Sample records for electron backstreaming limit

  1. Magnetic Field Would Reduce Electron Backstreaming in Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2003-01-01

    The imposition of a magnetic field has been proposed as a means of reducing the electron backstreaming problem in ion thrusters. Electron backstreaming refers to the backflow of electrons into the ion thruster. Backstreaming electrons are accelerated by the large potential difference that exists between the ion-thruster acceleration electrodes, which otherwise accelerates positive ions out of the engine to develop thrust. The energetic beam formed by the backstreaming electrons can damage the discharge cathode, as well as other discharge surfaces upstream of the acceleration electrodes. The electron-backstreaming condition occurs when the center potential of the ion accelerator grid is no longer sufficiently negative to prevent electron diffusion back into the ion thruster. This typically occurs over extended periods of operation as accelerator-grid apertures enlarge due to erosion. As a result, ion thrusters are required to operate at increasingly negative accelerator-grid voltages in order to prevent electron backstreaming. These larger negative voltages give rise to higher accelerator grid erosion rates, which in turn accelerates aperture enlargement. Electron backstreaming due to accelerator-gridhole enlargement has been identified as a failure mechanism that will limit ionthruster service lifetime. The proposed method would make it possible to not only reduce the electron backstreaming current at and below the backstreaming voltage limit, but also reduce the backstreaming voltage limit itself. This reduction in the voltage at which electron backstreaming occurs provides operating margin and thereby reduces the magnitude of negative voltage that must be placed on the accelerator grid. Such a reduction reduces accelerator- grid erosion rates. The basic idea behind the proposed method is to impose a spatially uniform magnetic field downstream of the accelerator electrode that is oriented transverse to the thruster axis. The magnetic field must be sufficiently strong to impede backstreaming electrons, but not so strong as to significantly perturb ion trajectories. An electromagnet or permanent magnetic circuit can be used to impose the transverse magnetic field downstream of the accelerator-grid electrode. For example, in the case of an accelerator grid containing straight, parallel rows of apertures, one can apply nearly uniform magnetic fields across all the apertures by the use of permanent magnets of alternating polarity connected to pole pieces laid out parallel to the rows, as shown in the left part of the figure. For low-temperature operation, the pole pieces can be replaced with bar magnets of alternating polarity. Alternatively, for the same accelerator grid, one could use an electromagnet in the form of current-carrying rods laid out parallel to the rows.

  2. Controlling Electron Backstreaming Phenomena Through the Use of a Transverse Magnetic Field

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    DEEP-SPACE mission propulsion requirements can be satisfied by the use of high specific impulse systems such as ion thrusters. For such missions. however. the ion thruster will be required to provide thrust for long periods of time. To meet the long operation time and high-propellant throughput requirements, thruster lifetime must be increased. In general, potential ion thruster failure mechanisms associated with long-duration thrusting can be grouped into four areas: (1) ion optics failure; (2) discharge cathode failure; (3) neutralizer failure; and (4) electron backstreaming caused by accelerator grid aperture enlargement brought on by accelerator grid erosion. The work presented here focuses on electron backstreaming. which occurs when the potential at the center of an accelerator grid aperture is insufficient to prevent the backflow of electrons into the ion thruster. The likelihood of this occurring depends on ion source operation time. plasma density, and grid voltages, as accelerator grid apertures enlarge as a result of erosion. Electrons that enter the gap between the high-voltage screen and accelerator grids are accelerated to the energies approximately equal to the beam voltage. This energetic electron beam (typically higher than 1 kV) can damage not only the ion source discharge cathode assembly. but also any of the discharge surfaces upstream of the ion acceleration optics that the electrons happen to impact. Indeed. past backstreaming studies have shown that near the backstreaming limit, which corresponds to the absolute value of the accelerator grid voltage below which electrons can backflow into the thruster, there is a rather sharp rise in temperature at structures such as the cathode keeper electrode. In this respect operation at accelerator grid voltages near the backstreaming limit is avoided. Generally speaking, electron backstreaming is prevented by operating the accelerator grid at a sufficiently negative voltage to ensure a sufficiently negative aperture center potential. This approach can provide the necessary margin assuming an expected aperture enlargement. Operation at very negative accelerator grid voltages, however, enhances ion charge-exchange and direct impingement erosion of the accelerator grid. The focus of the work presented here is the mitigation of electron backstreaming by the use of a magnetic field. The presence of a magnetic field oriented perpendicular to the thruster axis can significantly decrease the magnitude of the backflowing electron current by significantly reducing the electron diffusion coefficient. Negative ion sources utilize this principle to reduce the fraction of electrons in the negative ion beam. The focus of these efforts has been on the attenuation of electron current diffusing from the discharge plasma into the negative ion extraction optics by placing the transverse magnetic field upstream of the extraction electrodes. In contrast. in the case of positive ion sources such as ion thrusters, the approach taken in the work presented here is to apply the transverse field downstream of the ion extraction system so as to prevent electrons from flowing back into the source. It was found in the work presented here that the magnetic field also reduces the absolute value of the electron backstreaming limit voltage. In this respect. the applied transverse magnetic field provides two mechanisms for electron backstreaming mitigation: (1) electron current attenuation and (2) backstreaming limit voltage shift. Such a shift to less negative voltages can lead to reduced accelerator grid erosion rates.

  3. Measurements and effects of backstreaming ions produced at bremsstrahlung converter target in Dragon-I linear induction accelerator.

    PubMed

    Yu, Haijun; Zhu, Jun; Chen, Nan; Xie, Yutong; Jiang, Xiaoguo; Jian, Cheng

    2010-04-01

    Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10(21)/m(3) and 2-3 mm/micros, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.

  4. Measurements and effects of backstreaming ions produced at bremsstrahlung converter target in Dragon-I linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Yu, Haijun; Zhu, Jun; Chen, Nan; Xie, Yutong; Jiang, Xiaoguo; Jian, Cheng

    2010-04-01

    Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 1021/m3 and 2-3 mm/μs, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.

  5. Measurements and effects of backstreaming ions produced at bremsstrahlung converter target in Dragon-I linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Haijun; Zhu Jun; Chen Nan

    2010-04-15

    Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10{sup 21}/m{sup 3} and 2-3 mm/{mu}s, respectively. The theoretical and experimental results of electron beam envelope with ions and without ionsmore » are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.« less

  6. RF-driven ion source with a back-streaming electron dump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwan, Joe; Ji, Qing

    A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heatingmore » of the window, which due to said heating, might otherwise cause window damage.« less

  7. Post-Test Analysis of the Deep Space One Spare Flight Thruster Ion Optics

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Sengupta, Anita; Brophy, John R.

    2004-01-01

    The Deep Space 1 (DSl) spare flight thruster (FT2) was operated for 30,352 hours during the extended life test (ELT). The test was performed to validate the service life of the thruster, study known and identify unknown life limiting modes. Several of the known life limiting modes involve the ion optics system. These include loss of structural integrity for either the screen grid or accelerator grid due to sputter erosion from energetic ions striking the grid, sputter erosion enlargement of the accelerator grid apertures to the point where the accelerator grid power supply can no longer prevent electron backstreaming, unclearable shorting between the grids causes by flakes of sputtered material, and rouge hole formation due to flakes of material defocusing the ion beam. Grid gap decrease, which increases the probability of electron backstreaming and of arcing between the grids, was identified as an additional life limiting mechanism after the test. A combination of accelerator grid aperture enlargement and grid gap decrease resulted in the inability to prevent electron backstreaming at full power at 26,000 hours of the ELT. Through pits had eroded through the accelerator grid webbing and grooves had penetrated through 45% of the grid thickness in the center of the grid. The upstream surface of the screen grid eroded in a chamfered pattern around the holes in the central portion of the grid. Sputter deposited material, from the accelerator grid, adhered to the downstream surface of the screen grid and did not spall to form flakes. Although a small amount of sputter deposited material protruded into the screen grid apertures, no rouge holes were found after the ELT.

  8. HiPEP Ion Optics System Evaluation Using Gridlets

    NASA Technical Reports Server (NTRS)

    Willliams, John D.; Farnell, Cody C.; Laufer, D. Mark; Martinez, Rafael A.

    2004-01-01

    Experimental measurements are presented for sub-scale ion optics systems comprised of 7 and 19 aperture pairs with geometrical features that are similar to the HiPEP ion optics system. Effects of hole diameter and grid-to-grid spacing are presented as functions of applied voltage and beamlet current. Recommendations are made for the beamlet current range where the ion optics system can be safely operated without experiencing direct impingement of high energy ions on the accelerator grid surface. Measurements are also presented of the accelerator grid voltage where beam plasma electrons backstream through the ion optics system. Results of numerical simulations obtained with the ffx code are compared to both the impingement limit and backstreaming measurements. An emphasis is placed on identifying differences between measurements and simulation predictions to highlight areas where more research is needed. Relatively large effects are observed in simulations when the discharge chamber plasma properties and ion optics geometry are varied. Parameters investigated using simulations include the applied voltages, grid spacing, hole-to-hole spacing, doubles-to-singles ratio, plasma potential, and electron temperature; and estimates are provided for the sensitivity of impingement limits on these parameters.

  9. Performance Evaluation of Titanium Ion Optics for the NASA 30 cm Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with titanium ion optics were presented and compared to those of molybdenum ion optics. Both titanium and molybdenum ion optics were initially operated until ion optics performance parameters achieved steady state values. Afterwards, performance characterizations were conducted. This permitted proper performance comparisons of titanium and molybdenum ion optics. Ion optics' performance A,as characterized over a broad thruster input power range of 0.5 to 3.0 kW. All performance parameters for titanium ion optics of achieved steady state values after processing 1200 gm of propellant. Molybdenum ion optics exhibited no burn-in. Impingement-limited total voltages for titanium ion optics where up to 55 V greater than those for molybdenum ion optics. Comparisons of electron backstreaming limits as a function of peak beam current density for molybdenum and titanium ion optics demonstrated that titanium ion optics operated with a higher electron backstreaming limit than molybdenum ion optics for a given peak beam current density. Screen grid ion transparencies for titanium ion optics were as much as 3.8 percent lower than those for molybdenum ion optics. Beam divergence half-angles that enclosed 95 percent of the total beam current for titanium ion optics were within 1 to 3 deg. of those for molybdenum ion optics. All beam divergence thrust correction factors for titanium ion optics were within 1 percent of those with molybdenum ion optics.

  10. Performance Evaluation of 40 cm Ion Optics for the NEXT Ion Engine

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.

    2002-01-01

    The results of performance tests with two 40 cm ion optics sets are presented and compared to those of 30 cm ion optics with similar aperture geometries. The 40 cm ion optics utilized both NSTAR and TAG (Thick-Accelerator-Grid) aperture geometries. All 40 cm ion optics tests were conducted on a NEXT (NASA's Evolutionary Xenon Thruster) laboratory model ion engine. Ion optics performance tests were conducted over a beam current range of 1.20 to 3.52 A and an engine input power range of 1.1 to 6.9 kW. Measured ion optics' performance parameters included near-field radial beam current density profiles, impingement-limited total voltages, electron backstreaming limits, screen grid ion transparencies, beam divergence angles, and start-up transients. Impingement-limited total voltages for 40 cm ion optics with the NSTAR aperture geometry were 60 to 90 V lower than those with the TAG aperture geometry. This difference was speculated to be due to an incomplete burn-in of the TAG ion optics. Electron backstreaming limits for the 40 cm ion optics with the TAG aperture geometry were 8 to 19 V higher than those with the NSTAR aperture geometry due to the thicker accelerator grid of the TAG geometry. Because the NEXT ion engine provided beam flatness parameters that were 40 to 63 percent higher than those of the NSTAR ion engine, the 40 cm ion optics outperformed the 30 cm ion optics.

  11. Back-streaming ion emission and beam focusing on high power linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Chen, Nan; Yu, Haijun; Jiang, Xiaoguo; Wang, Yuan; Dai, Wenhua; Gao, Feng; Wang, Minhong; Li, Jin; Shi, Jinshui

    2011-08-01

    Ions released from target surfaces by impact of a high intensity and current electron beam can be accelerated and trapped in the beam potential, and further destroy the beam focus. By solving the 2D Poisson equation, we found that the charge neutralization factor of the ions to the beam under space charge limited condition is 1/3, which is large enough to disrupt the spot size. Therefore, the ion emission at the target in a single-pulse beam/target system must be source limited. Experimental results on the time-resolved beam profile measurement have also proven that. A new focus scheme is proposed in this paper to focus the beam to a small spot size with the existence of back-streaming ions. We found that the focal spot will move upstream as the charge neutralization factor increases. By comparing the theoretical and experimental focal length of the Dragon-I accelerator (20 MeV, 2.5 kA, 60 ns flattop), we found that the average neutralization factor is about 5% in the beam/target system.

  12. Evidence for Neutrals-Foreshock Electrons Impact at Mars

    NASA Astrophysics Data System (ADS)

    Mazelle, C. X.; Meziane, K.; Mitchell, D. L.; Garnier, P.; Espley, J. R.; Hamza, A. M.; Halekas, J.; Jakosky, B. M.

    2018-05-01

    Backstreaming electrons emanating from the bow shock of Mars reported from the Mars Atmosphere and Volatile EvolutioN/Solar Wind Electron Analyzer observations show a flux fall off with the distance from the shock. This feature is not observed at the terrestrial foreshock. The flux decay is observed only for electron energy E ≥ 29 eV. A reported recent study indicates that Mars foreshock electrons are produced at the shock in a mirror reflection of a portion of the solar wind electrons. In this context, and given that the electrons are sufficiently energetic to not be affected by the interplanetary magnetic field fluctuations, the observed flux decrease appears problematic. We investigate the possibility that the flux fall off with distance results from the impact of backstreaming electrons with Mars exospheric neutral hydrogen. We demonstrate that the flux fall off is consistent with the electron-atomic hydrogen impact cross section for a large range of energy. A better agreement is obtained for energy where the impact cross section is the highest. One important consequence is that foreshock electrons can play an important role in the production of pickup ions at Mars far exosphere.

  13. Translation Optics for 30 cm Ion Engine Thrust Vector Control

    NASA Technical Reports Server (NTRS)

    Haag, Thomas

    2002-01-01

    Data were obtained from a 30 cm xenon ion thruster in which the accelerator grid was translated in the radial plane. The thruster was operated at three different throttle power levels, and the accelerator grid was incrementally translated in the X, Y, and azimuthal directions. Plume data was obtained downstream from the thruster using a Faraday probe mounted to a positioning system. Successive probe sweeps revealed variations in the plume direction. Thruster perveance, electron backstreaming limit, accelerator current, and plume deflection angle were taken at each power level, and for each accelerator grid position. Results showed that the thruster plume could easily be deflected up to six degrees without a prohibitive increase in accelerator impingement current. Results were similar in both X and Y direction.

  14. Particle Simulations in Magnetospheric Plasmas

    DTIC Science & Technology

    1989-12-18

    Foreshock As an application of the simulation method used in the proposed research (Broadband electrostatic noise), the beam instability in the... foreshock has been investigated. Electrons backstreaming into the Earth’s foreshock generate waves near the plasma frequency by the beam instability. Two...results and numerical solutions of the dispersion equation indicate that the center frequency of the intense narrowband waves near the foreshock boundary

  15. Back-streaming ion beam measurements in a Self Magnetic Insulated (SMP) electron diode

    NASA Astrophysics Data System (ADS)

    Mazarakis, Michael; Johnston, Mark; Kiefer, Mark; Leckbee, Josh; Webb, Timothy; Bennett, Nichelle; Droemer, Darryl; Welch, Dale; Nielsen, Dan; Ziska, Derek; Wilkins, Frank; Advance radiography department Team

    2014-10-01

    A self-magnetic pinch diode (SMP) is presently the electron diode of choice for high energy flash x-ray radiography utilizing pulsed power drivers. The Sandia National Laboratories RITS accelerator is presently fit with an SMP diode that generates very small electron beam spots. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The diode's anode is made of high Z metal in order to produce copious and energetic flash x-rays for radiographic imaging of high areal density objects. In any high voltage inductive voltage adder (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (~1 cm) and the diode region very hostile. We are currently measuring the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip. We then are evaluating the A-K gap voltage by ion time of flight measurements supplemented with filtered Rogowski coils. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE- AC04-94AL850.

  16. Particle Simulations of Magnetospheric Plasmas

    DTIC Science & Technology

    1989-03-14

    scale vortices. 2 2. Beam Instability in the Foreshock As an application of the simulation method used in the proposed research (Broadband...electrostatic noise), the beam instability in the foreshock has been investigated. Electrons backstreaming into the Earth’s foreshock generate waves near the...narrowband waves near the foreshock boundary may be between 0.9wp and 0.98wpe, rather than being above w., as previously believed. 3 3. Whistler Mode

  17. Solar wind deceleration and MHD turbulence in the earth's foreshock region - ISEE 1 and 2 and IMP 8 observations

    NASA Technical Reports Server (NTRS)

    Bonifazi, C.; Moreno, G.; Russell, C. T.; Lazarus, A. J.; Sullivan, J. D.

    1983-01-01

    The interaction of the solar wind with ions backstreaming from the earth's bow shock is investigated using plasma and magnetic field measurements on ISEE 1 and 2 and IMP 8 at widely separated positions in the earth's foreshock. This technique separates temporal and spatial variations within the foreshock. It is found that the solar wind acceleration associated with backstreaming ions is correlated with the amplitude of the MHD turbulence, and that the largest decelerations are seen close to the bow shock. The density of the backstreaming ion beam is strongly correlated with distance from the shock, and decreases by about a factor of three in a distance of about 3R(e).

  18. Beam-induced back-streaming electron suppression analysis for an accelerator type neutron generator designed for 40Ar/39Ar geochronology.

    PubMed

    Waltz, Cory; Ayllon, Mauricio; Becker, Tim; Bernstein, Lee; Leung, Ka-Ngo; Kirsch, Leo; Renne, Paul; Bibber, Karl Van

    2017-07-01

    A facility based on a next-generation, high-flux D-D neutron generator has been commissioned and it is now operational at the University of California, Berkeley. The current generator designed for 40 Ar/ 39 Ar dating of geological materials produces nearly monoenergetic 2.45MeV neutrons at outputs of 10 8 n/s. The narrow energy range is advantageous relative to the 235 U fission spectrum neutrons due to (i) reduced 39 Ar recoil energy, (ii) minimized production of interfering argon isotopes from K, Ca, and Cl, and (iii) reduced total activity for radiological safety and waste generation. Calculations provided show that future conditioning at higher currents and voltages will allow for a neutron output of over 10 10 n/s, which is a necessary requirement for production of measurable quantities of 39 Ar through the reaction 39 K(n,p) 39 Ar. A significant problem encountered with increasing deuteron current was beam-induced electron backstreaming. Two methods of suppressing secondary electrons resulting from the deuterium beam striking the target were tested: the application of static electric and magnetic fields. Computational simulations of both techniques were done using a finite element analysis in COMSOL Multiphysics ® . Experimental tests verified these simulations. The most reliable suppression was achieved via the implementation of an electrostatic shroud with a voltage offset of -800V relative to the target. Copyright © 2017. Published by Elsevier Ltd.

  19. A 15,000-hour cyclic endurance test of an 8-centimeter-diameter electron bombardment mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1976-01-01

    A laboratory model 8-cm thruster with improvements to minimize ion chamber erosion and peeling of sputtered metal was subjected to a cyclic endurance test for 15,040 hours and 460 restarts. A charted history of several thruster operating variables and off-normal events are shown in 600-hour segments at three points in the test. The transient behavior of these variables during a typical start-stop cycle is presented. Performance and operating characteristics were nearly constant throughout the test except for a change in the accelerator back-streaming limit. Findings of the post-test inspection confirmed most of the expected results. Charge-exchange ions caused normal accelerator grid erosion. The workability of the various design features have been substantiated, and attainable improvements in propellant utilization efficiency should significantly reduce accelerator erosion.

  20. NEXT Ion Thruster Performance Dispersion Analyses

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The NEXT ion thruster is a low specific mass, high performance thruster with a nominal throttling range of 0.5 to 7 kW. Numerous engineering model and one prototype model thrusters have been manufactured and tested. Of significant importance to propulsion system performance is thruster-to-thruster performance dispersions. This type of information can provide a bandwidth of expected performance variations both on a thruster and a component level. Knowledge of these dispersions can be used to more conservatively predict thruster service life capability and thruster performance for mission planning, facilitate future thruster performance comparisons, and verify power processor capabilities are compatible with the thruster design. This study compiles the test results of five engineering model thrusters and one flight-like thruster to determine unit-to-unit dispersions in thruster performance. Component level performance dispersion analyses will include discharge chamber voltages, currents, and losses; accelerator currents, electron backstreaming limits, and perveance limits; and neutralizer keeper and coupling voltages and the spot-to-plume mode transition flow rates. Thruster level performance dispersion analyses will include thrust efficiency.

  1. Collisionless slow shocks in magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Cremer, Michael; Scholer, Manfred

    The kinetic structure of collisionless slow shocks in the magnetotail is studied by solving the Riemann problem of the collapse of a current sheet with a normal magnetic field component using 2-D hybrid simulations. The collapse results in a current layer with a hot isotropic distribution and backstreaming ions in a boundary layer. The lobe plasma outside and within the boundary layer exhibits a large perpendicular to parallel temperature anisotropy. Waves in both regions propagate parallel to the magnetic field. In a second experiment a spatially limited high density beam is injected into a low beta background plasma and the subsequent wave excitation is studied. A model for slow shocks bounding the reconnection layer in the magnetotail is proposed where backstreaming ions first excite obliquely propagating waves by the electromagnetic ion/ion cyclotron instability, which lead to perpendicular heating. The T⊥/T∥ temperature anisotropy subsequently excites parallel propagating Alfvén ion cyclotron waves, which are convected into the slow shock and are refracted in the downstream region.

  2. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  3. Pyrolytic graphite collector development program

    NASA Technical Reports Server (NTRS)

    Wilkins, W. J.

    1982-01-01

    Pyrolytic graphite promises to have significant advantages as a material for multistage depressed collector electrodes. Among these advantages are lighter weight, improved mechanical stiffness under shock and vibration, reduced secondary electron back-streaming for higher efficiency, and reduced outgassing at higher operating temperatures. The essential properties of pyrolytic graphite and the necessary design criteria are discussed. This includes the study of suitable electrode geometries and methods of attachment to other metal and ceramic collector components consistent with typical electrical, thermal, and mechanical requirements.

  4. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  5. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  6. Simulations relevant to the beam instability in the foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.; Nishikawa, K.-I.

    1989-01-01

    The results presently obtained from two-dimensional simulations of the reactive instability for Maxwellian beams and cutoff distributions are noted to be consistent with recent suggestions that electrons backstreaming into earth's foreshock have steep-sided cutoff distributions, which are initially unstable to the reactive instability, and that the back-reaction to the wave growth causes the instability to pass into its kinetic phase. It is demonstrated that the reactive instability is a bunching instability, and that the reactive instability saturates and passes over into the kinetic phase by particle trapping.

  7. Contribution of the backstreaming ions to the self-magnetic pinch (SMP) diode current

    NASA Astrophysics Data System (ADS)

    Mazarakis, Michael G.; Bennett, Nichelle; Cuneo, Michael E.; Fournier, Sean D.; Johnston, Mark D.; Kiefer, Mark L.; Leckbee, Joshua J.; Nielsen, Dan S.; Oliver, Bryan V.; Sceiford, Matthew E.; Simpson, Sean C.; Renk, Timothy J.; Ruiz, Carlos L.; Webb, Timothy J.; Ziska, Derek; Droemer, Darryl W.; Gignac, Raymond E.; Obregon, Robert J.; Wilkins, Frank L.; Welch, Dale R.

    2018-04-01

    The results presented here were obtained with a self-magnetic pinch (SMP) diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The RITS driver together with the SMP diode has produced x-ray spots of the order of 1 mm in diameter and doses adequate for the radiographic imaging of high area density objects. Although, through the years, a number of different types of radiographic electron diodes have been utilized with SABER, HERMES III and RITS accelerators, the SMP diode appears to be the most successful and simplest diode for the radiographic investigation of various objects. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target and second to try to evaluate the energy of those ions and hence the Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage adder utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the A-K gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (˜1 cm) and the diode region very hostile. The accelerating voltage quoted in the literature is from estimates based on the measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus, it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high-Z metals in order to produce copious and energetic flash x-rays. It was established experimentally that the back-streaming ion currents are a strong function of the anode materials and their stage of cleanness. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatment: namely, heating at very high temperatures with DC and pulsed current, with RF plasma cleaning, and with both plasma cleaning and heating. We have also evaluated the A-K gap voltage by energy filtering technique. Experimental results in comparison with LSP simulations are presented.

  8. Formation of Accelerated Backstreaming Particles within the Quasi-perpendicular Ion Terrestrial Foreshock: 2D Full-Particle and Test-particles simulations

    NASA Astrophysics Data System (ADS)

    Savoini, P.; Lembege, B.

    2016-12-01

    Backstreaming ion populations are observed upstream of the Terrestrial bow shock and form the ion foreshock. Two distinct populations have been firmly identified by spacecrafts within the quasi-perpendicular shock region (i.e. for 45° ≤ ΘBn ≤ 90°, where ΘBn is the angle between the shock normal and the upstream magnetostatic field): so called (i) field-aligned ion beams (« FAB ») characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions («GPB »), characterized by a NON gyrotropic distribution.The origin of these backstreaming ions is still an important unresolved question which can be partially analyzed with the help of 2D PIC simulation of a curved shock, where full curvature effects, time of flight effects and both electrons and ions dynamics are fully included by a self consistent approach. Our previous analysis (Savoini et Lembege, 2015) has evidenced that these two populations can be generated directly by the macroscopic fields at the shock front itself. Present results based on ion trajectories analysis confirm: (i) the importance of the interaction time ΔTinter spent by ions within the shock front. "GPB" population is characterized by a very short interaction time (ΔTinter = 1 to 2 tci) in comparison to the "FAB" population (ΔTinter = 2 tci to 10 tci), where tci is the upstream ion gyroperiod. (ii) the key role of the injection angle (i.e. defined between the normal of the shock front and the gyration velocity at the time incoming ions hit the shock front) which strongly differs between FAB and GPB ions. (iii) that "FAB" ions drift along the shock front and « scan » a large ΘBn range (up to 20°) which explains the loss of their initial gyro-phase, before being re-injected into the upstream region. Moreover, our test-particule simulations evidence the importance of the shock wave profile for both the « FAB » and « GPB » populations. Such results show that the reflection process is not continuous in time and in space, but strongly depends of the local shock front profile met by incoming ions at their hitting time. The same simulations also emphasize the slight decrease of backstreaming ions density when the electric field space charge effect present within the shock front is artificially canceled. A comparison between self-consistent and test-particles results will be presented in more details.

  9. Mirroring of fast solar flare electrons on a downstream corotating interaction region

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Sommers, J.; Lin, R. P.; Pick, M.; Chaizy, P.; Murphy, N.; Smith, E. J.; Phillips, J. L.

    1995-01-01

    We discuss an example of confinement of fast solar electrons by a discrete solar wind-interplanetary magnetic field structure on February 22, 1991. The structure is about 190,000 km in width and is clearly defined by changes in the direction of the magnetic field at the Ulysses spacecraft. This structure carries electrons moving toward the Sun as well as away from the Sun. A loss cone in the angular distribution of the fast electrons shows that mirroring, presumably magnetic, takes place downstream from the spacecraft. Following passage of this narrow structure, the return flux vanishes for 21 min after which time the mirroring resumes and persists for several hours. We identify the enhanced magnetic field region lying downstream from the Ulysses spacecraft that is responsible for the mirroring to be a corotating stream interaction region. Backstreaming suprathermal electron measurements by the Los Alamos National Laboratory plasma experiment on the Ulysses spacecraft support this interpretation.

  10. New technique for oil backstreaming contamination measurements

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Speier, H. J.; Sieg, R. M.; Drotos, M. N.; Dunning, J. E.

    1992-01-01

    The backstreaming contamination in the Space Power Facility, Ohio, was measured using small size clean silicon wafers as contamination sensors placed at all measurement sites. Two ellipsometric models were developed to measure the oil film with the contamination film refractive index of DC 705: a continuous, homogeneous film and islands of oil with the islands varying in coverage fraction and height. The island model improved the ellipsometric analysis quality parameter by up to two orders of magnitude. The continuous film model overestimated the oil volume by about 50 percent.

  11. Electron distributions upstream of the Comet Halley bow shock - Evidence for adiabatic heating

    NASA Technical Reports Server (NTRS)

    Larson, D. E.; Anderson, K. A.; Lin, R. P.; Carlson, C. W.; Reme, H.; Glassmeier, K. H.; Neubauer, F. M.

    1992-01-01

    Three-dimensional plasma electron (22 eV to 30 keV) observations upstream of Comet Halley bow shock, obtained by the RPA-1 COPERNIC (Reme Plasma Analyzer - Complete Positive Ion, Electron and Ram Negative Ion Measurements near Comet Halley) experiment on the Giotto spacecraft are reported. Besides electron distributions typical of the undisturbed solar wind and backstreaming electrons observed when the magnetic field line intersects the cometary bow shock, a new type of distribution, characterized by enhanced low energy (less than 100 eV) flux which peaks at 90-deg pitch angles is found. These are most prominent when the spacecraft is on field lines which pass close to but are not connected to the bow shock. The 90-deg pitch angle electrons appear to have been adiabatically heated by the increase in the magnetic field strength resulting from the compression of the upstream solar wind plasma by the cometary mass loading. A model calculation of this effect which agrees qualitatively with the observed 90-deg flux enhancements is presented.

  12. The electron foreshock

    NASA Technical Reports Server (NTRS)

    Fitzenreiter, R. J.

    1995-01-01

    An overview of the observations of backstreaming electrons in the foreshock and the mechanisms that have been proposed to explain their properties will be presented. A primary characteristic of observed foreshock electrons is that their velocity distributions are spatially structured in a systematic way depending on distance from the magnetic field line which is tangent to the shock. There are two interrelated aspects to explaining the structure of velocity distributions in the foreshock, one involving the acceleration mechanism and the other, propagation from the source to the observing point. First, the source distribution of electrons energized by the shock must be determined along the shock surface. Proposed acceleration mechanisms include magnetic mirroring of incoming solar wind particles and mechanisms involving transmission of particles through the shock. Secondly, the kinematics of observable electrons streaming away from a curved shock with an initial parallel velocity and a downstream perpendicular velocity component due to the motional electric field must be determined. This is the context in which the observations and their explanations will be reviewed.

  13. Cyclic behavior at quasi-parallel collisionless shocks

    NASA Technical Reports Server (NTRS)

    Burgess, D.

    1989-01-01

    Large scale one-dimensional hybrid simulations with resistive electrons have been carried out of a quasi-parallel high-Mach-number collisionless shock. The shock initially appears stable, but then exhibits cyclic behavior. For the magnetic field, the cycle consists of a period when the transition from upstream to downstream is steep and well defined, followed by a period when the shock transition is extended and perturbed. This cyclic shock solution results from upstream perturbations caused by backstreaming gyrating ions convecting into the shock. The cyclic reformation of a sharp shock transition can allow ions, at one time upstream because of reflection or leakage, to contribute to the shock thermalization.

  14. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Yahong; Hu Chundong; Liu Sheng

    2012-01-15

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  15. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector.

    PubMed

    Xie, Yahong; Hu, Chundong; Liu, Sheng; Jiang, Caichao; Li, Jun; Liang, Lizhen

    2012-01-01

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  16. Time-Dependent Erosion of Ion Optics

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Anderson, John R.; Katz, Ira; Goebel, Dan M.

    2008-01-01

    The accurate prediction of thruster life requires time-dependent erosion estimates for the ion optics assembly. Such information is critical to end-of-life mechanisms such as electron backstreaming. CEX2D was recently modified to handle time-dependent erosion, double ions, and multiple throttle conditions in a single run. The modified code is called "CEX2D-t". Comparisons of CEX2D-t results with LDT and ELT post-tests results show good agreement for both screen and accel grid erosion including important erosion features such as chamfering of the downstream end of the accel grid and reduced rate of accel grid aperture enlargement with time.

  17. Performance and Vibration of 30 cm Pyrolytic Ion Thruster Optics

    NASA Technical Reports Server (NTRS)

    Haag, Thomas; Soulas, George C.

    2004-01-01

    Carbon has a sputter erosion rate about an order of magnitude less than that of molybdenum, over the voltages typically used in ion thruster applications. To explore its design potential, 30 cm pyrolytic carbon ion thruster optics have been fabricated geometrically similar to the molybdenum ion optics used on NSTAR. They were then installed on an NSTAR Engineering Model thruster, and experimentally evaluated over much of the original operating envelope. Ion beam currents ranged from 0.51 to 1.76 Angstroms, at total voltages up to 1280 V. The perveance, electron back-streaming limit, and screen-grid transparency were plotted for these operating points, and compared with previous data obtained with molybdenum. While thruster performance with pyrolytic carbon was quite similar to that with molybdenum, behavior variations can reasonably be explained by slight geometric differences. Following all performance measurements, the pyrolytic carbon ion optics assembly was subjected to an abbreviated vibration test. The thruster endured 9.2 g(sub rms) of random vibration along the thrust axis, similar to DS 1 acceptance levels. Despite significant grid clashing, there was no observable damage to the ion optics assembly.

  18. Design and Performance of 40 cm Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    A 40 cm ion thruster is being developed at the NASA Glenn Research Center to obtain input power and propellant throughput capabilities of 10 kW and 550 kg. respectively. The technical approach here is a continuation of the "derating" technique used for the NSTAR ion thruster. The 40 cm ion thruster presently utilizes the NSTAR ion optics aperture geometry to take advantage of the large database of lifetime and performance data already available. Dome-shaped grids were chosen for the design of the 40 cm ion optics because this design is naturally suited for large-area ion optics. Ion extraction capabilities and electron backstreaming limits for the 40 cm ion optics were estimated by utilizing NSTAR 30 cm ion optics data. A preliminary service life assessment showed that the propellant throughput goal of 550 kg of xenon may be possible with molybdenum 40 cm ion optics. One 40 cm ion optics' set has been successfully fabricated to date. Additional ion optics' sets are presently being fabricated. Preliminary performance tests were conducted on a laboratory model 40 cm ion thruster.

  19. Application of the NEXT Ion Thruster Lifetime Assessment to Thruster Throttling

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Herman, Daniel A.

    2010-01-01

    Ion thrusters are low thrust, high specific impulse devices with typical operational lifetimes of 10,000 to 30,000 hr over a range of throttling conditions. The NEXT ion thruster is the latest generation of ion thrusters under development. The NEXT ion thruster currently has a qualification level propellant throughput requirement of 450 kg of xenon, which corresponds to roughly 22,000 hr of operation at the highest input power throttling point. This paper will provide a brief review the previous life assessment predictions for various throttling conditions. A further assessment will be presented examining the anticipated accelerator grid hole wall erosion and related electron backstreaming limit. The continued assessment of the NEXT ion thruster indicates that the first failure mode across the throttling range is expected to be in excess of 36,000 hr of operation from charge exchange induced groove erosion. It is at this duration that the groove is predicted to penetrate the accelerator grid possibly resulting in structural failure. Based on these lifetime and mission assessments, a throttling approach is presented for the Long Duration Test to demonstrate NEXT thruster lifetime and validate modeling.

  20. Contribution of the backstreaming ions to the Self-Magnetic pinch (SMP) diode current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, Michael G.; Cuneo, Michael E.; Fournier, Sean D.

    2016-08-08

    Summary form only given. The results presented here were obtained with an SMP diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulses of six 1.3 MV inductively insulated cavities. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target to the diode beam current, and second to try to evaluate the energy of those ions and hence the actual Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage addermore » (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. The accelerating voltage quoted in the literature is from estimates based on measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high Z metals in order to produce copious and energetic flash x-rays. The backstreaming currents are a strong fraction of the anode materials and their stage of cleanness and gas adsorption. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatments, such as heating to very high temperatures with DC and pulsed current, with RF plasma cleaning and with both plasma cleaning and heating. Finally, we have also evaluated the A-K gap voltage by ion filtering techniques.« less

  1. Deceleration of the solar wind in the earth's foreshock region - Isee 2 and Imp 8 observations

    NASA Technical Reports Server (NTRS)

    Bonifazi, C.; Moreno, G.; Lazarus, A. J.; Sullivan, J. D.

    1980-01-01

    The deceleration of the solar wind in the region of the interplanetary space filled by ions backstreaming from the earth's bow shock and associated waves is studied using a two-spacecraft technique. This deceleration depends on the solar wind bulk velocity; at low velocities (below 300 km/s) the velocity decrease is about 5 km/s, while at higher velocities (above 400 km/s) the decrease may be as large as 30 km/s. The energy balance shows that the kinetic energy loss far exceeds the thermal energy which is possibly gained by the solar wind; therefore at least part of this energy must go into waves and/or into the backstreaming ions.

  2. Grid Gap Measurement for an NSTAR Ion Thruster

    NASA Technical Reports Server (NTRS)

    Diaz, Esther M.; Soulas, George C.

    2006-01-01

    The change in gap between the screen and accelerator grids of an engineering model NSTAR ion optics assembly was measured during thruster operation with beam extraction. The molybdenum ion optics assembly was mounted onto an engineering model NSTAR ion thruster. The measurement technique consisted of measuring the difference in height of an alumina pin relative to the downstream accelerator grid surface. The alumina pin was mechanically attached to the center aperture of the screen grid and protruded through the center aperture of the accelerator grid. The change in pin height was monitored using a long distance microscope coupled to a digital imaging system. Transient and steady-state hot grid gaps were measured at three power levels: 0.5, 1.5 and 2.3 kW. Also, the change in grid gap was measured during the transition between power levels, and during the startup with high voltage applied just prior to discharge ignition. Performance measurements, such as perveance, electron backstreaming limit and screen grid ion transparency, were also made to confirm that this ion optics assembly performed similarly to past testing. Results are compared to a prior test of 30 cm titanium ion optics.

  3. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  4. Improving the Total Impulse Capability of the NSTAR Ion Thruster With Thick-Accelerator-Grid Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.

  5. Progress in NEXT Ion Optics Modeling

    NASA Technical Reports Server (NTRS)

    Emhoff, Jerold W.; Boyd, Iain D.

    2004-01-01

    Results are presented from an ion optics simulation code applied to the NEXT ion thruster geometry. The error in the potential field solver of the code is characterized, and methods and requirements for reducing this error are given. Results from a study on electron backstreaming using the improved field solver are given and shown to compare much better to experimental results than previous studies. Results are also presented on a study of the beamlet behavior in the outer radial apertures of the NEXT thruster. The low beamlet currents in this region allow over-focusing of the beam, causing direct impingement of ions on the accelerator grid aperture wall. Different possibilities for reducing this direct impingement are analyzed, with the conclusion that, of the methods studied, decreasing the screen grid aperture diameter eliminates direct impingement most effectively.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, Michael G.; Kiefer, Mark L.; Leckbee, Joshua J.

    This paper describes our effort to measure the back-streaming ions emitted from the target x-ray convertor and thus estimate the ion contribution to the A-K gap bipolar current flow. Knowing the ion contribution is quite important in order to calculate the expected x-ray dose and compare it with the actual measurements. Our plans were first to measure the total ion current using B-dot monitors, Rogowski coils, and Faraday cups and then to utilize filtered Faraday cups and time of flight techniques to identify and measure the various ionic species. The kinetic energy (velocities) of the ions should help evaluate themore » actual voltage applied at the anode-cathode (A-K) gap. LSP simulations found that the most prominent ions are protons and carbon single plus (C+). For an 8-MV A-K voltage, the estimated proton current back-streaming through an 1 cm in diameter hollow cathode tip was on the average 3 kA and the carbon current 0.7 kA. Since only a small fraction of the ions will make it through the cylindrical aperture, the corresponding total currents were calculated to be respectively 25kA for proton and 7 kA for carbon ions, a quite substantial contribution to the total bipolar beam current. Hence, approximately only 10% of the total back-streaming ionic currents could make it through the hollow cathode tip aperture. Unfortunately the diagnostic cables connecting the Faraday cup and the B-dot monitors to the screen room scopes experienced a large amount of charge pick-up that obliterated our effort to directly measure those relatively small currents. However, we succeeded in measuring those currents indirectly with activation techniques [Contribution of the back-streaming ions to the self-magnetic pinch (SMP) diode Current., M. G. Mazarakis, M. G. Mazarakis, M. E. Cuneo, S. D. Fournier, M. D. Johnston, M. L. Kiefer, J. J. Leckbee, D. S. Nielsen, B.V.Oliver, M. E. Sceiford, S. C. Simpson, T. J. Renk, C. L. Ruiz, T. J. Webb, and D. Ziska. Subitted for publication.]. In the following sections we present some typical cable pick-up results and also our efforts to verify that the observed “current” scope traces were indeed not ion currents but instead cable charge pic-up. Interestingly enough we also discovered that the appearance of those “currents” are in synchronism with the A-K gap impedance variation (decrease) and the MITL sheath current re-trapping. Hence those B-dots or Faraday cups could be utilized as diode behavior diagnostics.« less

  7. Results of an On-Going Long Duration Ground Test of the DS1 Flight Spare Engine

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Goodfellow, Keith D.; Polk, James E.; Shotwell, Robert F.; Rawlin, Vincent K.; Sovey, James S.; Patterson, Michael J.

    2000-01-01

    Ground testing of the DS1 night spare thruster (FT2) is presently being conducted. To date, the thruster has accumulated over 4500 hours of operation. Comparison of FT2 with the performance of the engineering model thruster 2 (EMT2) during the 8.2 khr test shows a transient, lasting for about 3000 hours, during which the discharge chamber efficiency decreases for both thrusters. The flow rates are 2% lower for FT2 than for EMT2 and the discharge chamber performance is 4.5% lower for FT2 during the transient. Sensitivity data obtained during the test show that the lower flow rate accounts for about half of the observed difference. After the initial transients decay, the performance of both thrusters is comparable with the exception of the electron backstreaming margin--which is 6 V lower for FT2.

  8. Performance Evaluation of the Prototype Model NEXT Ion Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.

  9. Origin of energetic ions observed in the terrestrial ion foreshock : 2D full-particle simulations

    NASA Astrophysics Data System (ADS)

    Savoini, Philippe; Lembege, bertrand

    2016-04-01

    Collisionless shocks are well-known structures in astrophysical environments which dissipate bulk flow kinetic energy and accelerate large fraction of particle. Spacecrafts have firmly established the existence of the so-called terrestrial foreshock region magnetically connected to the shock and filled by two distinct populations in the quasi-perpendicular shock region (i.e. for 45r{ } ≤ quad θ Bn quad ≤ 90r{ }, where θ Bn is the angle between the shock normal and the upstream magnetic field) : (i) the field-aligned ion beams or `` FAB '' characterized by a gyrotropic distributionsout{,} and (ii) the gyro-phase bunched ions or `` GPB '' characterized by a NON gyrotropic distribution. The present work is based on the use of two dimensional PIC simulation of a curved shock and associated foreshock region where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described by a self consistent approach. Our previous analysis (Savoini et Lembège, 2015) has evidenced that these two types of backstreaming populations can originate from the shock front itself without invoking any local diffusion by ion beam instabilities. Present results are focussed on individual ion trajectories and evidence that "FAB" population is injected into the foreshock mainly along the shock front whereas the "GPB" population penetrates more deeply the shock front. Such differences explain why the "FAB" population loses their gyro-phase coherency and become gyrotropic which is not the case for the "GPB". The impact of these different injection features on the energy gain for each ion population will be presented in détails. Savoini, P. and B. Lembège (2015), `` Production of nongyrotropic and gyrotropic backstreaming ion distributions in the quasi-perpendicular ion foreshock région '', J. Geophys. Res., 120, pp 7154-7171, doi = 10.1002/2015JA021018.

  10. Design of a New Acceleration System for High-Current Pulsed Proton Beams from an ECR Source

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew L.; Pogrebnyak, Ivan; Surbrook, Jason T.; Kelly, Keegan J.; Carlin, Bret P.; Champagne, Arthur E.; Clegg, Thomas B.

    2014-03-01

    A primary objective for accelerators at TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA) is to maximize target beam intensity to ensure a high rate of nuclear events during each experiment. Average proton target currents of several mA are needed from LENA's electron cyclotron resonance (ECR) ion source because nuclear cross sections decrease substantially at energies of interest <200 keV. We seek to suppress undesired continuous environmental background by pulsing the beam and detecting events only during beam pulses. To improve beam intensity and transport, we installed a more powerful, stable microwave system for the ECR plasma, and will install a new acceleration system. This system will: reduce defocusing effects of the beam's internal space charge; provide better vacuum with a high gas conductance accelerating column; suppress bremsstrahlung X-rays produced when backstreaming electrons strike internal acceleration tube structures; and provide better heat dissipation by using deionized water to provide the current drain needed to establish the accelerating tube's voltage gradient. Details of beam optical modeling calculations, proposed accelerating tube design, and initial beam pulsing tests will be described. Work supported in part by USDOE Office of HE and Nuclear Physics.

  11. BIDIRECTIONAL FLUXES OF NEARLY RELATIVISTIC ELECTRONS DURING THE ONSET OF SOLAR ENERGETIC PARTICLE EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L. P.; Li, C., E-mail: pmo_sunlp@msn.com

    2013-03-10

    We report intensity and anisotropy measurements of energetic electrons in the energy range of {approx}27-{approx}500 keV as observed with the Wind and Advanced Composition Explorer (ACE) spacecraft in 2000 June for several solar energetic particle (SEP) events. The solar sources of the SEP events are inferred from observations from the Solar and Heliospheric Observatory spacecraft. All of the events originate from the western limb active regions (ARs), which are well connected by interplanetary magnetic field (IMF) lines linking the Sun to near-Earth space. The observations on board Wind show bimodal pitch angle distributions (PADs), whereas ACE shows PADs with onemore » peak, as is usually observed for impulsive injection of electrons at the Sun. During the time of observations, Wind was located, upstream of the Earth's bow shock in the dawn-noon sector, at distances of {approx}40-{approx}80 R{sub E} from the Earth, and we infer that it was magnetically connected to the quasi-parallel bow shock. Meanwhile, ACE, orbiting the Sun-Earth libration point L1, was not connected to the bow shock. The electron intensity-time profiles and the energy spectra show that the backstreaming electrons observed at Wind are not of magnetospheric origin. The observations suggest rather that the bidirectional electron fluxes are due to reflection or scattering by an obstacle located at a distance of less than {approx}150 R{sub E} in the anti-sunward direction, which is compatible with the obstacle being the Earth's bow shock or magnetosheath.« less

  12. Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Steven Snyder, John; Brophy, John R.

    2004-01-01

    Carbon-based ion optics have the potential to significantly increase the operable life and power ranges of ion thrusters because of reduced erosion rates compared to molybdenum optics. The development of 15-cm and larger diameter grids has encountered many problems, however, not the least of which is the ability to pass vibration testing. JPL has recently developed a new generation of 30-cm carbon-carbon ion optics in order to address these problems and demonstrate the viability of the technology. Perveance, electron backstreaming, and screen grid transparency data are presented for two sets of optics. Vibration testing was successfully performed on two different sets of ion optics with no damage and the results of those tests are compared to models of grid vibrational behavior. It will be shown that the vibration model is a conservative predictor of grid response and can accurately describe test results. There was no change in grid alignment as a result of vibration testing and a slight improvement, if any change at all, in optics performance.

  13. Cleaning of a thermal vacuum chamber with shrouds in place

    NASA Technical Reports Server (NTRS)

    Bond, William R.

    1992-01-01

    In February, 1991, a failure of a rotary booster pump caused the diffusion pumps to backstream into a 10 ft x 15 ft thermal vacuum chamber. Concerns existed about the difficulty of removing and reinstalling the shrouds without causing leaks. The time required for the shroud removal was also of concern. These concerns prompted us to attempt to clean the chamber without removing the shrouds.

  14. Study of the relation between Pc 3 micropulsations and magnetosheath fluctuations and of the multisatellite, multimeasurement investigation of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The structure and direction of bow shock waves and the occurence of Pc 3, 4 micropulsations were investigated. An observational description is given of a quasi-parallel structure in a plasma parameter regime. The use of approximation to estimate the thickness of thin, nearly perpendicular bow shocks at supralaminar Mach numbers is discussed. The pattern of energies of backstreaming protons in the foreshock are predicted.

  15. Formation of gyrotropic and non gyrotropic field-aligned beams in the Earth's quasi-perpendicular Ion Foreshock: Full-particle 2D simulation results

    NASA Astrophysics Data System (ADS)

    Savoini, P.; Lembege, B.

    2013-12-01

    The ion foreshock located upstream of the Earth's bow shock is populated with ions reflected back by the shock front with an high energy gain. In-situ spacecraft measurements have clearly established the existence of two distinct populations in the foreshock upstream of quasi-perpendicular shock region (i.e. for 45° ≤ ΘBn≤ 90°, where ΘBn is the angle between the shock normal and the upstream magnetostatic field): (i) field-aligned (';FAB') ion beams characterized by a gyrotropic distribution, and (ii) gyro-phase bunched (';GPB') ions characterized by a NON gyrotropic distribution, which exhibits a non-vanishing perpendicular bulk velocity. The purpose of the present work is to identify the possible sources of the different backstreaming ions and is based on the use of 2D PIC simulations of a curved shock, where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described by a self consistent approach. Our analysis evidences that the two populations mentionned above may have different origins identified both in terms of interaction time and distance of penetration within the shock front. In particular, ours simulations evidence that "GPB" and ';FAB' populations are characterized by a short (Δinter= 1 to 2 tci) and much larger (Δinter= 1 to 10 tci) interaction time respectively, where τci is the ion upstream gyroperiod. In addition, a deeper statistical analysis of ion trajectories evidences that: (i) both populations can be discriminated in terms of injection angle into the shock front (i.e. defined between the local normal to the shock front and the gyration velocity vector at the time ions reach the front). Such a behavior explains how reflected ions can be splitted in the observed two populations "FAB" and "GPB". (ii) ion trajectories strongly differ between the "FAB" and "GPB" populations at the shock front. In particular, ';FAB' ions suffer multi-bounces whereas ';GPB '; ions make only one bounce. Such differences can explain why the ';FAB' population loses their gyro-phase coherency and become gyrotropic which is not the case for the "GPB". As evidenced by these simulations the origin of both populations can be associated directly to their interaction with the shock front itself and do not require any upstream instability which can be another source for such backstreaming ions.

  16. Energies of backstreaming protons in the foreshock

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.

    1976-01-01

    A predicted pattern of energy vs detector location in the cislunar region is displayed for protons of zero pitch angle traveling upstream away from the quasi-parallel bow shock. The pattern is implied by upstream wave boundary properties. In the solar ecliptic, protons are estimated to have a minimum of 1.1 times the solar wind bulk energy E sub SW when the wave boundary is in the early morning sector and a maximum of 8.2 E sub SW when the boundary is near the predawn flank.

  17. Purged window apparatus utilizing heated purge gas

    DOEpatents

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  18. Nonlinear Wave-Particle Interaction: Implications for Newborn Planetary and Backstreaming Proton Velocity Distribution Functions

    NASA Astrophysics Data System (ADS)

    Romanelli, N.; Mazelle, C.; Meziane, K.

    2018-02-01

    Seen from the solar wind (SW) reference frame, the presence of newborn planetary protons upstream from the Martian and Venusian bow shocks and SW protons reflected from each of them constitutes two sources of nonthermal proton populations. In both cases, the resulting proton velocity distribution function is highly unstable and capable of giving rise to ultralow frequency quasi-monochromatic electromagnetic plasma waves. When these instabilities take place, the resulting nonlinear waves are convected by the SW and interact with nonthermal protons located downstream from the wave generation region (upstream from the bow shock), playing a predominant role in their dynamics. To improve our understanding of these phenomena, we study the interaction between a charged particle and a large-amplitude monochromatic circularly polarized electromagnetic wave propagating parallel to a background magnetic field, from first principles. We determine the number of fix points in velocity space, their stability, and their dependence on different wave-particle parameters. Particularly, we determine the temporal evolution of a charged particle in the pitch angle-gyrophase velocity plane under nominal conditions expected for backstreaming protons in planetary foreshocks and for newborn planetary protons in the upstream regions of Venus and Mars. In addition, the inclusion of wave ellipticity effects provides an explanation for pitch angle distributions of suprathermal protons observed at the Earth's foreshock, reported in previous studies. These analyses constitute a mean to evaluate if nonthermal proton velocity distribution functions observed at these plasma environments present signatures that can be understood in terms of nonlinear wave-particle processes.

  19. Use of cryopumps on large space simulation systems

    NASA Technical Reports Server (NTRS)

    Mccrary, L. E.

    1980-01-01

    The need for clean, oil free space simulation systems has demanded the development of large, clean pumping systems. The assurance of optically dense liquid nitrogen baffles over diffusion pumps prevents backstreaming to a large extent, but does not preclude contamination from accidents or a control failure. Turbomolecular pumps or ion pumps achieve oil free systems but are only practical for relatively small chambers. Large cryopumps were developed and checked out which do achieve clean pumping of very large chambers. These pumps can be used as the original pumping system or can be retrofitted as a replacement for existing diffusion pumps.

  20. Purged window apparatus. [On-line spectroscopic analysis of gas flow systems

    DOEpatents

    Ballard, E.O.

    1982-04-05

    A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

  1. NASA Tech Briefs, July 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Real-Time, High-Frequency QRS Electrocardiograph; Software for Improved Extraction of Data From Tape Storage; Radio System for Locating Emergency Workers; Software for Displaying High-Frequency Test Data; Capacitor-Chain Successive-Approximation ADC; Simpler Alternative to an Optimum FQPSK-B Viterbi Receiver; Multilayer Patch Antenna Surrounded by a Metallic Wall; Software To Secure Distributed Propulsion Simulations; Explicit Pore Pressure Material Model in Carbon-Cloth Phenolic; Meshed-Pumpkin Super-Pressure Balloon Design; Corrosion Inhibitors as Penetrant Dyes for Radiography; Transparent Metal-Salt-Filled Polymeric Radiation Shields; Lightweight Energy Absorbers for Blast Containers; Brush-Wheel Samplers for Planetary Exploration; Dry Process for Making Polyimide/ Carbon-and-Boron-Fiber Tape; Relatively Inexpensive Rapid Prototyping of Small Parts; Magnetic Field Would Reduce Electron Backstreaming in Ion Thrusters; Alternative Electrochemical Systems for Ozonation of Water; Interferometer for Measuring Displacement to Within 20 pm; UV-Enhanced IR Raman System for Identifying Biohazards; Prognostics Methodology for Complex Systems; Algorithms for Haptic Rendering of 3D Objects; Modeling and Control of Aerothermoelastic Effects; Processing Digital Imagery to Enhance Perceptions of Realism; Analysis of Designs of Space Laboratories; Shields for Enhanced Protection Against High-Speed Debris; Study of Dislocation-Ordered In(x)Ga(1-x)As/GaAs Quantum Dots; and Tilt-Sensitivity Analysis for Space Telescopes.

  2. In-Situ Anode Heating and Its Effects on Atomic Constituents in the A-K Gap in Self-Magnetic Pinch (SMP) Experiments

    NASA Astrophysics Data System (ADS)

    Simpson, Sean; Renk, Timothy; Johnston, Mark; Mazarakis, Mike; Patel, Sonal

    2015-11-01

    The RITS-6 inductive voltage adder (IVA) accelerator (3.5-8.5 MeV) at Sandia National Laboratories produces high-power (TW) focused electron beams (<3mm diameter) for flash x-ray radiography applications. The Self-Magnetic Pinch (SMP) diode utilizes a hollowed metal cathode to produce a pinched focus onto a high-Z metal anode converter. There is not a clear understanding as to the effects various contaminants such as C, CO, H, H2O, HmCn, O2, and N2, on the anode surface or in the bulk may have on impedance dynamics, beam stability, beam spot size, and reproducibility. Heating pure Ta anodes with and without a thin Al coating have been investigated using temperatures ranging from 400 °C to 1000 °C. Initial experiments indicate a significant reduction in H and C as seen in high-speed spectral analysis of plasmas at the converter and a reduction in the back-streaming proton current. Experiments are ongoing, and latest results will be reported. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30 cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  4. Development and tests of molybdenum armored copper components for MITICA ion source

    NASA Astrophysics Data System (ADS)

    Pavei, Mauro; Böswirth, Bernd; Greuner, Henri; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo

    2016-02-01

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  5. Foreshock waves as observed in energetic ion flux

    NASA Astrophysics Data System (ADS)

    Petrukovich, A. A.; Chugunova, O. M.; Inamori, T.; Kudela, K.; Stetiarova, J.

    2017-05-01

    Oscillations of energetic ion fluxes with periods 10-100 s are often present in the Earth's foreshock. Detailed analysis of wave properties with Time History of Events and Macroscale Interactions during Substorms data and comparisons with other data sets confirm that these oscillations are the previously unnoticed part of well-known "30 s" waves but are observed mainly for higher-speed solar wind. Simultaneous magnetic oscillations have similar periods, large amplitudes, and nonharmonic unstable waveforms or shocklet-type appearance, suggesting their nonlinearity, also typical for high solar wind speed. Analysis of the general foreshock data set of Interball project shows that the average flux of the backstreaming energetic ions increases more than 1 order of magnitude, when solar wind speed increases from 400 to 500 km/s.

  6. Development and tests of molybdenum armored copper components for MITICA ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it; Marcuzzi, Diego; Rizzolo, Andrea

    2016-02-15

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analysesmore » of the prototypes simulating the test conditions in GLADIS as well as the experimental results.« less

  7. Development and tests of molybdenum armored copper components for MITICA ion source.

    PubMed

    Pavei, Mauro; Böswirth, Bernd; Greuner, Henri; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo

    2016-02-01

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  8. Method for producing solid or hollow spherical particles of chosen chemical composition and of uniform size

    DOEpatents

    Hendricks, Charles D.

    1988-01-01

    A method is provided for producing commercially large quantities of high melting temperature solid or hollow spherical particles of a predetermined chemical composition and having a uniform and controlled size distribution. An end (18, 50, 90) of a solid or hollow rod (20, 48, 88) of the material is rendered molten by a laser beam (14, 44, 82). Because of this, there is no possibility of the molten rod material becoming contaminated with extraneous material. In various aspects of the invention, an electric field is applied to the molten rod end (18, 90), and/or the molten rod end (50, 90) is vibrated. In a further aspect of the invention, a high-frequency component is added to the electric field applied to the molten end of the rod (90). By controlling the internal pressure of the rod, the rate at which the rod is introduced into the laser beam, the environment of the process, the vibration amplitude and frequency of the molten rod end, the electric field intensity applied to the molten rod end, and the frequency and intensity of the component added to the electric field, the uniformity and size distribution of the solid or hollow spherical particles (122) produced by the inventive method is controlled. The polarity of the electric field applied to the molten rod end can be chosen to eliminate backstreaming electrons, which tend to produce run-away heating in the rod, from the process.

  9. Low power arcjet system spacecraft impacts

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.

  10. Re-forming supercritical quasi-parallel shocks. II - Mechanism for wave generation and front re-formation

    NASA Technical Reports Server (NTRS)

    Winske, D.; Thomas, V. A.; Omidi, N.; Quest, K. B.

    1990-01-01

    This paper continues the study of Thomas et al. (1990) in which hybrid simulations of quasi-parallel shocks were performed in one and two spatial dimensions. To identify the wave generation processes, the electromagnetic structure of the shock is examined by performing a number of one-dimensional hybrid simulations of quasi-parallel shocks for various upstream conditions. In addition, numerical experiments were carried out in which the backstreaming ions were removed from calculations to show their fundamental importance in reformation process. The calculations show that the waves are excited before ions can propagate far enough upstream to generate resonant modes. At some later times, the waves are regenerated at the leading edge of the interface, with properties like those of their initial interactions.

  11. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  12. Vacuum system transient simulator and its application to TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sredniawski, J.

    The vacuum system transient simulator (VSTS) models transient gas transport throughout complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. VSTS is capable of treating gas models of up to 10 species, for all flow regimes from pure molecular to continuum. Viscous interactions between species are considered as well as non-uniform temperature of a system. Although this program was specifically developed for use on the Tokamak Fusion Test Reactor (TFTR) project at Princeton, it is a generalized tool capable of handling a broad range of vacuum system problems. During the TFTR engineering design phase, VSTSmore » has been used in many applications. Two applications selected for presentation are: torus vacuum pumping system performance between 400 Ci tritium pulses and tritium backstreaming to neutral beams during pulses.« less

  13. High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Waltz, Cory; HFNG Collaboration

    2015-04-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.

  14. Properties of ultra low frequency upstream waves at Venus and Saturn: A comparison

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1995-01-01

    The upstream regions of all planets, except Pluto, have been investigated, using in situ spacecraft measurements and a variety of analysis techniques. The detailed studies at Earth indicate that these waves are generated locally in the magnetically connected solar wind by the interaction with ions backstreaming from the shock. However, since the properties of the solar wind vary with heliocentric distance and since properties of planetary shocks depend on plasma beta, interplanetary magnetic field (IMF) spiral angle and Mach number, the amount of heating, acceleration efficiencies, etc. significantly change with heliocentric distance. In turn the waves seen at each planet propagate not in the same but different (physical) propagation modes. In this paper we compare the ULF wave observations at an outer and an inner planet. We use the results of the ratio, quantites easily derivable with sufficient accuracy at each planet. We use the full electromagnetic dispersion relation for comparison with theoretical predictions.

  15. A statistical study of atypical wave modes in the Earth's foreshock region

    NASA Astrophysics Data System (ADS)

    Hsieh, W.; Shue, J.; Lee, B.

    2010-12-01

    The Earth's foreshock, the region upstream the Earth’s bow shock, is filled with back-streaming particles and ultra-low frequency waves. Three different wave modes have been identified in the region, including 30-sec waves, 3-sec waves, and shocklets. Time History of Events and Macroscale Interactions during Substorms (THEMIS), a satellite mission that consists of five probes, provides multiple measuements of the Earth’s foreshock region. The method of Hilbert-Huang transform (HHT) includes the procedures of empirical mode decomposition and instantaneous frequency calculation. In this study, we use HHT to decompose intrinsic wave modes and perform a wave analysis of chaotic magnetic fields in the Earth's foreshock region. We find that some individual atypical wave modes other than 30-sec and 3-sec appear in the region. In this presentation, we will show the statistical characteristics, such as wave frequency, wave amplitude, and wave polarization of the atypical intrinsic wave modes, with respect to different locations in the foreshock region and to different solar wind conditions.

  16. Modelling of caesium dynamics in the negative ion sources at BATMAN and ELISE

    NASA Astrophysics Data System (ADS)

    Mimo, A.; Wimmer, C.; Wünderlich, D.; Fantz, U.

    2017-08-01

    The knowledge of Cs dynamics in negative hydrogen ion sources is a primary issue to achieve the ITER requirements for the Neutral Beam Injection (NBI) systems, i.e. one hour operation with an accelerated ion current of 40 A of D- and a ratio between negative ions and co-extracted electrons below one. Production of negative ions is mostly achieved by conversion of hydrogen/deuterium atoms on a converter surface, which is caesiated in order to reduce the work function and increase the conversion efficiency. The understanding of the Cs transport and redistribution mechanism inside the source is necessary for the achievement of high performances. Cs dynamics was therefore investigated by means of numerical simulations performed with the Monte Carlo transport code CsFlow3D. Simulations of the prototype source (1/8 of the ITER NBI source size) have shown that the plasma distribution inside the source has the major effect on Cs dynamics during the pulse: asymmetry of the plasma parameters leads to asymmetry in Cs distribution in front of the plasma grid. The simulated time traces and the general simulation results are in agreement with the experimental measurements. Simulations performed for the ELISE testbed (half of the ITER NBI source size) have shown an effect of the vacuum phase time on the amount and stability of Cs during the pulse. The sputtering of Cs due to back-streaming ions was reproduced by the simulations and it is in agreement with the experimental observation: this can become a critical issue during long pulses, especially in case of continuous extraction as foreseen for ITER. These results and the acquired knowledge of Cs dynamics will be useful to have a better management of Cs and thus to reduce its consumption, in the direction of the demonstration fusion power plant DEMO.

  17. Foreshock ULF wave boundary at Venus

    NASA Astrophysics Data System (ADS)

    Shan, L.; Mazelle, C. X.; Meziane, K.; Romanelli, N. J.; Ge, Y.; Du, A.; Zhang, T.

    2017-12-01

    Foreshock ULF waves are a significant physical phenomenon on the plasma environment for terrestrial planets. The occurrence of ULF waves, associated with backstreaming ions and accelerated at shocks, implies the conditions and properties of the shock and its foreshock. The location of ultra-low frequency (ULF) quasi-monochromatic wave onset upstream of Venus bow shock is explored using Venus Express magnetic field data. We report the existence of a spatial foreshock boundary behind which ULF waves are present. We have found that the ULF wave boundary is sensitive to the interplanetary magnetic field (IMF) direction and appears well defined for a cone angle larger than 30o. In the Venusian foreshock, the slope of the wave boundary with respect to the Sun-Venus direction increase with IMF cone angle. We also found that for the IMF nominal direction at Venus' orbit, the boundary makes an inclination of 70o. Moreover, we have found that the inferred velocity of an ion traveling along the ULF boundary is in a qualitative agreement with a quasi-adiabatic reflection of a portion of the solar wind at the bow shock.

  18. High-efficiency 20 GHz traveling wave tube development for space communications

    NASA Technical Reports Server (NTRS)

    Aldana, S. L.; Tamashiro, R. N.

    1991-01-01

    A 75 watt CW high efficiency helix TWT operating at 20 GHz was developed for satellite communication systems. The purpose was to extend the performance capabilities of helix TWTs by using recent technology developments. The TWT described is a unique design because high overall efficiency is obtained with a low perveance beam. In the past, low perveance designs resulted in low beam efficiencies. However, due to recent breakthoughs in diamond rod technology and in collector electrode materials, high efficiencies can now be achieved with low perveance beams. The advantage of a low perveance beam is a reduction in space charge within the beam which translates to more efficient collector operation. In addition, this design incorporates textured graphite electrodes which further enhance collector operation by suppressing backstreaming secondaries. The diamond supported helix circuit features low RF losses, high interaction impedance, good thermal handling capability and has been designed to compensate for the low perveance beam. One more discussed tube feature is the use of a velocity taper in the output helix that achieves low signal distortion while maintaining high efficiency.

  19. The test facility requirements for the thermal vacuum thermal balance test of the Cosmic Background Explorer Observatory

    NASA Technical Reports Server (NTRS)

    Milam, Laura J.

    1990-01-01

    The Cosmic Background Explorer Observatory (COBE) underwent a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.

  20. Test facility requirements for the thermal vacuum thermal balance test of the Cosmic Background Explorer Observatory

    NASA Technical Reports Server (NTRS)

    Milam, Laura J.

    1991-01-01

    The Cosmic Background Explorer Observatory (COBE) underwant a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.

  1. Particle injection and acceleration at earth's bow shock - Comparison of upstream and downstream events

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Moebius, Eberhard; Paschmann, Goetz

    1990-01-01

    The injection and acceleration of thermal solar wind ions at the quasi-parallel earth's bow shock during radial interplanetary magnetic field conditions is investigated. Active Magnetospheric Particle Tracer Explorers/Ion Release Module satellite observations of complete proton spectra, and of heavy ion spectra above 10 keV/Q, made on September 12, 1984 near the nose of the shock, are presented and compared to the predictions of a Monte Carlo shock simulation which includes diffusive shock acceleration. It is found that the spectral observations are in good agreement with the predictions of the simulation when it is assumed that all accelerated ions originate in the solar wind and are injected into the acceleration mechanism by thermal leakage from the downstream plasma. The efficiency, which is determined directly from the downstream observations, is high, with at least 15 percent of the solar wind energy flux going into accelerated particles. The comparisons allow constraints to be placed on the rigidity dependence of the scattering mean free path and suggest that the upstream solar wind must be slowed substantially by backstreaming accelerated ions prior to undergoing a sharp transition in the viscous subshock.

  2. Status of the NEXT Long-Duration Test After 23,300 Hours of Operation

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2009-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art in ion propulsion to provide future NASA science missions with enhanced mission capabilities at a low total development cost. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated in June 2005, to verify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the anticipated throughput requirement of 300 kg per thruster from mission analyses. The LDT is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of July 2009, the thruster has accumulated 23,300 h of operation with extensive durations at the following input powers: 6.9, 4.7, 1.1, and 0.5 kW. The thruster has processed 427 kg of xenon surpassing the NSTAR propellant throughput demonstrated during the extended life testing of the Deep Space 1 flight spare ion thruster and approaching the NEXT development qualification throughput goal. The NEXT LDT has demonstrated a total impulse of 16.0 10(exp 6) N/s; the highest total impulse ever demonstrated by an ion thruster. Thruster performance tests are conducted periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Thruster performance parameters including thrust, input power, specific impulse, and thruster efficiency have been nominal with little variation to date. The NSTAR first-failure mode, accelerator aperture erosion leading to electron backstreaming, has been mitigated in the NEXT design. The severe NSTAR discharge cathode assembly erosion has been mitigated by a graphite keeper in the NEXT thruster. Tracking of the NEXT first failure mode, charge-exchange ion impingement on the accelerator grid causing hexagonal groove erosion, is consistent with model predictions and indicates thruster life greater than or equal to 750 kg throughput. This paper presents the status, performance data, and wear characteristics of the NEXT LDT to date.

  3. Role of bremsstrahlung radiation in limiting the energy of runaway electrons in tokamaks.

    PubMed

    Bakhtiari, M; Kramer, G J; Takechi, M; Tamai, H; Miura, Y; Kusama, Y; Kamada, Y

    2005-06-03

    Bremsstrahlung radiation of runaway electrons is found to be an energy limit for runaway electrons in tokamaks. The minimum and maximum energy of runaway electron beams is shown to be limited by collisions and bremsstrahlung radiation, respectively. It is also found that a massive injection of a high-Z gas such as xenon can terminate a disruption-generated runaway current before the runaway electrons hit the walls.

  4. Wigner molecules: the strong-correlation limit of the three-electron harmonium.

    PubMed

    Cioslowski, Jerzy; Pernal, Katarzyna

    2006-08-14

    At the strong-correlation limit, electronic states of the three-electron harmonium atom are described by asymptotically exact wave functions given by products of distinct Slater determinants and a common Gaussian factor that involves interelectron distances and the center-of-mass position. The Slater determinants specify the angular dependence and the permutational symmetry of the wave functions. As the confinement strength becomes infinitesimally small, the states of different spin multiplicities become degenerate, their limiting energy reflecting harmonic vibrations of the electrons about their equilibrium positions. The corresponding electron densities are given by products of angular factors and a Gaussian function centered at the radius proportional to the interelectron distance at equilibrium. Thanks to the availability of both the energy and the electron density, the strong-correlation limit of the three-electron harmonium is well suited for testing of density functionals.

  5. Spontaneous Hot Flow Anomalies at Quasi-Parallel Shocks: 2. Hybrid Simulations

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Zhang, H.; Sibeck, D.; Turner, D.

    2013-01-01

    Motivated by recent THEMIS observations, this paper uses 2.5-D electromagnetic hybrid simulations to investigate the formation of Spontaneous Hot Flow Anomalies (SHFA) upstream of quasi-parallel bow shocks during steady solar wind conditions and in the absence of discontinuities. The results show the formation of a large number of structures along and upstream of the quasi-parallel bow shock. Their outer edges exhibit density and magnetic field enhancements, while their cores exhibit drops in density, magnetic field, solar wind velocity and enhancements in ion temperature. Using virtual spacecraft in the simulation, we show that the signatures of these structures in the time series data are very similar to those of SHFAs seen in THEMIS data and conclude that they correspond to SHFAs. Examination of the simulation data shows that SHFAs form as the result of foreshock cavitons interacting with the bow shock. Foreshock cavitons in turn form due to the nonlinear evolution of ULF waves generated by the interaction of the solar wind with the backstreaming ions. Because foreshock cavitons are an inherent part of the shock dissipation process, the formation of SHFAs is also an inherent part of the dissipation process leading to a highly non-uniform plasma in the quasi-parallel magnetosheath including large scale density and magnetic field cavities.

  6. ULF waves in the Martian foreshock: MAVEN observations

    NASA Astrophysics Data System (ADS)

    Shan, Lican; Mazelle, Christian; Meziane, Karim; Ruhunusiri, Suranga; Espley, Jared; Halekas, Jasper; Connerney, Jack; McFadden, Jim; Mitchell, Dave; Larson, Davin; Brain, Dave; Jakosky, Bruce; Ge, Yasong; Du, Aimin

    2016-04-01

    Foreshock ULF waves constitute a significant physical phenomenon of the plasma environment for terrestrial planets. The occurrence of these ULF waves, associated with backstreaming ions reflected and accelerated at the bow shock, implies specific conditions and properties of the shock and its foreshock. Using measurements from MAVEN, we report clear observations of this type of ULF waves in the Martian foreshock. We show from different case studies that the peak frequency of the wave case in spacecraft frame is too far from the local ion cyclotron frequency to be associated with local pickup ions taking into account the Doppler shifted frequency from a cyclotron resonance, the obliquity of the mode, resonance broadening and experimental uncertainties. On the opposite their properties fit very well with foreshock waves driven unstable by backtreaming field-aligned ion beams. The propagation angle is usually less than 30 degrees from ambient magnetic field. The waves also display elliptical and left-hand polarizations with respect to interplanetary magnetic field in the spacecraft frame. It is clear for these cases that foreshock ions are simultaneous present for the ULF wave interval. Such observation is important in order to discriminate with the already well-reported pickup ion (protons) waves associated with exospheric hydrogen in order to quantitatively use the later to study seasonal variations of the hydrogen corona.

  7. The Quasi-monochromatic ULF Wave Boundary in the Venusian Foreshock: Venus Express Observations

    NASA Astrophysics Data System (ADS)

    Shan, Lican; Mazelle, Christian; Meziane, Karim; Romanelli, Norberto; Ge, Yasong S.; Du, Aimin; Lu, Quanming; Zhang, Tielong

    2018-01-01

    The location of ultralow-frequency (ULF) quasi-monochromatic wave onset upstream of Venus bow shock is explored using Venus Express magnetic field data. We report the existence of a spatial foreshock boundary behind which ULF waves are present. We have found that the ULF wave boundary at Venus is sensitive to the interplanetary magnetic field (IMF) direction like the terrestrial one and appears well defined for a cone angle larger than 30°. In the Venusian foreshock, the inclination angle of the wave boundary with respect to the Sun-Venus direction increases with the IMF cone angle. We also found that for the IMF nominal direction (θBX = 36°) at Venus' orbit, the value of this inclination angle is 70°. Moreover, we have found that the inferred velocity of an ion traveling along the ULF boundary is in a qualitative agreement with a quasi-adiabatic reflection of a portion of the solar wind at the bow shock. For an IMF nominal direction at Venus, the inferred bulk speed of ions traveling along this boundary is 1.07 VSW, sufficiently enough to overcome the solar wind convection. This strongly suggests that the backstreaming ions upstream of the Venusian bow shock provide the main energy source for the ULF waves.

  8. Electron-lattice coupling after high-energy deposition in aluminum

    NASA Astrophysics Data System (ADS)

    Gorbunov, S. A.; Medvedev, N. A.; Terekhin, P. N.; Volkov, A. E.

    2015-07-01

    This paper presents an analysis of the parameters of highly-excited electron subsystem of aluminum, appearing e.g. after swift heavy ion impact or laser pulse irradiation. For elevated electron temperatures, the electron heat capacity and the screening parameter are evaluated. The electron-phonon approximation of electron-lattice coupling is compared with its precise formulation based on the dynamic structure factor (DSF) formalism. The DSF formalism takes into account collective response of a lattice to excitation including all possible limit cases of this response. In particular, it automatically provides realization of electron-phonon coupling as the low-temperature limit, while switching to the plasma-limit for high electron temperatures. Aluminum is chosen as a good model system for illustration of the presented methodology.

  9. Ultrafast electron microscopy: Instrument response from the single-electron to high bunch-charge regimes

    NASA Astrophysics Data System (ADS)

    Plemmons, Dayne A.; Flannigan, David J.

    2017-09-01

    We determine the instrument response of an ultrafast electron microscope equipped with a conventional thermionic electron gun and absent modifications beyond the optical ports. Using flat, graphite-encircled LaB6 cathodes, we image space-charge effects as a function of photoelectron-packet population and find that an applied Wehnelt bias has a negligible effect on the threshold levels (>103 electrons per pulse) but does appear to suppress blurring at the upper limits (∼105 electrons). Using plasma lensing, we determine the instrument-response time for 700-fs laser pulses and find that single-electron packets are laser limited (1 ps), while broadening occurs well below the space-charge limit.

  10. Upper limit on the inner radiation belt MeV electron intensity.

    PubMed

    Li, X; Selesnick, R S; Baker, D N; Jaynes, A N; Kanekal, S G; Schiller, Q; Blum, L; Fennell, J; Blake, J B

    2015-02-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Quantified upper limit of MeV electrons in the inner beltActual MeV electron intensity likely much lower than the upper limitMore detailed understanding of relativistic electrons in the magnetosphere.

  11. Upper limit on the inner radiation belt MeV electron intensity

    PubMed Central

    Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB

    2015-01-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446

  12. Limitations in cooling electrons using normal-metal-superconductor tunnel junctions.

    PubMed

    Pekola, J P; Heikkilä, T T; Savin, A M; Flyktman, J T; Giazotto, F; Hekking, F W J

    2004-02-06

    We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. First, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do not obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Second, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.

  13. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad

    2011-10-15

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces.more » As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.« less

  14. Early Readers and Electronic Texts: CD-ROM Storybook Features That Influence Reading Behaviors

    ERIC Educational Resources Information Center

    Lefever-Davis, Shirley; Pearman, Cathy

    2005-01-01

    This research explores the impact of CD-ROM storybook features on the reading behaviors of 6- and 7-year-old students with limited exposure to CD-ROM storybooks. Six categories of behaviors were identified: tracking, electronic feature dependency, distractibility, spectator stance, electronic feature limitations, and electronic features as tools.…

  15. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. II. High-frequency electron-acoustic solitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.

    2012-12-15

    A three-component plasma model composed of ions, cool electrons, and hot electrons is adopted to investigate the existence of large amplitude electron-acoustic solitons not only for the model for which inertia and pressure are retained for all plasma species which are assumed to be adiabatic but also neglecting inertial effects of the hot electrons. Using the Sagdeev potential formalism, the Mach number ranges supporting the existence of large amplitude electron-acoustic solitons are presented. The limitations on the attainable amplitudes of electron-acoustic solitons having negative potentials are attributed to a number of different physical reasons, such as the number density ofmore » either the cool electrons or hot electrons ceases to be real valued beyond the upper Mach number limit, or, alternatively, a negative potential double layer occurs. Electron-acoustic solitons having positive potentials are found to be supported only if inertial effects of the hot electrons are retained and these are found to be limited only by positive potential double layers.« less

  16. New Limits on Bosonic Dark Matter, Solar Axions, Pauli Exclusion Principle Violation, and Electron Decay from the Majorana Demonstrator

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; ...

    2017-04-21

    Here, we present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. We set our most stringent DM constraints for 11.8 keV mass particles, limiting g A e < 4.5 × 10 -13 for pseudoscalars and ( α ' / α ) < 9.7 × 10 -28 for vectors. We also report a 14.4 keV solar axion coupling limit of gmore » $$eff\\atop{AN}$$ × g A e < 3.8 × 10 -17 , a 1/2 β 2 < 8.5 × 10 - 48 limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τ e > 1.2 × 1 0 24 yr for e - → invisible.« less

  17. New Limits on Bosonic Dark Matter, Solar Axions, Pauli Exclusion Principle Violation, and Electron Decay from the Majorana Demonstrator

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R. S.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.; MAJORANA Collaboration

    2017-04-01

    We present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. Our most stringent DM constraints are set for 11.8 keV mass particles, limiting gA e<4.5 ×10-13 for pseudoscalars and (α'/α )<9.7 ×10-28 for vectors. We also report a 14.4 keV solar axion coupling limit of gAN eff×gA e<3.8 ×10-17, a 1/2 β2<8.5 ×10-48 limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τe>1.2 ×1 024 yr for e-→ invisible.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikheev, Evgeny; Himmetoglu, Burak; Kajdos, Adam P.

    We analyze and compare the temperature dependence of the electron mobility of two- and three-dimensional electron liquids in SrTiO{sub 3}. The contributions of electron-electron scattering must be taken into account to accurately describe the mobility in both cases. For uniformly doped, three-dimensional electron liquids, the room temperature mobility crosses over from longitudinal optical (LO) phonon-scattering-limited to electron-electron-scattering-limited as a function of carrier density. In high-density, two-dimensional electron liquids, LO phonon scattering is completely screened and the mobility is dominated by electron-electron scattering up to room temperature. The possible origins of the observed behavior and the consequences for approaches to improvemore » the mobility are discussed.« less

  19. Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory.

    PubMed

    Gori-Giorgi, Paola; Vignale, Giovanni; Seidl, Michael

    2009-04-14

    The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is kept fixed by a suitable local one-body potential. The strong-interaction limit of density functional theory, defined as the limit λ→∞, turns out to be like the opposite noninteracting Kohn-Sham limit (λ→0) mathematically simpler than the physical (λ = 1) case and can be used to build an approximate interpolation formula between λ→0 and λ→∞ for the exchange-correlation energy. Here we extend the systematic treatment of the λ→∞ limit [Phys. Rev. A 2007, 75, 042511] to the next leading term, describing zero-point oscillations of strictly correlated electrons, with numerical examples for small spherical atoms. We also propose an improved approximate functional for the zero-point term and a revised interpolation formula for the exchange-correlation energy satisfying more exact constraints.

  20. Limiting current of intense electron beams in a decelerating gap

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.

    2016-02-01

    For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.

  1. Electron bulk speed lags the protons in the collisionless solar wind

    NASA Astrophysics Data System (ADS)

    Tong, Y.; Bale, S. D.; Salem, C. S.; Pulupa, M.

    2017-12-01

    We use a large, statistical set of in situ measurements of the solar wind electron distribution from the Wind/3DP instrument to show that the magnetic field-aligned core electron-proton drift speed tend to small values at high collisionality and asymptotes towards a large limiting value in the collisionless limit. This collisionless drift-limit, when normalized to the local Alfven speed is large and may drive instabilities.

  2. Limitations of opto-electronic neural networks

    NASA Technical Reports Server (NTRS)

    Yu, Jeffrey; Johnston, Alan; Psaltis, Demetri; Brady, David

    1989-01-01

    Consideration is given to the limitations of implementing neurons, weights, and connections in neural networks for electronics and optics. It is shown that the advantages of each technology are utilized when electronically fabricated neurons are included and a combination of optics and electronics are employed for the weights and connections. The relationship between the types of neural networks being constructed and the choice of technologies to implement the weights and connections is examined.

  3. 78 FR 67320 - Special Conditions: Airbus, Model A350-900 series Airplane; Pitch and Roll Limiting by Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ...) associated with the Electronic Flight Control System that limits pitch and roll attitude functions. The... substantiate the pitch and roll attitude limiting functions and the appropriateness of the chosen limits. Type... attitudes greater than +30 degrees and less than -15 degrees, and roll angles greater than plus or minus 67...

  4. Restrictions on the Quasi-Linear Description of Electron-Chorus Interaction in the Earth's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Sibeck, David G.

    2013-01-01

    The interaction of electrons with coherent chorus waves in the random phase approximation can be described as quasi-linear diffusion for waves with amplitudes below some limit. The limit is calculated for relativistic and non-relativistic electrons. For stronger waves, the friction force should be taken into account.

  5. 21 CFR 1311.15 - Limitations on CSOS digital certificates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Limitations on CSOS digital certificates. 1311.15... ELECTRONIC ORDERS AND PRESCRIPTIONS Obtaining and Using Digital Certificates for Electronic Orders § 1311.15 Limitations on CSOS digital certificates. (a) A CSOS digital certificate issued by the DEA Certification...

  6. The Challenges of Electronic Health Records and Diabetes Electronic Prescribing: Implications for Safety Net Care for Diverse Populations

    PubMed Central

    Chan, Lenny L. S.; Fouts, Michelle M.; Murphy, Elizabeth J.

    2017-01-01

    Widespread electronic health record (EHR) implementation creates new challenges in the diabetes care of complex and diverse populations, including safe medication prescribing for patients with limited health literacy and limited English proficiency. This review highlights how the EHR electronic prescribing transformation has affected diabetes care for vulnerable patients and offers recommendations for improving patient safety through EHR electronic prescribing design, implementation, policy, and research. Specifically, we present evidence for (1) the adoption of RxNorm; (2) standardized naming and picklist options for high alert medications such as insulin; (3) the widespread implementation of universal medication schedule and language-concordant labels, with the expansion of electronic prescription 140-character limit; (4) enhanced bidirectional communication with pharmacy partners; and (5) informatics and implementation research in safety net healthcare systems to examine how EHR tools and practices affect diverse vulnerable populations. PMID:28197420

  7. The Challenges of Electronic Health Records and Diabetes Electronic Prescribing: Implications for Safety Net Care for Diverse Populations.

    PubMed

    Ratanawongsa, Neda; Chan, Lenny L S; Fouts, Michelle M; Murphy, Elizabeth J

    2017-01-01

    Widespread electronic health record (EHR) implementation creates new challenges in the diabetes care of complex and diverse populations, including safe medication prescribing for patients with limited health literacy and limited English proficiency. This review highlights how the EHR electronic prescribing transformation has affected diabetes care for vulnerable patients and offers recommendations for improving patient safety through EHR electronic prescribing design, implementation, policy, and research. Specifically, we present evidence for (1) the adoption of RxNorm; (2) standardized naming and picklist options for high alert medications such as insulin; (3) the widespread implementation of universal medication schedule and language-concordant labels, with the expansion of electronic prescription 140-character limit; (4) enhanced bidirectional communication with pharmacy partners; and (5) informatics and implementation research in safety net healthcare systems to examine how EHR tools and practices affect diverse vulnerable populations.

  8. Construction of exchange-correlation functionals through interpolation between the non-interacting and the strong-correlation limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yongxi; Ernzerhof, Matthias, E-mail: Matthias.Ernzerhof@UMontreal.ca; Bahmann, Hilke

    Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, variousmore » interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials.« less

  9. Effects of Hot Limiter Biasing on Tokamak Runaway Discharges

    NASA Astrophysics Data System (ADS)

    Salar Elahi, A.; Ghoranneviss, M.; Ghanbari, M. R.

    2013-10-01

    In this research hot limiter biasing effects on the Runaway discharges were investigated. First wall of the tokamak reactors can affects serious damage due to the high energy runaway electrons during a major disruption and therefore its life time can be reduced. Therefore, it is important to find methods to decrease runaway electron generation and their energy. Tokamak limiter biasing is one of the methods for controlling the radial electric field and can induce a transition to an improved confinement state. In this article generation of runaway electrons and the energy they can obtain will be investigated theoretically. Moreover, in order to apply radial biasing an emissive limiter biasing is utilized. The biased limiter can apply +380 V in the status of cold and hot to the plasma and result in the increase of negative bias current in hot status. In fact, in this experiment we try to decrease the generation of runaway electrons and their energy by using emissive limiter biasing inserted on the IR-T1 tokamak. The mean energy of these electrons was obtained by spectroscopy of hard X-ray. Also, the plasma current center shift was measured from the vertical field coil characteristics in presence of limiter biasing. The calculation is made focusing on the vertical field coil current and voltage changes due to a horizontal displacement of plasma column.

  10. Scanning electron microscopy imaging of dislocations in bulk materials, using electron channeling contrast.

    PubMed

    Crimp, Martin A

    2006-05-01

    The imaging and characterization of dislocations is commonly carried out by thin foil transmission electron microscopy (TEM) using diffraction contrast imaging. However, the thin foil approach is limited by difficult sample preparation, thin foil artifacts, relatively small viewable areas, and constraints on carrying out in situ studies. Electron channeling imaging of electron channeling contrast imaging (ECCI) offers an alternative approach for imaging crystalline defects, including dislocations. Because ECCI is carried out with field emission gun scanning electron microscope (FEG-SEM) using bulk specimens, many of the limitations of TEM thin foil analysis are overcome. This paper outlines the development of electron channeling patterns and channeling imaging to the current state of the art. The experimental parameters and set up necessary to carry out routine channeling imaging are reviewed. A number of examples that illustrate some of the advantages of ECCI over thin foil TEM are presented along with a discussion of some of the limitations on carrying out channeling contrast analysis of defect structures. Copyright (c) 2006 Wiley-Liss, Inc.

  11. A brightness exceeding simulated Langmuir limit

    NASA Astrophysics Data System (ADS)

    Nakasuji, Mamoru

    2013-08-01

    When an excitation of the first lens determines a beam is parallel beam, a brightness that is 100 times higher than Langmuir limit is measured experimentally, where Langmuir limits are estimated using a simulated axial cathode current density which is simulated based on a measured emission current. The measured brightness is comparable to Langmuir limit, when the lens excitation is such that an image position is slightly shorter than a lens position. Previously measured values of brightness for cathode apical radii of curvature 20, 60, 120, 240, and 480 μm were 8.7, 5.3, 3.3, 2.4, and 3.9 times higher than their corresponding Langmuir limits, respectively, in this experiment, the lens excitation was such that the lens and the image positions were 180 mm and 400 mm, respectively. From these measured brightness for three different lens excitation conditions, it is concluded that the brightness depends on the first lens excitation. For the electron gun operated in a space charge limited condition, some of the electrons emitted from the cathode are returned to the cathode without having crossed a virtual cathode. Therefore, method that assumes a Langmuir limit defining method using a Maxwellian distribution of electron velocities may need to be revised. For the condition in which the values of the exceeding the Langmuir limit are measured, the simulated trajectories of electrons that are emitted from the cathode do not cross the optical axis at the crossover, thus the law of sines may not be valid for high brightness electron beam systems.

  12. The optical design of 3D ICs for smartphone and optro-electronics sensing module

    NASA Astrophysics Data System (ADS)

    Huang, Jiun-Woei

    2018-03-01

    Smartphone require limit space for image system, current lens, used in smartphones are refractive type, the effective focal length is limited the thickness of phone physical size. Other, such as optro-electronics sensing chips, proximity optical sensors, and UV indexer chips are integrated into smart phone with limit space. Due to the requirement of multiple lens in smartphone, proximity optical sensors, UV indexer and other optro-electronics sensing chips in a limited space of CPU board in future smart phone, optro-electronics 3D IC's integrated with optical lens or components may be a key technology for 3 C products. A design for reflective lens is fitted to CMOS, proximity optical sensors, UV indexer and other optro-electronics sensing chips based on 3-D IC. The reflective lens can be threes times of effective focal lens, and be able to resolve small object. The system will be assembled and integrated in one 3-D IC more easily.

  13. A Non-Neutral Plasma Device: Electron Beam Penning Trap

    NASA Astrophysics Data System (ADS)

    Zhuang, Ge; Liu, Wan-dong; Zheng, Jian; Fu, Cheng-jiang; Bai, Bo; Chi, Ji; Zhao, Kai; Xie, Jin-lin; Liang, Xiao-ping; Yu, Chang-xuan

    1999-12-01

    An electron beam Penning trap (EBPT) non- neutral plasma system, built to investigate the formation of a dense electron core with the density beyond Brillouin limit and possible application to fusion research, has been described. The density in the center of the EBPT has been verified to be up to 10 times of Brillouin density limit.

  14. 21 CFR 1311.15 - Limitations on CSOS digital certificates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Limitations on CSOS digital certificates. 1311.15... ELECTRONIC ORDERS AND PRESCRIPTIONS (Eff. 6-1-10) Obtaining and Using Digital Certificates for Electronic Orders § 1311.15 Limitations on CSOS digital certificates. (a) A CSOS digital certificate issued by the...

  15. Breaking resolution limits in ultrafast electron diffraction and microscopy.

    PubMed

    Baum, Peter; Zewail, Ahmed H

    2006-10-31

    Ultrafast electron microscopy and diffraction are powerful techniques for the study of the time-resolved structures of molecules, materials, and biological systems. Central to these approaches is the use of ultrafast coherent electron packets. The electron pulses typically have an energy of 30 keV for diffraction and 100-200 keV for microscopy, corresponding to speeds of 33-70% of the speed of light. Although the spatial resolution can reach the atomic scale, the temporal resolution is limited by the pulse width and by the difference in group velocities of electrons and the light used to initiate the dynamical change. In this contribution, we introduce the concept of tilted optical pulses into diffraction and imaging techniques and demonstrate the methodology experimentally. These advances allow us to reach limits of time resolution down to regimes of a few femtoseconds and, possibly, attoseconds. With tilted pulses, every part of the sample is excited at precisely the same time as when the electrons arrive at the specimen. Here, this approach is demonstrated for the most unfavorable case of ultrafast crystallography. We also present a method for measuring the duration of electron packets by autocorrelating electron pulses in free space and without streaking, and we discuss the potential of tilting the electron pulses themselves for applications in domains involving nuclear and electron motions.

  16. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.

    2017-02-01

    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  17. 17 CFR 232.105 - Limitation on use of HTML documents and hypertext links.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Limitation on use of HTML... Requirements § 232.105 Limitation on use of HTML documents and hypertext links. (a) Electronic filers must... EDGAR database on the Commission's public web site (www.sec.gov). Electronic filers also may include...

  18. 16 CFR 1500.88 - Exemptions from lead limits under section 101 of the Consumer Product Safety Improvement Act for...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 101 of the Consumer Product Safety Improvement Act for certain electronic devices. 1500.88 Section... from lead limits under section 101 of the Consumer Product Safety Improvement Act for certain electronic devices. (a) The Consumer Product Safety Improvement Act (CPSIA) provides for specific lead limits...

  19. Computerized crash reports usability and design investigation : final report.

    DOT National Transportation Integrated Search

    2016-06-01

    Electronic crash reports are advantageous because they can limit missing data, transcription errors, and the space : limitations of a single sheet of paper. Advancing electronic reports through user-centered design affords an : opportunity to improve...

  20. Pressure profiles of plasmas confined in the field of a dipole magnet

    NASA Astrophysics Data System (ADS)

    Davis, Matthew Stiles

    Understanding the maintenance and stability of plasma pressure confined by a strong magnetic field is a fundamental challenge in both laboratory and space plasma physics. Using magnetic and X-ray measurements on the Levitated Dipole Experiment (LDX), the equilibrium plasma pressure has been reconstructed, and variations of the plasma pressure for different plasma conditions have been examined. The relationship of these profiles to the magnetohydrodynamic (MHD) stability limit, and to the enhanced stability limit that results from a fraction of energetic trapped electrons, has been analyzed. In each case, the measured pressure profiles and the estimated fractional densities of energetic electrons were qualitatively consistent with expectations of plasma stability. LDX confines high temperature and high pressure plasma in the field of a superconducting dipole magnet. The strong dipole magnet can be either mechanically supported or magnetically levitated. When the dipole was mechanically supported, the plasma density profile was generally uniform while the plasma pressure was highly peaked. The uniform density was attributed to the thermal plasma being rapidly lost along the field to the mechanical supports. In contrast, the strongly peaked plasma pressure resulted from a fraction of energetic, mirror trapped electrons created by microwave heating at the electron cyclotron resonance (ECRH). These hot electrons are known to be gyrokinetically stabilized by the background plasma and can adopt pressure profiles steeper than the MHD limit. X-ray measurements indicated that this hot electron population could be described by an energy distribution in the range 50-100 keV. Combining information from the magnetic reconstruction of the pressure profile, multi-chord interferometer measurements of the electron density profile, and X-ray measurements of the hot electron energy distribution, the fraction of energetic electrons at the pressure peak was estimated to be ˜ 35% of the total electron population. When the dipole was magnetically levitated the plasma density increased substantially because particle losses to the mechanical supports were eliminated so particles could only be lost via slower cross-field transport processes. The pressure profile was observed to be broader during levitated operation than it was during supported operation, and the pressure appeared to be contained in both a thermal population and an energetic electron population. X-ray spectra indicated that the X-rays came from a similar hot electron population during levitated and supported operation; however, the hot electron fraction was an order of magnitude smaller during levitated operation (<3% of the total electron population). Pressure gradients for both supported and levitated plasmas were compared to the MHD limit. Levitated plasmas had pressure profiles that were (i) steeper than, (ii) shallower than, or (iii) near the MHD limit dependent on plasma conditions. However, those profiles that exceeded the MHD limit were observed to have larger fractions of energetic electrons. When the dipole magnet was supported, high pressure plasmas always had profiles that exceeded the MHD interchange stability limit, but the high pressure in these plasmas appeared to arise entirely from a population of energetic trapped electrons.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.

    We present new limits on exotic keV-scale physics based on 478 kg d of MAJORANA DEMONSTRATOR commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. Our most stringent DM constraints are set for 11.8 keV mass particles, limiting gAe < 4.5 × 10-13 for pseudoscalars and ðα0=αÞ < 9.7 × 10-28 for vectors. We also report a 14.4 keV solar axion coupling limit of geff AN × gAe < 3.8 × 10-17, amore » 1 2 β2 < 8.5 × 10-48 limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τe > 1.2 × 1024 yr for e- → invisible.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.

    Here, we present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. We set our most stringent DM constraints for 11.8 keV mass particles, limiting g A e < 4.5 × 10 -13 for pseudoscalars and ( α ' / α ) < 9.7 × 10 -28 for vectors. We also report a 14.4 keV solar axion coupling limit of gmore » $$eff\\atop{AN}$$ × g A e < 3.8 × 10 -17 , a 1/2 β 2 < 8.5 × 10 - 48 limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τ e > 1.2 × 1 0 24 yr for e - → invisible.« less

  3. Suppression of shot noise and spontaneous radiation in electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko,V.

    2009-08-23

    Shot noise in the electron beam distribution is the main source of noise in high-gain FEL amplifiers, which may affect applications ranging from single- and multi-stage HGHG FELs to an FEL amplifier for coherent electron cooling. This noise also imposes a fundamental limit of about 10{sup 6} on FEL gain, after which SASE FELs saturate. There are several advantages in strongly suppressing this shot noise in the electron beam, and the corresponding spontaneous radiation. For more than a half-century, a traditional passive method has been used successfully in practical low-energy microwave electronic devices to suppress shot noise. Recently, it wasmore » proposed for this purpose in FELs. However, being passive, the method has some significant limitations and is hardly suitable for the highly inhomogeneous beams of modern high-gain FELs. I present a novel active method of suppressing, by many orders-of-magnitude, the shot noise in relativistic electron beams. I give a theoretical description of the process, and detail its fundamental limitation.« less

  4. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.

    PubMed

    Parzefall, M; Bharadwaj, P; Jain, A; Taniguchi, T; Watanabe, K; Novotny, L

    2015-12-01

    The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.

  5. Inequivalence of single-particle and population lifetimes in a cuprate superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuolong; Sobota, J. A.; Leuenberger, D.

    2015-06-15

    We study optimally doped Bi-2212 (T c=96 K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by 1–2 orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. As a result, the qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant rolemore » in the electron dynamics of cuprate superconductors.« less

  6. Silicon Hot-Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Hsieh, Wen-Ting; Mitchell, Robert R.; Isenberg, Hal D.; Stahle, Carl M.; Cao, Nga T.; Schneider, Gideon; Travers, Douglas E.; Moseley, S. Harvey; Wollack, Edward J.

    2004-01-01

    We discuss a new type of direct detector, a silicon hot-electron bolometer, for measurements in the far-infrared and submillimeter spectral ranges. High performance bolometers can be made using the electron-phonon conductance in heavily doped silicon to provide thermal isolation from the cryogenic bath. Noise performance is expected to be near thermodynamic limits, allowing background limited performance for many far infrared and submillimeter photometric and spectroscopic applications.

  7. Kinetic theory for strongly coupled Coulomb systems

    NASA Astrophysics Data System (ADS)

    Dufty, James; Wrighton, Jeffrey

    2018-01-01

    The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.

  8. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography.

    PubMed

    Murata, Kazuyoshi; Esaki, Masatoshi; Ogura, Teru; Arai, Shigeo; Yamamoto, Yuta; Tanaka, Nobuo

    2014-11-01

    Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ~3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Study of ultrasonic attenuation in f-electron systems in the paramagnetic limit of Coulomb interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadangi, Asit Ku., E-mail: asitshad@iopb.res.in; Rout, G. C., E-mail: gcr@iopb.res.in

    2015-05-15

    We report here a microscopic model study of ultrasonic attenuation in f-electron systems based on Periodic Anderson Model in which Coulomb interaction is considered within a mean-field approximation for a weak interaction. The Phonon is coupled to the conduction band and f-electrons. The phonon Green's function is calculated by Zubarev's technique of the Green's function method. The temperature dependent ultrasonic attenuation co-efficient is calculated from the imaginary part of the phonon self-energy in the dynamic and long wave length limit. The f-electron occupation number is calculated self-consistently in paramagnetic limit of Coulomb interaction. The effect of the Coulomb interaction onmore » ultrasonic attenuation is studied by varying the phonon coupling parameters to the conduction and f-electrons, hybridization strength, the position of f-level and the Coulomb interaction Strength. Results are discussed on the basis of experimental results.« less

  10. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecturea

    PubMed Central

    Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-01-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066

  11. Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

    PubMed Central

    Bittencourt, Carla; Van Tendeloo, Gustaaf

    2015-01-01

    Summary A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms. PMID:26425406

  12. Electron mobility limited by optical phonons in wurtzite InGaN/GaN core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Liu, W. H.; Qu, Y.; Ban, S. L.

    2017-09-01

    Based on the force-balance and energy-balance equations, the optical phonon-limited electron mobility in InxGa1-xN/GaN core-shell nanowires (CSNWs) is discussed. It is found that the electrons tend to distribute in the core of the CSNWs due to the strong quantum confinement. Thus, the scattering from first kind of the quasi-confined optical (CO) phonons is more important than that from the interface (IF) and propagating (PR) optical phonons. Ternary mixed crystal and size effects on the electron mobility are also investigated. The results show that the PR phonons exist while the IF phonons disappear when the indium composition x < 0.047, and vice versa. Accordingly, the total electron mobility μ first increases and then decreases with indium composition x, and reaches a peak value of approximately 3700 cm2/(V.s) when x = 0.047. The results also show that the mobility μ increases as increasing the core radius of CSNWs due to the weakened interaction between the electrons and CO phonons. The total electron mobility limited by the optical phonons exhibits an obvious enhancement as decreasing temperature or increasing line electron density. Our theoretical results are expected to be helpful to develop electronic devices based on CSNWs.

  13. Evaluation of electronic speed limit signs on US 30.

    DOT National Transportation Integrated Search

    2011-09-01

    This study documents the speed : reduction impacts of two dynamic, : electronic school zone speed limit signs : at United Community Schools between : Ames and Boone, Iowa. The school : facility is situated along US Highway 30, : a rural four-lane div...

  14. s-wave threshold in electron attachment - Observations and cross sections in CCl4 and SF6 at ultralow electron energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.

    1985-01-01

    The threshold photoionization method was used to study low-energy electron attachment phenomena in and cross sections of CCl4 and SF6 compounds, which have applications in the design of gaseous dielectrics and diffuse discharge opening switches. Measurements were made at electron energies from below threshold to 140 meV at resolutions of 6 and 8 meV. A narrow resolution-limited structure was observed in electron attachment to CCl4 and SF6 at electron energies below 10 meV, which is attributed to the divergence of the attachment cross section in the limit epsilon, l approaches zero. The results are compared with experimental collisional-ionization results, electron-swarm unfolded cross sections, and earlier threshold photoionization data.

  15. Electron polar cap and the boundary of open geomagnetic field lines.

    NASA Technical Reports Server (NTRS)

    Evans, L. C.; Stone, E. C.

    1972-01-01

    A total of 333 observations of the boundary of the polar access region for electrons (energies greater than 530 keV) provides a comprehensive map of the electron polar cap. The boundary of the electron polar cap, which should occur at the latitude separating open and closed field lines, is consistent with previously reported closed field line limits determined from trapped-particle data. The boundary, which is sharply defined, seems to occur at one of three discrete latitudes. Although the electron flux is generally uniform across the polar cap, a limited region of reduced access is observed about 10% of the time.

  16. Breaking resolution limits in ultrafast electron diffraction and microscopy

    PubMed Central

    Baum, Peter; Zewail, Ahmed H.

    2006-01-01

    Ultrafast electron microscopy and diffraction are powerful techniques for the study of the time-resolved structures of molecules, materials, and biological systems. Central to these approaches is the use of ultrafast coherent electron packets. The electron pulses typically have an energy of 30 keV for diffraction and 100–200 keV for microscopy, corresponding to speeds of 33–70% of the speed of light. Although the spatial resolution can reach the atomic scale, the temporal resolution is limited by the pulse width and by the difference in group velocities of electrons and the light used to initiate the dynamical change. In this contribution, we introduce the concept of tilted optical pulses into diffraction and imaging techniques and demonstrate the methodology experimentally. These advances allow us to reach limits of time resolution down to regimes of a few femtoseconds and, possibly, attoseconds. With tilted pulses, every part of the sample is excited at precisely the same time as when the electrons arrive at the specimen. Here, this approach is demonstrated for the most unfavorable case of ultrafast crystallography. We also present a method for measuring the duration of electron packets by autocorrelating electron pulses in free space and without streaking, and we discuss the potential of tilting the electron pulses themselves for applications in domains involving nuclear and electron motions. PMID:17056711

  17. Energetic ion leakage from foreshock transient cores

    NASA Astrophysics Data System (ADS)

    Liu, Terry Z.; Angelopoulos, Vassilis; Hietala, Heli

    2017-07-01

    Earth's foreshock is filled with backstreaming particles that can interact with the ambient solar wind and its discontinuities to form foreshock transients. Many foreshock transients have a core with low dynamic pressure that can significantly perturb the bow shock and the magnetosphere-ionosphere system. Foreshock transients have also been recently recognized as sites of particle acceleration, which may be important for seeding the parent shock with energetic particles. A relevant step of this seeding would be energetic ion leakage into the surrounding foreshock environment. On the other hand, such leakage would also suppress the energetic particle flux contrast across foreshock transients' boundaries masking their perceived contribution to ion energization. To further examine this hypothesis of ion leakage, we report on multipoint case studies of three foreshock transient events selected from a large database. The cases were selected to exemplify, in increasing complexity, the nature and consequences of energetic ion leakage. Ion energy dispersion, observed upstream and/or downstream of the foreshock transients, is explained with a simple, ballistic model of ions leaking from the foreshock transients. Larger energies are required for leaked ions to reach the spacecraft as the distance between the transient and spacecraft increases. Our model, which explains well the observed ion energy dispersion and velocity distributions, can also be used to reveal the shape of the foreshock transients in three dimensions. Our results suggest that ion leakage from foreshock transient cores needs to be accounted for both in statistical studies and in global models of ion acceleration under quasi-parallel foreshock conditions.

  18. Rethinking Electronic Portfolios to Promote Sustainability among Teachers

    ERIC Educational Resources Information Center

    Shepherd, Craig E.; Skrabut, Stan

    2011-01-01

    Electronic portfolios (eportfolios) can increase reflection, develop content and pedagogy skills and facilitate communication between teachers and administrators. However, they have limitations. Despite resources that teacher institutions devote to eportfolios, research suggests that most implementations are of limited duration. In a climate where…

  19. s-wave threshold in electron attachment - Results in 2-C4F6 and CFCl3 at ultra-low electron energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.; Ajello, J. M.; Orient, O. J.

    1984-01-01

    Electron attachment lineshapes and cross sections are reported for the processes 2-C4F6(-)/2-C4F6 and Cl(-)/CFCl3 at electron energies of 0-120 and 0-140 meV, and at resolutions of 6 and 7 meV (FWHM), respectively. As in previous measurements in CCl4 and SF6, the results show resolution-limited narrow structure in the cross section at electron energies below 15 meV. This structure arises from the divergence of the s-wave cross section in the limit of zero electron energy. Comparisons are given with swarm-measured results, and with collisional ionization (high-Rydberg attachment) data in this energy range.

  20. An Experiment on the Limits of Quantum Electro-dynamics

    DOE R&D Accomplishments Database

    Barber, W. C.; Richter, B.; Panofsky, W. K. H.; O'Neill, G. K.; Gittelman, B.

    1959-06-01

    The limitations of previously performed or suggested electrodynamic cutoff experiments are reviewed, and an electron-electron scattering experiment to be performed with storage rings to investigate further the limits of the validity of quantum electrodynamics is described. The foreseen experimental problems are discussed, and the results of the associated calculations are given. The parameters and status of the equipment are summarized. (D.C.W.)

  1. Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.

    PubMed

    Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong

    2015-10-01

    Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.

  2. The size-quantized oscillations of the optical-phonon-limited electron mobility in AlN/GaN/AlN nanoscale heterostructures

    NASA Astrophysics Data System (ADS)

    Pokatilov, E. P.; Nika, D. L.; Askerov, A. S.; Zincenco, N. D.; Balandin, A. A.

    2007-12-01

    nanometer scale thickness by taking into account multiple quantized electron subbands and the confined optical phonon dispersion. It was shown that the inter-subband electronic transitions play an important role in limiting the electron mobility in the heterostructures when the energy separation between one of the size-quantized excited electron subbands and the Fermi energy becomes comparable to the optical phonon energy. The latter leads to the oscillatory dependence of the electron mobility on the thickness of the heterostructure conduction channel layer. This effect is observable at room temperature and over a wide range of the carrier densities. The developed formalism and calculation procedure are readily applicable to other material systems. The described effect can be used for fine-tuning the confined electron and phonon states in the nanoscale heterostructures in order to achieve performance enhancement of the nanoscale electronic and optoelectronic devices.

  3. 75 FR 36358 - University of Maine System, et al.; Notice of Consolidated Decision on Applications for Duty-Free...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    .... Manufacturer: Japanese Electron-Optics, Limited (JEOL), Japan. Intended Use: See notice at 75 FR 29974, May 28...: Japanese Electron-Optics, Limited, (JEOL), Japan. Intended Use: See notice at 75 FR 29974, May 28, 2010...

  4. Upper limit on the inner radiation belt MeV electron intensity

    NASA Astrophysics Data System (ADS)

    Li, X.; Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J. B.

    2015-02-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

  5. A thermodynamic model to predict electron mobility in superfluid helium.

    PubMed

    Aitken, Frédéric; Volino, Ferdinand; Mendoza-Luna, Luis Guillermo; Haeften, Klaus von; Eloranta, Jussi

    2017-06-21

    Electron mobility in superfluid helium is modeled between 0.1 and 2.2 K by a van der Waals-type thermodynamic equation of state, which relates the free volume of solvated electrons to temperature, density, and phase dependent internal pressure. The model is first calibrated against known electron mobility reference data along the saturated vapor pressure line and then validated to reproduce the existing mobility literature values as a function of pressure and temperature with at least 10% accuracy. Four different electron mobility regimes are identified: (1) Landau critical velocity limit (T ≈ 0), (2) mobility limited by thermal phonons (T < 0.6 K), (3) thermal phonon and discrete roton scattering ("roton gas") limited mobility (0.6 K < T < 1.2 K), and (4) the viscous liquid ("roton continuum") limit (T > 1.2 K) where the ion solvation structure directly determines the mobility. In the latter regime, the Stokes equation can be used to estimate the hydrodynamic radius of the solvated electron based on its mobility and fluid viscosity. To account for the non-continuum behavior appearing below 1.2 K, the temperature and density dependent Millikan-Cunningham factor is introduced. The hydrodynamic electron bubble radii predicted by the present model appear generally larger than the solvation cavity interface barycenter values obtained from density functional theory (DFT) calculations. Based on the classical Stokes law, this difference can arise from the variation of viscosity and flow characteristics around the electron. The calculated DFT liquid density profiles show distinct oscillations at the vacuum/liquid interface, which increase the interface rigidity.

  6. Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less

  7. Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines

    DOE PAGES

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    2016-11-10

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less

  8. Hollow cathode plasma coupling study, 1986

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1986-01-01

    The electron collection and emission characteristics of a simple hollow cathode contactor, an extended anode hollow cathode contactor supplied by JSC, and a ring cusp magnetic field contactor are presented and the effects of discharge power and argon or xenon expellant flowrate on these characteristics are examined. All of the contactors are shown to exhibit good electron emission performance over a wide range of discharge power and expellant type and flowrate. Good electron performance is shown to be more difficult to achieve. Results suggest that the extended anode and ring cusp contactors should perform satisfactorily to electron emission currents beyond 1000 mA and electron collection currents beyond 500 mA. All contactors performed better on xenon than argon. A general theory of plasma contactor operation in both the electron collection and electron emission modes, which describes the current-limiting effects of space-charge phenomena is given. This current-limiting and collecting phenomenon is shown to be a function of driving potential differences and emitting and collecting surface radius ratio for the case of a spherical geometry. Discharge power did not appear to influence the electron collection current substantially in the experiments so it is suggested in light of the model that the contactors are generally not limited by their ion production capabilities under conditions at which they were tested.

  9. Current-limited electron beam injection

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1977-01-01

    The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.

  10. Ionic-Electronic Ambipolar Transport in Metal Halide Perovskites: Can Electronic Conductivity Limit Ionic Diffusion?

    PubMed

    Kerner, Ross A; Rand, Barry P

    2018-01-04

    Ambipolar transport describes the nonequilibrium, coupled motion of positively and negatively charged particles to ensure that internal electric fields remain small. It is commonly invoked in the semiconductor community where the motion of excess electrons and holes drift and diffuse together. However, the concept of ambipolar transport is not limited to semiconductor physics. Materials scientists working on ion conducting ceramics understand ambipolar transport dictates the coupled diffusion of ions and the rate is limited by the ion with the lowest diffusion coefficient. In this Perspective, we review a third application of ambipolar transport relevant to mixed ionic-electronic conducting materials for which the motion of ions is expected to be coupled to electronic carriers. In this unique situation, the ambipolar diffusion model has been successful at explaining the photoenhanced diffusion of metal ions in chalcogenide glasses and other properties of materials. Recent examples of photoenhanced phenomena in metal halide perovskites are discussed and indicate that mixed ionic-electronic ambipolar transport is similarly important for a deep understanding of these emerging materials.

  11. A test of local Lorentz invariance with Compton scattering asymmetry

    DOE PAGES

    Mohanmurthy, Prajwal; Narayan, Amrendra; Dutta, Dipangkar

    2016-12-14

    Here, we report on a measurement of the constancy and anisotropy of the speed of light relative to the electrons in photon-electron scattering. We also used the Compton scattering asymmetry measured by the new Compton polarimeter in Hall~C at Jefferson Lab to test for deviations from unity of the vacuum refractive index (more » $n$). For photon energies in the range of 9 - 46 MeV, we obtain a new limit of $$1-n < 1.4 \\times 10^{-8}$$. In addition, the absence of sidereal variation over the six month period of the measurement constrains any anisotropies in the speed of light. These constitute the first study of Lorentz invariance using Compton asymmetry. Within the minimal standard model extension framework, our result yield limits on the photon and electron coefficients $$\\tilde{\\kappa}_{0^+}^{YZ}, c_{TX}, \\tilde{\\kappa}_{0^+}^{ZX}$$, and $$c_{TY}$$. Though, these limits are several orders of magnitude larger than the current best limits, they demonstrate the feasibility of using Compton asymmetry for tests of Lorentz invariance. For future parity violating electron scattering experiments at Jefferson Lab we will use higher energy electrons enabling better constraints.« less

  12. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.

    PubMed

    Gabor, Nathaniel M

    2013-06-18

    In semiconductor photovoltaics, photoconversion efficiency is governed by a simple competition: the incident photon energy is either transferred to the crystal lattice (heat) or transferred to electrons. In conventional materials, energy loss to the lattice is more efficient than energy transferred to electrons, thus limiting the power conversion efficiency. Quantum electronic systems, such as quantum dots, nanowires, and two-dimensional electronic membranes, promise to tip the balance in this competition by simultaneously limiting energy transfer to the lattice and enhancing energy transfer to electrons. By exploring the optical, thermal, and electronic properties of quantum materials, we may perhaps find an ideal optoelectronic material that provides low cost fabrication, facile systems integration, and a means to surpass the standard limit for photoconversion efficiency. Nanoscale carbon materials, such as graphene and carbon nanotubes, provide ideal experimental quantum systems in which to explore optoelectronic behavior for applications in solar energy harvesting. Within essentially the same material, researchers can achieve a broad spectrum of energetic configurations, from a gapless semimetal to a large band-gap semiconducting nanowire. Owing to their nanoscale dimensions, graphene and carbon nanotubes exhibit electronic and optical properties that reflect strong electron-electron interactions. Such strong interactions may lead to exotic low-energy electron transport behavior and high-energy electron scattering processes such as impact excitation and the inverse process of Auger recombination. High-energy processes, which become very important under photoexcitation, may be particularly efficient in nanoscale carbon materials due to the relativistic-like, charged particle band structure and sensitivity to the dielectric environment. In addition, due to the covalently bonded carbon framework that makes up these materials, electron-phonon coupling is very weak. In carbon nanomaterials, strong electron-electron interactions combined with weak electron-phonon interactions results in excellent optical, thermal and electronic properties, the exploration of which promises to reveal fundamentally new physical processes and deliver advanced nanotechnologies. In this Account, we review the results of novel optoelectronic experiments that explore the intrinsic photoresponse of carbon nanomaterials integrated into nanoscale devices. By fabricating gate voltage-controlled photodetectors composed of atomically thin sheets of graphene and individual carbon nanotubes, we are able to fully explore electron transport in these systems under optical illumination. We find that strong electron-electron interactions play a key role in the intrinsic photoresponse of both materials, as evidenced by hot carrier transport in graphene and highly efficient multiple electron-hole pair generation in nanotubes. In both of these quantum systems, photoexcitation leads to high-energy electron-hole pairs that relax energy predominantly into the electronic system, rather than heating the lattice. Due to highly efficient energy transfer from photons into electrons, graphene and carbon nanotubes may be ideal materials for solar energy harvesting devices with efficiencies that could exceed the Shockley-Queisser limit.

  13. Can the oscillator strength of the quantum dot bandgap transition exceed unity?

    NASA Astrophysics Data System (ADS)

    Hens, Z.

    2008-10-01

    We discuss the apparent contradiction between the Thomas-Reiche-Kuhn sum rule for oscillator strengths and recent experimental data on the oscillator strength of the band gap transition of quantum dots. Starting from two simple single electron model systems, we show that the sum rule does not limit this oscillator strength to values below unity, or below the number of electrons in the highest occupied single electron state. The only upper limit the sum rule imposes on the oscillator strength of the quantum dot band gap transition is the total number of electrons in the quantum dot.

  14. 4D electron microscopy: principles and applications.

    PubMed

    Flannigan, David J; Zewail, Ahmed H

    2012-10-16

    The transmission electron microscope (TEM) is a powerful tool enabling the visualization of atoms with length scales smaller than the Bohr radius at a factor of only 20 larger than the relativistic electron wavelength of 2.5 pm at 200 keV. The ability to visualize matter at these scales in a TEM is largely due to the efforts made in correcting for the imperfections in the lens systems which introduce aberrations and ultimately limit the achievable spatial resolution. In addition to the progress made in increasing the spatial resolution, the TEM has become an all-in-one characterization tool. Indeed, most of the properties of a material can be directly mapped in the TEM, including the composition, structure, bonding, morphology, and defects. The scope of applications spans essentially all of the physical sciences and includes biology. Until recently, however, high resolution visualization of structural changes occurring on sub-millisecond time scales was not possible. In order to reach the ultrashort temporal domain within which fundamental atomic motions take place, while simultaneously retaining high spatial resolution, an entirely new approach from that of millisecond-limited TEM cameras had to be conceived. As shown below, the approach is also different from that of nanosecond-limited TEM, whose resolution cannot offer the ultrafast regimes of dynamics. For this reason "ultrafast electron microscopy" is reserved for the field which is concerned with femtosecond to picosecond resolution capability of structural dynamics. In conventional TEMs, electrons are produced by heating a source or by applying a strong extraction field. Both methods result in the stochastic emission of electrons, with no control over temporal spacing or relative arrival time at the specimen. The timing issue can be overcome by exploiting the photoelectric effect and using pulsed lasers to generate precisely timed electron packets of ultrashort duration. The spatial and temporal resolutions achievable with short intense pulses containing a large number of electrons, however, are limited to tens of nanometers and nanoseconds, respectively. This is because Coulomb repulsion is significant in such a pulse, and the electrons spread in space and time, thus limiting the beam coherence. It is therefore not possible to image the ultrafast elementary dynamics of complex transformations. The challenge was to retain the high spatial resolution of a conventional TEM while simultaneously enabling the temporal resolution required to visualize atomic-scale motions. In this Account, we discuss the development of four-dimensional ultrafast electron microscopy (4D UEM) and summarize techniques and applications that illustrate the power of the approach. In UEM, images are obtained either stroboscopically with coherent single-electron packets or with a single electron bunch. Coulomb repulsion is absent under the single-electron condition, thus permitting imaging, diffraction, and spectroscopy, all with high spatiotemporal resolution, the atomic scale (sub-nanometer and femtosecond). The time resolution is limited only by the laser pulse duration and energy carried by the electron packets; the CCD camera has no bearing on the temporal resolution. In the regime of single pulses of electrons, the temporal resolution of picoseconds can be attained when hundreds of electrons are in the bunch. The applications given here are selected to highlight phenomena of different length and time scales, from atomic motions during structural dynamics to phase transitions and nanomechanical oscillations. We conclude with a brief discussion of emerging methods, which include scanning ultrafast electron microscopy (S-UEM), scanning transmission ultrafast electron microscopy (ST-UEM) with convergent beams, and time-resolved imaging of biological structures at ambient conditions with environmental cells.

  15. Electron Beam Welding: study of process capability and limitations towards development of nuclear components

    NASA Astrophysics Data System (ADS)

    Vadolia, Gautam R.; Premjit Singh, K.

    2017-04-01

    Electron Beam Welding (EBW) technology is an established and widely adopted technique in nuclear research and development area. Electron beam welding was thought of as a candidate process for ITER Vacuum Vessel Fabrication. Dhruva Reactor at BARC, Mumbai and Niobium superconducting accelerator cavity at BARC has adopted the EB welding technique as a fabrication route. Study of process capability and limitations based on available literature is consolidated in this short review paper.

  16. Analysis of fast chlorophyll fluorescence rise (O-K-J-I-P) curves in green fruits indicates electron flow limitations at the donor side of PSII and the acceptor sides of both photosystems.

    PubMed

    Kalachanis, Dimitrios; Manetas, Yiannis

    2010-07-01

    Limited evidence up to now indicates low linear photosynthetic electron flow and CO(2) assimilation rates in non-foliar chloroplasts. In this investigation, we used chlorophyll fluorescence techniques to locate possible limiting steps in photosystem function in exposed, non-stressed green fruits (both pericarps and seeds) of three species, while corresponding leaves served as controls. Compared with leaves, fruit photosynthesis was characterized by less photon trapping and less quantum yields of electron flow, while the non-photochemical quenching was higher and potentially linked to enhanced carotenoid/chlorophyll ratios. Analysis of fast chlorophyll fluorescence rise curves revealed possible limitations both in the donor (oxygen evolving complex) and the acceptor (Q(A)(-)--> intermediate carriers) sides of photosystem II (PSII) indicating innately low PSII photochemical activity. On the other hand, PSI was characterized by faster reduction of its final electron acceptors and their small pool sizes. We argue that the fast reductive saturation of final PSI electron acceptors may divert electrons back to intermediate carriers facilitating a cyclic flow around PSI, while the partial inactivation of linear flow precludes strong reduction of plastoquinone. As such, the photosynthetic attributes of fruit chloroplasts may act to replenish the ATP lost because of hypoxia usually encountered in sink organs with high diffusive resistance to gas exchange.

  17. Phonon limited electronic transport in Pb

    NASA Astrophysics Data System (ADS)

    Rittweger, F.; Hinsche, N. F.; Mertig, I.

    2017-09-01

    We present a fully ab initio based scheme to compute electronic transport properties, i.e. the electrical conductivity σ and thermopower S, in the presence of electron-phonon interaction. We explicitly investigate the \

  18. Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting.

    PubMed

    De Backer, A; Martinez, G T; MacArthur, K E; Jones, L; Béché, A; Nellist, P D; Van Aert, S

    2015-04-01

    Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Magnetic torque anomaly in the quantum limit of Weyl semimetals

    PubMed Central

    Moll, Philip J. W.; Potter, Andrew C.; Nair, Nityan L.; Ramshaw, B. J.; Modic, K. A.; Riggs, Scott; Zeng, Bin; Ghimire, Nirmal J.; Bauer, Eric D.; Kealhofer, Robert; Ronning, Filip; Analytis, James G.

    2016-01-01

    Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to the topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems. PMID:27545105

  20. Magnetic torque anomaly in the quantum limit of Weyl semimetals

    DOE PAGES

    Moll, Philip J. W.; Potter, Andrew C.; Nair, Nityan L.; ...

    2016-08-22

    Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to themore » topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems.« less

  1. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    PubMed

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  2. Cyclotron resonance of interacting quantum Hall droplets

    NASA Astrophysics Data System (ADS)

    Widmann, M.; Merkt, U.; Cortés, M.; Häusler, W.; Eberl, K.

    1998-06-01

    The line shape and position of cyclotron resonance in gated GaAs/GaAlAs heterojunctions with δ-doped layers of negatively charged beryllium acceptors, that provide strong potential fluctuations in the channels of the quasi-two-dimensional electron systems, are examined. Specifically, the magnetic quantum limit is considered when the electrons are localized in separate quantum Hall droplets in the valleys of the disorder potential. A model treating disorder and electron-electron interaction on an equal footing accounts for all of the principal experimental findings: blue shifts from the unperturbed cyclotron frequency that decrease when the electron density is reduced, surprisingly narrow lines in the magnetic quantum limit, and asymmetric lines due to additional oscillator strength on their high-frequency sides.

  3. Anomalous resistivity due to low-frequency turbulence. [of collisionless plasma with limited acceleration of high velocity runaway electrons

    NASA Technical Reports Server (NTRS)

    Rowland, H. L.; Palmadesso, P. J.

    1983-01-01

    Large amplitude ion cyclotron waves have been observed on auroral field lines. In the presence of an electric field parallel to the ambient magnetic field these waves prevent the acceleration of the bulk of the plasma electrons leading to the formation of a runaway tail. It is shown that low-frequency turbulence can also limit the acceleration of high-velocity runaway electrons via pitch angle scattering at the anomalous Doppler resonance.

  4. Relativistic inverse Compton scattering of photons from the early universe.

    PubMed

    Malu, Siddharth; Datta, Abhirup; Colafrancesco, Sergio; Marchegiani, Paolo; Subrahmanyan, Ravi; Narasimha, D; Wieringa, Mark H

    2017-12-05

    Electrons at relativistic speeds, diffusing in magnetic fields, cause copious emission at radio frequencies in both clusters of galaxies and radio galaxies through non-thermal radiation emission called synchrotron. However, the total power radiated through this mechanism is ill constrained, as the lower limit of the electron energy distribution, or low-energy cutoffs, for radio emission in galaxy clusters and radio galaxies, have not yet been determined. This lower limit, parametrized by the lower limit of the electron momentum - p min - is critical for estimating the total energetics of non-thermal electrons produced by cluster mergers or injected by radio galaxy jets, which impacts the formation of large-scale structure in the universe, as well as the evolution of local structures inside galaxy clusters. The total pressure due to the relativistic, non-thermal population of electrons can be measured using the Sunyaev-Zel'dovich Effect, and is critically dependent on p min , making the measurement of this non-thermal pressure a promising technique to estimate the electron low-energy cutoff. We present here the first unambiguous detection of this Sunyaev-Zel'dovich Effect for a non-thermal population of electrons in a radio galaxy jet/lobe, located at a significant distance away from the center of the Bullet cluster of galaxies.

  5. Electron and proton transfer in chloroplasts in silico. 2: The effect of diffusion limitations on the process of photosynthesis in spatially inhomogeneous thylakoids

    NASA Astrophysics Data System (ADS)

    Vershubskii, A. V.; Tikhonov, A. N.

    2017-07-01

    The lateral mobility of protons and mobile electron carriers (plastoquinone and plastocyanin) is subjected to diffusion limitations; the effect of these limitations on the kinetics of photoinduced pH i changes has been investigated in the present work for metabolic states 3 (conditions of intensive ATP synthesis) and 4 (the state of photosynthetic control). Computer simulations were based on a mathematical model of electron and proton transport in chloroplasts developed earlier by the authors. Non-uniform distribution of electron carriers and ATP synthase complexes in the membranes of grana and intergranal thylakoids was taken into account in the model. The kinetics of intrathylakoid pH i changes and the lateral profiles of distribution of the mobile electron transporters in granal and intergranal thylakoids were studied. The formation of non-uniform pH i profiles (with lumen acidification in the central parts of the grana being substantially slower than in the stromal thylakoids) was shown to occur under the conditions of ATP synthesis. Variation of the diffusion coefficients of intrathylakoid hydrogen ions and mobile electron carriers (plastoquinone and plastocyanin) can have substantial effects on the lateral pH i profiles and the redox state of the mobile electron carriers.

  6. Electron-hole collision limited transport in charge-neutral bilayer graphene

    NASA Astrophysics Data System (ADS)

    Nam, Youngwoo; Ki, Dong-Keun; Soler-Delgado, David; Morpurgo, Alberto F.

    2017-12-01

    Ballistic transport occurs whenever electrons propagate without collisions deflecting their trajectory. It is normally observed in conductors with a negligible concentration of impurities, at low temperature, to avoid electron-phonon scattering. Here, we use suspended bilayer graphene devices to reveal a new regime, in which ballistic transport is not limited by scattering with phonons or impurities, but by electron-hole collisions. The phenomenon manifests itself in a negative four-terminal resistance that becomes visible when the density of holes (electrons) is suppressed by gate-shifting the Fermi level in the conduction (valence) band, above the thermal energy. For smaller densities, transport is diffusive, and the measured conductivity is reproduced quantitatively, with no fitting parameters, by including electron-hole scattering as the only process causing velocity relaxation. Experiments on a trilayer device show that the phenomenon is robust and that transport at charge neutrality is governed by the same physics. Our results provide a textbook illustration of a transport regime that had not been observed previously and clarify the nature of conduction through charge-neutral graphene under conditions in which carrier density inhomogeneity is immaterial. They also demonstrate that transport can be limited by a fully electronic mechanism, originating from the same microscopic processes that govern the physics of Dirac-like plasmas.

  7. Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket

    NASA Astrophysics Data System (ADS)

    Gover, Avraham; Pan, Yiming

    2018-06-01

    In the foundation of quantum mechanics, the spatial dimensions of electron wavepacket are understood only in terms of an expectation value - the probability distribution of the particle location. One can still inquire how the quantum electron wavepacket size affects a physical process. Here we address the fundamental physics problem of particle-wave duality and the measurability of a free electron quantum wavepacket. Our analysis of stimulated radiative interaction of an electron wavepacket, accompanied by numerical computations, reveals two limits. In the quantum regime of long wavepacket size relative to radiation wavelength, one obtains only quantum-recoil multiphoton sidebands in the electron energy spectrum. In the opposite regime, the wavepacket interaction approaches the limit of classical point-particle acceleration. The wavepacket features can be revealed in experiments carried out in the intermediate regime of wavepacket size commensurate with the radiation wavelength.

  8. Measurements of electron detection efficiencies in solid state detectors.

    NASA Technical Reports Server (NTRS)

    Lupton, J. E.; Stone, E. C.

    1972-01-01

    Detailed laboratory measurement of the electron response of solid state detectors as a function of incident electron energy, detector depletion depth, and energy-loss discriminator threshold. These response functions were determined by exposing totally depleted silicon surface barrier detectors with depletion depths between 50 and 1000 microns to the beam from a magnetic beta-ray spectrometer. The data were extended to 5000 microns depletion depth using the results of previously published Monte Carlo electron calculations. When the electron counting efficiency of a given detector is plotted as a function of energy-loss threshold for various incident energies, the efficiency curves are bounded by a smooth envelope which represents the upper limit to the detection efficiency. These upper limit curves, which scale in a simple way, make it possible to easily estimate the electron sensitivity of solid-state detector systems.

  9. Influence of electron doping on the ground state of (Sr 1-xLa x) 2IrO 4

    DOE PAGES

    Chen, Xiang; Hogan, Tom; Walkup, D.; ...

    2015-08-17

    The evolution of the electronic properties of electron-doped (Sr 1-xLa x) 2IrO 4 is experimentally explored as the doping limit of La is approached. As electrons are introduced, the electronic ground state transitions from a spin-orbit Mott phase into an electronically phase separated state, where long-range magnetic order vanishes beyond x = 0:02 and charge transport remains percolative up to the limit of La substitution (x =0:06). In particular, the electronic ground state remains inhomogeneous even beyond the collapse of the parent state's long-range antiferromagnetic order, while persistent short-range magnetism survives up to the highest La-substitution levels. Furthermore, as electronsmore » are doped into Sr 2IrO 4, we observe the appearance of a low temperature magnetic glass-like state intermediate to the complete suppression of antiferromagnetic order. Universalities and di erences in the electron-doped phase diagrams of single layer and bilayer Ruddlesden-Popper strontium iridates are discussed.« less

  10. Analytical and numerical analysis of imaging mechanism of dynamic scanning electron microscopy.

    PubMed

    Schröter, M-A; Holschneider, M; Sturm, H

    2012-11-02

    The direct observation of small oscillating structures with the help of a scanning electron beam is a new approach to study the vibrational dynamics of cantilevers and microelectromechanical systems. In the scanning electron microscope, the conventional signal of secondary electrons (SE, dc part) is separated from the signal response of the SE detector, which is correlated to the respective excitation frequency for vibration by means of a lock-in amplifier. The dynamic response is separated either into images of amplitude and phase shift or into real and imaginary parts. Spatial resolution is limited to the diameter of the electron beam. The sensitivity limit to vibrational motion is estimated to be sub-nanometer for high integration times. Due to complex imaging mechanisms, a theoretical model was developed for the interpretation of the obtained measurements, relating cantilever shapes to interaction processes consisting of incident electron beam, electron-lever interaction, emitted electrons and detector response. Conclusions drawn from this new model are compared with numerical results based on the Euler-Bernoulli equation.

  11. Development of a Situated Spectrum Analyzer Learning Platform for Enhancing Student Technical Skills

    ERIC Educational Resources Information Center

    Chuang, Chien-Pen; Jou, Min; Lin, Yen-Ting; Lu, Cheng-Tien

    2015-01-01

    Electronic engineering industries require technical specialists to operate precision electronic instruments. However, limitations in course designs and equipment availability mean that only a few students are able to use the equipment in practical lessons within a limited timeframe. Also, instruction of techniques and skills are still mostly…

  12. A novel analytical model for scattering limited electron transport in nano-dimensional InAlAs/InGaAs heterostructure for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Sharma, Neetika; Verma, Neha; Jogi, Jyotika

    2017-11-01

    This paper models the scattering limited electron transport in a nano-dimensional In0.52Al0.48As/In0.53Ga0.47As/InP heterostructure. An analytical model for temperature dependent sheet carrier concentration and carrier mobility in a two dimensional electron gas, confined in a triangular potential well has been developed. The model accounts for all the major scattering process including ionized impurity scattering and lattice scattering. Quantum mechanical variational technique is employed for studying the intrasubband scattering mechanism in the two dimensional electron gas. Results of various scattering limited structural parameters such as energy band-gap and functional parameters such as sheet carrier concentration, scattering rate and mobility are presented. The model corroborates the dominance of ionized impurity scattering mechanism at low temperatures and that of lattice scattering at high temperatures, both in turn limiting the carrier mobility. Net mobility obtained taking various scattering mechanisms into account has been found in agreement with earlier reported results, thus validating the model.

  13. Limit on the radiative neutrinoless double electron capture of ^{36}Ar from GERDA Phase I

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-12-01

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of ^{36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array ( Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of ^{36}Ar was established: T_{1/2} > 3.6 × 10^{21} years at 90% CI.

  14. Limit on the radiative neutrinoless double electron capture of 36Ar from GERDA Phase I

    DOE PAGES

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; ...

    2016-11-28

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. Here, a search for neutrinoless double electron capture of 36Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of 36 Ar was established: T 1/2 > 3.6 × 10 21 years at 90% CI.

  15. Observation of increased space-charge limited thermionic electron emission current by neutral gas ionization in a weakly-ionized deuterium plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollmann, E. M.; Yu, J. H.; Doerner, R. P.

    2015-09-14

    The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.

  16. Radiative decay of keV-mass sterile neutrino in magnetized electron plasma

    NASA Astrophysics Data System (ADS)

    Dobrynina, Alexandra; Mikheev, Nicolay; Raffelt, Georg

    2017-10-01

    The radiative decay of sterile neutrinos with typical masses of 10 keV is investigated in the presence of an external magnetic field and degenerate electron plasma. Full account is taken of the modified photon dispersion relation relative to vacuum. The limiting cases of relativistic and nonrelativistic plasma are analyzed. The decay rate calculated in a strongly magnetized plasma, as a function of the electron number density, is compared with the unmagnetized plasma limit. It is found that the presence of the strong magnetic field in the electron plasma suppresses the catalyzing influence of the plasma by itself on the sterile-neutrino decay rate.

  17. A systematic review of portable electronic technology for health education in resource-limited settings.

    PubMed

    McHenry, Megan S; Fischer, Lydia J; Chun, Yeona; Vreeman, Rachel C

    2017-08-01

    The objective of this study is to conduct a systematic review of the literature of how portable electronic technologies with offline functionality are perceived and used to provide health education in resource-limited settings. Three reviewers evaluated articles and performed a bibliography search to identify studies describing health education delivered by portable electronic device with offline functionality in low- or middle-income countries. Data extracted included: study population; study design and type of analysis; type of technology used; method of use; setting of technology use; impact on caregivers, patients, or overall health outcomes; and reported limitations. Searches yielded 5514 unique titles. Out of 75 critically reviewed full-text articles, 10 met inclusion criteria. Study locations included Botswana, Peru, Kenya, Thailand, Nigeria, India, Ghana, and Tanzania. Topics addressed included: development of healthcare worker training modules, clinical decision support tools, patient education tools, perceptions and usability of portable electronic technology, and comparisons of technologies and/or mobile applications. Studies primarily looked at the assessment of developed educational modules on trainee health knowledge, perceptions and usability of technology, and comparisons of technologies. Overall, studies reported positive results for portable electronic device-based health education, frequently reporting increased provider/patient knowledge, improved patient outcomes in both quality of care and management, increased provider comfort level with technology, and an environment characterized by increased levels of technology-based, informal learning situations. Negative assessments included high investment costs, lack of technical support, and fear of device theft. While the research is limited, portable electronic educational resources present promising avenues to increase access to effective health education in resource-limited settings, contingent on the development of culturally adapted and functional materials to be used on such devices.

  18. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton

    PubMed Central

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T.; Tortell, Philippe D.

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETRRCII, mol e- mol RCII-1 s-1) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal – oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETRRCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963

  19. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    PubMed

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T; Tortell, Philippe D

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII), mol e- mol RCII(-1) s(-1)) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII): CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.

  20. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    NASA Astrophysics Data System (ADS)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  1. 76 FR 66666 - Basic Service Tier Encryption Compatibility Between Cable Systems and Consumer Electronics Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... 11-153] Basic Service Tier Encryption Compatibility Between Cable Systems and Consumer Electronics... substantially affect compatibility between cable service and consumer electronics equipment for most subscribers... problems between cable service and consumer electronics equipment were limiting and/or precluding the...

  2. 15 CFR 30.60 - Confidentiality of Electronic Export Information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Confidentiality of Electronic Export... § 30.60 Confidentiality of Electronic Export Information. (a) Confidential status. The EEI collected... in any form including but not limited to electronic transmission, paper printout, or certified...

  3. 15 CFR 30.60 - Confidentiality of Electronic Export Information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Confidentiality of Electronic Export... § 30.60 Confidentiality of Electronic Export Information. (a) Confidential status. The EEI collected... in any form including but not limited to electronic transmission, paper printout, or certified...

  4. 15 CFR 30.60 - Confidentiality of Electronic Export Information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Confidentiality of Electronic Export... § 30.60 Confidentiality of Electronic Export Information. (a) Confidential status. The EEI collected... in any form including but not limited to electronic transmission, paper printout, or certified...

  5. Storage-ring Electron Cooler for Relativistic Ion Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less

  6. Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics

    NASA Astrophysics Data System (ADS)

    Sato, Shunsuke A.; Kelly, Aaron; Rubio, Angel

    2018-04-01

    We introduce a simple ansatz for the wave function of a many-body system based on coupled forward and backward propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenfest mean-field theory in the limit that the forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model. Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over mean-field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations. This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an attractive route forward to the ab initio description of relaxation processes, such as thermalization, in condensed phase systems.

  7. 77 FR 27125 - Periodicals-Recognition of Distribution of Periodicals via Electronic Copies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... Electronic Copies AGENCY: Postal Service\\TM\\. ACTION: Final rule. SUMMARY: The Postal Service will revise the... limited reporting of electronic copies of Periodicals publications to satisfy the circulation standards...--Recognition of Distribution of Periodicals via Electronic Copies (77 FR 5470-5471) revising DMM 707.6 by...

  8. Electron and hole transport in the organic small molecule α-NPD

    NASA Astrophysics Data System (ADS)

    Rohloff, R.; Kotadiya, N. B.; Crǎciun, N. I.; Blom, P. W. M.; Wetzelaer, G. A. H.

    2017-02-01

    Electron and hole transport properties of the organic small molecule N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine are investigated by space-charge-limited current measurements. The hole transport shows trap-free behavior with a mobility of 2.3 × 10-8 m2/Vs at vanishing carrier density and electric field. The electron transport, on the other hand, shows heavily trap-limited behavior, which leads to highly unbalanced transport. A trap concentration of 1.3 × 1024 m-3 was found by modeling the electron currents, similar to the universal trap concentration found in conjugated polymers. This indicates that electron trapping is a generic property of organic semiconductors, ranging from vacuum-deposited small-molecules to solution-processed conjugated polymers.

  9. Fabrication method of two-photon luminescent organic nano-architectures using electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Kamura, Yoshio; Imura, Kohei

    2018-06-01

    Optical recording on organic thin films with a high spatial resolution is promising for high-density optical memories, optical computing, and security systems. The spatial resolution of the optical recording is limited by the diffraction of light. Electrons can be focused to a nanometer-sized spot, providing the potential for achieving better resolution. In conventional electron-beam lithography, however, optical tuning of the fabricated structures is limited mostly to metals and semiconductors rather than organic materials. In this article, we report a fabrication method of luminescent organic architectures using a focused electron beam. We optimized the fabrication conditions of the electron beam to generate chemical species showing visible photoluminescence via two-photon near-infrared excitations. We utilized this fabrication method to draw nanoscale optical architectures on a polystyrene thin film.

  10. Multi-heme cytochromes provide a pathway for survival in energy-limited environments

    PubMed Central

    Deng, Xiao; Dohmae, Naoshi; Nealson, Kenneth H.; Hashimoto, Kazuhito; Okamoto, Akihiro

    2018-01-01

    Bacterial reduction of oxidized sulfur species (OSS) is critical for energy production in anaerobic marine subsurfaces. In organic-poor sediments, H2 has been considered as a major energy source for bacterial respiration. We identified outer-membrane cytochromes (OMCs) that are broadly conserved in sediment OSS-respiring bacteria and enable cells to directly use electrons from insoluble minerals via extracellular electron transport. Biochemical, transcriptomic, and microscopic analyses revealed that the identified OMCs were highly expressed on the surface of cells and nanofilaments in response to electron donor limitation. This electron uptake mechanism provides sufficient but minimum energy to drive the reduction of sulfate and other OSS. These results suggest a widespread mechanism for survival of OSS-respiring bacteria via electron uptake from solid minerals in energy-poor marine sediments. PMID:29464208

  11. Test of the electron stability with the Borexino detector

    NASA Astrophysics Data System (ADS)

    Vishneva, A.; Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; D'Angelo, D.; Davini, S.; de Kerret, K.; Derbin, H. A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jedrzejczak, K.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino Collaboration

    2017-09-01

    Despite the fact that the electric charge conservation law is confirmed by many experiments, search for its possible violation remains a way of searching for physics beyond the Standard Model. Experimental searches for the electric charge non-conservation mainly consider electron decays into neutral particles. The Borexino experiment is an excellent tool for the electron decay search due to the highest radiopurity among all the existing experiments, large detector mass, and good sensitivity at low energies. The process considered in this study is a decay into a photon and a neutrino, for which a new lower limit on the electron lifetime is obtained. This is the best electron lifetime limit up to date, exceeding the previous one obtained at the Borexino prototype at two orders of magnitude.

  12. Beyond Orbital-Motion-Limited theory effects for dust transport in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delzanno, Gian Luca; Tang, Xianzhu

    Dust transport in tokamaks is very important for ITER. Can many kilograms of dust really accumulate in the device? Can the dust survive? The conventional dust transport model is based on Orbital-Motion-Limited theory (OML). But OML can break in the limit where the dust grain becomes positively charged due to electron emission processes because it overestimates the dust collected power. An OML + approximation of the emitted electrons trapped/passing boundary is shown to be in good agreement with PIC simulations.

  13. Technical Limitations of Electronic Health Records in Community Health Centers: Implications on Ambulatory Care Quality

    ERIC Educational Resources Information Center

    West, Christopher E.

    2010-01-01

    Research objectives: This dissertation examines the state of development of each of the eight core electronic health record (EHR) functionalities as described by the IOM and describes how the current state of these functionalities limit quality improvement efforts in ambulatory care settings. There is a great deal of literature describing both the…

  14. Tendency of a rotating electron plasma to approach the Brillouin limit

    DOE PAGES

    Gueroult, Renaud; Fruchtman, Amnon; Fisch, Nathaniel J.

    2013-07-24

    In this study, a neutral plasma is considered to be immersed in an axial magnetic field together with a radial electric field. If the electrons are magnetized, but the ions are not magnetized, then the electrons will rotate but the ions will not rotate, leading to current generation. The currents, in turn, weaken the axial magnetic field, leading to an increase in the rotation frequency of the slow Brillouin mode. This produces a positive feedback effect, further weakening the magnetic field. The operating point thus tends to drift towards the Brillouin limit, possibly finding stability only in proximity to themore » limit itself. An example of this effect might be the cylindrical Hall thruster configuration.« less

  15. 29 CFR 1615.103 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COMMISSION AND IN ACCESSIBILITY OF COMMISSION ELECTRONIC AND INFORMATION TECHNOLOGY § 1615.103 Definitions.... Electronic and Information technology. Includes information technology and any equipment or interconnected... information. The term electronic and information technology includes, but is not limited to...

  16. Laser ablation under different electron heat conduction models in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Li, Shuanggui; Ren, Guoli; Huo, Wen Yi

    2018-06-01

    In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.

  17. High-resolution scanning precession electron diffraction: Alignment and spatial resolution.

    PubMed

    Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A

    2017-03-01

    Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Refluxed electrons direct laser acceleration in ultrahigh laser and relativistic critical density plasma interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Zhao, Z. Q.

    2015-01-15

    Refluxed electrons direct laser acceleration is proposed so as to generate a high-charge energetic electron beam. When a laser pulse is incident on a relativistic critical density target, the rising edge of the pulse heats the target and the sheath fields on the both sides of the target reflux some electrons inside the expanding target. These electrons can be trapped and accelerated due to the self-transparency and the negative longitudinal electrostatic field in the expanding target. Some of the electrons can be accelerated to energies exceeding the ponderomotive limit 1/2a{sub 0}{sup 2}mc{sup 2}. Effective temperature significantly above the ponderomotive scalingmore » is observed. Furthermore, due to the limited expanding length, the laser propagating instabilities are suppressed in the interaction. Thus, high collimated beams with tens of μC charge can be generated.« less

  19. Electron beam transport with current above the Alfven--Lawson limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al'terkop, B.A.; Sokulin, A.Y.; Tarakanov, V.P.

    1989-08-01

    The quasisteady state of a magnetized electron beam with a current above the Alfven-Lawson limit in a cylindrical waveguide of finite length is analyzed. The distribution of the electrostatic field, the limiting current, and the critical length of the waveguide are found in a two-dimensional system. The basic characteristics of the beam for the injection of a current above the limit---the position of the virtual cathode, the beam thickness, and the current which can be transported---are determined. The current which can be transported may exceed the theoretical limit. The accuracy of the analytic results is confirmed by comparison with themore » results of experiments and numerical simulations.« less

  20. Sinks for photosynthetic electron flow in green petioles and pedicels of Zantedeschia aethiopica: evidence for innately high photorespiration and cyclic electron flow rates.

    PubMed

    Yiotis, Charilaos; Manetas, Yiannis

    2010-07-01

    A combination of gas exchange and various chlorophyll fluorescence measurements under varying O(2) and CO(2) partial pressures were used to characterize photosynthesis in green, stomata-bearing petioles of Zantedeschia aethiopica (calla lily) while corresponding leaves served as controls. Compared to leaves, petioles displayed considerably lower CO(2) assimilation rates, limited by both stomatal and mesophyll components. Further analysis of mesophyll limitations indicated lower carboxylating efficiencies and insufficient RuBP regeneration but almost similar rates of linear electron transport. Accordingly, higher oxygenation/carboxylation ratios were assumed for petioles and confirmed by experiments under non-photorespiratory conditions. Higher photorespiration rates in petioles were accompanied by higher cyclic electron flow around PSI, the latter being possibly linked to limitations in electron transport from intermediate electron carriers to end acceptors and low contents of PSI. Based on chlorophyll fluorescence methods, similar conclusions can be drawn for green pedicels, although gas exchange in these organs could not be applied due to their bulky size. Since our test plants were not subjected to stress we argue that higher photorespiration and cyclic electron flow rates are innate attributes of photosynthesis in stalks of calla lily. Active nitrogen metabolism may be inferred, while increased cyclic electron flow may provide the additional ATP required for the enhanced photorespiratory activity in petiole and pedicel chloroplasts and/or the decarboxylation of malate ascending from roots.

  1. Surface hopping with a manifold of electronic states. I. Incorporating surface-leaking to capture lifetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Wenjun; Dou, Wenjie; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu

    2015-02-28

    We investigate the incorporation of the surface-leaking (SL) algorithm into Tully’s fewest-switches surface hopping (FSSH) algorithm to simulate some electronic relaxation induced by an electronic bath in conjunction with some electronic transitions between discrete states. The resulting SL-FSSH algorithm is benchmarked against exact quantum scattering calculations for three one-dimensional model problems. The results show excellent agreement between SL-FSSH and exact quantum dynamics in the wide band limit, suggesting the potential for a SL-FSSH algorithm. Discrepancies and failures are investigated in detail to understand the factors that will limit the reliability of SL-FSSH, especially the wide band approximation. Considering the easinessmore » of implementation and the low computational cost, we expect this method to be useful in studying processes involving both a continuum of electronic states (where electronic dynamics are probabilistic) and processes involving only a few electronic states (where non-adiabatic processes cannot ignore short-time coherence)« less

  2. Efficiency enhancement of slow-wave electron-cyclotron maser by a second-order shaping of the magnetic field in the low-gain limit

    NASA Astrophysics Data System (ADS)

    Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang; Li, Yong-Ming; Jing, Jian

    2017-03-01

    Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.

  3. Efficiency enhancement of slow-wave electron-cyclotron maser by a second-order shaping of the magnetic field in the low-gain limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang

    Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.

  4. Electron attachment in F2 - Conclusive demonstration of nonresonant, s-wave coupling in the limit of zero electron energy

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.

    1987-01-01

    Dissociative electron attachment to F2 has been observed in the energy range 0-140 meV, at a resolution of 6 meV (full width at half maximum). Results show conclusively a sharp, resolution-limited threshold behavior consistent with an s-wave cross section varying as sq rt of epsilon. Two accurate theoretical calculations predict only p-wave behavior varying as the sq rt of epsilon. Several nonadiabatic coupling effects leading to s-wave behavior are outlined.

  5. Arbitrarily shaped high-coherence electron bunches from cold atoms

    NASA Astrophysics Data System (ADS)

    McCulloch, A. J.; Sheludko, D. V.; Saliba, S. D.; Bell, S. C.; Junker, M.; Nugent, K. A.; Scholten, R. E.

    2011-10-01

    Ultrafast electron diffractive imaging of nanoscale objects such as biological molecules and defects in solid-state devices provides crucial information on structure and dynamic processes: for example, determination of the form and function of membrane proteins, vital for many key goals in modern biological science, including rational drug design. High brightness and high coherence are required to achieve the necessary spatial and temporal resolution, but have been limited by the thermal nature of conventional electron sources and by divergence due to repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that, if the electrons are shaped into ellipsoidal bunches with uniform density, the Coulomb explosion can be reversed using conventional optics, to deliver the maximum possible brightness at the target. Here we demonstrate arbitrary and real-time control of the shape of cold electron bunches extracted from laser-cooled atoms. The ability to dynamically shape the electron source itself and to observe this shape in the propagated electron bunch provides a remarkable experimental demonstration of the intrinsically high spatial coherence of a cold-atom electron source, and the potential for alleviation of electron-source brightness limitations due to Coulomb explosion.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verheest, Frank, E-mail: frank.verheest@ugent.be; School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000; Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za

    The propagation of arbitrary amplitude electron-acoustic solitons and double layers is investigated in a plasma containing cold positive ions, cool adiabatic and hot isothermal electrons, with the retention of full inertial effects for all species. For analytical tractability, the resulting Sagdeev pseudopotential is expressed in terms of the hot electron density, rather than the electrostatic potential. The existence domains for Mach numbers and hot electron densities clearly show that both rarefactive and compressive solitons can exist. Soliton limitations come from the cool electron sonic point, followed by the hot electron sonic point, until a range of rarefactive double layers occurs.more » Increasing the relative cool electron density further yields a switch to compressive double layers, which ends when the model assumptions break down. These qualitative results are but little influenced by variations in compositional parameters. A comparison with a Boltzmann distribution for the hot electrons shows that only the cool electron sonic point limit remains, giving higher maximum Mach numbers but similar densities, and a restricted range in relative hot electron density before the model assumptions are exceeded. The Boltzmann distribution can reproduce neither the double layer solutions nor the switch in rarefactive/compressive character or negative/positive polarity.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eich, F. G.; Agostini, Federica, E-mail: agostini@mpi-halle.mpg.de

    We propose a procedure to analyze the relation between the exact factorization of the electron-nuclear wave function and the Born-Oppenheimer approximation. We define the adiabatic limit as the limit of infinite nuclear mass. To this end, we introduce a unit system that singles out the dependence on the electron-nuclear mass ratio of each term appearing in the equations of the exact factorization. We observe how non-adiabatic effects induced by the coupling to the nuclear motion affect electronic properties and we analyze the leading term, connecting it to the classical nuclear momentum. Its dependence on the mass ratio is tested numericallymore » on a model of proton-coupled electron transfer in different non-adiabatic regimes.« less

  8. Kinetic limit of heterogeneous melting in metals.

    PubMed

    Ivanov, Dmitriy S; Zhigilei, Leonid V

    2007-05-11

    The velocity and nanoscale shape of the melting front are investigated in a model that combines the molecular dynamics method with a continuum description of the electron heat conduction and electron-phonon coupling. The velocity of the melting front is strongly affected by the local drop of the lattice temperature, defined by the kinetic balance between the transfer of thermal energy to the latent heat of melting, the electron heat conduction from the overheated solid, and the electron-phonon coupling. The maximum velocity of the melting front is found to be below 3% of the room temperature speed of sound in the crystal, suggesting a limited contribution of heterogeneous melting under conditions of fast heating.

  9. First Dark Matter Constraints from SuperCDMS Single-Charge Sensitive Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnese, R.; et al.

    We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 gram CDMS HV device). These electron-recoil limits significantly improve experimental constraints on dark matter particles with masses as low as 1 MeV/more » $$\\mathrm{c^2}$$. We demonstrate a sensitivity to dark photons competitive with other leading approaches but using substantially less exposure (0.49 gram days). These results demonstrate the scientific potential of phonon-mediated semiconductor detectors that are sensitive to single electronic excitations.« less

  10. Agreement between paper and pen visual analogue scales and a wristwatch-based electronic appetite rating system (PRO-Diary©), for continuous monitoring of free-living subjective appetite sensations in 7-10 year old children.

    PubMed

    Rumbold, P L S; Dodd-Reynolds, C J; Stevenson, E

    2013-10-01

    Electronic capture of free-living subjective appetite data can provide a more reliable alternative to traditional pen and paper visual analogue scales (P&P VAS), whilst reducing researcher workload. Consequently, the aim of this study was to explore the agreement between P&P VAS and a wristwatch-based electronic appetite rating system known as the PRO-Diary© technique, for monitoring free-living appetite sensations in 7-10 year old children. On one occasion, using a within-subject design, the 12 children (n=6 boys; n=6 girls) recorded their subjective appetite (hunger, prospective food consumption, and fullness), at two time points before lunch (11:30 and 12:00) and every 60 min thereafter until 21:00. The agreement between the P&P VAS and PRO-Diary© technique was explored using 95% limits of agreement and 95% confidence intervals (95% CI) calculated using the Bland and Altman (1986) technique. For hunger, prospective food consumption and fullness, the 95% limits of agreement were -1±25 mm (95% CI: lower limit -8mm; upper limit +6mm), 0±21 mm (95% CI: lower limit -6mm; upper limit +6mm) and -6±24 mm (95% CI: lower limit -14 mm; upper limit +1mm), respectively. Given the advantages associated with electronic data capture (inexpensive; integrated alarm; data easily downloaded), we conclude that the PRO-Diary© technique is an equivalent method to employ when continuously monitoring free-living appetite sensations in 7-10 year old children, but should not be used interchangeably with P&P VAS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain1[OPEN

    PubMed Central

    2018-01-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley (Hordeum vulgare). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. PMID:29540590

  12. 49 CFR 234.315 - Electronic recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Electronic recordkeeping. 234.315 Section 234.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... railroad adequately limits and controls accessibility to the records retained in its electronic database...

  13. 49 CFR 234.315 - Electronic recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electronic recordkeeping. 234.315 Section 234.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... railroad adequately limits and controls accessibility to the records retained in its electronic database...

  14. 49 CFR 234.315 - Electronic recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electronic recordkeeping. 234.315 Section 234.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... railroad adequately limits and controls accessibility to the records retained in its electronic database...

  15. Status of Plasma Electron Hose Instability Studies in FACET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adli, Erik; /U. Oslo; England, Robert Joel

    In the FACET plasma-wakefield acceleration experiment a dense 23 GeV electron beam will interact with lithium and cesium plasmas, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons may lead to a fast growing electron hose instability. By using optics dispersion knobs to induce a controlled z-x tilt along the beam entering the plasma, we investigate the transverse behavior of the beam in the plasma as function of the tilt. We seek to quantify limits on the instability in order to further explore potential limitations on future plasma wakefield accelerators due to the electronmore » hose instability. The FACET plasma-wakefield experiment at SLAC will study beam driven plasma wakefield acceleration. A dense 23 GeV electron beam will interact with lithium or cesium plasma, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons drives the electron hose instability, as first studied by Whittum. While Ref. [2] indicates the possibility of a large instability growth rate for typical beam and plasma parameters, other studies including have shown that several physical effects may mitigate the hosing growth rate substantially. So far there has been no quantitative benchmarking of experimentally observed hosing in previous experiments. At FACET we aim to perform such benchmarking by for example inducing a controlled z-x tilt along the beamentering the plasma, and observing the transverse behavior of the beam in the plasma as function. The long-term objective of these studies is to quantify potential limitations on future plasma wakefield accelerators due to the electron hose instability.« less

  16. Electron Mobility in γ -Al2O3/SrTiO3

    NASA Astrophysics Data System (ADS)

    Christensen, D. V.; Frenkel, Y.; Schütz, P.; Trier, F.; Wissberg, S.; Claessen, R.; Kalisky, B.; Smith, A.; Chen, Y. Z.; Pryds, N.

    2018-05-01

    One of the key issues in engineering oxide interfaces for electronic devices is achieving high electron mobility. SrTiO3 -based interfaces with high electron mobility have gained a lot of interest due to the possibility of combining quantum phenomena with the many functionalities exhibited by SrTiO3 . To date, the highest electron mobility (140 000 cm2/V s at 2 K) is obtained by interfacing perovskite SrTiO3 with spinel γ -Al2O3 . The origin of the high mobility, however, remains poorly understood. Here, we investigate the scattering mechanisms limiting the mobility in γ -Al2O3/SrTiO3 at temperatures between 2 and 300 K and over a wide range of sheet carrier densities. For T >150 K , we find that the mobility is limited by longitudinal optical phonon scattering. For large sheet carrier densities (>8 ×1013 cm-2 ), the screened electron-phonon coupling leads to room-temperature mobilities up to μ ˜12 cm2/V s . For 5 K

  17. Electron Radiation Belts of the Solar System

    NASA Astrophysics Data System (ADS)

    Mauk, Barry; Fox, Nicola

    To address the question of what factors dictate similarities and differences between radiation belts, we present comparisons between the electron radiation belt spectra of all five strongly magnetized planets within the solar system: Earth, Jupiter, Saturn, Uranus, and Neptune. We choose the highest intensity observed electron spectrum within each system (highest specifically near 1 MeV) and compare them against expectations based on the so-called Kennel-Petschek limit (KP; 1966) for each system. For evaluating the KP limit, we begin with the new relativis-tically correct formulation of Summers et al. (2009) but then add several refinements of our own. Specifically, we: 1) utilized a much more flexible analytic spectral shape that allows us to accurately fit observed radiation belt spectra; 2) adopt the point of view that the anisotropy parameter is not a free parameter but must take on a minimal value, as originally proposed by Kennel and Petschek (1966); and 3) examine the differential characteristics of the KP limit along the lines of what Schulz and Davidson (1988) performed for the non-relativistic formula-tion. We find that three factors limit the highest electron radiation belt intensities within solar system planetary magnetospheres: a) whistler mode interactions that limit spectral intensities to a differential Kennel-Petschek limit (3 planets); b) the absence of robust acceleration pro-cesses associated with injection dynamics (1 planet); and c) material interactions between the radiation particles and clouds of gas and dust (1 planet).

  18. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials

    DOE PAGES

    Du, Ming; Jacobsen, Chris

    2017-10-07

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zeromore » loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 mu m (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Lastly, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.« less

  19. The impact of shearing flows on electroactive biofilm formation, structure, and current generation

    NASA Astrophysics Data System (ADS)

    Jones, A.-Andrew; Buie, Cullen

    2016-11-01

    A special class of bacteria exist that directly produce electricity. First explored in 1911, these electroactive bacteria catalyze hydrocarbons and transport electrons directly to a metallic electron acceptor forming thicker biofilms than other species. Electroactive bacteria biofilms are thicker because they are not limited by transport of oxygen or other terminal electron acceptors. Electroactive bacteria can produce power in fuel cells. Power production is limited in fuel cells by the bacteria's inability to eliminate protons near the insoluble electron acceptor not utilized in the wild. To date, they have not been successfully evolved or engineered to overcome this limit. This limitation may be overcome by enhancing convective mass transport while maintaining substantial biomass within the biofilm. Increasing convective mass transport increases shear stress. A biofilm may respond to increased shear by changing biomass, matrix, or current production. In this study, a rotating disk electrode is used to separate nutrient from physical stress. This phenomenon is investigated using the model electroactive bacterium Geobacter sulfurreducens at nutrient loads comparable to flow-through microbial fuel cells. We determine biofilm structure experimentally by measuring the porosity and calculating the tortuosity from confocal microscope images. Biofilm adaptation for electron transport is quantified using electrical impedance spectroscopy. Our ultimate objective is a framework relating biofilm thickness, porosity, shear stress and current generation for the optimization of bioelectrochemical systems The Alfred P Sloan Foundation MPHD Program.

  20. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Ming; Jacobsen, Chris

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zeromore » loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 mu m (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Lastly, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.« less

  1. Bypassing the energy-time uncertainty in time-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Randi, Francesco; Fausti, Daniele; Eckstein, Martin

    2017-03-01

    The energy-time uncertainty is an intrinsic limit for time-resolved experiments imposing a tradeoff between the duration of the light pulses used in experiments and their frequency content. In standard time-resolved photoemission, this limitation maps directly onto a tradeoff between the time resolution of the experiment and the energy resolution that can be achieved on the electronic spectral function. Here we propose a protocol to disentangle the energy and time resolutions in photoemission. We demonstrate that dynamical information on all time scales can be retrieved from time-resolved photoemission experiments using suitably shaped light pulses of quantum or classical nature. As a paradigmatic example, we study the dynamical buildup of the Kondo peak, a narrow feature in the electronic response function arising from the screening of a magnetic impurity by the conduction electrons. After a quench, the electronic screening builds up on timescales shorter than the inverse width of the Kondo peak and we demonstrate that the proposed experimental scheme could be used to measure the intrinsic time scales of such electronic screening. The proposed approach provides an experimental framework to access the nonequilibrium response of collective electronic properties beyond the spectral uncertainty limit and will enable the direct measurement of phenomena such as excited Higgs modes and, possibly, the retarded interactions in superconducting systems.

  2. Facing the Limitations of Electronic Document Handling.

    ERIC Educational Resources Information Center

    Moralee, Dennis

    1985-01-01

    This essay addresses problems associated with technology used in the handling of high-resolution visual images in electronic document delivery. Highlights include visual fidelity, laser-driven optical disk storage, electronics versus micrographics for document storage, videomicrographics, and system configurations and peripherals. (EJS)

  3. Identification of Fitness Determinants during Energy-Limited Growth Arrest in Pseudomonas aeruginosa

    PubMed Central

    Basta, David W.; Bergkessel, Megan

    2017-01-01

    ABSTRACT Microbial growth arrest can be triggered by diverse factors, one of which is energy limitation due to scarcity of electron donors or acceptors. Genes that govern fitness during energy-limited growth arrest and the extent to which they overlap between different types of energy limitation are poorly defined. In this study, we exploited the fact that Pseudomonas aeruginosa can remain viable over several weeks when limited for organic carbon (pyruvate) as an electron donor or oxygen as an electron acceptor. ATP values were reduced under both types of limitation, yet more severely in the absence of oxygen. Using transposon-insertion sequencing (Tn-seq), we identified fitness determinants in these two energy-limited states. Multiple genes encoding general functions like transcriptional regulation and energy generation were required for fitness during carbon or oxygen limitation, yet many specific genes, and thus specific activities, differed in their relevance between these states. For instance, the global regulator RpoS was required during both types of energy limitation, while other global regulators such as DksA and LasR were required only during carbon or oxygen limitation, respectively. Similarly, certain ribosomal and tRNA modifications were specifically required during oxygen limitation. We validated fitness defects during energy limitation using independently generated mutants of genes detected in our screen. Mutants in distinct functional categories exhibited different fitness dynamics: regulatory genes generally manifested a phenotype early, whereas genes involved in cell wall metabolism were required later. Together, these results provide a new window into how P. aeruginosa survives growth arrest. PMID:29184024

  4. Microwave Driven Magnetic Plasma Accelerator Studies (CYCLOPS)

    NASA Technical Reports Server (NTRS)

    Crimi, G. F.; Eckert, A. C.; Miller, D. B.

    1967-01-01

    A microwave-driven cyclotron resonance plasma acceleration device was investigated using argon, krypton, xenon, and mercury as propellants. Limited ranges of propellant flow rate, input power, and magnetic field strength were used. Over-all efficiencies (including the 65% efficiency of the input polarizer) less than 10% were obtained for specific impulse values between 500 and 1500 sec. Power transfer efficiencies, however, approached 100% of the input power available in the right-hand component of the incident circularly polarized radiation. Beam diagnostics using Langmuir probes, cold gas mapping, r-f mapping and ion energy analyses were performed in conjunction with an engine operating in a pulsed mode. Measurements of transverse electron energies at the position of cyclotron resonant absorption yielded energy values more than an order of magnitude lower than anticipated. The measured electron energies were, however, consistent with the low values of average ion energy measured by retarding potential techniques. The low values of average ion energy were also consistent with the measured thrust values. It is hypothesized that ionization and radiation limit the electron kinetic energy to low-values thus limiting the energy which is finally transferred to the ion. Thermalization by electron-electron collision was also identified as an additional loss mechanism. The use of light alkali metals, which have relatively few low lying energy levels to excite, with the input power to mass ratio selected so as to limit the electron energies to less than the second ionization potential, is suggested. It is concluded, however, that the over-all efficiency for such propellants would be less than 40 per cent.

  5. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    PubMed

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. Critical appraisal of volumetric-modulated arc therapy compared with electrons for the radiotherapy of cutaneous Kaposi's sarcoma of lower extremities with bone sparing.

    PubMed

    Nicolini, G; Abraham, S; Fogliata, A; Jordaan, A; Clivio, A; Vanetti, E; Cozzi, L

    2013-03-01

    To evaluate the use of volumetric-modulated arc therapy [VMAT, RapidArc® (RA); Varian Medical Systems, Palo Alto, CA] for the treatment of cutaneous Kaposi's sarcoma (KS) of lower extremities with adequate target coverage and high bone sparing, and to compare VMAT with electron beam therapy. 10 patients were planned with either RA or electron beams. The dose was prescribed to 30 Gy, 10 fractions, to mean the planning target volume (PTV), and significant maximum dose to bone was limited to 30 Gy. Plans were designed for 6-MV photon beams for RA and 6 MeV for electrons. Dose distributions were computed with AcurosXB® (Varian Medical Systems) for photons and with a Monte Carlo algorithm for electrons. V(90%) was 97.3±1.2 for RA plans and 78.2±2.6 for electrons; similarly, V(107%) was 2.5±2.2 and 37.7±3.4, respectively. RA met coverage criteria. Concerning bone sparing, D(2%) was 29.6±1.1 for RA and 31.0±2.4 for electrons. Although acceptable for bone involvement, pronounced target coverage violations were obtained for electron plans. Monitor units were similar for electrons and RA, although for the latter they increased when superior bone sparing was imposed. Delivery times were 12.1±4.0 min for electrons and 4.8±1.3 min for the most modulated RA plans. High plan quality was shown for KS in the lower extremities using VMAT, and this might simplify their management in comparison with the more conventional usage of electrons, particularly in institutes with limited staff resources and heavy workloads. VMAT is also dosimetrically extremely advantageous in a typology of treatments where electron beam therapy is mainly considered to be effective owing to the limited penetration of the beams.

  7. Communication: Practical and rigorous reduction of the many-electron quantum mechanical Coulomb problem to O(N{sup 2/3}) storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pederson, Mark R., E-mail: mark.pederson@science.doe.gov

    2015-04-14

    It is tacitly accepted that, for practical basis sets consisting of N functions, solution of the two-electron Coulomb problem in quantum mechanics requires storage of O(N{sup 4}) integrals in the small N limit. For localized functions, in the large N limit, or for planewaves, due to closure, the storage can be reduced to O(N{sup 2}) integrals. Here, it is shown that the storage can be further reduced to O(N{sup 2/3}) for separable basis functions. A practical algorithm, that uses standard one-dimensional Gaussian-quadrature sums, is demonstrated. The resulting algorithm allows for the simultaneous storage, or fast reconstruction, of any two-electron Coulombmore » integral required for a many-electron calculation on processors with limited memory and disk space. For example, for calculations involving a basis of 9171 planewaves, the memory required to effectively store all Coulomb integrals decreases from 2.8 Gbytes to less than 2.4 Mbytes.« less

  8. Communication: practical and rigorous reduction of the many-electron quantum mechanical Coulomb problem to O(N(2/3)) storage.

    PubMed

    Pederson, Mark R

    2015-04-14

    It is tacitly accepted that, for practical basis sets consisting of N functions, solution of the two-electron Coulomb problem in quantum mechanics requires storage of O(N(4)) integrals in the small N limit. For localized functions, in the large N limit, or for planewaves, due to closure, the storage can be reduced to O(N(2)) integrals. Here, it is shown that the storage can be further reduced to O(N(2/3)) for separable basis functions. A practical algorithm, that uses standard one-dimensional Gaussian-quadrature sums, is demonstrated. The resulting algorithm allows for the simultaneous storage, or fast reconstruction, of any two-electron Coulomb integral required for a many-electron calculation on processors with limited memory and disk space. For example, for calculations involving a basis of 9171 planewaves, the memory required to effectively store all Coulomb integrals decreases from 2.8 Gbytes to less than 2.4 Mbytes.

  9. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; ...

    2016-11-11

    Here, a search for Pauli-exclusion-principle-violating K α electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 × 10 30 s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 × 10 30 s at 90% C.L. Itmore » is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of 76Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.« less

  10. Ethical guidelines for use of electronic mail between patients and physicians.

    PubMed

    Bovi, Amy M

    2003-01-01

    This report examines the ethical implications of electronic communication, focusing on the use of electronic mail (e-mail), considers its impact on a previously established patient-physician relationship, and the limitations in using e-mail to create a new patient-physician relationship. In its recommendations, this report offers guidance to physicians who use electronic mail to communicate with patients and online users. These guidelines maintain that e-mail should not be used to establish a patient-physician relationship, but rather to supplement personal encounters. When using e-mail, physicians hold the same ethical responsibilities to their patients as they do during other encounters and that information must be presented in a manner that meets professional standards. The report requires that physicians notify patients of e-mail's inherent limitations and that patients be given the opportunity to accept these limitations prior to the communication of privileged information. Finally, physicians should be aware of privacy and confidentiality concerns when using e-mail to communicate with patients.

  11. Nanoparticle discrimination based on wavelength and lifetime-multiplexed cathodoluminescence microscopy.

    PubMed

    Garming, Mathijs W H; Weppelman, I Gerward C; de Boer, Pascal; Martínez, Felipe Perona; Schirhagl, Romana; Hoogenboom, Jacob P; Moerland, Robert J

    2017-08-31

    Nanomaterials can be identified in high-resolution electron microscopy images using spectrally-selective cathodoluminescence. Capabilities for multiplex detection can however be limited, e.g., due to spectral overlap or availability of filters. Also, the available photon flux may be limited due to degradation under electron irradiation. Here, we demonstrate single-pass cathodoluminescence-lifetime based discrimination of different nanoparticles, using a pulsed electron beam. We also show that cathodoluminescence lifetime is a robust parameter even when the nanoparticle cathodoluminescence intensity decays over an order of magnitude. We create lifetime maps, where the lifetime of the cathodoluminescence emission is correlated with the emission intensity and secondary-electron images. The consistency of lifetime-based discrimination is verified by also correlating the emission wavelength and the lifetime of nanoparticles. Our results show how cathodoluminescence lifetime provides an additional channel of information in electron microscopy.

  12. Ultrafast electron microscopy integrated with a direct electron detection camera.

    PubMed

    Lee, Young Min; Kim, Young Jae; Kim, Ye-Jin; Kwon, Oh-Hoon

    2017-07-01

    In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM), which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.

  13. A Framework for Model-Based Diagnostics and Prognostics of Switched-Mode Power Supplies

    DTIC Science & Technology

    2014-10-02

    system. Some highlights of the work are included but not only limited to the following aspects: first, the methodology is based on electronic ... electronic health management, with the goal of expanding the realm of electronic diagnostics and prognostics. 1. INTRODUCTION Electronic systems such...as electronic controls, onboard computers, communications, navigation and radar perform many critical functions in onboard military and commercial

  14. Limitation of Liquid Crystal on Silicon Spatial Light Modular for Holographic Three-dimensional Displays

    NASA Technical Reports Server (NTRS)

    Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Kujawinska, Malgorzata; Pouch, John; Miranda, Feliz

    2004-01-01

    In a 3-D display system based on an opto-electronic reconstruction of a digitally recorded hologram, the field of view of such a system is limited by the spatial resolution of the liquid crystal on silicon (LCOS) spatial light modular (SLM) used to perform the opto-electronic reconstruction. In this article, the special resolution limitation of LCOS SLM associated with the fringe field effect and interpixel coupling is determined by the liquid crystal detector simulation and the Finite Difference Time Domain (FDTD) simulation. The diffraction efficiency loss associated with the imperfection in the phase profile is studied with an example of opto-electronic reconstruction of an amplitude object. A high spatial resolution LCOS SLM with a wide reconstruction angle is proposed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moll, Philip J. W.; Potter, Andrew C.; Nair, Nityan L.

    Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to themore » topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems.« less

  16. Simulation and experimental study of aspect ratio limitation in Fresnel zone plates for hard-x-ray optics.

    PubMed

    Liu, Jianpeng; Shao, Jinhai; Zhang, Sichao; Ma, Yaqi; Taksatorn, Nit; Mao, Chengwen; Chen, Yifang; Deng, Biao; Xiao, Tiqiao

    2015-11-10

    For acquiring high-contrast and high-brightness images in hard-x-ray optics, Fresnel zone plates with high aspect ratios (zone height/zone width) have been constantly pursued. However, knowledge of aspect ratio limits remains limited. This work explores the achievable aspect ratio limit in polymethyl methacrylate (PMMA) by electron-beam lithography (EBL) under 100 keV, and investigates the lithographic factors for this limitation. Both Monte Carlo simulation and EBL on thick PMMA are applied to investigate the profile evolution with exposure doses over 100 nm wide dense zones. A high-resolution scanning electron microscope at low acceleration mode for charging free is applied to characterize the resultant zone profiles. It was discovered for what we believe is the first time that the primary electron-beam spreading in PMMA and the proximity effect due to extra exposure from neighboring areas could be the major causes of limiting the aspect ratio. Using the optimized lithography condition, a 100 nm zone plate with aspect ratio of 15/1 was fabricated and its focusing property was characterized at the Shanghai Synchrotron Radiation Facility. The aspect ratio limit found in this work should be extremely useful for guiding further technical development in nanofabrication of high-quality Fresnel zone plates.

  17. LabVIEW Serial Driver Software for an Electronic Load

    NASA Technical Reports Server (NTRS)

    Scullin, Vincent; Garcia, Christopher

    2003-01-01

    A LabVIEW-language computer program enables monitoring and control of a Transistor Devices, Inc., Dynaload WCL232 (or equivalent) electronic load via an RS-232 serial communication link between the electronic load and a remote personal computer. (The electronic load can operate at constant voltage, current, power consumption, or resistance.) The program generates a graphical user interface (GUI) at the computer that looks and acts like the front panel of the electronic load. Once the electronic load has been placed in remote-control mode, this program first queries the electronic load for the present values of all its operational and limit settings, and then drops into a cycle in which it reports the instantaneous voltage, current, and power values in displays that resemble those on the electronic load while monitoring the GUI images of pushbuttons for control actions by the user. By means of the pushbutton images and associated prompts, the user can perform such operations as changing limit values, the operating mode, or the set point. The benefit of this software is that it relieves the user of the need to learn one method for operating the electronic load locally and another method for operating it remotely via a personal computer.

  18. Surface hopping with a manifold of electronic states. II. Application to the many-body Anderson-Holstein model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Wenjie; Subotnik, Joseph E.; Nitzan, Abraham

    We investigate a simple surface hopping (SH) approach for modeling a single impurity level coupled to a single phonon and an electronic (metal) bath (i.e., the Anderson-Holstein model). The phonon degree of freedom is treated classically with motion along–and hops between–diabatic potential energy surfaces. The hopping rate is determined by the dynamics of the electronic bath (which are treated implicitly). For the case of one electronic bath, in the limit of small coupling to the bath, SH recovers phonon relaxation to thermal equilibrium and yields the correct impurity electron population (as compared with numerical renormalization group). For the case ofmore » out of equilibrium dynamics, SH current-voltage (I-V) curve is compared with the quantum master equation (QME) over a range of parameters, spanning the quantum region to the classical region. In the limit of large temperature, SH and QME agree. Furthermore, we can show that, in the limit of low temperature, the QME agrees with real-time path integral calculations. As such, the simple procedure described here should be useful in many other contexts.« less

  19. Impurity sputtering from the guard limiter of the lower hybrid wave antenna in a tokamak

    NASA Astrophysics Data System (ADS)

    Ou, Jing; Xiang, Nong; Men, Zongzheng

    2018-01-01

    The hot spots on the guard limiter of the lower hybrid wave (LHW) antenna in a tokamak were believed to be associated with the energetic electrons produced by the wave-plasma interaction, leading to a sudden increase of impurity influx and even ending with disruption. To investigate the carbon sputtering from the guard limiter of the LHW antenna, the impurity sputtering yield is calculated by coupling the module of Plasma Surface Interaction [Warrier et al., Comput. Phys. Commun. 46, 160 (2004)] with the models for the sheath of plasma containing energetic electron and for the material heat transport. It is found that the presence of a small population of energetic electrons can change significantly the impurity sputtering yield, as a result of the sheath potential modification. For the typical plasma parameters in the current tokamak, with an increase in the energetic electron component, the physical sputtering yield reaches its maximum and then decreases slowly, while the chemical sputtering yield demonstrates a very sharp increase and then decreases rapidly. In addition, effects of the ion temperature and background electron density on the impurity sputtering are also discussed.

  20. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  1. Electronic transport coefficients in plasmas using an effective energy-dependent electron-ion collision-frequency

    NASA Astrophysics Data System (ADS)

    Faussurier, G.; Blancard, C.; Combis, P.; Decoster, A.; Videau, L.

    2017-10-01

    We present a model to calculate the electrical and thermal electronic conductivities in plasmas using the Chester-Thellung-Kubo-Greenwood approach coupled with the Kramers approximation. The divergence in photon energy at low values is eliminated using a regularization scheme with an effective energy-dependent electron-ion collision-frequency. Doing so, we interpolate smoothly between the Drude-like and the Spitzer-like regularizations. The model still satisfies the well-known sum rule over the electrical conductivity. Such kind of approximation is also naturally extended to the average-atom model. A particular attention is paid to the Lorenz number. Its nondegenerate and degenerate limits are given and the transition towards the Drude-like limit is proved in the Kramers approximation.

  2. Virtual cathode formations in nested-well configurations

    NASA Astrophysics Data System (ADS)

    Stephens, K. F.; Ordonez, C. A.; Peterkin, R. E.

    1999-12-01

    Complete transmission of an electron beam through a cavity is not possible if the current exceeds the space-charge limited current. The formation of a virtual cathode reflects some of the beam electrons and reduces the current transmitted through the cavity. Transients in the injected current have been shown to lower the transmitted current below the value predicted by the electrostatic Child-Langmuir law. The present work considers the propagation of an electron beam through a nested-well configuration. Electrostatic particle-in-cell simulations are used to demonstrate that ions can be trapped in the electric potential depression of an electron beam. Furthermore, the trapped ions can prevent the formation of a virtual cathode for beam currents exceeding the space-charge limit.

  3. Higher-than-ballistic conduction of viscous electron flows

    PubMed Central

    Guo, Haoyu; Ilseven, Ekin; Falkovich, Gregory; Levitov, Leonid S.

    2017-01-01

    Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer’s ballistic limit Gball. The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at T=0 but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation G=Gball+Gvis, where the viscous contribution Gvis dominates over Gball in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics. PMID:28265079

  4. Medicare and state health care programs: fraud and abuse; electronic health records safe harbor under the anti-kickback statute. Final rule.

    PubMed

    2013-12-27

    In this final rule, the Office of Inspector General (OIG) amends the safe harbor regulation concerning electronic health records items and services, which defines certain conduct that is protected from liability under the Federal anti-kickback statute, section 1128B(b) of the Social Security Act (the Act). Amendments include updating the provision under which electronic health records software is deemed interoperable; removing the electronic prescribing capability requirement; extending the sunset provision until December 31, 2021; limiting the scope of protected donors to exclude laboratory companies; and clarifying the condition that prohibits a donor from taking any action to limit or restrict the use, compatibility, or interoperability of the donated items or services.

  5. Clinical efficacy of electronic apex locators: systematic review.

    PubMed

    Martins, Jorge N R; Marques, Duarte; Mata, António; Caramês, João

    2014-06-01

    Apical constriction has been proposed as the most appropriate apical limit for the endodontic working length. Despite being the most used, some limitations are attributed to the radiographic method of working length determination. It lacks precision because it is based on the average position of the apical constriction. The electronic apex locators have been presented as an alternative to the odontometry performed by radiography. These devices detect the transition of the pulp to the periodontal tissue, which is anatomically very close to the apical constriction and may perform with improved accuracy. A systematic review was performed to compare the radiographic and electronic methods. Clinical studies that compared both methods were searched for on 7 electronic databases, a manual search was performed on the bibliography of articles collected on the electronic databases, and the authors were contacted to ask for references of more research not detected on the electronic and manual search. Twenty-one articles were selected. The majority were comparative or evaluation studies, and very few clinical studies comparing both methods are available. Several methodological limitations are present on the collected articles and debated in this review. Although the available scientific evidence base is short and at considerable risk of bias, it is still possible to conclude that the apical locator reduces the patient radiation exposure and also that the electronic method may perform better on the working length determination. At least one radiographic control should be performed to detect possible errors of the electronic devices. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Limits of applicability of a two-temperature model under nonuniform heating of metal by an ultrashort laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakov, D S; Yakovlev, E B

    The heating of metals (silver and aluminium) by ultrashort laser pulses is analysed proceeding from a spatially nonuniform kinetic equation for the electron distribution function. The electron subsystem thermalisation is estimated in a wide range of absorbed pulse energy density. The limits of applicability are determined for the two-temperature model. (interaction of laser radiation with matter)

  7. SU-D-BRD-07: Evaluation of the Effectiveness of Statistical Process Control Methods to Detect Systematic Errors For Routine Electron Energy Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, S

    2015-06-15

    Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignmentmore » of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic errors using routine measurement of electron beam energy constancy.« less

  8. Electronic coarse graining enhances the predictive power of molecular simulation allowing challenges in water physics to be addressed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipcigan, Flaviu S., E-mail: flaviu.cipcigan@ed.ac.uk; National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW; Sokhan, Vlad P.

    One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082–1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker inmore » the 1980s [Phys. Rev. Lett. 57 (1986) 230–233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeler through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO-MD. - Highlights: • Electronic coarse graining unites many-body dispersion and polarisation beyond the dipole limit. • It consists of replacing the electrons of a molecule using a quantum harmonic oscillator, called a Quantum Drude Oscillator. • We present the first general implementation of Quantum Drude Oscillators in the molecular dynamics package QDO-MD. • We highlight the successful construction of a new, transferable molecular model of water: QDO-water. - Graphical abstract:.« less

  9. Nonlocal electron energy transport and flux inhibition in laser produced plasmas in one and two dimensions

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2011-10-01

    As the mean free path of the heat conducting electrons in laser produced plasmas can, at certain points, be greater than the temperature gradient scale length, the classical, local model can be invalid. More energetic electrons can advance ahead of the main heat front and preheat the fusion target. Also, experiments show that the main heat front does not propagate as rapidly as classical theory would predict, so there is heat flux inhibition. This latter effect is usually treated by limiting the flux to some arbitrary fraction f of the free streaming flux; f's have ranged from 0.03 to 0.3. However the choice of flux limit is arbitrary and the choice affects plasma temperature, which in turn affects thresholds for laser plasma instabilities; too low a limit has given too high a temperature and false optimism regarding instability threshold. We have developed a velocity dependent Krook model for nonlocal electron energy transport. It shows preheat and flux limitation are not separate effects, but are two sides of the same coin. The model gives an analytic solution for the nonlocal electron energy flux, and it is relatively simple and inexpensive to incorporate in a fluid simulation run at the ion time scale. It shows that in some sense, preheat is subtracted from the main electron energy flux, thereby giving rise to flux limitation. We have developed the theory and compared it with Fokker Planck simulations of simple configurations. We have incorporated the model into our code FAST2D and used it to model foil acceleration and evaluate and compare a number of competing physical effects in one and two dimensions, and compared with experiments. We have investigated the effect on spherical implosions, especially the effect on corona temperature, pressure, fuel adiabat and preheat, and ultimately gain. Supported by ONR and NNSA/DoE.

  10. Maximum Energies of Shock-Accelerated Electrons in Young Shell Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Reynolds, Stephen P.; Keohane, Jonathan W.; White, Nicholas E. (Technical Monitor)

    1999-01-01

    Young supernova remnants (SNRs) are often assumed to be the source of cosmic rays up to energies approaching the slight steepening in the cosmic ray spectrum at around 1000 TeV, known as the "knee." We show that the observed X-ray emission of 14 radio-bright shell remnants, including all five historical shells, can be used to put limits on E(sub max), the energy at which the electron energy distribution must steepen from its slope at radio-emitting energies. Most of the remnants show thermal spectra, so any synchrotron component must fall below the observed X-ray fluxes. We obtain upper limits on E(sub max) by considering the most rapid physically plausible cutoff in the relativistic electron distribution, an exponential, which is as sharp or sharper than found in any more elaborate models. This maximally curved model then gives us the highest possible E(sub max) consistent with not exceeding observed X-rays. Our results are thus independent of particular models for the electron spectrum in SNRs. Assuming homogeneous emitting volumes with a constant magnetic field strength of 10 uG, no object could reach 1000 TeV, and only one, Kes 73, has an upper limit on E(sub max), above 100 TeV. All the other remnants have limits at or below 80 TeV. E(sub max) is probably set by the finite remnant lifetime rather than by synchrotron losses for remnants younger than a few thousand years, so that an observed electron steepening should be accompanied by steepening at the same energy for protons. More complicated, inhomogeneous models could allow higher values of E(sub max) in parts of the remnant, but the emission-weighted average value, that characteristic of typical electrons, should obey these limits. The young remnants are not expected to improve much over their remaining lives at producing the highest energy Galactic cosmic rays; if they cannot, this picture of cosmic-ray origin may need major alteration.

  11. SAGES: A Suite of Freely-Available Software Tools for Electronic Disease Surveillance in Resource-Limited Settings

    PubMed Central

    Lewis, Sheri L.; Feighner, Brian H.; Loschen, Wayne A.; Wojcik, Richard A.; Skora, Joseph F.; Coberly, Jacqueline S.; Blazes, David L.

    2011-01-01

    Public health surveillance is undergoing a revolution driven by advances in the field of information technology. Many countries have experienced vast improvements in the collection, ingestion, analysis, visualization, and dissemination of public health data. Resource-limited countries have lagged behind due to challenges in information technology infrastructure, public health resources, and the costs of proprietary software. The Suite for Automated Global Electronic bioSurveillance (SAGES) is a collection of modular, flexible, freely-available software tools for electronic disease surveillance in resource-limited settings. One or more SAGES tools may be used in concert with existing surveillance applications or the SAGES tools may be used en masse for an end-to-end biosurveillance capability. This flexibility allows for the development of an inexpensive, customized, and sustainable disease surveillance system. The ability to rapidly assess anomalous disease activity may lead to more efficient use of limited resources and better compliance with World Health Organization International Health Regulations. PMID:21572957

  12. Electron transport limitation in P3HT:CdSe nanorods hybrid solar cells.

    PubMed

    Lek, Jun Yan; Xing, Guichuan; Sum, Tze Chien; Lam, Yeng Ming

    2014-01-22

    Hybrid solar cells have the potential to be efficient solar-energy-harvesting devices that can combine the benefits of solution-processable organic materials and the extended absorption offered by inorganic materials. In this work, an understanding of the factors limiting the performance of hybrid solar cells is explored. Through photovoltaic-device characterization correlated with transient absorption spectroscopy measurements, it was found that the interfacial charge transfer between the organic (P3HT) and inorganic (CdSe nanorods) components is not the factor limiting the performance of these solar cells. The insulating original ligands retard the charge recombination between the charge-transfer states across the CdSe-P3HT interface, and this is actually beneficial for charge collection. These cells are, in fact, limited by the subsequent electron collection via CdSe nanoparticles to the electrodes. Hence, the design of a more continuous electron-transport pathway should greatly improve the performance of hybrid solar cells in the future.

  13. Limitations for current production in Geobacter sulfurreducens biofilms.

    PubMed

    Bonanni, P Sebastian; Bradley, Dan F; Schrott, Germán D; Busalmen, Juan Pablo

    2013-04-01

    Devices that exploit electricity produced by electroactive bacteria such as Geobacter sulfurreducens have not yet been demonstrated beyond the laboratory scale. The current densities are far from the maximum that the bacteria can produce because fundamental properties such as the mechanism of extracellular electron transport and factors limiting cell respiration remain unclear. In this work, a strategy for the investigation of electroactive biofilms is presented. Numerical modeling of the response of G. sulfurreducens biofilms cultured on a rotating disk electrode has allowed for the discrimination of different limiting steps in the process of current production within a biofilm. The model outputs reveal that extracellular electron transport limits the respiration rate of the cells furthest from the electrode to the extent that cell division is not possible. The mathematical model also demonstrates that recent findings such as the existence of a redox gradient in actively respiring biofilms can be explained by an electron hopping mechanism but not when considering metallic-like conductivities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effective ionization coefficients, limiting electric fields, and electron energy distributions in CF{sub 3}I + CF{sub 4} + Ar ternary gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tezcan, S. S.; Dincer, M. S.; Bektas, S.

    2016-07-15

    This paper reports on the effective ionization coefficients, limiting electric fields, electron energy distribution functions, and mean energies in ternary mixtures of (Trifluoroiodomethane) CF{sub 3}I + CF{sub 4} + Ar in the E/N range of 100–700 Td employing a two-term solution of the Boltzmann equation. In the ternary mixture, CF{sub 3}I component is increased while the CF{sub 4} component is reduced accordingly and the 40% Ar component is kept constant. It is seen that the electronegativity of the mixture increases with increased CF{sub 3}I content and effective ionization coefficients decrease while the limiting electric field values increase. Synergism in themore » mixture is also evaluated in percentage using the limiting electric field values obtained. Furthermore, it is possible to control the mean electron energy in the ternary mixture by changing the content of CF{sub 3}I component.« less

  15. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotopemore » effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.« less

  16. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.

  17. Search for Excited or Exotic Electron Production Using the Dielectron + Photon Signature at CDF in Run II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerberich, Heather Kay

    The author presents a search for excited or exotic electrons decaying to an electron and a photon with high transverse momentum. An oppositely charged electron is produced in association with the excited electron, yielding a final state dielectron + photon signature. The discovery of excited electrons would be a first indication of lepton compositeness. They use ~ 202 pb -1 of data collected in pmore » $$\\bar{p}$$ collisions at √s = 1.96 TeV with the Collider Detector at Fermilab during March 2001 through September 2003. The data are consistent with standard model expectations. Upper limits are set on the experimental cross-section σ($$\\bar{p}$$p → ee* → eeγ) at the 95% confidence level in a contact-interaction model and a gauge-mediated interaction model. Limits are also presented as exclusion regions in the parameter space of the excited electron mass (M e*) and the compositeness energy scale (Λ). In the contact-interaction model, for which there are no previously published limits, they find M e* < 906 GeV is excluded for M e* = Λ. In the gauge-mediated model, the exclusion region in the M e* versus the phenomenological coupling f/Λ parameter space is extended to M{sub e*} < 430 GeV for f/Λ ~ 10 -2 GeV -1. In comparison, other experiments have excluded M e* < 280 GeV for f/Λ ~ 10 -2 GeV -1.« less

  18. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain.

    PubMed

    Carstensen, Andreas; Herdean, Andrei; Schmidt, Sidsel Birkelund; Sharma, Anurag; Spetea, Cornelia; Pribil, Mathias; Husted, Søren

    2018-05-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley ( Hordeum vulgare ). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b 6 f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO 2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. © 2018 American Society of Plant Biologists. All Rights Reserved.

  19. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution.

    PubMed

    Manz, Stephanie; Casandruc, Albert; Zhang, Dongfang; Zhong, Yinpeng; Loch, Rolf A; Marx, Alexander; Hasegawa, Taisuke; Liu, Lai Chung; Bayesteh, Shima; Delsim-Hashemi, Hossein; Hoffmann, Matthias; Felber, Matthias; Hachmann, Max; Mayet, Frank; Hirscht, Julian; Keskin, Sercan; Hada, Masaki; Epp, Sascha W; Flöttmann, Klaus; Miller, R J Dwayne

    2015-01-01

    The long held objective of directly observing atomic motions during the defining moments of chemistry has been achieved based on ultrabright electron sources that have given rise to a new field of atomically resolved structural dynamics. This class of experiments requires not only simultaneous sub-atomic spatial resolution with temporal resolution on the 100 femtosecond time scale but also has brightness requirements approaching single shot atomic resolution conditions. The brightness condition is in recognition that chemistry leads generally to irreversible changes in structure during the experimental conditions and that the nanoscale thin samples needed for electron structural probes pose upper limits to the available sample or "film" for atomic movies. Even in the case of reversible systems, the degree of excitation and thermal effects require the brightest sources possible for a given space-time resolution to observe the structural changes above background. Further progress in the field, particularly to the study of biological systems and solution reaction chemistry, requires increased brightness and spatial coherence, as well as an ability to tune the electron scattering cross-section to meet sample constraints. The electron bunch density or intensity depends directly on the magnitude of the extraction field for photoemitted electron sources and electron energy distribution in the transverse and longitudinal planes of electron propagation. This work examines the fundamental limits to optimizing these parameters based on relativistic electron sources using re-bunching cavity concepts that are now capable of achieving 10 femtosecond time scale resolution to capture the fastest nuclear motions. This analysis is given for both diffraction and real space imaging of structural dynamics in which there are several orders of magnitude higher space-time resolution with diffraction methods. The first experimental results from the Relativistic Electron Gun for Atomic Exploration (REGAE) are given that show the significantly reduced multiple electron scattering problem in this regime, which opens up micron scale systems, notably solution phase chemistry, to atomically resolved structural dynamics.

  20. Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; Fennell, J. F.; Blake, J. B.; Clemmons, J. H.; Mauk, B. H.; Cohen, I. J.; Jaynes, A. N.; Craft, J. V.; Wilder, F. D.; Baker, D. N.; Reeves, G. D.; Gershman, D. J.; Avanov, L. A.; Dorelli, J. C.; Giles, B. L.; Pollock, C. J.; Schmid, D.; Nakamura, R.; Strangeway, R. J.; Russell, C. T.; Artemyev, A. V.; Runov, A.; Angelopoulos, V.; Spence, H. E.; Torbert, R. B.; Burch, J. L.

    2016-08-01

    We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA's Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at 7-9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from 130 keV to >500 keV, with each dipolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.

  1. Energy Limits of Electron Acceleration in the Plasma Sheet During Substorms: A Case Study with the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Turner, D. L.; Fennell, J. F.; Blake, J. B.; Clemmons, J. H.; Mauk, B. H.; Cohen, I. J.; Jaynes, A. N.; Craft, J. V.; Wilder, F. D.; Baker, D. N.; hide

    2016-01-01

    We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASAs Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at approx. 7-9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from approx. 130 keV to >500 keV, with each depolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.

  2. Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.

    PubMed

    Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He

    2018-03-26

    An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. HDTV versus electronic cinema

    NASA Astrophysics Data System (ADS)

    Tinker, Michael

    1998-12-01

    We are on the brink of transforming the movie theatre with electronic cinema. Technologies are converging to make true electronic cinema, with a 'film look,' possible for the first time. In order to realize the possibilities, we must leverage current technologies in video compression, electronic projection, digital storage, and digital networks. All these technologies have only recently improved sufficiently to make their use in the electronic cinema worthwhile. Video compression, such as MPEG-2, is designed to overcome the limitations of video, primarily limited bandwidth. As a result, although HDTV offers a serious challenge to film-based cinema, it falls short in a number of areas, such as color depth. Freed from the constraints of video transmission, and using the recently improved technologies available, electronic cinema can move beyond video; Although movies will have to be compressed for some time, what is needed is a concept of 'cinema compression,' rather than video compression. Electronic cinema will open up vast new possibilities for viewing experiences at the theater, while at the same time offering up the potential for new economies in the movie industry.

  4. Limit of the electrostatic doping in two-dimensional electron gases of LaXO3(X = Al, Ti)/SrTiO3

    NASA Astrophysics Data System (ADS)

    Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Reyren, N.; Lesne, E.; Lesueur, J.; Bergeal, N.

    2014-10-01

    In LaTiO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures, the bending of the SrTiO3 conduction band at the interface forms a quantum well that contains a superconducting two-dimensional electron gas (2-DEG). Its carrier density and electronic properties, such as superconductivity and Rashba spin-orbit coupling can be controlled by electrostatic gating. In this article we show that the Fermi energy lies intrinsically near the top of the quantum well. Beyond a filling threshold, electrons added by electrostatic gating escape from the well, hence limiting the possibility to reach a highly-doped regime. This leads to an irreversible doping regime where all the electronic properties of the 2-DEG, such as its resistivity and its superconducting transition temperature, saturate. The escape mechanism can be described by the simple analytical model we propose.

  5. Understanding the Charge Transfer at the Interface of Electron Donors and Acceptors: TTF–TCNQ as an Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changwon; Atalla, Viktor; Smith, Sean

    Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less

  6. Understanding the Charge Transfer at the Interface of Electron Donors and Acceptors: TTF–TCNQ as an Example

    DOE PAGES

    Park, Changwon; Atalla, Viktor; Smith, Sean; ...

    2017-06-16

    Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less

  7. Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications - SiC, GaN, Ga2O3, and Diamond.

    PubMed

    Wellmann, Peter J

    2017-11-17

    Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies.

  8. Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications – SiC, GaN, Ga2O3, and Diamond

    PubMed Central

    2017-01-01

    Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies. PMID:29200530

  9. Two-electron bond-orbital model, 1

    NASA Technical Reports Server (NTRS)

    Huang, C.; Moriarty, J. A.; Sher, A.; Breckenridge, R. A.

    1975-01-01

    Harrison's one-electron bond-orbital model of tetrahedrally coordinated solids was generalized to a two-electron model, using an extension of the method of Falicov and Harris for treating the hydrogen molecule. The six eigenvalues and eigenstates of the two-electron anion-cation Hamiltonian entering this theory can be found exactly general. The two-electron formalism is shown to provide a useful basis for calculating both non-magnetic and magnetic properties of semiconductors in perturbation theory. As an example of the former, expressions for the electric susceptibility and the dielectric constant were calculated. As an example of the latter, new expressions for the nuclear exchanges and pseudo-dipolar coefficients were calculated. A simple theoretical relationship between the dielectric constant and the exchange coefficient was also found in the limit of no correlation. These expressions were quantitatively evaluated in the limit of no correlation for twenty semiconductors.

  10. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talman, Richard

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such anmore » electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)« less

  11. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials.

    PubMed

    Du, Ming; Jacobsen, Chris

    2018-01-01

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Plasma density enhancements created by the ionization of the Earth's upper atmosphere by artificial electron beams

    NASA Technical Reports Server (NTRS)

    Neubert, Torsten; Banks, Peter M.

    1990-01-01

    Analytical calculations and experimental observations relating to the interaction with the Earth's upper atmosphere of electron beams emitted from low altitude spacecraft are presented. The problem is described by two coupled nonlinear differential equations in the up-going (along a magnetic field line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results form the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere interaction are discussed. First, the limits on the electron beam current that can be emitted from a spacecraft without substantial spacecraft charging are investigated. This is important because the charging of the spacecraft to positive potentials limits the current and the escape energy of the beam electrons and thereby limits the ionization of the neutral atmosphere. As an example, we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1 to 10 keV electron beams from sounding rockets, completely balance the beam current, thereby allowing the emission of very high beam currents. Second, the amount of plasma production in the beam-streak is discussed. Results are shown for selected values of the beam energy, spacecraft velocity, and spacecraft altitude.

  13. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    PubMed

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  14. Development of Electronic Resources across Networks in Thailand.

    ERIC Educational Resources Information Center

    Ratchatavorn, Phandao

    2002-01-01

    Discusses the development of electronic resources across library networks in Thailand to meet user needs, particularly electronic journals. Topics include concerns about journal access; limited budgets for library acquisitions of journals; and sharing resources through a centralized database system that allows Web access to journals via Internet…

  15. Design study for electronic system for Jupiter Orbit Probe (JOP)

    NASA Technical Reports Server (NTRS)

    Elero, B. P., Jr.; Carignan, G. R.

    1978-01-01

    The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.

  16. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways.

    PubMed

    Tikhonov, Alexander N

    2014-08-01

    Regulation of photosynthetic electron transport at the level of the cytochrome b6f complex provides efficient performance of the chloroplast electron transport chain (ETC). In this review, after brief overview of the structural organization of the chloroplast ETC, the consideration of the problem of electron transport control is focused on the plastoquinone (PQ) turnover and its interaction with the b6f complex. The data available show that the rates of plastoquinol (PQH2) formation in PSII and its diffusion to the b6f complex do not limit the overall rate of electron transfer between photosystem II (PSII) and photosystem I (PSI). Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen. The acidification of the lumen causes deceleration of PQH2 oxidation, thus impeding the intersystem electron transport. Two other mechanisms of regulation of the intersystem electron transport have been considered: (i) "state transitions" associated with the light-induced redistribution of solar energy between PSI and PSII, and (ii) redistribution of electron fluxes between alternative pathways (noncyclic electron transport and cyclic electron flow around PSI). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Linking Investigations in Trauma and Emergency Services (LITES)

    DTIC Science & Technology

    2017-10-01

    observational cohort that will have a limited data set from trauma registry data and electronic health records. Specific Aim one is to characterize the...epidemiology of moderate and severe physical injury in the U.S. and across the LITES network and investigate regional variations of presenting...observational cohort that will have a limited data set from trauma registry data and electronic health records. Specific Aim one is to characterize the

  18. The Effects of Paper-Based Portfolios and Weblog-Based Electronic Portfolios on Limited English Proficiency Students in Writing for Service Industry Course

    ERIC Educational Resources Information Center

    Wanchid, Raveewan; Charoensuk, Valaikorn

    2015-01-01

    The purposes of this study were to investigate the effects of the use of paper-based and weblog-based electronic portfolios on the writing achievement of limited English proficiency students, to survey the students' attitudes towards the use of the portfolio assessment, and to compare the viewpoints of the students in the control and experimental…

  19. Space Charge Effect in the Sheet and Solid Electron Beam

    NASA Astrophysics Data System (ADS)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  20. Electronic Classroom.

    ERIC Educational Resources Information Center

    Price, Harry A.

    The conversion of a limited-use, "white elephant" auditorium into an electronic classroom to be used as a flexible instructional space with numerous potentials for enrichment of learning via utilization of electromechanical aids. (FS)

  1. Electron and hole stability in GaN and ZnO.

    PubMed

    Walsh, Aron; Catlow, C Richard A; Miskufova, Martina; Sokol, Alexey A

    2011-08-24

    We assess the thermodynamic doping limits of GaN and ZnO on the basis of point defect calculations performed using the embedded cluster approach and employing a hybrid non-local density functional for the quantum mechanical region. Within this approach we have calculated a staggered (type-II) valence band alignment between the two materials, with the N 2p states contributing to the lower ionization potential of GaN. With respect to the stability of free electron and hole carriers, redox reactions resulting in charge compensation by ionic defects are found to be largely endothermic (unfavourable) for electrons and exothermic (favourable) for holes, which is consistent with the efficacy of electron conduction in these materials. Approaches for overcoming these fundamental thermodynamic limits are discussed. © 2011 IOP Publishing Ltd

  2. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-04-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  3. Astrophysical gamma-ray production by inverse Compton interactions of relativistic electrons

    NASA Technical Reports Server (NTRS)

    Schlickeiser, R.

    1979-01-01

    The inverse Compton scattering of background photon gases by relativistic electrons is a good candidate for the production of high-energy gamma rays in the diffuse interstellar medium as well as in discrete sources. By discussing the special case of the scattering of the diffuse starlight in the interstellar medium by cosmic ray electrons, we demonstrate that previous derivations of the gamma ray source function for this process on the basis of the Thomson limit of the Klein-Nishina cross section lead to incorrect values for gamma-ray energies above 100 MeV. It is shown that the Thomson limit is not applicable for the calculation of gamma-ray source functions in astrophysical circumstances in which target photons with energies greater than 1 eV are scattered by relativistic electrons.

  4. Higher-than-ballistic conduction of viscous electron flows.

    PubMed

    Guo, Haoyu; Ilseven, Ekin; Falkovich, Gregory; Levitov, Leonid S

    2017-03-21

    Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer's ballistic limit [Formula: see text] The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at [Formula: see text] but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation [Formula: see text], where the viscous contribution [Formula: see text] dominates over [Formula: see text] in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics.

  5. Toward a terahertz-driven electron gun

    PubMed Central

    Huang, W. Ronny; Nanni, Emilio A.; Ravi, Koustuban; Hong, Kyung-Han; Fallahi, Arya; Wong, Liang Jie; Keathley, Phillip D.; Zapata, Luis E.; Kärtner, Franz X.

    2015-01-01

    Femtosecond electron bunches with keV energies and eV energy spread are needed by condensed matter physicists to resolve state transitions in carbon nanotubes, molecular structures, organic salts, and charge density wave materials. These semirelativistic electron sources are not only of interest for ultrafast electron diffraction, but also for electron energy-loss spectroscopy and as a seed for x-ray FELs. Thus far, the output energy spread (hence pulse duration) of ultrafast electron guns has been limited by the achievable electric field at the surface of the emitter, which is 10 MV/m for DC guns and 200 MV/m for RF guns. A single-cycle THz electron gun provides a unique opportunity to not only achieve GV/m surface electric fields but also with relatively low THz pulse energies, since a single-cycle transform-limited waveform is the most efficient way to achieve intense electric fields. Here, electron bunches of 50 fC from a flat copper photocathode are accelerated from rest to tens of eV by a microjoule THz pulse with peak electric field of 72 MV/m at 1 kHz repetition rate. We show that scaling to the readily-available GV/m THz field regime would translate to monoenergetic electron beams of ~100 keV. PMID:26486697

  6. Modulated Electron Emission by Scattering-Interference of Primary Electrons

    NASA Astrophysics Data System (ADS)

    Valeri, Sergio; di Bona, Alessandro

    We review the effects of scattering-interference of the primary, exciting beam on the electron emission from ordered atomic arrays. The yield of elastically and inelastically backscattered electrons, Auger electrons and secondary electrons shows a marked dependence on the incidence angle of primary electrons. Both the similarity and the relative importance of processes experienced by incident and excident electrons are discussed. We also present recent studies of electron focusing and defocusing along atomic chains. The interplay between these two processes determines the in-depth profile of the primary electron intensity anisotropy. Finally, the potential for surface-structural studies and limits for quantitative analysis are discussed, in comparison with the Auger electron diffraction (AED) and photoelectron diffraction (PD) techniques.

  7. 78 FR 73563 - Certain Electronic Devices Having Placeshifting or Display Replication Functionality and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having... AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has issued (1) a limited exclusion order against infringing electronic devices...

  8. 30 CFR 250.126 - Electronic payment instructions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Electronic payment instructions. You must file all payments electronically through Pay.gov. This includes, but is not limited to, all OCS applications or filing fee payments. The Pay.gov Web site may be accessed through a link on the BSEE Offshore Web site at: http://www.bsee.gov/offshore/ homepage or...

  9. 30 CFR 250.126 - Electronic payment instructions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Electronic payment instructions. You must file all payments electronically through Pay.gov. This includes, but is not limited to, all OCS applications or filing fee payments. The Pay.gov Web site may be accessed through a link on the BSEE Offshore Web site at: http://www.bsee.gov/offshore/ homepage or...

  10. 30 CFR 250.126 - Electronic payment instructions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Electronic payment instructions. You must file all payments electronically through Pay.gov. This includes, but is not limited to, all OCS applications or filing fee payments. The Pay.gov Web site may be accessed through a link on the BSEE Offshore Web site at: http://www.bsee.gov/offshore/ homepage or...

  11. Sustainable Electronic Roadmap and Forum Summary; Sustainable Electronics Forum, October 15-18, 2012, Racine, WI

    EPA Science Inventory

    The Roadmap presents critical issues and research questions for each theme. For Theme 1, the issues for limiting the harm from materials and process in electronics industry include identifying the chemicals in products, production process, in the extraction of virgin materials, i...

  12. Stimulated Raman adiabatic passage preparation of a coherent superposition of ThO H3Δ1 states for an improved electron electric-dipole-moment measurement

    NASA Astrophysics Data System (ADS)

    Panda, C. D.; O'Leary, B. R.; West, A. D.; Baron, J.; Hess, P. W.; Hoffman, C.; Kirilov, E.; Overstreet, C. B.; West, E. P.; DeMille, D.; Doyle, J. M.; Gabrielse, G.

    2016-05-01

    Experimental searches for the electron electric-dipole moment (EDM) probe new physics beyond the standard model. The current best EDM limit was set by the ACME Collaboration [Science 343, 269 (2014), 10.1126/science.1248213], constraining time-reversal symmetry (T ) violating physics at the TeV energy scale. ACME used optical pumping to prepare a coherent superposition of ThO H3Δ1 states that have aligned electron spins. Spin precession due to the molecule's internal electric field was measured to extract the EDM. We report here on an improved method for preparing this spin-aligned state of the electron by using stimulated Raman adiabatic passage (STIRAP). We demonstrate a transfer efficiency of 75 %±5 % , representing a significant gain in signal for a next-generation EDM experiment. We discuss the particularities of implementing STIRAP in systems such as ours, where molecular ensembles with large phase-space distributions are transferred via weak molecular transitions with limited laser power and limited optical access.

  13. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  14. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1984-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  15. Resonant inelastic soft x-ray scattering of CdS: a two-dimensional electronic structure map approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinhardt, L.; Fuchs, O.; Fleszar, A.

    2008-09-24

    Resonant inelastic x-ray scattering (RIXS) with soft x-rays is uniquely suited to study the elec-tronic structure of a variety of materials, but is currently limited by low (fluorescence yield) count rates. This limitation is overcome with a new high-transmission spectrometer that allows to measure soft x-ray RIXS"maps." The S L2,3 RIXS map of CdS is discussed and compared with density functional calculations. The map allows the extraction of decay channel-specific"absorp-tion spectra," giving detailed insight into the wave functions of occupied and unoccupied elec-tronic states.

  16. Critical appraisal of volumetric-modulated arc therapy compared with electrons for the radiotherapy of cutaneous Kaposi’s sarcoma of lower extremities with bone sparing

    PubMed Central

    Abraham, S; Fogliata, A; Jordaan, A; Clivio, A; Vanetti, E; Cozzi, L

    2013-01-01

    Objective: To evaluate the use of volumetric-modulated arc therapy [VMAT, RapidArc® (RA); Varian Medical Systems, Palo Alto, CA] for the treatment of cutaneous Kaposi’s sarcoma (KS) of lower extremities with adequate target coverage and high bone sparing, and to compare VMAT with electron beam therapy. Methods: 10 patients were planned with either RA or electron beams. The dose was prescribed to 30 Gy, 10 fractions, to mean the planning target volume (PTV), and significant maximum dose to bone was limited to 30 Gy. Plans were designed for 6-MV photon beams for RA and 6 MeV for electrons. Dose distributions were computed with AcurosXB® (Varian Medical Systems) for photons and with a Monte Carlo algorithm for electrons. Results: V90% was 97.3±1.2 for RA plans and 78.2±2.6 for electrons; similarly, V107% was 2.5±2.2 and 37.7±3.4, respectively. RA met coverage criteria. Concerning bone sparing, D2% was 29.6±1.1 for RA and 31.0±2.4 for electrons. Although acceptable for bone involvement, pronounced target coverage violations were obtained for electron plans. Monitor units were similar for electrons and RA, although for the latter they increased when superior bone sparing was imposed. Delivery times were 12.1±4.0 min for electrons and 4.8±1.3 min for the most modulated RA plans. Conclusion: High plan quality was shown for KS in the lower extremities using VMAT, and this might simplify their management in comparison with the more conventional usage of electrons, particularly in institutes with limited staff resources and heavy workloads. Advances in knowledge: VMAT is also dosimetrically extremely advantageous in a typology of treatments where electron beam therapy is mainly considered to be effective owing to the limited penetration of the beams. PMID:23392192

  17. Predicted TeV Gamma-ray Spectra and Images of Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    1999-04-01

    One supernova remnant, SN 1006, is now known to produce synchrotron X-rays (Koyama et al., 1995, Nature, 378, 255), requiring 100 TeV electrons. SN 1006 has also been seen in TeV gamma rays (Tanimori et al., 1998, ApJ, 497, L25), almost certainly due to cosmic-microwave-background photons being upscattered by those same electrons. Other young supernova remnants should also produce high-energy electrons, even if their X-ray synchrotron emission is swamped by conventional thermal X-ray emission. Upper limits to the maximum energy of shock-accelerated electrons can be found for those remnants by requiring that their synchrotron spectrum steepen enough to fall below observed thermal X-rays (Reynolds and Keohane 1999, ApJ, submitted). For those upper-limit spectra, I present predicted TeV inverse-Compton spectra and images for assumed values of the mean remnant magnetic field. Ground-based TeV gamma-ray observations of remnants may be able to put even more severe limits on the presence of highly energetic electrons in remnants, raising problems for conventional theories of galactic cosmic-ray production in supernova remnants. Detections will immediately confirm that SN 1006 is not alone, and will give mean remnant magnetic field strengths.

  18. Microwave Semiconductor Research - Materials, Devices and Circuits and Gallium Arsenide Ballistic Electron Transistors.

    DTIC Science & Technology

    1985-04-01

    activation energies than previously possible. Electron traps and hole traps with energies less than 50 meV were observed for the first time in GaAs...developed in our laboratory to photoexcite electrons in a given energy range in the conduction band and then measure the relaxation of these carriers...limitations on the electron energy may be required. CURRENT AND FUTURE EFFORTS The possibility of ballistic electron transport in gallium arsenide has been

  19. Single-chip microprocessor that communicates directly using light

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Wade, Mark T.; Lee, Yunsup; Orcutt, Jason S.; Alloatti, Luca; Georgas, Michael S.; Waterman, Andrew S.; Shainline, Jeffrey M.; Avizienis, Rimas R.; Lin, Sen; Moss, Benjamin R.; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H.; Cook, Henry M.; Ou, Albert J.; Leu, Jonathan C.; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J.; Popović, Miloš A.; Stojanović, Vladimir M.

    2015-12-01

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  20. Limiting factors in atomic resolution cryo electron microscopy: No simple tricks

    PubMed Central

    Zhang, Xing; Zhou, Z. Hong

    2013-01-01

    To bring cryo electron microscopy (cryoEM) of large biological complexes to atomic resolution, several factors – in both cryoEM image acquisition and 3D reconstruction – that may be neglected at low resolution become significantly limiting. Here we present thorough analyses of four limiting factors: (a) electron-beam tilt, (b) inaccurate determination of defocus values, (c) focus gradient through particles, and (d) particularly for large particles, dynamic (multiple) scattering of electrons. We also propose strategies to cope with these factors: (a) the divergence and direction tilt components of electron-beam tilt could be reduced by maintaining parallel illumination and by using a coma-free alignment procedure, respectively. Moreover, the effect of all beam tilt components, including spiral tilt, could be eliminated by use of a spherical aberration corrector. (b) More accurate measurement of defocus value could be obtained by imaging areas adjacent to the target area at high electron dose and by measuring the image shift induced by tilting the electron beam. (c) Each known Fourier coefficient in the Fourier transform of a cryoEM image is the sum of two Fourier coefficients of the 3D structure, one on each of two curved ‘characteristic surfaces’ in 3D Fourier space. We describe a simple model-based iterative method that could recover these two Fourier coefficients on the two characteristic surfaces. (d) The effect of dynamic scattering could be corrected by deconvolution of a transfer function. These analyses and our proposed strategies offer useful guidance for future experimental designs targeting atomic resolution cryoEM reconstruction. PMID:21627992

  1. Single-chip microprocessor that communicates directly using light.

    PubMed

    Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M

    2015-12-24

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  2. Anode Sheath Contributions in Plasma Thrusters

    DTIC Science & Technology

    1994-03-01

    and considerable throat erosion, is shown to be related to the electron temperature’s (T) rise above the gas temperature (To). An elementary one...surface damage and considerable throat erosion, is shown to be related to the electron temperature’s (T.) rise above the gas temperature (T.). An...Exhaust velocity is also limited hy material heating limitations of the combustion chamber and nozzle throat , and "frozen flow Losses" (unrecoverable energy

  3. Order of magnitude smaller limit on the electric dipole moment of the electron.

    PubMed

    Baron, J; Campbell, W C; DeMille, D; Doyle, J M; Gabrielse, G; Gurevich, Y V; Hess, P W; Hutzler, N R; Kirilov, E; Kozyryev, I; O'Leary, B R; Panda, C D; Parsons, M F; Petrik, E S; Spaun, B; Vutha, A C; West, A D

    2014-01-17

    The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d(e), in the range of 10(-27) to 10(-30) e·cm. The EDM is an asymmetric charge distribution along the electron spin (S(→)) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured d(e) = (-2.1 ± 3.7stat ± 2.5syst) × 10(-29) e·cm. This corresponds to an upper limit of |d(e)| < 8.7 × 10(-29) e·cm with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale.

  4. Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices

    NASA Astrophysics Data System (ADS)

    Coltrin, Michael E.; Kaplar, Robert J.

    2017-02-01

    Mobility and critical electric field for bulk AlxGa1-xN alloys across the full composition range (0 ≤ x ≤ 1) are analyzed to address the potential application of this material system for power electronics. Calculation of the temperature-dependent electron mobility includes the potential limitations due to different scattering mechanisms, including alloy, optical polar phonon, deformation potential, and piezoelectric scattering. The commonly used unipolar figure of merit (appropriate for vertical-device architectures), which increases strongly with increasing mobility and critical electric field, is examined across the alloy composition range to estimate the potential performance in power electronics applications. Alloy scattering is the dominant limitation to mobility and thus also for the unipolar figure of merit. However, at higher alloy compositions, the limitations due to alloy scattering are overcome by increased critical electric field. These trade-offs, and their temperature dependence, are quantified in the analysis.

  5. Free-bound electron exchange contribution to l-split atomic structure in dense plasmas

    NASA Astrophysics Data System (ADS)

    Bennadji, K.; Rosmej, F.; Lisitsa, V. S.

    2013-11-01

    An analytical expression for the exchange energy between the bound electron in hydrogen-like ions and the free electrons of plasma is proposed. Two limiting cases are identified: 1) the low temperature limit where the energy depends linearly on density and on the ion charge as 1/Z2 but does not depend on the temperature itself, 2) the high temperature limit where the energy depends on temperature as 1/T but does not depend on the ion charge. These two regimes are separated by a characteristic temperature (T∗ = 4Z2Ry) which is a universal parameter depending only on the charge Z of the ions. We presented numerical results for aluminum: the exchange energy contributes about 15% to the total plasma energy and can reach an order of 10-4 of the total transition energy. Comparison to the Local-density Approximation (Kohn-Sham) exchange energy shows a good agreement.

  6. First direct detection limits on sub-GeV dark matter from XENON10.

    PubMed

    Essig, Rouven; Manalaysay, Aaron; Mardon, Jeremy; Sorensen, Peter; Volansky, Tomer

    2012-07-13

    The first direct detection limits on dark matter in the MeV to GeV mass range are presented, using XENON10 data. Such light dark matter can scatter with electrons, causing ionization of atoms in a detector target material and leading to single- or few-electron events. We use 15  kg day of data acquired in 2006 to set limits on the dark-matter-electron scattering cross section. The strongest bound is obtained at 100 MeV where σ(e)<3×10(-38)  cm2 at 90% C.L., while dark-matter masses between 20 MeV and 1 GeV are bounded by σ(e)<10(-37)  cm2 at 90% C.L. This analysis provides a first proof of principle that direct detection experiments can be sensitive to dark-matter candidates with masses well below the GeV scale.

  7. Averaging scheme for atomic resolution off-axis electron holograms.

    PubMed

    Niermann, T; Lehmann, M

    2014-08-01

    All micrographs are limited by shot-noise, which is intrinsic to the detection process of electrons. For beam insensitive specimen this limitation can in principle easily be circumvented by prolonged exposure times. However, in the high-resolution regime several instrumental instabilities limit the applicable exposure time. Particularly in the case of off-axis holography the holograms are highly sensitive to the position and voltage of the electron-optical biprism. We present a novel reconstruction algorithm to average series of off-axis holograms while compensating for specimen drift, biprism drift, drift of biprism voltage, and drift of defocus, which all might cause problematic changes from exposure to exposure. We show an application of the algorithm utilizing also the possibilities of double biprism holography, which results in a high quality exit-wave reconstruction with 75 pm resolution at a very high signal-to-noise ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. An overview of suite for automated global electronic biosurveillance (SAGES)

    NASA Astrophysics Data System (ADS)

    Lewis, Sheri L.; Feighner, Brian H.; Loschen, Wayne A.; Wojcik, Richard A.; Skora, Joseph F.; Coberly, Jacqueline S.; Blazes, David L.

    2012-06-01

    Public health surveillance is undergoing a revolution driven by advances in the field of information technology. Many countries have experienced vast improvements in the collection, ingestion, analysis, visualization, and dissemination of public health data. Resource-limited countries have lagged behind due to challenges in information technology infrastructure, public health resources, and the costs of proprietary software. The Suite for Automated Global Electronic bioSurveillance (SAGES) is a collection of modular, flexible, freely-available software tools for electronic disease surveillance in resource-limited settings. One or more SAGES tools may be used in concert with existing surveillance applications or the SAGES tools may be used en masse for an end-to-end biosurveillance capability. This flexibility allows for the development of an inexpensive, customized, and sustainable disease surveillance system. The ability to rapidly assess anomalous disease activity may lead to more efficient use of limited resources and better compliance with World Health Organization International Health Regulations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.

    Here, a search for Pauli-exclusion-principle-violating K α electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 × 10 30 s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 × 10 30 s at 90% C.L. Itmore » is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of 76Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.« less

  10. Detectors for low energy electron cooling in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlier, F. S.

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions betweenmore » the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.« less

  11. A new technique for Auger analysis of surface species subject to electron-induced desorption

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1973-01-01

    A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the surface velocity, incident electron current, beam diameter, and desorption cross section are analyzed. The method is illustrated by the Auger analysis of PTFE, in which the fluorine is removed by electron induced desorption.

  12. Electron transport estimated from electron spectra using electron spectrometer in LFEX laser target experiments

    NASA Astrophysics Data System (ADS)

    Ozaki, T.; Hata, M.; Matsuo, K.; Kojima, S.; Arikawa, Y.; Fujioka, S.; Sakagami, H.; Sunahara, A.; Nagatomo, H.; Johzaki, T.; Yogo, A.; Morace, A.; Zhang, Z.; Shiraga, H.; Sakata, S.; Nagai, T.; Abe, Y.; Lee, S.; Nakai, M.; Nishimura, H.; Azechi, H.; FIREX Group; GXII-LFEX Group

    2016-05-01

    Hot electrons which are generated from targets irradiated by a high-intense laser are measured by two electron spectrometers (ESMs). However, total electron energy observed by the ESM is only less than 1%. Hot electrons are confined by self-fields due to the huge current. When an external magnetic field of several hundred Tesla is applied during the laser irradiation on targets, the ESM signals always increase. In the simulation, the same result can be obtained. The reason is that the Alfvén limit can be mitigated due to the external longitudinal magnetic field.

  13. Experimental Search for a Heavy Electron

    DOE R&D Accomplishments Database

    Boley, C. D.; Elias, J. E.; Friedman, J. I.; Hartmann, G. C.; Kendall, H. W.; Kirk, P.N.; Sogard, M. R.; Van Speybroeck, L. P.; de Pagter, J. K.

    1967-09-01

    A search for a heavy electron of the type considered by Low and Blackmon has been made by studying the inelastic scattering of 5 BeV electrons from hydrogen. The search was made over a range of values of the mass of the heavy electron from 100 t0 1300 MeV. No evidence for such a particle was observed. Upper limits on the production cross sections were determined and employed to deducelimits on the values of the electron-photon-heavy electron coupling constant in Low and Blackmon=s theory.

  14. Regulation mechanisms in mixed and pure culture microbial fermentation.

    PubMed

    Hoelzle, Robert D; Virdis, Bernardino; Batstone, Damien J

    2014-11-01

    Mixed-culture fermentation is a key central process to enable next generation biofuels and biocommodity production due to economic and process advantages over application of pure cultures. However, a key limitation to the application of mixed-culture fermentation is predicting culture product response, related to metabolic regulation mechanisms. This is also a limitation in pure culture bacterial fermentation. This review evaluates recent literature in both pure and mixed culture studies with a focus on understanding how regulation and signaling mechanisms interact with metabolic routes and activity. In particular, we focus on how microorganisms balance electron sinking while maximizing catabolic energy generation. Analysis of these mechanisms and their effect on metabolism dynamics is absent in current models of mixed-culture fermentation. This limits process prediction and control, which in turn limits industrial application of mixed-culture fermentation. A key mechanism appears to be the role of internal electron mediating cofactors, and related regulatory signaling. This may determine direction of electrons towards either hydrogen or reduced organics as end-products and may form the basis for future mechanistic models. © 2014 Wiley Periodicals, Inc.

  15. LETTER: Biased limiter experiments on the Advanced Toroidal Facility (ATF) torsatron

    NASA Astrophysics Data System (ADS)

    Uckan, T.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Aceto, S. C.; Zielinski, J. J.

    1994-02-01

    The Advanced Toroidal Facility (ATF) torsatron incorporates two rail limiters that can be positioned by external controls. The influence on the plasma parameters of biasing these limiters both positively and negatively with respect to the walls has been investigated. Experiments have been carried out in the electron cyclotron heated plasmas at 200 kW with a typical density of 5 × 1012 cm-3 and a central electron temperature of ~900 eV. Negative biasing produces only small changes in the plasma parameters, but positive biasing increases the particle confinement by about a factor of 5, although the plasma stored energy does fall at the higher voltages. In addition, positive biasing produces the following effects compared with floating limiter discharges: the core density profiles become peaked rather than hollow, the electric field at the edge becomes more negative (pointing radially inward), the magnitudes of the edge fluctuations and the fluctuation induced transport are reduced, the fluctuation wavelengths become longer and their propagation direction reverses from the electron to the ion diamagnetic direction. Neither polarity of biasing appears to affect the impurity content or transport

  16. Metabolic flexibility of a prospective bioremediator: Desulfitobacterium hafniense Y51 challenged in chemostats.

    PubMed

    Marozava, Sviatlana; Vargas-López, Raquel; Tian, Ye; Merl-Pham, Juliane; Braster, Martin; Meckenstock, Rainer U; Smidt, Hauke; Röling, Wilfred F M; Westerhoff, Hans V

    2018-06-19

    Desulfitobacterium hafniense Y51 has been widely used in investigations of perchloroethylene (PCE) biodegradation, but limited information exists on its other physiological capabilities. We investigated how D. hafniense Y51 confronts the debilitating limitations of not having enough electron donor (lactate), or electron acceptor (fumarate) during cultivation in chemostats. The residual concentrations of the substrates supplied in excess were much lower than expected. Transcriptomics, proteomics, and fluxomics were integrated to investigate how this phenomenon was regulated. Through diverse regulation at both transcriptional and translational levels, strain Y51 turned to fermenting the excess lactate and disproportionating the excess fumarate under fumarate- and lactate-limiting conditions, respectively. Genes and proteins related to the utilization of a variety of alternative electron donors and acceptors absent from the medium were induced, apparently involving the Wood-Ljungdahl pathway. Through this metabolic flexibility, D. hafniense Y51 may be able to switch between different metabolic capabilities under limiting conditions. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Extending the Belgian eID Technology with Mobile Security Functionality

    NASA Astrophysics Data System (ADS)

    Lapon, Jorn; Verdegem, Bram; Verhaeghe, Pieter; Naessens, Vincent; de Decker, Bart

    The Belgian Electronic Identity Card was introduced in 2002. The card enables Belgian citizens to prove their identity digitally and to sign electronic documents. Today, only a limited number of citizens really use the card in electronic applications. A major reason is the lack of killer functionality and killer applications.

  18. 77 FR 35691 - Update to Electronic Common Technical Document Module 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... Electronic Common Technical Document (eCTD) Module 1, which is used for electronic submission of... they are received with a limit of 350. SUPPLEMENTARY INFORMATION: The eCTD is an International... Research (CBER) have been receiving submissions in the eCTD format since 2003, and the eCTD has been the...

  19. Mesh electronics: a new paradigm for tissue-like brain probes.

    PubMed

    Hong, Guosong; Yang, Xiao; Zhou, Tao; Lieber, Charles M

    2018-06-01

    Existing implantable neurotechnologies for understanding the brain and treating neurological diseases have intrinsic properties that have limited their capability to achieve chronically-stable brain interfaces with single-neuron spatiotemporal resolution. These limitations reflect what has been dichotomy between the structure and mechanical properties of living brain tissue and non-living neural probes. To bridge the gap between neural and electronic networks, we have introduced the new concept of mesh electronics probes designed with structural and mechanical properties such that the implant begins to 'look and behave' like neural tissue. Syringe-implanted mesh electronics have led to the realization of probes that are neuro-attractive and free of the chronic immune response, as well as capable of stable long-term mapping and modulation of brain activity at the single-neuron level. This review provides a historical overview of a 10-year development of mesh electronics by highlighting the tissue-like design, syringe-assisted delivery, seamless neural tissue integration, and single-neuron level chronic recording stability of mesh electronics. We also offer insights on unique near-term opportunities and future directions for neuroscience and neurology that now are available or expected for mesh electronics neurotechnologies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Drew Lawson; Fennell, J. F.; Blake, J. B.

    Here, we present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA's Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7–9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the thresholdmore » are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from ~130 keV to >500 keV, with each dipolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.« less

  1. Electronic Nose Testing Procedure for the Definition of Minimum Performance Requirements for Environmental Odor Monitoring

    PubMed Central

    Eusebio, Lidia; Capelli, Laura; Sironi, Selena

    2016-01-01

    Despite initial enthusiasm towards electronic noses and their possible application in different fields, and quite a lot of promising results, several criticalities emerge from most published research studies, and, as a matter of fact, the diffusion of electronic noses in real-life applications is still very limited. In general, a first step towards large-scale-diffusion of an analysis method, is standardization. The aim of this paper is describing the experimental procedure adopted in order to evaluate electronic nose performances, with the final purpose of establishing minimum performance requirements, which is considered to be a first crucial step towards standardization of the specific case of electronic nose application for environmental odor monitoring at receptors. Based on the experimental results of the performance testing of a commercialized electronic nose type with respect to three criteria (i.e., response invariability to variable atmospheric conditions, instrumental detection limit, and odor classification accuracy), it was possible to hypothesize a logic that could be adopted for the definition of minimum performance requirements, according to the idea that these are technologically achievable. PMID:27657086

  2. Electronic Nose Testing Procedure for the Definition of Minimum Performance Requirements for Environmental Odor Monitoring.

    PubMed

    Eusebio, Lidia; Capelli, Laura; Sironi, Selena

    2016-09-21

    Despite initial enthusiasm towards electronic noses and their possible application in different fields, and quite a lot of promising results, several criticalities emerge from most published research studies, and, as a matter of fact, the diffusion of electronic noses in real-life applications is still very limited. In general, a first step towards large-scale-diffusion of an analysis method, is standardization. The aim of this paper is describing the experimental procedure adopted in order to evaluate electronic nose performances, with the final purpose of establishing minimum performance requirements, which is considered to be a first crucial step towards standardization of the specific case of electronic nose application for environmental odor monitoring at receptors. Based on the experimental results of the performance testing of a commercialized electronic nose type with respect to three criteria (i.e., response invariability to variable atmospheric conditions, instrumental detection limit, and odor classification accuracy), it was possible to hypothesize a logic that could be adopted for the definition of minimum performance requirements, according to the idea that these are technologically achievable.

  3. Improved Limits on Axionlike-Particle-Mediated P, T-Violating Interactions between Electrons and Nucleons from Electric Dipole Moments of Atoms and Molecules.

    PubMed

    Stadnik, Y V; Dzuba, V A; Flambaum, V V

    2018-01-05

    In the presence of P, T-violating interactions, the exchange of axionlike particles between electrons and nucleons in atoms and molecules induces electric dipole moments (EDMs) of atoms and molecules. We perform calculations of such axion-exchange-induced atomic EDMs using the relativistic Hartree-Fock-Dirac method including electron core polarization corrections. We present analytical estimates to explain the dependence of these induced atomic EDMs on the axion mass and atomic parameters. From the experimental bounds on the EDMs of atoms and molecules, including ^{133}Cs, ^{205}Tl, ^{129}Xe, ^{199}Hg, ^{171}Yb^{19}F, ^{180}Hf^{19}F^{+}, and ^{232}Th^{16}O, we constrain the P, T-violating scalar-pseudoscalar nucleon-electron and electron-electron interactions mediated by a generic axionlike particle of arbitrary mass. Our limits improve on existing laboratory bounds from other experiments by many orders of magnitude for m_{a}≳10^{-2}  eV. We also place constraints on CP violation in certain types of relaxion models.

  4. Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

    DOE PAGES

    Turner, Drew Lawson; Fennell, J. F.; Blake, J. B.; ...

    2016-08-01

    Here, we present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA's Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7–9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the thresholdmore » are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from ~130 keV to >500 keV, with each dipolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.« less

  5. Electronic health record meets digital library: a new environment for achieving an old goal.

    PubMed

    Humphreys, B L

    2000-01-01

    Linking the electronic health record to the digital library is a Web-era reformulation of the long-standing informatics goal of seamless integration of automated clinical data and relevant knowledge-based information to support informed decisions. The spread of the Internet, the development of the World Wide Web, and converging format standards for electronic health data and digital publications make effective linking increasingly feasible. Some existing systems link electronic health data and knowledge-based information in limited settings or limited ways. Yet many challenging informatics research problems remain to be solved before flexible and seamless linking becomes a reality and before systems become capable of delivering the specific piece of information needed at the time and place a decision must be made. Connecting the electronic health record to the digital library also requires positive resolution of important policy issues, including health data privacy, government encouragement of high-speed communications, electronic intellectual property rights, and standards for health data and for digital libraries. Both the research problems and the policy issues should be important priorities for the field of medical informatics.

  6. Electronic Health Record Meets Digital Library

    PubMed Central

    Humphreys, Betsy L.

    2000-01-01

    Linking the electronic health record to the digital library is a Web-era reformulation of the long-standing informatics goal of seamless integration of automated clinical data and relevant knowledge-based information to support informed decisions. The spread of the Internet, the development of the World Wide Web, and converging format standards for electronic health data and digital publications make effective linking increasingly feasible. Some existing systems link electronic health data and knowledge-based information in limited settings or limited ways. Yet many challenging informatics research problems remain to be solved before flexible and seamless linking becomes a reality and before systems become capable of delivering the specific piece of information needed at the time and place a decision must be made. Connecting the electronic health record to the digital library also requires positive resolution of important policy issues, including health data privacy, government envouragement of high-speed communications, electronic intellectual property rights, and standards for health data and for digital libraries. Both the research problems and the policy issues should be important priorities for the field of medical informatics. PMID:10984463

  7. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  8. Phase-space foundations of electron holography

    NASA Astrophysics Data System (ADS)

    Lubk, A.; Röder, F.

    2015-09-01

    We present a unified formalism for describing various forms of electron holography in quantum mechanical phase space including their extensions to quantum-state reconstructions. The phase-space perspective allows for taking into account partial coherence as well as the quantum mechanical detection process typically hampering the unique reconstruction of a wave function. We elaborate on the limitations imposed by the electron optical elements of the transmission electron microscope as well as the scattering at the target. The results provide the basis for vastly extending the scope of electron holographic techniques towards analyzing partially coherent signals such as inelastically scattered electrons or electron pulses used in ultrafast transmission electron microscopy.

  9. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J.-F.; Opper, A.; Poelker, M.; Réal, J.-S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.; PEPPo Collaboration

    2016-05-01

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19 MeV /c , limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  10. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    DOE PAGES

    Abbott, D.; Adderley, P.; Adeyemi, A.; ...

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  11. ERLN WebEDR Fact Sheet

    EPA Pesticide Factsheets

    The Web-based Electronic Data Review (WebEDR) application performs automated data evaluation on ERLN electronic data deliverables (EDDs). It uses test derived from the National Functional Guidelines combined with method-defined limits to measure data.

  12. 22 CFR 503.9 - Electronic records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... foreseeable harm to any interest protected by an FOIA exemption. (3) Electronic reading room. The room... for faster processing, you may limit the scope of your request so that we may respond more quickly. (2...

  13. 22 CFR 503.9 - Electronic records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... foreseeable harm to any interest protected by an FOIA exemption. (3) Electronic reading room. The room... for faster processing, you may limit the scope of your request so that we may respond more quickly. (2...

  14. Confinement time of electron plasma approaching magnetic pumping transport limit in small aspect ratio C-shaped torus

    NASA Astrophysics Data System (ADS)

    Lachhvani, Lavkesh; Pahari, Sambaran; Goswami, Rajiv; Bajpai, Manu; Yeole, Yogesh; Chattopadhyay, P. K.

    2016-06-01

    A long confinement time of electron plasma, approaching magnetic pumping transport limit, has been observed in SMARTEX-C (a small aspect ratio partial torus with R o / a ˜ 1.59 ). Investigations of the growth rate reveal that they are governed by instabilities like resistive wall destabilization, ion driven instabilities, and electron-neutral collisions. Successful confinement of electron plasmas exceeding > 1 × 10 5 poloidal E → × B → rotations lasting for nearly 2.1 ± 0.1 s is achieved by suppressing these instabilities. The confinement time has been estimated in two ways: (a) from the frequency scaling of the linear diocotron mode launched from sections of the wall that are also used as capacitive probes and (b) by dumping the plasma onto a charge collector at different hold times.

  15. Quantum state transfer in double-quantum-well devices

    NASA Technical Reports Server (NTRS)

    Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris

    1994-01-01

    A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.

  16. Boundary conditions on the plasma emitter surface in the presence of a particle counter flow: I. Ion emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astrelin, V. T., E-mail: V.T.Astrelin@inp.nsk.su; Kotelnikov, I. A.

    Emission of positively charged ions from a plasma emitter irradiated by a counterpropagating electron beam is studied theoretically. A bipolar diode with a plasma emitter in which the ion temperature is lower than the electron temperature and the counter electron flow is extracted from the ion collector is calculated in the one-dimensional model. An analog of Bohm’s criterion for ion emission in the presence of a counterpropagating electron beam is derived. The limiting density of the counterpropagating beam in a bipolar diode operating in the space-charge-limited-emission regime is calculated. The full set of boundary conditions on the plasma emitter surfacemore » that are required for operation of the high-current optics module in numerical codes used to simulate charged particle sources is formulated.« less

  17. Short wavelength limits of current shot noise suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il; Dyunin, Egor; Gover, Avraham

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasmamore » wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.« less

  18. A search of UARS data for ozone depletions caused by the highly relativistic electron precipitation events of May 1992

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean; Goldberg, Richard A.; Jackman, Charles H.; Chenette, D. L.; Gaines, E. E.

    1999-01-01

    Highly relativistic electron precipitation (HRE) events containing significant fluxes of electrons with E>1MeV have been predicted by models to deplete mesospheric ozone. For the electron fluxes measured during the great HRE of May 1992, depletions were predicted to occur between altitudes of 55 and 80 km, where HOx reactions cause a local minimum in the ozone number density and mixing ratio. Measurements of the precipitating electron fluxes by the particle environment monitor (PEM) tend to underestimate their intensity; thus the predictions of ozone depletion should be considered an estimate of a lower limit. Since the horizontal distribution of the electron precipitation follows the terrestrial magnetic field, it would show a distinct boundary equatorward of the L=3 magnetic shell and be readily distinguished from material that was not affected by the HRE precipitation. To search for possible ozone depletion effects, we have analyzed data from the cryogenic limb array etalon spectrometer and microwave limb sounder instruments on UARS for the above HRE. A simplified diurnal model is proposed to understand the ozone data from UARS, also illustrating the limitations of the UARS instruments for seeing the ozone depletions caused by the HRE events. This diurnal analysis limits the relative ozone depletion at around 60 km altitude to values of <10% during the very intense May 1992 event, consistent with our prediction using an improved Goddard Space Flight Center two-dimensional model.

  19. Structure of the reconnection layer and the associated slow shocks: Two-dimensional simulations of a Riemann problem

    NASA Astrophysics Data System (ADS)

    Cremer, Michael; Scholer, Manfred

    2000-12-01

    The kinetic structure of the reconnection layer in the magnetotail is investigated by two-dimensional hybrid simulations. As a proxy, the solution of the Riemann problem of the collapse of a current sheet with a normal magnetic field component is considered for two cases of the plasma beta (particle to magnetic field pressure): β=0.02 and β=0.002. The collapse results in an expanding layer of compressed and heated plasma, which is accelerated up to the Alfvén speed vA. The boundary layer separating this hot reconnection like layer from the cold lobe plasma is characterized by a beam of back-streaming ions with a field-aligned bulk speed of ~=2vA relative to the cold lobe ion population at rest. As a consequence, obliquely propagating waves are excited via the electromagnetic ion/ion cyclotron instability, which led to perpendicular heating of the ions in the boundary layer as well as further outside the layer in the lobe. In both regions, waves are found which propagate almost parallel to the magnetic field and which are identified as Alfvén ion cyclotron (AIC) waves. These waves are excited by the temperature anisotropy instability. The temperature anisotropy increases with decreasing plasma beta. Thus the anisotropy threshold of the instability is exceeded even in the case of a rather small beta value. The AIC waves, when convected downstream of what can be defined as the the slow shock, make an important contribution to the ion thermalization process. More detailed information on the dissipation process in the slow shocks is gained by analyzing individual ion trajectories.

  20. ULF waves in the foreshock

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Le, G.; Strangeway, R. J.

    1995-01-01

    We review our current knowledge of ULF waves in planetary foreshocks. Most of this knowledge comes from observations taken within a few Earth radii of the terrestrial bow shock. Terrestrial foreshock ULF waves can be divided into three types, large amplitude low frequency waves (approximately 30-s period), upstream propagating whistlers (1-Hz waves), and 3-s waves. The 30-s waves are apparently generated by back-streaming ion beams, while the 1-Hz waves are generated at the bow shock. The source of the 3-s waves has yet to be determined. In addition to issues concerning the source of ULF waves in the foreshock, the waves present a number of challenges, both in terms of data acquisition, and comparison with theory. The various waves have different coherence scales, from approximately 100 km to approximately 1 Earth radius. Thus multi-spacecraft separation strategies must be tailored to the phenomenon of interest. From a theoretical point of view, the ULF waves are observed in a plasma in which the thermal pressure is comparable to the magnetic pressure, and the rest-frame wave frequency can be moderate fraction of the proton gyro-frequency. This requires the use of kinetic plasma wave dispersion relations, rather than multi-fluid MHD. Lastly, and perhaps most significantly, ULF waves are used to probe the ambient plasma, with inferences being drawn concerning the types of energetic ion distributions within the foreshock. However, since most of the data were acquired close to the bow shock, the properties of the more distant foreshock have to be deduced mainly through extrapolation of the near-shock results. A general understanding of the wave and plasma populations within the foreshock, their interrelation, and evolution, requires additional data from the more distant foreshock.

  1. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    DTIC Science & Technology

    2016-06-03

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9681 Calculation of Vibrational and Electronic Excited-State Absorption Spectra...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using...Unclassified Unlimited Unclassified Unlimited 59 Samuel G. Lambrakos (202) 767-2601 Calculations are presented of vibrational and electronic excited-state

  2. The influence of dielectric relaxation on intramolecular electron transfer

    NASA Astrophysics Data System (ADS)

    Heitele, H.; Michel-Beyerle, M. E.; Finckh, P.

    1987-07-01

    An unusually strong temperature dependence on the intramolecular electron-transfer rate has been observed for bridged donor-acceptor compounds in propylene glycol solution. In the frame of recent electron-transfer theories this effect reflects the influence of dielectric relaxation dynamics on electron transfer. With increasing dielectric relaxation time a smooth transition from non-adiabatic to solvent-controlled adiabatic behaviour is observed. The electron transfer rate in the solvent-controlled adiabatic limit is dominated by an inhomogeneous distribution of relaxation times.

  3. Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1982-01-01

    Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.

  4. Imaging single atoms using secondary electrons with an aberration-corrected electron microscope.

    PubMed

    Zhu, Y; Inada, H; Nakamura, K; Wall, J

    2009-10-01

    Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes. However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale, have been stagnant, despite several recent efforts. Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy.

  5. Intrinsic phonon-limited charge carrier mobilities in thermoelectric SnSe

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Chen, Yani; Li, Wu

    2018-05-01

    Within the past few years, tin selenide (SnSe) has attracted intense interest due to its remarkable thermoelectric potential for both n - and p -type crystals. In this work, the intrinsic phonon-limited electron/hole mobilities of SnSe are investigated using a Boltzmann transport equation based on first-principles calculated electron-phonon interactions. We find that the electrons have much larger mobilities than the holes. At room temperature, the mobilities of electrons along the a , b , and c axes are 325, 801, and 623 cm2/V s, respectively, whereas those of holes are 100, 299, and 291 cm2/V s, respectively. The anisotropy of mobilities is consistent with the reciprocal effective mass at band edges. The mode-specific analysis shows that the highest longitudinal optical phonons, rather than previously assumed acoustic phonons, dominate the scattering processes and consequently the mobilities in SnSe. The room-temperature largest mean free paths of electrons and holes in SnSe are about 21 and 13 nm, respectively.

  6. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    PubMed

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  7. Spatially inhomogeneous electron state deep in the extreme quantum limit of strontium titanate

    DOE PAGES

    Bhattacharya, Anand; Skinner, Brian; Khalsa, Guru; ...

    2016-09-29

    When an electronic system is subjected to a sufficiently strong magnetic field that the cyclotron energy is much larger than the Fermi energy, the system enters the extreme quantum limit (EQL) and becomes susceptible to a number of instabilities. Bringing a three-dimensional electronic system deeply into the EQL can be difficult however, since it requires a small Fermi energy, large magnetic field, and low disorder. Here we present an experimental study of the EQL in lightly-doped single crystals of strontium titanate. Our experiments probe deeply into the regime where theory has long predicted an interaction-driven charge density wave or Wignermore » crystal state. A number of interesting features arise in the transport in this regime, including a striking re-entrant nonlinearity in the current-voltage characteristics. As a result, we discuss these features in the context of possible correlated electron states, and present an alternative picture based on magnetic-field induced puddling of electrons.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chong Shik; Shiltsev, Vladimir; Stancari, Giulio

    The ability to transport a high current proton beam in a ring is ultimately limited by space charge effects. Two novel ways to overcome this limit in a proton ring are by adding low energy, externally matched electron beams (electron lens, e-lens), and by taking advantage of residual gas ionization induced neutralization to create an electron column (e-column). Theory predicts that an appropriately confined electrons can completely compensate the space charge through neutralization, both transversely and longitudinally. In this report, we will discuss the current status of the Fermilab’s e-lens experiment for the space charge compensation. In addition, we willmore » show how the IOTA e-column compensates space charge with theWARP simulations. The dynamics of proton beams inside of the e-column is understood by changing the magnetic field of a solenoid, the voltage on the electrodes, and the vacuum pressure, and by looking for electron accumulation, as well as by considering various beam dynamics in the IOTA ring.« less

  9. Limit of the electrostatic doping in two-dimensional electron gases of LaXO3(X = Al, Ti)/SrTiO3

    PubMed Central

    Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Reyren, N.; Lesne, E.; Lesueur, J.; Bergeal, N.

    2014-01-01

    In LaTiO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures, the bending of the SrTiO3 conduction band at the interface forms a quantum well that contains a superconducting two-dimensional electron gas (2-DEG). Its carrier density and electronic properties, such as superconductivity and Rashba spin-orbit coupling can be controlled by electrostatic gating. In this article we show that the Fermi energy lies intrinsically near the top of the quantum well. Beyond a filling threshold, electrons added by electrostatic gating escape from the well, hence limiting the possibility to reach a highly-doped regime. This leads to an irreversible doping regime where all the electronic properties of the 2-DEG, such as its resistivity and its superconducting transition temperature, saturate. The escape mechanism can be described by the simple analytical model we propose. PMID:25346028

  10. Simple extrapolation method to predict the electronic structure of conjugated polymers from calculations on oligomers

    DOE PAGES

    Larsen, Ross E.

    2016-04-12

    In this study, we introduce two simple tight-binding models, which we call fragment frontier orbital extrapolations (FFOE), to extrapolate important electronic properties to the polymer limit using electronic structure calculations on only a few small oligomers. In particular, we demonstrate by comparison to explicit density functional theory calculations that for long oligomers the energies of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and of the first electronic excited state are accurately described as a function of number of repeat units by a simple effective Hamiltonian parameterized from electronic structure calculations on monomers, dimers and, optionally,more » tetramers. For the alternating copolymer materials that currently comprise some of the most efficient polymer organic photovoltaic devices one can use these simple but rigorous models to extrapolate computed properties to the polymer limit based on calculations on a small number of low-molecular-weight oligomers.« less

  11. Highly multireferenced arynes studied with large active spaces using two-electron reduced density matrices.

    PubMed

    Greenman, Loren; Mazziotti, David A

    2009-05-14

    Using the active-space two-electron reduced density matrix (2-RDM) method, which scales polynomially with the size of the active space [G. Gidofalvi and D. A. Mazziotti, J. Chem. Phys. 129, 134108 (2008)], we were able to use active spaces as large as 24 electrons in 24 orbitals in computing the ground-state energies and properties of highly multireferenced arynes. Because the conventional complete-active-space self-consistent-field (CASSCF) method scales exponentially with the size of the active space, its application to arynes was mainly limited to active spaces of 12 electrons in 12 orbitals. For these smaller active spaces the active-space 2-RDM method accurately reproduces the results of CASSCF. However, we show that the larger active spaces are necessary for describing changes in energies and properties with aryne chain length such as the emergence of polyradical character. Furthermore, the addition of further electron correlation by multireference perturbation theory is demonstrated to be inadequate for removing the limitations of the smaller active spaces.

  12. Pre-main Sequence Evolution and the Hydrogen-Burning Minimum Mass

    NASA Astrophysics Data System (ADS)

    Nakano, Takenori

    There is a lower limit to the mass of the main-sequence stars (the hydrogen-burning minimum mass) below which the stars cannot replenish the energy lost from their surfaces with the energy released by the hydrogen burning in their cores. This is caused by the electron degeneracy in the stars which suppresses the increase of the central temperature with contraction. To find out the lower limit we need the accurate knowledge of the pre-main sequence evolution of very low-mass stars in which the effect of electron degeneracy is important. We review how Hayashi and Nakano (1963) carried out the first determination of this limit.

  13. Effect of friction on electron transfer: The two reaction coordinate case

    NASA Astrophysics Data System (ADS)

    Onuchic, José Nelson

    1987-04-01

    Electron transfer is a very important reaction in many biological processes such as photosynthesis and oxidative phosphorylation. In many of these reactions, most of the interesting dynamics can be included by using two reaction coordinates: one fast (local high frequency vibration modes) and one slow (outersphere modes such as solvent polarization). We report a model to describe this problem, which uses path integral techniques to calculate electron transfer rates, and also to obtain the Fokker-Planck equations associated with this model. Different limiting cases lead to qualitatively different results such as exponential or nonexponential time decay for the donor survival probability. Conditions for the validity of the adiabatic or the nonadiabatic limits will be discussed. Application of this model to real systems is proposed, in particular for a porphyrin rigidly linked to a quinone, which is a very interesting model compound for primary events of photosynthesis. This model can also be used for other multicoordinate biological reactions such as ligand binding to heme proteins. Also, in the concluding part of Sec. III, we discuss the important limit where the fast vibronic mode is much faster than all the other nuclear modes coupled to the problem. In this limit the fast mode ``renormalizes'' the electronic matrix element, and this considerably simplifies the treatment of the problem, reducing it to coupling only to the slow modes.

  14. Simple model dielectric functions for insulators

    NASA Astrophysics Data System (ADS)

    Vos, Maarten; Grande, Pedro L.

    2017-05-01

    The Drude dielectric function is a simple way of describing the dielectric function of free electron materials, which have an uniform electron density, in a classical way. The Mermin dielectric function describes a free electron gas, but is based on quantum physics. More complex metals have varying electron densities and are often described by a sum of Drude dielectric functions, the weight of each function being taken proportional to the volume with the corresponding density. Here we describe a slight variation on the Drude dielectric functions that describes insulators in a semi-classical way and a form of the Levine-Louie dielectric function including a relaxation time that does the same within the framework of quantum physics. In the optical limit the semi-classical description of an insulator and the quantum physics description coincide, in the same way as the Drude and Mermin dielectric function coincide in the optical limit for metals. There is a simple relation between the coefficients used in the classical and quantum approaches, a relation that ensures that the obtained dielectric function corresponds to the right static refractive index. For water we give a comparison of the model dielectric function at non-zero momentum with inelastic X-ray measurements, both at relative small momenta and in the Compton limit. The Levine-Louie dielectric function including a relaxation time describes the spectra at small momentum quite well, but in the Compton limit there are significant deviations.

  15. Modern developments for ground-based monitoring of fire behavior and effects

    Treesearch

    Colin C. Hardy; Robert Kremens; Matthew B. Dickinson

    2010-01-01

    Advances in electronic technology over the last several decades have been staggering. The cost of electronics continues to decrease while system performance increases seemingly without limit. We have applied modern techniques in sensors, electronics and instrumentation to create a suite of ground based diagnostics that can be used in laboratory (~ 1 m2), field scale...

  16. Monte Carlo calculation of large and small-angle electron scattering in air

    NASA Astrophysics Data System (ADS)

    Cohen, B. I.; Higginson, D. P.; Eng, C. D.; Farmer, W. A.; Friedman, A.; Grote, D. P.; Larson, D. J.

    2017-11-01

    A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. The algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.

  17. Victims of Bullying and Tobacco Use Behaviors in Adolescents: Differences between Bullied at School, Electronically, or Both

    ERIC Educational Resources Information Center

    Case, Kathleen R.; Cooper, Maria; Creamer, MeLisa; Mantey, Dale; Kelder, Steven; Grossman, Beth Toby

    2016-01-01

    Background: Being a victim of bullying is associated with greater risk of youth substance use; however, research specifically examining whether tobacco use behaviors differ among adolescents who were bullied at school only, electronically only, or both at school and electronically is limited. Methods: We examined the associations between being a…

  18. Learning English through Automotive Electronics (Project LETAE), Final Evaluation Report, 1992-93. OREA Report.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Research, Evaluation, and Assessment.

    Learning Through Automotive Electronics (Project LETAE) was a federally funded program serving 77 limited-English-proficient (LEP) students and 5 English-proficient students in an automotive computer electronics course in 1992-93, its third year of operation. The program provided instruction in English-as-a-Second-Language (ESL), native language…

  19. Incipient 2D Mott insulators in extreme high electron density, ultra-thin GdTiO3/SrTiO3/GdTiO3 quantum wells

    NASA Astrophysics Data System (ADS)

    Allen, S. James; Ouellette, Daniel G.; Moetakef, Pouya; Cain, Tyler; Chen, Ru; Balents, Leon; Stemmer, Susanne

    2013-03-01

    By reducing the number of SrO planes in a GdTiO3 /SrTiO3/ GdTiO3 quantum well heterostructure, an electron gas with ~ fixed 2D electron density can be driven close to the Mott metal insulator transition - a quantum critical point at ~1 electron per unit cell. A single interface between the Mott insulator GdTiO3 and band insulator SrTiO3 has been shown to introduce ~ 1/2 electron per interface unit cell. Two interfaces produce a quantum well with ~ 7 1014 cm-2 electrons: at the limit of a single SrO layer it may produce a 2D magnetic Mott insulator. We use temperature and frequency dependent (DC - 3eV) conductivity and temperature dependent magneto-transport to understand the relative importance of electron-electron interactions, electron-phonon interactions, and surface roughness scattering as the electron gas is compressed toward the quantum critical point. Terahertz time-domain and FTIR spectroscopies, measure the frequency dependent carrier mass and scattering rate, and the mid-IR polaron absorption as a function of quantum well thickness. At the extreme limit of a single SrO plane, we observe insulating behavior with an optical gap substantially less than that of the surrounding GdTiO3, suggesting a novel 2D Mott insulator. MURI program of the Army Research Office - Grant No. W911-NF-09-1-0398

  20. Neutrino Experiments at Reactors

    DOE R&D Accomplishments Database

    Reines, F.; Gurr, H. S.; Jenkins, T. L.; Munsee, J. H.

    1968-09-09

    A description is given of the electron-antineutrino program using a large fission reactor. A search has been made for a neutral weak interaction via the reaction (electron antineutrino + d .> p + n + electron antineutrino), the reaction (electron antineutrino + d .> n + n + e{sup +}) has now been detected, and an effort is underway to observe the elastic scattering reaction (electron antineutrino + e{sup -} .> electron antineutrino + e{sup -}) as well as to measure more precisely the reaction (electron antineutrino + p .> n + e{sup+}). The upper limit on the elastic scattering reaction which we have obtained with our large composite NaI, plastic, liquid scintillation detector is now about 50 times the predicted value.

  1. Multi-scale full-orbit analysis on phase-space behavior of runaway electrons in tokamak fields with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yulei; Liu, Jian, E-mail: jliuphy@ustc.edu.cn; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026

    In this paper, the secular full-orbit simulations of runaway electrons with synchrotron radiation in tokamak fields are carried out using a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different dynamical timescales spanning 11 orders. In the small timescale, i.e., the characteristic timescale imposed by Lorentz force, the severely deformed helical trajectory of energetic runaway electron is witnessed. A qualitative analysis of the neoclassical scattering, a kind of collisionless pitch-angle scattering phenomena, is provided when considering the coupling between the rotation of momentum vector and the background magnetic field. In large timescale up to 1 s,more » it is found that the initial condition of runaway electrons in phase space globally influences the pitch-angle scattering, the momentum evolution, and the loss-gain ratio of runaway energy evidently. However, the initial value has little impact on the synchrotron energy limit. It is also discovered that the parameters of tokamak device, such as the toroidal magnetic field, the loop voltage, the safety factor profile, and the major radius, can modify the synchrotron energy limit and the strength of neoclassical scattering. The maximum runaway energy is also proved to be lower than the synchrotron limit when the magnetic field ripple is considered.« less

  2. Perceived Barriers to Information Access Among Medical Residents in Iran: Obstacles to Answering Clinical Queries in Settings with Limited Internet Accessibility

    PubMed Central

    Mazloomdoost, Danesh; Mehregan, Shervineh; Mahmoudi, Hilda; Soltani, Akbar; Embi, Peter J.

    2007-01-01

    Studies performed in the US and other Western countries have documented that physicians generate many clinical questions during a typical day and rely on various information sources for answers. Little is known about the information seeking behaviors of physicians practicing in other countries, particularly those with limited Internet connectivity. We conducted this study to document the perceived barriers to information resources used by medical residents in Iran. Our findings reveal that different perceived barriers exist for electronic versus paper-based resources. Notably, paper-based resources are perceived to be limited by resident time-constraints and availability of resources, whereas electronic resources are limited by cost decentralized resources (such as PDAs) and accessibility of centralized, Internet access. These findings add to the limited literature regarding health information-seeking activities in international healthcare settings, particularly those with limited Internet connectivity, and will supplement future studies of and interventions in such settings. PMID:18693891

  3. Perceived barriers to information access among medical residents in Iran: obstacles to answering clinical queries in settings with limited Internet accessibility.

    PubMed

    Mazloomdoost, Danesh; Mehregan, Shervineh; Mahmoudi, Hilda; Soltani, Akbar; Embi, Peter J

    2007-10-11

    Studies performed in the US and other Western countries have documented that physicians generate many clinical questions during a typical day and rely on various information sources for answers. Little is known about the information seeking behaviors of physicians practicing in other countries, particularly those with limited Internet connectivity. We conducted this study to document the perceived barriers to information resources used by medical residents in Iran. Our findings reveal that different perceived barriers exist for electronic versus paper-based resources. Notably, paper-based resources are perceived to be limited by resident time-constraints and availability of resources, whereas electronic resources are limited by cost decentralized resources (such as PDAs) and accessibility of centralized, Internet access. These findings add to the limited literature regarding health information-seeking activities in international healthcare settings, particularly those with limited Internet connectivity, and will supplement future studies of and interventions in such settings.

  4. Quantum theory for 1D X-ray free electron laser

    DOE PAGES

    Anisimov, Petr Mikhaylovich

    2017-09-19

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classicalmore » theory, which allows for immediate transfer of knowledge between the two regimes. In conclusion, we exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.« less

  5. Formation of orbital-selective electron states in LaTiO3/SrTiO3 superlattices

    NASA Astrophysics Data System (ADS)

    Lechermann, Frank; Boehnke, Lewin; Grieger, Daniel

    2013-06-01

    The interface electronic structure of correlated LaTiO3/SrTiO3 superlattices is investigated by means of the charge self-consistent combination of the local density approximation (LDA) to density functional theory with dynamical mean-field theory. Utilizing a pseudopotential technique together with a continuous-time quantum Monte Carlo approach, the resulting complex multiorbital electronic states are addressed in a coherent fashion beyond static mean field. General structural relaxations are taken into account on the LDA level and cooperate with the driving forces from strong electronic correlations. This alliance leads to a Ti(3dxy) dominated low-energy quasiparticle peak and a lower Hubbard band in line with photoemission studies. Furthermore correlation effects close to the band-insulating bulk SrTiO3 limit as well as the Mott-insulating bulk LaTiO3 limit are studied via realistic single-layer embeddings.

  6. Validation of non-local electron heat conduction model for radiation MHD simulation in magnetized laser plasma

    NASA Astrophysics Data System (ADS)

    Nagatomo, Hideo; Matsuo, Kazuki; Nicolai, Pilippe; Asahina, Takashi; Fujioka, Shinsuke

    2017-10-01

    In laser plasma physics, application of an external magnetic field is an attractive method for various research of high energy density physics including fast ignition. Meanwhile, in the high intense laser plasma the behavior of hot electron cannot be ignored. In the radiation hydrodynamic simulation, a classical electron conduction model, Spitzer-Harm model has been used in general. However the model has its limit, and modification of the model is necessary if it is used beyond the application limit. Modified SNB model, which considering the influence of magnetic field is applied to 2-D radiation magnetohydrodynamic code PINOCO. Some experiments related the non-local model are carried out at GXII, Osaka University. In this presentation, these experimental results are shown briefly. And comparison between simulation results considering the non-local electron heat conduction mode are discussed. This study was supported JSPS KAKENHI Grant No. 17K05728.

  7. Quantum theory for 1D X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Anisimov, Petr M.

    2018-06-01

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classical theory, which allows for immediate transfer of knowledge between the two regimes. We exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.

  8. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy

    PubMed Central

    Qin, Nan; Zhang, Shaoqing; Jiang, Jianjuan; Corder, Stephanie Gilbert; Qian, Zhigang; Zhou, Zhitao; Lee, Woonsoo; Liu, Keyin; Wang, Xiaohan; Li, Xinxin; Shi, Zhifeng; Mao, Ying; Bechtel, Hans A.; Martin, Michael C.; Xia, Xiaoxia; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.; Liu, Mengkun; Tao, Tiger H.

    2016-01-01

    Silk protein fibres produced by silkworms and spiders are renowned for their unparalleled mechanical strength and extensibility arising from their high-β-sheet crystal contents as natural materials. Investigation of β-sheet-oriented conformational transitions in silk proteins at the nanoscale remains a challenge using conventional imaging techniques given their limitations in chemical sensitivity or limited spatial resolution. Here, we report on electron-regulated nanoscale polymorphic transitions in silk proteins revealed by near-field infrared imaging and nano-spectroscopy at resolutions approaching the molecular level. The ability to locally probe nanoscale protein structural transitions combined with nanometre-precision electron-beam lithography offers us the capability to finely control the structure of silk proteins in two and three dimensions. Our work paves the way for unlocking essential nanoscopic protein structures and critical conditions for electron-induced conformational transitions, offering new rules to design protein-based nanoarchitectures. PMID:27713412

  9. Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit.

    PubMed

    Yuan, Hongtao; Liu, Zhongkai; Xu, Gang; Zhou, Bo; Wu, Sanfeng; Dumcenco, Dumitru; Yan, Kai; Zhang, Yi; Mo, Sung-Kwan; Dudin, Pavel; Kandyba, Victor; Yablonskikh, Mikhail; Barinov, Alexei; Shen, Zhixun; Zhang, Shoucheng; Huang, Yingsheng; Xu, Xiaodong; Hussain, Zahid; Hwang, Harold Y; Cui, Yi; Chen, Yulin

    2016-08-10

    Layered transition metal chalcogenides with large spin orbit coupling have recently sparked much interest due to their potential applications for electronic, optoelectronic, spintronics, and valleytronics. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS2 remains controversial. Here, using angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS2, WS2, and WSe2, as well as the thickness dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.

  10. Charge Transfer-Mediated Singlet Fission

    NASA Astrophysics Data System (ADS)

    Monahan, N.; Zhu, X.-Y.

    2015-04-01

    Singlet fission, the splitting of a singlet exciton into two triplet excitons in molecular materials, is interesting not only as a model many-electron problem, but also as a process with potential applications in solar energy conversion. Here we discuss limitations of the conventional four-electron and molecular dimer model in describing singlet fission in crystalline organic semiconductors, such as pentacene and tetracene. We emphasize the need to consider electronic delocalization, which is responsible for the decisive role played by the Mott-Wannier exciton, also called the charge transfer (CT) exciton, in mediating singlet fission. At the strong electronic coupling limit, the initial excitation creates a quantum superposition of singlet, CT, and triplet-pair states, and we present experimental evidence for this interpretation. We also discuss the most recent attempts at translating this mechanistic understanding into design principles for CT state-mediated intramolecular singlet fission in oligomers and polymers.

  11. Field-Induced and Thermal Electron Currents from Earthed Spherical Emitters

    NASA Astrophysics Data System (ADS)

    Holgate, J. T.; Coppins, M.

    2017-04-01

    The theories of electron emission from planar surfaces are well understood, but they are not suitable for describing emission from spherical surfaces; their incorrect application to highly curved, nanometer-scale surfaces can overestimate the emitted current by several orders of magnitude. This inaccuracy is of particular concern for describing modern nanoscale electron sources, which continue to be modeled using the planar equations. In this paper, the field-induced and thermal currents are treated in a unified way to produce Fowler-Nordheim-type and Richardson-Schottky-type equations for the emitted current density from earthed nanoscale spherical surfaces. The limits of applicability of these derived expressions are considered along with the energy spectra of the emitted electrons. Within the relevant limits of validity, these equations are shown to reproduce the results of precise numerical calculations of the emitted current densities. The methods used here are adaptable to other one-dimensional emission problems.

  12. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... concentration shall be determined by phase contrast microscopy (PCM) using the OSHA Reference Method in OSHA's.../cc excursion limit, samples shall be further analyzed using transmission electron microscopy...

  13. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concentration shall be determined by phase contrast microscopy (PCM) using the OSHA Reference Method in OSHA's.../cc excursion limit, samples shall be further analyzed using transmission electron microscopy...

  14. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concentration shall be determined by phase contrast microscopy (PCM) using the OSHA Reference Method in OSHA's.../cc excursion limit, samples shall be further analyzed using transmission electron microscopy...

  15. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concentration shall be determined by phase contrast microscopy (PCM) using the OSHA Reference Method in OSHA's.../cc excursion limit, samples shall be further analyzed using transmission electron microscopy...

  16. Through the Eye of the Needle: The Separator and its Environs

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Mozer, F. S.; Maynard, N. C.; Russell, C. T.

    2001-05-01

    The observed properties of the electromagnetic field and the plasma at and around a magnetic separator observed on May 29, 1996 with the ISTP GGS Polar satellite will be discussed. The electron pressure ridge will be illustrated astride the current layer, and the ion flow will be shown to impinge on the separator with MA ~= 0.1 and leave along the pressure ridge with MA ~= 1.1 33 traversals of rotational shear layers have been documented in this interval using the electron form of the Walen test. The electron fluid velocity is shown to have strong parallel Mach number enhancements along the separatrices, with peak parallel Alfven mach numbers of 4.5 that are probably limited by plasma time resolution (4.3s). These are similar in location to those in two fluid, hybrid, and particle - particle simulations of collisionless reconnection. The direct detection of the parallel electric field in the vicinity of the separator is shown in all cases to be limited by the so called Vasyliunas limit, $ E∥ <= O(1)√ {{{kTe}/{2m_ic2}}}| B|, that corresponds to the scale length of the pressure gradient being limited by the scale \\rho_s = \\beta_e^{1\\over2}{c\\over {\\omegapi}} seen to be important in the multi-species analysis of collisionless reconnection. In turn, the electron gas is shown at times not to drift at the E \\times B drift speed, but have substantial drifts perpendicular to B of a sense implied by the pressure divergences that cause the parallel electric field. Two techniques have been introduced to demonstrate the spectacular enhancement of the departures from cylindrical symmetry exhibited by the electrons as the separator null field region is traversed. Using totally separate arguments, the thermal electrons are shown to be clearly unmagnetized within the {c\\over{\\omegape}}$ scales about the separator, with the thermal gyroradius 10-30 times the scale length of B in this vicinity. At the moment level this demagnetization shows up as the loss of gyrotropy, or increase of ``agyrotropy''. In these regimes the thermal electrons can move onto different field lines and affect a loss of identity of field lines. Said differently, this agyrotropy requires the retention of the full tensorial electron pressure tensor to convey its effects in the multi-fluid treatments. Superposed epoch pictures of the spatial environment of the separator will be illustrated in different diagnostic "wavelengths" such as magnetic intensity, electron pressure, beta and gyroradius of electrons relative to scale lengths of B. In this way we provide the first in situ empirical definition of a site of collisionless magnetic reconnection and verify the demagnetization of electrons outlined by Vasyliunas 25 years ago as the likely mechanism for violation of the frozen flux theorem.

  17. Extreme temperature packaging: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Johnson, R. Wayne

    2016-05-01

    Consumer electronics account for the majority of electronics manufactured today. Given the temperature limits of humans, consumer electronics are typically rated for operation from -40°C to +85°C. Military applications extend the range to -65°C to +125°C while underhood automotive electronics may see +150°C. With the proliferation of the Internet of Things (IoT), the goal of instrumenting (sensing, computation, transmission) to improve safety and performance in high temperature environments such as geothermal wells, nuclear reactors, combustion chambers, industrial processes, etc. requires sensors, electronics and packaging compatible with these environments. Advances in wide bandgap semiconductors (SiC and GaN) allow the fabrication of high temperature compatible sensors and electronics. Integration and packaging of these devices is required for implementation into actual applications. The basic elements of packaging are die attach, electrical interconnection and the package or housing. Consumer electronics typically use conductive adhesives or low melting point solders for die attach, wire bonds or low melting solder for electrical interconnection and epoxy for the package. These materials melt or decompose in high temperature environments. This paper examines materials and processes for high temperature packaging including liquid transient phase and sintered nanoparticle die attach, high melting point wires for wire bonding and metal and ceramic packages. The limitations of currently available solutions will also be discussed.

  18. 49 CFR 239.303 - Electronic recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electronic recordkeeping. 239.303 Section 239.303 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... limits and controls accessibility to such information retained in its database system and identifies...

  19. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    DTIC Science & Technology

    2016-08-19

    New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser ...Science, University ofMichigan, AnnArbor,MI 48109-2099, USA E-mail: czulick@umich.edu Keywords: laser -plasma,mass-limited, fast electrons, sheath...field Abstract Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron

  20. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine.

    PubMed

    Lu, Qiujun; Chen, Xiaogen; Liu, Dan; Wu, Cuiyan; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2018-05-15

    The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag + into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors. Copyright © 2018. Published by Elsevier B.V.

  1. Attosecond-controlled photoemission from metal nanowire tips in the few-electron regime

    NASA Astrophysics Data System (ADS)

    Ahn, B.; Schötz, J.; Kang, M.; Okell, W. A.; Mitra, S.; Förg, B.; Zherebtsov, S.; Süßmann, F.; Burger, C.; Kübel, M.; Liu, C.; Wirth, A.; Di Fabrizio, E.; Yanagisawa, H.; Kim, D.; Kim, B.; Kling, M. F.

    2017-03-01

    Metal nanotip photoemitters have proven to be versatile in fundamental nanoplasmonics research and applications, including, e.g., the generation of ultrafast electron pulses, the adiabatic focusing of plasmons, and as light-triggered electron sources for microscopy. Here, we report the generation of high energy photoelectrons (up to 160 eV) in photoemission from single-crystalline nanowire tips in few-cycle, 750-nm laser fields at peak intensities of (2-7.3) × 1012 W/cm2. Recording the carrier-envelope phase (CEP)-dependent photoemission from the nanowire tips allows us to identify rescattering contributions and also permits us to determine the high-energy cutoff of the electron spectra as a function of laser intensity. So far these types of experiments from metal nanotips have been limited to an emission regime with less than one electron per pulse. We detect up to 13 e/shot and given the limited detection efficiency, we expect up to a few ten times more electrons being emitted from the nanowire. Within the investigated intensity range, we find linear scaling of cutoff energies. The nonlinear scaling of electron count rates is consistent with tunneling photoemission occurring in the absence of significant charge interaction. The high electron energy gain is attributed to field-induced rescattering in the enhanced nanolocalized fields at the wires apex, where a strong CEP-modulation is indicative of the attosecond control of photoemission.

  2. Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy.

    PubMed

    Plemmons, Dayne A; Tae Park, Sang; Zewail, Ahmed H; Flannigan, David J

    2014-11-01

    The development of ultrafast electron microscopy (UEM) and variants thereof (e.g., photon-induced near-field electron microscopy, PINEM) has made it possible to image atomic-scale dynamics on the femtosecond timescale. Accessing the femtosecond regime with UEM currently relies on the generation of photoelectrons with an ultrafast laser pulse and operation in a stroboscopic pump-probe fashion. With this approach, temporal resolution is limited mainly by the durations of the pump laser pulse and probe electron packet. The ability to accurately determine the duration of the electron packets, and thus the instrument response function, is critically important for interpretation of dynamics occurring near the temporal resolution limit, in addition to quantifying the effects of the imaging mode. Here, we describe a technique for in situ characterization of ultrashort electron packets that makes use of coupling with photons in the evanescent near-field of the specimen. We show that within the weakly-interacting (i.e., low laser fluence) regime, the zero-loss peak temporal cross-section is precisely the convolution of electron packet and photon pulse profiles. Beyond this regime, we outline the effects of non-linear processes and show that temporal cross-sections of high-order peaks explicitly reveal the electron packet profile, while use of the zero-loss peak becomes increasingly unreliable. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun; Sham, L. J.; Lo, Yu-Hwa

    2015-08-01

    Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.

  4. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  5. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  6. Design of Architectures and Materials in In-Plane Micro-supercapacitors: Current Status and Future Challenges.

    PubMed

    Qi, Dianpeng; Liu, Yan; Liu, Zhiyuan; Zhang, Li; Chen, Xiaodong

    2017-02-01

    The rapid development of integrated electronics and the boom in miniaturized and portable devices have increased the demand for miniaturized and on-chip energy storage units. Currently thin-film batteries or microsized batteries are commercially available for miniaturized devices. However, they still suffer from several limitations, such as short lifetime, low power density, and complex architecture, which limit their integration. Supercapacitors can surmount all these limitations. Particularly for micro-supercapacitors with planar architectures, due to their unique design of the in-plane electrode finger arrays, they possess the merits of easy fabrication and integration into on-chip miniaturized electronics. Here, the focus is on the different strategies to design electrode finger arrays and the material engineering of in-plane micro-supercapacitors. It is expected that the advances in micro-supercapacitors with in-plane architectures will offer new opportunities for the miniaturization and integration of energy-storage units for portable devices and on-chip electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    PubMed Central

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Lyubimov, Artem Y; Hattne, Johan; Brewster, Aaron S; Sauter, Nicholas K; Brunger, Axel T; Weis, William I

    2015-01-01

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited. DOI: http://dx.doi.org/10.7554/eLife.05421.001 PMID:25781634

  8. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  9. Quantum limit of heat flow across a single electronic channel.

    PubMed

    Jezouin, S; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Jin, Y; Pierre, F

    2013-11-01

    Quantum physics predicts that there is a fundamental maximum heat conductance across a single transport channel and that this thermal conductance quantum, G(Q), is universal, independent of the type of particles carrying the heat. Such universality, combined with the relationship between heat and information, signals a general limit on information transfer. We report on the quantitative measurement of the quantum-limited heat flow for Fermi particles across a single electronic channel, using noise thermometry. The demonstrated agreement with the predicted G(Q) establishes experimentally this basic building block of quantum thermal transport. The achieved accuracy of below 10% opens access to many experiments involving the quantum manipulation of heat.

  10. Monte Carlo calculation of large and small-angle electron scattering in air

    DOE PAGES

    Cohen, B. I.; Higginson, D. P.; Eng, C. D.; ...

    2017-08-12

    A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. In this work, the algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.

  11. Image acquisition with immersion objective lenses using electrons emitted with several tenths of an electron volt energies: towards high spatial resolution ESCA analysis.

    PubMed

    Bernheim, M

    2006-03-01

    This study aims to evaluate the spatial resolution achievable with photoelectrons in order to perform localised UPS or XPS analyses on various heterogeneous samples. This investigation is intentionally restricted to direct image acquisition by immersion objective lenses, involving electrons ejected with initial energies of several tenths of an electron-volt. In order to characterise the contribution of all optical elements, analytical investigations were associated to numerical simulations based on SIMION 7 software. The acquisition of high-quality images implies a simultaneous reduction in spherical and chromatic aberrations by a narrow aperture stop placed at the output pupil of the objective. With such limitations in useful emission angles, it is shown that monochromatic electron beams build images with a resolution of about 1 nm, especially for the acceleration bias mode where the focussing electrode is biased at a positive high voltage. Even energy dispersed electron beams, limited by a 4 eV band pass spectrometer, can produce images convenient for highly localised ESCA analyses (resolution 3 nm), where the objective lens is associated with an aperture stop of 30 microm in diameter without using acceleration voltages above 5000 V.

  12. Hot LO-phonon limited electron transport in ZnO/MgZnO channels

    NASA Astrophysics Data System (ADS)

    Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Toporkov, M.; Özgür, Ü.; Morkoç, H.

    2018-05-01

    High-field electron transport in two-dimensional channels at ZnO/MgZnO heterointerfaces has been investigated experimentally. Pulsed current-voltage (I-V) and microwave noise measurements used voltage pulse widths down to 30 ns and electric fields up to 100 kV/cm. The samples investigated featured electron densities in the range of 4.2-6.5 × 1012 cm-2, and room temperature mobilities of 142-185 cm2/V s. The pulsed nature of the applied field ensured negligible, if any, change in the electron density, thereby allowing velocity extraction from current with confidence. The highest extracted electron drift velocity of ˜0.5 × 107 cm/s is somewhat smaller than that estimated for bulk ZnO; this difference is explained in the framework of longitudinal optical phonon accumulation (hot-phonon effect). The microwave noise data allowed us to rule out the effect of excess acoustic phonon temperature caused by Joule heating. Real-space transfer of hot electrons into the wider bandgap MgZnO layer was observed to be a limiting factor in samples with a high Mg content (48%), due to phase segregation and the associated local lowering of the potential barrier.

  13. Resolving the role of femtosecond heated electrons in ultrafast spin dynamics.

    PubMed

    Mendil, J; Nieves, P; Chubykalo-Fesenko, O; Walowski, J; Santos, T; Pisana, S; Münzenberg, M

    2014-02-05

    Magnetization manipulation is essential for basic research and applications. A fundamental question is, how fast can the magnetization be reversed in nanoscale magnetic storage media. When subject to an ultrafast laser pulse, the speed of the magnetization dynamics depends on the nature of the energy transfer pathway. The order of the spin system can be effectively influenced through spin-flip processes mediated by hot electrons. It has been predicted that as electrons drive spins into the regime close to almost total demagnetization, characterized by a loss of ferromagnetic correlations near criticality, a second slower demagnetization process takes place after the initial fast drop of magnetization. By studying FePt, we unravel the fundamental role of the electronic structure. As the ferromagnet Fe becomes more noble in the FePt compound, the electronic structure is changed and the density of states around the Fermi level is reduced, thereby driving the spin correlations into the limit of critical fluctuations. We demonstrate the impact of the electrons and the ferromagnetic interactions, which allows a general insight into the mechanisms of spin dynamics when the ferromagnetic state is highly excited, and identifies possible recording speed limits in heat-assisted magnetization reversal.

  14. A summary of the CHARGE-2 electron beam rocket experiment

    NASA Technical Reports Server (NTRS)

    Myers, Neil B.; Raitt, W. John

    1990-01-01

    The major purpose of the CHARGE-2 experiment was to study the interaction of a vehicle at high potential (up to 1 kV) with the ionosphere. The payload consisted of two parts that were separated during the flight. The high potential was obtained by electron emission from the mother vehicle, and by voltage-biasing of the daughter vehicle. Measurements of transient vehicle potential were obtained with a sample internal of 100 ns. The mother current collection exhibited magnetic limitations above 240 km. Below 240 km the mother collected a current far in excess of the magnetically limited models. This demonstrates the ability of an electron beam to interact with the neutral atmosphere at altitudes below 240 km.

  15. Investigation of fundamental limits to beam brightness available from photoinjectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazarov, Ivan

    2015-07-09

    The goal of this project was investigation of fundamental limits to beam brightness available from photoinjectors. This basic research in accelerator physics spanned over 5 years aiming to extend the fundamental understanding of high average current, low emittance sources of relativistic electrons based on photoemission guns, a necessary prerequisite for a new generation of coherent X-ray synchrotron radiation facilities based on continuous duty superconducting linacs. The program focused on two areas critical to making advances in the electron source performance: 1) the physics of photocathodes for the production of low emittance electrons and 2) control of space charge forces inmore » the immediate vicinity to the cathode via 3D laser pulse shaping.« less

  16. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  17. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    PubMed

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  18. Negative differential resistance in electron tunneling in ultrathin films near the two-dimensional limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batabyal, R.; Abdul Wasey, A. H. M.; Mahato, J. C.

    We report on our observation of negative differential resistance (NDR) in electron tunneling conductance in atomic-scale ultrathin Ag films on Si(111) substrates. NDR was observed by scanning tunneling spectroscopy measurements. The tunneling conductance depends on the electronic local density of states (LDOS) of the sample. We show that the sample bias voltage, at which negative differential resistance and peak negative conductance occur, depends on the film thickness. This can be understood from the variation in the LDOS of the Ag films as a function of film thickness down to the two-dimensional limit of one atomic layer. First principles density functionalmore » theory calculations have been used to explain the results.« less

  19. The Role of Nonlocal Heat Flow in Hohlraums

    NASA Astrophysics Data System (ADS)

    Town, R. P. J.; Short, R. W.; Verdon, C. P.; Afeyan, B. B.; Glenzer, S. H.; Suter, L. J.

    1997-11-01

    Glenzer,(Submitted to Physical Review Letters.)* using the Thomson scattering technique, has measured the time evolution of the electron temperature in scale-1 hohlraums. The measured peak electron temperature was 5 keV. Lasnex simulations, using a flux-limited Spitzer heat diffusion model with the standard sharp-cutoff flux limiter of 0.05, gave a peak electron temperature of only 3 keV. Good agreement between simulation and experiment was found when Lasnex simulations employed a time-varying flux limiter, which had a value of 0.01 when the main drive came on. The need to severly inhibit heat transport over the entire volume of hot plasma at late time suggests that nonlocal heat flow could be important in explaining these experimental observations. In this presentation we will report on Fokker--Planck calculations of idealized hohlraums and compare them to standard hydrodynamic calculations using flux-limited Spitzer heat flow. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460. Also, work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

  20. Methode de calcul a N-corps basee sur la G0W0: Etude du couplage electron-phonon dans le C60 et developpement d'une approche acceleree pour materiaux organiques

    NASA Astrophysics Data System (ADS)

    Laflamme Janssen, Jonathan

    This thesis studies the limitations of density functional theory. These limits are explored in the context of a traditional implementation using a plane waves basis set. First, we investigate the limit of the size of the systems that can be treated. Cutting edge methods that assess these limitations are then used to simulate nanoscale systems. More specifically, the grafting of bromophenyl molecules on the sidewall of carbon nanotubes is studied with these methods, as a better understanding of this procedure could have substantial impact on the electronic industry. Second, the limitations of the precision of density functional theory are explored. We begin with a quantitative study of the uncertainty of this method for the case of electron-phonon coupling calculations and find it to be substantially higher than what is widely presumed in the literature. The uncertainty on electronphonon coupling calculations is then explored within the G0W0 method, which is found to be a substantially more precise alternative. However, this method has the drawback of being severely limitated in the size of systems that can be computed. In the following, theoretical solutions to overcome these limitations are developed and presented. The increased performance and precision of the resulting implementation opens new possibilities for the study and design of materials, such as superconductors, polymers for organic photovoltaics and semiconductors. Keywords: Condensed matter physics, ab initio calculations, density functional theory, nanotechnology, carbon nanotubes, many-body perturbation theory, G0W0 method..

  1. Conical Fourier shell correlation applied to electron tomograms.

    PubMed

    Diebolder, C A; Faas, F G A; Koster, A J; Koning, R I

    2015-05-01

    The resolution of electron tomograms is anisotropic due to geometrical constraints during data collection, such as the limited tilt range and single axis tilt series acquisition. Acquisition of dual axis tilt series can decrease these effects. However, in cryo-electron tomography, to limit the electron radiation damage that occurs during imaging, the total dose should not increase and must be fractionated over the two tilt series. Here we set out to determine whether it is beneficial fractionate electron dose for recording dual axis cryo electron tilt series or whether it is better to perform single axis acquisition. To assess the quality of tomographic reconstructions in different directions here we introduce conical Fourier shell correlation (cFSCe/o). Employing cFSCe/o, we compared the resolution isotropy of single-axis and dual-axis (cryo-)electron tomograms using even/odd split data sets. We show that the resolution of dual-axis simulated and cryo-electron tomograms in the plane orthogonal to the electron beam becomes more isotropic compared to single-axis tomograms and high resolution peaks along the tilt axis disappear. cFSCe/o also allowed us to compare different methods for the alignment of dual-axis tomograms. We show that different tomographic reconstruction programs produce different anisotropic resolution in dual axis tomograms. We anticipate that cFSCe/o can also be useful for comparisons of acquisition and reconstruction parameters, and different hardware implementations. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Electronic coarse graining enhances the predictive power of molecular simulation allowing challenges in water physics to be addressed

    NASA Astrophysics Data System (ADS)

    Cipcigan, Flaviu S.; Sokhan, Vlad P.; Crain, Jason; Martyna, Glenn J.

    2016-12-01

    One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082-1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230-233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeller through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO_MD.

  3. Force Limit System

    NASA Technical Reports Server (NTRS)

    Pawlik, Ralph; Krause, David; Bremenour, Frank

    2011-01-01

    The Force Limit System (FLS) was developed to protect test specimens from inadvertent overload. The load limit value is fully adjustable by the operator and works independently of the test system control as a mechanical (non-electrical) device. When a test specimen is loaded via an electromechanical or hydraulic test system, a chance of an overload condition exists. An overload applied to a specimen could result in irreparable damage to the specimen and/or fixturing. The FLS restricts the maximum load that an actuator can apply to a test specimen. When testing limited-run test articles or using very expensive fixtures, the use of such a device is highly recommended. Test setups typically use electronic peak protection, which can be the source of overload due to malfunctioning components or the inability to react quickly enough to load spikes. The FLS works independently of the electronic overload protection.

  4. Successful Beam-Beam Tuneshift Compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishofberger, Kip Aaron

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (T EL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operationsmore » with inclusion of the T EL are presented and analyzed. It is shown that the T EL provides a way to shatter the previously inescapable beam-beam limit.« less

  5. A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings

    NASA Astrophysics Data System (ADS)

    Barwick, Brett; Gronniger, Glen; Yuan, Lu; Liou, Sy-Hwang; Batelaan, Herman

    2006-10-01

    Electron diffraction from metal coated freestanding nanofabricated gratings is presented, with a quantitative path integral analysis of the electron-grating interactions. Electron diffraction out to the 20th order was observed indicating the high quality of our nanofabricated gratings. The electron beam is collimated to its diffraction limit with ion-milled material slits. Our path integral analysis is first tested against single slit electron diffraction, and then further expanded with the same theoretical approach to describe grating diffraction. Rotation of the grating with respect to the incident electron beam varies the effective distance between the electron and grating bars. This allows the measurement of the image charge potential between the electron and the grating bars. Image charge potentials that were about 15% of the value for that of a pure electron-metal wall interaction were found. We varied the electron energy from 50to900eV. The interaction time is of the order of typical metal image charge response times and in principle allows the investigation of image charge formation. In addition to the image charge interaction there is a dephasing process reducing the transverse coherence length of the electron wave. The dephasing process causes broadening of the diffraction peaks and is consistent with a model that ascribes the dephasing process to microscopic contact potentials. Surface structures with length scales of about 200nm observed with a scanning tunneling microscope, and dephasing interaction strength typical of contact potentials of 0.35eV support this claim. Such a dephasing model motivated the investigation of different metallic coatings, in particular Ni, Ti, Al, and different thickness Au-Pd coatings. Improved quality of diffraction patterns was found for Ni. This coating made electron diffraction possible at energies as low as 50eV. This energy was limited by our electron gun design. These results are particularly relevant for the use of these gratings as coherent beam splitters in low energy electron interferometry.

  6. Fabrication of High-T(sub c) Hot-Electron Bolometric Mixers for Terahertz Applications

    NASA Technical Reports Server (NTRS)

    Burns, M. J.; Kleinsasser, A. W.; Delin, K. A.; Vasquez, R. P.; Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.

    1996-01-01

    Superocnducting hot-electron bolometers (HEB) represent a promising candidate for heterodyne mixing at frequencies exceeding 1 THz. Nb HEB mixers offer performance competitive with tunnel junctions without the frequency limit imposed by the superconducting energy gap.

  7. Electronic Reserve--A Staff Development Opportunity.

    ERIC Educational Resources Information Center

    Smith, Robyn

    1997-01-01

    The Queensland University of Technology (QUT) Library's experience in developing an electronic reserve service is offered as a case study. Discussion includes the limited access service, technical components, academic community support, lending staff training, usage, copyright, and future scenarios and solutions. (AEF)

  8. The significance of microbial processes in hydrogeology and geochemistry

    USGS Publications Warehouse

    Chapelle, F.H.

    2000-01-01

    Microbial processes affect the chemical composition of groundwater and the hydraulic properties of aquifers in both contaminated and pristine groundwater systems. The patterns of water-chemistry changes that occur depend upon the relative abundance of electron donors and electron acceptors. In many pristine aquifers, where microbial metabolism is limited by the availability of electron donors (usually organic matter), dissolved inorganic carbon (DIC) accumulates slowly along aquifer flow paths and available electron acceptors are consumed sequentially in the order dissolved oxygen > nitrate > Fe(III) > sulfate > CO2 (methanogenesis). In aquifers contaminated by anthropogenic contaminants, an excess of available organic carbon often exists, and microbial metabolism is limited by the availability of electron acceptors. In addition to changes in groundwater chemistry, the solid matrix of the aquifer is affected by microbial processes. The production of carbon dioxide and organic acids can lead to increased mineral solubility, which can lead to the development of secondary porosity and permeability. Conversely, microbial production of carbonate, ferrous iron, and sulfide can result in the precipitation of secondary calcite or pyrite cements that reduce primary porosity and permeability in groundwater systems.

  9. A large-sized bubbling appearance of the glomerular basement membrane in a patient with pulmonary limited AL amyloidosis and a past history of lupus nephritis.

    PubMed

    Suga, Norihiro; Miura, Naoto; Uemura, Yuko; Nakamura, Toshinobu; Morita, Hiroyuki; Banno, Shogo; Imai, Hirokazu

    2011-12-01

    We report an unusual pathological finding, a large-sized bubbling appearance of the glomerular basement membrane (GBM), in a patient with pulmonary limited AL amyloidosis and a past history of lupus nephritis. The first renal biopsy specimen from 10 years ago, when systemic lupus erythematosus was diagnosed, demonstrated mild mesangial proliferation and subepithelial deposits (WHO classification: III + V). Light microscopy of the current biopsy using periodic acid methenamine silver (PAMS) stain demonstrated a large-sized bubbling appearance of the GBM; however, very weak immunoglobulin and complement deposition was observed in immunofluorescence studies. Routine electron microscopy demonstrated partial subendothelial expansion with electron-lucent materials, but no electron-dense deposits or amyloid fibrils. Electron microscopy with PAMS stain revealed electron-lucent endothelial scalloping, including some cellular components and microspheres in the GBM; however, it is not clear if these materials are derived from endothelial cells. One possibility is that these unique findings represent a recovery phase of lupus membranous nephritis; another is that these findings correspond to a new disease entity.

  10. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  11. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  12. Sparse imaging for fast electron microscopy

    NASA Astrophysics Data System (ADS)

    Anderson, Hyrum S.; Ilic-Helms, Jovana; Rohrer, Brandon; Wheeler, Jason; Larson, Kurt

    2013-02-01

    Scanning electron microscopes (SEMs) are used in neuroscience and materials science to image centimeters of sample area at nanometer scales. Since imaging rates are in large part SNR-limited, large collections can lead to weeks of around-the-clock imaging time. To increase data collection speed, we propose and demonstrate on an operational SEM a fast method to sparsely sample and reconstruct smooth images. To accurately localize the electron probe position at fast scan rates, we model the dynamics of the scan coils, and use the model to rapidly and accurately visit a randomly selected subset of pixel locations. Images are reconstructed from the undersampled data by compressed sensing inversion using image smoothness as a prior. We report image fidelity as a function of acquisition speed by comparing traditional raster to sparse imaging modes. Our approach is equally applicable to other domains of nanometer microscopy in which the time to position a probe is a limiting factor (e.g., atomic force microscopy), or in which excessive electron doses might otherwise alter the sample being observed (e.g., scanning transmission electron microscopy).

  13. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution.

    PubMed

    Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A; Anthopoulos, Thomas D

    2017-03-01

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In 2 O 3 /ZnO heterojunction. We find that In 2 O 3 /ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In 2 O 3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In 2 O 3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.

  14. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution

    PubMed Central

    Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A.; Anthopoulos, Thomas D.

    2017-01-01

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications. PMID:28435867

  15. Magnetosonic cnoidal waves and solitons in a magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Kaur, Nimardeep; Singh, Manpreet; Saini, N. S.

    2018-04-01

    An investigation of magnetosonic nonlinear periodic (cnoidal) waves is presented in a magnetized electron-ion-dust ( e -i -d ) plasma having cold dust fluid with inertialess warm ions and electrons. The reductive perturbation method is employed to derive the Korteweg-de Vries equation. The dispersion relation for magnetosonic cnoidal waves is determined in the linear limit. The magnetosonic cnoidal wave solution is derived using the Sagdeev pseudopotential approach under the specific boundary conditions. There is the formation of only positive potential magnetosonic cnoidal waves and solitary structures in the high plasma-β limit. The effects of various plasma parameters, viz., plasma beta (β), σ (temperature ratio of electrons to ions), and μd (ratio of the number density of dust to electrons) on the characteristics of magnetosonic cnoidal waves are also studied numerically. The findings of the present investigation may be helpful in describing the characteristics of various nonlinear excitations in Earth's magnetosphere, solar wind, Saturn's magnetosphere, and space/astrophysical environments, where many space observations by various satellites confirm the existence of dust grains, highly energetic electrons, and high plasma-β.

  16. Flexible foils formed by a prolonged electron beam irradiation in scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Čechal, Jan; Šikola, Tomáš

    2017-11-01

    The ubiquitous presence of hydrocarbon contamination on solid surfaces alters their inherent physical properties and complicates the surface analyses. An irradiation of sample surface with electron beam can lead to the chemical transformation of the hydrocarbon layer to carbon films, which are flexible and capable of acting as a barrier for chemical etching of an underlying material. The growth of these foils is limited by supply of hydrocarbons to the writing beam position rather than the electron dose or electron beam current. The prepared films can find their applications in fabrication of surface nanostructures without a need of an electron sensitive resist material.

  17. Detection of explosives, nerve agents, and illicit substances by zero-energy electron attachment

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Darrach, M. R.

    2000-01-01

    The Reversal Electron Attachment Detection (READ) method, developed at JPL/Caltech, has been used to detect a variety of substances which have electron-attachment resonances at low and intermediate electron energies. In the case of zero-energy resonances, the cross section (hence attachment probability and instrument sensitivity) is mediated by the so-called s-wave phenomenon, in which the cross sections vary as the inverse of the electron velocity. Hence this is, in the limit of zero electron energy or velocity, one of the rare cases in atomic and molecular physics where one carries out detection via infinite cross sections.

  18. Direct Measurement of Polarization-Induced Fields in GaN/AlN by Nano-Beam Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Carvalho, Daniel; Müller-Caspary, Knut; Schowalter, Marco; Grieb, Tim; Mehrtens, Thorsten; Rosenauer, Andreas; Ben, Teresa; García, Rafael; Redondo-Cubero, Andrés; Lorenz, Katharina; Daudin, Bruno; Morales, Francisco M.

    2016-06-01

    The built-in piezoelectric fields in group III-nitrides can act as road blocks on the way to maximizing the efficiency of opto-electronic devices. In order to overcome this limitation, a proper characterization of these fields is necessary. In this work nano-beam electron diffraction in scanning transmission electron microscopy mode has been used to simultaneously measure the strain state and the induced piezoelectric fields in a GaN/AlN multiple quantum well system.

  19. Electron Dynamics During High-Power, Short-Pulsed Laser Interactions with Solids and Interfaces

    DTIC Science & Technology

    2016-06-28

    classified information, stamp classification level on the top and bottom of this page. 17. LIMITATION OF ABSTRACT. This block must be completed...mechanisms in thin gold films. Applied Physics Letters, 103(21):211910, 2013. 6) A. Giri, B. M. Foley, and P. E. Hopkins. Influence of hot electron...July 14 – 19, 2013. 7) Giri, A., Foley, B.M., Duda, J.C., Hopkins, P.E., “Influence of hot electron scattering on electron-phonon equilibrium in thin

  20. Relativistic electrons and whistlers in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.

    1976-01-01

    The paper examines some of the consequences of relativistic electrons in stably trapped equilibrium with parallel propagating whistlers in the inner magnetosphere of Jupiter. Approximate scaling laws for the stably trapped electron flux and equilibrium wave intensity are derived, and the equatorial growth rate for whistlers is determined. It is shown that fluxes are near the stably trapped limit, which suggests that whistler intensities may be high enough to cause significant diffusion of electrons, accounting for the observed reduction of phase space densities.

  1. High-resolution, high-throughput imaging with a multibeam scanning electron microscope

    PubMed Central

    EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D

    2015-01-01

    Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873

  2. Physical Limitations in Lithography for Microelectronics.

    ERIC Educational Resources Information Center

    Flavin, P. G.

    1981-01-01

    Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)

  3. Electronic consent channels: preserving patient privacy without handcuffing researchers.

    PubMed

    Shelton, Robert H

    2011-02-09

    Advances in health information technology and electronic medical records have the tremendous potential to accelerate translational and clinical research. However, privacy concerns threaten to be a rate-limiting factor. By recognizing and responding to patient privacy concerns, policy-makers, researchers, and information technology leaders have the opportunity to transform trial recruitment and make it safer to electronically locate and convey sensitive health information.

  4. Computationally Designed Oligomers for High Contrast Black Electrochromic Polymers

    DTIC Science & Technology

    2017-05-05

    SUBJECT TERMS electrochromics, DFf, TDDFT, organic electronics , oligomer, organic polymers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER... electron -withdrawing behaviors. Another finding was that the same dication was produced regardless of the color or peak morphology of the neutral 5...radical cation states present in the chromophore upon oxidation. The two-ring electron rich dioxythiophene portions of the chromophore (EAc) and/or the

  5. Vertical electronic transport in van de waals heterostructures

    NASA Astrophysics Data System (ADS)

    Qiao, Zhenhua; Zhenhua Qiao's Group Team

    In this work, we will introduce the theoretical investigation of the vertical electronic transport in various heterostructrues by using both tight-binding method and first-principles calculations. Counterintuitively, we find that the maximum electronic transport is achieved at very limited scattering regions but not at large overlapped catering regions. Based on this finding, we design a special setup to measure the tunneling effect in rotated bilayer systems.

  6. Nano-fEM: protein localization using photo-activated localization microscopy and electron microscopy.

    PubMed

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M

    2012-12-03

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.

  7. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering.

    PubMed

    Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O

    2018-01-01

    More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Limitations on the upconversion of ion sound to Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Papadopoulos, K.

    1982-01-01

    The weak turbulence theory of Tsytovich, Stenflo and Wilhelmsson (1981) for evaluation of the nonlinear transfer of ion acoustic waves to Langmuir waves is shown to be limited in its region of validity to the level of ion acoustic waves. It is also demonstrated that, in applying the upconversion of ion sound to Langmuir waves for electron acceleration, nonlinear scattering should be self-consistently included, with a suppression of the upconversion process resulting. The impossibility of accelerating electrons by such a process for any reasonable physical system is thereby reaffirmed.

  9. Geometrical Optimization Approach to Isomerization: Models and Limitations.

    PubMed

    Chang, Bo Y; Shin, Seokmin; Engel, Volker; Sola, Ignacio R

    2017-11-02

    We study laser-driven isomerization reactions through an excited electronic state using the recently developed Geometrical Optimization procedure. Our goal is to analyze whether an initial wave packet in the ground state, with optimized amplitudes and phases, can be used to enhance the yield of the reaction at faster rates, driven by a single picosecond pulse or a pair of femtosecond pulses resonant with the electronic transition. We show that the symmetry of the system imposes limitations in the optimization procedure, such that the method rediscovers the pump-dump mechanism.

  10. Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells

    NASA Astrophysics Data System (ADS)

    Lymperakis, L.; Schulz, T.; Freysoldt, C.; Anikeeva, M.; Chen, Z.; Zheng, X.; Shen, B.; Chèze, C.; Siekacz, M.; Wang, X. Q.; Albrecht, M.; Neugebauer, J.

    2018-01-01

    Nominal InN monolayers grown by molecular beam epitaxy on GaN(0001) are investigated combining in situ reflection high-energy electron diffraction (RHEED), transmission electron microscopy (TEM), and density functional theory (DFT). TEM reveals a chemical intraplane ordering never observed before. Employing DFT, we identify a novel surface stabilization mechanism elastically frustrated rehybridization, which is responsible for the observed chemical ordering. The mechanism also sets an incorporation barrier for indium concentrations above 25% and thus fundamentally limits the indium content in coherently strained layers.

  11. Ultrafast Graphene Photonics and Optoelectronics

    DTIC Science & Technology

    2017-04-14

    SUBJECT TERMS Graphene, Ultrafast Optical Processin, Terahertz Electronics ; 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...Rep, (2016)) Fig. 4. (a) Images of scanning electron microscope for 1D and 2D gratings. (b) Ratio of the real part of the transmitted field

  12. Preparation of School District Budgets with Microcomputer Electronic Spreadsheets.

    ERIC Educational Resources Information Center

    Hinitz, Herman J.

    1996-01-01

    Preparing a microcomputer electronic spreadsheet containing all relevant school district budgetary information is possible with currently available hardware and software (such as Lotus 1-2-3), despite random-access-memory limitations. Spreadsheets can provide financial summaries, inventory-control listings, scheduling alternatives,…

  13. Scalability issues in evolutionary synthesis of electronic circuits: lessons learned and challenges ahead

    NASA Technical Reports Server (NTRS)

    Stoica, A.; Keymeulen, D.; Zebulum, R. S.; Ferguson, M. I.

    2003-01-01

    This paper describes scalability issues of evolutionary-driven automatic synthesis of electronic circuits. The article begins by reviewing the concepts of circuit evolution and discussing the limitations of this technique when trying to achieve more complex systems.

  14. Femtosecond gas phase electron diffraction with MeV electrons.

    PubMed

    Yang, Jie; Guehr, Markus; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin

    2016-12-16

    We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.

  15. The determination of pair-distance distribution by double electron-electron resonance: regularization by the length of distance discretization with Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Dzuba, Sergei A.

    2016-08-01

    Pulsed double electron-electron resonance technique (DEER, or PELDOR) is applied to study conformations and aggregation of peptides, proteins, nucleic acids, and other macromolecules. For a pair of spin labels, experimental data allows for the determination of their distance distribution function, P(r). P(r) is derived as a solution of a first-kind Fredholm integral equation, which is an ill-posed problem. Here, we suggest regularization by increasing the distance discretization length to its upper limit where numerical integration still provides agreement with experiment. This upper limit is found to be well above the lower limit for which the solution instability appears because of the ill-posed nature of the problem. For solving the integral equation, Monte Carlo trials of P(r) functions are employed; this method has an obvious advantage of the fulfillment of the non-negativity constraint for P(r). The regularization by the increasing of distance discretization length for the case of overlapping broad and narrow distributions may be employed selectively, with this length being different for different distance ranges. The approach is checked for model distance distributions and for experimental data taken from literature for doubly spin-labeled DNA and peptide antibiotics.

  16. Plastoquinol diffusion in linear photosynthetic electron transport

    PubMed Central

    Mitchell, Rowan; Spillmann, Andreas; Haehnel, Wolfgang

    1990-01-01

    The diffusion of plastoquinol and its binding to the cytochrome bf complex, which occurs during linear photosynthetic electron transport and is analogous to reaction sequences found in most energy-converting membranes, has been studied in intact thylakoid membranes. The flash-induced electron transfer between the laterally separated photosystems II and photosystems I was measured by following the sigmoidal reduction kinetics of P-700+ after previous oxidation of the intersystem electron carriers. The amount of flash-induced plastoquinol produced at photosystem II was (a) reduced by inhibition with dichlorophenyl-dimethylurea and (b) increased by giving a second saturating flash. These signals were simulated by a new model which combines a deterministic simulation of reaction kinetics with a Monte Carlo approach to the diffusion of plastoquinol, taking into account the known structural features of the thylakoid membrane. The plastoquinol molecules were assumed to be oxidized by either a diffusion-limited or a nondiffusion-limited step in a collisional mechanism or after binding to the cytochrome bf complex. The model was able to account for the experimental observations with a nondiffusion-limited collisional mechanism or with a binding mechanism, giving minimum values for the diffusion coefficient of plastoquinol of 2 × 10-8 cm2s-1 and 3 × 10-7 cm2s-1, respectively. PMID:19431770

  17. Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure

    NASA Astrophysics Data System (ADS)

    Brockt, C.; Jeckelmann, E.

    2017-02-01

    We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model. We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure. Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations are obtained for limiting cases.

  18. Research on mutual influence of Cherenkov-type probes within the ISTTOK tokamak chamber

    NASA Astrophysics Data System (ADS)

    Jakubowski, L.; Plyusnin, V. V.; Malinowski, K.; Sadowski, M. J.; Zebrowski, J.; Rabinski, M.; Fernandes, H.; Silva, C.; Figueiredo, H.; Jakubowski, M. J.

    2014-12-01

    The paper describes an influence of a Cherenkov-type probe, which is used for measurements of fast electron streams inside the ISTTOK chamber, on other probes and behaviour of a plasma ring. The reported study shows that such a probe situated near the plasma column has a strong influence on signals from another Cherenkov probe, and can cause a considerable reduction of electron-induced signals. This effect does not depend on positions of the probes in relation to the limiter. Measurements of hard X-ray (HXR) emission show that the deeply immersed Cherenkov probe can also influence on the limiter . Under specific experimental conditions such a Cherenkov probe can play the role of a new limiter and change the plasma configuration.

  19. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings.

    PubMed

    Schmitt, Thorsten; de Groot, Frank M F; Rubensson, Jan Erik

    2014-09-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned.

  20. Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas

    2018-04-01

    Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.

  1. Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy

    DOE PAGES

    Ihlefeld, Jon F.; Michael, Joseph R.; McKenzie, Bonnie B.; ...

    2016-09-16

    We report that ferroelastic domain walls provide opportunities for deterministically controlling mechanical, optical, electrical, and thermal energy. Domain wall characterization in micro- and nanoscale systems, where their spacing may be of the order of 100 nm or less is presently limited to only a few techniques, such as piezoresponse force microscopy and transmission electron microscopy. These respective techniques cannot, however, independently characterize domain polarization orientation and domain wall motion in technologically relevant capacitor structures or in a non-destructive manner, thus presenting a limitation of their utility. In this work, we show how backscatter scanning electron microscopy utilizing channeling contrast yieldmore » can image the ferroelastic domain structure of ferroelectric films with domain wall spacing as narrow as 10 nm.« less

  2. New limits on neutrino magnetic moment through nonvanishing 13-mixing

    NASA Astrophysics Data System (ADS)

    Guzzo, M. M.; de Holanda, P. C.; Peres, O. L. G.

    2018-05-01

    The relatively large value of the neutrino mixing angle θ13 set by recent measurements allows us to use solar neutrinos to set a limit on the neutrino magnetic moment involving the second and third flavor families, μ23. The existence of a random magnetic field in the solar convective zone can produce a significant antineutrino flux when a nonvanishing neutrino magnetic moment is assumed. Even if we consider a vanishing neutrino magnetic moment involving the first family, electron antineutrinos are indirectly produced through the mixing between the first and third families and μ23≠0 . Using KamLAND limits on the solar flux of electron antineutrino, we set the limit μ23<0.95 ×10-11μB as a reasonable assumption on the behavior of solar magnetic fields. This is the first time that a limit on μ23 has been established in the literature directly from neutrino interactions with magnetic fields, and, interestingly enough, is comparable with the limits on the neutrino magnetic moment involving the first family and with the ones coming from modifications to the electroweak cross section.

  3. Photosynthesis and Photosynthetic Electron Flow in the Alpine Evergreen Species Quercus guyavifolia in Winter

    PubMed Central

    Huang, Wei; Hu, Hong; Zhang, Shi-Bao

    2016-01-01

    Alpine evergreen broadleaf tree species must regularly cope with low night temperatures in winter. However, the effects of low night temperatures on photosynthesis in alpine evergreen broadleaf tree species are unclear. We measured the diurnal photosynthetic parameters before and after cold snap for leaves of Quercus guyavifolia growing in its native habitat at 3290 m. On 11 and 12 December 2013 (before cold snap), stomatal and mesophyll conductances (gs and gm), CO2 assimilation rate (An), and total electron flow through PSII (JPSII) at daytime were maintained at high levels. The major action of alternative electron flow was to provide extra ATP for primary metabolisms. On 20 December 2013 (after cold snap), the diurnal values of gs, gm, An, and JPSII at daytime largely decreased, mainly due to the large decrease in night air temperature. Meanwhile, the ratio of photorespiration and alternative electron flow to JPSII largely increased on 20 December. Furthermore, the high levels of alternative electron flow were accompanied with low rates of extra ATP production. A quantitative limitation analysis reveals that the gm limitation increased on 20 December with decreased night air temperature. Therefore, the night air temperature was an important determinant of stomatal/mesophyll conductance and photosynthesis. When photosynthesis is inhibited following freezing night temperatures, photorespiration and alternative electron flow are important electron sinks, which support the role of photorespiration and alternative electron flow in photoportection for alpine plants under low temperatures. PMID:27812359

  4. An upper limit on interstellar C IV in the spectrum of gamma-2 Velorum

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Stecher, T. P.; West, D. K.

    1975-01-01

    An upper limit on the column density of C IV along the line of sight to gamma-2 Vel is derived from upper limits placed on the equivalent widths of the interstellar C IV doublet with rest wavelengths at 1548.20 A and 1550.77 A. A lower limit of 250,000 K is calculated for the electron temperature of O VI emitting regions by combining the C IV results with a measurement of the column density of interstellar O VI for the same star and using calculations for the relative ionization of some abundant elements as a function of electron temperature in a low-density plasma. Since gamma-2 Vel is in the central part of the Gum Nebula, the high temperature suggested by these results is shown to support the idea that a high-temperature phase of the interstellar medium, possibly maintained by supernova explosions, may exist.-

  5. Plasma density limits for hole boring by intense laser pulses.

    PubMed

    Iwata, Natsumi; Kojima, Sadaoki; Sentoku, Yasuhiko; Hata, Masayasu; Mima, Kunioki

    2018-02-12

    High-power lasers in the relativistic intensity regime with multi-picosecond pulse durations are available in many laboratories around the world. Laser pulses at these intensities reach giga-bar level radiation pressures, which can push the plasma critical surface where laser light is reflected. This process is referred to as the laser hole boring (HB), which is critical for plasma heating, hence essential for laser-based applications. Here we derive the limit density for HB, which is the maximum plasma density the laser can reach, as a function of laser intensity. The time scale for when the laser pulse reaches the limit density is also derived. These theories are confirmed by a series of particle-in-cell simulations. After reaching the limit density, the plasma starts to blowout back toward the laser, and is accompanied by copious superthermal electrons; therefore, the electron energy can be determined by varying the laser pulse length.

  6. Photocatalytic Conversion of Nitrobenzene to Aniline through Sequential Proton-Coupled One-Electron Transfers from a Cadmium Sulfide Quantum Dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Stephen C.; Bettis Homan, Stephanie; Weiss, Emily A.

    2016-01-28

    This paper describes the use of cadmium sulfide quantum dots (CdS QDs) as visible-light photocatalysts for the reduction of nitrobenzene to aniline through six sequential photoinduced, proton-coupled electron transfers. At pH 3.6–4.3, the internal quantum yield of photons-to-reducing electrons is 37.1% over 54 h of illumination, with no apparent decrease in catalyst activity. Monitoring of the QD exciton by transient absorption reveals that, for each step in the catalytic cycle, the sacrificial reductant, 3-mercaptopropionic acid, scavenges the excitonic hole in ~5 ps to form QD•–; electron transfer to nitrobenzene or the intermediates nitrosobenzene and phenylhydroxylamine then occurs on the nanosecondmore » time scale. The rate constants for the single-electron transfer reactions are correlated with the driving forces for the corresponding proton-coupled electron transfers. This result suggests, but does not prove, that electron transfer, not proton transfer, is rate-limiting for these reactions. Nuclear magnetic resonance analysis of the QD–molecule systems shows that the photoproduct aniline, left unprotonated, serves as a poison for the QD catalyst by adsorbing to its surface. Performing the reaction at an acidic pH not only encourages aniline to desorb but also increases the probability of protonated intermediates; the latter effect probably ensures that recruitment of protons is not rate-limiting.« less

  7. Simple Graphene Synthesis via Chemical Vapor Deposition

    ERIC Educational Resources Information Center

    Jacobberger, Robert M.; Machhi, Rushad; Wroblewski, Jennifer; Taylor, Ben; Gillian-Daniel, Anne Lynn; Arnold, Michael S.

    2015-01-01

    Graphene's unique combination of exceptional mechanical, electronic, and thermal properties makes this material a promising candidate to enable next-generation technologies in a wide range of fields, including electronics, energy, and medicine. However, educational activities involving graphene have been limited due to the high expense and…

  8. A comparison of the physics of Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW), and Laser Beam Welding (LBW)

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1985-01-01

    The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.

  9. Viable cell sorting of dinoflagellates by multi-parametric flow cytometry.

    USDA-ARS?s Scientific Manuscript database

    Electronic cell sorting for isolation and culture of dinoflagellates and other marine eukaryotic phytoplankton was compared to the traditional method of manually picking of cells using a micropipette. Trauma to electronically sorted cells was not a limiting factor as fragile dinoflagellates, such a...

  10. Role of electron-phonon coupling and thermal expansion on band gaps, carrier mobility, and interfacial offsets in kesterite thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron

    2018-05-01

    The efficiencies of solar cells based on kesterite Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) are limited by a low open-circuit voltage due to high rates of non-radiative electron-hole recombination. To probe the origin of this bottleneck, we calculate the band offset of CZTS(Se) with CdS, confirming a weak spike of 0.1 eV for CZTS/wurtzite-CdS and a strong spike of 0.4 eV for CZTSe/wurtzite-CdS. We also consider the effects of temperature on the band alignment, finding that increasing temperature significantly enhances the spike-type offset. We further resolve an outstanding discrepancy between the measured and calculated phonon frequencies for the kesterites, and use these to estimate the upper limit of electron and hole mobilities based on optic phonon Fröhlich scattering, which uncovers an intrinsic asymmetry with faster (minority carrier) electron mobility.

  11. Effect of Nonlocal Electron Transport in Both Directions on the Symmetry of Polar-Drive--Ignition Targets

    NASA Astrophysics Data System (ADS)

    Delettrez, J. A.; Collins, T. J. B.; Shvydky, A.; Moses, G.; Cao, D.; Marinak, M. M.

    2012-10-01

    A nonlocal, multigroup diffusion model for thermal electron transportfootnotetextG. P. Schurtz, Ph. D. Nicola"i, and M. Busquet, Phys. Plasmas 7, 4238 (2000). has been added to the 2-D hydrodynamic code DRACO. This model has been applied to simulations of polar-drive (PD) NIF ignition designs. Previous simulations were carried out with a constant flux-limiter model in both the radial and transverse directions. Due to the nonsymmetry of PD illumination, these implosions suffer from low-mode nonuniformities that affect their performance. Nonlocal electron transport in both directions is expected to reduce these nonuniformities. The 2-D thermal electron flux from simulations, using either the nonlocal model or the standard flux-limited approach, will be compared and the effect of the nonlocal transport model on the growth of the nonuniformities and on target performance will be presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  12. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.

    PubMed

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-05-08

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

  13. Applications and limitations of electron correlation microscopy to study relaxation dynamics in supercooled liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pei; He, Li; Besser, Matthew F.

    Here, electron correlation microscopy (ECM) is a way to measure structural relaxation times, τ, of liquids with nanometer-scale spatial resolution using coherent electron scattering equivalent of photon correlation spectroscopy. We have applied ECM with a 3.5 nm diameter probe to Pt 57.5Cu 14.7Ni 5.3P 22.5 amorphous nanorods and Pd 40Ni 40P 20 bulk metallic glass (BMG) heated inside the STEM into the supercooled liquid region. These data demonstrate that the ECM technique is limited by the characteristics of the time series, which must be at least 40τ to obtain a well-converged correlation function g 2(t), and the time per frame,more » which must be less than 0.1τ to obtain sufficient sampling. A high-speed direct electron camera enables fast acquisition and affords reliable g 2(t) data even with low signal per frame.« less

  14. Applications and limitations of electron correlation microscopy to study relaxation dynamics in supercooled liquids

    DOE PAGES

    Zhang, Pei; He, Li; Besser, Matthew F.; ...

    2016-09-08

    Here, electron correlation microscopy (ECM) is a way to measure structural relaxation times, τ, of liquids with nanometer-scale spatial resolution using coherent electron scattering equivalent of photon correlation spectroscopy. We have applied ECM with a 3.5 nm diameter probe to Pt 57.5Cu 14.7Ni 5.3P 22.5 amorphous nanorods and Pd 40Ni 40P 20 bulk metallic glass (BMG) heated inside the STEM into the supercooled liquid region. These data demonstrate that the ECM technique is limited by the characteristics of the time series, which must be at least 40τ to obtain a well-converged correlation function g 2(t), and the time per frame,more » which must be less than 0.1τ to obtain sufficient sampling. A high-speed direct electron camera enables fast acquisition and affords reliable g 2(t) data even with low signal per frame.« less

  15. Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit

    DOE PAGES

    Dornheim, Tobias; Groth, Simon; Sjostrom, Travis; ...

    2016-10-07

    Here we perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N = 1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy F xc of the macroscopic electron gas withmore » an unprecedented accuracy of | Δ V | / | V | , | Δ F xc | / | F | xc ~ 10 $-$3. Finally, a comparison of our new data to the recent parametrization of F xc by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; De Monte, V.; Di Lieto, A.

    In the LEReC Cooling Section (CS) the RHIC ions are traveling together with and getting cooled by the LEReC electrons. The required cooling rate sets the limit of 150 urad on tolerable angles of the electrons in the CS. One of the components of overall electron angle is the angle of the e-beam trajectory with respect to the ion beam trajectory. We set the limit for electron trajectory angle to 100 urad. It is critical for preserving small trajectory angle to keep the transverse magnetic field inside the CS drifts within +/- 2.3 mG. The drifts in the CS mustmore » be shielded from the ambient magnetic fields of the RHIC tunnel, which can be as high as 0.5 G, to minimize the transverse field inside the CS vacuum chamber. In this paper we present the final design of the magnetic shielding of the LEReC CS and discuss the results of tests dedicated to studies of the shielding effectiveness.« less

  17. Density-functional calculations of transport properties in the nondegenerate limit and the role of electron-electron scattering

    DOE PAGES

    Desjarlais, Michael P.; Scullard, Christian R.; Benedict, Lorin X.; ...

    2017-03-13

    We compute electrical and thermal conductivities of hydrogen plasmas in the non-degenerate regime using Kohn-Sham Density Functional Theory (DFT) and an application of the Kubo- Greenwood response formula, and demonstrate that for thermal conductivity, the mean-field treatment of the electron-electron (e-e) interaction therein is insufficient to reproduce the weak-coupling limit obtained by plasma kinetic theories. An explicit e-e scattering correction to the DFT is posited by appealing to Matthiessen's Rule and the results of our computations of conductivities with the quantum Lenard-Balescu (QLB) equation. Further motivation of our correction is provided by an argument arising from the Zubarev quantum kineticmore » theory approach. Significant emphasis is placed on our efforts to produce properly converged results for plasma transport using Kohn-Sham DFT, so that an accurate assessment of the importance and efficacy of our e-e scattering corrections to the thermal conductivity can be made.« less

  18. Visualizing heavy fermion confinement and Pauli-limited superconductivity in layered CeCoIn 5

    DOE PAGES

    Gyenis, András; Feldman, Benjamin E.; Randeria, Mallika T.; ...

    2018-02-07

    Layered material structures play a key role in enhancing electron–electron interactions to create correlated metallic phases that can transform into unconventional superconducting states. The quasi-two-dimensional electronic properties of such compounds are often inferred indirectly through examination of bulk properties. Here we use scanning tunneling microscopy to directly probe in cross-section the quasi-two-dimensional electronic states of the heavy fermion superconductor CeCoIn 5. Our measurements reveal the strong confined nature of quasiparticles, anisotropy of tunneling characteristics, and layer-by-layer modulated behavior of the precursor pseudogap gap phase. In the interlayer coupled superconducting state, the orientation of line defects relative to the d-wave ordermore » parameter determines whether in-gap states form due to scattering. Spectroscopic imaging of the anisotropic magnetic vortex cores directly characterizes the short interlayer superconducting coherence length and shows an electronic phase separation near the upper critical in-plane magnetic field, consistent with a Pauli-limited first-order phase transition into a pseudogap phase.« less

  19. The plasmasphere electron content paradox

    NASA Astrophysics Data System (ADS)

    Krall, J.; Huba, J. D.

    2016-09-01

    Measurements show that plasmasphere refilling rates decrease with increasing solar activity, while paradoxically, the vertical integration of the plasmasphere electron density (pTEC) increases with increasing solar activity. Using the Naval Research Laboratory SAMI2 (Sami2 is Another Model of the Ionosphere) and SAMI3 (Sami3 is Also a Model of the Ionosphere) codes, we simulate plasmasphere refilling following a model storm, reproducing this observed phenomenon. In doing so, we find that the refilling rate and resulting pTEC values are sensitive to the oxygen profile in the thermosphere and exosphere: the supply of H+ in the topside ionosphere is limited by the local O+ density, through H+O+→H++O charge exchange. At solar minimum, the O+ supply simply increases with the O density in the exosphere. At solar maximum, we find that O-O+ collisions limit the O+ density in the topside ionosphere such that it decreases with increasing O density. The paradox occurs because the pTEC metric gives electrons in the topside ionosphere more weight than electrons in the plasmasphere.

  20. High-quality ultrastructural preservation using cryofixation for 3D electron microscopy of genetically labeled tissues

    PubMed Central

    Boassa, Daniela; Hu, Junru; Romoli, Benedetto; Phan, Sebastien; Dulcis, Davide

    2018-01-01

    Electron microscopy (EM) offers unparalleled power to study cell substructures at the nanoscale. Cryofixation by high-pressure freezing offers optimal morphological preservation, as it captures cellular structures instantaneously in their near-native state. However, the applicability of cryofixation is limited by its incompatibility with diaminobenzidine labeling using genetic EM tags and the high-contrast en bloc staining required for serial block-face scanning electron microscopy (SBEM). In addition, it is challenging to perform correlated light and electron microscopy (CLEM) with cryofixed samples. Consequently, these powerful methods cannot be applied to address questions requiring optimal morphological preservation. Here, we developed an approach that overcomes these limitations; it enables genetically labeled, cryofixed samples to be characterized with SBEM and 3D CLEM. Our approach is broadly applicable, as demonstrated in cultured cells, Drosophila olfactory organ and mouse brain. This optimization exploits the potential of cryofixation, allowing for quality ultrastructural preservation for diverse EM applications. PMID:29749931

  1. Role of the kinematics of probing electrons in electron energy-loss spectroscopy of solid surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Silkin, V. M.; Krasovskii, E. E.

    2016-01-01

    Inelastic scattering of electrons incident on a solid surface is determined by two properties: (i) electronic response of the target system and (ii) the detailed quantum-mechanical motion of the projectile electron inside and in the vicinity of the target. We emphasize the equal importance of the second ingredient, pointing out the fundamental limitations of the conventionally used theoretical description of the electron energy-loss spectroscopy (EELS) in terms of the "energy-loss functions." Our approach encompasses the dipole and impact scattering as specific cases, with the emphasis on the quantum-mechanical treatment of the probe electron. Applied to the high-resolution EELS of Ag surface, our theory largely agrees with recent experiments, while some instructive exceptions are rationalized.

  2. Sketched oxide single-electron transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Siles, Pablo F.; Bi, Feng; Cen, Cheng; Bogorin, Daniela F.; Bark, Chung Wung; Folkman, Chad M.; Park, Jae-Wan; Eom, Chang-Beom; Medeiros-Ribeiro, Gilberto; Levy, Jeremy

    2011-06-01

    Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly `sketch' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides. In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ~1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.

  3. Microstructure-Induced Phonon Focusing Effects and Opportunities for Improved Material Quantification (Postprint)

    DTIC Science & Technology

    2012-02-01

    phonon interactions with electrons , electron -hole pairs, defects, super- lattices, and interfaces [1-4]. As pointed out by Hauser et. al. [3], and...phonon-phonon and electron - phonon scattering processes placed limits on the methods applicability. More recently, the advantages of using lower...texture effects. In particular, the elongated grains result in colonies that are largely cigar -shaped or cylindrical in their form, where elastic

  4. Improved Limits on Axionlike-Particle-Mediated P , T -Violating Interactions between Electrons and Nucleons from Electric Dipole Moments of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Stadnik, Y. V.; Dzuba, V. A.; Flambaum, V. V.

    2018-01-01

    In the presence of P , T -violating interactions, the exchange of axionlike particles between electrons and nucleons in atoms and molecules induces electric dipole moments (EDMs) of atoms and molecules. We perform calculations of such axion-exchange-induced atomic EDMs using the relativistic Hartree-Fock-Dirac method including electron core polarization corrections. We present analytical estimates to explain the dependence of these induced atomic EDMs on the axion mass and atomic parameters. From the experimental bounds on the EDMs of atoms and molecules, including Cs 133 , Tl 205 , Xe 129 , Hg 199 , Yb 171 F 19 , Hf 180 F+ 19 , and Th 232 O 16 , we constrain the P , T -violating scalar-pseudoscalar nucleon-electron and electron-electron interactions mediated by a generic axionlike particle of arbitrary mass. Our limits improve on existing laboratory bounds from other experiments by many orders of magnitude for ma≳10-2 eV . We also place constraints on C P violation in certain types of relaxion models.

  5. Free-Free Transitions of the e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident-Electron Energies

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron (external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and linearly polarized laser field. The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  6. Electronic transport in smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shiyanovskaya, I.; Singer, K. D.; Twieg, R. J.; Sukhomlinova, L.; Gettwert, V.

    2002-04-01

    Time-of-flight measurements of transient photoconductivity have revealed bipolar electronic transport in phenylnaphthalene and biphenyl liquid crystals (LC), which exhibit several smectic mesophases. In the phenylnaphthalene LC, the hole mobility is significantly higher than the electron mobility and exhibits different temperature and phase behavior. Electron mobility in the range ~10-5 cm2/V s is temperature activated and remains continuous at the phase transitions. However, hole mobility is nearly temperature independent within the smectic phases, but is very sensitive to smectic order, 10-3 cm2/V s in the smectic-B (Sm-B) and 10-4 cm2/V s in the smectic-A (Sm-A) mesophases. The different behavior for holes and electron transport is due to differing transport mechanisms. The electron mobility is apparently controlled by rate-limiting multiple shallow trapping by impurities, but hole mobility is not. To explain the lack of temperature dependence for hole mobility within the smectic phases we consider two possible polaron transport mechanisms. The first mechanism is based on the hopping of Holstein small polarons in the nonadiabatic limit. The polaron binding energy and transfer integral values, obtained from the model fit, turned out to be sensitive to the molecular order in smectic mesophases. A second possible scenario for temperature-independent hole mobility involves the competion between two different polaron mechanisms involving so-called nearly small molecular polarons and small lattice polarons. Although the extracted transfer integrals and binding energies are reasonable and consistent with the model assumptions, the limited temperature range of the various phases makes it difficult to distinguish between any of the models. In the biphenyl LCs both electron and hole mobilities exhibit temperature activated behavior in the range of 10-5 cm2/V s without sensitivity to the molecular order. The dominating transport mechanism is considered as multiple trapping in the impurity sites. Temperature-activated mobility was treated within the disorder formalism, and activation energy and width of density of states have been calculated.

  7. Limiting Superluminal Electron and Neutrino Velocities Using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2014-01-01

    The observation of two PetaelectronVolt (PeV)-scale neutrino events reported by Ice Cube allows one to place constraints on Lorentz invariance violation (LIV) in the neutrino sector. After first arguing that at least one of the PetaelectronVolt IceCube events was of extragalactic origin, I derive an upper limit for the difference between putative superluminal neutrino and electron velocities of less than or equal to approximately 5.6 x 10(exp -19) in units where c = 1, confirming that the observed PetaelectronVolt neutrinos could have reached Earth from extragalactic sources. I further derive a new constraint on the superluminal electron velocity, obtained from the observation of synchrotron radiation from the Crab Nebula flare of September, 2010. The inference that the greater than 1 GigaelectronVolt gamma-rays from synchrotron emission in the flare were produced by electrons of energy up to approx. 5.1 PetaelectronVolt indicates the nonoccurrence of vacuum Cerenkov radiation by these electrons. This implies a new, strong constraint on superluminal electron velocities delta(sub e) less than or equal to approximately 5 x 10(exp -21). It immediately follows that one then obtains an upper limit on the superluminal neutrino velocity alone of delta(sub v) less than or equal to approximately 5.6 x 10(exp -19), many orders of magnitude better than the time-of-flight constraint from the SN1987A neutrino burst. However, if the electrons are subluminal the constraint on the absolute value of delta(sub e) less than or equal to approximately 8 x 10(exp -17), obtained from the Crab Nebula gamma-ray spectrum, places a weaker constraint on superluminal neutrino velocity of delta(sub v) less than or equal to approximately 8 x 10(exp -17).

  8. Surface 3D nanostructuring by tightly focused laser pulse: simulations by Lagrangian code and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.

    2016-02-01

    There are many important applications in which the ultrashort diffraction-limited and therefore tightly focused laser pulses irradiates metal films mounted on dielectric substrate. Here we present the detailed picture of laser peeling and 3D structure formation of the thin (relative to a depth of a heat affected zone in the bulk targets) gold films on glass substrate. The underlying physics of such diffraction-limited laser peeling was not well understood previously. Our approach is based on a physical model which takes into consideration the new calculations of the two-temperature (2T) equation of state (2T EoS) and the two-temperature transport coefficients together with the coupling parameter between electron and ion subsystems. The usage of the 2T EoS and the kinetic coefficients is required because absorption of an ultrashort pulse with duration of 10-1000 fs excites electron subsystem of metal and transfers substance into the 2T state with hot electrons (typical electron temperatures 1-3 eV) and much colder ions. It is shown that formation of submicrometer-sized 3D structures is a result of the electron-ion energy transfer, melting, and delamination of film from substrate under combined action of electron and ion pressures, capillary deceleration of the delaminated liquid metal or semiconductor, and ultrafast freezing of molten material. We found that the freezing is going in non-equilibrium regime with strongly overcooled liquid phase. In this case the Stefan approximation is non-applicable because the solidification front speed is limited by the diffusion rate of atoms in the molten material. To solve the problem we have developed the 2T Lagrangian code including all this reach physics in. We also used the high-performance combined Monte- Carlo and molecular dynamics code for simulation of surface 3D nanostructuring at later times after completion of electron-ion relaxation.

  9. Theory of Raman scattering in coupled electron-phonon systems

    NASA Astrophysics Data System (ADS)

    Itai, K.

    1992-01-01

    The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.

  10. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution.

    PubMed

    Pennacchio, Francesco; Vanacore, Giovanni M; Mancini, Giulia F; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio

    2017-07-01

    Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 10 5 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.

  11. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution

    PubMed Central

    Pennacchio, Francesco; Vanacore, Giovanni M.; Mancini, Giulia F.; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio

    2017-01-01

    Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons. PMID:28713841

  12. Plasma potential and electron temperature evaluated by ball-pen and Langmuir probes in the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Dimitrova, M.; Popov, Tsv K.; Adamek, J.; Kovačič, J.; Ivanova, P.; Hasan, E.; López-Bruna, D.; Seidl, J.; Vondráček, P.; Dejarnac, R.; Stöckel, J.; Imríšek, M.; Panek, R.; the COMPASS Team

    2017-12-01

    The radial distributions of the main plasma parameters in the scrape-off-layer of the COMPASS tokamak are measured during L-mode and H-mode regimes by using both Langmuir and ball-pen probes mounted on a horizontal reciprocating manipulator. The radial profile of the plasma potential derived previously from Langmuir probes data by using the first derivative probe technique is compared with data derived using ball-pen probes. A good agreement can be seen between the data acquired by the two techniques during the L-mode discharge and during the H-mode regime within the inter-ELM periods. In contrast with the first derivative probe technique, the ball-pen probe technique does not require a swept voltage and, therefore, the temporal resolution is only limited by the data acquisition system. In the electron temperature evaluation, in the far scrape-off layer and in the limiter shadow, where the electron energy distribution is Maxwellian, the results from both techniques match well. In the vicinity of the last closed flux surface, where the electron energy distribution function is bi-Maxwellian, the ball-pen probe technique results are in agreement with the high-temperature components of the electron distribution only. We also discuss the application of relatively large Langmuir probes placed in parallel and perpendicularly to the magnetic field lines to studying the main plasma parameters. The results obtained by the two types of the large probes agree well. They are compared with Thomson scattering data for electron temperatures and densities. The results for the electron densities are compared also with the results from ASTRA code calculation of the electron source due to the ionization of the neutrals by fast electrons and the origin of the bi-Maxwellian electron energy distribution function is briefly discussed.

  13. Longitudinal dynamics of an intense electron beam

    NASA Astrophysics Data System (ADS)

    Harris, John Richardson

    2005-11-01

    The dynamics of charged particle beams are governed by the particles' thermal velocities, external focusing forces, and Coulomb forces. Beams in which Coulomb forces play the dominant role are known as space charge dominated, or intense. Intense beams are of great interest for heavy ion fusion, spallation neutron sources, free-electron lasers, and other applications. In addition, all beams of interest are dominated by space charge forces when they are first created, so an understanding of space charge effects is critical to explain the later evolution of any beam. Historically, more attention has been paid to the transverse dynamics of beams. However, many interesting and important effects in beams occur along their length. These longitudinal effects can be limiting factors in many systems. For example, modulation or structure applied to the beam at low energy will evolve under space charge forces. Depending on the intended use of the beam and the nature of the modulation, this may result in improved or degraded performance. To study longitudinal dynamics in intense beams, experiments were conducted using the University of Maryland Electron Ring, a 10 keV, 100 mA electron transport system. These experiments concentrated on space charge driven changes in beam length in parabolic and rectangular beams, beam density and velocity modulation, and space charge wave propagation. Coupling between the transverse and longitudinal dynamics was also investigated. These experiments involved operating the UMER gun in space charge limited, temperature limited, triode amplification, photon limited, and hybrid modes. Results of these experiments are presented here, along with a theoretical framework for understanding the longitudinal dynamics of intense beams.

  14. Exploring the energy landscape for Q(A)(-) to Q(B) electron transfer in bacterial photosynthetic reaction centers: effect of substrate position and tail length on the conformational gating step.

    PubMed

    Xu, Qiang; Baciou, Laura; Sebban, Pierre; Gunner, M R

    2002-08-06

    The ability to initiate reactions with a flash of light and to monitor reactions over a wide temperature range allows detailed analysis of reaction mechanisms in photosynthetic reaction centers (RCs) of purple bacteria. In this protein, the electron transfer from the reduced primary quinone (Q(A)(-)) to the secondary quinone (Q(B)) is rate-limited by conformational changes rather than electron tunneling. Q(B) movement from a distal to a proximal site has been proposed to be the rate-limiting change. The importance of quinone motion was examined by shortening the Q(B) tail from 50 to 5 carbons. No change in rate was found from 100 to 300 K. The temperature dependence of the rate was also measured in three L209 proline mutants. Under conditions where Q(B) is in the distal site in wild-type RCs, it is trapped in the proximal site in the Tyr L209 mutant [Kuglstatter, A., et al. (2001) Biochemistry 40, 4253-4260]. The electron transfer slows at low temperature for all three mutants as it does in wild-type protein, indicating that conformational changes still limit the reaction rate. Thus, Q(B) movement is unlikely to be the sole, rate-limiting conformational gating step. The temperature dependence of the reaction in the L209 mutants differs somewhat from wild-type RCs. Entropy-enthalpy compensation reduces the difference in rates and free energy changes at room temperature.

  15. [Occlusion treatment for amblyopia. Age dependence and dose-response relationship].

    PubMed

    Fronius, M

    2016-04-01

    Based on clinical experience and studies on animal models the age of 6-7 years was regarded as the limit for treatment of amblyopia, although functional improvement was also occasionally reported in older patients. New technical developments as well as insights from clinical studies and the neurosciences have attracted considerable attention to this topic. Various aspects of the age dependence of amblyopia treatment are discussed in this article, e. g. prescription, electronic monitoring of occlusion dosage, calculation of indicators for age-dependent plasticity of the visual system, and novel, alternative treatment approaches. Besides a discussion of the recent literature, results of studies by our "Child Vision Research Unit" in Frankfurt are presented: results of a questionnaire about prescription habits concerning age limits of patching, electronic recording of occlusion in patients beyond the conventional treatment age, calculation of dose-response function and efficiency of patching and their age dependence. The results of the questionnaire illustrate the uncertainty about age limits of prescription with significant deviations from the guideline of the German Ophthalmological Society (DOG). Electronic recording of occlusion allowed the quantification of declining dose-response function and treatment efficiency between 5 and 16 years of age. Reports about successful treatment with conventional and novel methods in adults are at variance with the notion of a rigid adult visual system lacking plasticity. Electronic recording of patching allowed new insights into the age-dependent susceptibility of the visual system and contributes to a more evidence-based treatment of amblyopia. Alternative approaches for adults challenge established notions about age limits of amblyopia therapy. Further studies comparing different treatment options are urgently needed.

  16. FLAVODIIRON2 and FLAVODIIRON4 Proteins Mediate an Oxygen-Dependent Alternative Electron Flow in Synechocystis sp. PCC 6803 under CO2-Limited Conditions1[OPEN

    PubMed Central

    Shimakawa, Ginga; Shaku, Keiichiro; Nishi, Akiko; Hayashi, Ryosuke; Yamamoto, Hiroshi; Sakamoto, Katsuhiko; Makino, Amane; Miyake, Chikahiro

    2015-01-01

    This study aims to elucidate the molecular mechanism of an alternative electron flow (AEF) functioning under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetic linear electron flow, evaluated as the quantum yield of photosystem II [Y(II)], reaches a maximum shortly after the onset of actinic illumination. Thereafter, Y(II) transiently decreases concomitantly with a decrease in the photosynthetic oxygen evolution rate and then recovers to a rate that is close to the initial maximum. These results show that CO2 limitation suppresses photosynthesis and induces AEF. In contrast to the wild type, Synechocystis sp. PCC 6803 mutants deficient in the genes encoding FLAVODIIRON2 (FLV2) and FLV4 proteins show no recovery of Y(II) after prolonged illumination. However, Synechocystis sp. PCC 6803 mutants deficient in genes encoding proteins functioning in photorespiration show AEF activity similar to the wild type. In contrast to Synechocystis sp. PCC 6803, the cyanobacterium Synechococcus elongatus PCC 7942 has no FLV proteins with high homology to FLV2 and FLV4 in Synechocystis sp. PCC 6803. This lack of FLV2/4 may explain why AEF is not induced under CO2-limited photosynthesis in S. elongatus PCC 7942. As the glutathione S-transferase fusion protein overexpressed in Escherichia coli exhibits NADH-dependent oxygen reduction to water, we suggest that FLV2 and FLV4 mediate oxygen-dependent AEF in Synechocystis sp. PCC 6803 when electron acceptors such as CO2 are not available. PMID:25540330

  17. Magnetically confined electron beam system for high resolution electron transmission-beam experiments

    NASA Astrophysics Data System (ADS)

    Lozano, A. I.; Oller, J. C.; Krupa, K.; Ferreira da Silva, F.; Limão-Vieira, P.; Blanco, F.; Muñoz, A.; Colmenares, R.; García, G.

    2018-06-01

    A novel experimental setup has been implemented to provide accurate electron scattering cross sections from molecules at low and intermediate impact energies (1-300 eV) by measuring the attenuation of a magnetically confined linear electron beam from a molecular target. High-resolution electron energy is achieved through confinement in a magnetic gas trap where electrons are cooled by successive collisions with N2. Additionally, we developed and present a method to correct systematic errors arising from energy and angular resolution limitations. The accuracy of the entire measurement procedure is validated by comparing the N2 total scattering cross section in the considered energy range with benchmark values available in the literature.

  18. Phase transition in the quantum limit of the Weyl semimetal TaAs

    NASA Astrophysics Data System (ADS)

    Ramshaw, Brad

    Under extreme magnetic fields, electrons in a metal are confined to a single highly-degenerate quantum state -a regime known as the quantum limit. This state is unstable to the formation of new states of matter, such as the fractional quantum Hall effect in two dimensions. The fate of 3D metals in the quantum limit, on the other hand, has been relatively unexplored. The discovery of monopnictide Weyl semimetals has renewed interest in the high-field properties of 3D electrons, particularly those with linear dispersions. Several difficulties in determining the high-field properties have arisen, including the highly anisotropic nature of the magnetoresistance, and the presence of trivial (parabolic) Fermi pockets that cloud the underlying behaviour of Weyl pockets. We use magnetic fields up to 90 Tesla to put the Weyl semimetal TaAs into its extreme quantum limit, isolating its linear 0th Landau level from the rest of the electronic spectrum. We find that a gap opens in the conductivity parallel to the magnetic field above 70 Tesla, and also find an abrupt reversal in the field-evolution of the sound velocity at the same magnetic field, suggesting a thermodynamic phase transition to a new state of matter. DOE BES ''Science at 100 T''.

  19. 32 CFR 1700.7 - Processing of requests for records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Information Act Request.” (b) Electronic Reading Room. ODNI maintains an online FOIA Reading Room... limit the scope of their requests in order to qualify for faster processing within the specified limits of its faster track. ...

  20. 32 CFR 1700.7 - Processing of requests for records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Information Act Request.” (b) Electronic Reading Room. ODNI maintains an online FOIA Reading Room... limit the scope of their requests in order to qualify for faster processing within the specified limits of its faster track. ...

  1. New self-magnetically insulated connection of multilevel accelerators to a common load

    DOE PAGES

    VanDevender, J. Pace; Langston, William L.; Pasik, Michael F.; ...

    2015-03-04

    A new way to connect pulsed-power modules to a common load is presented. Unlike previous connectors, the clam shell magnetically insulated transmission line (CSMITL) has magnetic nulls only at large radius where the cathode electric field is kept below the threshold for emission, has only a simply connected magnetic topology to avoid plasma motion along magnetic field lines into highly stressed gaps, and has electron injectors that ensure efficient electron flow even in the limiting case of self-limited MITLs. Multilevel magnetically insulated transmission lines with a posthole convolute are the standard solution but associated losses limit the performance of state-of-the-artmore » accelerators. Mitigating these losses is critical for the next generation of pulsed-power accelerators. A CSMITL has been successfully implemented on the Saturn accelerator. A reference design for the Z accelerator is derived and presented. The design conservatively meets the design requirements and shows excellent transport efficiency in three simulations of increasing complexity: circuit simulations, electromagnetic fields only with Emphasis, fields plus electron and ion emission with Quicksilver.« less

  2. Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce

    2015-08-03

    Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanismmore » based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.« less

  3. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy.

    PubMed

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  4. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  5. Short wavelength HgCdTe staring focal plane for low background astronomy applications

    NASA Technical Reports Server (NTRS)

    Hall, D.; Stobie, J.; Hartle, N.; Lacroix, D.; Maschhoff, K.

    1989-01-01

    The design of a 128x128 staring short wave infrared (SWIR) HgCdTe focal plane incorporating charge integrating transimpedance input preamplifiers is presented. The preamplifiers improve device linearity and uniformity, and provide signal gain ahead of the miltiplexer and readout circuitry. Detector's with cutoff wavelength of 2.5 microns and operated at 80 K have demonstrated impedances in excess of 10(exp 16) ohms with 60 percent quantum efficiency. Focal plane performance using a smaller format device is presented which demonstrates the potential of this approach. Although the design is capable of achieving less than 30 rms electrons with todays technology, initial small format devices demonstrated a read noise of 100 rms electrons and were limited by the atypical high noise performance of the silicon process run. Luminescence from the active silicon circuitry in the multiplexer limits the minimum detector current to a few hundred electrons per second. Approaches to eliminate this excessive source of current is presented which should allow the focal plane to achieve detector background limited performance.

  6. White dwarf stars exceeding the Chandrasekhar mass limit

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2018-01-01

    The effect of nonlinear ultra-relativistic electron dispersion on the mass-radius relation of high-mass white dwarfs is studied. The dispersion is described by a permeability tensor in the Dirac equation, generated by the ionized high-density stellar matter, which constitutes the neutralizing background of the nearly degenerate electron plasma. The electron dispersion results in a stable mass-radius relation for high-mass white dwarfs, in contrast to a mass limit in the case of vacuum permeabilities. In the ultra-relativistic regime, the dispersion relation is a power law whose amplitude and scaling exponent is inferred from mass and radius estimates of two high-mass white dwarfs, Sirius B and LHS 4033. Evidence for the existence of super-Chandrasekhar mass white dwarfs is provided by several Type Ia supernovae (e.g., SN 2013cv, SN 2003fg, SN 2007if and SN 2009dc), whose mass ejecta exceed the Chandrasekhar limit by up to a factor of two. The dispersive mass-radius relation is used to estimate the radii, central densities, Fermi temperatures, bulk and compression moduli and sound velocities of their white dwarf progenitors.

  7. Axion Induced Oscillating Electric Dipole Moment of the Electron

    DOE PAGES

    Hill, Christopher T.

    2016-01-12

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10 -32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ ta(t) ∝ m α → 0. The analysis is subtle, and we find the general form of the action involves a local contact interactionmore » and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (m e >> m a). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less

  8. Axion Induced Oscillating Electric Dipole Moment of the Electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher T.

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10 -32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ ta(t) ∝ m α → 0. The analysis is subtle, and we find the general form of the action involves a local contact interactionmore » and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (m e >> m a). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less

  9. Rival Theories of Newsreading in the Electronic Newspaper Arena.

    ERIC Educational Resources Information Center

    Dozier, David M.

    Emerging videotex news services--systems for distributing textual information on television screens that permit direct competition with pulp newspapers--are presently rooted in a limited theory of newsreading. The first of two rival theories of newsreading applicable to electronic newspapers is "uses and gratifications" research--the…

  10. Hold the Applause!: Do Accelerated Reader (TM) and Electronic Bookshelf (TM) Send the Right Message?

    ERIC Educational Resources Information Center

    Carter, Betty

    1996-01-01

    Although the computerized reading management programs, Accelerated Reader and Electronic Bookshelf, increase library circulation and standardized test scores, they have drawbacks. Both programs devalue reading, diminish motivation, limit title choice, restrict materials selection and collection development, discourage independent selection of…

  11. Maximizing the Effectiveness of Electronic Presentations.

    ERIC Educational Resources Information Center

    Quible, Zane K.

    2002-01-01

    Notes that the manner in which the author was using the incorporation of electronic slides into his lectures allowed students to become disengaged from the learning process. Presents strategies to combat disengagement and strategies to supplement textbook slides. Concludes that student disengagement can be counteracted with limited expenditure of…

  12. Single-Molecule Electronic Measurements with Metal Electrodes

    ERIC Educational Resources Information Center

    Lindsay, Stuart

    2005-01-01

    A review of concepts like tunneling through a metal-molecule-metal-junction, contrast with electrochemical and optical-charge injection, strong-coupling limit, calculations of tunnel transport, electron transfer through Redox-active molecules is presented. This is followed by a discussion of experimental approaches for single-molecule measurements.

  13. Cosmic-ray electrons and galactic radio emission - A conflict

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Daniel, R. R.; Stephens, S. A.

    1977-01-01

    An analysis which takes into account the observed energy spectrum of cosmic-ray electrons above 5 GeV and calculated mean magnetic field data shows that the observed spectral index of the radio continuum in the Galaxy is in conflict with some of the cosmic-ray electron measurements. It is found that the absolute intensities of cosmic-ray electrons measured by some of the experimenters are so low that they cannot be reconciled either with the interstellar magnetic field limits or with the extent of the galactic disk toward the anticenter.

  14. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cultrera, L.; Gulliford, C.; Bartnik, A.

    2016-03-28

    The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.

  15. Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Q.; Liang, Y. X.; Ferry, D.

    2014-07-07

    We report on the results obtained from specially designed high electron mobility transistors at 4.2 K: the gate leakage current can be limited lower than 1 aA, and the equivalent input noise-voltage and noise-current at 1 Hz can reach 6.3 nV/Hz{sup 1∕2} and 20 aA/Hz{sup 1∕2}, respectively. These results open the way to realize high performance low-frequency readout electronics under very low-temperature conditions.

  16. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF.

    PubMed

    Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L

    2012-10-01

    We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

  17. New determination of the fine structure constant from the electron value and QED.

    PubMed

    Gabrielse, G; Hanneke, D; Kinoshita, T; Nio, M; Odom, B

    2006-07-21

    Quantum electrodynamics (QED) predicts a relationship between the dimensionless magnetic moment of the electron (g) and the fine structure constant (alpha). A new measurement of g using a one-electron quantum cyclotron, together with a QED calculation involving 891 eighth-order Feynman diagrams, determine alpha(-1)=137.035 999 710 (96) [0.70 ppb]. The uncertainties are 10 times smaller than those of nearest rival methods that include atom-recoil measurements. Comparisons of measured and calculated g test QED most stringently, and set a limit on internal electron structure.

  18. Kinetic Theory of Electronic Transport in Random Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew

    2018-03-01

    We present the theory of quasiparticle transport in perturbatively small inhomogeneous magnetic fields across the ballistic-to-hydrodynamic crossover. In the hydrodynamic limit, the resistivity ρ generically grows proportionally to the rate of momentum-conserving electron-electron collisions at large enough temperatures T . In particular, the resulting flow of electrons provides a simple scenario where viscous effects suppress conductance below the ballistic value. This new mechanism for ρ ∝T2 resistivity in a Fermi liquid may describe low T transport in single-band SrTiO3 .

  19. Kinetic Theory of Electronic Transport in Random Magnetic Fields.

    PubMed

    Lucas, Andrew

    2018-03-16

    We present the theory of quasiparticle transport in perturbatively small inhomogeneous magnetic fields across the ballistic-to-hydrodynamic crossover. In the hydrodynamic limit, the resistivity ρ generically grows proportionally to the rate of momentum-conserving electron-electron collisions at large enough temperatures T. In particular, the resulting flow of electrons provides a simple scenario where viscous effects suppress conductance below the ballistic value. This new mechanism for ρ∝T^{2} resistivity in a Fermi liquid may describe low T transport in single-band SrTiO_{3}.

  20. Energy-filtered cold electron transport at room temperature.

    PubMed

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

Top