Sample records for electromotor command nucleus

  1. Projection of brain stem neurons to the giant electromotoneurons in the cervical spinal cord of the electric catfish Malapterurus electricus.

    PubMed

    Schikorski, T; Braun, N; Zimmermann, H

    1994-01-01

    Two giant electromotoneurons located within the cervical spinal cord form the centerpiece of the electromotor system in the electric catfish Malapterurus electricus. The cytoarchitectural organization suggests a high degree of input convergence onto the electromotoneurons. In order to obtain insights into the connectivities of the electromotor system, pre-neurons of the electromotoneurons within the brain stem and the spinal cord were labelled by application of FITC-dextran and horseradish peroxidase onto the surface of a single electromotoneuron. Our results show that the electromotoneurons receive their main inputs from the nucleus profundus mesencephali within the tegmentum and from large neurons of the medial reticular formation. Both nuclei possess an intimate connection to the optic tectum which mediates orientation responses. This pathway to the electromotoneurons could be instrumental in eliciting electric organ discharge during prey catching. The electric avoidance response in turn could be mediated by the Mauthner neurons which are also labelled. In addition to these neurons, cells of the nucleus fasciculi longitudinalis medialis, the descending octaval nucleus and the nucleus funicularis medialis were labelled. As compared to the corresponding neurons in ictalurid catfish, none of these neurons displays any alteration in its general morphology. It is concluded that the evolution of the electric organ from muscle tissue and the development of a central control system of the electromotor response in Malapterurus involved a minimum of alterations in central nervous system circuitry. In contrast to many other electric fishes the electromotor control is mainly accomplished at the level of the electromotoneurons.

  2. Cell types and synaptic organization of the medullary electromotor nucleus in a constant frequency weakly electric fish, Sternarchus albifrons.

    PubMed

    Tokunaga, A; Akert, K; Sandri, C; Bennett, M V

    1980-08-01

    The medullary electromotor nucleus (EMN) of Sternarchus albifrons was studied at the light and electron microscopic levels. The EMN consists of a dense meshwork of myelinated axons and glial elements with interposed large neurons; it is provided with an abundant supply of capillaries. Two types of essentially adrendritic nerve cells were distinguished on the basis of size: giant neurons (approx. 70 micrometers in diameter) and large neurons (approx. 30 micrometers in diameter). Their population ratio is 1:4. Only giant cells are labelled following the injection of retrograde tracer into the spinal cord; they are therefore identified with the so-called "relay cells" of other gymnotids. Tracer experiments further suggest that the descending axons of these relay cells give off collateral branches throughout the elongated spinal electromotor nucleus. In contrast, the large cells remain unlabelled and therefore lack spinal projections; they most likely correspond to "pacemaker cells." The perikaryal surface, including axon hillock and proximal part of initial segment of both types of EMN cells, is contacted by clusters of synaptic terminals and astrocytic processes. Two main varieties of synaptic terminals occur: (1) large endings and (2) ordinary end feet with standard size (S-type) and variable size (Sv-type) clear, spherical vesicles. The junction between large endings and EMN cells is characterized by the combination of gap junctions and surrounding intermediate junctions whose freeze-fracture characteristics were morphometrically analyzed. The large endings were formed by nodes of Ranvier as well as by fiber terminations, and synchronization within the EMN may be achieved by presynaptic fibers. Some of the contacts occur directly on the initial segment, which could allow activity to bypass the soma. It is concluded that the elctromotor system of Sternarchus is comprised of a rapid conduction pathway where medullary pacemaker and relay cells as well as spinal electromotor neurons are coupled by synapses with gap junctions. In contrast to the spinal electromotor neurons, the medullary EMN cells receive synapses with morphological characteristics of chemical transmission, and the S-type and SV-type terminals may possibly correspond to Gray's Type I and Type II synapses, respectively. These synapses may be involved in modulation of the electric organ discharge frequency.

  3. More a finger than a nose: the trigeminal motor and sensory innervation of the Schnauzenorgan in the elephant-nose fish Gnathonemus petersii.

    PubMed

    Amey-Özel, Monique; von der Emde, Gerhard; Engelmann, Jacob; Grant, Kirsty

    2015-04-01

    The weakly electric fish Gnathonemus petersii uses its electric sense to actively probe the environment. Its highly mobile chin appendage, the Schnauzenorgan, is rich in electroreceptors. Physical measurements have demonstrated the importance of the position of the Schnauzenorgan in funneling the fish's self-generated electric field. The present study focuses on the trigeminal motor pathway that controls Schnauzenorgan movement and on its trigeminal sensory innervation and central representation. The nerves entering the Schnauzenorgan are very large and contain both motor and sensory trigeminal components as well as an electrosensory pathway. With the use of neurotracer techniques, labeled Schnauzenorgan motoneurons were found throughout the ventral main body of the trigeminal motor nucleus but not among the population of larger motoneurons in its rostrodorsal region. The Schnauzenorgan receives no motor or sensory innervation from the facial nerve. There are many anastomoses between the peripheral electrosensory and trigeminal nerves, but these senses remain separate in the sensory ganglia and in their first central relays. Schnauzenorgan trigeminal primary afferent projections extend throughout the descending trigeminal sensory nuclei, and a few fibers enter the facial lobe. Although no labeled neurons could be identified in the brain as the trigeminal mesencephalic root, some Schnauzenorgan trigeminal afferents terminated in the trigeminal motor nucleus, suggesting a monosynaptic, possibly proprioceptive, pathway. In this first step toward understanding multimodal central representation of the Schnauzenorgan, no direct interconnections were found between the trigeminal sensory and electromotor command system, or the electrosensory and trigeminal motor command. The pathways linking perception to action remain to be studied. © 2014 Wiley Periodicals, Inc.

  4. Pharmacological characterization of ionic currents that regulate high-frequency spontaneous activity of electromotor neurons in the weakly electric fish, Apteronotus leptorhynchus.

    PubMed

    Smith, G Troy

    2006-01-01

    The neural circuit that controls the electric organ discharge (EOD) of the brown ghost knifefish (Apteronotus leptorhynchus) contains two spontaneous oscillators. Both pacemaker neurons in the medulla and electromotor neurons (EMNs) in the spinal cord fire spontaneously at frequencies of 500-1,000 Hz to control the EOD. These neurons continue to fire in vitro at frequencies that are highly correlated with in vivo EOD frequency. Previous studies used channel blocking drugs to pharmacologically characterize ionic currents that control high-frequency firing in pacemaker neurons. The goal of the present study was to use similar techniques to investigate ionic currents in EMNs, the other type of spontaneously active neuron in the electromotor circuit. As in pacemaker neurons, high-frequency firing of EMNs was regulated primarily by tetrodotoxin-sensitive sodium currents and by potassium currents that were sensitive to 4-aminopyridine and kappaA-conotoxin SIVA, but resistant to tetraethylammonium. EMNs, however, differed from pacemaker neurons in their sensitivity to some channel blocking drugs. Alpha-dendrotoxin, which blocks a subset of Kv1 potassium channels, increased firing rates in EMNs, but not pacemaker neurons; and the sodium channel blocker muO-conotoxin MrVIA, which reduced firing rates of pacemaker neurons, had no effect on EMNs. These results suggest that similar, but not identical, ionic currents regulate high-frequency firing in EMNs and pacemaker neurons. The differences in the ionic currents expressed in pacemaker neurons and EMNs might be related to differences in the morphology, connectivity, or function of these two cell types.

  5. Axonal transport studied in a single vertebrate neuron: the giant electromotor neuron of the electric catfish, Malapterurus electricus.

    PubMed

    Zimmermann, H; Tashiro, T; Komiya, Y; Kurokawa, M

    1989-02-01

    Axonal transport was studied using a single vertebrate neuron, the giant electromotor neuron of the electric catfish, Malapterurus electricus. The electric organs of this strongly electric fish are innervated by two neurons whose axons form one electric nerve each. After injection of [35S]methionine into the spinal cord at the level of the two perikarya radioactively labelled material is exported by fast flow as a small wave with a velocity of 5.8 mm/h and a somal release time of 91 min (29 degrees C). Slow flow investigated between 15 and 39 days had a velocity of 1.36 mm/d at 29 degrees C. Analysis of radiolabelled proteins by polyacrylamide gel electrophoresis revealed different patterns of labelling between slow and fast flow. The relative molecular mass of the two major proteins labelled on slow flow correspond to actin and tubulin. Labelled proteins of higher relative molecular mass may correspond to neurofilament proteins. Our results suggest that this vertebrate single-neuron and single-axon system can be used successfully for axonal transport studies.

  6. GSFC Systems Test and Operation Language (STOL) functional requirements and language description

    NASA Technical Reports Server (NTRS)

    Desjardins, R.; Hall, G.; Mcguire, J.; Merwarth, P.; Mocarsky, W.; Truszkowski, W.; Villasenor, A.; Brosi, F.; Burch, P.; Carey, D.

    1978-01-01

    The Systems Tests and Operation Language (STOL) provides the means for user communication with payloads, applications programs, and other ground system elements. It is a systems operation language that enables an operator or user to communicate a command to a computer system. The system interprets each high level language directive from the user and performs the indicated action, such as executing a program, printing out a snapshot, or sending a payload command. This document presents the following: (1) required language features and implementation considerations; (2) basic capabilities; (3) telemetry, command, and input/output directives; (4) procedure definition and control; (5) listing, extension, and STOL nucleus capabilities.

  7. The electromotor system of the electric catfish (Malapterurus electricus): a fine-structural analysis.

    PubMed

    Janetzko, A; Zimmermann, H; Volknandt, W

    1987-03-01

    The electromotor system of the electric catfish (Malapterurus electricus) consists of two large ganglion cells situated in the spinal cord, two single axons containing electric nerves and two large electric organs with several million electroplaque cells. The small, irregularly stacked electroplaque cells possess at their center a crater-like indentation from which a stalk like protrusion arises. Many synaptic contacts derived from a single axon collateral are carried on lobe-like protrusions at the terminal knob of this stalk. The electric nerve consists of a large myelinated axon (diameter: 25 micron) surrounded by many layers of connective tissue cells. The two ganglion cells (200 micron in diameter) are rich in elements of the rough endoplasmic reticulum, Golgi apparatus and lysosomal structures. The cytoplasm of the soma changes its appearance towards the voluminous axon hillock (50 micron in diameter) which these organelles do not enter. The cell soma is perforated in a tunnel-like manner by blood capillaries, axons and processes of glial cells. The cell soma and dendrites are covered with two types of synapse. One type forms mixed chemical and electrical (gap junctions) contacts with intermediate attachment plaques. The other type is only chemical in nature. This system may be useful in the study of an identified vertebrate giant neuron.

  8. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. II. Effects on metrics and kinematics of ongoing gaze shifts to visual targets.

    PubMed

    Freedman, Edward G; Quessy, Stephan

    2004-06-01

    Saccade kinematics are altered by ongoing head movements. The hypothesis that a head movement command signal, proportional to head velocity, transiently reduces the gain of the saccadic burst generator (Freedman 2001, Biol Cybern 84:453-462) can account for this observation. Using electrical stimulation of the rhesus monkey nucleus reticularis gigantocellularis (NRG) to alter the head contribution to ongoing gaze shifts, two critical predictions of this gaze control hypothesis were tested. First, this hypothesis predicts that activation of the head command pathway will cause a transient reduction in the gain of the saccadic burst generator. This should alter saccade kinematics by initially reducing velocity without altering saccade amplitude. Second, because this hypothesis does not assume that gaze amplitude is controlled via feedback, the added head contribution (produced by NRG stimulation on the side ipsilateral to the direction of an ongoing gaze shift) should lead to hypermetric gaze shifts. At every stimulation site tested, saccade kinematics were systematically altered in a way that was consistent with transient reduction of the gain of the saccadic burst generator. In addition, gaze shifts produced during NRG stimulation were hypermetric compared with control movements. For example, when targets were briefly flashed 30 degrees from an initial fixation location, gaze shifts during NRG stimulation were on average 140% larger than control movements. These data are consistent with the predictions of the tested hypothesis, and may be problematic for gaze control models that rely on feedback control of gaze amplitude, as well as for models that do not posit an interaction between head commands and the saccade burst generator.

  9. Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia

    PubMed Central

    Mueller, Sophia; Wang, Danhong; Pan, Ruiqi; Holt, Daphne J.; Liu, Hesheng

    2015-01-01

    Importance Hemispheric specialization of the human brain is a marker of successful neurodevelopment. Altered brain asymmetry that has been repeatedly reported in schizophrenia may represent consequences of disrupted neurodevelopment in the disorder. However, a complete picture of functional specialization in the schizophrenic brain and its connectional substrates are yet to be unveiled. Objective We aimed to quantify intrinsic hemispheric specialization at a cortical and subcortical level and to reveal potential disease effects in schizophrenia. Design/Participants Resting-state functional connectivity MRI has been previously used to quantitatively measure hemispheric specialization in healthy subjects, in a reliable manner. Here we quantified the intrinsic hemispheric specialization at the whole brain level in 31 patients with schizophrenia and 37 demographically matched healthy control subjects using resting-state functional connectivity MRI. Results The caudate nucleus, and cortical regions with connections to the caudate nucleus, showed markedly abnormal hemispheric specialization in schizophrenia. Compared to healthy controls, patients exhibited weaker specialization in the left, but the opposite pattern in the right, caudate nucleus. Schizophrenia patients also displayed a disruption of the inter-hemispheric coordination among the cortical regions with connections to the caudate nucleus. A linear classifier based on the specialization of the caudate nucleus distinguished patients from controls with a classification accuracy of 74%. Conclusions and Relevance These data suggested that hemispheric specialization could serve as a potential imaging biomarker of schizophrenia that, compared to task-based fMRI measures, is less prone to the confounding effects of variation in task compliance, cognitive ability, and command of language. PMID:25830688

  10. Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia.

    PubMed

    Mueller, Sophia; Wang, Danhong; Pan, Ruiqi; Holt, Daphne J; Liu, Hesheng

    2015-06-01

    Hemispheric specialization of the human brain is a marker of successful neurodevelopment. Altered brain asymmetry that has been repeatedly reported in schizophrenia may represent consequences of disrupted neurodevelopment in the disorder. However, a complete picture of functional specialization in the schizophrenic brain and its connectional substrates is yet to be unveiled. To quantify intrinsic hemispheric specialization at cortical and subcortical levels and to reveal potential disease effects in schizophrenia. Resting-state functional connectivity magnetic resonance imaging has been previously used to quantitatively measure hemispheric specialization in healthy individuals in a reliable manner. We quantified the intrinsic hemispheric specialization at the whole brain level in 31 patients with schizophrenia and 37 demographically matched healthy controls from November 28, 2007, through June 29, 2010, using resting-state functional magnetic resonance imaging. The caudate nucleus and cortical regions with connections to the caudate nucleus had markedly abnormal hemispheric specialization in schizophrenia. Compared with healthy controls, patients exhibited weaker specialization in the left, but the opposite pattern in the right, caudate nucleus (P < .001). Patients with schizophrenia also had a disruption of the interhemispheric coordination among the cortical regions with connections to the caudate nucleus. A linear classifier based on the specialization of the caudate nucleus distinguished patients from controls with a classification accuracy of 74% (with a sensitivity of 68% and a specificity of 78%). These data suggest that hemispheric specialization could serve as a potential imaging biomarker of schizophrenia that, compared with task-based functional magnetic resonance imaging measures, is less prone to the confounding effects of variation in task compliance, cognitive ability, and command of language.

  11. Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe

    NASA Astrophysics Data System (ADS)

    Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy

    2017-12-01

    Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.

  12. The Design Fabrication Installation & Evaluation of the Balance Probe Monitor for Large Centrifuges at a National Laboratory Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, Jonathan Michael

    Balance Probe Monitors were designed, fabricated, installed, and evaluated at Sandia National Laboratories (SNL) for the 22,600 g kg (50,000 g lb) direct drive electromotor driven large centrifuges. These centrifuges provide a high onset/decay rate g environment. The Balance Probe Monitor is physically located near a centrifuge’s Capacitance Probe, a crucial sensor for the centrifuge’s sustainability. The Balance Probe Monitor will validate operability of the centrifuge. Most importantly, it is used for triggering a kill switch under the condition that the centrifuge displacement value exceeds allowed tolerances. During operational conditions, the Capacitance Probe continuously detects the structural displacement of themore » centrifuge and an adjoining AccuMeasure 9000 translates this displacement into an output voltage.« less

  13. The secretogranin-II derived peptide secretoneurin modulates electric behavior in the weakly pulse type electric fish, Brachyhypopomus gauderio.

    PubMed

    Pouso, Paula; Quintana, Laura; López, Gabriela C; Somoza, Gustavo M; Silva, Ana C; Trudeau, Vance L

    2015-10-01

    Secretoneurin (SN) in the preoptic area and pituitary of mammals and fish has a conserved close association with the vasopressin and oxytocin systems, members of a peptide family that are key in the modulation of sexual and social behaviors. Here we show the presence of SN-immunoreactive cells and projections in the brain of the electric fish, Brachyhypopomus gauderio. Secretoneurin colocalized with vasotocin (AVT) and isotocin in cells and fibers of the preoptic area. In the rostral pars distalis of the pituitary, many cells were both SN and prolactin-positive. In the hindbrain, at the level of the command nucleus of the electric behavior (pacemaker nucleus; PN), some of SN-positive fibers colocalized with AVT. We also explored the potential neuromodulatory role of SN on electric behavior, specifically on the rate of the electric organ discharge (EOD) that signals arousal, dominance and subordinate status. Each EOD is triggered by the command discharge of the PN, ultimately responsible for the basal EOD rate. SN modulated diurnal basal EOD rate in freely swimming fish in a context-dependent manner; determined by the initial value of EOD rate. In brainstem slices, SN partially mimicked the in vivo behavioral effects acting on PN firing rate. Taken together, our results suggest that SN may regulate electric behavior, and that its effect on EOD rate may be explained by direct action of SN at the PN level through either neuroendocrine and/or endocrine mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Baroreflex regulation of blood pressure during dynamic exercise

    NASA Technical Reports Server (NTRS)

    Raven, P. B.; Potts, J. T.; Shi, X.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    From the work of Potts et al. Papelier et al. and Shi et al. it is readily apparent that the arterial (aortic and carotid) baroreflexes are reset to function at the prevailing ABP of exercise. The blood pressure of exercise is the result of the hemodynamic (cardiac output and TPR) responses, which appear to be regulated by two redundant neural control systems, "Central Command" and the "exercise pressor reflex". Central Command is a feed-forward neural control system that operates in parallel with the neural regulation of the locomotor system and appears to establish the hemodynamic response to exercise. Within the central nervous system it appears that the HLR may be the operational site for Central Command. Specific neural sites within the HLR have been demonstrated in animals to be active during exercise. With the advent of positron emission tomography (PET) and single-photon emission computed tomography (SPECT), the anatomical areas of the human brain related to Central Command are being mapped. It also appears that the Nucleus Tractus Solitarius and the ventrolateral medulla may serve as an integrating site as they receive neural information from the working muscles via the group III/IV muscle afferents as well as from higher brain centers. This anatomical site within the CNS is now the focus of many investigations in which arterial baroreflex function, Central Command and the "exercise pressor reflex" appear to demonstrate inhibitory or facilitatory interaction. The concept of whether Central Command is the prime mover in the resetting of the arterial baroreceptors to function at the exercising ABP or whether the resetting is an integration of the "exercise pressor reflex" information with that of Central Command is now under intense investigation. However, it would be justified to conclude, from the data of Bevegard and Shepherd, Dicarlo and Bishop, Potts et al., and Papelier et al. that the act of exercise results in the resetting of the arterial baroreflex. In addition, if, as we have proposed, the cardiopulmonary baroreceptors primarily monitors and reflexly regulates cardiac filling volume, it would seem from the data of Mack et al. and Potts et al. that the cardiopulmonary baroreceptor is also reset at the beginning of exercise. Therefore, investigations of the neural mechanisms of regulation involving Central Command and cardiopulmonary afferents, similar to those being undertaken for the arterial baroreflex, need to be established.

  15. Nedd4 Family Interacting Protein 1 (Ndfip1) Is Required for Ubiquitination and Nuclear Trafficking of BRCA1-associated ATM Activator 1 (BRAT1) during the DNA Damage Response*

    PubMed Central

    Low, Ley-Hian; Chow, Yuh-Lit; Li, Yijia; Goh, Choo-Peng; Putz, Ulrich; Silke, John; Ouchi, Toru; Howitt, Jason; Tan, Seong-Seng

    2015-01-01

    During injury, cells are vulnerable to apoptosis from a variety of stress conditions including DNA damage causing double-stranded breaks. Without repair, these breaks lead to aberrations in DNA replication and transcription, leading to apoptosis. A major response to DNA damage is provided by the protein kinase ATM (ataxia telangiectasia mutated) that is capable of commanding a plethora of signaling networks for DNA repair, cell cycle arrest, and even apoptosis. A key element in the DNA damage response is the mobilization of activating proteins into the cell nucleus to repair damaged DNA. BRAT1 is one of these proteins, and it functions as an activator of ATM by maintaining its phosphorylated status while also keeping other phosphatases at bay. However, it is unknown how BRAT1 is trafficked into the cell nucleus to maintain ATM phosphorylation. Here we demonstrate that Ndfip1-mediated ubiquitination of BRAT1 leads to BRAT1 trafficking into the cell nucleus. Without Ndfip1, BRAT1 failed to translocate to the nucleus. Under genotoxic stress, cells showed increased expression of both Ndfip1 and phosphorylated ATM. Following brain injury, neurons show increased expression of Ndfip1 and nuclear translocation of BRAT1. These results point to Ndfip1 as a sensor protein during cell injury and Ndfip1 up-regulation as a cue for BRAT1 ubiquitination by Nedd4 E3 ligases, followed by nuclear translocation of BRAT1. PMID:25631046

  16. Bluetooth-based distributed measurement system

    NASA Astrophysics Data System (ADS)

    Tang, Baoping; Chen, Zhuo; Wei, Yuguo; Qin, Xiaofeng

    2007-07-01

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.

  17. The Gravity field of Comet 67 P/Churyumov-Gerasimenko Expressed in Bispherical Harmonics

    NASA Astrophysics Data System (ADS)

    Andert, T.; Barriot, J. P.; Paetzold, M.; Sichoix, L.; Tellmann, S.; Häusler, B.

    2015-12-01

    On 6 August 2014, after a ten years cruise, the ESA-Rosetta spacecraft arrived at comet 67P/Churyumov-Gerasimenko. At that time the spacecraft was commanded to drift along with the comet at distances between 100 km and 50 km, the distance was then successfully lowered to 30 km in September 2014 and to 10 km in November 2014 and bound orbits could be achieved. Based on Doppler tracking data the Rosetta radio science experiment (RSI) was able to determine the mass of the nucleus and its gravity field in spherical harmonics series in order to constrain density and the internal structure of the nucleus. The shape of the comet is complex, a representation of the gravity field as belonging to one single body in either spherical or ellipsoidal harmonics series will give the shape of the body more preference than its internal structure. The observed shape of the nucleus, however, offers the opportunity to interpret it as consisting of two different bodies, namely the "head" and the "feet" sections of 67P/Churyumov-Gerasimenko, both having a nearly ellipsoidal shape. In this new approach, the bispherical harmonics expansion, the comet nucleus has been approximated by two independent lobes, each lobe represented by its own spherical harmonics expansion. As a result of the bispherical harmonics representation, it is anticipated that the gravity field will gain higher accuracy and will be less dominated by the complex shape of the comet. We have derived the analytical expressions of the gravity potential and its derivatives of a body in bispherical coordinates and applied this concept to the comet Churyumov-Gerasimenko. The paper will present the bispherical harmonics representation of the gravity field and first results derived from this new concept.

  18. The nucleus reticularis gigantocellularis modulates the cardiopulmonary responses to central and peripheral drives related to exercise.

    PubMed

    Richard, C A; Waldrop, T G; Bauer, R M; Mitchell, J H; Stremel, R W

    1989-03-13

    It is known that muscle afferents and the hypothalamic locomotor region (HLR) both project to the nucleus reticularis gigantocellularis (NGC) and that the NGC is capable of influencing cardiovascular and respiratory variables. Therefore, the role of NGC in the cardiovascular and respiratory response to exercise-related signals was investigated in anesthetized cats. These signals were generated by stimulation of: (1) spinal ventral roots to induce hindlimb muscle contraction (MC) and (2) the HLR. Bilateral electrolytic lesion of the NGC at the pontomedullary border caused tidal volume, respiratory frequency and heart rate responses to HLR stimulation to be greater than the responses recorded prior to lesioning. Lesioning had no effect on the ventilatory or cardiovascular responses to MC but did decrease phrenic responsiveness; lesion had no effect on any resting values. In this preparation, the pontomedullary NGC acts as an inhibitory influence on tidal volume, breathing frequency and heart rate responses to the central command for exercise. In addition, NGC modulation of ventilation would appear to be selective for certain respiratory muscle groups.

  19. Song decrystallization in adult zebra finches does not require the song nucleus NIf.

    PubMed

    Roy, Arani; Mooney, Richard

    2009-08-01

    In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., crystallized) song to slowly degrade, presumably because of the resulting distortion in auditory feedback. How and where distorted feedback interacts with song motor networks to induce this process of song decrystallization remains unknown. The song premotor nucleus HVC is a potential site where auditory feedback signals could interact with song motor commands. Although the forebrain nucleus interface of the nidopallium (NIf) appears to be the primary auditory input to HVC, NIf lesions made in adult zebra finches do not trigger song decrystallization. One possibility is that NIf lesions do not interfere with song maintenance, but do compromise the adult zebra finch's ability to express renewed vocal plasticity in response to feedback perturbations. To test this idea, we bilaterally lesioned NIf and then transected the vocal nerve in adult male zebra finches. We found that bilateral NIf lesions did not prevent nerve section-induced song decrystallization. To test the extent to which the NIf lesions disrupted auditory processing in the song system, we made in vivo extracellular recordings in HVC and a downstream anterior forebrain pathway (AFP) in NIf-lesioned birds. We found strong and selective auditory responses to the playback of the birds' own song persisted in HVC and the AFP following NIf lesions. These findings suggest that auditory inputs to the song system other than NIf, such as the caudal mesopallium, could act as a source of auditory feedback signals to the song motor network.

  20. Stimulation of pontine reticular formation in monkeys with strabismus.

    PubMed

    Walton, Mark M G; Ono, Seiji; Mustari, Michael J

    2013-10-29

    Saccade disconjugacy in strabismus could result from any of a number of factors, including abnormalities of eye muscles, the plant, motoneurons, near response cells, or atypical tuning of neurons in saccade-related areas of the brain. This study was designed to investigate the possibility that saccade disconjugacy in strabismus is associated with abnormalities in paramedian pontine reticular formation (PPRF). We applied microstimulation to 22 sites in PPRF and 20 sites in abducens nucleus in three rhesus macaque monkeys (one normal, one esotrope, and one exotrope). When mean velocity was compared between the two eyes, a slight difference was found for 1/5 sites in the normal animal. Significant differences were found for 5/6 sites in an esotrope and 10/11 sites in an exotrope. For five sites in the strabismic monkeys, the directions of evoked movements differed by more than 40° between the two eyes. When stimulation was applied to abducens nucleus (20 sites), the ipsilateral eye moved faster for 4/6 sites in the normal animal and all nine sites in the esotrope. For the exotrope, however, the left eye always moved faster, even for three sites on the right side. For the strabismic animals, stimulation of abducens nucleus often caused a different eye to move faster than stimulation of PPRF. These data suggest that PPRF is organized at least partly monocularly in strabismus and that disconjugate saccades are at least partly a consequence of unbalanced saccadic commands being sent to the two eyes.

  1. Multiple scale dynamo

    PubMed Central

    Le Mouël, Jean-Louis; Allègre, Claude J.; Narteau, Clément

    1997-01-01

    A scaling law approach is used to simulate the dynamo process of the Earth’s core. The model is made of embedded turbulent domains of increasing dimensions, until the largest whose size is comparable with the site of the core, pervaded by large-scale magnetic fields. Left-handed or right-handed cyclones appear at the lowest scale, the scale of the elementary domains of the hierarchical model, and disappear. These elementary domains then behave like electromotor generators with opposite polarities depending on whether they contain a left-handed or a right-handed cyclone. To transfer the behavior of the elementary domains to larger ones, a dynamic renormalization approach is used. A simple rule is adopted to determine whether a domain of scale l is a generator—and what its polarity is—in function of the state of the (l − 1) domains it is made of. This mechanism is used as the main ingredient of a kinematic dynamo model, which displays polarity intervals, excursions, and reversals of the geomagnetic field. PMID:11038547

  2. Song Decrystallization in Adult Zebra Finches Does Not Require the Song Nucleus NIf

    PubMed Central

    Roy, Arani; Mooney, Richard

    2009-01-01

    In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., crystallized) song to slowly degrade, presumably because of the resulting distortion in auditory feedback. How and where distorted feedback interacts with song motor networks to induce this process of song decrystallization remains unknown. The song premotor nucleus HVC is a potential site where auditory feedback signals could interact with song motor commands. Although the forebrain nucleus interface of the nidopallium (NIf) appears to be the primary auditory input to HVC, NIf lesions made in adult zebra finches do not trigger song decrystallization. One possibility is that NIf lesions do not interfere with song maintenance, but do compromise the adult zebra finch's ability to express renewed vocal plasticity in response to feedback perturbations. To test this idea, we bilaterally lesioned NIf and then transected the vocal nerve in adult male zebra finches. We found that bilateral NIf lesions did not prevent nerve section–induced song decrystallization. To test the extent to which the NIf lesions disrupted auditory processing in the song system, we made in vivo extracellular recordings in HVC and a downstream anterior forebrain pathway (AFP) in NIf-lesioned birds. We found strong and selective auditory responses to the playback of the birds' own song persisted in HVC and the AFP following NIf lesions. These findings suggest that auditory inputs to the song system other than NIf, such as the caudal mesopallium, could act as a source of auditory feedback signals to the song motor network. PMID:19515953

  3. SOCCER: Comet Coma Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Uesugi, K. T.; Tsou, Peter

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.

  4. Defining the neurocircuitry of exercise hyperpnoea

    PubMed Central

    Paterson, David J

    2014-01-01

    One hundred years ago in this journal, Krogh and Lindhard published a seminal paper highlighting the importance of the brain in the control of breathing during exercise. This symposium report reviews the historical developments that have taken place since 1913, and attempts to place the detailed neurocircuitry thought to underpin exercise hyperpnoea into context by focusing on key structures that might form the command network. With the advent of enhanced neuroimaging and functional neurosurgical techniques, a unique window of opportunity has recently arisen to target potential circuits in humans. Animal studies have identified a priori sites of interest in mid-brain structures, in particular the subthalamic locomotor region (subthalamic nucleus, STN) and the periaqueductal grey (PAG), which have now been recorded from in humans during exercise. When all data are viewed in an integrative manner, the PAG, in particular the lateral PAG, and aspects of the dorsal lateral PAG, appear to be key communicating circuitry for ‘central command’. Moreover, the PAG also fulfils many requirements of a command centre. It has functional connectivity to higher centres (dorsal lateral prefrontal cortex) and the basal ganglia (in particular, the STN), and receives a sensory input from contracting muscle, but, importantly, it sends efferent information to brainstem nuclei involved in cardiorespiratory control. PMID:23918772

  5. Development and regeneration of the electric organ.

    PubMed

    Zakon, H H; Unguez, G A

    1999-05-01

    The electric organ has evolved independently from muscle in at least six lineages of fish. How does a differentiated muscle cell change its fate to become an electrocyte? Is the process by which this occurs similar in different lineages? We have begun to answer these questions by studying the formation and maintenance of electrocytes in the genus Sternopygus, a weakly electric teleost. Electrocytes arise from the fusion of fully differentiated muscle fibers, mainly those expressing fast isoforms of myosin. Electrocytes briefly co-express sarcomeric proteins, such as myosin and tropomyosin, and keratin, a protein not found in mature muscle. The sarcomeric proteins are subsequently down-regulated, but keratin expression persists. We investigated whether the maintenance of the electrocyte phenotype depends on innervation. We found that, after spinal cord transection, which silences the electromotor neurons that innervate the electrocytes, or destruction of the spinal cord, which denervates the electrocytes, mature electrocytes re-express sarcomeric myosin and tropomyosin, although keratin expression persists. Ultrastructural examination of denervated electrocytes revealed nascent sarcomeres. Thus, the maintenance of the electrocyte phenotype depends on neural activity.

  6. MELIFT - A new device for accurate measurements in a snow rich environment

    NASA Astrophysics Data System (ADS)

    Dorninger, M.

    2012-04-01

    A deep snow pack, remote locations, no external power supply and very low temperatures are often the main ingredients when it comes to the deployment of meteorological stations in mountainous terrain. The accurate position of the sensor related to the snow surface is normally not known. A new device called METLIFT overcomes the problems. WMO recommends a height between 1.2 m and 2 m above ground level for the measurement of air temperature and humidity. The height above ground level is specified to take care of the possible strong vertical temperature and humidity gradients at the lowest layers in the atmosphere. Especially in snow rich and remote locations it may be hardly possible to follow this advice. Therefore most of the meteorological stations in mountainous terrain are situated at mountain tops where strong winds will blow off the snow or in valleys where a daily inspection of the sensors is possible. In other unpopulated mountainous areas, e.g. basins, plateaus, the distance of the sensor to the snow surface is not known or the sensor will be snow-covered. A new device was developed to guarantee the sensor height above surface within the WMO limits in harsh and remote environments. An ultrasonic snow height sensor measures the distance to the snow surface. If it exceeds certain limits due to snow accumulation or snow melt the lift adapts its height accordingly. The prototype of METLIFT has been installed in Lower Austria at an altitude of 1000m. The lift is 6 m high and can pull out for another 4 m. Sensor arms are mounted every meter to allow the connection of additional sensors or to measure a profile of a certain parameter of the lowest 5 m above surface. Sensors can be added easily since cable wiring is provided to each sensor arm. Horizontal winds are measured at 7 m height above surface. METLIFT is independent of external power supply. Three lead gel accumulators recharged by three solar panels provide the energy necessary for the sensors, the data loggers, the data transmission components and for the electromotor to lift the system. METLIFT is energy optimised to keep the energy consumption at low levels. The components of the lift device consist of a 12V electromotor with a worm gear with a transmission rate of 2856:1. This means that the lift moves extremely slow. The data logger can be programmed via the GSM connection from remote locations, the data flow is also conducted via this connection. First results of the winter campaign 2011/2012 will be presented at the conference.

  7. An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition

    PubMed Central

    Brainard, Michael S.; Jin, Dezhe Z.

    2015-01-01

    Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054

  8. A Symbiotic Brain-Machine Interface through Value-Based Decision Making

    PubMed Central

    Mahmoudi, Babak; Sanchez, Justin C.

    2011-01-01

    Background In the development of Brain Machine Interfaces (BMIs), there is a great need to enable users to interact with changing environments during the activities of daily life. It is expected that the number and scope of the learning tasks encountered during interaction with the environment as well as the pattern of brain activity will vary over time. These conditions, in addition to neural reorganization, pose a challenge to decoding neural commands for BMIs. We have developed a new BMI framework in which a computational agent symbiotically decoded users' intended actions by utilizing both motor commands and goal information directly from the brain through a continuous Perception-Action-Reward Cycle (PARC). Methodology The control architecture designed was based on Actor-Critic learning, which is a PARC-based reinforcement learning method. Our neurophysiology studies in rat models suggested that Nucleus Accumbens (NAcc) contained a rich representation of goal information in terms of predicting the probability of earning reward and it could be translated into an evaluative feedback for adaptation of the decoder with high precision. Simulated neural control experiments showed that the system was able to maintain high performance in decoding neural motor commands during novel tasks or in the presence of reorganization in the neural input. We then implanted a dual micro-wire array in the primary motor cortex (M1) and the NAcc of rat brain and implemented a full closed-loop system in which robot actions were decoded from the single unit activity in M1 based on an evaluative feedback that was estimated from NAcc. Conclusions Our results suggest that adapting the BMI decoder with an evaluative feedback that is directly extracted from the brain is a possible solution to the problem of operating BMIs in changing environments with dynamic neural signals. During closed-loop control, the agent was able to solve a reaching task by capturing the action and reward interdependency in the brain. PMID:21423797

  9. An agonist–antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning

    PubMed Central

    Sánchez-Campusano, Raudel; Gruart, Agnès; Fernández-Mas, Rodrigo; Delgado-García, José M.

    2012-01-01

    The presence of two antagonistic groups of deep cerebellar nuclei neurons has been reported as necessary for a proper dynamic control of learned motor responses. Most models of cerebellar function seem to ignore the biomechanical need for a double activation–deactivation system controlling eyelid kinematics, since most of them accept that, for closing the eyelid, only the activation of the orbicularis oculi (OO) muscle (via the red nucleus to the facial motor nucleus) is necessary, without a simultaneous deactivation of levator palpebrae motoneurons (via unknown pathways projecting to the perioculomotor area). We have analyzed the kinetic neural commands of two antagonistic types of cerebellar posterior interpositus neuron (IPn) (types A and B), the electromyographic (EMG) activity of the OO muscle, and eyelid kinematic variables in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. We addressed the hypothesis that the interpositus nucleus can be considered an agonist–antagonist system controlling eyelid kinematics during motor learning. To carry out a comparative study of the kinetic–kinematic relationships, we applied timing and dispersion pattern analyses. We concluded that, in accordance with a dominant role of cerebellar circuits for the facilitation of flexor responses, type A neurons fire during active eyelid downward displacements—i.e., during the active contraction of the OO muscle. In contrast, type B neurons present a high tonic rate when the eyelids are wide open, and stop firing during any active downward displacement of the upper eyelid. From a functional point of view, it could be suggested that type B neurons play a facilitative role for the antagonistic action of the levator palpebrae muscle. From an anatomical point of view, the possibility that cerebellar nuclear type B neurons project to the perioculomotor area—i.e., more or less directly onto levator palpebrae motoneurons—is highly appealing. PMID:22435053

  10. Electric organ discharges and electric images during electrolocation

    NASA Technical Reports Server (NTRS)

    Assad, C.; Rasnow, B.; Stoddard, P. K.

    1999-01-01

    Weakly electric fish use active electrolocation - the generation and detection of electric currents - to explore their surroundings. Although electrosensory systems include some of the most extensively understood circuits in the vertebrate central nervous system, relatively little is known quantitatively about how fish electrolocate objects. We believe a prerequisite to understanding electrolocation and its underlying neural substrates is to quantify and visualize the peripheral electrosensory information measured by the electroreceptors. We have therefore focused on reconstructing both the electric organ discharges (EODs) and the electric images resulting from nearby objects and the fish's exploratory behaviors. Here, we review results from a combination of techniques, including field measurements, numerical and semi-analytical simulations, and video imaging of behaviors. EOD maps are presented and interpreted for six gymnotiform species. They reveal diverse electric field patterns that have significant implications for both the electrosensory and electromotor systems. Our simulations generated predictions of the electric images from nearby objects as well as sequences of electric images during exploratory behaviors. These methods are leading to the identification of image features and computational algorithms that could reliably encode electrosensory information and may help guide electrophysiological experiments exploring the neural basis of electrolocation.

  11. Neural imaging in songbirds using fiber optic fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Nooshabadi, Fatemeh; Hearn, Gentry; Lints, Thierry; Maitland, Kristen C.

    2012-02-01

    The song control system of juvenile songbirds is an important model for studying the developmental acquisition and generation of complex learned vocal motor sequences, two processes that are fundamental to human speech and language. To understand the neural mechanisms underlying song production, it is critical to characterize the activity of identified neurons in the song control system when the bird is singing. Neural imaging in unrestrained singing birds, although technically challenging, will advance our understanding of neural ensemble coding mechanisms in this system. We are exploring the use of a fiber optic microscope for functional imaging in the brain of behaving and singing birds in order to better understand the contribution of a key brain nucleus (high vocal center nucleus; HVC) to temporal aspects of song motor control. We have constructed a fluorescence microscope with LED illumination, a fiber bundle for transmission of fluorescence excitation and emission light, a ~2x GRIN lens, and a CCD for image acquisition. The system has 2 μm resolution, 375 μm field of view, 200 μm working distance, and 1 mm outer diameter. As an initial characterization of this setup, neurons in HVC were imaged using the fiber optic microscope after injection of quantum dots or fluorescent retrograde tracers into different song nuclei. A Lucid Vivascope confocal microscope was used to confirm the imaging results. Long-term imaging of the activity of these neurons in juvenile birds during singing may lead us to a better understanding of the central motor codes for song and the central mechanism by which auditory experience modifies song motor commands to enable vocal learning and imitation.

  12. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.

    PubMed

    Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia

    2014-01-30

    Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Neural control of breathing and CO2 homeostasis

    PubMed Central

    Guyenet, P.G.; Bayliss, D.A

    2015-01-01

    Summary Recent advances have clarified how the brain detects CO2 to regulate breathing (central respiratory chemoreception). These mechanisms are reviewed and their significance is presented in the general context of CO2/pH homeostasis through breathing. At rest, respiratory chemoreflexes initiated at peripheral and central sites mediate rapid stabilization of arterial PCO2 and pH. Specific brainstem neurons (e.g., retrotrapezoid nucleus, RTN; serotonergic) are activated by PCO2 and stimulate breathing. RTN neurons detect CO2 via intrinsic proton receptors (TASK-2, GPR4), synaptic input from peripheral chemoreceptors and signals from astrocytes. Respiratory chemoreflexes are arousal state-dependent whereas chemoreceptor stimulation produces arousal. When abnormal, these interactions lead to sleep-disordered breathing. During exercise, “central command” and reflexes from exercising muscles produce the breathing stimulation required to maintain arterial PCO2 and pH despite elevated metabolic activity. The neural circuits underlying central command and muscle afferent control of breathing remain elusive and represent a fertile area for future investigation. PMID:26335642

  14. Beller Lectureship: Materials for Li & Na Batteries :A Computational Materials Science Point of View

    NASA Astrophysics Data System (ADS)

    Ahuja, Rajeev

    Energy storage has been a theme for scientists for two hundred years. The Lead acid battery research on batteries occupied some of the best minds of 19th century. Plante in 1859 invented lead acid battery which starts your car and ignites internal combustion which takes over the propulsion. Although the lead battery is over 150 years old but the origin of its open circuit voltage (OCV) of 2.1 V is still known. In present talk, I will show how one can explain the origin of OCV of 2.1 V based on foundations of relativistic quantum mechanics. Surprisingly, seems to be the first time its chemistry has been theoretically modeled from the first principles. The main message of this work is that most of the electro-motoric force of the common lead battery comes from relativistic effects. In second part, I will provide an overview of the most recent theoretical studies undertaken by us in the field of materials for Li & Na ion batteries. For selected examples, I will show how ab initio calculations can be of use in the effort to reach a better understanding of battery materials and to occasionally also guide the search for new promising materials.

  15. Electromagnetic processes during phase commutation in field regulated reluctance machine

    NASA Astrophysics Data System (ADS)

    Shishkov, A. N.; Sychev, D. A.; Zemlyansky, A. A.; Krupnova, M. N.; Funk, T. A.; Ishmet'eva, V. D.

    2018-03-01

    The processes of currents switching in stator windings have been explained by the existence of the electromagnetic torque ripples in the electric drive with the field-regulated reluctance machine. The maximum value of ripples in the open loop control system for the six-phase machine can reach 20 percent from the developed electromagnetic torque. This method allows one to make calculation of ripple spike towards average torque developed by the electromotor for the different number of phases. Application of a trapezoidal form of current at six phases became the solution. In case of a less number of phases than six, a ripple spike considerably increases, which is inadmissible. On the other hand, increasing the number of phases tends to the increase of the semiconductor inverter external dimensions based on the inconspicuous decreasing of a ripple spike. The creation and usage of high-speed control loops of current (HCLC) have been recommended for a reduction of the electromagnetic torque’s ripple level, as well as the appliance of positive current feedback in switching phase currents. This decision allowed one to receive a mean value of the torque more than 10%, compared to system without change, to reduce greatly ripple spike of the electromagnetic torque. The possibility of the electric drive effective operation with FRRM in emergency operation has been shown.

  16. Interagency Evaluation of the Section 1206 Global Train and Equip Program

    DTIC Science & Technology

    2009-08-31

    Capabilities, Joint Staff, U.S. Africa Command, U.S. Central Command, U.S Joint Forces Command, U.S. Pacific Command, U.S. Southern Command, U.S. Special...Intensity Conflict & Interdependent Capabilities; Commanders of U.S. Africa Command, U.S. Central Command, U.S. Joint Forces Command, U.S. Pacific... Central Command, commented that coordinating the Section 1206 project proposal with the partner nation prior to submission would inflate the

  17. 5. Command center doors at command center entry, building 501, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Command center doors at command center entry, building 501, looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  18. Characterization of the central neural projections to brown, white, and beige adipose tissue.

    PubMed

    Wiedmann, Nicole M; Stefanidis, Aneta; Oldfield, Brian J

    2017-11-01

    The functional recruitment of classic brown adipose tissue (BAT) and inducible brown-like or beige fat is, to a large extent, dependent on intact sympathetic neural input. Whereas the central neural circuits directed specifically to BAT or white adipose tissue (WAT) are well established, there is only a developing insight into the nature of neural inputs common to both fat types. Moreover, there is no clear view of the specific central and peripheral innervation of the browned component of WAT: beige fat. The objective of the present study is to examine the neural input to both BAT and WAT in the same animal and, by exposing different cohorts of rats to either thermoneutral or cold conditions, define changes in central neural organization that will ensure that beige fat is appropriately recruited and modulated after browning of inguinal WAT (iWAT). At thermoneutrality, injection of the neurotropic (pseudorabies) viruses into BAT and WAT demonstrates that there are dedicated axonal projections, as well as collateral axonal branches of command neurons projecting to both types of fat. After cold exposure, central neural circuits directed to iWAT showed evidence of reorganization with a greater representation of command neurons projecting to both brown and beiged WAT in hypothalamic (paraventricular nucleus and lateral hypothalamus) and brainstem (raphe pallidus and locus coeruleus) sites. This shift was driven by a greater number of supraspinal neurons projecting to iWAT under cold conditions. These data provide evidence for a reorganization of the nervous system at the level of neural connectivity following browning of WAT.-Wiedmann, N. M., Stefanidis, A., Oldfield, B. J. Characterization of the central neural projections to brown, white, and beige adipose tissue. © FASEB.

  19. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 3: Commands specification

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (3 of 4) contains the specification for the command language for the AMPS system. The volume contains a requirements specification for the operating system and commands and a design specification for the operating system and command. The operating system and commands sits on top of the protocol. The commands are an extension of the present set of AMPS commands in that the commands are more compact, allow multiple sub-commands to be bundled into one command, and have provisions for identifying the sender and the intended receiver. The commands make no change to the actual software that implement the commands.

  20. Exercise-induced neuronal plasticity in central autonomic networks: role in cardiovascular control.

    PubMed

    Michelini, Lisete C; Stern, Javier E

    2009-09-01

    It is now well established that brain plasticity is an inherent property not only of the developing but also of the adult brain. Numerous beneficial effects of exercise, including improved memory, cognitive function and neuroprotection, have been shown to involve an important neuroplastic component. However, whether major adaptive cardiovascular adjustments during exercise, needed to ensure proper blood perfusion of peripheral tissues, also require brain neuroplasticity, is presently unknown. This review will critically evaluate current knowledge on proposed mechanisms that are likely to underlie the continuous resetting of baroreflex control of heart rate during/after exercise and following exercise training. Accumulating evidence indicates that not only somatosensory afferents (conveyed by skeletal muscle receptors, baroreceptors and/or cardiopulmonary receptors) but also projections arising from central command neurons (in particular, peptidergic hypothalamic pre-autonomic neurons) converge into the nucleus tractus solitarii (NTS) in the dorsal brainstem, to co-ordinate complex cardiovascular adaptations during dynamic exercise. This review focuses in particular on a reciprocally interconnected network between the NTS and the hypothalamic paraventricular nucleus (PVN), which is proposed to act as a pivotal anatomical and functional substrate underlying integrative feedforward and feedback cardiovascular adjustments during exercise. Recent findings supporting neuroplastic adaptive changes within the NTS-PVN reciprocal network (e.g. remodelling of afferent inputs, structural and functional neuronal plasticity and changes in neurotransmitter content) will be discussed within the context of their role as important underlying cellular mechanisms supporting the tonic activation and improved efficacy of these central pathways in response to circulatory demand at rest and during exercise, both in sedentary and in trained individuals. We hope this review will stimulate more comprehensive studies aimed at understanding cellular and molecular mechanisms within CNS neuronal networks that contribute to exercise-induced neuroplasticity and cardiovascular adjustments.

  1. Joint Chiefs of Staff > Media > Photos

    Science.gov Websites

    U.S. Army Gen. Curtis M. Scaparrotti, left, Commander of U.S. European Command and Supreme Allied , Commander of U.S. European Command and Supreme Allied Commander, Europe; speaks after receiving the . U.S. Army Gen. Curtis M. Scaparrotti, Commander of U.S. European Command and Supreme Allied Commander

  2. A Physiological Neural Network for Saccadic Eye Movement Control

    DTIC Science & Technology

    1994-04-01

    cerebellum, substantia nigra, nucleus reticularis tegmenti pontis, the thalamus, the deep layers of the superior colliculus and the oculomotor plant...and pause cells), the vestibular nucleus , abducens nucleus , oculomotor nucleus , cerebellum, substantia nigra, nucleus reticularis tegmenti pontis, the...vestibular nucleus , abducens nucleus , oculomotor nucleus , cerebellum, substantia nigra, nucleus reticularis tegmenti pontis (NRTP), the thalamus, the

  3. Use of Monoclonal Antibodies to Study the Structural Basis of the Function of Nicotinic Acetylcholine Receptors on Electric Organ and Muscle and to Determine the Structure of Nicotinic Acetylcholine Receptors on Neurons

    DTIC Science & Technology

    1989-03-16

    nucleus robustus archistriatalis 1 1 1 nucleus reticularis gigantocellularis 1 3 3 nucleus reticularis lateralis 1 3 3 nucleus ... reticularis pontis caudalis 1 1 3 nucleus reticularis parvocellularis 1 1 2 nucleus rotundus 1 1 1 nucleus tractus solitarii 1 3 3 nucleus semilunaris...Structure a-bungarotoxin mAb 35 inAb 270 nucleus accumbens 1 1 1 nucleus basalis 1 1 1 nucleus cerebelli intermedium 2 3 3

  4. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Commander of a task force. 700.1053 Section 700... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any other naval commander, may detail in command of a task force, or other task command, any eligible...

  5. The C3-System User. Volume II. Workshop Notes

    DTIC Science & Technology

    1977-02-01

    system that provides the means for operational direction and technical administrative support involved in the function of command and control of U.S...information systems of the Headquarters of the Military Depart- ments; the command and control systems of the Headquarters of the Service Component Commands...the Service Component Commands - Military Airlift Command - Military Sealift Command - Military Traffic Management Command - 3.2.5 Command and

  6. 32 CFR 700.703 - To announce assumption of command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...

  7. 32 CFR 700.703 - To announce assumption of command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...

  8. 32 CFR 536.8 - Responsibilities and operations of command claims services.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Responsibilities and operations of command claims... operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims... Commander USARCS, and assigned an office code. However, the chief of a command claims service may...

  9. 32 CFR 700.703 - To announce assumption of command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...

  10. 32 CFR 700.703 - To announce assumption of command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...

  11. 32 CFR 700.703 - To announce assumption of command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...

  12. 32 CFR 536.8 - Responsibilities and operations of command claims services.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Responsibilities and operations of command claims... operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims... Commander USARCS, and assigned an office code. However, the chief of a command claims service may...

  13. 32 CFR 536.8 - Responsibilities and operations of command claims services.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Responsibilities and operations of command claims... operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims... Commander USARCS, and assigned an office code. However, the chief of a command claims service may...

  14. The United States Navy Arctic Roadmap for 2014 to 2030

    DTIC Science & Technology

    2014-02-01

    of the Oceanographer of the Navy; the Chief of Naval Research; Commander, Naval Meteorology and Oceanography Command; Commander, Office of Naval...Q3, FY14 Q3, FY15 FY15-18 FY18 2.3.4: Improve traditional meteorological forecast capability in the polar regions through the...CNE Commander Naval Forces Europe CNIC Commander Navy Installations Command CNMOC Commander Naval Meteorology and Oceanography Command CNO Chief

  15. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  16. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  17. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  18. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  19. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Commanders of major Army commands. 536.14... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  20. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  1. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  2. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  3. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Commanders of major Army commands. 536.14... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  4. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  5. The SAS-3 delayed command system

    NASA Technical Reports Server (NTRS)

    Hoffman, E. J.

    1975-01-01

    To meet the requirements arising from the increased complexity of the power, attitude control and telemetry systems, a full redundant high-performance control section with delayed command capability was designed for the Small Astronomy Satellite-3 (SAS-3). The relay command system of SAS-3 is characterized by 56 bystate relay commands, with capability for handling up to 64 commands in future versions. The 'short' data command service of SAS-1 and SAS-2 consisting of shifting 24-bit words to two users was expanded to five users and augmented with a 'long load' data command service (up to 4080 bits) used to program the telemetry system and the delayed command subsystem. The inclusion of a delayed command service ensures a program of up to 30 relay or short data commands to be loaded for execution at designated times. The design and system operation of the SAS-3 command section are analyzed, with special attention given to the delayed command subsystem.

  6. Hepatitis C Virus Infection Activates a Novel Innate Pathway Involving IKKα in Lipogenesis and Viral Assembly

    PubMed Central

    Li, Qisheng; Pène, Véronique; Krishnamurthy, Siddharth; Cha, Helen; Liang, T. Jake

    2013-01-01

    Hepatitis C virus interacts extensively with host factors not only to establish productive infection but also to trigger unique pathological processes. Our recent genome-wide siRNA screen demonstrated that IKKα is a critical host factor for HCV. Here we describe a novel NF-κB-independent and kinase-mediated nuclear function of IKKα in HCV assembly. HCV infection, through its 3’-untranslated region, interacts with DDX3X to activate IKKα, which translocates to the nucleus and induces a CBP/p300-mediated transcriptional program involving SREBPs. This novel innate pathway induces lipogenic genes and enhances core-associated lipid droplet formation to facilitate viral assembly. Chemical inhibitors of IKKα suppress HCV infection and IKKα-induced lipogenesis, offering a proof-of-concept approach for novel HCV therapeutic development. Our results show that HCV commands a novel mechanism to its advantage by exploiting intrinsic innate response and hijacking lipid metabolism, which likely contributes to a high chronicity rate and the pathological hallmark of steatosis in HCV infection. PMID:23708292

  7. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  8. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  9. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...

  10. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...

  11. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  12. 14 CFR 1214.703 - Chain of command.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Chain of command. 1214.703 Section 1214.703... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been... particular flight and is second in command of the flight. If the commander is unable to carry out the...

  13. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...

  14. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  15. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  16. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  17. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...

  18. 14 CFR 1214.703 - Chain of command.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Chain of command. 1214.703 Section 1214.703... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been... particular flight and is second in command of the flight. If the commander is unable to carry out the...

  19. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  20. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...

  1. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...

  2. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...

  3. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...

  4. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...

  5. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  6. 14 CFR 1214.703 - Chain of command.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Chain of command. 1214.703 Section 1214.703... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been... particular flight and is second in command of the flight. If the commander is unable to carry out the...

  7. 14 CFR 1214.703 - Chain of command.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Chain of command. 1214.703 Section 1214.703... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been... particular flight and is second in command of the flight. If the commander is unable to carry out the...

  8. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...

  9. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  10. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  11. Re-engineering the Multimission Command System at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Alexander, Scott; Biesiadecki, Jeff; Cox, Nagin; Murphy, Susan C.; Reeve, Tim

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed the multimission command system as part of JPL's Advanced Multimission Operations System. The command system provides an advanced multimission environment for secure, concurrent commanding of multiple spacecraft. The command functions include real-time command generation, command translation and radiation, status reporting, some remote control of Deep Space Network antenna functions, and command file management. The mission-independent architecture has allowed easy adaptation to new flight projects and the system currently supports all JPL planetary missions (Voyager, Galileo, Magellan, Ulysses, Mars Pathfinder, and CASSINI). This paper will discuss the design and implementation of the command software, especially trade-offs and lessons learned from practical operational use. The lessons learned have resulted in a re-engineering of the command system, especially in its user interface and new automation capabilities. The redesign has allowed streamlining of command operations with significant improvements in productivity and ease of use. In addition, the new system has provided a command capability that works equally well for real-time operations and within a spacecraft testbed. This paper will also discuss new development work including a multimission command database toolkit, a universal command translator for sequencing and real-time commands, and incorporation of telecommand capabilities for new missions.

  12. An immunohistochemical study on the distribution of vasotocin neurons in the brain of two weakly electric fish, Gymnotus omarorum and Brachyhypopomus gauderio.

    PubMed

    Pouso, Paula; Radmilovich, Milka; Silva, Ana

    2017-04-01

    Hypothalamic nonapeptides (arginin vasotocin-vasopressin, oxytocin-isotocin) are known to modulate social behaviors across vertebrates. The neuroanatomical conservation of nonapeptide systems enables the use of novel vertebrate model species to identify general strategies of their functional mechanisms. We present a detailed immunohistochemical description of vasotocin (AVT) cell populations and their projections in two species of weakly electric fish with different social structure, Gymnotus omarorum and Brachyhypopomus gauderio. Strong behavioral, pharmacological, and electrophysiological evidence support that AVT modulation of electric behavior differs between the gregarious B. gauderio and the solitary G. omarorum. This functional diversity does not necessarily depend on anatomical differences of AVT neurons. To test this, we focus on interspecific comparisons of the AVT system in basal non-breeding males along the brain. G. omarorum and B. gauderio showed similar AVT somata sizes and comparable distributions of AVT somata and fibers. Interestingly, AVT fibers project to areas related to the control of social behavior and electromotor displays in both species. We found that no gross anatomical differences in the organization of the AVT system account for functional differences between species, which rather shall depend on the pattern of activation of neurons embedded in the same basic anatomical organization of the AVT system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 14 CFR § 1214.703 - Chain of command.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Chain of command. § 1214.703 Section Â... of the Space Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA... the pilot on a particular flight and is second in command of the flight. If the commander is unable to...

  14. Distribution of methionine-enkephalin in the minipig brainstem.

    PubMed

    Sánchez, Manuel Lisardo; Vecino, Elena; Coveñas, Rafael

    2013-05-01

    We have studied the distribution of immunoreactive cell bodies and axons are containing methionine-enkephalin in the minipig brainstem. Immunoreactive axons were widely distributed, whereas the distribution of perikarya was less widespread. A high or moderate density of axons containing methionine-enkephalin were found from rostral to caudal levels in the substantia nigra, nucleus interpeduncularis, nucleus reticularis tegmenti pontis, nucleus dorsalis raphae, nucleus centralis raphae, nuclei dorsalis and ventralis tegmenti of Gudden, locus ceruleus, nucleus sensorius principalis nervi trigemini, nucleus cuneatus externalis, nucleus tractus solitarius, nuclei vestibularis inferior and medialis, nucleus ambiguus, nucleus olivaris inferior and in the nucleus tractus spinalis nervi trigemini. Immunoreactive perikarya were observed in the nuclei centralis and dorsalis raphae, nucleus motorius nervi trigemini, nucleus centralis superior, nucleus nervi facialis, nuclei parabrachialis medialis and lateralis, nucleus ventralis raphae, nucleus reticularis lateralis and in the formatio reticularis. We have also described the presence of perikarya containing methionine-enkephalin in the nuclei nervi abducens, ruber, nervi oculomotorius and nervi trochlearis. These results suggest that in the minipig the pentapeptide may be involved in many physiological functions (for example, proprioceptive and nociceptive information; motor, respiratory and cardiovascular mechanisms). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons.more » As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.« less

  16. Evaluation of Organisational Interoperabiity in a Network Centric Warfare Environment

    DTIC Science & Technology

    2004-09-01

    understanding developed. Command and Coordination examines issues related to command structure, command and leadership styles . Ethos covers socio...harmonisation of command arrangements and the accommodation of differences in command and leadership styles . 3.2.4 Ethos Future warfare will... leadership styles . • changes to give less emphasis to hierarchy and command and more to coordination. Any reference to a single chain of command has been

  17. Fuel cell system logic for differentiating between rapid and normal shutdown commands

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2000-01-01

    A method of controlling the operation of a fuel cell system wherein each shutdown command for the system is subjected to decision logic which determines whether the command should be a normal shutdown command or rapid shutdown command. If the logic determines that the shutdown command should be a normal shutdown command, then the system is shutdown in a normal step-by-step process in which the hydrogen stream is consumed within the system. If the logic determines that the shutdown command should be a rapid shutdown command, the hydrogen stream is removed from the system either by dumping to atmosphere or routing to storage.

  18. 75 FR 19627 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... address: Delete entry and replace with ``Commander, Navy Personnel Command (PERS-31), 5720 Integrity Drive... to the Commander, Navy Personnel Command (PERS-312), 5720 Integrity Drive, Millington, TN 38055-3120... should address written inquiries to Commander, Navy Personnel Command (PERS- 312), 5720 Integrity Drive...

  19. 32 CFR 700.860 - Customs and immigration inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...

  20. 32 CFR 700.860 - Customs and immigration inspections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...

  1. 32 CFR 700.860 - Customs and immigration inspections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...

  2. 32 CFR 700.860 - Customs and immigration inspections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...

  3. 32 CFR 700.860 - Customs and immigration inspections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...

  4. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices

    PubMed Central

    Casas-Torremocha, Diana; Clascá, Francisco; Núñez, Ángel

    2017-01-01

    Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF) and motor (M1wk) cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM). Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po). However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV)-expressing cortical interneurons. Local optogenetic activation of Po synapses in different cortical layers also diminishes M1wk and S1BF responses. This effect is most pronounced in the superficial layers of both areas, known to be the main source and target of their reciprocal cortico-cortical connections. PMID:29021744

  5. Coalescence Effects on Neutron Production in High Energy Nucleus-Nucleus Collisions

    DTIC Science & Technology

    2001-08-01

    25/Jun/2001 THESIS 1 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH- ENERGY NUCLEUS-NUCLEUS COLLISIONS 5b... Energy Nucleus-Nucleus Collisions." I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial...School COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH ENERGY NUCLEUS-NUCLEUS COLLISIONS A Thesis Presented for the Master of Science Degree The

  6. 32 CFR 700.804 - Organization of commands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...

  7. 32 CFR 700.804 - Organization of commands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...

  8. 32 CFR 700.804 - Organization of commands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...

  9. 32 CFR 700.804 - Organization of commands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...

  10. 32 CFR 700.804 - Organization of commands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...

  11. 7. General view of command center, building 501, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. General view of command center, building 501, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  12. 6. General view of command center, building 501, looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. General view of command center, building 501, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  13. 32 CFR 724.306 - Functions of the Commander, Naval Medical Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...

  14. 32 CFR 755.6 - Action where offenders are members of one command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...

  15. 32 CFR 724.306 - Functions of the Commander, Naval Medical Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...

  16. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  17. 32 CFR 755.6 - Action where offenders are members of one command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...

  18. 32 CFR 755.6 - Action where offenders are members of one command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...

  19. 32 CFR 755.6 - Action where offenders are members of one command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...

  20. 32 CFR 724.306 - Functions of the Commander, Naval Medical Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...

  1. 32 CFR 724.306 - Functions of the Commander, Naval Medical Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...

  2. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  3. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  4. 32 CFR 755.6 - Action where offenders are members of one command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...

  5. 32 CFR 724.306 - Functions of the Commander, Naval Medical Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...

  6. 11. SAC command center, main operations area, underground structure, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SAC command center, main operations area, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  7. 4. Sac shield at entry of command center, building 501, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Sac shield at entry of command center, building 501, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  8. 9. SAC command center, main operations area, underground structure, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. SAC command center, main operations area, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  9. 13. SAC command center, weather center, underground structure, building 501, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SAC command center, weather center, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  10. Navy Operational Planner

    DTIC Science & Technology

    2015-03-01

    wine warfare NCC naval component commander NFC numbered fleet commander NM nautical mile NMP Navy mission planner NOP Navy...principles for naval component commanders ( NCCs ), numbered fleet commanders (NFCs) or joint force maritime component commanders (JFMCCs) and their

  11. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Khan, Ferdous; Townsend, Lawrence W.

    1993-01-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.

  12. Torque shudder protection device and method

    DOEpatents

    King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.

    1997-01-01

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.

  13. Torque shudder protection device and method

    DOEpatents

    King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.

    1997-03-11

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.

  14. 10. SAC command center, main operations area, underground structure, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SAC command center, main operations area, underground structure, building 501, circa 1980 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  15. 12. SAC command center, main operations area, underground structure, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SAC command center, main operations area, underground structure, building 501, circa 1960 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  16. 32 CFR 700.1054 - Command of a naval base.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...

  17. 32 CFR 700.1054 - Command of a naval base.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...

  18. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...

  19. 32 CFR 700.1054 - Command of a naval base.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...

  20. 32 CFR 700.1054 - Command of a naval base.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...

  1. 32 CFR 700.1054 - Command of a naval base.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...

  2. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...

  3. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...

  4. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...

  5. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...

  6. NASIS data base management system: IBM 360 TSS implementation. Volume 5: Retrieval command system reference manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The command subsystem may be operated conversationally or in the batch mode. Retrieval commands are categorized into search-oriented and output-oriented commands. The characteristics of ancillary commands and their application are reported.

  7. 8. SAC command center underground structure, building 501, basement entry, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SAC command center underground structure, building 501, basement entry, machine room, April 11, 1955 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  8. Actomyosin Pulls to Advance the Nucleus in a Migrating Tissue Cell

    PubMed Central

    Wu, Jun; Kent, Ian A.; Shekhar, Nandini; Chancellor, T.J.; Mendonca, Agnes; Dickinson, Richard B.; Lele, Tanmay P.

    2014-01-01

    The cytoskeletal forces involved in translocating the nucleus in a migrating tissue cell remain unresolved. Previous studies have variously implicated actomyosin-generated pushing or pulling forces on the nucleus, as well as pulling by nucleus-bound microtubule motors. We found that the nucleus in an isolated migrating cell can move forward without any trailing-edge detachment. When a new lamellipodium was triggered with photoactivation of Rac1, the nucleus moved toward the new lamellipodium. This forward motion required both nuclear-cytoskeletal linkages and myosin activity. Apical or basal actomyosin bundles were found not to translate with the nucleus. Although microtubules dampen fluctuations in nuclear position, they are not required for forward translocation of the nucleus during cell migration. Trailing-edge detachment and pulling with a microneedle produced motion and deformation of the nucleus suggestive of a mechanical coupling between the nucleus and the trailing edge. Significantly, decoupling the nucleus from the cytoskeleton with KASH overexpression greatly decreased the frequency of trailing-edge detachment. Collectively, these results explain how the nucleus is moved in a crawling fibroblast and raise the possibility that forces could be transmitted from the front to the back of the cell through the nucleus. PMID:24411232

  9. On the functional anatomy of the nucleus of the optic tract-dorsal terminal nucleus commissural connection in the opossum (Didelphis marsupialis aurita).

    PubMed

    Vargas, C D; Volchan, E; Hokoç, J N; Pereira, A; Bernardes, R F; Rocha-Miranda, C E

    1997-01-01

    Immunocytochemical methods revealed the presence of GABA in cell bodies and terminals in the nucleus of the optic tract-dorsal terminal nucleus, the medial terminal nucleus, the lateral terminal nucleus and the interstitial nucleus of the superior fasciculus of the opossum (Didelphis marsupialis aurita). Moreover, after unilateral injections of rhodamine beads in the nucleus of the optic tract-dorsal terminal nucleus complex and processing for GABA, double-labelled cells were detected in the ipsilateral complex, up to 400 microns from the injected site, but not in the opposite. Analysis of the distributions of GABAergic and retrogradely-labelled cells throughout the contralateral nucleus of the optic tract-dorsal terminal nucleus showed that the highest density of GABAergic and rhodamine-labelled cells overlapped at the middle third of the complex. Previous electrophysiological data obtained in the opossum had suggested the existence, under certain conditions, of an inhibitory action between the nucleus of the optic tract-dorsal terminal nucleus of one side over the other. The absence of GABAergic commissural neurons may imply that this inhibition is mediated by an excitatory commissural pathway that activates GABAergic interneurons.

  10. Squad-Level Soldier-Robot Dynamics: Exploring Future Concepts Involving Intelligent Autonomous Robots

    DTIC Science & Technology

    2015-02-01

    unanimous for the run and duck commands as other commands commonly used. The verbal commands surveyed, as well as other suggested verbal commands that...stop, and duck . Additional verbal commands suggested were shut down, follow, destroy, status, and move out. The verbal commands surveyed and the...identify the verbal commands you would use to control the squad and the ASM: Phrase Yes No Halt 9 3 Stop 9 3 Move 11 1 Run 7 5 Duck 6 6 Other

  11. Defense.gov - Special Report - Travels With Mullen

    Science.gov Websites

    European Command’s change of command ceremony. Top Stories Stavridis Assumes Top European Command Post the top post at U.S. European Command. He will also serve as NATO's supreme allied commander for

  12. 32 CFR 700.1057 - Command of an air activity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...

  13. 78 FR 72025 - Security Zones; Naval Base Point Loma; Naval Mine Anti Submarine Warfare Command; San Diego Bay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ...-AA87 Security Zones; Naval Base Point Loma; Naval Mine Anti Submarine Warfare Command; San Diego Bay... establishing a new security zone at the Naval Mine and Anti-Submarine Warfare Command to protect the relocated... Commander of Naval Base Point Loma, the Commander of the Naval Mine Anti Submarine Warfare Command, and the...

  14. 32 CFR 700.1057 - Command of an air activity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...

  15. 32 CFR 700.1057 - Command of an air activity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...

  16. 32 CFR 700.1057 - Command of an air activity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...

  17. 32 CFR 700.1057 - Command of an air activity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...

  18. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  19. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  20. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  1. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  2. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  3. Defense Headquarters: Geographic Combatant Commands Rely on Subordinate Commands for Mission Management and Execution

    DTIC Science & Technology

    2016-06-30

    These figures do not include personnel performing contract services. The service component commands , subordinate unified commands , and joint task forces...GAO has previously found that the combatant commands do not have oversight or visibility over authorized manpower or assigned personnel at the...Jack Reed Ranking Member Committee on Armed Services United States Senate Defense Headquarters: Geographic Combatant Commands Rely on Subordinate

  4. United States Forces Korea > Home

    Science.gov Websites

    commander; Gen. Leem Ho Young, Combined Forces Command deputy commander; and Gen. Lee Sun-jin, Gen. Lee, Sun Forces Command deputy commander; and Gen. Lee Sun-jin, Gen. Lee, Sun-Jin, Chairman of the Republic of deputy commander; and Gen. Lee Sun-jin, Gen. Lee, Sun-Jin, Chairman of the Republic of Korea Joint Chiefs

  5. Incomplete Victory: General Allenby and Mission Command in Palestine, 1917-1918

    DTIC Science & Technology

    2012-12-14

    challenges in mission command. While General Allenby, commanding the Allied Egyptian Expeditionary Force (EEF), gained several victories in the...challenges in mission command. While General Allenby, commanding the Allied Egyptian Expeditionary Force (EEF), gained several victories in the early stages...

  6. The Fabric of Air Warfare; Doctrine, Operational Experience, and Integration of Strategic and Tactical Air Power From World War I Through World War II

    DTIC Science & Technology

    1991-04-01

    African Air Forces, Middle East Air Command, based in Cairo, and RAP Malta Air Command. This, in effect, was a �theater� command in a larger sense, for...Force, under the command of AVM Sir Hugh Lloyd, and absorbed Malta Air Command and US XII Fighter Command, then under Pete Quesada, later commander...trained pilots, that exchange ratio steadily worsened for the enemy. In fact, the 5th Air Force could boast the two highest scoring American aces early

  7. Numerical Electromagnetic Code (NEC)-Basic Scattering Code. Part I. User’s Manual.

    DTIC Science & Technology

    1979-09-01

    Command RT : 29 I. Command PG: 32 J. Command GP: 35 K. Command CG: 36 L. Command SG: 39 M. Command AM: 44 N. Conumand PR: 48 0. Command NP: 49 P...these points and con- firm the validity of the solution. 1 0 1 -.- ’----.- ... The source presently considered in the computer code is an Plec - tric...Range Input 28 * RT : Translate and/or Rotate Coordinates 29 SG: Source Geometry Input IQ TO: Test Data Generation Options 17 [IN: Units of Input U)S

  8. Projections of the optic tectum and the mesencephalic nucleus of the trigeminal nerve in the tegu lizard (Tupinambis nigropunctatus).

    PubMed

    Ebbesson, S O

    1981-01-01

    Fibers undergoing Wallerian degeneration following tectal lesions were demonstrated with the Nauta and Fink-Heimer methods and traced to their termination. Four of the five distinct fiber paths originating in the optic tectum appear related to vision, while one is related to the mesencephalic nucleus of the trigeminus. The latter component of the tectal efferents distributes fibers to 1) the main sensory nucleus of the trigeminus, 2) the motor nucleus of the trigeminus, 3) the nucleus of tractus solitarius, and 4) the intermediate gray of the cervical spinal cord. The principal ascending bundle projects to the nucleus rotundus, three components of the ventral geniculate nucleus and the nucleus ventromedialis anterior ipsilaterally, before it crosses in the supraoptic commissure and terminates in the contralateral nucleus rotundus, ventral geniculate nucleus and a hitherto unnamed region dorsal to the nucleus of the posterior accessory optic tract. Fibers leaving the tectum dorso-medially terminate in the posterodorsal nucleus ipsilaterally and the stratum griseum periventriculare of the contralateral tectum. The descending fiber paths terminate in medial reticular cell groups and the rostral spinal cord contralaterally and in the torus and the lateral reticular regions ipsilaterally. The ipsilateral fascicle also issues fibers to the magnocellular nucleus isthmi.

  9. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  10. NORAD

    Science.gov Websites

    TERRENCE J. O'SHAUGHNESSY, USAF Command, United States Northern Command VIEW BIO LIEUTENANT GENERAL REYNOLD N. HOOVER, USA Deputy Commander, United States Northern Command VIEW BIO MAJOR GENERAL PEGGY C . COMBS, USA Chief of Staff, United States Northern Command VIEW BIO SERGEANT MAJOR PAUL MCKENNA, USMC

  11. 32 CFR 700.856 - Pilotage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...

  12. 32 CFR 700.856 - Pilotage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...

  13. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  14. 32 CFR 700.856 - Pilotage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...

  15. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  16. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  17. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  18. 32 CFR 700.856 - Pilotage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...

  19. 32 CFR 700.856 - Pilotage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...

  20. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  1. Internal pallidum and substantia nigra control different parts of the mesopontine reticular formation in primate.

    PubMed

    Rolland, Anne-Sophie; Karachi, Carine; Muriel, Marie-Paule; Hirsch, Etienne C; François, Chantal

    2011-08-01

    The locomotor area has recently emerged as a target for deep brain stimulation to lessen gait disturbances in advanced parkinsonian patients. An important step in choosing this target is to define anatomical limits of its 2 components, the pedunculopontine nucleus and the cuneiform nucleus, their connections with the basal ganglia, and their output descending pathway. Based on the hypothesis that pedunculopontine nucleus controls locomotion whereas cuneiform nucleus controls axial posture, we analyzed whether both nuclei receive inputs from the internal pallidum and substantia nigra using anterograde and retrograde tract tracing in monkeys. We also examined whether these nuclei convey descending projections to the reticulospinal pathway. Pallidal terminals were densely distributed and restricted to the pedunculopontine nucleus, whereas nigral terminals were diffusely observed in the whole extent of both the pedunculopontine nucleus and the cuneiform nucleus. Moreover, nigral terminals formed symmetric synapses with pedunculopontine nucleus and cuneiform nucleus dendrites. Retrograde tracing experiments confirmed these results because labeled cell bodies were observed in both the internal pallidum and substantia nigra after pedunculopontine nucleus injection, but only in the substantia nigra after cuneiform nucleus injection. Furthermore, anterograde tracing experiments revealed that the pedunculopontine nucleus and cuneiform nucleus project to large portions of the pontomedullary reticular formation. This is the first anatomical evidence that the internal pallidum and the substantia nigra control different parts of the brain stem and can modulate the descending reticulospinal pathway in primates. These findings support the functional hypothesis that the nigro-cuneiform nucleus pathway could control axial posture whereas the pallido-pedunculopontine nucleus pathway could modulate locomotion. Copyright © 2011 Movement Disorder Society.

  2. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C). ...

  3. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C). ...

  4. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C). ...

  5. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C). ...

  6. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C). ...

  7. 48 CFR 202.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Command Air Force Materiel Command Air Force Reserve Command Air Combat Command Air Mobility Command Air... agencies have been delegated authority to act as head of the agency for their respective agencies (i.e., to... offers, means a procedure used in negotiated acquisitions, when market research is inconclusive for...

  8. 75 FR 49482 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... replace with ``Incident Report Records.'' System location: Delete entry and replace with ``Command Support... may be accessed only by the Commander, Deputy Commander, Chief, Command Support Division, or other... and replace with ``Command Support Division, EU1, Defense Information Systems Agency-Europe, APO AE...

  9. 75 FR 42719 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ...: Commander, Navy Expeditionary Combat Command, 1575 Gator Blvd, Joint Expeditionary Base Little Creek... Expeditionary Combat Command, Code (N8), 1575 Gator Blvd, Joint Expeditionary Base Little Creek, Virginia Beach... to the Commander, Navy Expeditionary Combat Command, Code (N8), 1575 Gator Blvd, Joint Expeditionary...

  10. 32 CFR 700.723 - Administration and discipline: Separate and detached command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... detached command. 700.723 Section 700.723 National Defense Department of Defense (Continued) DEPARTMENT OF... Administration and discipline: Separate and detached command. Any flag or general officer in command, any officer... are separate or detached commands. Such officer shall state in writing that it is a separate or...

  11. 32 CFR 700.722 - Administration and discipline: Staff unassigned to an administrative command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to an administrative command. 700.722 Section 700.722 National Defense Department of Defense....722 Administration and discipline: Staff unassigned to an administrative command. (a) When it is not... administration and discipline, the commander may designate an officer of the staff to act as the commanding...

  12. 32 CFR 536.8 - Responsibilities and operations of command claims services.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Responsibilities and operations of command... Responsibilities and operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims services shall: (1) Exercise claims settlement authority as specified in this part...

  13. 32 CFR 700.723 - Administration and discipline: Separate and detached command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... detached command. 700.723 Section 700.723 National Defense Department of Defense (Continued) DEPARTMENT OF... Administration and discipline: Separate and detached command. Any flag or general officer in command, any officer... are separate or detached commands. Such officer shall state in writing that it is a separate or...

  14. 32 CFR 700.722 - Administration and discipline: Staff unassigned to an administrative command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to an administrative command. 700.722 Section 700.722 National Defense Department of Defense....722 Administration and discipline: Staff unassigned to an administrative command. (a) When it is not... administration and discipline, the commander may designate an officer of the staff to act as the commanding...

  15. 32 CFR 700.722 - Administration and discipline: Staff unassigned to an administrative command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to an administrative command. 700.722 Section 700.722 National Defense Department of Defense....722 Administration and discipline: Staff unassigned to an administrative command. (a) When it is not... administration and discipline, the commander may designate an officer of the staff to act as the commanding...

  16. 32 CFR 700.723 - Administration and discipline: Separate and detached command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... detached command. 700.723 Section 700.723 National Defense Department of Defense (Continued) DEPARTMENT OF... Administration and discipline: Separate and detached command. Any flag or general officer in command, any officer... are separate or detached commands. Such officer shall state in writing that it is a separate or...

  17. 32 CFR 536.8 - Responsibilities and operations of command claims services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Responsibilities and operations of command... Responsibilities and operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims services shall: (1) Exercise claims settlement authority as specified in this part...

  18. 32 CFR 700.723 - Administration and discipline: Separate and detached command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... detached command. 700.723 Section 700.723 National Defense Department of Defense (Continued) DEPARTMENT OF... Administration and discipline: Separate and detached command. Any flag or general officer in command, any officer... are separate or detached commands. Such officer shall state in writing that it is a separate or...

  19. 32 CFR 700.723 - Administration and discipline: Separate and detached command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... detached command. 700.723 Section 700.723 National Defense Department of Defense (Continued) DEPARTMENT OF... Administration and discipline: Separate and detached command. Any flag or general officer in command, any officer... are separate or detached commands. Such officer shall state in writing that it is a separate or...

  20. 32 CFR 700.722 - Administration and discipline: Staff unassigned to an administrative command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to an administrative command. 700.722 Section 700.722 National Defense Department of Defense....722 Administration and discipline: Staff unassigned to an administrative command. (a) When it is not... administration and discipline, the commander may designate an officer of the staff to act as the commanding...

  1. 32 CFR 700.722 - Administration and discipline: Staff unassigned to an administrative command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to an administrative command. 700.722 Section 700.722 National Defense Department of Defense....722 Administration and discipline: Staff unassigned to an administrative command. (a) When it is not... administration and discipline, the commander may designate an officer of the staff to act as the commanding...

  2. Terminal Information Processing System (TIPS) Consolidated CAB Display (CCD) Comparative Analysis.

    DTIC Science & Technology

    1982-04-01

    Barometric pressure 3. Center field wind speed, direction and gusts 4. Runway visual range 5. Low-level wind shear 6. Vortex advisory 7. Runway equipment...PASSWORD Command (standard user) u. PAUSE Command (standard user) v. PMSG Command (standard user) w. PPD Command (standard user) x. PURGE Command (standard

  3. 32 CFR 151.4 - Procedures and responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... country for personnel assigned to foreign areas. (c) Designated commanding officer. Formal invocation of... geographical areas for which a unified command exists, the commander shall designate within each country the “Commanding Officer” referred to in the Senate Resolution (§ 151.6). (2) In areas where a unified command does...

  4. 46 CFR 50.10-1 - Commandant.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Commandant. 50.10-1 Section 50.10-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-1 Commandant. The term Commandant means the Commandant U.S. Coast Guard. ...

  5. Scalable Unix commands for parallel processors : a high-performance implementation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, E.; Lusk, E.; Gropp, W.

    2001-06-22

    We describe a family of MPI applications we call the Parallel Unix Commands. These commands are natural parallel versions of common Unix user commands such as ls, ps, and find, together with a few similar commands particular to the parallel environment. We describe the design and implementation of these programs and present some performance results on a 256-node Linux cluster. The Parallel Unix Commands are open source and freely available.

  6. Multi-agent autonomous system and method

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A method of controlling a plurality of crafts in an operational area includes providing a command system, a first craft in the operational area coupled to the command system, and a second craft in the operational area coupled to the command system. The method further includes determining a first desired destination and a first trajectory to the first desired destination, sending a first command from the command system to the first craft to move a first distance along the first trajectory, and moving the first craft according to the first command. A second desired destination and a second trajectory to the second desired destination are determined and a second command is sent from the command system to the second craft to move a second distance along the second trajectory.

  7. Command and data handling for Atmosphere Explorer satellite

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.

    1974-01-01

    The command and data-handling subsystem of the Atmosphere Explorer satellite provides the necessary controls for the instrumentation and telemetry, and also controls the satellite attitude and trajectory. The subsystem executes all command information within the spacecraft, either in real time (as received over the S-band command transmission link) or remote from the command site (as required by the orbit operations schedule). Power consumption in the spacecraft is optimized by suitable application and removal of power to various instruments; additional functions include control of magnetic torquers and of the orbit-adjust propulsion subsystem. Telemetry data from instruments and the spacecraft equipment are formatted into a single serial bit stream. Attention is given to command types, command formats, decoder operation, and command processing functions.

  8. Man/terminal interaction evaluation of computer operating system command and control service concepts. [in Spacelab

    NASA Technical Reports Server (NTRS)

    Dodson, D. W.; Shields, N. L., Jr.

    1978-01-01

    The Experiment Computer Operating System (ECOS) of the Spacelab will allow the onboard Payload Specialist to command experiment devices and display information relative to the performance of experiments. Three candidate ECOS command and control service concepts were reviewed and laboratory data on operator performance was taken for each concept. The command and control service concepts evaluated included a dedicated operator's menu display from which all command inputs were issued, a dedicated command key concept with which command inputs could be issued from any display, and a multi-display concept in which command inputs were issued from several dedicated function displays. Advantages and disadvantages are discussed in terms of training, operational errors, task performance time, and subjective comments of system operators.

  9. Command Disaggregation Attack and Mitigation in Industrial Internet of Things

    PubMed Central

    Zhu, Pei-Dong; Hu, Yi-Fan; Cui, Peng-Shuai; Zhang, Yan

    2017-01-01

    A cyber-physical attack in the industrial Internet of Things can cause severe damage to physical system. In this paper, we focus on the command disaggregation attack, wherein attackers modify disaggregated commands by intruding command aggregators like programmable logic controllers, and then maliciously manipulate the physical process. It is necessary to investigate these attacks, analyze their impact on the physical process, and seek effective detection mechanisms. We depict two different types of command disaggregation attack modes: (1) the command sequence is disordered and (2) disaggregated sub-commands are allocated to wrong actuators. We describe three attack models to implement these modes with going undetected by existing detection methods. A novel and effective framework is provided to detect command disaggregation attacks. The framework utilizes the correlations among two-tier command sequences, including commands from the output of central controller and sub-commands from the input of actuators, to detect attacks before disruptions occur. We have designed components of the framework and explain how to mine and use these correlations to detect attacks. We present two case studies to validate different levels of impact from various attack models and the effectiveness of the detection framework. Finally, we discuss how to enhance the detection framework. PMID:29065461

  10. Command Disaggregation Attack and Mitigation in Industrial Internet of Things.

    PubMed

    Xun, Peng; Zhu, Pei-Dong; Hu, Yi-Fan; Cui, Peng-Shuai; Zhang, Yan

    2017-10-21

    A cyber-physical attack in the industrial Internet of Things can cause severe damage to physical system. In this paper, we focus on the command disaggregation attack, wherein attackers modify disaggregated commands by intruding command aggregators like programmable logic controllers, and then maliciously manipulate the physical process. It is necessary to investigate these attacks, analyze their impact on the physical process, and seek effective detection mechanisms. We depict two different types of command disaggregation attack modes: (1) the command sequence is disordered and (2) disaggregated sub-commands are allocated to wrong actuators. We describe three attack models to implement these modes with going undetected by existing detection methods. A novel and effective framework is provided to detect command disaggregation attacks. The framework utilizes the correlations among two-tier command sequences, including commands from the output of central controller and sub-commands from the input of actuators, to detect attacks before disruptions occur. We have designed components of the framework and explain how to mine and use these correlations to detect attacks. We present two case studies to validate different levels of impact from various attack models and the effectiveness of the detection framework. Finally, we discuss how to enhance the detection framework.

  11. SAC Headquarters Underground Command Center Cutaway Axonometric Offutt ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SAC Headquarters Underground Command Center - Cutaway Axonometric - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  12. Reduction in respiratory motion artefacts on gadoxetate-enhanced MRI after training technicians to apply a simple and more patient-adapted breathing command.

    PubMed

    Gutzeit, Andreas; Matoori, Simon; Froehlich, Johannes M; von Weymarn, Constantin; Reischauer, Carolin; Kolokythas, Orpheus; Goyen, Matthias; Hergan, Klaus; Meissnitzer, Matthias; Forstner, Rosemarie; Soyka, Jan D; Doert, Aleksis; Koh, Dow-Mu

    2016-08-01

    To investigate whether a trained group of technicians using a modified breathing command during gadoxetate-enhanced liver MRI reduces respiratory motion artefacts compared to non-trained technicians using a traditional breathing command. The gadoxetate-enhanced liver MR images of 30 patients acquired using the traditional breathing command and the subsequent 30 patients after training the technicians to use a modified breathing command were analyzed. A subgroup of patients (n = 8) underwent scans both by trained and untrained technicians. Images obtained using the traditional and modified breathing command were compared for the presence of breathing artefacts [respiratory artefact-based image quality scores from 1 (best) to 5 (non-diagnostic)]. There was a highly significant improvement in the arterial phase image quality scores in patients using the modified breathing command compared to the traditional one (P < 0.001). The percentage of patients with severe and extensive breathing artefacts in the arterial phase decreased from 33.3 % to 6.7 % after introducing the modified breathing command (P = 0.021). In the subgroup that underwent MRI using both breathing commands, arterial phase image quality improved significantly (P = 0.008) using the modified breathing command. Training technicians to use a modified breathing command significantly improved arterial phase image quality of gadoxetate-enhanced liver MRI. • A modified breathing command reduced respiratory artefacts on arterial-phase gadoxetate-enhanced MRI (P < 0.001). • The modified command decreased severe and extensive arterial-phase breathing artefacts (P = 0.021). • Training technicians to use a modified breathing command improved arterial-phase images.

  13. M1A2 Adjunct Analysis (POSNOV Volume)

    DTIC Science & Technology

    1989-12-01

    MD 20814-2797 Director 2 U.S. Army Materiel Systems Analysis Activity ATTN: AMXSY-CS, AMXSY-GA Aberden Proving Grounds , MD 21005-5071 U.S. Army...Leonard Wood, MO Commander U.S. Army Ordnance Center & School ATTN: ATSL-CD-CS Aberdeen Proving Ground , MD 21005 Commander 2 U.S. Army Soldier Support...NJ Commander U.S. Army Test and Evaluation Command ATrN: AMSTE-CM-R Aberdeen Proving Ground , MD 21005 Commander U.S. Army Tank Automotive Command

  14. L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell greet STS-92 Commander Brian Duffy, Dryden Center Director Kevin Petersen, and AFFTC Commander Major General Richard Reynolds

    NASA Image and Video Library

    2001-02-20

    L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell greet STS-92 Commander Brian Duffy, Dryden Center Director Kevin Petersen, and AFFTC Commander Major General Richard Reynolds after landing on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located.

  15. Audit Oversight: Quality Control System at U.S. Special Operations Command Inspector General Audit Division

    DTIC Science & Technology

    2002-08-21

    The Audit Division provides the Commander, U.S. Special Operations Command (USSOCOM) with professional auditing services to safeguard, account for...and ensure the proper use of special operations forces assets in accomplishing the USSOCOM mission. The Audit Division reports to the USSOCOM Inspector...U.S. Army Special Operations Command, Naval Special Warfare Command, and the Joint Special Operations Command. Appendix A contains a summary of the Audit Division policy and procedures.

  16. The Glass Ceiling - A Question of Joint Officer Development - Why Only Five USAF Geographic Combatant Commanders?

    DTIC Science & Technology

    2010-07-26

    kit/OEF.asp (accessed March 6, 2011). 19 U.S. Central Command. "US CENTCOM Leadership: General James N. Mattis , Commander,‖ http... Mattis , USMC Commander, USCENTCOM 0 2 Cmdr, Task Force 58 Cmdr, USJFCOM Admiral James G. Stavridis, USN Commander, USEUCOM 1 2 Plans Officer, JCS...U.S. Central Command. "US CENTCOM Leadership." General James N. Mattis . https://slsp.http://www.centcom.mil/en/about-centcom/leadership

  17. Defense.gov Special Report: Unified Combatant Commands

    Science.gov Websites

    in support of U.S. strategic objectives. Their mission is to maintain command and control of U.S coverage and more information. Unified Combatant Command strategic map U.S. Northern Command NORTHCOM U.S U.S. Strategic Command STRATCOM . Main Menu Home Today in DOD About DOD Leaders Biographies

  18. 32 CFR 700.857 - Safe navigation and regulations governing operation of ships and aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.857 Safe navigation and regulations governing operation of ships and aircraft. (a) The commanding officer is responsible for the safe... Operations or the Commandant of the Marine Corps, as appropriate. (d) The Commanding Officer is responsible...

  19. 32 CFR 700.857 - Safe navigation and regulations governing operation of ships and aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.857 Safe navigation and regulations governing operation of ships and aircraft. (a) The commanding officer is responsible for the safe... Operations or the Commandant of the Marine Corps, as appropriate. (d) The Commanding Officer is responsible...

  20. 75 FR 22561 - Federal Advisory Committee; United States Strategic Command Strategic Advisory Group; Charter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Command Strategic Advisory Group; Charter Renewal AGENCY: Department of Defense (DoD). ACTION: Renewal of... Command Strategic Advisory Group (hereafter referred to as the Group). FOR FURTHER INFORMATION CONTACT... Chairman of the Joint Chiefs of Staff and the Commander of the U.S. Strategic Command independent advice...

  1. 32 CFR 700.1055 - Command of a naval shipyard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a naval shipyard. 700.1055 Section 700.1055 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1055 Command of a naval shipyard. The officer detailed to command a naval...

  2. 75 FR 67695 - U.S. Strategic Command Strategic Advisory Group Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... DEPARTMENT OF DEFENSE Office of the Secretary of Defense U.S. Strategic Command Strategic Advisory... meeting notice of the U.S. Strategic Command Strategic Advisory Group. DATES: December 9, 2010: 8 a.m. to..., intelligence, and policy-related issues to the Commander, U.S. Strategic Command, during the development of the...

  3. 14 CFR 61.55 - Second-in-command qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Second-in-command qualifications. 61.55...-in-command qualifications. (a) A person may serve as a second-in-command of an aircraft type certificated for more than one required pilot flight crewmember or in operations requiring a second-in-command...

  4. 32 CFR 700.1026 - Authority of an officer who succeeds to command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Authority of an officer who succeeds to command... Precedence, Authority and Command Authority § 700.1026 Authority of an officer who succeeds to command. (a) An officer who succeeds to command due to incapacity, death, departure on leave, detachment without...

  5. 32 CFR 700.1059 - Command of a staff corps activity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a staff corps activity. 700.1059..., Authority and Command Detail to Duty § 700.1059 Command of a staff corps activity. Officers in a staff corps shall be detailed to command only such activities as are appropriate to their corps. ...

  6. 32 CFR 700.1055 - Command of a naval shipyard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a naval shipyard. 700.1055 Section 700.1055 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1055 Command of a naval shipyard. The officer detailed to command a naval...

  7. 32 CFR 700.857 - Safe navigation and regulations governing operation of ships and aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.857 Safe navigation and regulations governing operation of ships and aircraft. (a) The commanding officer is responsible for the safe... Operations or the Commandant of the Marine Corps, as appropriate. (d) The Commanding Officer is responsible...

  8. 32 CFR 700.1059 - Command of a staff corps activity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a staff corps activity. 700.1059..., Authority and Command Detail to Duty § 700.1059 Command of a staff corps activity. Officers in a staff corps shall be detailed to command only such activities as are appropriate to their corps. ...

  9. 32 CFR 700.1055 - Command of a naval shipyard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a naval shipyard. 700.1055 Section 700.1055 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1055 Command of a naval shipyard. The officer detailed to command a naval...

  10. 32 CFR 700.1026 - Authority of an officer who succeeds to command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Authority of an officer who succeeds to command... Precedence, Authority and Command Authority § 700.1026 Authority of an officer who succeeds to command. (a) An officer who succeeds to command due to incapacity, death, departure on leave, detachment without...

  11. 32 CFR 700.1026 - Authority of an officer who succeeds to command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Authority of an officer who succeeds to command... Precedence, Authority and Command Authority § 700.1026 Authority of an officer who succeeds to command. (a) An officer who succeeds to command due to incapacity, death, departure on leave, detachment without...

  12. 78 FR 53109 - Security Zones; Naval Base Point Loma; Naval Mine Anti-Submarine Warfare Command; San Diego Bay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ...-AA87 Security Zones; Naval Base Point Loma; Naval Mine Anti-Submarine Warfare Command; San Diego Bay... Anti-Submarine Warfare Command to protect the relocated marine mammal program. These security zone... Warfare Command, the Commander of Naval Region Southwest, or a designated representative of those...

  13. 32 CFR 700.1059 - Command of a staff corps activity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a staff corps activity. 700.1059..., Authority and Command Detail to Duty § 700.1059 Command of a staff corps activity. Officers in a staff corps shall be detailed to command only such activities as are appropriate to their corps. ...

  14. 78 FR 17924 - U.S. Strategic Command Strategic Advisory Group; Notice of Federal Advisory Committee Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... DEPARTMENT OF DEFENSE Office of the Secretary U.S. Strategic Command Strategic Advisory Group... following federal advisory committee: U.S. Strategic Command Strategic Advisory Group. DATES: April 18, 2013..., intelligence, and policy-related issues to the Commander, U.S. Strategic Command, during the development of the...

  15. 75 FR 18824 - Federal Advisory Committee; U.S. Strategic Command Strategic Advisory Group; Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... DEPARTMENT OF DEFENSE Office of the Secretary Federal Advisory Committee; U.S. Strategic Command... 102-3.150, the Department of Defense announces that the U.S. Strategic Command Strategic Advisory... Commander, U.S. Strategic Command, during the development of the Nation's strategic war plans. Agenda Topics...

  16. 32 CFR 700.1055 - Command of a naval shipyard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a naval shipyard. 700.1055 Section 700.1055 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1055 Command of a naval shipyard. The officer detailed to command a naval...

  17. 14 CFR 61.55 - Second-in-command qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Second-in-command qualifications. 61.55...-in-command qualifications. (a) A person may serve as a second-in-command of an aircraft type certificated for more than one required pilot flight crewmember or in operations requiring a second-in-command...

  18. 32 CFR 700.857 - Safe navigation and regulations governing operation of ships and aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.857 Safe navigation and regulations governing operation of ships and aircraft. (a) The commanding officer is responsible for the safe... Operations or the Commandant of the Marine Corps, as appropriate. (d) The Commanding Officer is responsible...

  19. 78 FR 66261 - Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Command Experience; Airmen Online Services; Confirmation of Effective Date AGENCY: Federal Aviation... flight experience requirements do not apply to a pilot in command who is employed by a commuter or on-demand operator if the pilot in command is in compliance with the specific pilot in command...

  20. 32 CFR 700.857 - Safe navigation and regulations governing operation of ships and aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.857 Safe navigation and regulations governing operation of ships and aircraft. (a) The commanding officer is responsible for the safe... Operations or the Commandant of the Marine Corps, as appropriate. (d) The Commanding Officer is responsible...

  1. 32 CFR 700.1026 - Authority of an officer who succeeds to command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Authority of an officer who succeeds to command... Precedence, Authority and Command Authority § 700.1026 Authority of an officer who succeeds to command. (a) An officer who succeeds to command due to incapacity, death, departure on leave, detachment without...

  2. 14 CFR 61.55 - Second-in-command qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Second-in-command qualifications. 61.55...-in-command qualifications. (a) A person may serve as a second-in-command of an aircraft type certificated for more than one required pilot flight crewmember or in operations requiring a second-in-command...

  3. 78 FR 67131 - Notice of Advisory Committee Closed Meeting; U.S. Strategic Command Strategic Advisory Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    .... Strategic Command Strategic Advisory Group AGENCY: Department of Defense. ACTION: Notice of Advisory... following Federal Advisory Committee meeting of the U.S. Strategic Command Strategic Advisory Group. DATES... issues to the Commander, U.S. Strategic Command, during the development of the Nation's strategic war...

  4. 32 CFR 700.1026 - Authority of an officer who succeeds to command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Authority of an officer who succeeds to command... Precedence, Authority and Command Authority § 700.1026 Authority of an officer who succeeds to command. (a) An officer who succeeds to command due to incapacity, death, departure on leave, detachment without...

  5. 32 CFR 700.1059 - Command of a staff corps activity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a staff corps activity. 700.1059..., Authority and Command Detail to Duty § 700.1059 Command of a staff corps activity. Officers in a staff corps shall be detailed to command only such activities as are appropriate to their corps. ...

  6. U.S. Northern Command > Newsroom > Press Releases

    Science.gov Websites

    Skip to main content (Press Enter). Toggle navigation U.S. Northern Command Search Search USNORTHCOM: Search Search USNORTHCOM: Search U.S. Northern Command U.S. Northern Command Home Leadership , 2018 NORAD and USNORTHCOM to host change of command ceremony Nov. 30, 2017 United States, Mexico to

  7. 32 CFR 700.1055 - Command of a naval shipyard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a naval shipyard. 700.1055 Section 700.1055 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1055 Command of a naval shipyard. The officer detailed to command a naval...

  8. 14 CFR 61.55 - Second-in-command qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Second-in-command qualifications. 61.55...-in-command qualifications. (a) A person may serve as a second-in-command of an aircraft type certificated for more than one required pilot flight crewmember or in operations requiring a second-in-command...

  9. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Commander of a task force. 700.1053 Section 700.1053 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any...

  10. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Commander of a task force. 700.1053 Section 700.1053 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any...

  11. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Commander of a task force. 700.1053 Section 700.1053 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any...

  12. Organization of inner ear endorgan projections in the goldfish, Carassius auratus.

    PubMed

    McCormick, C A; Braford, M R

    1994-01-01

    Cytoarchitectural analysis of the octavolateralis area of the goldfish, Carassius auratus, reveals that as in other teleosts, five first-order octaval nuclei are present: the anterior octaval, magnocellular, descending, tangential, and posterior octaval nuclei. The descending nucleus appears to be anatomically specialized relative to that of the halecomorph Amia calva and many teleosts in that a large dorsomedial subpopulation of the nucleus lies medial to nucleus medialis, a first-order lateral line nucleus. In addition to this dorsomedial zone, the descending nucleus is made up of an intermediate and a ventral zone. Application of horseradish peroxidase (HRP) to individual inner ear endorgans reveals that the distribution of these afferents to the octaval nuclei is generally similar to that in another otophysan, Ictalurus punctatus [McCormick and Braford, 1993]. Nucleus magnocellularis receives a diffuse projection from all of the endorgans. The semicircular canals project heavily to the nucleus tangentialis, the entire ventral zone and portions of the intermediate zone of the descending nucleus, the ventral portion of the caudal anterior nucleus, and the bulk of the rostral anterior nucleus. The macula neglecta projects to the intermediate zone of the descending nucleus and to ventral locations within the dorsal half of the caudal anterior nucleus. The otolithic endorgans--the saccule, lagena, and utricle--project, in an overlapping manner, to the dorsal half of the caudal anterior nucleus and minimally to the rostral anterior nucleus. The inputs of the otolithic endorgans to the intermediate zone of the descending nucleus are more segregated, though a given region is sometimes supplied by more than one endorgan. The projections of the saccule tend to be concentrated more medially than those of the other two endorgans. The dorsomedial zone of the descending nucleus receives the majority of its primary input from the saccule, and a much smaller input from the lagena, over most of its rostrocaudal extent. At caudal-most levels of the dorsomedial zone, afferents from the three otolithic endorgans overlap.

  13. 70. SAC command post construction, building 500, undated Offutt ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. SAC command post construction, building 500, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  14. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  15. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  16. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  17. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  18. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  19. Design of Flight Control Panel Layout using Graphical User Interface in MATLAB

    NASA Astrophysics Data System (ADS)

    Wirawan, A.; Indriyanto, T.

    2018-04-01

    This paper introduces the design of Flight Control Panel (FCP) Layout using Graphical User Interface in MATLAB. The FCP is the interface to give the command to the simulation and to monitor model variables while the simulation is running. The command accommodates by the FCP are altitude command, the angle of sideslip command, heading command, and setting command for turbulence model. The FCP was also designed to monitor the flight parameter while the simulation is running.

  20. Parabrachial origin of calcitonin gene-related peptide-immunoreactive axons innervating Meynert's basal nucleus.

    PubMed

    Knyihár-Csillik, E; Boncz, I; Sáry, G; Nemcsók, J; Csillik, B

    1999-06-01

    Meynert's basal nucleus is innervated by calcitonin gene-related peptide (CGRP)-immunoreactive axons synapsing with cholinergic principal cells. Origin of CGRP-immunopositive axons was studied in the albino rat. Since beaded axons containing the nicotinic acetylcholine receptor (nAChR) are also present in the basal nucleus, the microstructural arrangement raises the question whether or not an interaction between CGRP and nAChR exists like in the neuromuscular junction. We found that electrolytic lesion of the parabrachial nucleus results in degeneration of CGRP-immunoreactive axons in the ipsilateral nucleus basalis and induces shrinkage of principal cholinergic neurons while the contralateral nucleus basalis remains intact. Electrolytic lesions in the thalamus, caudate-putamen, and hippocampus did not induce alterations in Meynert's basal nucleus. Disappearance of CGRP after lesions of the parabrachial nucleus does not impair presynaptic nAChR in the basal nucleus, suggesting that, unlike in the neuromuscular junction, CGRP is not involved in the maintenance of nAChR in the basal forebrain. It is concluded that the parabrachial nucleus is involved in the activation of the nucleus basalis-prefrontal cortex system, essential in gnostic and mnemonic functions. Copyright 1999 Academic Press.

  1. The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts

    PubMed Central

    Alam, Samer G.; Lovett, David; Kim, Dae In; Roux, Kyle J.; Dickinson, Richard B.; Lele, Tanmay P.

    2015-01-01

    ABSTRACT Nuclear positioning is a crucial cell function, but how a migrating cell positions its nucleus is not understood. Using traction-force microscopy, we found that the position of the nucleus in migrating fibroblasts closely coincided with the center point of the traction-force balance, called the point of maximum tension (PMT). Positioning of the nucleus close to the PMT required nucleus–cytoskeleton connections through linker of nucleoskeleton-to-cytoskeleton (LINC) complexes. Although the nucleus briefly lagged behind the PMT following spontaneous detachment of the uropod during migration, the nucleus quickly repositioned to the PMT within a few minutes. Moreover, traction-generating spontaneous protrusions deformed the nearby nucleus surface to pull the nuclear centroid toward the new PMT, and subsequent retraction of these protrusions relaxed the nuclear deformation and restored the nucleus to its original position. We propose that the protruding or retracting cell boundary transmits a force to the surface of the nucleus through the intervening cytoskeletal network connected by the LINC complexes, and that these forces help to position the nucleus centrally and allow the nucleus to efficiently propagate traction forces across the length of the cell during migration. PMID:25908852

  2. The central nucleus of the amygdala modulates gut-related neurons in the dorsal vagal complex in rats

    PubMed Central

    Zhang, Xueguo; Cui, Jinjuan; Tan, Zhenjun; Jiang, Chunhui; Fogel, Ronald

    2003-01-01

    Using retrograde tract-tracing and electrophysiological methods, we characterized the anatomical and functional relationship between the central nucleus of the amygdala and the dorsal vagal complex. Retrograde tract-tracing techniques revealed that the central nucleus of the amygdala projects to the dorsal vagal complex with a topographic distribution. Following injection of retrograde tracer into the vagal complex, retrogradely labelled neurons in the central nucleus of the amygdala were clustered in the central portion at the rostral level and in the medial part at the middle level of the nucleus. Few labelled neurons were seen at the caudal level. Electrical stimulation of the central nucleus of the amygdala altered the basal firing rates of 65 % of gut-related neurons in the nucleus of the solitary tract and in the dorsal motor nucleus of the vagus. Eighty-one percent of the neurons in the nucleus of the solitary tract and 47 % of the neurons in the dorsal motor nucleus were inhibited. Electrical stimulation of the central nucleus of the amygdala also modulated the response of neurons in the dorsal vagal complex to gastrointestinal stimuli. The predominant effect on the neurons of the nucleus of the solitary tract was inhibition. These results suggest that the central nucleus of the amygdala influences gut-related neurons in the dorsal vagal complex and provides a neuronal circuitry that explains the regulation of gastrointestinal activity by the amygdala. PMID:14555729

  3. 76 FR 14950 - Closed Meeting of the U.S. Strategic Command Strategic Advisory Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... DEPARTMENT OF DEFENSE Office of the Secretary Closed Meeting of the U.S. Strategic Command.... Strategic Command Strategic Advisory Group. DATES: April 7, 2011, from 8 a.m. to 5 p.m. and April 8, 2011... policy-related issues to the Commander, U.S. Strategic Command, during the development of the Nation's...

  4. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  5. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  6. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  7. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  8. 76 FR 52642 - Notice of Advisory Committee Closed Meeting; U.S. Strategic Command Strategic Advisory Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... DEPARTMENT OF DEFENSE Notice of Advisory Committee Closed Meeting; U.S. Strategic Command.... Strategic Command Strategic Advisory Group. DATES: November 1, 2011, from 8 a.m. to 5 p.m. and November 2..., intelligence, and policy-related issues to the Commander, U.S. Strategic Command, during the development of the...

  9. 75 FR 20776 - Security Zone; Potomac River, Washington Channel, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    .... Coast Guard Commandant's Change of Command ceremony from 6 a.m. through 5 p.m. on May 25, 2010. Entry.... Basis and Purpose The Coast Guard will conduct a Change of Command ceremony at Fort McNair in Washington... the U.S. Coast Guard Commandant's Change of Command ceremony. Due to the catastrophic impact a...

  10. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  11. 71. SAC command post construction, building 500, January 20, 1987 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. SAC command post construction, building 500, January 20, 1987 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  12. 66. SAC command post lobby, building 500, undated, looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. SAC command post lobby, building 500, undated, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  13. 63. Aerial view of SAC command post construction, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Aerial view of SAC command post construction, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  14. 69. Vice President Ford entering SAC command post, February, 1974 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. Vice President Ford entering SAC command post, February, 1974 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  15. BCI Performance and Brain Metabolism Profile in Severely Brain-Injured Patients Without Response to Command at Bedside.

    PubMed

    Annen, Jitka; Blandiaux, Séverine; Lejeune, Nicolas; Bahri, Mohamed A; Thibaut, Aurore; Cho, Woosang; Guger, Christoph; Chatelle, Camille; Laureys, Steven

    2018-01-01

    Detection and interpretation of signs of "covert command following" in patients with disorders of consciousness (DOC) remains a challenge for clinicians. In this study, we used a tactile P3-based BCI in 12 patients without behavioral command following, attempting to establish "covert command following." These results were then confronted to cerebral metabolism preservation as measured with glucose PET (FDG-PET). One patient showed "covert command following" (i.e., above-threshold BCI performance) during the active tactile paradigm. This patient also showed a higher cerebral glucose metabolism within the language network (presumably required for command following) when compared with the other patients without "covert command-following" but having a cerebral glucose metabolism indicative of minimally conscious state. Our results suggest that the P3-based BCI might probe "covert command following" in patients without behavioral response to command and therefore could be a valuable addition in the clinical assessment of patients with DOC.

  16. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  17. 67. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. Aerial view of SAC command post, building 500, looking northeast, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  18. 64. SAC command post lobby, building 500, November 8, 1956, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. SAC command post lobby, building 500, November 8, 1956, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  19. 61. SAC control center command post construction, March 2, 1956, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. SAC control center command post construction, March 2, 1956, looking northeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  20. 62. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Aerial view of SAC command post, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  1. A dopaminergic projection to the rat mammillary nuclei demonstrated by retrograde transport of wheat germ agglutinin-horseradish peroxidase and tyrosine hydroxylase immunohistochemistry

    NASA Technical Reports Server (NTRS)

    Gonzalo-Ruiz, A.; Alonso, A.; Sanz, J. M.; Llinas, R. R.

    1992-01-01

    The presence and distribution of dopaminergic neurons and terminals in the hypothalamus of the rat were studied by tyrosine hydroxylase (TH) immunohistochemistry. Strongly labelled TH-immunoreactive neurons were seen in the dorsomedial hypothalamic nucleus, periventricular region, zona incerta, arcuate nucleus, and supramammillary nucleus. A few TH-positive neurons were also identified in the dorsal and ventral premammillary nucleus, as well as the lateral hypothalamic area. TH-immunoreactive fibres and terminals were unevenly distributed in the mammillary nuclei; small, weakly labelled terminals were scattered in the medial mammillary nucleus, while large, strongly labelled, varicose terminals were densely concentrated in the internal part of the lateral mammillary nucleus. A few dorsoventrally oriented TH-positive axon bundles were also identified in the lateral mammillary nucleus. A dopaminergic projection to the mammillary nuclei from the supramammillary nucleus and lateral hypothalamic area was identified by double labelling with retrograde transport of wheat germ agglutinin-horseradish peroxidase and TH-immunohistochemistry. The lateral mammillary nucleus receives a weak dopaminergic projection from the medial, and stronger projections from the lateral, caudal supramammillary nucleus. The double-labelled neurons in the lateral supramammillary nucleus appear to encapsulate the caudal end of the mammillary nuclei. The medial mammillary nucleus receives a very light dopaminergic projection from the caudal lateral hypothalamic area. These results suggest that the supramammillary nucleus is the principal source of the dopaminergic input to the mammillary nuclei, establishing a local TH-pathway in the mammillary complex. The supramammillary cell groups are able to modulate the limbic system through its dopaminergic input to the mammillary nuclei as well as through its extensive dopaminergic projection to the lateral septal nucleus.

  2. Stability boundaries for command augmentation systems

    NASA Technical Reports Server (NTRS)

    Shrivastava, P. C.

    1987-01-01

    The Stability Augmentation System (SAS) is a special case of the Command Augmentation System (CAS). Control saturation imposes bounds on achievable commands. The state equilibrium depends only on the open loop dynamics and control deflection. The control magnitude to achieve a desired command equilibrium is independent of the feedback gain. A feedback controller provides the desired response, maintains the system equilibrium under disturbances, but it does not affect the equilibrium values of states and control. The saturation boundaries change with commands, but the location of the equilibrium points in the saturated region remains unchanged. Nonzero command vectors yield saturation boundaries that are asymmetric with respect to the state equilibrium. Except for the saddle point case with MCE control law, the stability boundaries change with commands. For the cases of saddle point and unstable nodes, the region of stability decreases with increasing command magnitudes.

  3. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  4. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  5. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Steven M.

    2011-01-01

    On November 4, 2010 the former "Deep Impact" spacecraft, renamed "EPOXI" for its extended mission, flew within 700km of comet 103P/Hartley 2. In July 2005, the spacecraft had previously imaged a probe impact of comet Tempel 1. The EPOXI flyby was the fifth close encounter of a spacecraft with a comet nucleus and marked the first time in history that two comet nuclei were imaged at close range with the same suite of onboard science instruments. This challenging objective made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby.As part of the spacecraft flyby preparations, the ADCS operations team had to perform meticulous sequence reviews, implement complex spacecraft engineering and science activities and perform numerous onboard calibrations. ADCS contributions included design and execution of 10 trajectory correction maneuvers, the science calibration of the two telescopic instruments, an in-flight demonstration of high-rate turns between Earth and comet point, and an ongoing assessment of reaction wheel health. The ADCS team was also responsible for command sequences that included updates to the onboard ephemeris and sun sensor coefficients and implementation of reaction wheel assembly (RWA) de-saturations.

  6. Extracting an evaluative feedback from the brain for adaptation of motor neuroprosthetic decoders.

    PubMed

    Mahmoudi, Babak; Principe, Jose C; Sanchez, Justin C

    2010-01-01

    The design of Brain-Machine Interface (BMI) neural decoders that have robust performance in changing environments encountered in daily life activity is a challenging problem. One solution to this problem is the design of neural decoders that are able to assist and adapt to the user by participating in their perception-action-reward cycle (PARC). Using inspiration both from artificial intelligence and neurobiology reinforcement learning theories, we have designed a novel decoding architecture that enables a symbiotic relationship between the user and an Intelligent Assistant (IA). By tapping into the motor and reward centers in the brain, the IA adapts the process of decoding neural motor commands into prosthetic actions based on the user's goals. The focus of this paper is on extraction of goal information directly from the brain and making it accessible to the IA as an evaluative feedback for adaptation. We have recorded the neural activity of the Nucleus Accumbens in behaving rats during a reaching task. The peri-event time histograms demonstrate a rich representation of the reward prediction in this subcortical structure that can be modeled on a single trial basis as a scalar evaluative feedback with high precision.

  7. Polar-phase indices of perioral muscle reciprocity during syllable production in Parkinson's disease.

    PubMed

    Chu, Shin Ying; Barlow, Steven M; Lee, Jaehoon; Wang, Jingyan

    2017-12-01

    This research characterised perioral muscle reciprocity and amplitude ratio in lower lip during bilabial syllable production [pa] at three rates to understand the neuromotor dynamics and scaling of motor speech patterns in individuals with Parkinson's disease (PD). Electromyographic (EMG) signals of the orbicularis oris superior [OOS], orbicularis oris inferior [OOI] and depressor labii inferioris [DLI] were recorded during syllable production and expressed as polar-phase notations. PD participants exhibited the general features of reciprocity between OOS, OOI and DLI muscles as reflected in the EMG during syllable production. The control group showed significantly higher integrated EMG amplitude ratio in the DLI:OOS muscle pairs than PD participants. No speech rate effects were found in EMG muscle reciprocity and amplitude magnitude across all muscle pairs. Similar patterns of muscle reciprocity in PD and controls suggest that corticomotoneuronal output to the facial nucleus and respective perioral muscles is relatively well-preserved in our cohort of mild idiopathic PD participants. Reduction of EMG amplitude ratio among PD participants is consistent with the putative reduction in the thalamocortical activation characteristic of this disease which limits motor cortex drive from generating appropriate commands which contributes to bradykinesia and hypokinesia of the orofacial mechanism.

  8. General Nobile and the Airship Italia: No Second-In-Command

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg A.

    2017-01-01

    The airship Italia, commanded by General Umberto Nobile, crashed during its return flight from the North Pole in 1928. Prior work has demonstrated the possibility that this crash was fatigue-related, due to significant sleep-deprivation on the part of its Commander, and to resulting errors in cognition and judgment. However, the underlying cause of the fatigue was likely due to the fact that the Commander did not have a Second-In-Command on board to take over duties while the Commander was allowed to rest. At that time the Second-In-Command was a formally designated position, and according to Nobiles previous writings was considered to be a necessary crew member on an airship.

  9. 33 CFR 83.27 - Vessels not under command or restricted in their ability to maneuver (Rule 27).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Vessels not under command or... not under command or restricted in their ability to maneuver (Rule 27). (a) Vessels not under command. A vessel not under command shall exhibit: (1) Two all-round red lights in a vertical line where they...

  10. 32 CFR 700.847 - Responsibility of a master of an in-service ship of the Military Sealift Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the Military Sealift Command. 700.847 Section 700.847 National Defense Department of Defense... REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.847 Responsibility of a master of an in-service ship of the Military Sealift Command. (a) In an in-service ship of the...

  11. 75 FR 10446 - Security Zone; Potomac River, Washington Channel, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... during the U.S. Coast Guard Commandant's Change of Command ceremony from 6 a.m. through 5 p.m. on May 25... Purpose The Coast Guard will conduct a Change of Command ceremony at Fort McNair in Washington, DC. To... the U.S. Coast Guard Commandant's Change of Command ceremony. Due to the catastrophic impact a...

  12. 33 CFR 83.27 - Vessels not under command or restricted in their ability to maneuver (Rule 27).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Vessels not under command or... not under command or restricted in their ability to maneuver (Rule 27). (a) Vessels not under command. A vessel not under command shall exhibit: (1) Two all-round red lights in a vertical line where they...

  13. 32 CFR 700.847 - Responsibility of a master of an in-service ship of the Military Sealift Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the Military Sealift Command. 700.847 Section 700.847 National Defense Department of Defense... REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.847 Responsibility of a master of an in-service ship of the Military Sealift Command. (a) In an in-service ship of the...

  14. 33 CFR 83.27 - Vessels not under command or restricted in their ability to maneuver (Rule 27).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Vessels not under command or... not under command or restricted in their ability to maneuver (Rule 27). (a) Vessels not under command. A vessel not under command shall exhibit: (1) Two all-round red lights in a vertical line where they...

  15. 32 CFR 700.847 - Responsibility of a master of an in-service ship of the Military Sealift Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the Military Sealift Command. 700.847 Section 700.847 National Defense Department of Defense... REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.847 Responsibility of a master of an in-service ship of the Military Sealift Command. (a) In an in-service ship of the...

  16. 33 CFR 83.27 - Vessels not under command or restricted in their ability to maneuver (Rule 27).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Vessels not under command or... not under command or restricted in their ability to maneuver (Rule 27). (a) Vessels not under command. A vessel not under command shall exhibit: (1) Two all-round red lights in a vertical line where they...

  17. 32 CFR 700.847 - Responsibility of a master of an in-service ship of the Military Sealift Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the Military Sealift Command. 700.847 Section 700.847 National Defense Department of Defense... REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.847 Responsibility of a master of an in-service ship of the Military Sealift Command. (a) In an in-service ship of the...

  18. 33 CFR 83.27 - Vessels not under command or restricted in their ability to maneuver (Rule 27).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Vessels not under command or... not under command or restricted in their ability to maneuver (Rule 27). (a) Vessels not under command. A vessel not under command shall exhibit: (1) Two all-round red lights in a vertical line where they...

  19. 32 CFR 700.847 - Responsibility of a master of an in-service ship of the Military Sealift Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the Military Sealift Command. 700.847 Section 700.847 National Defense Department of Defense... REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.847 Responsibility of a master of an in-service ship of the Military Sealift Command. (a) In an in-service ship of the...

  20. Media Independent Handover for Wireless Full Motion Video Dissemination

    DTIC Science & Technology

    2012-09-01

    ODTONE Configuration Files 51 References 63 Initial Distribution List 65 viii List of Figures Figure 2.1 MIH framework as defined by the IEEE 802.21...10 Figure 2.3 Link commands and MIH commands. From [1]. . . . . . . . . . . . . 12 Figure 2.4 Remote MIH Commands. From [1...13 Figure 2.5 Link commands. From [1]. . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 2.6 MIH commands. From [1

  1. Pages - U.S. Fleet Cyber Command

    Science.gov Websites

    Links Expand Links : U.S. Fleet Cyber Command Help (new window) Site Help Page Content Website 2nd Banner.jpg Since its establishment on Jan. 29, 2010, U.S. Fleet Cyber Command (FCC)/U.S. TENTH Fleet (C10F civilians organized into 26 active commands, 40 Cyber Mission Force units, and 27 reserve commands around

  2. Command and Control for Joint Air Operations.

    DTIC Science & Technology

    1994-11-14

    publication apply to the throughout the range of military commanders of combatant commands, operations. subunified commands, joint task forces, and...this doctrine (or operations as well as the doctrinal basis JTTP) will be followed except when, in for US military involvement in the judgment of the...commander, multinational and interagency operations. exceptional circumstances dictate It provides military guidance for the otherwise. If conflicts

  3. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. I. Characteristics of evoked head movements.

    PubMed

    Quessy, Stephan; Freedman, Edward G

    2004-06-01

    The nucleus reticularis gigantocellularis (NRG) receives monosynaptic input from the superior colliculus (SC) and projects directly to neck motor neuron pools. Neurons in NRG are well situated to play a critical role in transforming SC signals into head movement commands. A previous study of movements evoked by NRG stimulation in the primate reported a variety of ipsilateral and contralateral head movements with horizontal, vertical and torsional components. In addition to head movements, it was reported that NRG stimulation could evoke movements of the pinnae, face, upper torso, and co-contraction of neck muscles. In this report, the role of the rhesus monkey NRG in head movement control was investigated using electrical stimulation of the rostral portion of the NRG. The goal was to characterize head movements evoked by NRG stimulation, describe the effects of altering stimulation parameters, and assess the relative movements of the eyes and head. Results indicate that electrical stimulation in the rostral portion of the NRG of the primate can consistently evoke ipsilateral head rotations in the horizontal plane. Head movement amplitude and peak velocity depend upon stimulation parameters (primarily frequency and duration of stimulation trains). During stimulation-induced head movements the eyes counter-rotate (presumably a result of the vestibulo-ocular reflex: VOR). At 46 stimulation sites from two subjects the average gain of this counter-rotation was -0.38 (+/-0.18). After the end of the stimulation train the head generally continued to move. During this epoch, after electrical stimulation ceased, VOR gain remained at this reduced level. In addition, VOR gain was similarly low when electrical stimulation was carried out during active fixation of a visual target. These data extend existing descriptions of head movements evoked by electrical stimulation of the NRG, and add to the understanding of the role of this structure in producing head movements.

  4. A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements.

    PubMed

    Salimi-Badr, Armin; Ebadzadeh, Mohammad Mehdi; Darlot, Christian

    2018-01-01

    In this paper, a novel system-level mathematical model of the Basal Ganglia (BG) for kinematic planning, is proposed. An arm composed of several segments presents a geometric redundancy. Thus, selecting one trajectory among an infinite number of possible ones requires overcoming redundancy, according to some kinds of optimization. Solving this optimization is assumed to be the function of BG in planning. In the proposed model, first, a mathematical solution of kinematic planning is proposed for movements of a redundant arm in a plane, based on minimizing energy consumption. Next, the function of each part in the model is interpreted as a possible role of a nucleus of BG. Since the kinematic variables are considered as vectors, the proposed model is presented based on the vector calculus. This vector model predicts different neuronal populations in BG which is in accordance with some recent experimental studies. According to the proposed model, the function of the direct pathway is to calculate the necessary rotation of each joint, and the function of the indirect pathway is to control each joint rotation considering the movement of the other joints. In the proposed model, the local feedback loop between Subthalamic Nucleus and Globus Pallidus externus is interpreted as a local memory to store the previous amounts of movements of the other joints, which are utilized by the indirect pathway. In this model, activities of dopaminergic neurons would encode, at short-term, the error between the desired and actual positions of the end-effector. The short-term modulating effect of dopamine on Striatum is also modeled as cross product. The model is simulated to generate the commands of a redundant manipulator. The performance of the model is studied for different reaching movements between 8 points in a plane. Finally, some symptoms of Parkinson's disease such as bradykinesia and akinesia are simulated by modifying the model parameters, inspired by the dopamine depletion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 46. SAC Commander in Chief entry, second floor, Awing, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. SAC Commander in Chief entry, second floor, A-wing, building 500, looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  6. 47. SAC Commander in Chief office, second floor, Awing, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. SAC Commander in Chief office, second floor, A-wing, building 500, looking northwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  7. 68. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. Aerial view of SAC command post, building 500, looking northeast, spring, 1957 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  8. 48 CFR 202.101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Education Activity TRICARE Management Activity Washington Headquarters Services, Acquisition and Procurement... Command Air Force Reserve Command Air Combat Command Air Mobility Command Air Education and Training..., Management Defense Business Transformation Agency Contracting Office Defense Commissary Agency Directorate of...

  9. The arcuate nucleus of the C57BL/6J mouse hindbrain is a displaced part of the inferior olive.

    PubMed

    Fu, Yu Hong; Watson, Charles

    2012-01-01

    The arcuate nucleus is a prominent cell group in the human hindbrain, characterized by its position on the pial surface of the pyramid. It is considered to be a precerebellar nucleus and has been implicated in the pathology of several disorders of respiration. An arcuate nucleus has not been convincingly demonstrated in other mammals, but we have found a similarly positioned nucleus in the C57BL/6J mouse. The mouse arcuate nucleus consists of a variable group of neurons lying on the pial surface of the pyramid. The nucleus is continuous with the ventrolateral part of the principal nucleus of the inferior olive and both groups are calbindin positive. At first we thought that this mouse nucleus was homologous with the human arcuate nucleus, but we have discovered that the neurons of the human nucleus are calbindin negative, and are therefore not olivary in nature. We have compared the mouse arcuate neurons with those of the inferior olive in terms of molecular markers and cerebellar projection. The neurons of the arcuate nucleus and of the inferior olive share three major characteristics: they both contain neurons utilizing glutamate, serotonin or acetylcholine as neurotransmitters; they both project to the contralateral cerebellum, and they both express a number of genes not present in the major mossy fiber issuing precerebellar nuclei. Most importantly, both cell groups express calbindin in an area of the ventral hindbrain almost completely devoid of calbindin-positive cells. We conclude that the neurons of the hindbrain mouse arcuate nucleus are a displaced part of the inferior olive, possibly separated by the caudal growth of the pyramidal tract during development. The arcuate nucleus reported in the C57BL/6J mouse can therefore be regarded as a subgroup of the rostral inferior olive, closely allied with the ventral tier of the principal nucleus. Copyright © 2012 S. Karger AG, Basel.

  10. DSN command system Mark III-78. [data processing

    NASA Technical Reports Server (NTRS)

    Stinnett, W. G.

    1978-01-01

    The Deep Space Network command Mark III-78 data processing system includes a capability for a store-and-forward handling method. The functions of (1) storing the command files at a Deep Space station; (2) attaching the files to a queue; and (3) radiating the commands to the spacecraft are straightforward. However, the total data processing capability is a result of assuming worst case, failure-recovery, or nonnominal operating conditions. Optional data processing functions include: file erase, clearing the queue, suspend radiation, command abort, resume command radiation, and close window time override.

  11. Efferent projections of the dorsal ventricular ridge and the striatum in the Tegu lizard. Tupinambis nigropunctatus.

    PubMed

    Voneida, T J; Sligar, C M

    1979-07-01

    A H3 proline-leucine mixture was injected into the dorsal ventricular ridge (DVR) and striatum of the Tegu lizard in order to determine their efferent projections. The brains were processed according to standard radioautographic technique, and counterstained with cresyl violet. DVR projections were generally restricted to the telencephalon, while striatal projections were limited to diencephalic and mesencephalic structures. Thus the anterior DVR projects ipsilaterally to nuclei sphericus and lateralis amygdalae, striatum (ipsilateral and contralateral) ventromedial nucleus of the hypothalamus, nucleus accumbens, anterior olfactory nucleus, nucleus of the lateral olfactory tract and lateral pallium. Posterior DVR projections enter ipsilateral anterior olfactory nucleus, lateral and interstitial amygdalar nuclei, olfactory tubercle and bulb, nucleus of the lateral olfactory tract and a zone surrounding the ventromedial hypothalamic nucleus. Labeled axons from striatal injections pass caudally in the lateral forebrain bundle to enter (via dorsal peduncle) nuclei dorsomedialis, medialis posterior, entopeduncularis anterior, and a zone surrounding nucleus rotundus. Others join the ventral peduncle of LFB and enter ventromedial nucleus (thalami), while the remaining fibers continue caudally in the ventral peduncle to the mesencephalic prerubral field, central gray, substantia nigra, nucleus intercollicularis, reticular formation and pretectal nucleus posterodorsalis. These results are discussed in relation to the changing notions regarding terminology, classification and functions of dorsl ventricular ridge and striatum.

  12. A thalamic input to the nucleus accumbens mediates opiate dependence.

    PubMed

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction.

  13. 48. SAC Deputy Commander in Chief office, second floor, Awing, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. SAC Deputy Commander in Chief office, second floor, A-wing, building 500, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  14. Three astronauts inside Command Module Simulator during Apollo Simulation

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Three astronauts inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Left to right are Astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot.

  15. A Theory of Rate-Dependent Plasticity

    DTIC Science & Technology

    1984-05-01

    crystal microplasticity use a variety of parameters, such as mobile dislocation density and velocity, all of which are eventually related in some manner...Info Center Bldg. 2925, Box 22 Fort Ord, CA 93941 55 DISTRIBUTION LIST No. of Copies Organization 1 Commander Naval Sea Systems Command...Washington, DC 20360 Commander Naval Sea Systems Command ( SEA -62R41) ATTN: L. Pasiuk Washington, DC 20360 Commander Naval

  16. 33 CFR 334.710 - The Narrows and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. 334.710 Section... Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. (a) The restricted area... regulations in this section shall be enforced by the Commander, Air Force Proving Ground Command, Eglin Air...

  17. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  18. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  19. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  20. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  1. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  2. Maritime Homeland Command Control: Teaching an Old Dog New Tricks

    DTIC Science & Technology

    2002-02-04

    Security, Command and Control, Navy, Coast Guard, Customs Service, Centralized Control, Decentralized Execution, Organization by Objectives 15.Abstract...primarily responsible for the maritime homeland, the Navy, the Coast guard, the Customs Service, should provide resources and command capabilities to a...Coast Guard, the Customs Service, should provide resources and command capabilities to a unified command and control structure. Coast Guard forces and

  3. Mobilization Base Requirements Model (MOBREM) Study. Phases I-V.

    DTIC Science & Technology

    1984-08-01

    Department Health Services Command Base Mobilization Plan; DARCOM; Army Communications Command (ACC); Military Transportation Manage- ment Command...Chief of Staff. c. The major commands in CONUS are represented on the next line. FORSCOM, DARCOM, TRADOC, and Health Service Commands are the larger...specialized combat support and combat service support training. Tile general support force (GSF) units are non- deployable ’inits supporting tne CONUS

  4. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    PubMed

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  5. An Investigation of Age-Related Iron Deposition Using Susceptibility Weighted Imaging

    PubMed Central

    Wang, Dan; Li, Wen-Bin; Wei, Xiao-Er; Li, Yue-Hua; Dai, Yong-Ming

    2012-01-01

    Aim To quantify age-dependent iron deposition changes in healthy subjects using Susceptibility Weighted Imaging (SWI). Materials and Methods In total, 143 healthy volunteers were enrolled. All underwent conventional MR and SWI sequences. Subjects were divided into eight groups according to age. Using phase images to quantify iron deposition in the head of the caudate nucleus and the lenticular nucleus, the angle radian value was calculated and compared between groups. ANOVA/Pearson correlation coefficient linear regression analysis and polynomial fitting were performed to analyze the relationship between iron deposition in the head of the caudate nucleus and lenticular nucleus with age. Results Iron deposition in the lenticular nucleus increased in individuals aged up to 40 years, but did not change in those aged over 40 years once a peak had been reached. In the head of the caudate nucleus, iron deposition peaked at 60 years (p<0.05). The correlation coefficients for iron deposition in the L-head of the caudate nucleus, R-head of the caudate nucleus, L-lenticular nucleus and R-lenticular nucleus with age were 0.67691, 0.48585, 0.5228 and 0.5228 (p<0.001, respectively). Linear regression analyses showed a significant correlation between iron deposition levels in with age groups. Conclusions Iron deposition in the lenticular nucleus was found to increase with age, reaching a plateau at 40 years. Iron deposition in the head of the caudate nucleus also increased with age, reaching a plateau at 60 years. PMID:23226360

  6. [Ultrasonic measurements of fetal thalamus, caudate nucleus and lenticular nucleus in prenatal diagnosis].

    PubMed

    Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei

    2015-05-19

    To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.

  7. Operating and Support Costing Guide: Army Weapon Systems

    DTIC Science & Technology

    1974-12-23

    First US Army 1 Commandant, US Army Logistics Management Center (Director Administration and Services) 2 Commander, US Army Management Systems Support...Army Logistics Management Center (Director, Administration and Services) Commander, US Army Management Systems Support Agency (DACS-AME) Commander

  8. Astronaut John Young in Command Module Simulator during Apollo Simulation

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut John W. Young, command module pilot, inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Astronauts Thomas P. Stafford, commander and Eugene A. Cernan, lunar module pilot are out of the view.

  9. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  10. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, N.R.; King, R.D.; Schwartz, J.E.

    1999-05-11

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.

  11. Spinodal assisted growing dynamics of critical nucleus in polymer blends

    NASA Astrophysics Data System (ADS)

    Zhang, Xinghua; Qi, Shuanhu; Yan, Dadong

    2012-11-01

    In metastable polymer blends, nonclassical critical nucleus is not a drop of stable phase in core wrapped with a sharp interface, but a diffuse structure depending on the metastability. Thus, forming a critical nucleus does not mean the birth of a new phase. In the present work, the nonclassical growing dynamics of the critical nucleus is addressed in the metastable polymer blends by incorporating self-consistent field theory and external potential dynamics theory, which leads to an intuitionistic description for the scattering experiments. The results suggest that the growth of nonclassical critical nucleus is controlled by the spinodal-decomposition which happens in the region surrounding the nucleus. This leads to forming the shell structures around the nucleus.

  12. [Analysis of the Effect of Non-phacoemulsification Cataract Operation on Corneal Endothelial Cell Nucleus Division].

    PubMed

    Huang, Zufeng; Miao, Xiaoqing

    2015-09-01

    To investigate the effect of non-phacoemulsification cataract operation in two different patterns of nucleus delivery on the quantity and morphology of corneal endothelial cells and postoperative visual acuity. Forty patients diagnosed with cataract underwent cataract surgery and were assigned into the direct nuclear delivery and semi-nuclear delivery groups. Lens density was measured and divided into the hard and soft lenses according to Emery-little lens nucleus grading system. Non-phacoemulsification cataract operation was performed. At 3 d after surgery, the quantity and morphology of corneal endothelium were counted and observed under corneal endothelial microscope. During 3-month postoperative follow-up, the endothelial cell loss rate, morphological changes and visual acuity were compared among four groups. Corneal endothelial cell loss rate in the direct delivery of hard nucleus group significantly differed from those in the other three groups before and 3 months after operation (P < 0.01), whereas no statistical significance was found among the direct delivery of soft nucleus, semi-delivery of hard nucleus and semi-delivery soft nucleus groups (all P > 0.05). Preoperative and postoperative 2-d visual acuity did not differ between the semi-delivery of hard nucleus and direct delivery of soft nucleus groups (P = 0.49), significantly differed from those in the semi-delivery of soft nucleus (P = 0.03) and direct delivery of hard nucleus groups (P = 0.14). Visual acuity at postoperative four months did not differ among four groups (P = 0.067). During non-phacoemulsification cataract surgery, direct delivery of hard nucleus caused severe injury to corneal endothelium and semi-delivery of soft nucleus yielded mild corneal endothelial injury. Slight corneal endothelial injury exerted no apparent effect upon visual acuity and corneal endothelial morphology at three months after surgery.

  13. In vitro and in silico investigations of disc nucleus replacement

    PubMed Central

    Reitmaier, Sandra; Shirazi-Adl, Aboulfazl; Bashkuev, Maxim; Wilke, Hans-Joachim; Gloria, Antonio; Schmidt, Hendrik

    2012-01-01

    Currently, numerous hydrogels are under examination as potential nucleus replacements. The clinical success, however, depends on how well the mechanical function of the host structure is restored. This study aimed to evaluate the extent to and mechanisms by which surgery for nucleus replacements influence the mechanical behaviour of the disc. The effects of an annulus defect with and without nucleus replacement on disc height and nucleus pressure were measured using 24 ovine motion segments. The following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue repaired by suture and glue or plug. To identify the likely mechanisms observed in vitro, a finite-element model of a human disc (L4–L5) was employed. Both studies were subjected to physiological cycles of compression and recovery. A repaired annulus defect did not influence the disc behaviour in vitro, whereas additional nucleus removal and replacement substantially decreased disc stiffness and nucleus pressure. Model predictions demonstrated the substantial effects of reductions in replaced nucleus water content, bulk modulus and osmotic potential on disc height loss and pressure, similar to measurements. In these events, the compression load transfer in the disc markedly altered by substantially increasing the load on the annulus when compared with the nucleus. The success of hydrogels for nucleus replacements is not only dependent on the implant material itself but also on the restoration of the environment perturbed during surgery. The substantial effects on the disc response of disruptions owing to nucleus replacements can be simulated by reduced nucleus water content, elastic modulus and osmotic potential. PMID:22337630

  14. Combating Terrorism: North American Aerospace Defense Command Versus Asymmetric Threats

    DTIC Science & Technology

    2016-02-01

    AU/ACSC/2016 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY COMBATING TERRORISM: NORTH AMERICAN AEROSPACE DEFENSE COMMAND...1 SECTION II: BACKGROUND ...........................................................................................5 - North ...v LIST OF ILLUSTRATIONS Figure 1: North American Aerospace Defense Command Radars in the 1960s

  15. Commander Rominger at the commander's workstation in Endeavour during STS-100

    NASA Image and Video Library

    2001-04-21

    STS100-303-004 (19 April-1 May 2001) --- Astronaut Kent V. Rominger, STS-100 commander, looks over a procedures checklist at the commander's station on the forward flight deck of the Earth-orbiting Space Shuttle Endeavour.

  16. 32 CFR 700.832 - Environmental pollution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.832 Environmental pollution. The commanding officer shall cooperate with... considerations, insufficient resources or other reason, the commanding officer shall report to the immediate...

  17. 32 CFR 700.801 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.801 Applicability. In addition to commanding officers, the provisions of this... officers and petty officers when so detailed) and those persons standing the command duty. ...

  18. 32 CFR 700.801 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.801 Applicability. In addition to commanding officers, the provisions of this... officers and petty officers when so detailed) and those persons standing the command duty. ...

  19. 32 CFR 700.832 - Environmental pollution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.832 Environmental pollution. The commanding officer shall cooperate with... considerations, insufficient resources or other reason, the commanding officer shall report to the immediate...

  20. Change of Command

    NASA Image and Video Library

    2011-11-20

    ISS029-E-043183 (20 Nov. 2011) --- NASA astronauts Dan Burbank (left), Expedition 30 commander; and Mike Fossum, Expedition 29 commander, pose for a photo in the International Space Station?s Kibo laboratory following the ceremony of Changing-of-Command from Expedition 29 to Expedition 30.

  1. 32 CFR 700.801 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.801 Applicability. In addition to commanding officers, the provisions of this... officers and petty officers when so detailed) and those persons standing the command duty. ...

  2. 32 CFR 700.801 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.801 Applicability. In addition to commanding officers, the provisions of this... officers and petty officers when so detailed) and those persons standing the command duty. ...

  3. 32 CFR 700.801 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.801 Applicability. In addition to commanding officers, the provisions of this... officers and petty officers when so detailed) and those persons standing the command duty. ...

  4. 32 CFR 700.832 - Environmental pollution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.832 Environmental pollution. The commanding officer shall cooperate with... considerations, insufficient resources or other reason, the commanding officer shall report to the immediate...

  5. U.S. Northern Command > Newsroom > Fact Sheets

    Science.gov Websites

    Operations Command, North U.S. Marine Forces Northern Command U.S. Fleet Forces Command Air Forces Northern U.S. Army North Joint Task Force North Joint Task Force Civil Support Joint Task Force Alaska Joint

  6. 32 CFR 525.5 - Entry authorization (procedure).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AUTHORITIES AND PUBLIC RELATIONS ENTRY AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.5 Entry... the National Range Commander, the Commander, Kwajalein Missile Range or the designated representative... the Commander, Kwajalein Missile Range, responds to an application, and the National Range Commander...

  7. 32 CFR 525.5 - Entry authorization (procedure).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AUTHORITIES AND PUBLIC RELATIONS ENTRY AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.5 Entry... the National Range Commander, the Commander, Kwajalein Missile Range or the designated representative... the Commander, Kwajalein Missile Range, responds to an application, and the National Range Commander...

  8. 32 CFR 525.5 - Entry authorization (procedure).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AUTHORITIES AND PUBLIC RELATIONS ENTRY AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.5 Entry... the National Range Commander, the Commander, Kwajalein Missile Range or the designated representative... the Commander, Kwajalein Missile Range, responds to an application, and the National Range Commander...

  9. 32 CFR 525.5 - Entry authorization (procedure).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AUTHORITIES AND PUBLIC RELATIONS ENTRY AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.5 Entry... the National Range Commander, the Commander, Kwajalein Missile Range or the designated representative... the Commander, Kwajalein Missile Range, responds to an application, and the National Range Commander...

  10. 32 CFR 525.5 - Entry authorization (procedure).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AUTHORITIES AND PUBLIC RELATIONS ENTRY AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.5 Entry... the National Range Commander, the Commander, Kwajalein Missile Range or the designated representative... the Commander, Kwajalein Missile Range, responds to an application, and the National Range Commander...

  11. Command and Control: Toward Arctic Unity of Command and Unity of Effort

    DTIC Science & Technology

    2011-05-19

    Russia, Norway, and Denmark) are in the process of preparing or have submitted territorial claims in the Arctic by way of this convention.58... longitude . The Unified Command Plan divides the Arctic region geographically among three GCCs. U.S. Northern Command (USNORTHCOM), U.S. European...2008, http://www.defense.gov/specials/unifiedcommand/ images /unified-command_world-map.jpg (accessed November 22, 2010). While the Department of

  12. A Work Station For Control Of Changing Systems

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel J.

    1988-01-01

    Touch screen and microcomputer enable flexible control of complicated systems. Computer work station equipped to produce graphical displays used as command panel and status indicator for command-and-control system. Operator uses images of control buttons displayed on touch screen to send prestored commands. Use of prestored library of commands reduces incidence of errors. If necessary, operator uses conventional keyboard to enter commands in real time to handle unforeseeable situations.

  13. Trust: The Key to the Success of Mission Command in the Joint Force

    DTIC Science & Technology

    2015-05-18

    Malaysia, Kuala Lumpur: International Conference on ISO9000. Schmidt, Todd A. “ Design , Mission Command and the Network: Enabling Organization...acknowledge that trust is one of the most important component of a decentralized command philosophy. Adding to this challenge is an increasingly...moving to mission command, we must acknowledge that trust is one of the most important components of a decentralized command philosophy. Adding to this

  14. Thalamic reticular nucleus in Caiman crocodilus: Relationship with the dorsal thalamus.

    PubMed

    Pritz, M B

    2016-05-13

    The thalamic reticular nucleus was investigated in one group of crocodilians, Caiman crocodilus. This neuronal aggregate is composed of two parts: a compact portion and a diffuse region made up of scattered cells within the forebrain bundles. In Caiman, both the lateral and medial forebrain bundles project to the telencephalon and the thalamic reticular nucleus is associated with each fiber tract. In the lateral forebrain bundle, the compact area is termed the nucleus of the dorsal peduncle (dorsal peduncular nucleus) while the diffuse part is called the perireticular area. In the medial forebrain bundle, the interstitial nucleus comprises one part of the compact area while another region without a specific neuronal label is also present. Similar to the perireticular cells of the lateral forebrain bundle, scattered cells are also present in the medial forebrain bundle. Morphological features of the thalamic reticular nucleus are revealed with stains for the following: fibers; cells; succinic acid dehydrogenase; and acetylcholinesterase. Regardless of which dorsal thalamic nucleus was injected, a localized region of the thalamic reticular nucleus contained retrogradely labeled cells and anterogradely labeled axons and terminals. This grouping was termed clusters and was felt to represent the densest interconnection between the dorsal thalamus and the reticular nucleus. Using clusters as an index of interconnections, the reticular nucleus was divided into sectors, each of which was associated with a specific dorsal thalamic nucleus. An organization similar to that found in Caiman is present in other sauropsids as well as in mammals. These data suggest that a thalamic reticular nucleus is present in all amniotes and has morphological properties similar to those described in this analysis. Lastly, a hypothesis is presented to explain how the external shape of the reticular nucleus in Caiman might be transformed into the homologous area in a representative bird and mammal. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Excitatory innervation of caudal hypoglossal nucleus from nucleus reticularis gigantocellularis in the rat.

    PubMed

    Yang, C C; Chan, J Y; Chan, S H

    1995-03-01

    We examined the possible innervation of the caudal hypoglossal nucleus by the nucleus reticularis gigantocellularis of the medulla oblongata, based on single-neuron recording and retrograde tracing experiments in Sprague-Dawley rats. Under pentobarbital sodium (50 mg/kg, i.p.) anesthesia, electrical stimulation of the caudal portion of the nucleus reticularis gigantocellularis with repetitive 0.5-ms rectangular pulses increased (46 of 51 neurons) the basal discharge frequency of spontaneously active cells, or evoked spike activity in silent, hypoglossal neurons located at the level of the obex. This excitatory effect was related to the intensity (25-100 microA) and/or frequency (0.5-20 Hz) of the stimulating pulses to the nucleus reticularis gigantocellularis. Perikaryal activation of neurons by microinjection of L-glutamate (0.5 nmol, 25 nl) into the caudal portion of the nucleus reticularis gigantocellularis similarly produced an excitatory action on eight of 14 hypoglossal neurons. Retrogradely labeled neurons were found bilaterally within the confines of the nucleus reticularis gigantocellularis following unilateral microinjection of wheatgerm agglutinin-conjugated horseradish peroxidase or Fast Blue into the corresponding hypoglossal recording sites. Furthermore, the distribution of labeled neurons in the nucleus reticularis gigantocellularis substantially overlapped with the loci of electrical or chemical stimulation. These complementary electrophysiological and neuroanatomical results support the conclusion that an excitatory link exists between the nucleus reticularis gigantocellularis and at least the caudal portion of the hypoglossal nucleus in the rat.

  16. Mapping of somatostatin-28 (1-12) in the alpaca (Lama pacos) brainstem.

    PubMed

    De Souza, Eliana; Sánchez, Manuel Lisardo; Aguilar, Luís Ángel; Díaz-Cabiale, Zaida; Narváez, José Ángel; Coveñas, Rafael

    2015-05-01

    Using an indirect immunoperoxidase technique, we studied the distribution of cell bodies and fibers containing somatostatin-28 (1-12) in the alpaca brainstem. Immunoreactive fibers were widely distributed throughout the whole brainstem: 34 brainstem nuclei/regions showed a high or a moderate density of these fibers. Perikarya containing the peptide were widely distributed throughout the mesencephalon, pons and medulla oblongata. Cell bodies containing somatostatin-28 (1-12) were observed in the lateral and medial divisions of the marginal nucleus of the brachium conjunctivum, reticular formation (mesencephalon, pons and medulla oblongata), inferior colliculus, periaqueductal gray, superior colliculus, pericentral division of the dorsal tegmental nucleus, interpeduncular nucleus, nucleus of the trapezoid body, vestibular nucleus, motor dorsal nucleus of the vagus, nucleus of the solitary tract, nucleus praepositus hypoglossi, and in the substantia nigra. This widespread distribution indicates that somatostatin-28 (1-12) is involved in multiple physiological actions in the alpaca brainstem. © 2015 Wiley Periodicals, Inc.

  17. 32 CFR 700.802 - Responsibility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.802 Responsibility. (a) The responsibility of the commanding officer for his or her command is absolute, except when, and to the extent, relieved therefrom by competent authority, or...

  18. Three astronauts inside Command Module Simulator during Apollo Simulation

    NASA Image and Video Library

    1968-01-15

    S68-15952 (15 Jan. 1968) --- Three astronauts inside the Command Module Simulator in Building 5 during an Apollo Simulation. Left to right, are astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot.

  19. 85. Command HQ. SAC control center (MOD) new work cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    85. Command HQ. SAC control center (MOD) new work cross section, drawing number AW-30-02-07, dated 7 February, 1962 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  20. 32 CFR 700.802 - Responsibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.802 Responsibility. (a) The responsibility of the commanding officer for his or her command is absolute, except when, and to the extent, relieved therefrom by competent authority, or...

  1. 32 CFR 700.802 - Responsibility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.802 Responsibility. (a) The responsibility of the commanding officer for his or her command is absolute, except when, and to the extent, relieved therefrom by competent authority, or...

  2. Fatigue Performance under Multiaxial Loading

    DTIC Science & Technology

    1990-01-01

    Director, Structural Integrity Engineering Officer (N7) Subgroup ( SEA 55Y) Military Seaift Command Naval Sea Systems Command Dr. Donald Liu CDR Michael K...REPRESENTATIVES Mr. William J. Siekierka Mr. Greg D. Woods SEA 55Y3 SEA 55Y3 Naval Sea Systems Command Naval Sea Systems Command SHIP STRUCTURE...AMERICAN BUREAU OF SHIPPING NAVAL SEA SYSTEMS COMMAND Mr. Stephen G. Arntson (Chairman) Mr. Robert A. Sielski Mr. John F. Conlon Mr. Charles L. Null Mr

  3. A Concept of Operations for an Unclassified Common Operational Picture in Support of Maritime Domain Awareness

    DTIC Science & Technology

    2017-03-01

    Responsibility AWS Amazon Web Services C2 Command and Control C4ISR Command, Control, Communications, Computers and Intelligence, Surveillance...and Reconnaissance C5F Commander Fifth Fleet C6F Commander Sixth Fleet C7F Commander Seventh Fleet CAMTES Computer -Assisted Maritime...capabilities. C. SCOPE AND LIMITATIONS The scope of this study is considerable and encompasses numerous agencies and classification levels. Some

  4. Resilient Multi-Domain Command and Control: Enabling Solutions for 2025 with Virtual Reality

    DTIC Science & Technology

    2017-04-16

    AIR WAR COLLEGE AIR UNIVERSITY RESILIENT MULTI-DOMAIN COMMAND AND CONTROL : ENABLING SOLUTIONS FOR 2025 WITH VIRTUAL REALITY by...monolithic, command and control (C2) sites, such as the theater Air Operation Centers (AOC), at risk. The Multi-Domain Command and Control (MDC2...Air Force respond to the these threats, considering the use of new and existing weapons and concepts, to ensure our ability to command, control and

  5. The Evolution of Army Leader Development

    DTIC Science & Technology

    2013-03-01

    Human Resources Command, OPMD- MFE -I. 4 U.S. Army General Officer Management Office, Army General Officer Roster (Washington, DC, U.S. Department of the...Human Resources Command, Command Management Branch post board data analysis. 15 Data from the United States Army Human Resources Command, OPMD- MFE -A...May 1, 2008), D-1. 25 19 Data from the United States Army Human Resources Command, OPMD- MFE -A, 01 February, 2013. 20 U.S. Joint Chiefs of

  6. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  7. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease

    PubMed Central

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir

    2016-01-01

    Abstract Chronic dopamine depletion in Parkinson’s disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus–cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. PMID:27017189

  8. 32 CFR 700.809 - Persons found under incriminating circumstances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... The Commanding Officer Commanding Officers in General § 700.809 Persons found under incriminating circumstances. (a) The commanding officer shall keep under restraint or surveillance, as necessary, any person... circumstances within the command, and shall immediately initiate an investigation. (b) Should an investigation...

  9. 32 CFR 700.809 - Persons found under incriminating circumstances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... The Commanding Officer Commanding Officers in General § 700.809 Persons found under incriminating circumstances. (a) The commanding officer shall keep under restraint or surveillance, as necessary, any person... circumstances within the command, and shall immediately initiate an investigation. (b) Should an investigation...

  10. 32 CFR 700.809 - Persons found under incriminating circumstances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... The Commanding Officer Commanding Officers in General § 700.809 Persons found under incriminating circumstances. (a) The commanding officer shall keep under restraint or surveillance, as necessary, any person... circumstances within the command, and shall immediately initiate an investigation. (b) Should an investigation...

  11. 32 CFR 700.809 - Persons found under incriminating circumstances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... The Commanding Officer Commanding Officers in General § 700.809 Persons found under incriminating circumstances. (a) The commanding officer shall keep under restraint or surveillance, as necessary, any person... circumstances within the command, and shall immediately initiate an investigation. (b) Should an investigation...

  12. 32 CFR 700.809 - Persons found under incriminating circumstances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... The Commanding Officer Commanding Officers in General § 700.809 Persons found under incriminating circumstances. (a) The commanding officer shall keep under restraint or surveillance, as necessary, any person... circumstances within the command, and shall immediately initiate an investigation. (b) Should an investigation...

  13. About USNORTHCOM

    Science.gov Websites

    defends America's homeland - protecting our people, national power, and freedom of action. USNORTHCOM's . The commander of USNORTHCOM also commands the North American Aerospace Defense Command (NORAD), a bi destruction. The command provides assistance to a Primary Agency when tasked by DOD. Per the Posse Comitatus

  14. Children's Reasoning about Three Authority Attributes: Adult Status, Knowledge, and Social Position.

    ERIC Educational Resources Information Center

    Laupa, Marta

    1991-01-01

    Assessed children's evaluations of individuals' commands and children's choices between individuals who gave opposing commands. Subjects weighted individuals' social position and knowledge more heavily than adult status in judging the legitimacy of commands and choosing between individuals giving opposing commands. (BC)

  15. 78 FR 25974 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Human Resources Command, Reclassification Management Branch, 2461 Eisenhower Avenue, Alexandria, VA... Files. System location: Commander, U.S. Army Human Resources Command, ATTN: AHRC-PED-A, 2461 Eisenhower... Human Resources Command, ATTN: AHRC-PED-A, 2461 Eisenhower Avenue, Alexandria, VA 23321-0482 for Army...

  16. Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.

    PubMed

    Arslan, Salim; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2013-06-01

    More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms.

  17. [The detector, the command neuron and plastic convergence].

    PubMed

    Sokolov, E N

    1977-01-01

    The paper deals with the structure of detectors, the function of commanding neurones and the problem of relationship between detectors and commanding neurons. An example of hierarchial organization of detectors is provided by the colour analyser in which a layer of receptors, a layer of opponent neurones and a layer of colour-selective detectors are singled out. The colour detector is selectively sensitive to a certain combination of excitations at the input. If the detector is selectively activated by a certain combination of excitations at the input, the selective activation of the commanding neurone through a pool of motoneurones brings about a reaction at the output, specific in its organization. The reflexogenic zone of the reaction is determined by the detectors which converge on the commanding neurone controlling the given reaction. The plasticity of the reaction results from a plastic convergence of the detectors on the commanding neurone which controls the reaction. This comprises selective switching off the detectors from the commanding neurone (habituation) and connecting the detectors to the commanding neurone (facilitation).

  18. Evaluation of head orientation and neck muscle EMG signals as three-dimensional command sources.

    PubMed

    Williams, Matthew R; Kirsch, Robert F

    2015-03-05

    High cervical spinal cord injuries result in significant functional impairments and affect both the injured individual as well as their family and care givers. To help restore function to these individuals, multiple user interfaces are available to enable command and control of external devices. However, little work has been performed to assess the 3D performance of these interfaces. We investigated the performance of eight human subjects in using three user interfaces (head orientation, EMG from muscles of the head and neck, and a three-axis joystick) to command the endpoint position of a multi-axis robotic arm within a 3D workspace to perform a novel out-to-center 3D Fitts' Law style task. Two of these interfaces (head orientation, EMG from muscles of the head and neck) could realistically be used by individuals with high tetraplegia, while the joystick was evaluated as a standard of high performance. Performance metrics were developed to assess the aspects of command source performance. Data were analyzed using a mixed model design ANOVA. Fixed effects were investigated between sources as well as for interactions between index of difficulty, command source, and the five performance measures used. A 5% threshold for statistical significance was used in the analysis. The performances of the three command interfaces were rather similar, though significant differences between command sources were observed. The apparent similarity is due in large part to the sequential command strategy (i.e., one dimension of movement at a time) typically adopted by the subjects. EMG-based commands were particularly pulsatile in nature. The use of sequential commands had a significant impact on each command source's performance for movements in two or three dimensions. While the sequential nature of the commands produced by the user did not fit with Fitts' Law, the other performance measures used were able to illustrate the properties of each command source. Though pulsatile, given the overall similarity between head orientation and the EMG interface, (which also could be readily included in a future implanted neuroprosthesis) the use of EMG as a command source for controlling an arm in 3D space is an attractive choice.

  19. 32 CFR 700.810 - Rules for visits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.810 Rules for visits. (a) Commanding officers are responsible for the control of visitors to their commands and shall comply with the relevant provisions of Department of the...

  20. Commander Wilcutt works at the commander's workstation during STS-106

    NASA Image and Video Library

    2000-09-11

    STS106-352-009 (8-20 September 2000) --- Astronaut Terrence W. Wilcutt, STS-106 mission commander, performs a firing of the reaction control system on the flight deck of the Space Shuttle Atlantis. Earth’s horizon is visible through the commander’s window.

  1. 32 CFR 700.834 - Care of ships, aircraft, vehicles and their equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... The Commanding Officer Commanding Officers in General § 700.834 Care of ships, aircraft, vehicles and their equipment. The commanding officer shall cause such inspections and tests to be made and procedures..., vehicle, and their equipment assigned to his or her command. ...

  2. 32 CFR 700.834 - Care of ships, aircraft, vehicles and their equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... The Commanding Officer Commanding Officers in General § 700.834 Care of ships, aircraft, vehicles and their equipment. The commanding officer shall cause such inspections and tests to be made and procedures..., vehicle, and their equipment assigned to his or her command. ...

  3. 32 CFR 700.834 - Care of ships, aircraft, vehicles and their equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... The Commanding Officer Commanding Officers in General § 700.834 Care of ships, aircraft, vehicles and their equipment. The commanding officer shall cause such inspections and tests to be made and procedures..., vehicle, and their equipment assigned to his or her command. ...

  4. 32 CFR 700.810 - Rules for visits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.810 Rules for visits. (a) Commanding officers are responsible for the control of visitors to their commands and shall comply with the relevant provisions of Department of the...

  5. 32 CFR 700.811 - Dealers, tradesmen, and agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.811 Dealers, tradesmen, and agents. (a) In general, dealers or tradesmen or their agents shall not be admitted within a command, except as authorized by the commanding...

  6. 32 CFR 700.834 - Care of ships, aircraft, vehicles and their equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... The Commanding Officer Commanding Officers in General § 700.834 Care of ships, aircraft, vehicles and their equipment. The commanding officer shall cause such inspections and tests to be made and procedures..., vehicle, and their equipment assigned to his or her command. ...

  7. 32 CFR 700.810 - Rules for visits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.810 Rules for visits. (a) Commanding officers are responsible for the control of visitors to their commands and shall comply with the relevant provisions of Department of the...

  8. 32 CFR 700.810 - Rules for visits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.810 Rules for visits. (a) Commanding officers are responsible for the control of visitors to their commands and shall comply with the relevant provisions of Department of the...

  9. 32 CFR 700.834 - Care of ships, aircraft, vehicles and their equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... The Commanding Officer Commanding Officers in General § 700.834 Care of ships, aircraft, vehicles and their equipment. The commanding officer shall cause such inspections and tests to be made and procedures..., vehicle, and their equipment assigned to his or her command. ...

  10. 32 CFR 700.811 - Dealers, tradesmen, and agents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.811 Dealers, tradesmen, and agents. (a) In general, dealers or tradesmen or their agents shall not be admitted within a command, except as authorized by the commanding...

  11. 32 CFR 700.811 - Dealers, tradesmen, and agents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.811 Dealers, tradesmen, and agents. (a) In general, dealers or tradesmen or their agents shall not be admitted within a command, except as authorized by the commanding...

  12. 32 CFR 700.810 - Rules for visits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.810 Rules for visits. (a) Commanding officers are responsible for the control of visitors to their commands and shall comply with the relevant provisions of Department of the...

  13. 3 CFR - Unified Command Plan 2011

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 3 The President 1 2012-01-01 2012-01-01 false Unified Command Plan 2011 Presidential Documents Other Presidential Documents Memorandum of April 6, 2011 Unified Command Plan 2011 Memorandum for the... implementation of the revised Unified Command Plan. Consistent with title 10, United States Code, section 161(b...

  14. 32 CFR 700.811 - Dealers, tradesmen, and agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.811 Dealers, tradesmen, and agents. (a) In general, dealers or tradesmen or their agents shall not be admitted within a command, except as authorized by the commanding...

  15. 32 CFR 700.811 - Dealers, tradesmen, and agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.811 Dealers, tradesmen, and agents. (a) In general, dealers or tradesmen or their agents shall not be admitted within a command, except as authorized by the commanding...

  16. 3 CFR - Disestablishment of United States Joint Forces Command

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Command Presidential Documents Other Presidential Documents Memorandum of January 6, 2011 Disestablishment of United States Joint Forces Command Memorandum for the Secretary of Defense Pursuant to my... States Joint Forces Command, effective on a date to be determined by the Secretary of Defense. I direct...

  17. 48 CFR 202.101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Command Air Force Reserve Command Air Combat Command Air Mobility Command Air Education and Training... for their respective agencies (i.e., to perform functions under the FAR or DFARS reserved to a head of... cascading evaluation of offers, means a procedure used in negotiated acquisitions, when market research is...

  18. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Responsibility and authority of commanders. 700.702 Section 700.702 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED... authority of commanders. (a) Commanders shall be responsible for the satisfactory accomplishment of the...

  19. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Responsibility and authority of commanders. 700.702 Section 700.702 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED... authority of commanders. (a) Commanders shall be responsible for the satisfactory accomplishment of the...

  20. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Responsibility and authority of commanders. 700.702 Section 700.702 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED... authority of commanders. (a) Commanders shall be responsible for the satisfactory accomplishment of the...

  1. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Responsibility and authority of commanders. 700.702 Section 700.702 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED... authority of commanders. (a) Commanders shall be responsible for the satisfactory accomplishment of the...

  2. Probability Formulas for Describing Fragment Size Distributions

    DTIC Science & Technology

    1981-06-01

    L)RCDMD-ST 5001 EisenhowerAvenue Alexandria,VA 22333 Commander US Amy MaterielDevelopment G ReadinessCommand ATTN: DRCDL 5001EisenhowerAvenue...Sieling Natick,MA 01762 CoWander US Amy Tank Automotive DevelopmentCommand ATTN: DRDTA-UL Warren,MI 48090 1 1 1 1 1 Organization Commander US Army...ATTN: D.R. Garrison 3 A. Wilner Bethesda,MD 20084 Commander 1 NavalSurfaceWeaponsCenter ATTN: Code TEB, D. W. Colberts ~n Mr. S. Hock Code TX, Dr. W.G

  3. APOLLO XII - ART CONCEPT - COMMAND MODULE

    NASA Image and Video Library

    1969-11-10

    S69-58005 (10 Nov. 1969) --- An artist's concept of the Apollo 12 Command Module's (CM) interior, with the command module pilot at the controls. The Apollo 12 Lunar Module (LM) and a portion of the lunar surface are seen out of the window. Astronaut Richard F. Gordon Jr. will maneuver the Apollo 12 Command and Service Modules (CSM) in lunar orbit while astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot, explore the moon.

  4. Reorganizing Geographic Combatant Command Headquarters for Joint Force 2020

    DTIC Science & Technology

    2013-05-01

    Corps General James N. Mattis , U.S. Central Command Commander, before the House Armed Services Committee on March 7, 2012, about the posture of U.S...Prentice Hall, 2002. Legal Organization of Defense. http://www.ndu.edu/library/pbrc/36L52.pdf (accessed January 21, 2013). 99 Mattis , James N...Statement of U.S. Marine Corps General James N. Mattis , U.S. Central Command Commander, before the House Armed Services Committee on March 7, 2012

  5. The Combat Vehicle Command and Control System. Combat Performance of Armor Battalions Using Interactive Simulation

    DTIC Science & Technology

    1994-01-31

    ncluded the Commander’s Independent Thermal Viewer and a Command and Control display. Using 1 tank simulators in the Mounted Warfare Test Bed at Fort...CCD), the Commander’s Independent Thermal Viewer (CITV), and digital TOC workstations. Using autoloading tank simulators in the Mounted Warfare Test...identifying ways that the CVCC system might best benefit the battlefield commander, and potential modifications to mounted warfare TTPs. Another area of

  6. Assessment of Arms, Ammunition, and Explosives Accountability and Control; Security Assistance; and Sustainment for the Afghan National Security Forces

    DTIC Science & Technology

    2008-10-24

    COMMANDER, U.S. ARMY MATERIAL COMMAND LOGISTICS SUPPORT ACTIVITY Department of Defense Office of Inspector General Report No. SPO-2009...report the serial numbers of weapons it controlled to the DoD SA/LW Registry maintained by the U.S. Army Material Command Logistics Support... Material Command Logistics Support Activity assist the Combined Security Transition Command- Afghanistan in reporting serial numbers for U.S.-supplied

  7. Predicting compliance with command hallucinations: anger, impulsivity and appraisals of voices' power and intent.

    PubMed

    Bucci, Sandra; Birchwood, Max; Twist, Laura; Tarrier, Nicholas; Emsley, Richard; Haddock, Gillian

    2013-06-01

    Command hallucinations are experienced by 33-74% of people who experience voices, with varying levels of compliance reported. Compliance with command hallucinations can result in acts of aggression, violence, suicide and self-harm; the typical response however is non-compliance or appeasement. Two factors associated with such dangerous behaviours are anger and impulsivity, however few studies have examined their relationship with compliance to command hallucinations. The current study aimed to examine the roles of anger and impulsivity on compliance with command hallucinations in people diagnosed with a psychotic disorder. The study was a cross-sectional design and included individuals who reported auditory hallucinations in the past month. Subjects completed a variety of self-report questionnaire measures. Thirty-two people experiencing command hallucinations, from both in-patient and community settings, were included. The tendency to appraise the voice as powerful, to be impulsive, to experience anger and to regulate anger were significantly associated with compliance with command hallucinations to do harm. Two factors emerged as significant independent predictors of compliance with command hallucinations; omnipotence and impulsivity. An interaction between omnipotence and compliance with commands, via a link with impulsivity, is considered and important clinical factors in the assessment of risk when working with clients experiencing command hallucinations are recommended. The data is highly suggestive and warrants further investigation with a larger sample. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Factors affecting compliance and resistance to auditory command hallucinations: perceptions of a clinical population.

    PubMed

    Barrowcliff, Alastair L; Haddock, Gillian

    2010-12-01

    Elements of voice content and characteristics of a hallucinatory voice are considered to be associated with compliance and resistance to auditory command hallucinations. However, a need for further exploration of such features remains. To explore the associations across different types of commands (benign, self-harm, harm-other) with a range of symptom measures and a trait measure of expressed compliance with compliance to the most recent command and command hallucinations over the previous 28 days. Participants meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for schizophrenia or schizoaffective disorder, with auditory hallucinations in the previous 28 days were screened. Where commands were reported a full-assessment of positive symptoms, social-rank, beliefs about voices and trait compliance was completed. Compliance with the last self-harm command was associated with elevated voice malevolence, heightened symptom presentation and perceived consequences for non-compliance. Compliance with the last harm-other command was associated with elevated symptom severity, higher perceived consequences for non-compliance and higher levels of voice social rank. However, these associations were not maintained for compliance during the previous 28 days. Findings indicate the importance of identifying the content of commands, overall symptom severity and core variables associated with compliance to specific command categories. The temporal stability of established mediating variables needs further examination.

  9. Command system output bit verification

    NASA Technical Reports Server (NTRS)

    Odd, C. W.; Abbate, S. F.

    1981-01-01

    An automatic test was developed to test the ability of the deep space station (DSS) command subsystem and exciter to generate and radiate, from the exciter, the correct idle bit sequence for a given flight project or to store and radiate received command data elements and files without alteration. This test, called the command system output bit verification test, is an extension of the command system performance test (SPT) and can be selected as an SPT option. The test compares the bit stream radiated from the DSS exciter with reference sequences generated by the SPT software program. The command subsystem and exciter are verified when the bit stream and reference sequences are identical. It is a key element of the acceptance testing conducted on the command processor assembly (CPA) operational program (DMC-0584-OP-G) prior to its transfer from development to operations.

  10. Land Ahoy! Understanding Submarine Command and Control During the Completion of Inshore Operations.

    PubMed

    Roberts, Aaron P J; Stanton, Neville A; Fay, Daniel

    2017-12-01

    The aim of this study was to use multiple command teams to provide empirical evidence for understanding communication flow, information pertinence, and tasks undertaken in a submarine control room when completing higher- and lower-demand inshore operation (INSO) scenarios. The focus of submarine operations has changed, and submarines are increasingly required to operate in costal littoral zones. However, submarine command team performance during INSO is not well understood, particularly from a sociotechnical systems perspective. A submarine control-room simulator was built. The creation of networked workstations allowed a team of nine operators to perform tasks completed by submarine command teams during INSO. The Event Analysis of Systematic Teamwork method was used to model the social, task, and information networks and to describe command team performance. Ten teams were recruited for the study, affording statistical comparisons of how command-team roles and level of demand affected performance. Results indicated that the submarine command-team members are required to rapidly integrate sonar and visual data as the periscope is used, periodically, in a "duck-and-run" fashion, to maintain covertness. The fusion of such information is primarily completed by the operations officer (OPSO), with this operator experiencing significantly greater demand than any other operator. The OPSO was a bottleneck in the command team when completing INSO, experiencing similar load in both scenarios, suggesting that the command team may benefit from data synthesis tasks being more evenly distributed within the command team. The work can inform future control-room design and command-team ways of working by identifying bottlenecks in terms of information and task flow between operators.

  11. 46 CFR 147.5 - Commandant (CG-522); address.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Commandant (CG-522); address. 147.5 Section 147.5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.5 Commandant (CG-522); address. Commandant (CG-522) is the Office of Operating...

  12. 46 CFR 147.5 - Commandant (CG-OES); address.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Commandant (CG-OES); address. 147.5 Section 147.5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.5 Commandant (CG-OES); address. Commandant (CG-ENG) is the Office of Design and...

  13. 46 CFR 147.5 - Commandant (CG-522); address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Commandant (CG-522); address. 147.5 Section 147.5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.5 Commandant (CG-522); address. Commandant (CG-522) is the Office of Operating...

  14. 46 CFR 147.5 - Commandant (CG-OES); address.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Commandant (CG-OES); address. 147.5 Section 147.5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.5 Commandant (CG-OES); address. Commandant (CG-ENG) is the Office of Design and...

  15. 46 CFR 147.5 - Commandant (CG-OES); address.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Commandant (CG-OES); address. 147.5 Section 147.5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.5 Commandant (CG-OES); address. Commandant (CG-OES) is the Office of Operating...

  16. ARMY CYBER STRUCTURE ALIGNMENT

    DTIC Science & Technology

    2016-02-16

    Director of Navy Staff Vice Admiral J. M. Bird , Missions, Functions, and Tasks of Commander, U.S. Fleet Cyber Command and Commander, U.S. Tenth Fleet...www.doncio.navy.mil/ContentView.aspx?ID=649. Director of Navy Staff Vice Admiral J. M. Bird , Missions, Functions, and Tasks of Commander, U.S. Fleet Cyber

  17. 32 CFR 215.7 - Command relationships.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Command relationships. 215.7 Section 215.7...) MISCELLANEOUS EMPLOYMENT OF MILITARY RESOURCES IN THE EVENT OF CIVIL DISTURBANCES § 215.7 Command relationships... specified commands will be transferred by the JCS to their respective military departments, when directed by...

  18. 32 CFR 700.828 - Search by foreign authorities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.828 Search by foreign authorities. (a) The commanding officer shall not permit a ship under his or her command to be searched on any pretense whatsoever by any person...

  19. 49 CFR 175.33 - Shipping paper and notification of pilot-in-command.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...

  20. 14 CFR 91.531 - Second in command requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Second in command requirements. 91.531...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.531 Second in command... following airplanes without a pilot who is designated as second in command of that airplane: (1) A large...

  1. 32 CFR 215.7 - Command relationships.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Command relationships. 215.7 Section 215.7...) MISCELLANEOUS EMPLOYMENT OF MILITARY RESOURCES IN THE EVENT OF CIVIL DISTURBANCES § 215.7 Command relationships... specified commands will be transferred by the JCS to their respective military departments, when directed by...

  2. 32 CFR 700.828 - Search by foreign authorities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.828 Search by foreign authorities. (a) The commanding officer shall not permit a ship under his or her command to be searched on any pretense whatsoever by any person...

  3. 32 CFR 700.828 - Search by foreign authorities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.828 Search by foreign authorities. (a) The commanding officer shall not permit a ship under his or her command to be searched on any pretense whatsoever by any person...

  4. 76 FR 67425 - Availability of the Fiscal Year 2010 United States Special Operations Command (USSOCOM) Inventory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... Special Operations Command (USSOCOM) Inventory List of Contracts for Services; Correction AGENCY: United States Special Operations Command (USSOCOM), Department of Defense (DoD). ACTION: Notice of availability... Fiscal Year 2010 United States Special Operations Command (USSOCOM) Inventory List of Contracts for...

  5. 32 CFR 755.7 - Action where offenders are members of different commands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... commands. 755.7 Section 755.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of different commands. (a) Action by common superior. The... over the commands to which the alleged offenders are assigned. That officer shall ensure the alleged...

  6. 14 CFR 91.531 - Second in command requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Second in command requirements. 91.531...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.531 Second in command... following airplanes without a pilot who is designated as second in command of that airplane: (1) A large...

  7. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  8. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  9. 32 CFR 700.828 - Search by foreign authorities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.828 Search by foreign authorities. (a) The commanding officer shall not permit a ship under his or her command to be searched on any pretense whatsoever by any person...

  10. 32 CFR 755.7 - Action where offenders are members of different commands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commands. 755.7 Section 755.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of different commands. (a) Action by common superior. The... over the commands to which the alleged offenders are assigned. That officer shall ensure the alleged...

  11. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  12. 32 CFR 700.828 - Search by foreign authorities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.828 Search by foreign authorities. (a) The commanding officer shall not permit a ship under his or her command to be searched on any pretense whatsoever by any person...

  13. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  14. 14 CFR 91.531 - Second in command requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Second in command requirements. 91.531...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.531 Second in command... following airplanes without a pilot who is designated as second in command of that airplane: (1) A large...

  15. 49 CFR 175.33 - Shipping paper and notification of pilot-in-command.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...

  16. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  17. 49 CFR 175.33 - Shipping paper and notification of pilot-in-command.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...

  18. 49 CFR 175.33 - Shipping paper and notification of pilot-in-command.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...

  19. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  20. Astronaut John Young in Command Module Simulator during Apollo Simulation

    NASA Image and Video Library

    1968-01-15

    S68-15979 (15 Jan. 1968) --- Astronaut John W. Young, command module pilot, inside the Command Module Simulator in Building 5 during an Apollo Simulation. Out of view are astronaut Thomas P. Stafford (on the left), commander; and astronaut Eugene A. Cernan (on the right), lunar module pilot.

  1. 14 CFR 91.531 - Second in command requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Second in command requirements. 91.531...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.531 Second in command... following airplanes without a pilot who is designated as second in command of that airplane: (1) A large...

  2. 32 CFR 215.7 - Command relationships.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Command relationships. 215.7 Section 215.7...) MISCELLANEOUS EMPLOYMENT OF MILITARY RESOURCES IN THE EVENT OF CIVIL DISTURBANCES § 215.7 Command relationships... specified commands will be transferred by the JCS to their respective military departments, when directed by...

  3. 32 CFR 215.7 - Command relationships.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Command relationships. 215.7 Section 215.7...) MISCELLANEOUS EMPLOYMENT OF MILITARY RESOURCES IN THE EVENT OF CIVIL DISTURBANCES § 215.7 Command relationships... specified commands will be transferred by the JCS to their respective military departments, when directed by...

  4. 32 CFR 755.7 - Action where offenders are members of different commands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... commands. 755.7 Section 755.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of different commands. (a) Action by common superior. The... over the commands to which the alleged offenders are assigned. That officer shall ensure the alleged...

  5. 14 CFR 91.531 - Second in command requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Second in command requirements. 91.531...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.531 Second in command... following airplanes without a pilot who is designated as second in command of that airplane: (1) A large...

  6. 32 CFR 215.7 - Command relationships.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Command relationships. 215.7 Section 215.7...) MISCELLANEOUS EMPLOYMENT OF MILITARY RESOURCES IN THE EVENT OF CIVIL DISTURBANCES § 215.7 Command relationships... specified commands will be transferred by the JCS to their respective military departments, when directed by...

  7. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  8. 32 CFR 755.7 - Action where offenders are members of different commands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... commands. 755.7 Section 755.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of different commands. (a) Action by common superior. The... over the commands to which the alleged offenders are assigned. That officer shall ensure the alleged...

  9. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  10. 32 CFR 755.7 - Action where offenders are members of different commands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commands. 755.7 Section 755.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of different commands. (a) Action by common superior. The... over the commands to which the alleged offenders are assigned. That officer shall ensure the alleged...

  11. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  12. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  13. 49 CFR 175.33 - Shipping paper and notification of pilot-in-command.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...

  14. 32 CFR 700.705 - Observance of international law.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Observance of international law. 700.705 Section... Other Commanders Titles and Duties of Commanders § 700.705 Observance of international law. At all times, commanders shall observe, and require their commands to observe, the principles of international law. Where...

  15. 32 CFR 700.902 - Eligibility for command at sea.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Eligibility for command at sea. 700.902 Section... Present Contents § 700.902 Eligibility for command at sea. All officers of the line of the Navy, including... deck duties afloat, are eligible for command at sea. ...

  16. 32 CFR 700.902 - Eligibility for command at sea.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Eligibility for command at sea. 700.902 Section... Present Contents § 700.902 Eligibility for command at sea. All officers of the line of the Navy, including... deck duties afloat, are eligible for command at sea. ...

  17. 32 CFR 700.902 - Eligibility for command at sea.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Eligibility for command at sea. 700.902 Section... Present Contents § 700.902 Eligibility for command at sea. All officers of the line of the Navy, including... deck duties afloat, are eligible for command at sea. ...

  18. 32 CFR 700.902 - Eligibility for command at sea.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Eligibility for command at sea. 700.902 Section... Present Contents § 700.902 Eligibility for command at sea. All officers of the line of the Navy, including... deck duties afloat, are eligible for command at sea. ...

  19. 32 CFR 700.902 - Eligibility for command at sea.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Eligibility for command at sea. 700.902 Section... Present Contents § 700.902 Eligibility for command at sea. All officers of the line of the Navy, including... deck duties afloat, are eligible for command at sea. ...

  20. 32 CFR 700.701 - Titles of commanders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Titles of commanders. 700.701 Section 700.701 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS... “Geographic Fleet Commander.” (b) The commander of each other organization of units of the operating forces of...

  1. 46 CFR 188.10-19 - Commandant.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Commandant. 188.10-19 Section 188.10-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-19 Commandant. This term means the Commandant of the...

  2. 46 CFR 188.10-19 - Commandant.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Commandant. 188.10-19 Section 188.10-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-19 Commandant. This term means the Commandant of the...

  3. 46 CFR 188.10-19 - Commandant.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Commandant. 188.10-19 Section 188.10-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-19 Commandant. This term means the Commandant of the...

  4. 46 CFR 188.10-19 - Commandant.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Commandant. 188.10-19 Section 188.10-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-19 Commandant. This term means the Commandant of the...

  5. 46 CFR 188.10-19 - Commandant.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Commandant. 188.10-19 Section 188.10-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-19 Commandant. This term means the Commandant of the...

  6. 32 CFR 700.705 - Observance of international law.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Observance of international law. 700.705 Section... Other Commanders Titles and Duties of Commanders § 700.705 Observance of international law. At all times, commanders shall observe, and require their commands to observe, the principles of international law. Where...

  7. 32 CFR 766.8 - Procedure for review, approval, execution and distribution of aviation facility licenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CIVIL AIRCRAFT § 766.8 Procedure for review, approval, execution and distribution of aviation facility... license and Certificate of Insurance to the Commander, Naval Facilities Engineering Command or his... Facilities Engineering Command or his designated representative. (1) Upon receipt, the Commander, Naval...

  8. 32 CFR Appendix B to Part 518 - Addressing FOIA Requests

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... command, installation, or organization, to the attention of the FOIA Official. (3) Consult AR 25-400-2... installations or organizations as follows: (1) Current publications and records of DA field commands... on active duty and retired personnel—Commander, U.S. Army Human Resources Command, St. Louis, 1...

  9. 32 CFR 700.701 - Titles of commanders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Titles of commanders. 700.701 Section 700.701 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS... “Geographic Fleet Commander.” (b) The commander of each other organization of units of the operating forces of...

  10. 32 CFR 700.701 - Titles of commanders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Titles of commanders. 700.701 Section 700.701 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS... “Geographic Fleet Commander.” (b) The commander of each other organization of units of the operating forces of...

  11. 32 CFR 700.701 - Titles of commanders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Titles of commanders. 700.701 Section 700.701 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS... “Geographic Fleet Commander.” (b) The commander of each other organization of units of the operating forces of...

  12. Contractor Support on the Battlefield -- Increased Reliance Requires Commander’s Attention

    DTIC Science & Technology

    2006-05-16

    combatant commander. The consequence is contractors on the battlefield are governed by contract law , which then begs the question how applicable is... contract law on the battlefield? Command and Control Command and control is critical to our success on the battlefield, yet America’s military has

  13. 46 CFR 30.10-17 - Commandant-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Commandant-TB/ALL. 30.10-17 Section 30.10-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-17 Commandant—TB/ALL. The term Commandant means the Commandant of the Coast Guard. ...

  14. 46 CFR 30.10-17 - Commandant-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Commandant-TB/ALL. 30.10-17 Section 30.10-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-17 Commandant—TB/ALL. The term Commandant means the Commandant of the Coast Guard. ...

  15. 46 CFR 30.10-17 - Commandant-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Commandant-TB/ALL. 30.10-17 Section 30.10-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-17 Commandant—TB/ALL. The term Commandant means the Commandant of the Coast Guard. ...

  16. 46 CFR 30.10-17 - Commandant-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Commandant-TB/ALL. 30.10-17 Section 30.10-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-17 Commandant—TB/ALL. The term Commandant means the Commandant of the Coast Guard. ...

  17. 46 CFR 30.10-17 - Commandant-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Commandant-TB/ALL. 30.10-17 Section 30.10-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-17 Commandant—TB/ALL. The term Commandant means the Commandant of the Coast Guard. ...

  18. The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat.

    PubMed

    Cavdar, Safiye; Onat, Filiz Y; Cakmak, Yusuf Ozgür; Yananli, Hasan R; Gülçebi, Medine; Aker, Rezzan

    2008-03-01

    Most dorsal thalamic nuclei send axons to specific areas of the neocortex and to specific sectors of the thalamic reticular nucleus; the neocortex then sends reciprocal connections back to the same thalamic nucleus, directly as well indirectly through a relay in the thalamic reticular nucleus. This can be regarded as a 'canonical' circuit of the sensory thalamus. For the pathways that link the thalamus and the hippocampal formation, only a few comparable connections have been described. The reuniens nucleus of the thalamus sends some of its major cortical efferents to the hippocampal formation. The present study shows that cells of the hippocampal formation as well as cells in the reuniens nucleus are retrogradely labelled following injections of horseradish peroxidase or fluoro-gold into the rostral part of the thalamic reticular nucleus in the rat. Within the hippocampal formation, labelled neurons were localized in the subiculum, predominantly on the ipsilateral side, with fewer neurons labelled contralaterally. Labelled neurons were seen in the hippocampal formation and nucleus reuniens only after injections made in the rostral thalamic reticular nucleus (1.6-1.8 mm caudal to bregma). In addition, the present study confirmed the presence of afferent connections to the rostral thalamic reticular nucleus from cortical (cingulate, orbital and infralimbic, retrosplenial and frontal), midline thalamic (paraventricular, anteromedial, centromedial and mediodorsal thalamic nuclei) and brainstem structures (substantia nigra pars reticularis, ventral tegmental area, periaqueductal grey, superior vestibular and pontine reticular nuclei). These results demonstrate a potential for the thalamo-hippocampal circuitry to influence the functional roles of the thalamic reticular nucleus, and show that thalamo-hippocampal connections resemble the circuitry that links the sensory thalamus and neocortex.

  19. The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat

    PubMed Central

    Çavdar, Safiye; Onat, Filiz Y; Çakmak, Yusuf Özgür; Yananli, Hasan R; Gülçebi, Medine; Aker, Rezzan

    2008-01-01

    Most dorsal thalamic nuclei send axons to specific areas of the neocortex and to specific sectors of the thalamic reticular nucleus; the neocortex then sends reciprocal connections back to the same thalamic nucleus, directly as well indirectly through a relay in the thalamic reticular nucleus. This can be regarded as a ‘canonical’ circuit of the sensory thalamus. For the pathways that link the thalamus and the hippocampal formation, only a few comparable connections have been described. The reuniens nucleus of the thalamus sends some of its major cortical efferents to the hippocampal formation. The present study shows that cells of the hippocampal formation as well as cells in the reuniens nucleus are retrogradely labelled following injections of horseradish peroxidase or fluoro-gold into the rostral part of the thalamic reticular nucleus in the rat. Within the hippocampal formation, labelled neurons were localized in the subiculum, predominantly on the ipsilateral side, with fewer neurons labelled contralaterally. Labelled neurons were seen in the hippocampal formation and nucleus reuniens only after injections made in the rostral thalamic reticular nucleus (1.6–1.8 mm caudal to bregma). In addition, the present study confirmed the presence of afferent connections to the rostral thalamic reticular nucleus from cortical (cingulate, orbital and infralimbic, retrosplenial and frontal), midline thalamic (paraventricular, anteromedial, centromedial and mediodorsal thalamic nuclei) and brainstem structures (substantia nigra pars reticularis, ventral tegmental area, periaqueductal grey, superior vestibular and pontine reticular nuclei). These results demonstrate a potential for the thalamo-hippocampal circuitry to influence the functional roles of the thalamic reticular nucleus, and show that thalamo-hippocampal connections resemble the circuitry that links the sensory thalamus and neocortex. PMID:18221482

  20. Effects of Nicotine and Nicotinic Antagonists on the Acoustic Startle Response and on Pre-Pulse Inhibition in Rats

    DTIC Science & Technology

    1996-06-07

    the auditory nerve, the ventral cochlear nucleus , nuclei of the lateral lemniscus, nucleus reticularis pontis caudalis, spinal neuron, and lower... nucleus , nuclei of the lateral lemniscus, nucleus reticularis pontis caudalis, hippocampus, and striatum (Davis, et al., 1982; Swerdlow, et aI, 1992...Davis, M. (1985) Cocaine effects on acoustic startle and startle elicited electrically from cochlear nucleus . P§ychQpharmacology, 87, 396-399 James

  1. Double dissociation in the neural substrates of acute opiate dependence as measured by withdrawal-potentiated startle.

    PubMed

    Harris, A C; Atkinson, D M; Aase, D M; Gewirtz, J C

    2006-01-01

    The basolateral amygdala and portions of the "extended" amygdala (i.e. central nucleus of the amygdala, bed nucleus of the stria terminalis and shell of the nucleus accumbens) have been implicated in the aversive aspects of withdrawal from chronic opiate administration. Given that similar withdrawal signs are observed following a single opiate exposure, these structures may also play a role in "acute opiate dependence." In the current study, drug-naïve rats underwent naloxone-precipitated withdrawal from acute morphine (10 mg/kg) exposure on two successive days. On either the first or second day of testing, the basolateral amygdala, central nucleus of the amygdala, bed nucleus of the stria terminalis, or nucleus accumbens was temporarily inactivated immediately prior to naloxone injection by microinfusion of the glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo(f)quinoxaline-7-sulfonamide (3 microg/0.5 microl). On the first day, inactivation of the basolateral amygdala, central nucleus of the amygdala, or bed nucleus of the stria terminalis, but not the nucleus accumbens blocked withdrawal-potentiated startle, a behavioral measure of the anxiogenic effects of withdrawal. On the second day, inactivation of the nucleus accumbens, but not the basolateral amygdala, central nucleus of the amygdala, or bed nucleus of the stria terminalis disrupted the withdrawal effect. Effects of structural inactivations on withdrawal-potentiated startle were not influenced by differences in withdrawal severity on the two days of testing. A fear-potentiated startle procedure provided functional confirmation of correct cannulae placement in basolateral amygdale- and central nucleus of the amygdala-implanted animals. Our findings indicate a double dissociation in the neural substrates of withdrawal-potentiated startle following a first versus second morphine exposure, and may reflect a reorganization of the neural circuitry underlying the expression of withdrawal-induced negative affect during the earliest stages of opiate dependence.

  2. TOPEX NASA Altimeter Operations Handbook, September 1992. Volume 6

    NASA Technical Reports Server (NTRS)

    Hancock, David W., III; Hayne, George S.; Purdy, Craig L.; Bull, James B.; Brooks, Ronald L.

    2003-01-01

    This operations handbook identifies the commands for the NASA radar altimeter for the TOPEX/Poseidon spacecraft, defines the functions of these commands, and provides supplemental reference material for use by the altimeter operations personnel. The main emphasis of this document is placed on command types, command definitions, command sequences, and operational constraints. Additional document sections describe uploadable altimeter operating parameters, the telemetry stream data contents (for both the science and the engineering data), the Missions Operations System displays, and the spacecraft and altimeter health monitors.

  3. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).

  4. Centralized Command, Distributed Control, and Decentralized Execution - a Command and Control Solution to US Air Force A2/AD Challenges

    DTIC Science & Technology

    2017-04-28

    Regional Air Component Commander (the Leader) 5 CC-DC- DE Solution to A2/AD – Distributed Theater Air Control System (the System) 9 CC-DC- DE ... Control , Decentralized Execution” to a new framework of “Centralized Command, Distributed Control , and Decentralized Execution” (CC-DC- DE ).4 5 This...USAF C2 challenges in A2/AD environments describes a three-part Centralized Command, Distributed Control , and Decentralized Execution (CC-DC- DE

  5. Assessment of the Combat Developer’s Role in Post-Deployment Software Support (PDSS) 30 June 1980 - 28 February 1981. Volume IV.

    DTIC Science & Technology

    1981-01-31

    Intelligence and Security Command (INSCOM), the US Army Communications Command (USACC), and the US Army Computer Systems Command (USACSC). (3...responsibilities of the US-Army Intelligence and Security Command (INSCOM), the US Army Communications Command (USACC), and the US Army Computer Systems...necessary to sustain, modify, and improve a deployed system’s computer software, as defined by the User or his representative. It includes evaluation

  6. Short-Time Mass Variation in Natural Atmospheric Dust.

    DTIC Science & Technology

    1979-11-01

    many years. When the Krakatoa volcano in the South Pacific erupted in 1883, ejecting tons of dust into the high atmosphere, people from many parts of the...Flight Center, AL 35812 Commander Naval Ocean Systems Center (Code 4473) Commander ATTN: Technical Library US Army Missile R&D Command San Diego, CA...PO Box 67 ATTN: DRDMI-TBD APO San Francisco, CA 96555 US Army Missile R&D Command Redstone Arsenal, AL 35809 Director NOAA/ERL/APCL R31 Commander RB3

  7. Photonuclear absorption cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Neutron multiplicity in photonuclear reactions; invariance of classical electromagnetism; momentum transfer models in ion collisions; cosmic ray electromagnetic interactions; quadrupole excitations in nucleus-nucleus collisons and Y-89 interactions with relativistic nuclei; and the Weizsacker-Williams theory for nucleon emission via electromagnetic excitations in nucleus-nucleus collisions are discussed.

  8. Anatomy of the human hypothalamus (chiasmatic and tuberal region).

    PubMed

    Braak, H; Braak, E

    1992-01-01

    The hypothalamus sensu stricto consists of the chiasmatic, the tuberal and the mamillary region. The present study is confined to the poorly myelinated chiasmatic and tuberal region. Both regions harbor many nuclear grays with relatively clear-cut boundaries embedded in an ill-defined nerve cell assembly referred to as the hypothalamic gray. Prominent components of the chiasmatic region are the magnocellular neurosecretory complex (supraoptic nucleus, paraventricular nucleus, accessory neurosecretory nucleus), the sexually dimorphic intermediate nucleus, the suprachiasmatic and retrochiasmatic nuclei. The dominating structure of the tuberal region is the complex of the ventromedial, posteromedial and dorsomedial nuclei supplemented by the periventricular and infundibular nuclei. Lateral portions of the tuber cinereum harbor the lateral tuberal nucleus and the tuberomamillary nucleus. The lateral tuberal nucleus exhibits pronounced cell loss in Huntington's chorea and is also severely involved in cases of dementia with argyrophilic grains. The large nerve cells of the tuberomamillary nucleus show particularly severe affection in both Alzheimer's (intraneuronal neurofibrillary changes) and Parkinson's disease (Lewy bodies).

  9. [Magnetic resonance spectroscopy in lenticular nucleus of Bipolar II disorder and its relation with cognitive function].

    PubMed

    Zhang, Haiyan; Wen, Shenglin; Wang, Jihui; Cheng, Minfeng; Wang, Hong

    2015-03-10

    To explore the magnetic resonance spectroscopy characteristics of lenticular nucleus in Bipolar II disorder and its relation with cognitive function. Thirty Bipolar II disorder patients in hospital from 2012 September to 2013 April and twenty healthy controls were evaluated with Multi-Voxel 1H-MRS scans on lenticular nucleus to assess the NAA, Cho, Cr and MI. All subjects were assessed for attention using the Stroop Test and executive function by Wisconsin card sorting test. NAA, Cho, Cr in right lenticular nucleus and Cr in left lenticular nucleus were lower than healthy controls (P < 0.05). The patients showed significant cognitive impairment in all aspects of Stroop Test and Wisconsin card sorting test (P < 0.05). NAA in right lenticular nucleus was positively correlated with correct number of Stroop-CW. Neural dysfunction in right lenticular nucleus of Bipolar II disorder may influence attention function. Cellular energy metabolism rate was reduced in bilateral lenticular nucleus.

  10. Afferent projections to the mammillary complex of the rat, with special reference to those from surrounding hypothalamic regions

    NASA Technical Reports Server (NTRS)

    Gonzalo-Ruiz, A.; Alonso, A.; Sanz, J. M.; Llinas, R. R.

    1992-01-01

    To better understand the functional organization of the mammillary nuclei, we investigated the afferents to this nuclear complex in the rat with iontophoretically injected wheat germ agglutinin conjugated to horseradish peroxidase. Particular attention was paid to tracing local hypothalamic afferents to these nuclei. Injections into the medial mammillary nucleus (MMN) revealed strong projections from the subicular region, and weaker projections from the prefrontal cortex, medial septum, and the nucleus of the diagonal band of Broca. Other descending subcortical projections to the MMN arise from the anterior and the lateral hypothalamic area, the medial preoptic area, and the bed nucleus of the stria terminalis. Ascending afferents to the MMN were found to originate in the raphe and various tegmental nuclei. Following all injections into the MMN, labelled neurons were found in nuclei surrounding the mammillary body. The lateral and posterior subdivisions of the tuberomammillary nucleus projected mainly to the pars medianus and pars medialis of the MMN. The dorsal and ventral premammillary nuclei projected to the pars lateralis of the MMN. The supramammillary nucleus at rostral level had a small projection to the pars medialis and lateralis of the MMN. However, the most obvious projection from this nucleus was to the pars posterior of the MMN, chiefly from the lateral part of the caudal supramammillary nucleus. Injections into the lateral mammillary nucleus revealed inputs from the presubiculum, parasubiculum, septal region, dorsal tegmental nucleus, dorsal raphe nucleus, and periaqueductal gray. In addition, the lateral mammillary nucleus was found to receive a moderate projection from the medial part of the supramammillary nucleus and stronger projections from the lateral part of the caudal supramammillary nucleus. A very light projection was also seen from the lateral and posterior subdivisions of the tuberomammillary nucleus. These findings add to our knowledge of the extensive and complex connectivity of the mammillary nuclei. In particular, the local connections we have demonstrated with the supramammillary and tuberomammillary nuclei indicate the existence of significant local circuits as well as circuits involving more distant brain regions such as the septal nuclei, subiculum, prefrontal cortex, and brain stem tegmentum.

  11. Development of the Macro Command Editing Executive System for Factory Workers-Oriented Programless Visual Inspection System

    NASA Astrophysics Data System (ADS)

    Anezaki, Takashi; Wakitani, Kouichi; Nakamura, Masatoshi; Kubo, Hiroyasu

    Because visual inspection systems are difficult to tune, they create many problems for the kaizen process. This results in increased development costs and time to assure that the inspection systems function properly. In order to improve inspection system development, we designed an easy-tuning system called a “Program-less” visual inspection system. The ROI macro command which consisted of eight kinds of shape recognition macro commands and decision, operation, control commands was built. Furthermore, the macro command editing executive system was developed by the operation of only the GUI without editing source program. The validity of the ROI macro command was proved by the application of 488 places.

  12. Is {sup 276}U a doubly magic nucleus?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liliani, N., E-mail: netta.liliani@gmail.com; Sulaksono, A.

    2016-04-19

    We investigate a possible new doubly magic heavy nucleus by using a relativistic mean-field (RMF) model with the addition of a cross interaction term of omega-rho mesons and an electromagnetic exchange term. We propose that {sup 276}U is a doubly magic nucleus. The evidence for {sup 276}U being a doubly magic nucleus is shown through the two-nucleon gaps, the single-particle energies, and the neutron skin thickness of the nucleus. We have also found that the prediction of {sup 276}U as a doubly magic nucleus by the RMF model is not affected by the inclusion of isoscalar-isovector and electromagnetic exchange couplings.

  13. Low P sub T hadron-nucleus interactions

    NASA Technical Reports Server (NTRS)

    Holynski, R.; Wozniak, K.

    1985-01-01

    The possibility of describing hadron-nucleus (hA) interactions is discussed in terms of a number of independent collisions of the projectile inside the target nucleus. This multiple rescattering may occur on a particle or quark parton level. To investigate the characteristics of hA interactions as a function of antineutrinos advantage is taken of the correlation between the average number antineutrinos of collisions of the projectile inside the nucleus and the number Ng of fast protons ejected from the struck nucleus. The relation antineutrinos vs Ng obtained in antineutrinos was used. For a given target nucleus this allows the selection of interactions occurring at different impact parameters.

  14. Subcortical afferent connections of the amygdala in the monkey

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1980-01-01

    The cells of origin of the afferent connections of the amygdala in the rhesus and squirrel monkeys are determined according to the retrograde axonal transport of the enzyme horseradish peroxidase injected into various quadrants of the amygdala. Analysis of the distribution of enzyme-labeled cells reveals afferent amygdalar connections with the ipsilateral halves of the midline nucleus paraventricularis thalami and both the parvo- and magnocellular parts of the nucleus subparafascicularis in the dorsal thalamus, all the subdivisions of the midline nucleus centralis complex, the nucleus reuniens ventralis and the nucleus interventralis. The largest populations of enzyme-labeled cells in the hypothalamus are found to lie in the middle and posterior parts of the ipsilateral, lateral hypothalamus and the ventromedial hypothalamic nucleus, with scattered cells in the supramammillary and dorsomedial nuclei and the posterior hypothalamic area, Tsai's ventral tegmental area, the rostral and caudal subdivisions of the nucleus linearis in the midbrain and the dorsal raphe nucleus. The most conspicuous subdiencephalic source of amygdalar afferent connections is observed to be the pars lateralis of the nucleus parabrachialis in the dorsolateral pontine tegmentum, with a few labeled cells differentiated from pigmented cells in the locus coeruleus.

  15. Distribution of Neurotensin and Somatostatin-28 (1-12) in the Minipig Brainstem.

    PubMed

    Sánchez, M L; Vecino, E; Coveñas, R

    2016-08-01

    Using an indirect immunoperoxidase technique, an in depth study has been carried out for the first time on the distribution of fibres and cell bodies containing neurotensin and somatostatin-28 (1-12) (SOM) in the minipig brainstem. The animals used were not treated with colchicine. The distribution of neurotensin- and SOM-immunoreactive fibres was seen to be quite similar and was moderate in the minipig brainstem: a close anatomical relationship between both neuropeptides was observed. The distribution of cell bodies containing neurotensin or SOM was quite different and restricted. Cell bodies containing neurotensin were found in four brainstem nuclei: nucleus centralis raphae, nucleus dorsalis raphae, in the pars centralis of the nucleus tractus spinalis nervi trigemini and in the nucleus ventralis raphae. Cell bodies containing SOM were found in six nuclei/regions of the brainstem: nucleus ambiguus, nucleus dorsalis motorius nervi vagus, formatio reticularis, nucleus parabrachialis medialis, nucleus reticularis lateralis and nucleus ventralis raphae. According to the observed anatomical distribution of the immunoreactive structures containing neurotensin or SOM, the peptides could be involved in sleep-waking, nociceptive, gustatory, motor, respiratory and autonomic mechanisms. © 2015 Blackwell Verlag GmbH.

  16. Serotonin projection patterns to the cochlear nucleus.

    PubMed

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the dorsal cochlear nucleus, we concluded that the serotoninergic projection pattern to the cochlear nucleus is divergent and non-specific. Double-labeled fiber segments were also present, but sparse, in the superior olive, localized mainly in periolivary regions; this indicated that the divergence of dorsal and median raphe neurons that extends throughout regions of the cochlear nucleus also extended well beyond the cochlear nucleus to include at least the superior olivary complex as well.

  17. The command of biotechnology and merciful conquest in military opposition.

    PubMed

    Guo, Ji-Wei

    2009-01-01

    Biotechnology has an increasingly extensive use for military purposes. With the upcoming age of biotechnology, military operations are depending more on biotechnical methods. Judging from the evolving law of the theory of command, the command of biotechnology is feasible and inevitable. The report discusses some basic characteristics of modern theories of command, as well as the mature possibility of the command theory of military biotechnology. The evolution of the command theory is closely associated with the development of military medicine. This theory is expected to achieve successes in wars in an ultramicro, nonlethal, reversible, and merciful way and will play an important role in biotechnological identification and orientation, defense and attack, and the maintenance of fighting powers and biological monitoring. The command of military biotechnology has not become a part of the virtual military power yet, but it is an exigent strategic task to construct and perfect this theory.

  18. Torque limit of PM motors for field-weakening region operation

    DOEpatents

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH

    2012-02-14

    The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.

  19. Digital intelligent booster for DCC miniature train networks

    NASA Astrophysics Data System (ADS)

    Ursu, M. P.; Condruz, D. A.

    2017-08-01

    Modern miniature trains are now driven by means of the DCC (Digital Command and Control) system, which allows the human operator or a personal computer to launch commands to each individual train or even to control different features of the same train. The digital command station encodes these commands and sends them to the trains by means of electrical pulses via the rails of the railway network. Due to the development of the miniature railway network, it may happen that the power requirement of the increasing number of digital locomotives, carriages and accessories exceeds the nominal output power of the digital command station. This digital intelligent booster relieves the digital command station from powering the entire railway network all by itself, and it automatically handles the multiple powered sections of the network. This electronic device is also able to detect and process short-circuits and overload conditions, without the intervention of the digital command station.

  20. Computer program for parameterization of nucleus-nucleus electromagnetic dissociation cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.; Badavi, Forooz F.

    1988-01-01

    A computer subroutine parameterization of electromagnetic dissociation cross sections for nucleus-nucleus collisions is presented that is suitable for implementation in a heavy ion transport code. The only inputs required are the projectile kinetic energy and the projectile and target charge and mass numbers.

Top