limit (5-20%, according to the guideline of ICH), while paracetamol showed <20% degradation in oxidation and basic condition. PMID:25452691

  11. A Robot-Assisted Surgical System Using a Force-Image Control Method for Pedicle Screw Insertion

    PubMed Central

    Tian, Wei; Han, Xiaoguang; Liu, Bo; Liu, Yajun; Hu, Ying; Han, Xiao; Xu, Yunfeng; Fan, Mingxing; Jin, Haiyang

    2014-01-01

    Objective To introduce a robot-assisted surgical system for spinal posterior fixation that can automatically recognize the drilling state and stop potential cortical penetration with force and image information and to further evaluate the accuracy and safety of the robot for sheep vertebra pedicle screw placement. Methods The Robotic Spinal Surgery System (RSSS) was composed of an optical tracking system, a navigation and planning system, and a surgical robot equipped with a 6-DOF force/torque sensor. The robot used the image message and force signals to sense the different operation states and to prevent potential cortical penetration in the pedicle screw insertion operation. To evaluate the accuracy and safety of the RSSS, 32 screw insertions were conducted. Furthermore, six trajectories were deliberately planned incorrectly to explore whether the robot could recognize the different drilling states and immediately prevent cortical penetration. Results All 32 pedicle screws were placed in the pedicle without any broken pedicle walls. Compared with the preoperative planning, the average deviations of the entry points in the axial and sagittal views were 0.50±0.33 and 0.65±0.40 mm, and the average deviations of the angles in the axial and sagittal views were 1.9±0.82° and 1.48±1.2°. The robot successfully recognized the different drilling states and prevented potential cortical penetration. In the deliberately incorrectly planned trajectory experiments, the robot successfully prevented the cortical penetration. Conclusion These results verified the RSSS’s accuracy and safety, which supported its potential use for the spinal surgery. PMID:24466043

  12. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    DOEpatents

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  13. A unified method for inference of tokamak equilibria and validation of force-balance models based on Bayesian analysis

    NASA Astrophysics Data System (ADS)

    von Nessi, G. T.; Hole, M. J.; the MAST Team

    2013-05-01

    A new method, based on Bayesian analysis, is presented which unifies the inference of plasma equilibria parameters in a tokamak with the ability to quantify differences between inferred equilibria and Grad-Shafranov (GS) force-balance solutions. At the heart of this technique is the new concept of weak observation, which allows multiple forward models to be associated with a single diagnostic observation. This new idea subsequently provides a means by which the space of GS solutions can be efficiently characterized via a prior distribution. The posterior evidence (a normalization constant of the inferred posterior distribution) is also inferred in the analysis and is used as a proxy for determining how relatively close inferred equilibria are to force-balance for different discharges/times. These points have been implemented in a code called BEAST (Bayesian equilibrium analysis and simulation tool), which uses a special implementation of Skilling’s nested sampling algorithm (Skilling 2006 Bayesian Anal. 1 833-59) to perform sampling and evidence calculations on high-dimensional, non-Gaussian posteriors. Initial BEAST equilibrium inference results are presented for two high-performance MAST discharges.

  14. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.

    PubMed

    Wen, L; Wang, T M; Wu, G H; Liang, J H

    2012-09-01

    We implement a mackerel (Scomber scombrus) body-shaped robot, programmed to display the three most typical body/caudal fin undulatory kinematics (i.e. anguilliform, carangiform and thunniform), in order to biomimetically investigate hydrodynamic issues not easily tackled experimentally with live fish. The robotic mackerel, mounted on a servo towing system and initially at rest, can determine its self-propelled speed by measuring the external force acting upon it and allowing for the simultaneous measurement of power, flow field and self-propelled speed. Experimental results showed that the robotic swimmer with thunniform kinematics achieved a faster final swimming speed (St = 0.424) relative to those with carangiform (St = 0.43) and anguilliform kinematics (St = 0.55). The thrust efficiency, estimated from a digital particle image velocimetry (DPIV) flow field, showed that the robotic swimmer with thunniform kinematics is more efficient (47.3%) than those with carangiform (31.4%) and anguilliform kinematics (26.6%). Furthermore, the DPIV measurements illustrate that the large-scale characteristics of the flow pattern generated by the robotic swimmer with both anguilliform and carangiform kinematics were wedge-like, double-row wake structures. Additionally, a typical single-row reverse Karman vortex was produced by the robotic swimmer using thunniform kinematics. Finally, we discuss this novel force-feedback-controlled experimental method, and review the relative self-propelled hydrodynamic results of the robot when utilizing the three types of undulatory kinematics. PMID:22556135

  15. An Aerodynamic Force Estimation Method for Winged Models at the JAXA 60cm Magnetic Suspension and Balance System

    NASA Astrophysics Data System (ADS)

    澤田, 秀夫

    The aerodynamic performance of an AGARD-B model, as an example of a winged model, was measured in a low-speed wind tunnel equipped with the JAXA 60cm Magnetic Suspension and Balance System (MSBS). The flow speed was in the range between 25m/s and 35m/s, and the angle of attack and the yaw angle were in the range of [- 8, 4] and [- 3, 3] degrees, respectively. Six components of the aerodynamic force were evaluated by using the control coil currents of the MSBS. In evaluating the drag, the effect of the lift on the drag must be evaluated at MSBS when the lift is much larger than drag. A new evaluation method for drag and lift was proposed and was examined successfully by subjecting the model to the same loads as in the wind tunnel test. The drag coefficient at zero lift and the derivatives of the lift and pitching moment coefficient with respect to the angle of attack were evaluated and compared with other source data sets. The obtained data agreed well with the corresponding values of the other sources. The side force, yawing moment and rolling moment coefficients were also evaluated on the basis of corresponding calibration test results, and reasonable results were obtained, although they could not be compared due to the lack of reliable data sets.

  16. Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods.

    PubMed

    Caetano, J V; Percin, M; van Oudheusden, B W; Remes, B; de Wagter, C; de Croon, G C H E; de Visser, C C

    2015-08-20

    An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both methods as applied to a 17.4 gram FWMAV capable of controlled flight. A comprehensive analysis of various error sources is performed. The effects of different factors, e.g., measurement errors, error propagation, numerical differentiation, filtering frequency selection, and structural eigenmode interference, are assessed. For the forces obtained from free flight experiments it is shown that a data acquisition frequency below 200 Hz and an accuracy in the position measurements lower than ± 0.2 mm may considerably hinder determination of the unsteady forces. In general, the force component parallel to the fuselage determined by the two methods compares well for identical flight conditions; however, a significant difference was observed for the forces along the stroke plane of the wings. This was found to originate from the restrictions applied by the clamp to the dynamic oscillations observed in free flight and from the structural resonance of the clamped FWMAV structure, which generates loads that cannot be distinguished from the external forces. Furthermore, the clamping position was found to have a pronounced influence on the eigenmodes of the structure, and this effect should be taken into account for accurate force measurements.

  17. Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods.

    PubMed

    Caetano, J V; Percin, M; van Oudheusden, B W; Remes, B; de Wagter, C; de Croon, G C H E; de Visser, C C

    2015-10-01

    An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both methods as applied to a 17.4 gram FWMAV capable of controlled flight. A comprehensive analysis of various error sources is performed. The effects of different factors, e.g., measurement errors, error propagation, numerical differentiation, filtering frequency selection, and structural eigenmode interference, are assessed. For the forces obtained from free flight experiments it is shown that a data acquisition frequency below 200 Hz and an accuracy in the position measurements lower than ± 0.2 mm may considerably hinder determination of the unsteady forces. In general, the force component parallel to the fuselage determined by the two methods compares well for identical flight conditions; however, a significant difference was observed for the forces along the stroke plane of the wings. This was found to originate from the restrictions applied by the clamp to the dynamic oscillations observed in free flight and from the structural resonance of the clamped FWMAV structure, which generates loads that cannot be distinguished from the external forces. Furthermore, the clamping position was found to have a pronounced influence on the eigenmodes of the structure, and this effect should be taken into account for accurate force measurements. PMID:26292289

  18. Extraction methods in bovine obstetrics: comparison of the demanded energy and importance of calf and traction method in the variance of force and energy.

    PubMed

    Tsousis, G; Becker, M; Lüpke, M; Goblet, F; Heun, C; Seifert, H; Bollwein, H

    2011-02-01

    In a previous study we could demonstrate that in terms of the required forces alternate traction is preferable to simultaneous traction for the obstetrical delivery of calves. The aims of this study were to examine the required energies for delivery of calves and to compare the effects of the factors of calf and traction method on the forces and energies required for the delivery. In a biomechanical in vitro model 12 stillborn Holstein-Friesian calves were pulled through the pelvic specimen of a cow at a controlled speed using two electric motors. Traction was applied simultaneously (ST) to both legs or alternately (AT) to one leg at a time to advance it 10 cm (AT 10) or 5 cm (AT5). Energies on each limb were measured digitally using load cells. The lowest energy for the entrance of the elbows in the pelvis was necessary using AT10 (19.9 ± 7.2 kJ, P < 0.05). In contrast, for the entrance of the chest, AT10 (104.9 ± 24.7 kJ) demanded 9% (P < 0.01) and 16% (P < 0.001) more energy than AT5 (96.7 ± 21.0 kJ) and ST (90.5 ± 24.9 kJ), respectively. Simultaneous traction tended to be better than AT5 (P = 0.09). Variance component estimates revealed that the factor calf contributed the main effect to the emerging forces and required energy. The traction method was responsible for up to 13% of the variance in most of the cases, but it accounted for 42% of the variance regarding the forces on the lower limb as the chest entered the pelvis. Based on these findings, the decision of the clinician whether or not to perform a manual traction should depend mainly on the calf. However, when such a decision has been made, alternate limb traction, 10 cm at a time, should be used until both elbows have entered the pelvis and a simultaneous traction should then be applied to complete extraction of the chest.

  19. A simple atomic force microscopy calibration method for direct measurement of surface energy on nanostructured surfaces covered with molecularly thin liquid films.

    PubMed

    Brunner, Ralf; Etsion, Izhak; Talke, Frank E

    2009-05-01

    A simple calibration method is described for the determination of surface energy by atomic force microscopy (AFM) pull-off force measurements on nanostructured surfaces covered with molecularly thin liquid films. The method is based on correlating pull-off forces measured in arbitrary units on a nanostructured surface with pull-off forces measured on macroscopically smooth dip-coated gauge surfaces with known surface energy. The method avoids the need for complex calibration of the AFM cantilever stiffness and the determination of the radius of curvature of the AFM tip. Both of the latter measurements are associated with indirect and less accurate measurements of surface energy based on various contact mechanics adhesion models.

  20. Atomic force microscopy of ionotropic receptors bearing subunit-specific tags provides a method for determining receptor architecture

    NASA Astrophysics Data System (ADS)

    Neish, Calum S.; Martin, Ian L.; Davies, Martin; Henderson, Robert M.; Edwardson, J. Michael

    2003-08-01

    We have developed an atomic force microscopy (AFM)-based method for the determination of the subunit architecture of ionotropic receptors, and tested the method using the GABAA receptor as a model system. The most common form of the GABAA receptor probably consists of 2alpha1-, 2beta2- and 1gamma2-subunits. We show here that the arrangement of subunits around the central Cl- ion channel can be deduced by AFM of receptors tagged with subunit-specific antibodies. Transfection of cells with DNA encoding alpha1-, beta2- and gamma2-subunits resulted in the production of receptors containing all three subunits, as judged by both immunoblot analysis and the binding of [3H]-Ro15-1788, a specific radioligand for the GABAA receptor. A His6-tag on the alpha1-subunit was used to purify the receptor from membrane fractions of transfected cells. After incubation with anti-His6 immunoglobulin G, some receptors became tagged with either one or two antibody molecules. AFM analysis of complexes containing two bound antibodies showed that the most common angle between the two tags was 135°, close to the value of 144° expected if the two alpha-subunits are separated by a third subunit. This method is applicable to the complete elucidation of the subunit arrangement around the GABAA receptor rosette, and can also be applied to other ionotropic receptors.

  1. Calibration of measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy using a contact detection method

    SciTech Connect

    Liu Zhen; Jeong, Younkoo; Menq, Chia-Hsiang

    2013-02-15

    An accurate experimental method is proposed for on-spot calibration of the measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy. One of the key techniques devised for this method is a reliable contact detection mechanism that detects the tip-surface contact instantly. At the contact instant, the oscillation amplitude of the tip deflection, converted to that of the deflection signal in laser reading through the measurement sensitivity, exactly equals to the distance between the sample surface and the cantilever base position. Therefore, the proposed method utilizes the recorded oscillation amplitude of the deflection signal and the base position of the cantilever at the contact instant for the measurement sensitivity calibration. Experimental apparatus along with various signal processing and control modules was realized to enable automatic and rapid acquisition of multiple sets of data, with which the calibration of a single dynamic mode could be completed in less than 1 s to suppress the effect of thermal drift and measurement noise. Calibration of the measurement sensitivities of the first and second dynamic modes of three micro-cantilevers having distinct geometries was successfully demonstrated. The dependence of the measurement sensitivity on laser spot location was also experimentally investigated. Finally, an experiment was performed to validate the calibrated measurement sensitivity of the second dynamic mode of a micro-cantilever.

  2. Calibration of measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy using a contact detection method.

    PubMed

    Liu, Zhen; Jeong, Younkoo; Menq, Chia-Hsiang

    2013-02-01

    An accurate experimental method is proposed for on-spot calibration of the measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy. One of the key techniques devised for this method is a reliable contact detection mechanism that detects the tip-surface contact instantly. At the contact instant, the oscillation amplitude of the tip deflection, converted to that of the deflection signal in laser reading through the measurement sensitivity, exactly equals to the distance between the sample surface and the cantilever base position. Therefore, the proposed method utilizes the recorded oscillation amplitude of the deflection signal and the base position of the cantilever at the contact instant for the measurement sensitivity calibration. Experimental apparatus along with various signal processing and control modules was realized to enable automatic and rapid acquisition of multiple sets of data, with which the calibration of a single dynamic mode could be completed in less than 1 s to suppress the effect of thermal drift and measurement noise. Calibration of the measurement sensitivities of the first and second dynamic modes of three micro-cantilevers having distinct geometries was successfully demonstrated. The dependence of the measurement sensitivity on laser spot location was also experimentally investigated. Finally, an experiment was performed to validate the calibrated measurement sensitivity of the second dynamic mode of a micro-cantilever.

  3. Protein-specific force field derived from the fragment molecular orbital method can improve protein-ligand binding interactions.

    PubMed

    Chang, Le; Ishikawa, Takeshi; Kuwata, Kazuo; Takada, Shoji

    2013-05-30

    Accurate computational estimate of the protein-ligand binding affinity is of central importance in rational drug design. To improve accuracy of the molecular mechanics (MM) force field (FF) for protein-ligand simulations, we use a protein-specific FF derived by the fragment molecular orbital (FMO) method and by the restrained electrostatic potential (RESP) method. Applying this FMO-RESP method to two proteins, dodecin, and lysozyme, we found that protein-specific partial charges tend to differ more significantly from the standard AMBER charges for isolated charged atoms. We did not see the dependence of partial charges on the secondary structure. Computing the binding affinities of dodecin with five ligands by MM PBSA protocol with the FMO-RESP charge set as well as with the standard AMBER charges, we found that the former gives better correlation with experimental affinities than the latter. While, for lysozyme with five ligands, both charge sets gave similar and relatively accurate estimates of binding affinities.

  4. [Landscape pattern change of Dongzhai Harbour mangrove, South China analyzed with a patch-based method and its driving forces].

    PubMed

    Huang, Xing; Xin, Kun; Li, Xiu-zhen; Wang, Xue-ping; Ren, Lin-jing; Li, Xi-zhi; Yan, Zhong-zheng

    2015-05-01

    According to the interpreted results of three satellite images of Dongzhai Harbour obtained in 1988, 1998 and 2009, the changes of landscape pattern and the differences of its driving forces of mangrove forest in Dongzhai Harbour were analyzed with a patch-based method on spatial distribution dynamics. The results showed that the areas of mangrove forest in 1988, 1998 and 2009 were 1809.4, 1738.7 and 1608.2 hm2 respectively, which presented a trend of decrease with enhanced degree of landscape fragmentation. The transformations among different landscape types indicated that the mangrove, agricultural land and forest land were mainly changed into built-up land and aquaculture pond. The statistical results obtained from three different methods, i.e., accumulative counting, percentage counting and main transformation route counting, showed that natural factors were the main reason for the changes of patch number, responsible for 58.6%, 72.2% and 72.1% of patch number change, respectively, while the percentages of patch area change induced by human activities were 70.4%, 70.3% and 76.4%, respectively, indicating that human activities were the primary factors of the change of patch areas. PMID:26571672

  5. [Landscape pattern change of Dongzhai Harbour mangrove, South China analyzed with a patch-based method and its driving forces].

    PubMed

    Huang, Xing; Xin, Kun; Li, Xiu-zhen; Wang, Xue-ping; Ren, Lin-jing; Li, Xi-zhi; Yan, Zhong-zheng

    2015-05-01

    According to the interpreted results of three satellite images of Dongzhai Harbour obtained in 1988, 1998 and 2009, the changes of landscape pattern and the differences of its driving forces of mangrove forest in Dongzhai Harbour were analyzed with a patch-based method on spatial distribution dynamics. The results showed that the areas of mangrove forest in 1988, 1998 and 2009 were 1809.4, 1738.7 and 1608.2 hm2 respectively, which presented a trend of decrease with enhanced degree of landscape fragmentation. The transformations among different landscape types indicated that the mangrove, agricultural land and forest land were mainly changed into built-up land and aquaculture pond. The statistical results obtained from three different methods, i.e., accumulative counting, percentage counting and main transformation route counting, showed that natural factors were the main reason for the changes of patch number, responsible for 58.6%, 72.2% and 72.1% of patch number change, respectively, while the percentages of patch area change induced by human activities were 70.4%, 70.3% and 76.4%, respectively, indicating that human activities were the primary factors of the change of patch areas.

  6. The appropriateness of employing imaging screening technologies: report of the methods committee of the ACR task force on screening technologies.

    PubMed

    Hillman, Bruce J; Black, William C; D'orsi, Carl; Hauser, J Bruce; Smith, Robert

    2004-11-01

    Screening for disease using imaging technologies is a growing phenomenon. For some applications (e.g., mammography and breast cancer), there is solid evidence that imaging screening reduces disease-specific mortality. However, for other applications, the public interest in imaging screening is progressing despite a lack of valid scientific evidence that such screening improves the public's health. Clinical trials promise to eventually shed light on the value of imaging screening, but the results of these trials will not be known for several years. In the meantime, physicians and the public need guidance on whether specific imaging screening examinations are appropriate. The ACR charged the Methods Committee of its Task Force on Screening Technologies to advise the organization on how it could best use available evidence to make public recommendations on imaging screening technologies. This article is the outcome of the committee's deliberations, including recommendations for the method of arriving at a recommendation, the approach to dissemination, and to whom the recommendations should be targeted.

  7. A comparison of optimisation methods and knee joint degrees of freedom on muscle force predictions during single-leg hop landings.

    PubMed

    Mokhtarzadeh, Hossein; Perraton, Luke; Fok, Laurence; Muñoz, Mario A; Clark, Ross; Pivonka, Peter; Bryant, Adam L

    2014-09-22

    The aim of this paper was to compare the effect of different optimisation methods and different knee joint degrees of freedom (DOF) on muscle force predictions during a single legged hop. Nineteen subjects performed single-legged hopping manoeuvres and subject-specific musculoskeletal models were developed to predict muscle forces during the movement. Muscle forces were predicted using static optimisation (SO) and computed muscle control (CMC) methods using either 1 or 3 DOF knee joint models. All sagittal and transverse plane joint angles calculated using inverse kinematics or CMC in a 1 DOF or 3 DOF knee were well-matched (RMS error<3°). Biarticular muscles (hamstrings, rectus femoris and gastrocnemius) showed more differences in muscle force profiles when comparing between the different muscle prediction approaches where these muscles showed larger time delays for many of the comparisons. The muscle force magnitudes of vasti, gluteus maximus and gluteus medius were not greatly influenced by the choice of muscle force prediction method with low normalised root mean squared errors (<48%) observed in most comparisons. We conclude that SO and CMC can be used to predict lower-limb muscle co-contraction during hopping movements. However, care must be taken in interpreting the magnitude of force predicted in the biarticular muscles and the soleus, especially when using a 1 DOF knee. Despite this limitation, given that SO is a more robust and computationally efficient method for predicting muscle forces than CMC, we suggest that SO can be used in conjunction with musculoskeletal models that have a 1 or 3 DOF knee joint to study the relative differences and the role of muscles during hopping activities in future studies. PMID:25129166

  8. A comparison of optimisation methods and knee joint degrees of freedom on muscle force predictions during single-leg hop landings.

    PubMed

    Mokhtarzadeh, Hossein; Perraton, Luke; Fok, Laurence; Muñoz, Mario A; Clark, Ross; Pivonka, Peter; Bryant, Adam L

    2014-09-22

    The aim of this paper was to compare the effect of different optimisation methods and different knee joint degrees of freedom (DOF) on muscle force predictions during a single legged hop. Nineteen subjects performed single-legged hopping manoeuvres and subject-specific musculoskeletal models were developed to predict muscle forces during the movement. Muscle forces were predicted using static optimisation (SO) and computed muscle control (CMC) methods using either 1 or 3 DOF knee joint models. All sagittal and transverse plane joint angles calculated using inverse kinematics or CMC in a 1 DOF or 3 DOF knee were well-matched (RMS error<3°). Biarticular muscles (hamstrings, rectus femoris and gastrocnemius) showed more differences in muscle force profiles when comparing between the different muscle prediction approaches where these muscles showed larger time delays for many of the comparisons. The muscle force magnitudes of vasti, gluteus maximus and gluteus medius were not greatly influenced by the choice of muscle force prediction method with low normalised root mean squared errors (<48%) observed in most comparisons. We conclude that SO and CMC can be used to predict lower-limb muscle co-contraction during hopping movements. However, care must be taken in interpreting the magnitude of force predicted in the biarticular muscles and the soleus, especially when using a 1 DOF knee. Despite this limitation, given that SO is a more robust and computationally efficient method for predicting muscle forces than CMC, we suggest that SO can be used in conjunction with musculoskeletal models that have a 1 or 3 DOF knee joint to study the relative differences and the role of muscles during hopping activities in future studies.

  9. Transferable force field for crystal structure predictions, investigation of performance and exploration of different rescoring strategies using DFT-D methods.

    PubMed

    Broo, Anders; Nilsson Lill, Sten O

    2016-08-01

    A new force field, here called AZ-FF, aimed at being used for crystal structure predictions, has been developed. The force field is transferable to a new type of chemistry without additional training or modifications. This makes the force field very useful in the prediction of crystal structures of new drug molecules since the time-consuming step of developing a new force field for each new molecule is circumvented. The accuracy of the force field was tested on a set of 40 drug-like molecules and found to be very good where observed crystal structures are found at the top of the ranked list of tentative crystal structures. Re-ranking with dispersion-corrected density functional theory (DFT-D) methods further improves the scoring. After DFT-D geometry optimization the observed crystal structure is found at the leading top of the ranking list. DFT-D methods and force field methods have been evaluated for use in predicting properties such as phase transitions upon heating, mechanical properties or intrinsic crystalline solubility. The utility of using crystal structure predictions and the associated material properties in risk assessment in connection with form selection in the drug development process is discussed.

  10. Cell force mapping using a double-sided micropillar array based on the moiré fringe method

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Anderson, S.; Zheng, X.; Roberts, E.; Qiu, Y.; Liao, R.; Zhang, X.

    2014-07-01

    The mapping of traction forces is crucial to understanding the means by which cells regulate their behavior and physiological function to adapt to and communicate with their local microenvironment. To this end, polymeric micropillar arrays have been used for measuring cell traction force. However, the small scale of the micropillar deflections induced by cell traction forces results in highly inefficient force analyses using conventional optical approaches; in many cases, cell forces may be below the limits of detection achieved using conventional microscopy. To address these limitations, the moiré phenomenon has been leveraged as a visualization tool for cell force mapping due to its inherent magnification effect and capacity for whole-field force measurements. This Letter reports an optomechanical cell force sensor, namely, a double-sided micropillar array (DMPA) made of poly(dimethylsiloxane), on which one side is employed to support cultured living cells while the opposing side serves as a reference pattern for generating moiré patterns. The distance between the two sides, which is a crucial parameter influencing moiré pattern contrast, is predetermined during fabrication using theoretical calculations based on the Talbot effect that aim to optimize contrast. Herein, double-sided micropillar arrays were validated by mapping mouse embryo fibroblast contraction forces and the resulting force maps compared to conventional microscopy image analyses as the reference standard. The DMPA-based approach precludes the requirement for aligning two independent periodic substrates, improves moiré contrast, and enables efficient moiré pattern generation. Furthermore, the double-sided structure readily allows for the integration of moiré-based cell force mapping into microfabricated cell culture environments or lab-on-a-chip devices.

  11. Component mode synthesis and large deflection vibration of complex structures. Volume 3: Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shen, Mo-How

    1987-01-01

    Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.

  12. Atomic force microscopy surface analysis of layered perovskite La2Ti2O7 particles grown by molten flux method

    NASA Astrophysics Data System (ADS)

    Orum, Aslihan; Takatori, Kazumasa; Hori, Shigeo; Ikeda, Tomiko; Yoshimura, Masamichi; Tani, Toshihiko

    2016-08-01

    Rectangular platelike particles of La2Ti2O7, a layered perovskite, were synthesized in KCl, NaCl, and LiCl by the molten flux method. The formation mechanism of the equilibrium shape in these alkali chloride fluxes was discussed in terms of the surface and interfacial energies of crystallographic planes. The atomic force microscopy (AFM) observations revealed that the developed plane of the platelike particles is along the interlayers in the {110}-type layered crystal structure, and is considered to represent the lowest surface energy plane in which strong, periodic Ti–O bond chains terminate. Herein, for the first time, a growth mechanism for La2Ti2O7 particles is proposed and discussed. Triangular prism structures along the c-axis were observed on the developed planes of KCl-grown particles whereas no such structures were found on those of LiCl-grown ones. AFM measurements suggest that the prism facets are {210}-La2Ti2O7, which results in lower interfacial energy within KCl.

  13. Study on water-dispersible colloids in saline-alkali soils by atomic force microscopy and spectrometric methods.

    PubMed

    Liu, Zhiguo; Xu, Fengjie; Zu, Yuangang; Meng, Ronghua; Wang, Wenjie

    2016-06-01

    Recent studies have revealed that water-dispersible colloids play an important role in the transport of nutrients and contaminants in soils. In this study, water-dispersible colloids extracted from saline-alkali soils have been characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV absorption spectra. AFM observation indicated that the water-dispersible colloids contain some large plates and many small spherical particles. XRD, XPS, and UV absorption measurement revealed that the water-dispersible colloids are composed of kaolinite, illite, calcite, quartz and humic acid. In addition, UV absorption measurement demonstrated that the humic acids are associated with clay minerals. Water-dispersible colloids in the saline-alkali soils after hydrolyzed polymaleic anhydride treatment and an agricultural soil (nonsaline-alkali soil) were also investigated for comparison. The obtained results implied that the saline-alkali condition facilitates the formation of a large quantity of colloids. The use of AFM combined with spectrometric methods in the present study provides new knowledge on the colloid characteristics of saline-alkali soils. Microsc. Res. Tech. 79:525-531, 2016. © 2016 Wiley Periodicals, Inc.

  14. Thermal hysteresis kinetic effects of spin crossover nanoparticulated systems studied by FORC diagram method on an Ising-like model

    NASA Astrophysics Data System (ADS)

    Atitoaie, Alexandru; Stoleriu, Laurentiu; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2016-04-01

    The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.

  15. Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope

    SciTech Connect

    Fukuda, Shingo; Uchihashi, Takayuki; Ando, Toshio

    2015-06-15

    In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanner’s fast performance, and because repeated exchange of cantilever chips should not damage the Z-scanner. This is one of the reasons that tip-scan HS-AFM has not been established, despite its advantages over sample stage-scan HS-AFM. Here, we present a novel method of cantilever chip holding which meets all conditions required for tip-scan HS-AFM. The superior performance of this novel chip holding mechanism is demonstrated by imaging of the α{sub 3}β{sub 3} subcomplex of F{sub 1}-ATPase in dynamic action at ∼7 frames/s.

  16. Atomic force microscopy surface analysis of layered perovskite La2Ti2O7 particles grown by molten flux method

    NASA Astrophysics Data System (ADS)

    Orum, Aslihan; Takatori, Kazumasa; Hori, Shigeo; Ikeda, Tomiko; Yoshimura, Masamichi; Tani, Toshihiko

    2016-08-01

    Rectangular platelike particles of La2Ti2O7, a layered perovskite, were synthesized in KCl, NaCl, and LiCl by the molten flux method. The formation mechanism of the equilibrium shape in these alkali chloride fluxes was discussed in terms of the surface and interfacial energies of crystallographic planes. The atomic force microscopy (AFM) observations revealed that the developed plane of the platelike particles is along the interlayers in the {110}-type layered crystal structure, and is considered to represent the lowest surface energy plane in which strong, periodic Ti-O bond chains terminate. Herein, for the first time, a growth mechanism for La2Ti2O7 particles is proposed and discussed. Triangular prism structures along the c-axis were observed on the developed planes of KCl-grown particles whereas no such structures were found on those of LiCl-grown ones. AFM measurements suggest that the prism facets are {210}-La2Ti2O7, which results in lower interfacial energy within KCl.

  17. Atomic force microscopy methods for the analysis of high-LET tracks in CR-39 plastic nuclear track detector

    NASA Astrophysics Data System (ADS)

    Johnson, Carl E., Jr.

    Scope and Method of Study. Proton- and neutron-induced target fragmentation reactions generate short-range (˜1-10 mum), high-linear energy transfer (LET) heavy nuclear recoil (HNR) particles that contribute to total radiation dose deposited in healthy tissue in patients undergoing proton cancer therapy and to astronauts during spaceflight. Conventional detection using CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy fails because the required bulk etch, B ≈ 40 mum removes short-range tracks. We have developed a method based on Atomic Force Microscopy (AFM) to directly measure HNR particle tracks in CR-39 PNTD. Novel algorithms using least squares ellipse fitting and estimation of fitting in an iterative process were developed to enable the analysis of nuclear tracks in AFM data. In irradiations conducted at the Loma Linda University Medical Center (LLUMC) Proton Therapy Facility and the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), targets of varying composition, including a number of elemental targets of high Z, were exposed in contact with layers of CR-39 PNTD to beams of 60 MeV, 230 MeV, and 1 GeV protons at doses between 2 and 10 Gy. Chemical etching of the CR-39 PNTD was performed under standard conditions (50°C, 6.25 N NaOH) for 2-4 hours (removed layer B = 0.5-1.0 mum). Findings and Conclusions. The use of a short duration chemical etch yielded densities of secondary tracks of 105-10 6 cm-2 using the analysis methods presented in this work for accelerator-based experiments. LET spectra were obtained with good statistics between 200 and 1500 keV/mum and the results were consistent with nonelastic nuclear cross sections. Absorbed dose measurements were also completed for selected detectors, ˜7 x 10-10 Gy ion -1 was measured for 230 MeV protons. Additionally our data are consistent with an isotropic HNR particle production mechanism. The semi

  18. Push Force Analysis of Anchor Block of the Oil and Gas Pipeline in a Single-Slope Tunnel Based on the Energy Balance Method.

    PubMed

    Yan, Yifei; Zhang, Lisong; Yan, Xiangzhen

    2016-01-01

    In this paper, a single-slope tunnel pipeline was analysed considering the effects of vertical earth pressure, horizontal soil pressure, inner pressure, thermal expansion force and pipeline-soil friction. The concept of stagnation point for the pipeline was proposed. Considering the deformation compatibility condition of the pipeline elbow, the push force of anchor blocks of a single-slope tunnel pipeline was derived based on an energy method. Then, the theoretical formula for this force is thus generated. Using the analytical equation, the push force of the anchor block of an X80 large-diameter pipeline from the West-East Gas Transmission Project was determined. Meanwhile, to verify the results of the analytical method, and the finite element method, four categories of finite element codes were introduced to calculate the push force, including CAESARII, ANSYS, AutoPIPE and ALGOR. The results show that the analytical results agree well with the numerical results, and the maximum relative error is only 4.1%. Therefore, the results obtained with the analytical method can satisfy engineering requirements.

  19. Push Force Analysis of Anchor Block of the Oil and Gas Pipeline in a Single-Slope Tunnel Based on the Energy Balance Method.

    PubMed

    Yan, Yifei; Zhang, Lisong; Yan, Xiangzhen

    2016-01-01

    In this paper, a single-slope tunnel pipeline was analysed considering the effects of vertical earth pressure, horizontal soil pressure, inner pressure, thermal expansion force and pipeline-soil friction. The concept of stagnation point for the pipeline was proposed. Considering the deformation compatibility condition of the pipeline elbow, the push force of anchor blocks of a single-slope tunnel pipeline was derived based on an energy method. Then, the theoretical formula for this force is thus generated. Using the analytical equation, the push force of the anchor block of an X80 large-diameter pipeline from the West-East Gas Transmission Project was determined. Meanwhile, to verify the results of the analytical method, and the finite element method, four categories of finite element codes were introduced to calculate the push force, including CAESARII, ANSYS, AutoPIPE and ALGOR. The results show that the analytical results agree well with the numerical results, and the maximum relative error is only 4.1%. Therefore, the results obtained with the analytical method can satisfy engineering requirements. PMID:26963097

  20. Fine-Motion-Control Method for Realizing High-Accuracy and High-Speed Contact Motion of Industrial Robots by Employing Sensorless Force Control

    NASA Astrophysics Data System (ADS)

    Shimada, Naoki; Yoshioka, Takashi; Ohishi, Kiyoshi; Miyazaki, Toshimasa

    This paper proposes a new fine-motion-control method for realizing high-accuracy and high-speed contact motion of industrial robots by employing sensorless force control. Today, although industrial robots have become considerably important in the modern industrial society, their functions are limited. A typical limited function is the positioning motion control of robots used in the manufacturing industry. Contact motion is necessary for almost all new applications. In this study, by employing the proposed motion control, smooth and quick contact motion of industrial robots is realized by using a sensorless I-P (Integral-Proportional) force feedback controller. The proposed method is simple and effective, takes into account both the inertia of a robot and the behavior of the I-P force controller. In the experiments, a three-degree-of-freedom robot is brought into contact with an object (a concrete block or a rubber board) by the I-P force control using the proposed method. Further, in the experiment, the motion of the robot's end-effector was considered. The validity of the proposed method is confirmed by using a six-axis force sensor and an acceleration sensor in the contact motion experiments.

  1. Push Force Analysis of Anchor Block of the Oil and Gas Pipeline in a Single-Slope Tunnel Based on the Energy Balance Method

    PubMed Central

    Yan, Yifei; Zhang, Lisong; Yan, Xiangzhen

    2016-01-01

    In this paper, a single-slope tunnel pipeline was analysed considering the effects of vertical earth pressure, horizontal soil pressure, inner pressure, thermal expansion force and pipeline—soil friction. The concept of stagnation point for the pipeline was proposed. Considering the deformation compatibility condition of the pipeline elbow, the push force of anchor blocks of a single-slope tunnel pipeline was derived based on an energy method. Then, the theoretical formula for this force is thus generated. Using the analytical equation, the push force of the anchor block of an X80 large-diameter pipeline from the West—East Gas Transmission Project was determined. Meanwhile, to verify the results of the analytical method, and the finite element method, four categories of finite element codes were introduced to calculate the push force, including CAESARII, ANSYS, AutoPIPE and ALGOR. The results show that the analytical results agree well with the numerical results, and the maximum relative error is only 4.1%. Therefore, the results obtained with the analytical method can satisfy engineering requirements. PMID:26963097

  2. Modeling flows over gravel beds by a drag force method and a modified S-A turbulence closure

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Li, C. W.

    2012-09-01

    A double-averaged Navier-Stokes equations (DANS) model has been developed for depth-limited open channel flows over gravels. Three test cases are used to validate the model: an open-channel flow over a densely packed gravel bed with small-scale uniform roughness (D/d50 ˜ 13, d50 = median diameter of roughness elements, D = water depth), open-channel flows over large-scale sparsely distributed roughness elements (D/Δ ˜ 2.3-8.7, Δ = roughness height) and steep slope gravel-bed river flows with D/d50 ˜ 7-25. Various methods of treatment of the gravel-induced resistance effect have been investigated. The results show that the wall function approach (WFA) is successful in simulating flows over small gravels but is not appropriate for large gravels since the vertical profile of the longitudinal velocity does not follow the logarithmic-linear relationship. The drag force method (DFM) performs better but the non-logarithmic velocity distribution generated by sparsely distributed gravels cannot be simulated accurately. Noting that the turbulence length scale within the gravel layer is governed by the gravel size, the DANS model incorporating the DFM and a modified Spalart-Allmaras (S-A) turbulence closure is proposed. The turbulence length scale parameter in the S-A model is modified to address the change in the turbulence structure within the gravel layer. The computed velocity profiles agree well with the corresponding measured profiles in all cases. Particularly, the model reproduces the S-shape velocity profile for sparsely distributed large size roughness elements. The modeling methodology is robust and can be easily integrated into the existing numerical models.

  3. Tracking the individual magnetic wires' switchings in ferromagnetic nanowire arrays using the first-order reversal curves (FORC) diagram method

    NASA Astrophysics Data System (ADS)

    Dobrotă, Costin-Ionuţ; Stancu, Alexandru

    2015-01-01

    The complex hysteretic properties observed in structured ferromagnetic materials can be revealed with remarkable details in magnetization processes like the first-order reversal curves (FORC) - a characterization technique extensively used in recent years. The really fundamental problem in the analysis of experimental FORC diagrams is related to the possibility to link the hysteretic properties of real physical entities in a unique way with regions from the FORC distributions. Actually, what many scientists are often doing is to use a Preisach-type interpretation of FORC data without a proof for the accuracy of this procedure. In this paper we analyze in detail the relation between the switching events of physical entities given by the Preisach function and the FORC distribution in magnetic nanowire arrays with the aim to show the limits of the conventional interpretation of FORC data. For this type of sample we show how the real switching events are contributing to the experimental diagram. We present in a systematic manner the way in which the switchings of the physical wires are observed multiple times (both as positive or negative contributions). The multiplicity of switching occurrences is not the same for all the wires in the sample, being dependent on the wire intrinsic coercivity and its position in the array. In this manner one can track the switchings contributions of real magnetic wires on the FORC diagram.

  4. Application of laser ranging and VLBI data to a study of plate tectonic driving forces. [finite element method

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1980-01-01

    The measurability of changes in plate driving or resistive forces associated with plate boundary earthquakes by laser rangefinding or VLBI is considered with emphasis on those aspects of plate forces that can be characterized by such measurements. Topics covered include: (1) analytic solutions for two dimensional stress diffusion in a plate following earthquake faulting on a finite fault; (2) two dimensional finite-element solutions for the global state of stress at the Earth's surface for possible plate driving forces; and (3) finite-element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting.

  5. Investigation of the range of validity of the pairwise summation method applied to the calculation of the surface roughness correction to the van der Waals force

    NASA Astrophysics Data System (ADS)

    Gusso, André; Burnham, Nancy A.

    2016-09-01

    It has long been recognized that stochastic surface roughness can considerably change the van der Waals (vdW) force between interacting surfaces and particles. However, few analytical expressions for the vdW force between rough surfaces have been presented in the literature. Because they have been derived using perturbative methods or the proximity force approximation the expressions are valid when the roughness correction is small and for a limited range of roughness parameters and surface separation. In this work, a nonperturbative approach, the effective density method (EDM) is proposed to circumvent some of these limitations. The method simplifies the calculations of the roughness correction based on pairwise summation (PWS), and allows us to derive simple expressions for the vdW force and energy between two semispaces covered with stochastic rough surfaces. Because the range of applicability of PWS and, therefore, of our results, are not known a priori, we compare the predictions based on the EDM with those based on the multilayer effective medium model, whose range of validity can be defined more properly and which is valid when the roughness correction is comparatively large. We conclude that the PWS can be used for roughness characterized by a correlation length of the order of its rms amplitude, when this amplitude is of the order of or smaller than a few nanometers, and only for typically insulating materials such as silicon dioxide, silicon nitride, diamond, and certain glasses, polymers and ceramics. The results are relevant for the correct modeling of systems where the vdW force can play a significant role such as micro and nanodevices, for the calculation of the tip-sample force in atomic force microscopy, and in problems involving adhesion.

  6. Solid-phase microextraction/gas chromatography-mass spectrometry method optimization for characterization of surface adsorption forces of nanoparticles.

    PubMed

    Omanovic-Miklicanin, Enisa; Valzacchi, Sandro; Simoneau, Catherine; Gilliland, Douglas; Rossi, Francois

    2014-10-01

    A complete characterization of the different physico-chemical properties of nanoparticles (NPs) is necessary for the evaluation of their impact on health and environment. Among these properties, the surface characterization of the nanomaterial is the least developed and in many cases limited to the measurement of surface composition and zetapotential. The biological surface adsorption index approach (BSAI) for characterization of surface adsorption properties of NPs has recently been introduced (Xia et al. Nat Nanotechnol 5:671-675, 2010; Xia et al. ACS Nano 5(11):9074-9081, 2011). The BSAI approach offers in principle the possibility to characterize the different interaction forces exerted between a NP's surface and an organic--and by extension biological--entity. The present work further develops the BSAI approach and optimizes a solid-phase microextraction gas chromatography-mass spectrometry (SPME/GC-MS) method which, as an outcome, gives a better-defined quantification of the adsorption properties on NPs. We investigated the various aspects of the SPME/GC-MS method, including kinetics of adsorption of probe compounds on SPME fiber, kinetic of adsorption of probe compounds on NP's surface, and optimization of NP's concentration. The optimized conditions were then tested on 33 probe compounds and on Au NPs (15 nm) and SiO2 NPs (50 nm). The procedure allowed the identification of three compounds adsorbed by silica NPs and nine compounds by Au NPs, with equilibrium times which varied between 30 min and 12 h. Adsorption coefficients of 4.66 ± 0.23 and 4.44 ± 0.26 were calculated for 1-methylnaphtalene and biphenyl, compared to literature values of 4.89 and 5.18, respectively. The results demonstrated that the detailed optimization of the SPME/GC-MS method under various conditions is a critical factor and a prerequisite to the application of the BSAI approach as a tool to characterize surface adsorption properties of NPs and therefore to draw any further

  7. Forces in General Relativity

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…

  8. Intracardiac Acoustic Radiation Force Impulse Imaging: A Novel Imaging Method for Intraprocedural Evaluation of Radiofrequency Ablation Lesions

    PubMed Central

    Eyerly, Stephanie A.; Bahnson, Tristram D.; Koontz, Jason I.; Bradway, David P.; Dumont, Douglas M.; Trahey, Gregg E.; Wolf, Patrick D.

    2012-01-01

    Background Arrhythmia recurrence after cardiac radiofrequency ablation (RFA) for atrial fibrillation (AF) has been linked to conduction through discontinuous lesion lines. Intraprocedural visualization and corrective ablation of lesion line discontinuities could decrease post-procedure AF recurrence. Intracardiac acoustic radiation force impulse (ARFI) imaging is a new imaging technique that visualizes RFA lesions by mapping the relative elasticity contrast between compliant-unablated and stiff-RFA treated myocardium. Objective To determine if intraprocedure ARFI images can identify RFA treated myocardium in vivo. Methods In eight canines, an electroanatomical mapping (EAM) guided intracardiac echo catheter (ICE) was used to acquire 2D ARFI images along right atrial ablation lines before and after RFA. ARFI images were acquired during diastole with the myocardium positioned at the ARFI focus (1.5 cm) and parallel to the ICE transducer for maximal and uniform energy delivery to the tissue. Three reviewers categorized each ARFI image as depicting no lesion, non-contiguous, or contiguous lesion. For comparison, three separate reviewers confirmed RFA lesion presence and contiguity based on functional conduction block at the imaging plane location on EAM activation maps. Results Ten percent of ARFI images were discarded due to motion artifacts. Reviewers of the ARFI images detected RFA-treated sites with high sensitivity (95.7%) and specificity (91.5%). Reviewer identification of contiguous lesion had 75.3% specificity and 47.1% sensitivity. Conclusions Intracardiac ARFI imaging was successful in identifying endocardial RFA treatment when specific imaging conditions were maintained. Further advances in ARFI imaging technology would facilitate a wider range of imaging opportunities for clinical lesion evaluation. PMID:22772134

  9. Comparison between finite volume and lattice-Boltzmann method simulations of gas-fluidised beds: bed expansion and particle-fluid interaction force

    NASA Astrophysics Data System (ADS)

    Third, J. R.; Chen, Y.; Müller, C. R.

    2016-07-01

    Lattice-Boltzmann method (LBM) simulations of a gas-fluidised bed have been performed. In contrast to the current state-of-the-art coupled computational fluid dynamics-discrete element method (CFD-DEM) simulations, the LBM does not require a closure relationship for the particle-fluid interaction force. Instead, the particle-fluid interaction can be calculated directly from the detailed flow profile around the particles. Here a comparison is performed between CFD-DEM and LBM simulations of a small fluidised bed. Simulations are performed for two different values of the superficial gas velocity and it is found that the LBM predicts a larger bed expansion for both flowrates. Furthermore the particle-fluid interaction force obtained for LBM simulations is compared to the force which would be predicted by a CFD-DEM model under the same conditions. On average the force predicted by the CFD-DEM closure relationship is found to be significantly smaller than the force obtained from the LBM.

  10. Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers.

    PubMed

    Sarshar, Mohammad; Wong, Winson T; Anvari, Bahman

    2014-01-01

    Optical tweezers have become an important instrument in force measurements associated with various physical, biological, and biophysical phenomena. Quantitative use of optical tweezers relies on accurate calibration of the stiffness of the optical trap. Using the same optical tweezers platform operating at 1064 nm and beads with two different diameters, we present a comparative study of viscous drag force, equipartition theorem, Boltzmann statistics, and power spectral density (PSD) as methods in calibrating the stiffness of a single beam gradient force optical trap at trapping laser powers in the range of 0.05 to 1.38 W at the focal plane. The equipartition theorem and Boltzmann statistic methods demonstrate a linear stiffness with trapping laser powers up to 355 mW, when used in conjunction with video position sensing means. The PSD of a trapped particle's Brownian motion or measurements of the particle displacement against known viscous drag forces can be reliably used for stiffness calibration of an optical trap over a greater range of trapping laser powers. Viscous drag stiffness calibration method produces results relevant to applications where trapped particle undergoes large displacements, and at a given position sensing resolution, can be used for stiffness calibration at higher trapping laser powers than the PSD method.

  11. Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers

    PubMed Central

    Sarshar, Mohammad; Wong, Winson T.; Anvari, Bahman

    2014-01-01

    Abstract. Optical tweezers have become an important instrument in force measurements associated with various physical, biological, and biophysical phenomena. Quantitative use of optical tweezers relies on accurate calibration of the stiffness of the optical trap. Using the same optical tweezers platform operating at 1064 nm and beads with two different diameters, we present a comparative study of viscous drag force, equipartition theorem, Boltzmann statistics, and power spectral density (PSD) as methods in calibrating the stiffness of a single beam gradient force optical trap at trapping laser powers in the range of 0.05 to 1.38 W at the focal plane. The equipartition theorem and Boltzmann statistic methods demonstrate a linear stiffness with trapping laser powers up to 355 mW, when used in conjunction with video position sensing means. The PSD of a trapped particle’s Brownian motion or measurements of the particle displacement against known viscous drag forces can be reliably used for stiffness calibration of an optical trap over a greater range of trapping laser powers. Viscous drag stiffness calibration method produces results relevant to applications where trapped particle undergoes large displacements, and at a given position sensing resolution, can be used for stiffness calibration at higher trapping laser powers than the PSD method. PMID:25375348

  12. A simple criterion for determining the static friction force between nanowires and flat substrates using the most-bent-state method.

    PubMed

    Hou, Lizhen; Wang, Shiliang; Huang, Han

    2015-04-24

    A simple criterion was developed to assess the appropriateness of the currently available models that estimate the static friction force between nanowires and substrates using the 'most-bent-state' method. Our experimental testing of the static friction force between Al2O3 nanowires and Si substrate verified our theoretical analysis, as well as the establishment of the criterion. It was found that the models are valid only for the bent nanowires with the ratio of wire length over the minimum curvature radius [Formula: see text] no greater than 1. For the cases with [Formula: see text] greater than 1, the static friction force was overestimated as it neglected the effect of its tangential component. PMID:25815772

  13. A Novel Method for Localizing Reporter Fluorescent Beads Near the Cell Culture Surface for Traction Force Microscopy

    PubMed Central

    Knoll, Samantha G.; Ali, M. Yakut; Saif, M. Taher A.

    2014-01-01

    PA gels have long been used as a platform to study cell traction forces due to ease of fabrication and the ability to tune their elastic properties. When the substrate is coated with an extracellular matrix protein, cells adhere to the gel and apply forces, causing the gel to deform. The deformation depends on the cell traction and the elastic properties of the gel. If the deformation field of the surface is known, surface traction can be calculated using elasticity theory. Gel deformation is commonly measured by embedding fluorescent marker beads uniformly into the gel. The probes displace as the gel deforms. The probes near the surface of the gel are tracked. The displacements reported by these probes are considered as surface displacements. Their depths from the surface are ignored. This assumption introduces error in traction force evaluations. For precise measurement of cell forces, it is critical for the location of the beads to be known. We have developed a technique that utilizes simple chemistry to confine fluorescent marker beads, 0.1 and 1 µm in diameter, in PA gels, within 1.6 μm of the surface. We coat a coverslip with poly-D-lysine (PDL) and fluorescent beads. PA gel solution is then sandwiched between the coverslip and an adherent surface. The fluorescent beads transfer to the gel solution during curing. After polymerization, the PA gel contains fluorescent beads on a plane close to the gel surface. PMID:25286326

  14. Methods and apparatus of spatially resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)

    2008-01-01

    A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.

  15. Large-Scale Magnetic Field Generation by Randomly Forced Shearing Waves

    NASA Astrophysics Data System (ADS)

    Heinemann, T.; McWilliams, J. C.; Schekochihin, A. A.

    2011-12-01

    A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of low magnetic Reynolds number (Rm) and weak shear. The dynamo is kinematic and due to fluctuations in the net (volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear calculation aiming to put the shear dynamo, a new effect recently found in numerical experiments, on a firm theoretical footing. Numerically observed scalings of the wave number and growth rate of the fastest-growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic turbulence.

  16. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    SciTech Connect

    Unseren, M.A.

    1997-04-20

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  17. A new method for tracking and analyzing illness and morbidity among active duty U.S. Air Force aviators.

    PubMed

    Zwart, B P

    1994-08-01

    The United States Air Force (USAF) presents a unique opportunity to investigate disease incidence, duration, and severity, through analysis of flyer medical records. This article describes the creation and analysis of a 15,275-record database of flyer-physician interactions, recorded over several years from 18 U.S. Air Force Bases. A descriptive analysis presents the leading causes of outpatient morbidity as measured by total days disqualified for flying duties (downtime). Upper respiratory infection (URI)/cold/congestion was the leading cause of illness, representing 4,485/15,700 visits with a median downtime of 6 d, and with 90% of the flyers allowed back into the cockpit within 15 d. A diagnosis coding system was developed specifically for this project that differs from the standard International Classification of Disease-Revision 9 (ICD-9 CM) (1) nomenclature. The rationale for such an approach is discussed.

  18. MEAMfit: A reference-free modified embedded atom method (RF-MEAM) energy and force-fitting code

    NASA Astrophysics Data System (ADS)

    Duff, Andrew Ian

    2016-06-01

    MEAMfit v1.02. Changes: various bug fixes; speed of single-shot energy and force calculations (not optimization) increased by × 10; elements up to Cn (Z = 112) now correctly read from vasprun.xml files; EAM fits now produce Camelion output files; changed max number of vasprun.xml files to 10,000 (an unnecessary lower limit of 10 was allowed in the previous version).

  19. Investigation of the Interaction between Patulin and Human Serum Albumin by a Spectroscopic Method, Atomic Force Microscopy, and Molecular Modeling

    PubMed Central

    Yuqin, Li; Guirong, You; Zhen, Yang; Caihong, Liu; Baoxiu, Jia; Jiao, Chen; Yurong, Guo

    2014-01-01

    The interaction of patulin with human serum albumin (HSA) was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis), circular dichroism (CD), atomic force microscopy (AFM), and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K) were 2.60 × 104, 4.59 × 104, and 7.01 × 104 M−1 at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG0, ΔH0, and ΔS0 values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments. PMID:25110690

  20. Modeling the Sedimentation of Red Blood Cells in Flow under Strong External Magnetic Body Force using a Lattice Boltzmann Fictitious Domain Method

    SciTech Connect

    Shi, Xing; Lin, Guang

    2014-11-01

    To model the sedimentation of the red blood cell (RBC) in a square duct and a circular pipe, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method (LBM-DLM/FD) is extended to employ the mesoscopic network model for simulations of the sedimentation of the RBC in flow. The flow is simulated by the lattice Boltzmann method with a strong magnetic body force, while the network model is used for modeling RBC deformation. The fluid-RBC interactions are enforced by the Lagrange multiplier. The sedimentation of the RBC in a square duct and a circular pipe is simulated, revealing the capacity of the current method for modeling the sedimentation of RBC in various flows. Numerical results illustrate that that the terminal setting velocity increases with the increment of the exerted body force. The deformation of the RBC has significant effect on the terminal setting velocity due to the change of the frontal area. The larger the exerted force is, the smaller the frontal area and the larger deformation of the RBC are.

  1. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method.

    PubMed

    Amiri Delouei, A; Nazari, M; Kayhani, M H; Succi, S

    2014-05-01

    In this study, the immersed boundary-thermal lattice Boltzmann method has been used to simulate non-Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different diffuse interface schemes are considered to interpolate the velocity and temperature between the boundary and computational grid points. The lattice Boltzmann equation with split-forcing term is applied to consider the effects of the discrete lattice and the body force to the momentum flux, simultaneously. A method for calculating the Nusselt number based on diffuse interface schemes is developed. The rheological and thermal properties of non-Newtonian fluids are investigated under the different power-law indices and Reynolds numbers. The effect of numerical parameters on the accuracy of the proposed method has been investigated in detail. Results show that the rheological and thermal properties of non-Newtonian fluids in the presence of a heated immersed body can be suitably captured using the immersed boundary thermal lattice Boltzmann method. PMID:25353919

  2. Implementation of design of experiments for optimization of forced degradation conditions and development of a stability-indicating method for furosemide.

    PubMed

    Kurmi, Moolchand; Kumar, Sanjay; Singh, Bhupinder; Singh, Saranjit

    2014-08-01

    The study involved optimization of forced degradation conditions and development of a stability-indicating method (SIM) for furosemide employing the design of experiment (DoE) concept. The optimization of forced degradation conditions, especially hydrolytic and oxidative, was done by application of 2(n) full factorial designs, which helped to obtain the targeted 20-30% drug degradation and also enriched levels of degradation products (DPs). For the selective separation of the drug and its DPs for the development of SIM, DoE was applied in three different stages, i.e., primary parameter selection, secondary parameter screening and method optimization. For these three, IV-optimal, Taguchi orthogonal array and face-centred central composite designs were employed, respectively. The organic modifier, buffer pH, gradient time and initial hold time were selected as primary parameters. Initial and final organic modifier percentage, and flow rate came out as critical parameters during secondary parameter screening, which were further evaluated during method optimization. Based on DoE results, an optimized method was obtained wherein a total of twelve DPs were separated successfully. The study also exposed the degradation behaviour of the drug in different forced degradation conditions. PMID:24742772

  3. Nuclear forces

    SciTech Connect

    Machleidt, R.

    2013-06-10

    These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach, in which the forces between nucleons emerge from low-energy QCD via chiral effective field theory.

  4. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  5. Full non-linear treatment of the global thermospheric wind system. I - Mathematical method and analysis of forces. II - Results and comparison with observations

    NASA Technical Reports Server (NTRS)

    Blum, P. W.; Harris, I.

    1975-01-01

    The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In Part I the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analyzed. Results of the method given in Part I are presented with comparison with previous calculations and observations of upper atmospheric winds. Conclusions are that nonlinear effects are only significant in the equatorial region, especially at solstice conditions and that nonlinear effects do not produce any superrotation.

  6. Accounting for polarization cost when using fixed charge force fields. II. Method and application for computing effect of polarization cost on free energy of hydration.

    PubMed

    Swope, William C; Horn, Hans W; Rice, Julia E

    2010-07-01

    Polarization cost is the energy needed to distort the wave function of a molecule from one appropriate to the gas phase to one appropriate for some condensed phase. Although it is not currently standard practice, polarization cost should be considered when deriving improved fixed charge force fields based on fits to certain types of experimental data and when using such force fields to compute observables that involve changes in molecular polarization. Building on earlier work, we present mathematical expressions and a method to estimate the effect of polarization cost on free energy and enthalpy implied by a charge model meant to represent a solvated state. The charge model can be any combination of point charges, higher-order multipoles, or even distributed charge densities, as long as they do not change in response to environment. The method is illustrated by computing the effect of polarization cost on free energies of hydration for the neutral amino acid side chain analogues as predicted using two popular fixed charge force fields and one based on electron densities computed using quantum chemistry techniques that employ an implicit model to represent aqueous solvent. From comparison of the computed and experimental hydration free energies, we find that two commonly used force fields are too underpolarized in their description of the solute-water interaction. On the other hand, a charge model based on the charge density from a hybrid density functional calculation that used an implicit model for aqueous solvent performs well for hydration free energies of these molecules after the correction for dipole polarization is applied. As such, an improved description of the density (e.g., B3LYP, MP2) in conjunction with an implicit solvent (e.g., PCM) or explicit solvent (e.g., QM/MM) approach may offer promise as a starting point for the development of improved fixed charge models for force fields.

  7. Exact Green's function method of solar force-free magnetic-field computations with constant alpha. I - Theory and basic test cases

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Hilton, H. H.

    1977-01-01

    Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.

  8. Exploring the binding of 4-thiothymidine with human serum albumin by spectroscopy, atomic force microscopy, and molecular modeling methods.

    PubMed

    Zhang, Juling; Gu, Huaimin; Zhang, Xiaohui

    2014-01-30

    The interaction of 4-thiothymidine (S(4)TdR) with human serum albumin (HSA) was studied by equilibrium dialysis under normal physiological conditions. In this work, the mechanism of the interaction between S(4)TdR and human serum albumin (HSA) was exploited by fluorescence, UV, CD circular, and SERS spectroscopic. Fluorescence and UV spectroscopy suggest that HSA intensities are significantly decreased when adding S(4)TdR to HAS, and the quenching mechanism of the fluorescence is static. Also, the ΔG, ΔH, and ΔS values across temperature indicated that hydrophobic interaction was the predominant binding force. The CD circular results show that there is little change in the secondary structure of HSA except the environment of amino acid changes when adding S(4)TdR to HSA. The surface-enhanced Raman scattering (SERS) shows that the interaction between S(4)TdR and HSA can be achieved through different binding sites which are probably located in the II A and III A hydrophobic pockets of HSA which correspond to Sudlow's I and II binding sites. In addition, the molecular modeling displays that S(4)TdR-HSA complex is stabilized by hydrophobic forces, which result from amino acid residues. The atomic force microscopy results revealed that the single HSA molecular dimensions were larger after interaction of 4-thiothymidine. This work would be useful to understand the state of the transportation, distribution, and metabolism of the anticancer drugs in the human body, and it could provide a useful biochemistry parameter for the development of new anti-cancer drugs and research of pharmacology mechanisms. PMID:24370945

  9. Method and apparatus for fast laser pulse detection using gaseous plasmas

    DOEpatents

    McLellan, Edward J.; Webb, John A.

    1984-01-01

    The method and device of the instant invention is a detector of pulsed laser radiation which utilizes the electromotive force generated by the plasma formed when such radiation is focused onto a surface (1). Measurements are made with a 10.6 .mu.m CO.sub.2 laser capable of producing peak intensities of 10.sup.13 W/cm.sup.2 when directed through a converging lens (2). Evacuated detector response to such laser intensity is 1 kV signal peak amplitude and subnanosecond risetimes into a 50.OMEGA. load (3). Detector performance is found to be greatly altered with the introduction of a background gas (4). For example, with one atmosphere of air, the detector produces prompt signals of the order of 1 V with subnanosecond response for pulse trains lasting 100 ns. With argon, krypton, or zenon at pressures of the order of 10 torr, the detector generates "trigger pulses" of about 250 V amplitude and 0.2 ns risetimes. Such detectors are quite robust when irradiated with high intensity laser radiation and are useful for qualitative laser beam monitoring.

  10. Method and apparatus for fast laser-pulse detection using gaseous plasmas

    DOEpatents

    McLellan, E.J.; Webb, J.A.

    1981-06-18

    The method and device of the instant invention is a detector of pulsed laser radiation which utilizes the electromotive force generated by the plasma formed when such radiation is focused onto a surface. Measurements are made with a 10.6 ..mu..m CO/sub 2/ laser capable of producing peak intensities of 10/sup 13/ W/cm/sup 2/ when directed through a converging lens. Evacuated detector response to such laser intensity if 1 kV signal peak amplitude and subnanosecond risetimes into a 50 ..cap omega.. load. Detector performance is found to be greatly altered with the introduction of a background gas. For example, with one atmosphere of air, the detector produces prompt signals of the order of 1 V with subnanosecond response for pulse trains lasting 100 ns. With argon, krypton, or zenon at pressures of the order of 10 torr, the detector generates trigger pulses of about 250 V amplitude and 0.2 ns risetimes. Such detectors are quite robust when irradiated with high intensity laser radiation and are useful for qualitative laser beam monitoring.

  11. Levitation Force Investigation of Bulk HTSC Above Halbach PMG with Different Cross-Section Physical Dimensions by 3D-Modeling Numerical Method

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Liu, Guoliang; Qin, Yujie

    2014-10-01

    The levitation force of a bulk high temperature superconductor (HTSC) over Halbach permanent magnet guideways (PMG) with different cross-section configuration is studied by numerical method. The Halbach PMG is composed of three host permanent magnets (HPMs) and two slave permanent magnets (SPMs). One cylindrical bulk HTSC with a diameter of 30 mm and height of 15 mm is used. The 3D-modeling is formulated by the H-method. The numerical resolving codes are practiced using finite element method (FEM). The E-J power law is used to describe the electric current nonlinear characteristics of bulk HTSC. By the method, the influence of the cross-section physical dimensions of Halbach PMG on the levitation forces of bulk HTSC levitated above the PMG is studied. The simulation results show that increasing the width of SPM ( can enhance the bulk HTSC levitation performance immediately under the condition of keeping the ratio of ( : the width of HPM) to between 1.6 and 1.8, the ratio of td (the height of the PMG) to between 1.2 and 1.4. By the method, the bulk HTSC better levitation performance can be expected.

  12. Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

    NASA Astrophysics Data System (ADS)

    Joung, Tae-Hwan; Choi, Hyeung-Sik; Jung, Sang-Ki; Sammut, Karl; He, Fangpo

    2014-06-01

    This paper examines the suitability of using the Computational Fluid Dynamics (CFD) tools, ANSYSCFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque) of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR), the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM) test simulations (i.e. pure heaving and pure pitching motion) by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc.) of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.

  13. Force-Measuring Clamps

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark

    2003-01-01

    Force-measuring clamps have been invented to facilitate and simplify the task of measuring the forces or pressures applied to clamped parts. There is a critical need to measure clamping forces or pressures in some applications for example, while bonding sensors to substrates or while clamping any sensitive or delicate parts. Many manufacturers of adhesives and sensors recommend clamping at specific pressures while bonding sensors or during adhesive bonding between parts in general. In the absence of a force-measuring clamp, measurement of clamping force can be cumbersome at best because of the need for additional load sensors and load-indicating equipment. One prior method of measuring clamping force involved the use of load washers or miniature load cells in combination with external power sources and load-indicating equipment. Calibrated spring clamps have also been used. Load washers and miniature load cells constitute additional clamped parts in load paths and can add to the destabilizing effects of loading mechanisms. Spring clamps can lose calibration quickly through weakening of the springs and are limited to the maximum forces that the springs can apply. The basic principle of a force-measuring clamp can be implemented on a clamp of almost any size and can enable measurement of a force of almost any magnitude. No external equipment is needed because the component(s) for transducing the clamping force and the circuitry for supplying power, conditioning the output of the transducers, and displaying the measurement value are all housed on the clamp. In other words, a force-measuring clamp is a complete force-application and force-measurement system all in one package. The advantage of unitary packaging of such a system is that it becomes possible to apply the desired clamping force or pressure with precision and ease.

  14. Benchmark Database on Isolated Small Peptides Containing an Aromatic Side Chain: Comparison Between Wave Function and Density Functional Theory Methods and Empirical Force Field

    SciTech Connect

    Valdes, Haydee; Pluhackova, Kristyna; Pitonak, Michal; Rezac, Jan; Hobza, Pavel

    2008-03-13

    A detailed quantum chemical study on five peptides (WG, WGG, FGG, GGF and GFA) containing the residues phenylalanyl (F), glycyl (G), tryptophyl (W) and alanyl (A)—where F and W are of aromatic character—is presented. When investigating isolated small peptides, the dispersion interaction is the dominant attractive force in the peptide backbone–aromatic side chain intramolecular interaction. Consequently, an accurate theoretical study of these systems requires the use of a methodology covering properly the London dispersion forces. For this reason we have assessed the performance of the MP2, SCS-MP2, MP3, TPSS-D, PBE-D, M06-2X, BH&H, TPSS, B3LYP, tight-binding DFT-D methods and ff99 empirical force field compared to CCSD(T)/complete basis set (CBS) limit benchmark data. All the DFT techniques with a ‘-D’ symbol have been augmented by empirical dispersion energy while the M06-2X functional was parameterized to cover the London dispersion energy. For the systems here studied we have concluded that the use of the ff99 force field is not recommended mainly due to problems concerning the assignment of reliable atomic charges. Tight-binding DFT-D is efficient as a screening tool providing reliable geometries. Among the DFT functionals, the M06-2X and TPSS-D show the best performance what is explained by the fact that both procedures cover the dispersion energy. The B3LYP and TPSS functionals—not covering this energy—fail systematically. Both, electronic energies and geometries obtained by means of the wave-function theory methods compare satisfactorily with the CCSD(T)/CBS benchmark data.

  15. Polarizable force fields.

    PubMed

    Antila, Hanne S; Salonen, Emppu

    2013-01-01

    This chapter provides an overview of the most common methods for including an explicit description of electronic polarization in molecular mechanics force fields: the induced point dipole, shell, and fluctuating charge models. The importance of including polarization effects in biomolecular simulations is discussed, and some of the most important achievements in the development of polarizable biomolecular force fields to date are highlighted.

  16. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  17. Study of interaction between syringin and human serum albumin by multi-spectroscopic method and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Li, Nana; Chen, Yaowen; Xu, Yanping; Lin, Yuejuan; Yin, Yegao; Hu, Zhide

    2010-11-01

    The interaction between syringin and HSA has been studied by AFM, molecule modeling, fluorescence, UV-vis, FTIR and CD spectroscopy. Fluorescence results revealed that syringin can enhance the intensity of HSA fluorescence. The enhancement data was analyzed by the equation which developed by Bhattacharya et al. The results showed that there was one primary syringin binding site on HSA with a binding constant of 2.97 × 10 4 M -1 at 295 K. Thermodynamic analysis by Van Hoff equation found enthalpy change (Δ H0) and entropy change (Δ S0) were -5.23 kJ mol -1 and 103.34 J mol -1 K -1 respectively, which indicated the hydrophobic interaction was the predominant force in the binding process. Competitive experiments showed a displacement of warfarin by syringin, which indicated that the binding site was located at the drug site I. AFM results revealed that the dimension of the individual HSA molecules was larger after interaction with syringin. The secondary structure compositions of free HSA and HSA-syringin complex were estimated by FTIR and CD spectra.

  18. Dissemination of the Look AHEAD Lifestyle Intervention in the United States Air Force: Study Rationale, Design and Methods

    PubMed Central

    Krukowski, Rebecca A.; Hare, Marion E.; Talcott, Gerald W.; Johnson, Karen C.; Richey, Phyllis A.; Kocak, Mehmet; Balderas, Jennifer; Colvin, Lauren; Keller, Patrick L.; Waters, Teresa M.; Klesges, Robert C.

    2014-01-01

    Despite an increase in overweight and obesity similar to the civilian population, there have been few randomized controlled trials examining behavioral weight management interventions in the military settings. This paper describes the design, intervention development and analysis plan of the Fit Blue study, a randomized controlled behavioral weight loss trial taking place in the United States Air Force. This study compares two adapted versions of the efficacious Look AHEAD Intensive Lifestyle Intervention (ILI), a counselor-initiated condition and a self-paced condition. Also described are the unique steps required when conducting military-based health promotion research and adaptations made to the Look AHEAD intervention to accommodate the military environment. To our knowledge, this is the first translation of the Look AHEAD ILI in the military setting and one of the first translations of the ILI in general. If successful, this intervention could be disseminated to the entire U.S. Military as this project is designed to overcome the barriers and utilize the facilitators for weight loss that are unique to a military population. Programs validated in military populations can have a major public health impact given that with 1.4 million active duty personnel, the Department of Defense is the nation’s largest employer. However, while this intervention is designed for a military population and there are unique aspects of the military that may enhance weight loss interventions, the diversity of the study population should help inform obesity efforts in both civilian and military settings. PMID:25545025

  19. Effective in silico prediction of new oxazolidinone antibiotics: force field simulations of the antibiotic–ribosome complex supervised by experiment and electronic structure methods

    PubMed Central

    2016-01-01

    Summary We propose several new and promising antibacterial agents for the treatment of serious Gram-positive infections. Our predictions rely on force field simulations, supervised by first principle calculations and available experimental data. Different force fields were tested in order to reproduce linezolid's conformational space in terms of a) the isolated and b) the ribosomal bound state. In a first step, an all-atom model of the bacterial ribosome consisting of nearly 1600 atoms was constructed and evaluated. The conformational space of 30 different ribosomal/oxazolidinone complexes was scanned by stochastic methods, followed by an evaluation of their enthalpic penalties or rewards and the mechanical strengths of the relevant hydrogen bonds (relaxed force constants; compliance constants). The protocol was able to reproduce the experimentally known enantioselectivity favoring the S-enantiomer. In a second step, the experimentally known MIC values of eight linezolid analogues were used in order to crosscheck the robustness of our model. In a final step, this benchmarking led to the prediction of several new and promising lead compounds. Synthesis and biological evaluation of the new compounds are on the way. PMID:27340438

  20. SI-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods

    NASA Astrophysics Data System (ADS)

    Nesterov, V.; Belai, O.; Nies, D.; Buetefisch, S.; Mueller, M.; Ahbe, T.; Naparty, D.; Popadic, R.; Wolff, H.

    2016-08-01

    The PTB’s (Physikalisch-Technische Bundesanstalt, Germany) nanonewton force facility, first presented in work by Nesterov (2007 Meas. Sci. Technol. 18 360-6), Nesterov (2009 Meas. Sci. Technol. 20 084012) and Nesterov et al (2009 Metrologia 46 277-82), has been significantly improved and used to measure the stiffness of a cantilever. The facility is based on a disc pendulum with electrostatic reduction of its deflection and stiffness. In this paper, we will demonstrate that the facility is able to measure horizontal forces in the range below 1 μN with a resolution below 5 pN and an uncertainty below 2.7% for a measured force of 1 nN at a measurement duration of about 20 s. We will demonstrate the possibility of using this facility as a calibration device that can accurately determine spring constants of soft cantilevers (K ≲ 0.1 N m-1) with traceability to the SI units. The method and the results of measuring the spring constant of a soft cantilever (K  =  0.125 N m-1) in air, in a medium vacuum, in a high vacuum and in nitrogen are presented. We will show that a relative standard uncertainty of the spring constant calibration of better than 0.3% (measurement in a medium vacuum) and a repeatability of better than 0.04% are achieved.

  1. SI-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods

    NASA Astrophysics Data System (ADS)

    Nesterov, V.; Belai, O.; Nies, D.; Buetefisch, S.; Mueller, M.; Ahbe, T.; Naparty, D.; Popadic, R.; Wolff, H.

    2016-08-01

    The PTB’s (Physikalisch-Technische Bundesanstalt, Germany) nanonewton force facility, first presented in work by Nesterov (2007 Meas. Sci. Technol. 18 360–6), Nesterov (2009 Meas. Sci. Technol. 20 084012) and Nesterov et al (2009 Metrologia 46 277–82), has been significantly improved and used to measure the stiffness of a cantilever. The facility is based on a disc pendulum with electrostatic reduction of its deflection and stiffness. In this paper, we will demonstrate that the facility is able to measure horizontal forces in the range below 1 μN with a resolution below 5 pN and an uncertainty below 2.7% for a measured force of 1 nN at a measurement duration of about 20 s. We will demonstrate the possibility of using this facility as a calibration device that can accurately determine spring constants of soft cantilevers (K ≲ 0.1 N m‑1) with traceability to the SI units. The method and the results of measuring the spring constant of a soft cantilever (K  =  0.125 N m‑1) in air, in a medium vacuum, in a high vacuum and in nitrogen are presented. We will show that a relative standard uncertainty of the spring constant calibration of better than 0.3% (measurement in a medium vacuum) and a repeatability of better than 0.04% are achieved.

  2. One Force

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald R.

    2002-04-01

    There is only one entity that can extend force and couple through space; and it should be apparent that Electromagnetism is that entity. In the cases of the nuclear strong force and the nuclear weak force, this is the same fundamental Electromagnetism manifesting itself in two different ways in the nucleus. It remains the same basic Electromagnetism. On the other hand, General Relativity fails to produce force at a distance, fails the Cavendish experiment, and does not allow an apple to fall to the ground. The result shows there is only Electromagnetism that functions through physical nature providing gravity, actions in the nucleus, as well as all other physical actions universally, including Gravity and Gravitation. There are many direct proofs of this, the same proofs as in NUCLEAR QUANTUM GRAVITATION. In contrast, General Relativity plainly relies on fallacy abstract and incoherent proofs; proofs which have now been mostly disproved. In the past it was deemed necessary by some to have an "ether" to propagate Electromagnetic waves. The fallacy concept of time space needs "space distortions" in order to cause gravity. However, Electromagnetic gravity does not have this problem. Clearly there is only ONE FORCE that causes Gravity, Electromagnetism, the Nuclear Strong Force, and the Nuclear Weak Force, and that ONE FORCE is Electromagnetism.

  3. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2010

    2010-01-01

    The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…

  4. Investigation of Calibrating Force Transducer Using Sinusoidal Force

    SciTech Connect

    Zhang Li; Wang Yu; Zhang Lizhe

    2010-05-28

    Sinusoidal force calibration method was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). A similar dynamic force calibration system is developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electro-dynamic shakers to generate dynamic force in the range from 1 N to 20 kN, and heterodyne laser interferometers are used for acceleration measurement. The force transducer to be calibrated is mounted on the shaker, and a mass block is screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition. The methods of determining Spatial-dependent acceleration on mass block and measuring the end mass of force transducer in dynamic force calibration are discussed in this paper.

  5. Examining single-source secondary impacts estimated from brute-force, decoupled direct method, and advanced plume treatment approaches

    EPA Science Inventory

    In regulatory assessments, there is a need for reliable estimates of the impacts of precursor emissions from individual sources on secondary PM2.5 (particulate matter with aerodynamic diameter less than 2.5 microns) and ozone. Three potential methods for estimating th...

  6. Exploring the Use of iPads to Investigate Forces and Motion in an Elementary Science Methods Course

    ERIC Educational Resources Information Center

    Wilson, Rachel; Goodman, Jeff; Bradbury, Leslie; Gross, Lisa

    2013-01-01

    Many science educators emphasize the need for meaningful science learning experiences and promote the idea of social constructivism in their methods classes, usually with inquiry-based activities that include physical manipulatives. However, the proliferation of technology in the nation's schools suggests the need to incorporate this trend…

  7. New optimality criteria methods - Forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections

    NASA Technical Reports Server (NTRS)

    Rozvany, G. I. N.; Sobieszczanski-Sobieski, J.

    1992-01-01

    In new, iterative continuum-based optimality criteria (COC) methods, the strain in the adjoint structure becomes non-unique if the number of active local constraints is greater than the number of design variables for an element. This brief note discusses the use of smooth envelope functions (SEFs) in overcoming economically computational problems caused by the above non-uniqueness.

  8. Statistical Methods for the Analysis of Discrete Choice Experiments: A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force.

    PubMed

    Hauber, A Brett; González, Juan Marcos; Groothuis-Oudshoorn, Catharina G M; Prior, Thomas; Marshall, Deborah A; Cunningham, Charles; IJzerman, Maarten J; Bridges, John F P

    2016-06-01

    Conjoint analysis is a stated-preference survey method that can be used to elicit responses that reveal preferences, priorities, and the relative importance of individual features associated with health care interventions or services. Conjoint analysis methods, particularly discrete choice experiments (DCEs), have been increasingly used to quantify preferences of patients, caregivers, physicians, and other stakeholders. Recent consensus-based guidance on good research practices, including two recent task force reports from the International Society for Pharmacoeconomics and Outcomes Research, has aided in improving the quality of conjoint analyses and DCEs in outcomes research. Nevertheless, uncertainty regarding good research practices for the statistical analysis of data from DCEs persists. There are multiple methods for analyzing DCE data. Understanding the characteristics and appropriate use of different analysis methods is critical to conducting a well-designed DCE study. This report will assist researchers in evaluating and selecting among alternative approaches to conducting statistical analysis of DCE data. We first present a simplistic DCE example and a simple method for using the resulting data. We then present a pedagogical example of a DCE and one of the most common approaches to analyzing data from such a question format-conditional logit. We then describe some common alternative methods for analyzing these data and the strengths and weaknesses of each alternative. We present the ESTIMATE checklist, which includes a list of questions to consider when justifying the choice of analysis method, describing the analysis, and interpreting the results.

  9. Statistical Methods for the Analysis of Discrete Choice Experiments: A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force.

    PubMed

    Hauber, A Brett; González, Juan Marcos; Groothuis-Oudshoorn, Catharina G M; Prior, Thomas; Marshall, Deborah A; Cunningham, Charles; IJzerman, Maarten J; Bridges, John F P

    2016-06-01

    Conjoint analysis is a stated-preference survey method that can be used to elicit responses that reveal preferences, priorities, and the relative importance of individual features associated with health care interventions or services. Conjoint analysis methods, particularly discrete choice experiments (DCEs), have been increasingly used to quantify preferences of patients, caregivers, physicians, and other stakeholders. Recent consensus-based guidance on good research practices, including two recent task force reports from the International Society for Pharmacoeconomics and Outcomes Research, has aided in improving the quality of conjoint analyses and DCEs in outcomes research. Nevertheless, uncertainty regarding good research practices for the statistical analysis of data from DCEs persists. There are multiple methods for analyzing DCE data. Understanding the characteristics and appropriate use of different analysis methods is critical to conducting a well-designed DCE study. This report will assist researchers in evaluating and selecting among alternative approaches to conducting statistical analysis of DCE data. We first present a simplistic DCE example and a simple method for using the resulting data. We then present a pedagogical example of a DCE and one of the most common approaches to analyzing data from such a question format-conditional logit. We then describe some common alternative methods for analyzing these data and the strengths and weaknesses of each alternative. We present the ESTIMATE checklist, which includes a list of questions to consider when justifying the choice of analysis method, describing the analysis, and interpreting the results. PMID:27325321

  10. Analysis of interaction effect of stress intensity factors for interface cracks and angular corners using singular integral equations of the body force method

    SciTech Connect

    Noda, Nao-Aki; Oda, Kazuhiro

    1995-11-01

    In this study, numerical solution of singular integral equations is discussed in the analysis of interface cracks and angular corners. The problems are formulated as a system of singular integral equations on the basis of the body force method. In the analysis of interface cracks, the unknown functions of the body force densities which satisfy the boundary conditions are expressed by the products of fundamental density functions and power series. In the problem of angular corners, two types of fundamental density functions are chosen to express the symmetric type stress singularity of 1/r{sup 1{minus}{lambda}1} and the skew-symmetric type stress singularity of 1/r{sup 1{minus}{lambda}2}; then the unknown functions are expressed as a linear combination of the fundamental density functions and power series. The accuracy of the present analysis is verified by comparing the present results with the results obtained by other researchers and examining the compliance with boundary conditions. The calculation shows that the present method gives rapidly converging numerical results for those problems as well as ordinary crack problems in homogeneous materials.

  11. Development and Validation of Stability-Indicating Method for Estimation of Chlorthalidone in Bulk and Tablets with the Use of Experimental Design in Forced Degradation Experiments

    PubMed Central

    Sonawane, Sandeep; Jadhav, Sneha; Rahade, Priya; Chhajed, Santosh; Kshirsagar, Sanjay

    2016-01-01

    Chlorthalidone was subjected to various forced degradation conditions. Substantial degradation of chlorthalidone was obtained in acid, alkali, and oxidative conditions. Further full factorial experimental design was applied for acid and alkali forced degradation conditions, in which strength of acid/alkali, temperature, and time of heating were considered as independent variables (factors) and % degradation was considered as dependent variable (response). Factors responsible for acid and alkali degradation were statistically evaluated using Yates analysis and Pareto chart. Furthermore, using surface response curve, optimized 10% degradation was obtained. All chromatographic separation was carried out on Phenomenex HyperClone C 18 column (250 × 4.6 mm, 5 μ), using mobile phase comprising methanol : acetonitrile : phosphate buffer (20 mM) (pH 3.0 adjusted with o-phosphoric acid): 30 : 10 : 60% v/v. The flow rate was kept constant at 1 mL/min and eluent was detected at 241 nm. In calibration curve experiments, linearity was found to be in the range of 2–12 μg/mL. Validation experiments proved good accuracy and precision of the method. Also there was no interference of excipients and degradation products at the retention time of chlorthalidone, indicating specificity of the method. PMID:27123364

  12. van der Waals forces in density functional theory: a review of the vdW-DF method.

    PubMed

    Berland, Kristian; Cooper, Valentino R; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T; Hyldgaard, Per; Lundqvist, Bengt I

    2015-06-01

    A density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology is reviewed. The insights that led to the construction of the Rutgers-Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

  13. van der Waals forces in density functional theory: a review of the vdW-DF method

    DOE PAGES

    Berland, Kristian; Cooper, Valentino R.; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T.; Hyldgaard, Per; Lundqvist, Bengt I.

    2015-05-15

    We review a density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology. The insights that led to the construction of the Rutgers–Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only formore » dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.« less

  14. van der Waals forces in density functional theory: a review of the vdW-DF method

    SciTech Connect

    Berland, Kristian; Cooper, Valentino R.; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T.; Hyldgaard, Per; Lundqvist, Bengt I.

    2015-05-15

    We review a density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology. The insights that led to the construction of the Rutgers–Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

  15. hp discontinuous Galerkin methods for the vertical extent of the water column in coastal settings part I: Barotropic forcing

    NASA Astrophysics Data System (ADS)

    Conroy, Colton J.; Kubatko, Ethan J.

    2016-01-01

    In this article, we present novel, high-order, discontinuous Galerkin (DG) methods for the vertical extent of the water column in coastal settings. We examine the shallow water equations (SWE) in the context of DG spatial discretizations coupled with explicit Runge-Kutta (RK) time stepping. All the primary variables, including the free surface elevation, are discretized using discontinuous polynomial spaces of arbitrary order. The difficulty of mismatched lateral boundary faces that accompanies the use of a discontinuous free surface is overcome through the use of a so-called sigma-coordinate system in the vertical, which transforms the bottom boundary and free surface into coordinate surfaces. We develop high-order methods for the SWE that exhibit optimal orders of convergence for all the primary variables via two distinct paths: the first involves the use of a convolution kernel made up of B-splines to filter out errors in the DG discretization of the surface elevation and the corresponding pressure flux. The second involves a method that evaluates the discrete depth-integrated velocity exactly, eliminating the need to solve the depth-integrated momentum equation altogether. The result is a simple and efficient high-order scheme that can be extended to the full three-dimensional SWE.

  16. Single Tracking Location Acoustic Radiation Force Impulse Viscoelasticity Estimation (STL-VE): A Method for Measuring Tissue Viscoelastic Parameters

    PubMed Central

    Langdon, Jonathan H; Elegbe, Etana; McAleavey, Stephen A

    2015-01-01

    Single Tracking Location (STL) Shear wave Elasticity Imaging (SWEI) is a method for detecting elastic differences between tissues. It has the advantage of intrinsic speckle bias suppression compared to Multiple Tracking Location (MTL) variants of SWEI. However, the assumption of a linear model leads to an overestimation of the shear modulus in viscoelastic media. A new reconstruction technique denoted Single Tracking Location Viscosity Estimation (STL-VE) is introduced to correct for this overestimation. This technique utilizes the same raw data generated in STL-SWEI imaging. Here, the STL-VE technique is developed by way of a Maximum Likelihood Estimation (MLE) for general viscoelastic materials. The method is then implemented for the particular case of the Kelvin-Voigt Model. Using simulation data, the STL-VE technique is demonstrated and the performance of the estimator is characterized. Finally, the STL-VE method is used to estimate the viscoelastic parameters of ex-vivo bovine liver. We find good agreement between the STL-VE results and the simulation parameters as well as between the liver shear wave data and the modeled data fit. PMID:26168170

  17. Single tracking location acoustic radiation force impulse viscoelasticity estimation (STL-VE): A method for measuring tissue viscoelastic parameters.

    PubMed

    Langdon, Jonathan H; Elegbe, Etana; McAleavey, Stephen A

    2015-07-01

    Single tracking location (STL) shear wave elasticity imaging (SWEI) is a method for detecting elastic differences between tissues. It has the advantage of intrinsic speckle bias suppression compared with multiple tracking location variants of SWEI. However, the assumption of a linear model leads to an overestimation of the shear modulus in viscoelastic media. A new reconstruction technique denoted single tracking location viscosity estimation (STL-VE) is introduced to correct for this overestimation. This technique utilizes the same raw data generated in STL-SWEI imaging. Here, the STL-VE technique is developed by way of a maximum likelihood estimation for general viscoelastic materials. The method is then implemented for the particular case of the Kelvin-Voigt Model. Using simulation data, the STL-VE technique is demonstrated and the performance of the estimator is characterized. Finally, the STL-VE method is used to estimate the viscoelastic parameters of ex vivo bovine liver. We find good agreement between the STL-VE results and the simulation parameters as well as between the liver shear wave data and the modeled data fit. PMID:26168170

  18. Developing an evidence-based Guide to Community Preventive Services--methods. The Task Force on Community Preventive Services.

    PubMed

    Briss, P A; Zaza, S; Pappaioanou, M; Fielding, J; Wright-De Agüero, L; Truman, B I; Hopkins, D P; Mullen, P D; Thompson, R S; Woolf, S H; Carande-Kulis, V G; Anderson, L; Hinman, A R; McQueen, D V; Teutsch, S M; Harris, J R

    2000-01-01

    Systematic reviews and evidence-based recommendations are increasingly important for decision making in health and medicine. Over the past 20 years, information on the science of synthesizing research results has exploded. However, some approaches to systematic reviews of the effectiveness of clinical preventive services and medical care may be less appropriate for evaluating population-based interventions. Furthermore, methods for linking evidence to recommendations are less well developed than methods for synthesizing evidence. The Guide to Community Preventive Services: Systematic Reviews and Evidence-Based Recommendations (the Guide) will evaluate and make recommendations on population-based and public health interventions. This paper provides an overview of the Guide's process to systematically review evidence and translate that evidence into recommendations. The Guide reviews evidence on effectiveness, the applicability of effectiveness data, (i.e., the extent to which available effectiveness data is thought to apply to additional populations and settings), the intervention's other effects (i.e., important side effects), economic impact, and barriers to implementation of interventions. The steps for obtaining and evaluating evidence into recommendations involve: (1) forming multidisciplinary chapter development teams, (2) developing a conceptual approach to organizing, grouping, selecting and evaluating the interventions in each chapter; (3) selecting interventions to be evaluated; (4) searching for and retrieving evidence; (5) assessing the quality of and summarizing the body of evidence of effectiveness; (6) translating the body of evidence of effectiveness into recommendations; (7) considering information on evidence other than effectiveness; and (8) identifying and summarizing research gaps. Systematic reviews of and evidence-based recommendations for population-health interventions are challenging and methods will continue to evolve. However, using an

  19. Feather retention force in broilers ante-, peri-, and post-mortem as influenced by carcass orientation, angle of extraction, and slaughter method.

    PubMed

    Buhr, R J; Cason, J A; Rowland, G N

    1997-11-01

    Stunning and slaughter trials were conducted to evaluate the influence of carcass orientation (inverted or supine), angle of feather extraction (parallel or perpendicular to the carcass surface), and slaughter method (exsanguination without or with spinal cord transection) on feather retention force (FRF) in commercial broilers sampled ante-, peri-, and post-mortem. The pectoral, sternal, and femoral feather tracts were sampled before and after stunning contralaterally, with a maximum indicating force gauge, from broilers suspended on a shackle (inverted) or laying on a table (supine). For all trials and sample periods FRF was consistently greater in the femoral area (547 to 679 g) than in the pectoral area (273 to 391 g), with the sternal feather tract requiring the least force at 246 to 343 g. Feathers extracted parallel to the carcass resulted in consistently greater FRF (9 to 29%) than feathers extracted at a perpendicular angle, at all sample periods. Broilers suspended on shackles ante- and peri-mortem had higher FRF values (5 to 30%) than those restrained in shackles in a supine position on a table. Other parameters resulted in minor and inconsistent alterations in FRF. Electrical stunning, when not followed by bleeding, resulted in small reductions in FRF (up to 7%). Bleeding after stunning without or with spinal cord transection resulted in variable peri-mortem FRF changes (+7 to -11% and +11 to -11%, respectively). Only in the pectoral feather tract was there a significant increase (5 to 6%) in FRF as broilers went from the ante- to peri-mortem state. At 2 and 6 min after stunning and initiation of exsanguination, post-mortem FRF was unaffected by carcass orientation for the pectoral and femoral tracts.

  20. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  1. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    SciTech Connect

    Ageev, O. A.; Bykov, Al. V.; Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Tsukanova, O. G.

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is within the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.

  2. Selecting a dynamic simulation modeling method for health care delivery research-part 2: report of the ISPOR Dynamic Simulation Modeling Emerging Good Practices Task Force.

    PubMed

    Marshall, Deborah A; Burgos-Liz, Lina; IJzerman, Maarten J; Crown, William; Padula, William V; Wong, Peter K; Pasupathy, Kalyan S; Higashi, Mitchell K; Osgood, Nathaniel D

    2015-03-01

    In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling can be used more effectively than other modeling methods. The hierarchical relationship between the health care delivery system, providers, patients, and other stakeholders exhibits a level of complexity that ought to be captured using dynamic simulation modeling methods. As a tool to help researchers decide whether dynamic simulation modeling is an appropriate method for modeling the effects of an intervention on a health care system, we presented the System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence (SIMULATE) checklist consisting of eight elements. This report builds on the previous work, systematically comparing each of the three most commonly used dynamic simulation modeling methods-system dynamics, discrete-event simulation, and agent-based modeling. We review criteria for selecting the most suitable method depending on 1) the purpose-type of problem and research questions being investigated, 2) the object-scope of the model, and 3) the method to model the object to achieve the purpose. Finally, we provide guidance for emerging good practices for dynamic simulation modeling in the health sector, covering all aspects, from the engagement of decision makers in the model design through model maintenance and upkeep. We conclude by providing some recommendations about the application of these methods to add value to informed decision making, with an emphasis on stakeholder engagement, starting with the problem definition. Finally, we identify areas in which further methodological development will likely occur given the growing "volume, velocity and variety" and availability of "big data" to provide empirical evidence and techniques

  3. Selecting a dynamic simulation modeling method for health care delivery research-part 2: report of the ISPOR Dynamic Simulation Modeling Emerging Good Practices Task Force.

    PubMed

    Marshall, Deborah A; Burgos-Liz, Lina; IJzerman, Maarten J; Crown, William; Padula, William V; Wong, Peter K; Pasupathy, Kalyan S; Higashi, Mitchell K; Osgood, Nathaniel D

    2015-03-01

    In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling can be used more effectively than other modeling methods. The hierarchical relationship between the health care delivery system, providers, patients, and other stakeholders exhibits a level of complexity that ought to be captured using dynamic simulation modeling methods. As a tool to help researchers decide whether dynamic simulation modeling is an appropriate method for modeling the effects of an intervention on a health care system, we presented the System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence (SIMULATE) checklist consisting of eight elements. This report builds on the previous work, systematically comparing each of the three most commonly used dynamic simulation modeling methods-system dynamics, discrete-event simulation, and agent-based modeling. We review criteria for selecting the most suitable method depending on 1) the purpose-type of problem and research questions being investigated, 2) the object-scope of the model, and 3) the method to model the object to achieve the purpose. Finally, we provide guidance for emerging good practices for dynamic simulation modeling in the health sector, covering all aspects, from the engagement of decision makers in the model design through model maintenance and upkeep. We conclude by providing some recommendations about the application of these methods to add value to informed decision making, with an emphasis on stakeholder engagement, starting with the problem definition. Finally, we identify areas in which further methodological development will likely occur given the growing "volume, velocity and variety" and availability of "big data" to provide empirical evidence and techniques

  4. LC-MS-MS Characterization of Forced Degradation Products of Fidarestat, a Novel Aldose Reductase Inhibitor: Development and Validation of a Stability-Indicating RP-HPLC Method.

    PubMed

    Talluri, M V N Kumar; Khatoon, Lubna; Kalariya, Pradipbhai D; Chavan, Balasaheb B; Ragampeta, Srinivas

    2015-10-01

    An accurate, precise, robust and selective stability-indicating liquid chromatographic (LC) method has been developed for the monitoring of fidarestat in the presence of its forced degradants. The drug was subjected to hydrolysis (acid, alkali and neutral degradation), oxidation, photolysis and thermal stress conditions. The drug degraded significantly under hydrolytic (basic, acidic and neutral) and oxidative stress conditions, whereas it was found to be stable in photolytic and thermal conditions. The chromatographic separation was achieved on a Grace C18, (250 mm × 4.6 mm × 5 μm) column using gradient mobile phase system consisting of 10 mM of ammonium acetate buffer at pH 4 and acetonitrile at a flow rate of 1 mL/min with UV detection at 283 nm. The developed method was extended to liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS-MS) for characterization of all the degradation products. A total of five new degradation products were identified and characterized by LC-QTOF-MS-MS. The developed LC method was validated as per ICH guideline Q2 (R1). The proposed method was found to be successively applied for the quality control of fidarestat in bulk drug analysis.

  5. Updates on Force Limiting Improvements

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Scharton, Terry

    2013-01-01

    The following conventional force limiting methods currently practiced in deriving force limiting specifications assume one-dimensional translation source and load apparent masses: Simple TDOF model; Semi-empirical force limits; Apparent mass, etc.; Impedance method. Uncorrelated motion of the mounting points for components mounted on panels and correlated, but out-of-phase, motions of the support structures are important and should be considered in deriving force limiting specifications. In this presentation "rock-n-roll" motions of the components supported by panels, which leads to a more realistic force limiting specifications are discussed.

  6. Entrainment in an electrochemical forced oscillator as a method of classification of chemical species-a new strategy to develop a chemical sensor

    NASA Astrophysics Data System (ADS)

    Nakata, S.; Yoshikawa, K.; Kawakami, H.

    1992-10-01

    We propose a new sensing method of varios chemical species based on information on the mode of entrainment in an electrochemically forced oscillator. It is demonstrated that the presence of one of the four basic taste compounds (salty, sweet, bitter, and sour) changes the mode of entrainment in a unique way. Thus a characteristics change of the entrainment allows us to obtain information on the properties of the electrochemical system. The response of the mode of entrainment to the taste compounds is related to the nonlinear properties of the studied electrochemical system, i.e., its voltage dependent capacitance and conductance. The experimental results are compared with computer simulations of a model system in which the capacitance is a nonlinear function of the voltage.

  7. A Novel Method for Quantifying the Inhaled Dose of Air Pollutants Based on Heart Rate, Breathing Rate and Forced Vital Capacity.

    PubMed

    Greenwald, Roby; Hayat, Matthew J; Barton, Jerusha; Lopukhin, Anastasia

    2016-01-01

    To better understand the interaction of physical activity and air pollution exposure, it is important to quantify the change in ventilation rate incurred by activity. In this paper, we describe a method for estimating ventilation using easily-measured variables such as heart rate (HR), breathing rate (fB), and forced vital capacity (FVC). We recruited healthy adolescents to use a treadmill while we continuously measured HR, fB, and the tidal volume (VT) of each breath. Participants began at rest then walked and ran at increasing speed until HR was 160-180 beats per minute followed by a cool down period. The novel feature of this method is that minute ventilation ([Formula: see text]) was normalized by FVC. We used general linear mixed models with a random effect for subject and identified nine potential predictor variables that influence either [Formula: see text] or FVC. We assessed predictive performance with a five-fold cross-validation procedure. We used a brute force selection process to identify the best performing models based on cross-validation percent error, the Akaike Information Criterion and the p-value of parameter estimates. We found a two-predictor model including HR and fB to have the best predictive performance ([Formula: see text]/FVC = -4.247+0.0595HR+0.226fB, mean percent error = 8.1±29%); however, given the ubiquity of HR measurements, a one-predictor model including HR may also be useful ([Formula: see text]/FVC = -3.859+0.101HR, mean percent error = 11.3±36%). PMID:26809066

  8. A Novel Method for Quantifying the Inhaled Dose of Air Pollutants Based on Heart Rate, Breathing Rate and Forced Vital Capacity.

    PubMed

    Greenwald, Roby; Hayat, Matthew J; Barton, Jerusha; Lopukhin, Anastasia

    2016-01-01

    To better understand the interaction of physical activity and air pollution exposure, it is important to quantify the change in ventilation rate incurred by activity. In this paper, we describe a method for estimating ventilation using easily-measured variables such as heart rate (HR), breathing rate (fB), and forced vital capacity (FVC). We recruited healthy adolescents to use a treadmill while we continuously measured HR, fB, and the tidal volume (VT) of each breath. Participants began at rest then walked and ran at increasing speed until HR was 160-180 beats per minute followed by a cool down period. The novel feature of this method is that minute ventilation ([Formula: see text]) was normalized by FVC. We used general linear mixed models with a random effect for subject and identified nine potential predictor variables that influence either [Formula: see text] or FVC. We assessed predictive performance with a five-fold cross-validation procedure. We used a brute force selection process to identify the best performing models based on cross-validation percent error, the Akaike Information Criterion and the p-value of parameter estimates. We found a two-predictor model including HR and fB to have the best predictive performance ([Formula: see text]/FVC = -4.247+0.0595HR+0.226fB, mean percent error = 8.1±29%); however, given the ubiquity of HR measurements, a one-predictor model including HR may also be useful ([Formula: see text]/FVC = -3.859+0.101HR, mean percent error = 11.3±36%).

  9. Traceable periodic force calibration

    NASA Astrophysics Data System (ADS)

    Schlegel, Ch; Kieckenap, G.; Glöckner, B.; Buß, A.; Kumme, R.

    2012-06-01

    A procedure for dynamic force calibration using sinusoidal excitations of force transducers is described. The method is based on a sinusoidal excitation of force transducers equipped with an additional top mass excited with an electrodynamic shaker system. The acting dynamic force can in this way be determined according to Newton's law as mass times acceleration, whereby the acceleration is measured on the surface of the top mass with the aid of laser interferometers. The dynamic sensitivity, which is the ratio of the electrical output signal of the force transducer and the acting dynamic force, is the main point of interest of such a dynamic calibration. In addition to the sensitivity, the parameter stiffness and damping of the transducer can also be determined. The first part of the paper outlines a mathematical model to describe the dynamic behaviour of a transducer. This is followed by a presentation of the traceability of the measured quantities involved and their uncertainties. The paper finishes with an example calibration of a 25 kN strain gauge force transducer.

  10. Development and validation of a stability-indicating LC-UV method for the determination of pantethine and its degradation product based on a forced degradation study.

    PubMed

    Canavesi, Rossana; Aprile, Silvio; Varese, Elena; Grosa, Giorgio

    2014-08-01

    Pantethine (d-bis-(N-pantothenyl-β-aminoethyl)-disulfide, PAN), the stable disulfide form of pantetheine, has beneficial effects in vascular diseases being able to decrease the hyperlipidaemia, moderate the platelet function and prevent the lipid peroxidation. Furthermore, recent studies suggested that PAN may be an effective therapeutic agent for cerebral malaria and, possibly, for neurodegenerative processes. Interestingly, in the literature, there were no data dealing with the chemical stability and the analytical aspects of PAN. Hence, in the present work the chemical stability of PAN was for the first time established through a forced degradation study followed by liquid chromatography tandem mass spectrometry investigation showing the formation of three degradation products of PAN (PD1, PD2 and POx) arising from hydrolytic, thermal and oxidative stresses. Based on these data a stability-indicating LC-UV method for simultaneous estimation of PAN, and its most relevant degradation product (PD1) was developed and validated; moreover the method allowed also the separation and the quantification of the preservative system, constituted by a paraben mixture. The method showed linearity for PAN (0.4-1.2mgmL(-1)), MHB, PHB (0.4-1.2μgmL(-1)) and PD1 (2.5-100μgmL(-1)); the precision, determined in terms of intra-day and inter-day precision, expressed as RSDs, were in the ranges 0.4-1.2 and 0.7-1.4, respectively. The method demonstrated to be accurate and robust; indeed the average recoveries were 100.2, 99.9, and 100.0% for PAN, MHB and PHB, respectively, and 99.9% for PD1. By applying small variations of the mobile phase composition, counter-ion concentration and pH the separation of analytes was not affected. Finally, the applicability of this method was evaluated analyzing the available commercial forms at release as well as during stability studies. PMID:24863372

  11. Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind

    NASA Astrophysics Data System (ADS)

    Cao, Bochao

    Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current

  12. Strategic forces

    SciTech Connect

    Not Available

    1990-10-01

    The Air Force now plans to retain the Minuteman II and III missile force through fiscal year 2008. Introduced about 25 years ago, these missiles have served as a nuclear deterrence for longer than initially envisioned. Over the extended lives of the systems, questions have arisen over their continued reliability and operational effectiveness, particularly the Minuteman II system. Limited flight testing, due to a shortage of test missiles, and reduced reliability caused by age-related deterioration of guidance computers and propulsion motors are two factors undermining confidence in the Minuteman II. GAO believes that the Minuteman II could be retired before 1998 as presently contemplated under an assumption of a Strategic Arms Reduction Talks agreement. An alternative would be to reinstate the Air Force's plans to replace deteriorated missile components and acquire the assets needed to resume flight testing at rates necessary to restore and sustain confidence in the system's performance through fiscal year 2008. However, on the basis of current test schedules, GAO is concerned that components to test the missile's warheads will be depleted by about 1999.

  13. Analyzing qPlus sensor assemblies for optimized simultaneous scanning tunneling and non-contact atomic force microscopy operation using finite element method

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur; Schwarz, Udo

    Scanning tunneling microscopy (STM) and non-contact atomic force microscopy (NC-AFM) are powerful methods that can not only visualize a surface's atomic structure, but also probe its electronic and chemical properties with picoampere, piconewton, and picometer resolution. Quartz tuning forks in qPlus configuration that have a metallic probe tip attached to the end of the free prong have gained considerable popularity in recent years for simultaneous high-resolution STM/NC-AFM experiments. Due to the small size of the tuning forks and the complexity of the sensor architecture, it is, however, not intuitive to judge how variations in the execution of the individual assembly steps affect the completed sensor's performance. In this presentation, we analyze the influence of each assembly step on the sensor's final performance using finite element method. The results show that when the tunneling current is collected using a separate wire, the exact realization of this wire connection has major effect on the sensor's performance. In addition, we show how other design choices such as the exact amount of epoxy used at key interfaces affects parameters such as spring constant, Q-factor, and resonance frequency.

  14. Evaluation of removal forces of implant-supported zirconia copings depending on abutment geometry, luting agent and cleaning method during re-cementation

    PubMed Central

    Rödiger, Matthias; Rinke, Sven; Ehret-Kleinau, Fenja; Pohlmeyer, Franziska; Lange, Katharina; Bürgers, Ralf

    2014-01-01

    PURPOSE To evaluate the effects of different abutment geometries in combination with varying luting agents and the effectiveness of different cleaning methods (prior to re-cementation) regarding the retentiveness of zirconia copings on implants. MATERIALS AND METHODS Implants were embedded in resin blocks. Three groups of titanium abutments (pre-fabricated, height: 7.5 mm, taper: 5.7°; customized-long, height: 6.79 mm, taper: 4.8°; customized-short, height: 4.31 mm, taper: 4.8°) were used for luting of CAD/CAM-fabricated zirconia copings with a semi-permanent (Telio CS) and a provisional cement (TempBond NE). Retention forces were evaluated using a universal testing machine. Furthermore, the influence of cleaning methods (manually, manually in combination with ultrasonic bath or sandblasting) prior to re-cementation with a provisional cement (TempBond NE) was investigated with the pre-fabricated titanium abutments (height: 7.5 mm, taper: 5.7°) and SEM-analysis of inner surfaces of the copings was performed. Significant differences were determined via two-way ANOVA. RESULTS Significant interactions between abutment geometry and luting agent were observed. TempBond NE showed the highest level of retentiveness on customized-long abutments, but was negatively affected by other abutment geometries. In contrast, luting with Telio CS demonstrated consistent results irrespective of the varying abutment geometries. Manual cleaning in combination with an ultrasonic bath was the only cleaning method tested prior to re-cementation that revealed retentiveness levels not inferior to primary cementation. CONCLUSION No superiority for one of the two cements could be demonstrated because their influences on retentive strength are also depending on abutment geometry. Only manual cleaning in combination with an ultrasonic bath offers retentiveness levels after re-cementation comparable to those of primary luting. PMID:25006388

  15. Parallel computation with the force

    NASA Technical Reports Server (NTRS)

    Jordan, H. F.

    1985-01-01

    A methodology, called the force, supports the construction of programs to be executed in parallel by a force of processes. The number of processes in the force is unspecified, but potentially very large. The force idea is embodied in a set of macros which produce multiproceossor FORTRAN code and has been studied on two shared memory multiprocessors of fairly different character. The method has simplified the writing of highly parallel programs within a limited class of parallel algorithms and is being extended to cover a broader class. The individual parallel constructs which comprise the force methodology are discussed. Of central concern are their semantics, implementation on different architectures and performance implications.

  16. Nature of noncovalent interactions in catenane supramolecular complexes: calibrating the MM3 force field with ab initio, DFT, and SAPT methods.

    PubMed

    Simeon, Tomekia M; Ratner, Mark A; Schatz, George C

    2013-08-22

    The design and assembly of mechanically interlocked molecules, such as catenanes and rotaxanes, are dictated by various types of noncovalent interactions. In particular, [C-H···O] hydrogen-bonding and π-π stacking interactions in these supramolecular complexes have been identified as important noncovalent interactions. With this in mind, we examined the [3]catenane 2·4PF6 using molecular mechanics (MM3), ab initio methods (HF, MP2), several versions of density functional theory (DFT) (B3LYP, M0X), and the dispersion-corrected method DFT-D3. Symmetry adapted perturbation theory (DFT-SAPT) provides the highest level of theory considered, and we use the DFT-SAPT results both to calibrate the other electronic structure methods, and the empirical potential MM3 force field that is often used to describe larger catenane and rotaxane structures where [C-H···O] hydrogen-bonding and π-π stacking interactions play a role. Our results indicate that the MM3 calculated complexation energies agree qualitatively with the energetic ordering from DFT-SAPT calculations with an aug-cc-pVTZ basis, both for structures dominated by [C-H···O] hydrogen-bonding and π-π stacking interactions. When the DFT-SAPT energies are decomposed into components, we find that electrostatic interactions dominate the [C-H···O] hydrogen-bonding interactions, while dispersion makes a significant contribution to π-π stacking. Another important conclusion is that DFT-D3 based on M06 or M06-2X provides interaction energies that are in near-quantitative agreement with DFT-SAPT. DFT results without the D3 correction have important differences compared to DFT-SAPT, while HF and even MP2 results are in poor agreement with DFT-SAPT.

  17. The Nature of Noncovalent Interactions in Catenane Supramolecular Complexes: Calibrating the MM3 Force Field with ab initio, DFT and SAPT Methods

    PubMed Central

    Simeon, Tomekia M.; Ratner, Mark A.; Schatz, George C.

    2013-01-01

    The design and assembly of mechanically interlocked molecules, such as catenanes and rotaxanes, are dictated by various types of noncovalent interactions. In particular, [C-H⋯O] hydrogen-bonding and π-π stacking interactions in these supramolecular complexes have been identified as important noncovalent interactions. With this in mind, we examined the [3] catenane 2·4PF6 using molecular mechanics (MM3), ab initio methods (HF, MP2), several versions of density functional theory (DFT) (B3LYP, M0X), and the dispersion-corrected method DFT-D3. Symmetry adapted perturbation theory (DFT-SAPT) provides the highest level of theory considered, and we use the DFT-SAPT results both to calibrate the other electronic structure methods, and the empirical potential MM3 force field that is often used to describe larger catenane and rotaxane structures where [C-H⋯O] hydrogen-bonding and π-π stacking interactions play a role. Our results indicate that the MM3 calculated complexation energies agree qualitatively with the energetic ordering from DFT-SAPT calculations with an aug-cc-pVTZ basis, both for structures dominated by [C-H⋯O] hydrogen-bonding and π-π stacking interactions. When the DFT-SAPT energies are decomposed into components, and we find that electrostatic interactions dominate the [C-H⋯O] hydrogen-bonding interactions while dispersion makes a significant contribution to π-π stacking. Another important conclusion is that DFT-D3 based on M06 or M06-2X provides interactions energies that are in near-quantitative agreement with DFT-SAPT. DFT results without the D3 correct have important differences compared to DFT-SAPT while HF and even MP2 results are in poor agreement with DFT-SAPT. PMID:23941280

  18. Method for Measuring the Distribution of Adhesion Forces on Continuous Nanoscale Protrusions Using Carbon Nanofiber Tip on a Scanning Probe Microscope Cantilever.

    PubMed

    Shimoi, Norihiro; Abe, Daisuke

    2015-07-01

    The adhesion force on surfaces has received attention in numerous scientific and technological fields, including catalysis, thin-film growth, and tribology. Many applications require knowledge of the strength of these forces as a function of position in three dimensions, but until now such information has only been theoretically proposed. Here, we demonstrate an approach based on scanning probe microscopy that can obtain such data and be used to image the three-dimensional surface force field of continuous nanoscale protrusions. We present adhesion force maps with nanometer and nanonewton resolution that allow detailed characterization of the interaction between a surface and a thin carbon nanofiber (CNF) rod synthesized by plasma-enhanced chemical vapor deposition (PECVD) at the end of a tip on a scanning probe microscope cantilever in three dimensions. In these maps, the positions of all continuous nanoscale protrusions are identified and the differences in the adhesive forces among limited areas at inequivalent sites are quantified.

  19. A Graphical Method for Estimation of Barometric Efficiency from Continuous Data - Concepts and Application to a Site in the Piedmont, Air Force Plant 6, Marietta, Georgia

    USGS Publications Warehouse

    Gonthier, Gerard J.

    2007-01-01

    A graphical method that uses continuous water-level and barometric-pressure data was developed to estimate barometric efficiency. A plot of nearly continuous water level (on the y-axis), as a function of nearly continuous barometric pressure (on the x-axis), will plot as a line curved into a series of connected elliptical loops. Each loop represents a barometric-pressure fluctuation. The negative of the slope of the major axis of an elliptical loop will be the ratio of water-level change to barometric-pressure change, which is the sum of the barometric efficiency plus the error. The negative of the slope of the preferred orientation of many elliptical loops is an estimate of the barometric efficiency. The slope of the preferred orientation of many elliptical loops is approximately the median of the slopes of the major axes of the elliptical loops. If water-level change that is not caused by barometric-pressure change does not correlate with barometric-pressure change, the probability that the error will be greater than zero will be the same as the probability that it will be less than zero. As a result, the negative of the median of the slopes for many loops will be close to the barometric efficiency. The graphical method provided a rapid assessment of whether a well was affected by barometric-pressure change and also provided a rapid estimate of barometric efficiency. The graphical method was used to assess which wells at Air Force Plant 6, Marietta, Georgia, had water levels affected by barometric-pressure changes during a 2003 constant-discharge aquifer test. The graphical method was also used to estimate barometric efficiency. Barometric-efficiency estimates from the graphical method were compared to those of four other methods: average of ratios, median of ratios, Clark, and slope. The two methods (the graphical and median-of-ratios methods) that used the median values of water-level change divided by barometric-pressure change appeared to be most resistant to

  20. Evaluation of an atomic force microscopy pull-off method for measuring molecular weight and polydispersity of polymer brushes: effect of grafting density.

    PubMed

    Goodman, Diane; Kizhakkedathu, Jayachandran N; Brooks, Donald E

    2004-07-20

    The accuracy of the molecular weights Mn and polydispersities of polymer brushes, determined by stretching the grafted chains using atomic force microscopy (AFM) and measuring the contour length distribution, was evaluated as a function of grafting density sigma. Poly(N,N-dimethylacrylamide) brushes were prepared by surface initiated atom transfer radical polymerization on latex particles with sigma ranging between 0.17 and 0.0059 chains/nm2 and constant Mn. The polymer, which could be cleaved from the grafting surface by hydrolysis and characterized by gel permeation chromatography (GPC), had a Mn of 30,600 and polydispersity (PDI) of 1.35. The Mn determined by the AFM technique for the higher density brushes agreed quite well with the GPC results but was significantly underestimated for the lower sigma. At high grafting density in good solvent, the extended structure of the brush increases the probability of forming segment-tip contacts located at the chain end. When the distance between chains approached twice the radius of gyration of the polymer, the transition from brush to mushroom structure presumably enabled the formation of a larger number of segment-tip contacts having separations smaller than the contour length, which explains the discrepancy between the two methods at low sigma. The PDI was typically higher than that obtained by GPC, suggesting that sampling of chains with above average contour length occurs at a frequency that is greater than their spatial distribution.

  1. International recommendation for a comprehensive neuropathologic workup of epilepsy surgery brain tissue: A consensus Task Force report from the ILAE Commission on Diagnostic Methods.

    PubMed

    Blümcke, Ingmar; Aronica, Eleonora; Miyata, Hajime; Sarnat, Harvey B; Thom, Maria; Roessler, Karl; Rydenhag, Bertil; Jehi, Lara; Krsek, Pavel; Wiebe, Samuel; Spreafico, Roberto

    2016-03-01

    Epilepsy surgery is an effective treatment in many patients with drug-resistant focal epilepsies. An early decision for surgical therapy is facilitated by a magnetic resonance imaging (MRI)-visible brain lesion congruent with the electrophysiologically abnormal brain region. Recent advances in the pathologic diagnosis and classification of epileptogenic brain lesions are helpful for clinical correlation, outcome stratification, and patient management. However, application of international consensus classification systems to common epileptic pathologies (e.g., focal cortical dysplasia [FCD] and hippocampal sclerosis [HS]) necessitates standardized protocols for neuropathologic workup of epilepsy surgery specimens. To this end, the Task Force of Neuropathology from the International League Against Epilepsy (ILAE) Commission on Diagnostic Methods developed a consensus standard operational procedure for tissue inspection, distribution, and processing. The aims are to provide a systematic framework for histopathologic workup, meeting minimal standards and maximizing current and future opportunities for morphofunctional correlations and molecular studies for both clinical care and research. Whenever feasible, anatomically intact surgical specimens are desirable to enable systematic analysis in selective hippocampectomies, temporal lobe resections, and lesional or nonlesional neocortical samples. Correct orientation of sample and the sample's relation to neurophysiologically aberrant sites requires good communication between pathology and neurosurgical teams. Systematic tissue sampling of 5-mm slabs along a defined anatomic axis and application of a limited immunohistochemical panel will ensure a reliable differential diagnosis of main pathologies encountered in epilepsy surgery. PMID:26839983

  2. Pulling-spring modulation as a method for improving the potential-of-mean-force reconstruction in single-molecule manipulation experiments.

    PubMed

    Perišić, Ognjen

    2013-01-01

    The free-energy calculation is usually limited to close to equilibrium perturbation regimes because faster perturbations introduce a bias into the estimate. The Jarzynski equality offers a solution to this problem by directly connecting the free-energy difference and the external work, regardless how far from equilibrium that work may be. However, a limited sampling coupled to the fast perturbation introduces a slowly converging bias into the Jarzynski free-energy estimate also. In this paper we present two perturbation protocols devised with the intention to overcome the convergence issues of the Jarzynski-based potential of mean force estimation in the single-molecule, constant velocity manipulation experiments. The protocols are designed to improve the convergence issues by increasing the variation of the external work through the modulation of the spring used to pull a molecule. Of the two methods, the one which continuously changes the amplitude of the spring stiffness offers an excellent reconstruction and requires less than one tenth of the samples required by the normal, constant spring pulling to produce the same quality of the reconstruction.

  3. International recommendation for a comprehensive neuropathologic workup of epilepsy surgery brain tissue: A consensus Task Force report from the ILAE Commission on Diagnostic Methods.

    PubMed

    Blümcke, Ingmar; Aronica, Eleonora; Miyata, Hajime; Sarnat, Harvey B; Thom, Maria; Roessler, Karl; Rydenhag, Bertil; Jehi, Lara; Krsek, Pavel; Wiebe, Samuel; Spreafico, Roberto

    2016-03-01

    Epilepsy surgery is an effective treatment in many patients with drug-resistant focal epilepsies. An early decision for surgical therapy is facilitated by a magnetic resonance imaging (MRI)-visible brain lesion congruent with the electrophysiologically abnormal brain region. Recent advances in the pathologic diagnosis and classification of epileptogenic brain lesions are helpful for clinical correlation, outcome stratification, and patient management. However, application of international consensus classification systems to common epileptic pathologies (e.g., focal cortical dysplasia [FCD] and hippocampal sclerosis [HS]) necessitates standardized protocols for neuropathologic workup of epilepsy surgery specimens. To this end, the Task Force of Neuropathology from the International League Against Epilepsy (ILAE) Commission on Diagnostic Methods developed a consensus standard operational procedure for tissue inspection, distribution, and processing. The aims are to provide a systematic framework for histopathologic workup, meeting minimal standards and maximizing current and future opportunities for morphofunctional correlations and molecular studies for both clinical care and research. Whenever feasible, anatomically intact surgical specimens are desirable to enable systematic analysis in selective hippocampectomies, temporal lobe resections, and lesional or nonlesional neocortical samples. Correct orientation of sample and the sample's relation to neurophysiologically aberrant sites requires good communication between pathology and neurosurgical teams. Systematic tissue sampling of 5-mm slabs along a defined anatomic axis and application of a limited immunohistochemical panel will ensure a reliable differential diagnosis of main pathologies encountered in epilepsy surgery.

  4. Unification of Fundamental Forces

    NASA Astrophysics Data System (ADS)

    Salam, Abdus; Taylor, Foreword by John C.

    2005-10-01

    Foreword John C. Taylor; 1. Unification of fundamental forces Abdus Salam; 2. History unfolding: an introduction to the two 1968 lectures by W. Heisenberg and P. A. M. Dirac Abdus Salam; 3. Theory, criticism, and a philosophy Werner Heisenberg; 4. Methods in theoretical physics Paul Adrian Maurice Dirac.

  5. The Dynamic Force Table

    ERIC Educational Resources Information Center

    Geddes, John B.; Black, Kelly

    2008-01-01

    We examine an experimental apparatus that is used to motivate the connections between the basic properties of vectors, potential functions, systems of nonlinear equations, and Newton's method for nonlinear systems of equations. The apparatus is an adaptation of a force table where we remove the center-pin and allow the center-ring to move freely.…

  6. Investigation of Behavior of Forced Degradation of Lidocaine HCl by NMR Spectroscopy and GC-FID Methods: Validation of GC-FID Method for Determination of Related Substance in Pharmaceutical Formulations

    PubMed Central

    Kadioglu, Yucel; Atila, Alptug; Serdar Gultekin, Mehmet; Alcan Alp, Nurdan

    2013-01-01

    The forced degradation study of lidocaine HCl was carried out according to the ICH guideline Q1A (R2). The degradation conditions were assessed to be hydrolysis, oxidation, photolysis and dry heat during 24 h, 48 h and 72 h and then the samples were investigated by GC-FID method and nuclear magnetic resonance (NMR) spectroscopy. According to these results, the degradation products were not observed in all reaction conditions during the 72 h period. Only spectral changes in the 1H and 13C-NMR spectrum were observed in hydrogen peroxide and acid degradation. As a result of this degradation, n-oxide was formed. After acid-induced degradation with HCl, the secondary amine salt was formed. Furthermore, trifluoroacetic acid (TFA) was used as the acidic media, and the decomposition products were observed. A simple and reliable gas chromatography method with flame ionization detection (GC-FID) was developed and validated for the determination of lidocaine HCl in pharmaceutical formulations in the form of a cream and injections. The GC-FID method can be used for a routine analysis of lidocaine HCl in pharmaceutical formulations and the proposed method, together with NMR spectroscopy, can be applied in stability studies. PMID:24523745

  7. Use of Borehole-Radar Methods to Monitor a Steam-Enhanced Remediation Pilot Study at a Quarry at the Former Loring Air Force Base, Maine

    USGS Publications Warehouse

    Gregoire, Colette; Joesten, Peter K.; Lane, Jr., John W.

    2007-01-01

    Single-hole radar reflection and crosshole radar tomography surveys were used in conjunction with conventional borehole-geophysical methods to evaluate the effectiveness of borehole-radar methods for monitoring the movement of steam and heat through fractured bedrock. The U.S. Geological Survey, in cooperation with U.S. Environmental Protection Agency (USEPA), conducted surveys in an abandoned limestone quarry at the former Loring Air Force Base during a field-scale, steam-enhanced remediation (SER) pilot project conducted by the USEPA, the U.S. Air Force, and the Maine Department of Environmental Protection to study the viability of SER to remediate non-aqueous phase liquid contamination in fractured bedrock. Numerical modeling and field experiments indicate that borehole-radar methods have the potential to monitor the presence of steam and to measure large temperature changes in the limestone matrix during SER operations. Based on modeling results, the replacement of water by steam in fractures should produce a decrease in radar reflectivity (amplitude of the reflected wave) by a factor of 10 and a change in reflection polarity. In addition, heating the limestone matrix should increase the bulk electrical conductivity and decrease the bulk dielectric permittivity. These changes result in an increase in radar attenuation and an increase in radar-wave propagation velocity, respectively. Single-hole radar reflection and crosshole radar tomography data were collected in two boreholes using 100-megahertz antennas before the start of steam injection, about 10 days after the steam injection began, and 2 months later, near the end of the injection. Fluid temperature logs show that the temperature of the fluid in the boreholes increased by 10?C (degrees Celsius) in one borehole and 40?C in the other; maximum temperatures were measured near the bottom of the boreholes. The results of the numerical modeling were used to interpret the borehole-radar data. Analyses of the

  8. A ground reaction force analysis for designing a sustainable energy-harvesting stairway

    NASA Astrophysics Data System (ADS)

    Puspitarini, Debrina; Suzianti, Amalia; Rasyid, Harun Al; Priscandy, Nabila

    2016-06-01

    There are many issues of how energy is currently generated and consumed. These include the cost of harvesting energy, the ever-growing demand for it, and the ever-decreasing reserve of current most applicable energy resources. Numerous ways to exploit new sustainable potential energy sources have been pursued, one of which is to create an energy-harvester; a device that captures free potential energy, scattered around in its environment, and transform it into another form of energy. Using NPD approach, Puspitarini, Suzianti, and Al Rasyid (2016) has developed a conceptual design of an energy-harvesting device, which includes a selection of product specification options and a gear set layout design. In this study, a mockup was built for the experiment based on those product specification options. The experiment was conducted using AMTI Force Platform, and its results were processed using Factorial Design. This effort is to test which product specification option contributes the most to Ground Reaction Force (GRF) generation. The greater the generated GRF, the greater amount of electricity produced. A theoretical calculation of electromotive force was also conducted based on the experiment result and the gear set layout design. The result of this study was later discussed and used as a basis to develop further the stairway design.

  9. Indications and expectations for neuropsychological assessment in routine epilepsy care: Report of the ILAE Neuropsychology Task Force, Diagnostic Methods Commission, 2013-2017.

    PubMed

    Wilson, Sarah J; Baxendale, Sallie; Barr, William; Hamed, Sherifa; Langfitt, John; Samson, Séverine; Watanabe, Masako; Baker, Gus A; Helmstaedter, Christoph; Hermann, Bruce P; Smith, Mary-Lou

    2015-05-01

    The International League Against Epilepsy (ILAE) Diagnostic Methods Commission charged the Neuropsychology Task Force with the job of developing a set of recommendations to address the following questions: (1) What is the role of a neuropsychological assessment? (2) Who should do a neuropsychological assessment? (3) When should people with epilepsy be referred for a neuropsychological assessment? and (4) What should be expected from a neuropsychological assessment? The recommendations have been broadly written for health care clinicians in established epilepsy settings as well as those setting up new services. They are based on a detailed survey of neuropsychological assessment practices across international epilepsy centers, and formal ranking of specific recommendations for advancing clinical epilepsy care generated by specialist epilepsy neuropsychologists from around the world. They also incorporate the latest research findings to establish minimum standards for training and practice, reflecting the many roles of neuropsychological assessment in the routine care of children and adults with epilepsy. The recommendations endorse routine screening of cognition, mood, and behavior in new-onset epilepsy, and describe the range of situations when more detailed, formal neuropsychological assessment is indicated. They identify a core set of cognitive and psychological domains that should be assessed to provide an objective account of an individual's cognitive, emotional, and psychosocial functioning, including factors likely contributing to deficits identified on qualitative and quantitative examination. The recommendations also endorse routine provision of feedback to patients, families, and clinicians about the implications of the assessment results, including specific clinical recommendations of what can be done to improve a patient's cognitive or psychosocial functioning and alleviate the distress of any difficulties identified. By canvassing the breadth and depth

  10. Force protection

    SciTech Connect

    Canavan, G.H.

    1998-12-31

    This paper is concerned with rapid, continuous inspection of vehicles entering military facilities or compounds, searching for high explosives, or the rapid survey of facilities if it is found that security has been breached. The author reviews methods which are in use now, including: x-rays; x-ray tomography; thermal or fast neutrons; quadrupole resonance; trace detection; electron capture; chemiluminesence; ion mobility spectroscopy; mass spectroscopy; antibodies; and layered, synergistic approaches. He then discusses the limitations of these methods and proposes new approaches which are a combination of old techniques such as weighing vehicles with technological advances in some present methods.

  11. Exercise Countermeasures for Bone Loss During Space Flight: A Method for the Study of Ground Reaction Forces and their Implications for Bone Strain

    NASA Technical Reports Server (NTRS)

    Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.

    1999-01-01

    Effective countermeasures to prevent loss of bone mineral during long duration space flight remain elusive. Despite an exercise program on MIR flights, the data from LeBlanc et al. (1996) indicated that there was still a mean rate of loss of bone mineral density in the proximal femur of 1.58% per month (n=18, flight duration 4 - 14.4 months). The specific mechanisms regulating bone mass are not known, but most investigators agree that bone maintenance is largely dependent upon mechanical demand and the resultant local bone strains. A plausible hypothesis is that bone loss during space flight, such as that reported by LeBlanc et al. (1996), may result from failure to effectively load the skeleton in order to generate localized bone strains of sufficient magnitude to prevent disuse osteoporosis. A variety of methods have been proposed to simulate locomotor exercise in reduced gravity. In such simulations, and in an actual microgravity environment, a gravity replacement load (GRL) must always be added to return the exercising subject to the support surface and the resulting skeletal load is critically dependent upon the magnitude of the GRL. To our knowledge, GRLs during orbital flight have only been measured once (on STS 81) and it is likely that most or all prior treadmill exercise in space has used GRLs that were less than one body weight. McCrory (1997) has shown that subjects walking and running in simulated zero-G can tolerate GRLs of 1 if an appropriate harness is used. Several investigators have attempted to measure in vivo strains and forces in the bones of humans, but have faced ethical and technical limitations. The anteromedial aspect of the tibial midshaft has been a common site for the placement of strain gauges; one reason to measure strains in the anterior tibia is that this region is surgically accessible. Aamodt et al. (1997) were able to measure strains on the lateral surface of the proximal femur only because their experimental subjects were

  12. Force Limited Vibration Testing Monograph

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1997-01-01

    The practice of limiting the shaker force in vibration tests was investigated at the NASA Jet Propulsion Laboratory (JPL) in 1990 after the mechanical failure of an aerospace component during a vibration test. Now force limiting is used in almost every major vibration test at JPL and in many vibration tests at NASA Goddard Space Flight Center (GSFC) and at many aerospace contractors. The basic ideas behind force limiting have been in the literature for several decades, but the piezo-electric force transducers necessary to conveniently implement force limiting have been available only in the last decade. In 1993, funding was obtained from the NASA headquarters Office of Chief Engineer to develop and document the technology needed to establish force limited vibration testing as a standard approach available to all NASA centers and aerospace contractors. This monograph is the final report on that effort and discusses the history, theory, and applications of the method in some detail.

  13. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    SciTech Connect

    Kita, Shota Ueno, Toshiyuki; Yamada, Sotoshi

    2015-05-07

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.

  14. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    NASA Astrophysics Data System (ADS)

    Kita, Shota; Ueno, Toshiyuki; Yamada, Sotoshi

    2015-05-01

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.

  15. Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor

    SciTech Connect

    Xie Hui; Vitard, Julien; Haliyo, Sinan; Regnier, Stephane

    2008-03-15

    We present here a method to calibrate the lateral force in the atomic force microscope. This method makes use of an accurately calibrated force sensor composed of a tipless piezoresistive cantilever and corresponding signal amplifying and processing electronics. Two ways of force loading with different loading points were compared by scanning the top and side edges of the piezoresistive cantilever. Conversion factors between the lateral force and photodiode signal using three types of atomic force microscope cantilevers with rectangular geometries (normal spring constants from 0.092 to 1.24 N/m and lateral stiffness from 10.34 to 101.06 N/m) were measured in experiments using the proposed method. When used properly, this method calibrates the conversion factors that are accurate to {+-}12.4% or better. This standard has less error than the commonly used method based on the cantilever's beam mechanics. Methods such of this allow accurate and direct conversion between lateral forces and photodiode signals without any knowledge of the cantilevers and the laser measuring system.

  16. Comparative study of the influence of friction forces on cold forming processes in conventional ECAP die and ECAP die with low friction, by numerical simulation methods

    NASA Astrophysics Data System (ADS)

    Dragnea, D.; Lixandru, P.; Chereches, T.; Velicu, S.

    2016-08-01

    In the process of severe plastic deformation in the ECAP dies, the frictional forces between the blank and the walls of the dies play a determinant role on forming technologies. Due to the great length of the workpiece subjected to forming (in die), high frictional forces are developing, which can lead to blocking the forming process or even to the cracking of the dies. Two sets of numerical simulations were carried out for two coefficients of friction µ = 0.08 and µ = 0.10. There were analysed the following elements comparatively: the structure of the deformed mesh of the finished piece; the effective plastic strain fields; the Von Misses effective stress fields; the actuation forces on the die punch. The results of the numerical simulations showed: uniform structure of slipped layers in central areas of the finished parts, obtained by the two processes; the effective plastic strain field is uniformly at the process with low friction Von Misses effective stresses were significantly lower at the numerical simulation for the process with low friction; the application forces occurring in the processes carried out in the ECAP die with low friction are significantly lower than those obtained in conventional ECAP die.

  17. Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method

    SciTech Connect

    Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.

    2012-06-01

    We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of Fischer–Tropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

  18. Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models.

    PubMed

    Xu, Lei; Sun, Huiyong; Li, Youyong; Wang, Junmei; Hou, Tingjun

    2013-07-18

    Here, we systematically investigated how the force fields and the partial charge models for ligands affect the ranking performance of the binding free energies predicted by the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) approaches. A total of 46 small molecules targeted to five different protein receptors were employed to test the following issues: (1) the impact of five AMBER force fields (ff99, ff99SB, ff99SB-ILDN, ff03, and ff12SB) on the performance of MM/GBSA, (2) the influence of the time scale of molecular dynamics (MD) simulations on the performance of MM/GBSA with different force fields, (3) the impact of five AMBER force fields on the performance of MM/PBSA, and (4) the impact of four different charge models (RESP, ESP, AM1-BCC, and Gasteiger) for small molecules on the performance of MM/PBSA or MM/GBSA. Based on our simulation results, the following important conclusions can be obtained: (1) for short time-scale MD simulations (1 ns or less), the ff03 force field gives the best predictions by both MM/GBSA and MM/PBSA; (2) for middle time-scale MD simulations (2-4 ns), MM/GBSA based on the ff99 force field yields the best predictions, while MM/PBSA based on the ff99SB force field does the best; however, longer MD simulations, for example, 5 ns or more, may not be quite necessary; (3) for most cases, MM/PBSA with the Tan's parameters shows better ranking capability than MM/GBSA (GB(OBC1)); (4) the RESP charges show the best performance for both MM/PBSA and MM/GBSA, and the AM1-BCC and ESP charges can also give fairly satisfactory predictions. Our results provide useful guidance for the practical applications of the MM/GBSA and MM/PBSA approaches.

  19. Lorentz force particle analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Thess, André; Moreau, René; Tan, Yanqing; Dai, Shangjun; Tao, Zhen; Yang, Wenzhi; Wang, Bo

    2016-07-01

    A new contactless technique is presented for the detection of micron-sized insulating particles in the flow of an electrically conducting fluid. A transverse magnetic field brakes this flow and tends to become entrained in the flow direction by a Lorentz force, whose reaction force on the magnetic-field-generating system can be measured. The presence of insulating particles suspended in the fluid produce changes in this Lorentz force, generating pulses in it; these pulses enable the particles to be counted and sized. A two-dimensional numerical model that employs a moving mesh method demonstrates the measurement principle when such a particle is present. Two prototypes and a three-dimensional numerical model are used to demonstrate the feasibility of a Lorentz force particle analyzer (LFPA). The findings of this study conclude that such an LFPA, which offers contactless and on-line quantitative measurements, can be applied to an extensive range of applications. These applications include measurements of the cleanliness of high-temperature and aggressive molten metal, such as aluminum and steel alloys, and the clean manufacturing of semiconductors.

  20. Force limited vibration testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1991-01-01

    A new method of conducting lab vibration tests of spacecraft equipment was developed to more closely simulate the vibration environment experienced when the spacecraft is launched on a rocket. The improved tests are tailored to identify equipment design and workmanship problems without inducing artificial failures that would not have occurred at launch. These new, less destructive types of vibration tests are essential to JPL's protoflight test approach in which lab testing is conducted using the flight equipment, often one of a kind, to save time and money. In conventional vibration tests, only the input vibratory motion is specified; the feedback, or reaction force, between the test item and the vibration machine is ignored. Most test failures occur when the test item goes into resonance, and the reaction force becomes very large. It has long been recognized that the large reaction force is a test artifact which does not occur with the lightweight, flexible mounting structures characteristic of spacecraft and space vehicles. In new vibration tests, both the motion and the force provided to the test item by the vibration machine are controlled, so that the vibration ride experienced by the test item is as in flight.

  1. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  2. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  3. Force reconstruction from tapping mode force microscopy experiments.

    PubMed

    Payam, Amir F; Martin-Jimenez, Daniel; Garcia, Ricardo

    2015-05-01

    Fast, accurate, and robust nanomechanical measurements are intensely studied in materials science, applied physics, and molecular biology. Amplitude modulation force microscopy (tapping mode) is the most established nanoscale characterization technique of surfaces for air and liquid environments. However, its quantitative capabilities lag behind its high spatial resolution and robustness. We develop a general method to transform the observables into quantitative force measurements. The force reconstruction algorithm has been deduced on the assumption that the observables (amplitude and phase shift) are slowly varying functions of the tip-surface separation. The accuracy and applicability of the method is validated by numerical simulations and experiments. The method is valid for liquid and air environments, small and large free amplitudes, compliant and rigid materials, and conservative and non-conservative forces.

  4. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    SciTech Connect

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  5. Control of changes in the defect structure of titanium saturated with hydrogen

    NASA Astrophysics Data System (ADS)

    Larionov, V. V.; Lider, A. M.; Laptev, R. S.

    2016-06-01

    The hydrogenated samples of technical titanium were investigated using the EPA method and the measurements of the thermal electromotive force for these samples saturated with a different amount of hydrogen. The structure of the hydrogenated samples was studied by the X-ray diffraction method. The results have shown that the hydrogenated titanium structure starts changing at the same time, depending on the amount of added hydrogen. The intensity of the annihilation process increases with the increase in the hydrogen concentration in a-titanium up to the values of 4% wt and does not change up to the values of 5% wt (α + δ) - titanium. At the same time, the value of the thermal electromotive force decreases in this range of values. The annihilation intensity is stabilized for the values of 5% wt, and the value of the thermal electromotive force is increased. The inflection point for the thermal electromotive force versus the hydrogen concentration corresponds to the formation of δ - hydrides. The increase in the positron lifetime starts in the concentration range of 6-8% and moves to the stable level up to the concentrations of 21-22%. In this range, there is a transition from the (α + β) to the (α + δ) phase. The lifetime of positrons and the number of defects are increased, the value of the thermal electromotive force is reduced (up to the concentration of 24%), then there is a stabilization mode for all these parameters up to the values 32% wt.

  6. Electrometrical Methods Application for Detection of Heating System Pipeline Corrosion

    NASA Astrophysics Data System (ADS)

    Vetrov, A.; Ilyin, Y.; Isaev, V.; Rondel, A.; Shapovalov, N.

    2004-12-01

    successfully use the excitation-at-the-mass method measurement together with the measurements of magnetic and electrical components of electromagnetic field. However, the electrical contact between a tube and the soil, as well as the presence of zones of isolation defects is not the direct indicators of corrosion focus places. Authors use the spontaneous polarization method to investigate electrical fields, caused by natural electromotive forces of electrochemical origin. Different types of EM and SP anomalies have been detected. After statistical study and visual observations of extracted pipes, the relations between such anomalies and pipeline condition have been obtained. The places of underground pipeline coat destruction can be specified by complex of geophysical investigations. Also, it is possible to detect the intensity of destruction and corrosion processes in real time.

  7. Magnetic force and optical force sensing with ultrathin silicon resonator

    NASA Astrophysics Data System (ADS)

    Ono, Takahito; Esashi, Masayoshi

    2003-12-01

    In this article, we demonstrated magnetic and optical force measurements using an ultrathin silicon cantilever down to 20 nm or 50 nm in thickness. The cantilever was heated in an ultrahigh vacuum for enhancing the Q factor and a magnetic particle was mounted at the end of the cantilever using a manipulator. The vibration was measured by a laser Doppler vibrometer and its signal was fed to an opposed metal electrode for electrostatic self-oscillation. An application of a magnetic field with a coil exerted a force to the magnetic material, which results in the change of the resonant frequency. However, the change in the mechanical properties of the cantilever, due to mechanical instability and temperature variation, drifts the resonance peak. Force balancing between the magnetic force and an electrostatic force in the opposite phase can minimize the vibration amplitude. From the electrostatic force at the minimum point, the exerted force can be estimated. A magnetic moment of 4×10-20 J/T was measured by this method. The same technique was also applied to measure the optical force of ˜10-17 N, impinging on the cantilever by a laser diode.

  8. Suicide and Forced Marriage

    PubMed Central

    Pridmore, Saxby; Walter, Garry

    2013-01-01

    Background: The prevailing view that the vast majority of those who complete suicide have an underlying psychiatric disorder has been recently challenged by research on the contribution of “predicaments”, in the absence of mental illness, to suicide. In this paper, we sought data to support the notion that forced marriage may lead to suicide without the presence of psychiatric disorder. Methods: Historical records, newspapers, and the electronic media were searched for examples. Results: Two examples from ancient times and six from the last hundred years were located and described. Conclusion: These cases suggest that forced marriage may lead to suicide and complements earlier findings that loss of fortune, health, liberty, and reputation may lead to suicide in the absence of mental disorder. PMID:23983577

  9. Bacterial adhesion force quantification by fluidic force microscopy

    NASA Astrophysics Data System (ADS)

    Potthoff, Eva; Ossola, Dario; Zambelli, Tomaso; Vorholt, Julia A.

    2015-02-01

    Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology.Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many

  10. The swim force as a body force

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John

    2015-11-01

    Net (as opposed to random) motion of active matter results from an average swim (or propulsive) force. It is shown that the average swim force acts like a body force - an internal body force [Yan and Brady, Soft Matter, DOI:10.1039/C5SM01318F]. As a result, the particle-pressure exerted on a container wall is the sum of the swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 028103] and the `weight' of the active particles. A continuum mechanical description is possible when variations occur on scales larger than the run length of the active particles and gives a Boltzmann-like distribution from a balance of the swim force and the swim pressure. Active particles may also display `action at a distance' and accumulate adjacent to (or be depleted from) a boundary without any external forces. In the momentum balance for the suspension - the mixture of active particles plus fluid - only external body forces appear.

  11. Multistage Force Amplification of Piezoelectric Stacks

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)

    2015-01-01

    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  12. ``Force,'' ontology, and language

    NASA Astrophysics Data System (ADS)

    Brookes, David T.; Etkina, Eugenia

    2009-06-01

    We introduce a linguistic framework through which one can interpret systematically students’ understanding of and reasoning about force and motion. Some researchers have suggested that students have robust misconceptions or alternative frameworks grounded in everyday experience. Others have pointed out the inconsistency of students’ responses and presented a phenomenological explanation for what is observed, namely, knowledge in pieces. We wish to present a view that builds on and unifies aspects of this prior research. Our argument is that many students’ difficulties with force and motion are primarily due to a combination of linguistic and ontological difficulties. It is possible that students are primarily engaged in trying to define and categorize the meaning of the term “force” as spoken about by physicists. We found that this process of negotiation of meaning is remarkably similar to that engaged in by physicists in history. In this paper we will describe a study of the historical record that reveals an analogous process of meaning negotiation, spanning multiple centuries. Using methods from cognitive linguistics and systemic functional grammar, we will present an analysis of the force and motion literature, focusing on prior studies with interview data. We will then discuss the implications of our findings for physics instruction.

  13. Down force calibration stand test report

    SciTech Connect

    BOGER, R.M.

    1999-08-13

    The Down Force Calibration Stand was developed to provide an improved means of calibrating equipment used to apply, display and record Core Sample Truck (CST) down force. Originally, four springs were used in parallel to provide a system of resistance that allowed increasing force over increasing displacement. This spring system, though originally deemed adequate, was eventually found to be unstable laterally. For this reason, it was determined that a new method for resisting down force was needed.

  14. Ultrasonic Force Microscopies

    NASA Astrophysics Data System (ADS)

    Kolosov, Oleg; Briggs, Andrew

    Ultrasonic Force Microscopy, or UFM, allows combination of two apparently mutually exclusive requirements for the nanomechanical probe—high stiffness for the efficient indentation and high mechanical compliance that brings force sensitivity. Somewhat inventively, UFM allows to combine these two virtues in the same cantilever by using indention of the sample at high frequency, when cantilever is very rigid, but detecting the result of this indention at much lower frequency. That is made possible due to the extreme nonlinearity of the nanoscale tip-surface junction force-distance dependence, that acts as "mechanical diode" detecting ultrasound in AFM. After introducing UFM principles, we discuss features of experimental UFM implementation, and the theory of contrast in this mode, progressing to quantitative measurements of contact stiffness. A variety of UFM applications ranging from semiconductor quantum nanostructures, graphene, very large scale integrated circuits, and reinforced ceramics to polymer composites and biological materials is presented via comprehensive imaging gallery accompanied by the guidance for the optimal UFM measurements of these materials. We also address effects of adhesion and topography on the elasticity imaging and the approaches for reducing artifacts connected with these effects. This is complemented by another extremely useful feature of UFM—ultrasound induced superlubricity that allows damage free imaging of materials ranging from stiff solid state devices and graphene to biological materials. Finally, we proceed to the exploration of time-resolved nanoscale phenomena using nonlinear mixing of multiple vibration frequencies in ultrasonic AFM—Heterodyne Force Microscopy, or HFM, that also include mixing of ultrasonic vibration with other periodic physical excitations, eg. electrical, photothermal, etc. Significant section of the chapter analyzes the ability of UFM and HFM to detect subsurface mechanical inhomogeneities, as well as

  15. Nanonet Force Microscopy for Measuring Cell Forces.

    PubMed

    Sheets, Kevin; Wang, Ji; Zhao, Wei; Kapania, Rakesh; Nain, Amrinder S

    2016-07-12

    The influence of physical forces exerted by or felt by cells on cell shape, migration, and cytoskeleton arrangement is now widely acknowledged and hypothesized to occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Our previous work using the non-electrospinning Spinneret-based Tunable Engineered Parameters' suspended fibers has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to focal adhesion cluster lengths. Here, we present the development and application of a suspended nanonet platform for measuring C2C12 mouse myoblast forces attached to fibers of three diameters (250, 400, and 800 nm) representing a wide range of structural stiffness (3-50 nN/μm). The nanonet force microscopy platform measures cell adhesion forces in response to symmetric and asymmetric external perturbation in single and cyclic modes. We find that contractility-based, inside-out forces are evenly distributed at the edges of the cell, and that forces are dependent on fiber structural stiffness. Additionally, external perturbation in symmetric and asymmetric modes biases cell-fiber failure location without affecting the outside-in forces of cell-fiber adhesion. We then extend the platform to measure forces of (1) cell-cell junctions, (2) single cells undergoing cyclic perturbation in the presence of drugs, and (3) cancerous single-cells transitioning from a blebbing to a pseudopodial morphology. PMID:27410747

  16. Influence of atmospheric waves on the formation and the maintenance of the subtropical jet during the Northern Hemisphere winter—A new method for analyzing the responses to specific forcings

    NASA Astrophysics Data System (ADS)

    Kuroda, Yuhji

    2016-05-01

    This paper introduces a new analysis method that can isolate the responses to specific forcings within meteorological data. By using the zonal mean primitive equations on the sphere, it is possible to break down the meridional circulation, the acceleration of zonal wind, temperature change, and surface pressure change into their individual contributions, which are directly associated with various forcings. This analysis technique can be applied to a wide range of problems relating to climate and its variability. To demonstrate the application of the technique, the formation and maintenance of the subtropical jet during the Northern Hemisphere winter are examined. It is found that atmospheric waves play a crucial role in both the climatological maintenance and the day-to-day (and month-to-month) variabilities of the jet. While stationary waves are the dominant catalyst for maintaining the jet in its climatological state, synoptic waves play an important role in generating the month-to-month variability of the jet.

  17. A Graphene Surface Force Balance

    PubMed Central

    2014-01-01

    We report a method for transferring graphene, grown by chemical vapor deposition, which produces ultraflat graphene surfaces (root-mean-square roughness of 0.19 nm) free from polymer residues over macroscopic areas (>1 cm2). The critical step in preparing such surfaces involves the use of an intermediate mica template, which itself is atomically smooth. We demonstrate the compatibility of these model surfaces with the surface force balance, opening up the possibility of measuring normal and lateral forces, including friction and adhesion, between two graphene sheets either in contact or across a liquid medium. The conductivity of the graphene surfaces allows forces to be measured while controlling the surface potential. This new apparatus, the graphene surface force balance, is expected to be of importance to the future understanding of graphene in applications from lubrication to electrochemical energy storage systems. PMID:25171130

  18. Demonstration of split-flow ventilation and recirculation as flow-reduction methods in an Air Force paint spray booth. Final technical report, February 1991-October 1992

    SciTech Connect

    Hughes, S.; Ayer, J.; Sutay, R.

    1994-07-01

    During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and inside and outside the respirator in the painter`s breathing zone (BZ). The resulting data were analyzed and used to design a modified ventilation system that (1) separates a portion of the exhaust exiting the lower portion of the booth, which contains a concentration of toxic pollutants greater than the average at the exhaust plane (split-flow); and (2) provides an option to return the flow from the upper portion of the exhaust to the intake plenum for mixing with fresh air and recirculation through the booth (recirculation). After critical review by cognizant Air Force offices and an experimental demonstration showing that a flame ionization detector monitoring the air entering the booth is able to detect excursions above the equivalent exposure limit for the solvents in the paint, the exhaust duct was reconfigured for split-flow and recirculating ventilation. A volunteer painter was briefed on the increased risk of exposure during recirculation, and on the purposes and possible benefits of this study. He then signed an informed consent form before participating in the recirculation tests. A series of tests generally equivalent to the baseline series was conducted during split-flow and recirculating ventilation, and three tests were performed during only split-flow ventilation.

  19. Numerical Simulation of Natural Convection of a Nanofluid in an Inclined Heated Enclosure Using Two-Phase Lattice Boltzmann Method: Accurate Effects of Thermophoresis and Brownian Forces.

    PubMed

    Ahmed, Mahmoud; Eslamian, Morteza

    2015-12-01

    Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.

  20. Numerical Simulation of Natural Convection of a Nanofluid in an Inclined Heated Enclosure Using Two-Phase Lattice Boltzmann Method: Accurate Effects of Thermophoresis and Brownian Forces.

    PubMed

    Ahmed, Mahmoud; Eslamian, Morteza

    2015-12-01

    Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number. PMID:26183389