Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F
2016-07-08
Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.
Barnes, M P; Ebert, M A
2008-03-01
The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.
NASA Astrophysics Data System (ADS)
Lee, Chang Yeol; Kim, Woo Chul; Kim, Hun Jeong; Huh, Hyun Do; Park, Seungwoo; Choi, Sang Hyoun; Kim, Kum Bae; Min, Chul Kee; Kim, Seong Hoon; Shin, Dong Oh
2017-02-01
The purpose of this study is to perform a comparison and on analysis of measured dose factor values by using various commercially available high-energy electron beam detectors to measure dose profiles and energy property data. By analyzing the high-energy electron beam data from each detector, we determined the optimal detector for measuring electron beams in clinical applications. The dose linearity, dose-rate dependence, percentage depth dose, and dose profile of each detector were measured to evaluate the dosimetry characteristics of high-energy electron beams. The dose profile and the energy characteristics of high-energy electron beams were found to be different when measured by different detectors. Through comparison with other detectors based on the analyzed data, the microdiamond detector was found to have outstanding dose linearity, a low dose-rate dependency, and a small effective volume. Thus, this detector has outstanding spatial resolution and is the optimal detector for measuring electron beams. Radiation therapy results can be improved and related medical accidents can be prevented by using the procedure developed in this research in clinical practice for all beam detectors when measuring the electron beam dose.
NASA Astrophysics Data System (ADS)
Hackett, S. L.; van Asselen, B.; Wolthaus, J. W. H.; Bluemink, J. J.; Ishakoglu, K.; Kok, J.; Lagendijk, J. J. W.; Raaymakers, B. W.
2018-05-01
The transverse magnetic field of an MRI-linac sweeps contaminant electrons away from the radiation beam. Films oriented perpendicular to the magnetic field and 5 cm from the radiation beam edge show a projection of the divergent beam, indicating that contaminant electrons spiral along magnetic field lines and deposit dose on surfaces outside the primary beam perpendicular to the magnetic field. These spiraling contaminant electrons (SCE) could increase skin doses to protruding regions of the patient along the cranio-caudal axis. This study investigated doses from SCE for an MRI-linac comprising a 7 MV linac and a 1.5 T MRI scanner. Surface doses to films perpendicular to the magnetic field and 5 cm from the radiation beam edge showed increased dose within the projection of the primary beam, whereas films parallel to the magnetic field and 5 cm from the beam edge showed no region of increased dose. However, the dose from contaminant electrons is absorbed within a few millimeters. For large fields, the SCE dose is within the same order of magnitude as doses from scattered and leakage photons. Doses for both SCE and scattered photons decrease rapidly with decreasing beam size and increasing distance from the beam edge.
Response of TLD-100 in mixed fields of photons and electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawless, Michael J.; Junell, Stephanie; Hammer, Cliff
Purpose: Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. Methods: TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable {sup 60}Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam.more » The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the {sup 60}Co beam. Irradiations were performed in water and in a Virtual Water Trade-Mark-Sign phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. Results: TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. Conclusions: The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.« less
Response of TLD-100 in mixed fields of photons and electrons.
Lawless, Michael J; Junell, Stephanie; Hammer, Cliff; DeWerd, Larry A
2013-01-01
Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable (60)Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam. The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the (60)Co beam. Irradiations were performed in water and in a Virtual Water™ phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.
SU-F-T-68: Characterizes of Microdetectors in Electron Beam Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, I; Andersen, A; Akino, Y
Purpose: Electron beam dosimetry requires high resolution data due to finite range that can be accomplished with small volume detectors. The small-field used in advance technologies in photon beam has created a market for microdetectors, however characteristics are significantly variable in photon beams and relatively unknown in electron beam that is investigated in this study. Methods: Among nearly 2 dozen microdetectors that have been investigated in small fields of photon beam, two popular detectors (microDiamond 60019 (PTW)) and W1 plastic scintillator detector (Standard Imaging)) that are tissue equivalent and have very small sensitive volume are selected. Electron beams from Varianmore » linear accelerators were used to investigate dose linearity dose rate dependence, energy dependence, depth dose and profiles in a reference condition in a water phantom. For W1 that has its own Supermax electrometer point by point measurements were performed. For microDiamond, a PTW-scanning tank was used for both scanning and point dose measurements. Results: W1 detector showed excellent dose linearity (r{sup 2} =1.0) from 5–500 MU either with variation of dose rate or beam energy. Similar findings were also observed for microdiamond with r{sup 2}=1.0. Percent variations in dose/MU for W1 and microDiamond were 0.2–1.1% and 0.4–1.2%, respectively among dose rate and beam energy. This variation was random for microDiamond, whereas it decreased with beam energy and dose rate for W1. The depth dose and profiles were within ±1 mm for both detectors. Both detectors did not show any energy dependence in electron beams. Conclusion: Both microDiamond and W1 detectors provided superior characteristics of beam parameters in electron beam including dose, dose rate linearity and energy independence. Both can be used in electron beam except W1 require point by point measurements and microdiamond requires 1500 MU for initial quenching.« less
Quantitative Analysis of Electron Beam Damage in Organic Thin Films
2017-01-01
In transmission electron microscopy (TEM) the interaction of an electron beam with polymers such as P3HT:PCBM photovoltaic nanocomposites results in electron beam damage, which is the most important factor limiting acquisition of structural or chemical data at high spatial resolution. Beam effects can vary depending on parameters such as electron dose rate, temperature during imaging, and the presence of water and oxygen in the sample. Furthermore, beam damage will occur at different length scales. To assess beam damage at the angstrom scale, we followed the intensity of P3HT and PCBM diffraction rings as a function of accumulated electron dose by acquiring dose series and varying the electron dose rate, sample preparation, and the temperature during acquisition. From this, we calculated a critical dose for diffraction experiments. In imaging mode, thin film deformation was assessed using the normalized cross-correlation coefficient, while mass loss was determined via changes in average intensity and standard deviation, also varying electron dose rate, sample preparation, and temperature during acquisition. The understanding of beam damage and the determination of critical electron doses provides a framework for future experiments to maximize the information content during the acquisition of images and diffraction patterns with (cryogenic) transmission electron microscopy. PMID:28553431
Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V
2012-06-01
To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, C; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Nitsch, P
Purpose: To investigate out-of-field electron doses and neutron production from electron beams from modern Varian and Elekta linear accelerators. Methods: Electron dose measurements were made using 10×10cm{sup 2} applicators on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at energies from 6 to 20 MeV. Out-of-field dose profiles and PDD curves were measured in a Wellhofer water phantom using a Farmer chamber. Neutron measurements were made with a combination of moderator buckets and gold activation-foils placed on the treatment couch at various locations in the patient plane on both the 21iX and Versa HD linear accelerators.more » Results: Electron doses were highest for the highest electron energies. Dose profile curves for the Varian units were found to be lower than those from the Versa HD unit, and were lower than photon beams. Elekta’s dose profiles were higher and exhibited a second dose peak around 20–30 cm from central-axis. Electron doses in this region (0.8–1.3% of dmax at central-axis) were close to 5 times (2.5–4.8) greater than doses from photon beams with similar energies. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. Q-values and neutron dose equivalent increased with energy and were typically higher on central-axis. 18 MV photon beam neutron dose equivalents were greater than any electron beam, being approximately 40 times greater than for the 20 MeV electron beam (21iX). Conclusion: The Versa HD exhibited higher than expected out-of-field electron doses in comparison to typical radiotherapy photon beams. Fortunately, out-of-field electron doses can be substantially reduced by applying a water-equivalent bolus with thickness of E(MeV)/4 in cm. Neutron contamination from clinical electron beams can be considered negligible in relation to photon beams but may need to be considered for special cases. This work was supported by Public Health Service Grant CA180803 awarded by the National Cancer Institute, United States Department of Health and Human Services.« less
Monte Carlo study of si diode response in electron beams.
Wang, Lilie L W; Rogers, David W O
2007-05-01
Silicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc. The results indicate that, for this particular diode model, the diode response per unit water dose (or water/diode dose ratio) in both 6 and 18 MeV electron beams is flat within 2% versus depth, from near the phantom surface to the depth of R50 (with calculation uncertainty <0.3%). This suggests that there must be some other correction factors for ion chambers that counter-balance the large wall correction factor at depth in electron beams. In addition, the beam quality and field-size dependence of the diode model are also calculated. The results show that the water/diode dose ratio remains constant within 2% over the electron energy range from 6 to 18 MeV. The water/diode dose ratio does not depend on field size as long as the incident electron beam is broad and the electron energy is high. However, for a very small beam size (1 X 1 cm(2)) and low electron energy (6 MeV), the water/diode dose ratio may decrease by more than 2% compared to that of a broad beam.
Dose properties of a laser accelerated electron beam and prospects for clinical application.
Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D; Chiu, C; Fomytskyi, M; Raischel, F; Downer, M; Tajima, T
2004-07-01
Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25 x 25 cm2 field. An energy window (deltaE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to deltaE. However, since the falloff of the depth-dose curve (R10-R90) and the dose rate both increase with deltaE, a tradeoff between minimizing (R10-R90) and maximizing dose rate is implied. If deltaE is constrained so that R10-R90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min(-1) for a 9 MeV beam and 0.03 Gy min(-1) for a 15 MeV beam. It was concluded that current LWFA technology should allow a table-top terawatt (T3) laser to produce therapeutic electron beams that have acceptable flatness, penetration, and falloff of depth dose; however, the dose rate is still 1%-3% of that which would be acceptable, especially for higher-energy electron beams. Further progress in laser technology, e.g., increasing the pulse repetition rate or number of high energy electrons generated per pulse, is necessary to give dose rates acceptable for electron beams. Future measurements confirming dosimetric calculations are required to substantiate our results. In addition to achieving adequate dose rate, significant engineering developments are needed for this technology to compete with current electron acceleration technology. Also, the functional benefits of LWFA electron beams require further study and evaluation.
Thermoluminescent dosimetry in electron beams: energy dependence.
Robar, V; Zankowski, C; Olivares Pla, M; Podgorsak, E B
1996-05-01
The response of thermoluminescent dosimeters to electron irradiations depends on the radiation dose, mean electron energy at the position of the dosimeter in phantom, and the size of the dosimeter. In this paper the semi-empirical expression proposed by Holt et al. [Phys. Med. Biol. 20, 559-570 (1975)] is combined with the calculated electron dose fraction to determine the thermoluminescent dosimetry (TLD) response as a function of the mean electron energy and the dosimeter size. The electron and photon dose fractions, defined as the relative contributions of electrons and bremsstrahlung photons to the total dose for a clinical electron beam, are calculated with Monte Carlo techniques using EGS4. Agreement between the calculated and measured TLD response is very good. We show that the considerable reduction in TLD response per unit dose at low electron energies, i.e., at large depths in phantom, is offset by an ever-increasing relative contribution of bremsstrahlung photons to the total dose of clinical electron beams. This renders the TLD sufficiently reliable for dose measurements over the entire electron depth dose distribution despite the dependence of the TLD response on electron beam energy.
NASA Astrophysics Data System (ADS)
Jong, W. L.; Ung, N. M.; Tiong, A. H. L.; Rosenfeld, A. B.; Wong, J. H. D.
2018-03-01
The aim of this study is to investigate the fundamental dosimetric characteristics of the MOSkin detector for megavoltage electron beam dosimetry. The reproducibility, linearity, energy dependence, dose rate dependence, depth dose measurement, output factor measurement, and surface dose measurement under megavoltage electron beam were tested. The MOSkin detector showed excellent reproducibility (>98%) and linearity (R2= 1.00) up to 2000 cGy for 4-20 MeV electron beams. The MOSkin detector also showed minimal dose rate dependence (within ±3%) and energy dependence (within ±2%) over the clinical range of electron beams, except for an energy dependence at 4 MeV electron beam. An energy dependence correction factor of 1.075 is needed when the MOSkin detector is used for 4 MeV electron beam. The output factors measured by the MOSkin detector were within ±2% compared to those measured with the EBT3 film and CC13 chamber. The measured depth doses using the MOSkin detector agreed with those measured using the CC13 chamber, except at the build-up region due to the dose volume averaging effect of the CC13 chamber. For surface dose measurements, MOSkin measurements were in agreement within ±3% to those measured using EBT3 film. Measurements using the MOSkin detector were also compared to electron dose calculation algorithms namely the GGPB and eMC algorithms. Both algorithms were in agreement with measurements to within ±2% and ±4% for output factor (except for the 4 × 4 cm2 field size) and surface dose, respectively. With the uncertainties taken into account, the MOSkin detector was found to be a suitable detector for dose measurement under megavoltage electron beam. This has been demonstrated in the in vivo skin dose measurement on patients during electron boost to the breast tumour bed.
Optimization of combined electron and photon beams for breast cancer
NASA Astrophysics Data System (ADS)
Xiong, W.; Li, J.; Chen, L.; Price, R. A.; Freedman, G.; Ding, M.; Qin, L.; Yang, J.; Ma, C.-M.
2004-05-01
Recently, intensity-modulated radiation therapy and modulated electron radiotherapy have gathered a growing interest for the treatment of breast and head and neck tumours. In this work, we carried out a study to combine electron and photon beams to achieve differential dose distributions for multiple target volumes simultaneously. A Monte Carlo based treatment planning system was investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We compared breast treatment plans generated using this home-grown optimization and dose calculation software for different treatment techniques. Five different planning techniques have been developed for this study based on a standard photon beam whole breast treatment and an electron beam tumour bed cone down. Technique 1 includes two 6 MV tangential wedged photon beams followed by an anterior boost electron field. Technique 2 includes two 6 MV tangential intensity-modulated photon beams and the same boost electron field. Technique 3 optimizes two intensity-modulated photon beams based on a boost electron field. Technique 4 optimizes two intensity-modulated photon beams and the weight of the boost electron field. Technique 5 combines two intensity-modulated photon beams with an intensity-modulated electron field. Our results show that technique 2 can reduce hot spots both in the breast and the tumour bed compared to technique 1 (dose inhomogeneity is reduced from 34% to 28% for the target). Techniques 3, 4 and 5 can deliver a more homogeneous dose distribution to the target (with dose inhomogeneities for the target of 22%, 20% and 9%, respectively). In many cases techniques 3, 4 and 5 can reduce the dose to the lung and heart. It is concluded that combined photon and electron beam therapy may be advantageous for treating breast cancer compared to conventional treatment techniques using tangential wedged photon beams followed by a boost electron field.
SU-E-T-137: The Response of TLD-100 in Mixed Fields of Photons and Electrons.
Lawless, M; Junell, S; Hammer, C; DeWerd, L
2012-06-01
Thermoluminescent dosimeters are used routinely for dosimetric measurements of photon and electron fields. However, no work has been published characterizing TLDs for use in combined photon and electron fields. This work investigates the response of TLD-100 (LiF:Mg,Ti) in mixed fields of photon and electron beam qualities. TLDs were irradiated in a 6 MV photon beam, 6 MeV electron beam, and a NIST traceable cobalt-60 beam. TLDs were also irradiated in a mixed field of the electron and photon beams. All irradiations were normalized to absorbed dose to water as defined in the AAPM TG-51 report. The average response per dose (nC/Gy) for each linac beam quality was normalized to the average response per dose of the TLDs irradiated by the cobalt-60 standard.Irradiations were performed in a water tank and a Virtual Water™ phantom. Two TLD dose calibration curves for determining absorbed dose to water were generated using photon and electron field TLD response data. These individual beam quality dose calibration curves were applied to the TLDs irradiated in the mixed field. The TLD response in the mixed field was less sensitive than the response in the photon field and more sensitive than the response in the electron field. TLD determination of dose in the mixed field using the dose calibration curve generated by TLDs irradiated by photons resulted in an underestimation of the delivered dose, while the use of a dose calibration curve generated using electrons resulted in an overestimation of the delivered dose. The relative response of TLD-100 in mixed fields fell consistently between the photon nd electron relative responses. When using TLD-100 in mixed fields, the user must account for this intermediate response to avoid an over- or underestimation of the dose due to calibration in a single photon or electron field. © 2012 American Association of Physicists in Medicine.
Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.
Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A
2016-11-01
Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.
Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope
Johnston-Peck, Aaron C.; DuChene, Joseph S.; Roberts, Alan D.; Wei, Wei David; Herzing, Andrew A.
2016-01-01
Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300 keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. PMID:27469265
Zheng, Xiao J; Chow, James C L
2017-01-01
AIM To investigated the dose enhancement due to the incorporation of nanoparticles in skin therapy using the kilovoltage (kV) photon and megavoltage (MV) electron beams. Monte Carlo simulations were used to predict the dose enhancement when different types and concentrations of nanoparticles were added to skin target layers of varying thickness. METHODS Clinical kV photon beams (105 and 220 kVp) and MV electron beams (4 and 6 MeV), produced by a Gulmay D3225 orthovoltage unit and a Varian 21 EX linear accelerator, were simulated using the EGSnrc Monte Carlo code. Doses at skin target layers with thicknesses ranging from 0.5 to 5 mm for the photon beams and 0.5 to 10 mm for the electron beams were determined. The skin target layer was added with the Au, Pt, I, Ag and Fe2O3 nanoparticles with concentrations ranging from 3 to 40 mg/mL. The dose enhancement ratio (DER), defined as the dose at the target layer with nanoparticle addition divided by the dose at the layer without nanoparticle addition, was calculated for each nanoparticle type, nanoparticle concentration and target layer thickness. RESULTS It was found that among all nanoparticles, Au had the highest DER (5.2-6.3) when irradiated with kV photon beams. Dependence of the DER on the target layer thickness was not significant for the 220 kVp photon beam but it was for 105 kVp beam for Au nanoparticle concentrations higher than 18 mg/mL. For other nanoparticles, the DER was dependent on the atomic number of the nanoparticle and energy spectrum of the photon beams. All nanoparticles showed an increase of DER with nanoparticle concentration during the photon beam irradiations regardless of thickness. For electron beams, the Au nanoparticles were found to have the highest DER (1.01-1.08) when the beam energy was equal to 4 MeV, but this was drastically lower than the DER values found using photon beams. The DER was also found affected by the depth of maximum dose of the electron beam and target thickness. For other nanoparticles with lower atomic number, DERs in the range of 0.99-1.02 were found using the 4 and 6 MeV electron beams. CONCLUSION In nanoparticle-enhanced skin therapy, Au nanoparticle addition can achieve the highest dose enhancement with 105 kVp photon beams. Electron beams, while popular for skin therapy, did not produce as high dose enhancements as kV photon beams. Additionally, the DER is dependent on nanoparticle type, nanoparticle concentration, skin target thickness and energies of the photon and electron beams. PMID:28298966
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, C; Nitsch, P; Kudchadker, R
2015-06-15
Purpose: Accurately determining out-of-field doses when using electron beam radiotherapy is of importance when treating pregnant patients or patients with implanted electronic devices. Scattered doses outside of the applicator field in electron beams have not been broadly investigated, especially since manufacturers have taken different approaches in applicator designs. Methods: In this study, doses outside of the applicator field were measured for electron beams produced by a 10×10 applicator on two Varian 21iXs operating at 6, 9, 12, 16, and 20 MeV, a Varian TrueBeam operating at 6, 9, 12, 16, and 20 MeV, and an Elekta Versa HD operating atmore » 6, 9, 12 and 15 MeV. Peripheral dose profiles and percent depth doses were measured in a Wellhofer water phantom at 100 cm SSD with a Farmer ion chamber. Doses were compared to peripheral photon doses from AAPM’s Task Group #36 report. Results: Doses were highest for the highest electron energies. Doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. Substantial dose differences were observed between different accelerators; the Elekta accelerator had much higher doses than any Varian unit examined. Surprisingly, doses were often similar to, and could be much higher than, doses from photon therapy. Doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. Conclusion: The results of this study indicate that proper shielding may be very important when utilizing electron beams, particularly on a Versa HD, while treating pregnant patients or those with implanted electronic devices. Applying a water equivalent bolus of Emax(MeV)/4 thickness (cm) on the patient would reduce fetal dose drastically for all clinical energies and is a practical solution to manage the potentially high peripheral doses seen from modern electron beams. Funding from NIH Grant number: #CA180803.« less
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance
Liuzzi, Raffaele; Savino, Federica; D’Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Background Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2–12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. Methods LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0–10 Gy in step of 2Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. Results The TLD-100 dose-response curves were obtained. In the dose range of 0–10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). Conclusions This study demonstrates that the TLD dose response, for doses ≤10Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided. PMID:26427065
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance.
Liuzzi, Raffaele; Savino, Federica; D'Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2-12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0-10 Gy in step of 2 Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. The TLD-100 dose-response curves were obtained. In the dose range of 0-10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). This study demonstrates that the TLD dose response, for doses ≤10 Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided.
A diamond detector in the dosimetry of high-energy electron and photon beams.
Laub, W U; Kaulich, T W; Nüsslin, F
1999-09-01
A diamond detector type 60003 (PTW Freiburg) was examined for the purpose of dosimetry with 4-20 MeV electron beams and 4-25 MV photon beams. Results were compared with those obtained by using a Markus chamber for electron beams and an ionization chamber for photon beams. Dose distributions were measured in a water phantom with the detector connected to a Unidos electrometer (PTW Freiburg). After a pre-irradiation of about 5 Gy the diamond detector shows a stability in response which is better than that of an ionization chamber. The current of the diamond detector was measured under variation of photon beam dose rate between 0.1 and 7 Gy min(-1). Different FSDs were chosen. Furthermore the pulse repetition frequency and the depth of the detector were changed. The electron beam dose rate was varied between 0.23 and 4.6 Gy min(-1) by changing the pulse-repetition frequency. The response shows no energy dependence within the covered photon-beam energy range. Between 4 MeV and 18 MeV electron beam energy it shows only a small energy dependence of about 2%, as expected from theory. For smaller electron energies the response increases significantly and an influence of the contact material used for the diamond detector can be surmised. A slight sublinearity of the current and dose rate was found. Detector current and dose rate are related by the expression i alpha Ddelta, where i is the detector current, D is the dose rate and delta is a correction factor of approximately 0.963. Depth-dose curves of photon beams, measured with the diamond detector, show a slight overestimation compared with measurements with the ionization chamber. This overestimation is compensated for by the above correction term. The superior spatial resolution of the diamond detector leads to minor deviations between depth-dose curves of electron beams measured with a Markus chamber and a diamond detector.
NASA Astrophysics Data System (ADS)
Shih, Tian-Yu; Yen, Tsung-Hsien; Liu, Yan-Lin; Luzhbin, Dmytro; Wu, Jay
2017-11-01
The advantage of electron beam radiotherapy is that the absorbed dose rapidly decreases with the increasing depth, which can prevent damage to deeper organs and tissues. Accurately evaluating the absorbed dose in the superficial tumor is imperative. This study assessed the characteristics of electron beams by using the N-isopropyl-acrylamide (n-NIPAM) gel dosimeter. The n-NIPAM gel was composed of 6% gelatin, 5% monomer, and 2.5% cross-linker with 5 mM tetrakis (hydroxymethyl) phosphonium chloride for deoxygenation. The gel was irradiated with 6-, 9-, and 12-MeV electron beams with dose rates of 100-600 MU/min, respectively. The energy dependence and dose rate dependence were assessed. The beam profiles and percentage depth doses were measured and compared with the results of the Gafchromic film and ionization chamber. The linearity of the n-NIPAM gel under 6-, 9-, and 12-MeV electrons was larger than 0.990 with 2% variation in sensitivity. The sensitivity of the gel under 100-600 MU/min showed 5% variations. The energy and dose rate dependence can be negligible. The beam profiles and percentage depth doses measured by the n-NIPAM gel matched well with the results of the ionization chamber and film. This study reveals the possibility of using the n-NIPAM gel dosimeter for electron beam measurements in clinical radiotherapy.
Surface dose measurements for highly oblique electron beams.
Ostwald, P M; Kron, T
1996-08-01
Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y; Chang, A; Liu, Y
Purpose: Electron beams are commonly used for boost radiation following whole breast irradiation (WBI) to improve the in-breast local control. Proton beams have a finite range and a sharper distal dose falloff compared to electron beams, thus potentially sparing more heart and lung in breast treatment. The purpose of the study is to compare protons with electrons for boost breast treatment in terms of target coverage and normal tissue sparing. Methods: Six breast cancer patients were included in this study. All women received WBI to 45–50 Gy, followed by a 10–16.2 Gy boost with standard fractionation. If proton beams weremore » used for the boost treatment, an electron plan was retrospectively generated for comparison using the same CT set and structures, and vice versa if electron beams were used for treatment. Proton plans were generated using the treatment planning system (TPS) with two to three uniform scanning proton beams. Electron plans were generated using the Pinnacle TPS with one single en face beam. Dose-volume histograms (DVH) were calculated and compared between proton and electron boost plans. Results: Proton plans show a similar boost target coverage, similar skin dose, and much better heart and lung sparing. For an example patient, V95% for PTV was 99.98% and skin (5 mm shell) received a max dose close to the prescription dose for both protons and electrons; however, V2 and V5 for the ipsilateral lung and heart were 37.5%, 17.9% and 19.9%, 4.9% respectively for electrons, but were essentially 0 for protons. Conclusions: This dosimetric comparison demonstrates that while both proton therapy and electron therapy provided similar coverage and skin dose, proton therapy could largely reduce the dose to lung and heart, thus leading to potential less side effects.« less
Jaccard, Maud; Durán, Maria Teresa; Petersson, Kristoffer; Germond, Jean-François; Liger, Philippe; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François; Bailat, Claude
2018-02-01
The Oriatron eRT6 is an experimental high dose-per-pulse linear accelerator (linac) which was designed to deliver an electron beam with variable dose-rates, ranging from a few Gy/min up to hundreds of Gy/s. It was built to study the radiobiological effects of high dose-per-pulse/dose-rate electron beam irradiation, in the context of preclinical and cognitive studies. In this work, we report on the commissioning and beam monitoring of the Oriatron eRT6 prototype linac. The beam was characterized in different steps. The output stability was studied by performing repeated measurements over a period of 20 months. The relative output variations caused by changing beam parameters, such as the temporal electron pulse width, the pulse repetition frequency and the pulse amplitude were also analyzed. Finally, depth dose curves and field sizes were measured for two different beam settings, resulting in one beam with a conventional radiotherapy dose-rate and one with a much higher dose-rate. Measurements were performed with Gafchromic EBT3 films and with a PTW Advanced Markus ionization chamber. In addition, we developed a beam current monitoring system based on the signals from an induction torus positioned at the beam exit of the waveguide and from a graphite beam collimator. The stability of the output over repeated measurements was found to be good, with a standard deviation smaller than 1%. However, non-negligible day-to-day variations of the beam output were observed. Those output variations showed different trends depending on the dose-rate. The analysis of the relative output variation as a function of various beam parameters showed that in a given configuration, the dose-rate could be reliably varied over three orders of magnitude. Interdependence effects on the output variation between the parameters were also observed. The beam energy and field size were found to be slightly dose-rate-dependent and suitable mainly for small animal irradiation. The beam monitoring system was able to measure in a reproducible way the total charge of electrons that exit the machine, as long as the electron pulse amplitude remains above a given threshold. Furthermore, we were able to relate the charge measured with the monitoring system to the absorbed dose in a solid water phantom. The Oriatron eRT6 was successfully commissioned for preclinical use and is currently in full operation, with studies being performed on the radiobiological effects of high dose-per-pulse irradiation. © 2017 American Association of Physicists in Medicine.
Mrázová, H; Koller, J; Kubišová, K; Fujeríková, G; Klincová, E; Babál, P
2016-06-01
Sterilization is an important step in the preparation of biological material for transplantation. The aim of the study is to compare morphological changes in three types of biological tissues induced by different doses of gamma and electron beam radiation. Frozen biological tissues (porcine skin xenografts, human skin allografts and human amnion) were irradiated with different doses of gamma rays (12.5, 25, 35, 50 kGy) and electron beam (15, 25, 50 kGy). Not irradiated specimens served as controls. The tissue samples were then thawn and fixed in 10 % formalin, processed by routine paraffin technique and stained with hematoxylin and eosin, alcian blue at pH 2.5, orcein, periodic acid Schiff reaction, phosphotungstic acid hematoxylin, Sirius red and silver impregnation. The staining with hematoxylin and eosin showed vacuolar cytoplasmic changes of epidermal cells mainly in the samples of xenografts irradiated by the lowest doses of gamma and electron beam radiation. The staining with orcein revealed damage of fine elastic fibers in the xenograft dermis at the dose of 25 kGy of both radiation types. Disintegration of epithelial basement membrane, especially in the xenografts, was induced by the dose of 15 kGy of electron beam radiation. The silver impregnation disclosed nuclear chromatin condensation mainly in human amnion at the lowest doses of both radiation types and disintegration of the fine collagen fibers in the papillary dermis induced by the lowest dose of electron beam and by the higher doses of gamma radiation. Irradiation by both, gamma rays and the electron beam, causes similar changes on cells and extracellular matrix, with significant damage of the basement membrane and of the fine and elastic and collagen fibers in the papillary dermis, the last caused already by low dose electron beam radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reft, C; Lu, Z; Noonan, J
2015-06-15
Purpose: An innovative small high intensity electron beams with energies from 6 to 12 MeV is being developed at Argonne National Laboratory to deliver an absorbed dose via a catheter to small malignant and nonmalignant lesions. This study reports on the initial dosimetric characteristics of this electron beam. These include output calibration, percent depth dose, beam profiles and leakage through the catheter. Methods: To simulate the narrow electron beam, the Argonne Wakefield Accelerator is used to produce high energy electron beams. The electron beam from the accelerator is monitored by measuring the current through a transmission coil while the beammore » shape is observed with a fluorescent screen. The dosimetry properties of the electron beam transmitting through bone and tissue-like materials are measured with nanodot optically stimulated luminescent dosimeters and EDR radiographic film. The 6 MV photon beam from a Varian True beam linac is used to calibrate both the OSLDs and the film. Results: The beam characteristics of the 12 MeV beam were measured. The properties of the small diameter, 5 mm, beam differs from that of broad clinical electron beams from radiotherapy linacs. Due to the lack of scatter from the narrow beam, the maximum dose is at the surface and the depth of the 50% depth dose is 35 mm compared to 51 mm for a clinical 12 MeV. The widths of the 90% isodose measured at the surface and depths of 2, 6, 12, and 16 mm varied from 6.6 to 8.8 mm while the widths of the FWHM isodose varied from 7.8 to 25.5 mm. Conclusion: Initial beam measurements show favorable dosimetric properties for its use in treating either small surface or internal lesions, particularly to deliver radiation at the time of surgery to maximize the dose to the lesion and spare normal tissue.« less
Electron beam collimation with a photon MLC for standard electron treatments
NASA Astrophysics Data System (ADS)
Mueller, S.; Fix, M. K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M. F. M.; Manser, P.
2018-01-01
Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.
NOTE: Blood irradiation with accelerator produced electron beams
NASA Astrophysics Data System (ADS)
Butson, M. J.; Cheung, T.; Yu, P. K. N.; Stokes, M. J.
2000-11-01
Blood and blood products are irradiated with gamma rays to reduce the risk of graft versus host disease (GVHD). A simple technique using electron beams produced by a medical linear accelerator has been studied to evaluate irradiation of blood and blood products. Variations in applied doses for a single field 20 MeV electron beam are measured in a phantom study. Doses have been verified with ionization chambers and commercial diode detectors. Results show that the blood product volume can be given a relatively homogeneous dose to within 6% using 20 MeV electrons without the need to rotate the blood bags or the beam entry point. The irradiation process takes approximately 6.5 minutes for 30 Gy applied dose to complete as opposed to 12 minutes for a dual field x-ray field irradiation at our centre. Electron beams can be used to satisfactorily irradiate blood and blood products in a minimal amount of time.
Practical use of a plastic scintillator for quality assurance of electron beam therapy.
Yogo, Katsunori; Tatsuno, Yuya; Tsuneda, Masato; Aono, Yuki; Mochizuki, Daiki; Fujisawa, Yoshiki; Matsushita, Akihiro; Ishigami, Minoru; Ishiyama, Hiromichi; Hayakawa, Kazushige
2017-06-07
Quality assurance (QA) of clinical electron beams is essential for performing accurate and safe radiation therapy. However, with advances in radiation therapy, QA has become increasingly labor-intensive and time-consuming. In this paper, we propose a tissue-equivalent plastic scintillator for quick and easy QA of clinical electron beams. The proposed tool comprises a plastic scintillator plate and a charge-coupled device camera that enable the scintillation light by electron beams to be recorded with high sensitivity and high spatial resolution. Further, the Cerenkov image is directly subtracted from the scintillation image to discriminate Cerenkov emissions and accurately measure the dose profiles of electron beams with high spatial resolution. Compared with conventional methods, discrepancies in the depth profile improved from 7% to 2% in the buildup region via subtractive corrections. Further, the output brightness showed good linearity with dose, good reproducibility (deviations below 1%), and dose rate independence (within 0.5%). The depth of 50% dose measured with the tool, an index of electron beam quality, was within ±0.5 mm of that obtained with an ionization chamber. Lateral brightness profiles agreed with the lateral dose profiles to within 4% and no significant improvement was obtained using Cerenkov corrections. Field size agreed to within 0.5 mm with those obtained with ionization chamber. For clinical QA of electron boost treatment, a disk scintillator that mimics the shape of a patient's breast is applied. The brightness distribution and dose, calculated using a treatment planning system, was generally acceptable for clinical use, except in limited zones. Overall, the proposed plastic scintillator plate tool efficiently performs QA for electron beam therapy and enables simultaneous verification of output constancy, beam quality, depth, and lateral dose profiles during monthly QAs at lower doses of irradiation (small monitor units, MUs).
Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator
NASA Astrophysics Data System (ADS)
Weinberg, Rebecca
The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity.
Kawahara, Daisuke; Ozawa, Shuichi; Saito, Akito; Kimura, Tomoki; Suzuki, Tatsuhiko; Tsuneda, Masato; Tanaka, Sodai; Nakashima, Takeo; Ohno, Yoshimi; Murakami, Yuji; Nagata, Yasushi
2018-03-01
Lipiodol, which was used in transcatheter arterial chemoembolization before liver stereotactic body radiation therapy (SBRT), remains in SBRT. Previous we reported the dose enhancement in Lipiodol using 10 MV (10×) FFF beam. In this study, we compared the dose enhancement in Lipiodol and evaluated the probability of electron generation (PEG) for the dose enhancement using flattening filter (FF) and flattening filter free (FFF) beams. FF and FFF for 6 MV (6×) and 10× beams were delivered by TrueBeam. The dose enhancement factor (DEF), energy spectrum, and PEG was calculated using Monte Carlo (MC) code BEAMnrc and heavy ion transport code system (PHITS). DEFs for FF and FFF 6× beams were 7.0% and 17.0% at the center of Lipiodol (depth, 6.5 cm). DEFs for FF and FFF 10× beams were 8.2% and 10.5% at the center of Lipiodol. Spectral analysis revealed that the FFF beams contained more low-energy (0-0.3 MeV) electrons than the FF beams, and the FF beams contained more high-energy (>0.3 MeV) electrons than the FFF beams in Lipiodol. The difference between FFF and FF beam DEFs was larger for 6× than for 10×. This occurred because the 10× beams contained more high-energy electrons. The PEGs for photoelectric absorption and Compton scattering for the FFF beams were higher than those for the FF beams. The PEG for the photoelectric absorption was higher than that for Compton scattering. FFF beam contained more low-energy photons and it contributed to the dose enhancement. Energy spectra and PEGs are useful for analyzing the mechanisms of dose enhancement. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Calorimetry of electron beams and the calibration of dosimeters at high doses
NASA Astrophysics Data System (ADS)
Humphreys, J. C.; McLaughlin, W. L.
Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.
Electron fluence correction factors for various materials in clinical electron beams.
Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P
2001-08-01
Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.
SU-E-T-279: A Novel Electron-Beam Combined with Magnetic Field Application for Radiotherapy.
Alezra, D; Nardi, E; Koren, S; Bragilovski, D; Orion, I
2012-06-01
The new beam and delivery system consists of an electron accelerator and a system of magnets (one or more). Introducing a transverse magnetic field in and near the tumor, causes the electrons to spiral in this region, thereby producing an effective peak in the depth dose distribution, within the tumor volume. Although the basic idea is not new, we suggest here for the first time, a viable as well as a workable, magnetic field configuration, which in addition to focusing the beam does not interfere with its propagation to the target. The electron accelerator: can be a linear accelerator or any other type electron accelerator, capable of producing different electron energies for different depths and dose absorption accumulation. The Field size can be as small as a pencil beam and as big as any of the other standard field sizes that are used in radiotherapy. The scatter filter can be used or removed. The dose rate accumulation can be as higher as possible.The magnets are able to produce magnetic fields. The order, direction, width, place, shape and number of the magnetic fields define the shape and the Percentage Depth Dose (PDD) curve of the electron beam. Prototypes were successfully tested by means of computer simulation, using:COMSOL-Multiphsics for magnetic fields calculations. FLUKA package, for electron beam MC simulation. Our results suggest that by using an electron beam at different energies, combined with magnetic fields, we could modify the delivered dose. This is caused by manipulating the electron motion via the Lorentz force. The applied magnetic field, will focus the electron beam at a given depth and deposit the energy in a given volume and depth, where otherwise the electron energy will have spread deeper. The direction and magnitude of the magnetic fields will prevent the scattering of the electron beam and its absorption in remote volumes. In practice, we get a pseudo Bragg peak depth dose distribution, applying a relatively low cost system. The therapeutic efficiency induced by the system is of similar efficiency as the ion beam therapy techniques. Our novel concept demonstrates treatment that is almost similar to proton therapy and in some parameters even better performance.Unlike the current high-energy electron therapy, our system's beam deposit almost all of its energy on its target, with a low amount of radiation deposited in tissues from the surface of the skin to the front of tumor, and almost no "exit dose" beyond the tumor. This property will enables to hit tumors with higher, potentially more effective radiation doses, while being considerably less expensive. © 2012 American Association of Physicists in Medicine.
Dose computation for therapeutic electron beams
NASA Astrophysics Data System (ADS)
Glegg, Martin Mackenzie
The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Murrill, Steven R.; Tipton, Charles W.; Self, Charles T.
1991-03-01
The dose absorbed in an integrated circuit (IC) die exposed to a pulse of low-energy electrons is a strong function of both electron energy and surrounding packaging materials. This report describes an experiment designed to measure how well the Integrated TIGER Series one-dimensional (1-D) electron transport simulation program predicts dose correction factors for a state-of-the-art IC package and package/printed circuit board (PCB) combination. These derived factors are compared with data obtained experimentally using thermoluminescent dosimeters (TLD's) and the FX-45 flash x-ray machine (operated in electron-beam (e-beam) mode). The results of this experiment show that the TIGER 1-D simulation code can be used to accurately predict FX-45 e-beam dose deposition correction factors for reasonably complex IC packaging configurations.
Value of the use of a combination of photons and electrons in radiotherapy (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gharbi, H.E.A.; Rietsch, J.
1973-01-01
The modification of the distribution of the dose delivered in an electron beam by its addition to a photon beam is studied for three cases: electron beams of 10 to 30 MeV, x-ray beams produced by the same accelerator with gamma beams from /sup 60/Co, and thicknesses of 10 to 20 cm. The results showed that the dose distributions obtained in the combination of the two beams varies according to the energy (particularly the electron energy) and according to the contribution of the different beams and the geometric comparison of the irradiated region. The graphs presented show the relative contributionmore » or each beam. (JSR)« less
Three-Dimensional Electron Beam Dose Calculations.
NASA Astrophysics Data System (ADS)
Shiu, Almon Sowchee
The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry. A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional, fluence-based, pencil-beam algorithm, especially in predicting the dose distribution downstream of a local inhomogeneity. The accuracy of this algorithm appears sufficient for clinical use, and the algorithm is structured for future expansion of the physical model if required for site specific treatment planning problems.
Effects of electron beam irradiation on polyamide 12 with fiberglass reinforcement
NASA Astrophysics Data System (ADS)
Jeun, Joon-Pyo; Shin, Bum-Sik; Kim, Hyun-Bin; Nho, Young-Chang; Kang, Phil-Hyun
2010-06-01
In the present study, the effects of electron beam irradiation of polyamide 12 (PA12) with fiberglass reinforcement on the thermal and wear properties were investigated. Electron beam irradiation of PA 12 was carried out over a range of irradiation doses (100-600 kGy) in air. The gel formation in the presence of a curing agent was dependent on the radiation doses. The thermal properties of irradiated PA 12 were studied in the temperature region 50-250° C to observe the changes in the melting point with radiation dose. The dimensional stability was significantly increased by electron beam irradiation and the related crosslinking of the PA 12.
Effects of electron beam irradiation on polyamide 12 with fiberglass reinforcement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeun, Joon-Pyo; Shin, Bum-Sik; Kim, Hyun-Bin
2010-06-02
In the present study, the effects of electron beam irradiation of polyamide 12 (PA12) with fiberglass reinforcement on the thermal and wear properties were investigated. Electron beam irradiation of PA 12 was carried out over a range of irradiation doses (100-600 kGy) in air. The gel formation in the presence of a curing agent was dependent on the radiation doses. The thermal properties of irradiated PA 12 were studied in the temperature region 50-250 deg. C to observe the changes in the melting point with radiation dose. The dimensional stability was significantly increased by electron beam irradiation and the relatedmore » crosslinking of the PA 12.« less
NASA Astrophysics Data System (ADS)
Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.
2002-11-01
The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.
SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enright, S; Asprinio, A; Lu, L
2014-06-01
Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. Allmore » phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.« less
Limitations of silicon diodes for clinical electron dosimetry.
Song, Haijun; Ahmad, Munir; Deng, Jun; Chen, Zhe; Yue, Ning J; Nath, Ravinder
2006-01-01
This work investigates the relevance of several factors affecting the response of silicon diode dosemeters in depth-dose scans of electron beams. These factors are electron energy, instantaneous dose rate, dose per pulse, photon/electron dose ratio and electron scattering angle (directional response). Data from the literature and our own experiments indicate that the impact of these factors may be up to +/-15%. Thus, the different factors would have to cancel out perfectly at all depths in order to produce true depth-dose curves. There are reports of good agreement between depth-doses measured with diodes and ionisation chambers. However, our measurements with a Scantronix electron field detector (EFD) diode and with a plane-parallel ionisation chamber show discrepancies both in the build-up and in the low-dose regions, with a ratio up to 1.4. Moreover, the absolute sensitivity of two diodes of the same EFD model was found to differ by a factor of 3, and this ratio was not constant but changed with depth between 5 and 15% in the low-dose regions of some clinical electron beams. Owing to these inhomogeneities among diodes even of the same model, corrections for each factor would have to be diode-specific and beam-specific. All these corrections would have to be determined using parallel plane chambers, as recommended by AAPM TG-25, which would be unrealistic in clinical practice. Our conclusion is that in general diodes are not reliable in the measurement of depth-dose curves of clinical electron beams.
Thilmann, C; Adamietz, I A; Ramm, U; Mose, S; Saran, F; Böttcher, H D
1996-05-01
Silicone-coated polyamide wound dressing is frequently used for the supportive treatment in patients with radiation induced skin lesions. The use of this kind of dressing during radiotherapy with high energy beams shifts the dose built-up effect towards the skin surface. Thus the dose delivered to the skin increases. The present work quantifies changes of the skin dose by a commercial silicon-coated polyamide wound dressing. The dependence on the beam quality and on different treatment techniques is investigated. Measurements were performed with photon (60Co, 6 MV, 42 MV) and electron (7 MeV, 20 MeV, 40 MeV) beams using thin LiF thermoluminescence dosimeters (TLD) in a perspex phantom. The beams were directed perpendicularly to the phantom surface. For 60Co and 6 MV photon beams the skin dose was evaluated in vivo at different beam arrangements and at a given reference dose. For 60Co, 6 MV and 42 MV photon beams wound dressing caused a dose increase on the surface of the perspex phantom by a factor of 1.65, 1.39 and 1.33 respectively. Using oblique or rotational techniques for 60Co and 6 MV photon irradiation the wound dressing increased the skin dose but less compared to perpendicular beam direction. For electron beams the skin dose is relatively high (from 84% to 92%) and an increase by a dressing has no clinical relevance (factor 1.03 to 1.05). The silicone-coated polyamide wound dressing causes no relevant skin dose increase during radiation treatment with electron beams and can be left on the skin during irradiation. During radiation treatment with photon beams like 60Co and 6 MV the protective procedure should be adapted to skin changes, in case of strong skin reactions a removal during the time of irradiation should be considered.
[Characterization of a diode system for in vivo dosimetry with electron beams].
Ragona, R; Rossetti, V; Lucio, F; Anglesio, S; Giglioli, F R
2001-10-01
Current quality assurance regulation stresses the basic role of in vivo dosimetry. Our study evaluates the usefulness and reliability of semiconductor diodes in determining the electron absorbed dose. P-type EDE semiconductor detectors were irradiated with electron beams of different energies produced by a CGR Saturn Therac 20. The diode and ionization chamber response were compared, and effect of energy value, collimator opening, source skin distance and gantry angle on diode response was studied. Measurements show a maximum increment of about 20% in diode response increasing the beam energy (6-20 MeV). The response also increases with: collimator opening, reaching 5% with field sizes larger than 10x10 cm2 (with the exception of 20 MeV energy); SSD increase (with a maximum of 8% for 20 MeV); transversal gantry incidence, compared with the diode longitudinal axis; it does not affect the response in the interval of +/- 45 degrees. Absorbed dose attenuation at dmax, due to the presence of diode on the axis of the beam as a function of electron energy was also determined : the maximum attenuation value is 15% in 6 MeV electron beams. A dose calculation algorithm, taking into account diode response dependence was outlined. In vivo dosimetry was performed in 92 fields for 80 patients, with an agreement of +/-4 % (1 SD) between prescribed and measured dose. It is possible to use the EDE semiconductor detectors on a quality control program of dose delivery for electron beam therapy, but particular attention should be paid to the beam incidence angle and diode dose attenuation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, James; Seuntjens, Jan; Sarfehnia, Arman
Purpose: To evaluate the intrinsic and absorbed-dose energy dependence of a small-scale graphite calorimeter probe (GPC) developed for use as a routine clinical dosimeter. The influence of charge deposition on the response of the GPC was also assessed by performing absolute dosimetry in clinical linac-based electron beams. Methods: Intrinsic energy dependence was determined by performing constant-temperature calorimetry dose measurements in a water-equivalent solid phantom, under otherwise reference conditions, in five high-energy photon (63.5 < %dd(10){sub X} < 76.3), and five electron (2.3 cm < R{sub 50} < 8.3 cm) beams. Reference dosimetry was performed for all beams in question usingmore » an Exradin A19 ion chamber with a calibration traceable to national standards. The absorbed-dose component of the overall energy dependence was calculated using the EGSnrc egs-chamber user code. Results: A total of 72 measurements were performed with the GPC, resulting in a standard error on the mean absorbed dose of better than 0.3 % for all ten beams. For both the photon and electron beams, no statistically-significant energy dependence was observed experimentally. Peak-to-peak, variations in the relative response of the GPC across all beam qualities of a given radiation type were on the order of 1 %. No effects, either transient or permanent, were attributable to the charge deposited by the electron beams. Conclusions: The GPC’s apparent energy-independence, combined with its well-established linearity and dose rate independence, make it a potentially useful dosimetry system capable measuring photon and electron doses in absolute terms at the clinical level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duwel, D; Lamba, M; Elson, H
Purpose: Various cancers of the eye are successfully treated with radiotherapy utilizing one anterior-posterior (A/P) beam that encompasses the entire content of the orbit. In such cases, a hanging lens shield can be used to spare dose to the radiosensitive lens of the eye to prevent cataracts. Methods: This research focused on Monte Carlo characterization of dose distributions resulting from a single A-P field to the orbit with a hanging shield in place. Monte Carlo codes were developed which calculated dose distributions for various electron radiation energies, hanging lens shield radii, shield heights above the eye, and beam spoiler configurations.more » Film dosimetry was used to benchmark the coding to ensure it was calculating relative dose accurately. Results: The Monte Carlo dose calculations indicated that lateral and depth dose profiles are insensitive to changes in shield height and electron beam energy. Dose deposition was sensitive to shield radius and beam spoiler composition and height above the eye. Conclusion: The use of a single A/P electron beam to treat cancers of the eye while maintaining adequate lens sparing is feasible. Shield radius should be customized to have the same radius as the patient’s lens. A beam spoiler should be used if it is desired to substantially dose the eye tissues lying posterior to the lens in the shadow of the lens shield. The compromise between lens sparing and dose to diseased tissues surrounding the lens can be modulated by varying the beam spoiler thickness, spoiler material composition, and spoiler height above the eye. The sparing ratio is a metric that can be used to evaluate the compromise between lens sparing and dose to surrounding tissues. The higher the ratio, the more dose received by the tissues immediately posterior to the lens relative to the dose received by the lens.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Pragya; Srivastava, A. K.; Khattak, B. Q.
Polymethyl methacrylate (PMMA) is characterized for electron beam interactions in the resist layer in lithographic applications. PMMA thin films (free standing) were prepared by solvent casting method. These films were irradiated with 30keV electron beam at different doses. Structural and chemical properties of the films were studied by means of X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy The XRD results showed that the amorphization increases with electron beam irradiation dose. FTIR spectroscopic analysis reveals that electron beam irradiation promotes the scission of carbonyl group and depletes hydrogen and converts polymeric structure into hydrogen depleted carbon network.
Nedaie, H A; Ghahraman, A R; Bolouri, B; Arbabi, A
2012-07-01
Recently, radiation sensitive polymer gels are being used as a reliable dosimetry method for three-dimensional (3D) verification of radiation doses in clinical use. Some properties of gel dosimeters have made them useful in verifying complex situations in electron therapy. The aim of this study was to experimentally evaluate the influence of tissue inhomogeneities on electron beam dose distributions by use of polymer gel dosimetry. Another purpose was to evaluate the appropriateness of polymer gels for electron beam dosimetry applications. A cylindrical phantom filled with MAGIC polymer gel with a polyacrilic wall (ρ = 1.18 g.cm -3 ) was placed in a Perspex water-filled tank exactly underneath the bone inhomogeneity region .Then, the slab phantom was irradiated with a dose of 5Gy of 8MeV electrons to measure the dose distribution beyond the heterogeneity region. Afterwards, another cylindrical gel phantom similar to the above was used and irradiated with the same dose of 15 MeV electrons to measure the dose distribution beyond the same heterogeneity region. The same mentioned setup was repeated for measurement of the dose distribution beneath the air heterogeneity and homogenous phantom. The results of gel dosimetry under bone inhomogeneity have shown a reduction in dose. This is related to the high mass stopping and mass scattering powers of bone tissue. In addition, dose enhancement is seen laterally near the bone-tissue interface, due to increased side scattering of electrons. Hot and cold scatter lobes under heterogeneity regions are other effects that can be seen. The results of gel dosimetry under the air inhomogeneity have shown an increase in dose. This is related to the low mass stopping and mass scattering powers of the air cavity. When a high energy beam passes through a low-density medium or an air cavity, electronic equilibrium is lost along the central axis of the beam .The dose rebuild up is a consequence of this electronic disequilibrium. An overall good agreement was found between measurements with gel and with a diode detector for the single beam experiment. Electron dose distributions are significantly altered in the presence of tissue inhomogeneities such as bone and air cavities which are related to mass stopping and mass scattering powers of heterogeneous materials. © 2012 American Association of Physicists in Medicine.
Yukihara, E G; Mardirossian, G; Mirzasadeghi, M; Guduru, S; Ahmad, S
2008-01-01
This article investigates the performance of Al2O3: C optically stimulated luminescence dosimeters (OSLDs) for application in radiotherapy. Central-axis depth dose curves and optically stimulated luminescence (OSL) responses were obtained in a water phantom for 6 and 18 MV photons, and for 6, 9, 12, 16, and 20 MeV electron beams from a Varian 21EX linear accelerator. Single OSL measurements could be repeated with a precision of 0.7% (one standard deviation) and the differences between absorbed doses measured with OSLDs and an ionization chamber were within +/- 1% for photon beams. Similar results were obtained for electron beams in the low-gradient region after correction for a 1.9% photon-to-electron bias. The distance-to-agreement values were of the order of 0.5-1.0 mm for electrons in high dose gradient regions. Additional investigations also demonstrated that the OSL response dependence on dose rate, field size, and irradiation temperature is less than 1% in the conditions of the present study. Regarding the beam energy/quality dependence, the relative response of the OSLD for 18 MV was (0.51 +/- 0.48)% of the response for the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam was in average 1.9% higher, but this result requires further confirmation. The relative response did not seem to vary with electron energy at dmax within the experimental uncertainties (0.5% in average) and, therefore, a fixed correction factor of 1.9% eliminated the energy dependence in our experimental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yukihara, E. G.; Mardirossian, G.; Mirzasadeghi, M.
This article investigates the performance of Al{sub 2}O{sub 3}:C optically stimulated luminescence dosimeters (OSLDs) for application in radiotherapy. Central-axis depth dose curves and optically stimulated luminescence (OSL) responses were obtained in a water phantom for 6 and 18 MV photons, and for 6, 9, 12, 16, and 20 MeV electron beams from a Varian 21EX linear accelerator. Single OSL measurements could be repeated with a precision of 0.7% (one standard deviation) and the differences between absorbed doses measured with OSLDs and an ionization chamber were within {+-}1% for photon beams. Similar results were obtained for electron beams in the low-gradientmore » region after correction for a 1.9% photon-to-electron bias. The distance-to-agreement values were of the order of 0.5-1.0 mm for electrons in high dose gradient regions. Additional investigations also demonstrated that the OSL response dependence on dose rate, field size, and irradiation temperature is less than 1% in the conditions of the present study. Regarding the beam energy/quality dependence, the relative response of the OSLD for 18 MV was (0.51{+-}0.48)% of the response for the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam was in average 1.9% higher, but this result requires further confirmation. The relative response did not seem to vary with electron energy at d{sub max} within the experimental uncertainties (0.5% in average) and, therefore, a fixed correction factor of 1.9% eliminated the energy dependence in our experimental conditions.« less
Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E
2013-08-02
We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.
Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms
Nedaie, H. A.; Mosleh-Shirazi, M. A.; Allahverdi, M.
2013-01-01
Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions. PMID:23533162
NASA Astrophysics Data System (ADS)
Pearson, David
A linear accelerator manufactured by Elekta, equipped with a multi leaf collimation (MLC) system has been modelled using Monte Carlo simulations with the photon flattening filter removed. The purpose of this investigation was to show that more efficient and more accurate Intensity Modulated Radiation Therapy (IMRT) treatments can be delivered from a standard linear accelerator with the flattening filter removed from the beam. A range of simulations of 6 MV and 10 MV photon were studied and compared to a model of a standard accelerator which included the flattening filter for those beams. Measurements using a scanning water phantom were also performed after the flattening filter had been removed. We show here that with the flattening filter removed, an increase to the dose on the central axis by a factor of 2.35 and 4.18 is achieved for 6 MV and 10 MV photon beams respectively using a standard 10x 10cm2 field size. A comparison of the dose at points at the field edges led to the result that, removal of the flattening filter reduced the dose at these points by approximately 10% for the 6 MV beam over the clinical range of field sizes. A further consequence of removing the flattening filter was the softening of the photon energy spectrum leading to a steeper reduction in dose at depths greater than dmax. Also studied was the electron contamination brought about by the removal of the filter. To reduce this electron contamination and thus reduce the skin dose to the patient we consider the use of an electron scattering foil in the beam path. The electron scattering foil had very little effect on dmax. From simulations of a standard 6MV beam, a filter-free beam and a filter-free beam with electron scattering foil, we deduce that the proportion of electrons in the photon beam is 0.35%, 0.28% and 0.27%, consecutively. In short, higher dose rates will result in decreased treatment times and the reduced dose outside of the field is indicative of reducing the dose to the surrounding tissue. Electron contamination was found to be comparable with conventional IMRT treatments carried out with a flattening filter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey
2015-04-15
Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dosemore » distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.« less
Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams.
Manigandan, D; Bharanidharan, G; Aruna, P; Devan, K; Elangovan, D; Patil, Vikram; Tamilarasan, R; Vasanthan, S; Ganesan, S
2009-09-01
The fundamental dosimetric characteristics of commercially available metal oxide semiconductor field effect transistor (MOSFET) detectors were studied for clinical electron beam irradiations. MOSFET showed excellent linearity against doses measured using an ion chamber in the dose range of 20-630cGy. MOSFET reproducibility is better at high doses compared to low doses. The output factors measured with the MOSFET were within +/-3% when compared with those measured with a parallel plate chamber. From 4 to 12MeV, MOSFETs showed a large angular dependence in the tilt directions and less in the axial directions. MOSFETs do not show any dose-rate dependence between 100 and 600MU/min. However, MOSFETs have shown under-response when the dose per pulse of the beam is decreased. No measurable effect in MOSFET response was observed in the temperature range of 23-40 degrees C. The energy dependence of a MOSFET dosimeter was within +/-3.0% for 6-18MeV electron beams and 5.5% for 4MeV ones. This study shows that MOSFET detectors are suitable for dosimetry of electron beams in the energy range of 4-18MeV.
Comparison of the secondary electrons produced by proton and electron beams in water
NASA Astrophysics Data System (ADS)
Kia, Mohammad Reza; Noshad, Houshyar
2016-05-01
The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.
Comparison of the secondary electrons produced by proton and electron beams in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar
The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, andmore » secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.« less
Real-time measurement and monitoring of absorbed dose for electron beams
NASA Astrophysics Data System (ADS)
Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon
2004-09-01
The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.
Response of Nanodot Optically Stimulated Luminescence Dosimeters to Therapeutic Electron Beams.
Ponmalar, Y Retna; Manickam, Ravikumar; Sathiyan, S; Ganesh, K M; Arun, R; Godson, Henry Finlay
2017-01-01
Response of Al 2 O 3 :C-based nanoDot optically stimulated luminescence (OSL) dosimeter was studied for the dosimetry of 6, 9, 12, 16, and 20 MeV therapeutic electron beams. With reference to ionization chamber, no change in the response was observed with the change in the energy of electron beams for the field size from 6 cm × 6 cm to 25 cm × 25 cm, dose rates from 100 MU/min to 600 MU/min, and the linearity in the response up to 300 cGy. The fading of the transient signal was higher for 20 MeV electron beam than that of 6 MeV electron beam by about 5% as compared to value at 20 min after irradiation. The depletion of OSL signal per readout in 200 successive readouts was also found to change with dose and energy of electron beam from 6 MeV (9% and 12% per readout at 2 and 10 Gy, respectively) to 20 MeV (9% and 16% at 2 and 10 Gy, respectively). The OSL sensitivity changed in the range from 2% to 6% with accumulated doses from 2 to 8 Gy and with electron energy from 6 to 20 MeV, but the sensitivity could be reset using an optical annealing treatment. Although negligible fading for postirradiation storage from 20 min to several months, acceptable precision and linearity in the desired range, and high reproducibility makes nanoDot dosimeters very attractive for the dosimetry of therapeutic electron beams, a note should be made for changes in sensitivity at doses beyond 2 Gy and electron beams energy dependence in reuse, short-term fading, and signal depletion on repeated readout.
Response of Nanodot Optically Stimulated Luminescence Dosimeters to Therapeutic Electron Beams
Ponmalar, Y. Retna; Manickam, Ravikumar; Sathiyan, S.; Ganesh, K. M.; Arun, R.; Godson, Henry Finlay
2017-01-01
Response of Al2O3:C-based nanoDot optically stimulated luminescence (OSL) dosimeter was studied for the dosimetry of 6, 9, 12, 16, and 20 MeV therapeutic electron beams. With reference to ionization chamber, no change in the response was observed with the change in the energy of electron beams for the field size from 6 cm × 6 cm to 25 cm × 25 cm, dose rates from 100 MU/min to 600 MU/min, and the linearity in the response up to 300 cGy. The fading of the transient signal was higher for 20 MeV electron beam than that of 6 MeV electron beam by about 5% as compared to value at 20 min after irradiation. The depletion of OSL signal per readout in 200 successive readouts was also found to change with dose and energy of electron beam from 6 MeV (9% and 12% per readout at 2 and 10 Gy, respectively) to 20 MeV (9% and 16% at 2 and 10 Gy, respectively). The OSL sensitivity changed in the range from 2% to 6% with accumulated doses from 2 to 8 Gy and with electron energy from 6 to 20 MeV, but the sensitivity could be reset using an optical annealing treatment. Although negligible fading for postirradiation storage from 20 min to several months, acceptable precision and linearity in the desired range, and high reproducibility makes nanoDot dosimeters very attractive for the dosimetry of therapeutic electron beams, a note should be made for changes in sensitivity at doses beyond 2 Gy and electron beams energy dependence in reuse, short-term fading, and signal depletion on repeated readout. PMID:28405107
Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment.
Shiu, A S; Tung, S S; Gastorf, R J; Hogstrom, K R; Morrison, W H; Peters, L J
1996-06-01
The purpose of this study is to report that commercially available eye shields (designed for orthovoltage x-rays) are inadequate to protect the ocular structures from penetrating electrons for electron beam energies equal to or greater than 6 MeV. Therefore, a prototype medium size tungsten eye shield was designed and fabricated. The advantages of the tungsten eye shield over lead are discussed. Electron beams (6-9 MeV) are often used to irradiate eyelid tumors to curative doses. Eye shields can be placed under the eyelids to protect the globe. Film and thermoluminescent dosimeters (TLDs) were used within a specially constructed polystyrene eye phantom to determine the effectiveness of various commercially available internal eye shields (designed for orthovoltage x-rays). The same procedures were used to evaluate a prototype medium size tungsten eye shield (2.8 mm thick), which was designed and fabricated for protection of the globe from penetrating electrons for electron beam energy equal to 9 MeV. A mini-TLD was used to measure the dose enhancement due to electrons backscattered off the tungsten eye shield, both with or without a dental acrylic coating that is required to reduce discomfort, permit sterilization of the shield, and reduce the dose contribution from backscattered electrons. Transmission of a 6 MeV electron beam through a 1.7 mm thick lead eye shield was found to be 50% on the surface (cornea) of the phantom and 27% at a depth of 6 mm (lens). The thickness of lead required to stop 6-9 MeV electron beams is impractical. In place of lead, a prototype medium size tungsten eye shield was made. For 6 to 9 MeV electrons, the doses measured on the surface (cornea) and at 6 mm (lens) and 21 mm (retina) depths were all less than 5% of the maximum dose of the open field (4 x 4 cm). Electrons backscattered off a tungsten eye shield without acrylic coating increased the lid dose from 85 to 123% at 6 MeV and 87 to 119% at 9 MeV. For the tungsten eye shield coated with 2-3 mm of dental acrylic, the lid dose was increased from 85 to 98.5% at 6 MeV and 86 to 106% at 9 MeV. Commercially available eye shields were evaluated and found to be clearly inadequate to protect the ocular structures for electron beam energies equal to or greater than 6 MeV. A tungsten eye shield has been found to provide adequate protection for electrons up to 9 MeV. The increase in lid dose due to electrons backscattered off the tungsten eye shield should be considered in the dose prescription. A minimum thickness of 2 mm dental acrylic on the beam entrance surface of the tungsten eye shield was found to reduce the backscattered electron effect to acceptable levels.
Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro.
Babayan, Nelly; Hovhannisyan, Galina; Grigoryan, Bagrat; Grigoryan, Ruzanna; Sarkisyan, Natalia; Tsakanova, Gohar; Haroutiunian, Samvel; Aroutiounian, Rouben
2017-11-01
Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Acharya, Santhosh; Sanjeev, Ganesh; Bhat, Nagesh N; Narayana, Yerol
2010-03-01
The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7+/-0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor.
Alabdoaburas, Mohamad M; Mege, Jean-Pierre; Chavaudra, Jean; Bezin, Jérémi Vũ; Veres, Atilla; de Vathaire, Florent; Lefkopoulos, Dimitri; Diallo, Ibrahima
2015-11-08
The purpose of this work was to experimentally investigate the out-of-field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off-axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD-700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel-plane ionization chamber measurements. Also, out-of-field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12-15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10 × 10 cm(²) applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10 × 10 cm(²) applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out-of-field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long-term effects.
Alabdoaburas, Mohamad M.; Mege, Jean‐Pierre; Chavaudra, Jean; Bezin, Jérémi Vũ; Veres, Attila; de Vathaire, Florent; Lefkopoulos, Dimitri
2015-01-01
The purpose of this work was to experimentally investigate the out‐of‐field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off‐axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD‐700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel‐plane ionization chamber measurements. Also, out‐of‐field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12–15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10×10cm2 applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10×10cm2 applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out‐of‐field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long‐term effects. PACS number(s): 87.53.Bn, 87.56.bd, 87.56.J‐ PMID:26699572
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Rosenfield, J; Dong, X
2016-06-15
Purpose: Rotational total skin electron irradiation (RTSEI) is used in the treatment of cutaneous T-cell lymphoma. Due to inter-film uniformity variations the dosimetry measurement of a large electron beam of a very low energy is challenging. This work provides a method to improve the accuracy of flatness and symmetry for a very large treatment field of low electron energy used in dual beam RTSEI. Methods: RTSEI is delivered by dual angles field a gantry of ±20 degrees of 270 to cover the upper and the lower halves of the patient body with acceptable beam uniformity. The field size is inmore » the order of 230cm in vertical height and 120 cm in horizontal width and beam energy is a degraded 6 MeV (6 mm of PMMA spoiler). We utilized parallel plate chambers, Gafchromic films and OSLDs as a measuring devices for absolute dose, B-Factor, stationary and rotational percent depth dose and beam uniformity. To reduce inter-film dosimetric variation we introduced a new specific correction method to analyze beam uniformity. This correction method uses some image processing techniques combining film value before and after radiation dose to compensate the inter-variation dose response differences among films. Results: Stationary and rotational depth of dose demonstrated that the Rp is 2 cm for rotational and the maximum dose is shifted toward the surface (3mm). The dosimetry for the phantom showed that dose uniformity reduced to 3.01% for the vertical flatness and 2.35% for horizontal flatness after correction thus achieving better flatness and uniformity. The absolute dose readings of calibrated films after our correction matched with the readings from OSLD. Conclusion: The proposed correction method for Gafchromic films will be a useful tool to correct inter-film dosimetric variation for the future clinical film dosimetry verification in very large fields, allowing the optimizations of other parameters.« less
SU-E-T-635: Quantitative Study On Beam Flatness Variation with Beam Energy Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J S; Eldib, A; Ma, C
2014-06-15
Purpose: Beam flatness check has been proposed for beam energy check for photon beams with flattering filters. In this work, beam flatness change with beam energy was investigated quantitatively using the Monte Carlo method and its significance was compared with depth dose curve change. Methods: Monte Carlo simulations for a linear accelerator with flattering filter were performed with different initial electron energies for photon beams of 6MV and 10MV. Dose calculations in a water phantom were then perform with the phase space files obtained from the simulations. The beam flatness was calculated based on the dose profile at 10 cmmore » depth for all the beams with different initial electron energies. The percentage depth dose (PDD) curves were also analyzed. The dose at 10cm depth (D10) and the ratio of the dose at 10cm and 20cm depth (D10/D20) and their change with the beam energy were calculated and compared with the beam flatness variation. Results: It was found that the beam flatness variation with beam energy change was more significant than the change of D10 and the ratio between D10 and D20 for both 6MV and 10MV beams. Half MeV difference on the initial electron beam energy brought in at least 20% variation on the beam flatness but only half percent change on the ratio of D10 and D20. The change of D10 or D20 alone is even less significant. Conclusion: The beam energy impact on PDD is less significant than that on the beam flatness. If the PDD is used for checking the beam energy, uncertainties of the measurement could possibly disguise its change. Beam flatness changes more significantly with beam energy and therefore it can be used for monitoring the energy change for photon beams with flattering filters. However, other factors which may affect the beam flatness should be watched as well.« less
Sonier, Marcus; Wronski, Matt; Yeboah, Collins
2015-03-08
Lens dose is a concern during the treatment of facial lesions with anterior electron beams. Lead shielding is routinely employed to reduce lens dose and minimize late complications. The purpose of this work is twofold: 1) to measure dose pro-files under large-area lead shielding at the lens depth for clinical electron energies via film dosimetry; and 2) to assess the accuracy of the Pinnacle treatment planning system in calculating doses under lead shields. First, to simulate the clinical geometry, EBT3 film and 4 cm wide lead shields were incorporated into a Solid Water phantom. With the lead shield inside the phantom, the film was positioned at a depth of 0.7 cm below the lead, while a variable thickness of solid water, simulating bolus, was placed on top. This geometry was reproduced in Pinnacle to calculate dose profiles using the pencil beam electron algorithm. The measured and calculated dose profiles were normalized to the central-axis dose maximum in a homogeneous phantom with no lead shielding. The resulting measured profiles, functions of bolus thickness and incident electron energy, can be used to estimate the lens dose under various clinical scenarios. These profiles showed a minimum lead margin of 0.5 cm beyond the lens boundary is required to shield the lens to ≤ 10% of the dose maximum. Comparisons with Pinnacle showed a consistent overestimation of dose under the lead shield with discrepancies of ~ 25% occur-ring near the shield edge. This discrepancy was found to increase with electron energy and bolus thickness and decrease with distance from the lead edge. Thus, the Pinnacle electron algorithm is not recommended for estimating lens dose in this situation. The film measurements, however, allow for a reasonable estimate of lens dose from electron beams and for clinicians to assess the lead margin required to reduce the lens dose to an acceptable level.
Small field electron beam dosimetry using MOSFET detector.
Amin, Md Nurul; Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K
2010-10-04
The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth-dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high-sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm × 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also per-formed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ± 1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam.
Maarouf, Mohammad; Schleicher, Ursula; Schmachtenberg, Axel; Ammon, Jürgen
2002-06-01
Aim of this study was to evaluate the advantages of electron beam irradiation compared to kilovoltage X-ray therapy in the treatment of keloids. Furthermore, the risk of developing malignancy following keloid radiotherapy was assessed. An automatic water phantom was used to evaluate the dose distribution in tissue. Furthermore, a series of measurements was done on the patients using thermoluminescence dosimeters (TLD) to estimate the doses absorbed by the organs at risk. We also report our clinical experience with electron beam radiation of 134 keloids following surgical excision. Electron beam irradiation offers a high control rate (84%) with minimal side effects for keloids. Electron irradiation provides better dose distribution in tissue, and therefore less radiation burden to the organs at risk. After a mean follow-up period of 7.2 years, no severe side effects or malignancies were observed after keloid radiotherapy. Electron radiation therapy is superior to kilovoltage irradiation for treating keloids due to better dose distribution in tissue. In agreement with the literature, no cases of malignancy were observed after keloid irradiation.
NASA Astrophysics Data System (ADS)
Saiful Huq, M.; Andreo, Pedro; Song, Haijun
2001-11-01
The International Atomic Energy Agency (IAEA TRS-398) and the American Association of Physicists in Medicine (AAPM TG-51) have published new protocols for the calibration of radiotherapy beams. These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. This paper compares the recommendations of the two protocols in two ways: (i) by analysing in detail the differences in the basic data included in the two protocols for photon and electron beam dosimetry and (ii) by performing measurements in clinical photon and electron beams and determining the absorbed dose to water following the recommendations of the two protocols. Measurements were made with two Farmer-type ionization chambers and three plane-parallel ionization chamber types in 6, 18 and 25 MV photon beams and 6, 8, 10, 12, 15 and 18 MeV electron beams. The Farmer-type chambers used were NE 2571 and PTW 30001, and the plane-parallel chambers were a Scanditronix-Wellhöfer NACP and Roos, and a PTW Markus chamber. For photon beams, the measured ratios TG-51/TRS-398 of absorbed dose to water Dw ranged between 0.997 and 1.001, with a mean value of 0.999. The ratios for the beam quality correction factors kQ were found to agree to within about +/-0.2% despite significant differences in the method of beam quality specification for photon beams and in the basic data entering into kQ. For electron beams, dose measurements were made using direct ND,w calibrations of cylindrical and plane-parallel chambers in a 60Co gamma-ray beam, as well as cross-calibrations of plane-parallel chambers in a high-energy electron beam. For the direct ND,w calibrations the ratios TG-51/TRS-398 of absorbed dose to water Dw were found to lie between 0.994 and 1.018 depending upon the chamber and electron beam energy used, with mean values of 0.996, 1.006, and 1.017, respectively, for the cylindrical, well-guarded and not well-guarded plane-parallel chambers. The Dw ratios measured for the cross-calibration procedures varied between 0.993 and 0.997. The largest discrepancies for electron beams between the two protocols arise from the use of different data for the perturbation correction factors pwall and pdis of cylindrical and plane-parallel chambers, all in 60Co. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and the quantities in the two protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanyi, James A.; Nitzling, Kevin D.; Lodwick, Camille J.
2011-02-15
Purpose: Assessment of the fundamental dosimetric characteristics of a novel gated fiber-optic-coupled dosimetry system for clinical electron beam irradiation. Methods: The response of fiber-optic-coupled dosimetry system to clinical electron beam, with nominal energy range of 6-20 MeV, was evaluated for reproducibility, linearity, and output dependence on dose rate, dose per pulse, energy, and field size. The validity of the detector system's response was assessed in correspondence with a reference ionization chamber. Results: The fiber-optic-coupled dosimetry system showed little dependence to dose rate variations (coefficient of variation {+-}0.37%) and dose per pulse changes (with 0.54% of reference chamber measurements). The reproducibilitymore » of the system was {+-}0.55% for dose fractions of {approx}100 cGy. Energy dependence was within {+-}1.67% relative to the reference ionization chamber for the 6-20 MeV nominal electron beam energy range. The system exhibited excellent linear response (R{sup 2}=1.000) compared to reference ionization chamber in the dose range of 1-1000 cGy. The output factors were within {+-}0.54% of the corresponding reference ionization chamber measurements. Conclusions: The dosimetric properties of the gated fiber-optic-coupled dosimetry system compare favorably to the corresponding reference ionization chamber measurements and show considerable potential for applications in clinical electron beam radiotherapy.« less
A dose optimization method for electron radiotherapy using randomized aperture beams
NASA Astrophysics Data System (ADS)
Engel, Konrad; Gauer, Tobias
2009-09-01
The present paper describes the entire optimization process of creating a radiotherapy treatment plan for advanced electron irradiation. Special emphasis is devoted to the selection of beam incidence angles and beam energies as well as to the choice of appropriate subfields generated by a refined version of intensity segmentation and a novel random aperture approach. The algorithms have been implemented in a stand-alone programme using dose calculations from a commercial treatment planning system. For this study, the treatment planning system Pinnacle from Philips has been used and connected to the optimization programme using an ASCII interface. Dose calculations in Pinnacle were performed by Monte Carlo simulations for a remote-controlled electron multileaf collimator (MLC) from Euromechanics. As a result, treatment plans for breast cancer patients could be significantly improved when using randomly generated aperture beams. The combination of beams generated through segmentation and randomization achieved the best results in terms of target coverage and sparing of critical organs. The treatment plans could be further improved by use of a field reduction algorithm. Without a relevant loss in dose distribution, the total number of MLC fields and monitor units could be reduced by up to 20%. In conclusion, using randomized aperture beams is a promising new approach in radiotherapy and exhibits potential for further improvements in dose optimization through a combination of randomized electron and photon aperture beams.
Radiation leakage dose from Elekta electron collimation system
Hogstrom, Kenneth R.; Carver, Robert L.
2016-01-01
This study provided baseline data required for a greater project, whose objective was to design a new Elekta electron collimation system having significantly lighter electron applicators with equally low out‐of field leakage dose. Specifically, off‐axis dose profiles for the electron collimation system of our uniquely configured Elekta Infinity accelerator with the MLCi2 treatment head were measured and calculated for two primary purposes: 1) to evaluate and document the out‐of‐field leakage dose in the patient plane and 2) to validate the dose distributions calculated using a BEAMnrc Monte Carlo (MC) model for out‐of‐field dose profiles. Off‐axis dose profiles were measured in a water phantom at 100 cm SSD for 1 and 2 cm depths along the in‐plane, cross‐plane, and both diagonal axes using a cylindrical ionization chamber with the 10×10 and 20×20 cm2 applicators and 7, 13, and 20 MeV beams. Dose distributions were calculated using a previously developed BEAMnrc MC model of the Elekta Infinity accelerator for the same beam energies and applicator sizes and compared with measurements. Measured results showed that the in‐field beam flatness met our acceptance criteria (±3% on major and ±4% on diagonal axes) and that out‐of‐field mean and maximum percent leakage doses in the patient plane met acceptance criteria as specified by the International Electrotechnical Commission (IEC). Cross‐plane out‐of‐field dose profiles showed greater leakage dose than in‐plane profiles, attributed to the curved edges of the upper X‐ray jaws and multileaf collimator. Mean leakage doses increased with beam energy, being 0.93% and 0.85% of maximum central axis dose for the 10×10 and 20×20 cm2 applicators, respectively, at 20 MeV. MC calculations predicted the measured dose to within 0.1% in most profiles outside the radiation field; however, excluding modeling of nontrimmer applicator components led to calculations exceeding measured data by as much as 0.2% for some regions along the in‐plane axis. Using EGSnrc LATCH bit filtering to separately calculate out‐of‐field leakage dose components (photon dose, primary electron dose, and electron dose arising from interactions in various collimating components), MC calculations revealed that the primary electron dose in the out‐of‐field leakage region was small and decreased as beam energy increased. Also, both the photon dose component and electron dose component resulting from collimator scatter dominated the leakage dose, increasing with increasing beam energy. We concluded that our custom Elekta Infinity with the MLCi2 treatment head met IEC leakage dose criteria in the patient plane. Also, accuracy of our MC model should be sufficient for our use in the design of a new, improved electron collimation system. PACS number(s): 87.56.nk, 87.10.Rt, 87.56.J PMID:27685101
Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Carruth, Ralph (Technical Monitor)
2001-01-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in agreement with the measured TLD values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smit, C; Plessis, F du
Purpose: To extract the electron contamination energy spectra for an Elekta Precise Linac, based on pure photon and measured clinical beam percentage depth dose data. And to include this as an additional source in isource 4 in DOSXYZnrc. Methods: A pure photon beam was simulated for the Linac using isource 4 in the DOSXYZnrc Monte Carlo (MC) code. Percentage depth dose (PDD) data were extracted afterwards for a range of field sizes (FS). These simulated dose data were compared to actual measured dose PDD data, with the data normalized at 10 cm depth. The resulting PDD data resembled the electronmore » contamination depth dose. Since the dose fall-off is a strictly decreasing function, a method was adopted to derive the contamination electron spectrum. Afterwards this spectrum was used in a DOSXYZnrc MC simulation run to verify that the original electron depth dose could be replicated. Results: Various square aperture FS’s for 6, 8 and 15 megavolt (MV) photon beams were modeled, simulated and compared to their respective actual measured PDD data. As FS increased, simulated pure photon depth-dose profiles shifted deeper, thus requiring electron contamination to increase the surface dose. The percentage of electron weight increased with increase in FS. For a FS of 15×15 cm{sup 2}, the percentage electron weight is 0.1%, 0.2% and 0.4% for 6, 8 and 15 MV beams respectively. Conclusion: From the PDD results obtained, an additional electron contamination source was added to the photon source model so that simulation and measured PDD data could match within 2 % / 2 mm gamma-index criteria. The improved source model could assure more accurate simulations of surface doses. This research project was funded by the South African Medical Research Council (MRC) with funds from National Treasury under its Economic Competitiveness and Support package.« less
Steel, Jared; Stewart, Allan; Satory, Philip
2009-09-01
Matching the penumbra of a 6 MeV electron beam to the penumbra of a 6 MV photon beam is a dose optimization challenge, especially when the electron beam is applied from an extended source-to-surface distance (SSD), as in the case of some head and neck treatments. Traditionally low melting point alloy blocks have been used to define the photon beam shielding over the spinal cord region. However, these are inherently time consuming to construct and employ in the clinical situation. Multileaf collimators (MLCs) provide a fast and reproducible shielding option but generate geometrically nonconformal approximations to the desired beam edge definition. The effects of substituting Cerrobend for the MLC shielding mode in the context of beam matching with extended-SSD electron beams are the subject of this investigation. Relative dose beam data from a Varian EX 2100 linear accelerator were acquired in a water tank under the 6 MeV electron beam at both standard and extended-SSD and under the 6 MV photon beam defined by Cerrobend and a number of MLC stepping regimes. The effect of increasing the electron beam SSD on the beam penumbra was assessed. MLC stepping was also assessed in terms of the effects on both the mean photon beam penumbra and the intraleaf dose-profile nonuniformity relative to the MLC midleaf. Computational techniques were used to combine the beam data so as to simulate composite relative dosimetry in the water tank, allowing fine control of beam abutment gap variation. Idealized volumetric dosimetry was generated based on the percentage depth-dose data for the beam modes and the abutment geometries involved. Comparison was made between each composite dosimetry dataset and the relevant ideal dosimetry dataset by way of subtraction. Weighted dose-difference volume histograms (DDVHs) were produced, and these, in turn, summed to provide an overall dosimetry score for each abutment and shielding type/angle combination. Increasing the electron beam SSD increased the penumbra width (defined as the lateral distance of the 80% and 20% isodose contours) by 8-10 mm at the depths of 10-20 mm. Mean photon beam penumbra width increased with increased MLC stepping, and the mean MLC penumbra was approximately 1.5 times greater than that across the corresponding Cerrobend shielding. Intraleaf dose discrepancy in the direction orthogonal to the beam edge also increased with MLC stepping. The weighted DDVH comparison techniques allowed the composite dosimetry resulting from the interplay of the abovementioned variables to be ranked. The MLC dosimetry ranked as good or better than that resulting from beam matching with Cerrobend for all except large field overlaps (-2.5 mm gap). The results for the linear-weighted DDVH comparison suggest that optimal MLC abutment dosimetry results from an optical surface gap of around 1 +/- 0.5 mm. Furthermore, this appears reasonably lenient to abutment gap variation, such as that arising from uncertainty in beam markup or other setup errors.
An investigation of nonuniform dose deposition from an electron beam
NASA Astrophysics Data System (ADS)
Lilley, William; Luu, Kieu X.
1994-08-01
In a search for an explanation of nonuniform electron-beam dose deposition, the integrated tiger series (ITS) of coupled electron/photon Monte Carlo transport codes was used to calculate energy deposition in the package materials of an application-specific integrated circuit (ASIC) while the thicknesses of some of the materials were varied. The thicknesses of three materials that were in the path of an electron-beam pulse were varied independently so that analysis could determine how the radiation dose measurements using thermoluminescent dosimeters (TLD's) would be affected. The three materials were chosen because they could vary during insertion of the die into the package or during the process of taking dose measurements. The materials were aluminum, HIPEC (a plastic), and silver epoxy. The calculations showed that with very small variations in thickness, the silver epoxy had a large effect on the dose uniformity over the area of the die.
Zakaria, Golam Abu; Schuette, Wilhelm
2007-01-01
For the determination of the absorbed dose to water for high-energy photon and electron beams the IAEA code of practice TRS-398 (2000) is applied internationally. In Germany, the German dosimetry protocol DIN 6800-2 (1997) is used. Recently, the DIN standard has been revised and published as Draft National Standard DIN 6800-2 (2006). It has adopted widely the methodology and dosimetric data of the code of practice. This paper compares these three dosimetry protocols systematically and identifies similarities as well as differences. The investigation was done with 6 and 18 MV photon as well as 5 to 21 MeV electron beams. While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using cylindrical as well as plane-parallel chambers. The discrepancies in the determination of absorbed dose to water between the three protocols were 0.4% for photon beams and 1.5% for electron beams. Comparative measurements showed a deviation of less than 0.5% between our measurements following protocol DIN 6800-2 (2006) and TLD inter-comparison procedure in an external audit. PMID:21217912
Zakaria, Golam Abu; Schuette, Wilhelm
2007-01-01
For the determination of the absorbed dose to water for high-energy photon and electron beams the IAEA code of practice TRS-398 (2000) is applied internationally. In Germany, the German dosimetry protocol DIN 6800-2 (1997) is used. Recently, the DIN standard has been revised and published as Draft National Standard DIN 6800-2 (2006). It has adopted widely the methodology and dosimetric data of the code of practice. This paper compares these three dosimetry protocols systematically and identifies similarities as well as differences. The investigation was done with 6 and 18 MV photon as well as 5 to 21 MeV electron beams. While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using cylindrical as well as plane-parallel chambers. The discrepancies in the determination of absorbed dose to water between the three protocols were 0.4% for photon beams and 1.5% for electron beams. Comparative measurements showed a deviation of less than 0.5% between our measurements following protocol DIN 6800-2 (2006) and TLD inter-comparison procedure in an external audit.
Electron linear accelerator system for natural rubber vulcanization
NASA Astrophysics Data System (ADS)
Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.
2017-09-01
Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.
Renaud, J; Rossomme, S; Sarfehnia, A; Vynckier, S; Palmans, H; Kacperek, A; Seuntjens, J
2016-09-21
In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min -1 , with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user's beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.
NASA Astrophysics Data System (ADS)
Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.
2016-09-01
In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.
Electron beam irradiation effects on ethylene-tetrafluoroethylene copolymer films
NASA Astrophysics Data System (ADS)
Nasef, Mohamed Mahmoud; Saidi, Hamdani; Dahlan, Khairul Zaman M.
2003-12-01
The effects of electron beam irradiation on ethylene-tetrafluoroethylene copolymer (ETFE) films were studied. Samples were irradiated in air at room temperature by a universal electron beam accelerator for doses ranging from 100 to 1200 kGy. Irradiated samples were investigated with respect to their chemical structure, thermal characteristics, crystallinity and mechanical properties using FTIR, differential scanning calorimeter (DSC) and universal mechanical tester. The interaction of electron irradiation with ETFE films was found to induce dose-dependent changes in all the investigated properties. A mechanism for electron-induced reactions is proposed to explain the structure-property behaviour of irradiated ETFE films.
A comparison of TPS and different measurement techniques in small-field electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donmez Kesen, Nazmiye, E-mail: nazo94@gmail.com; Cakir, Aydin; Okutan, Murat
In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with datamore » that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.« less
Monte Carlo based electron treatment planning and cutout output factor calculations
NASA Astrophysics Data System (ADS)
Mitrou, Ellis
Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.
Small field electron beam dosimetry using MOSFET detector
Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K.
2010-01-01
The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth‐dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high‐sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm× 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also performed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ±1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam. PACS number: 87.55.Qr
Matching of electron beams for conformal therapy of target volumes at moderate depths.
Zackrisson, B; Karlsson, M
1996-06-01
The basic requirements for conformal electron therapy are an accelerator with a wide range of energies and field shapes. The beams should be well characterised in a full 3-D dose planning system which has been verified for the geometries of the current application. Differences in the basic design of treatment units have been shown to have a large influence on beam quality and dosimetry. Modern equipment can deliver electron beams of good quality with a high degree of accuracy. A race-track microtron with minimised electron scattering and a multi-leaf collimator (MLC) for electron collimating will facilitate the isocentric technique as a general treatment technique for electrons. This will improve the possibility of performing combined electron field techniques in order to conform the dose distribution with no or minimal use of a bolus. Furthermore, the isocentric technique will facilitate multiple field arrangements that decrease the problems with distortion of the dose distribution due to inhomogeneities, etc. These situations are demonstrated by clinical examples where isocentric, matched electron fields for treatment of the nose, thyroid and thoracic wall have been used.
Absorbed dose determination using experimental and analytical predictions of x-ray spectra
NASA Astrophysics Data System (ADS)
Edwards, David Lee
1999-10-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate radiation shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) to measure the radiation dose. The TLD's were exposed to x- ray radiation generated by operation of the ISWE in- vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the measured TLD values.
Effect of electron beam irradiation on thermal and mechanical properties of epoxy polymer
NASA Astrophysics Data System (ADS)
Nguyen, A. T.; Visakh, P. M.; Nazarenko, O. B.; Chandran, C. S.; Melnikova, T. V.
2017-01-01
This study investigates the thermal and mechanical properties of epoxy polymer after exposure to different doses of electron beam irradiation. The epoxy polymer was prepared using epoxy-diane resin ED-20 cured by polyethylenepolyamine. The irradiation of the samples was carried out with doses of 30, 100 and 300 kGy. The effects of doses on thermal and mechanical properties of the epoxy polymer were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The thermal properties of the epoxy polymer slightly increased after irradiation at the heating in air. The tensile strength and Young’s modulus of the epoxy polymer increased by the action of electron beam up to dose of 100 kGy and then decreased. The elongation at break decreased with increasing the irradiation dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickling, S; El Naqa, I
Purpose: Previous work has demonstrated the detectability of acoustic waves induced following the irradiation of high density metals with radiotherapy linac photon beams. This work demonstrates the ability to experimentally detect such acoustic signals following both photon and electron irradiation in a more radiotherapy relevant material. The relationship between induced acoustic signal properties in water and the deposited dose distribution is explored, and the feasibility of exploiting such signals for radiotherapy dosimetry is demonstrated. Methods: Acoustic waves were experimentally induced in a water tank via the thermoacoustic effect following a single pulse of photon or electron irradiation produced by amore » clinical linac. An immersion ultrasound transducer was used to detect these acoustic waves in water and signals were read out on an oscilloscope. Results: Peaks and troughs in the detected acoustic signals were found to correspond to the location of gradients in the deposited dose distribution following both photon and electron irradiation. Signal amplitude was linearly related to the dose per pulse deposited by photon or electron beams at the depth of detection. Flattening filter free beams induced large acoustic signals, and signal amplitude decreased with depth after the depth of maximum dose. Varying the field size resulted in a temporal shift of the acoustic signal peaks and a change in the detected signal frequency. Conclusion: Acoustic waves can be detected in a water tank following irradiation by linac photon and electron beams with basic electronics, and have characteristics related to the deposited dose distribution. The physical location of dose gradients and the amount of dose deposited can be inferred from the location and magnitude of acoustic signal peaks. Thus, the detection of induced acoustic waves could be applied to photon and electron water tank and in vivo dosimetry. This work was supported in part by CIHR grants MOP-114910 and MOP-136774. S.H. acknowledges support by the NSERC CREATE Medical Physics Research Training Network grant 432290.« less
Clinical implementation of MOSFET detectors for dosimetry in electron beams.
Bloemen-van Gurp, Esther J; Minken, Andre W H; Mijnheer, Ben J; Dehing-Oberye, Cary J G; Lambin, Philippe
2006-09-01
To determine the factors converting the reading of a MOSFET detector placed on the patient's skin without additional build-up to the dose at the depth of dose maximum (D(max)) and investigate their feasibility for in vivo dose measurements in electron beams. Factors were determined to relate the reading of a MOSFET detector to D(max) for 4 - 15 MeV electron beams in reference conditions. The influence of variation in field size, SSD, angle and field shape on the MOSFET reading, obtained without additional build-up, was evaluated using 4, 8 and 15 MeV beams and compared to ionisation chamber data at the depth of dose maximum (z(max)). Patient entrance in vivo measurements included 40 patients, mostly treated for breast tumours. The MOSFET reading, converted to D(max), was compared to the dose prescribed at this depth. The factors to convert MOSFET reading to D(max) vary between 1.33 and 1.20 for the 4 and 15 MeV beams, respectively. The SSD correction factor is approximately 8% for a change in SSD from 95 to 100 cm, and 2% for each 5-cm increment above 100 cm SSD. A correction for fields having sides smaller than 6 cm and for irregular field shape is also recommended. For fields up to 20 x 20 cm(2) and for oblique incidence up to 45 degrees, a correction is not necessary. Patient measurements demonstrated deviations from the prescribed dose with a mean difference of -0.7% and a standard deviation of 2.9%. Performing dose measurements with MOSFET detectors placed on the patient's skin without additional build-up is a well suited technique for routine dose verification in electron beams, when applying the appropriate conversion and correction factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volotskova, O; Xu, A; Jozsef, G
Purpose: To investigate the response and dose rate dependence of a scintillation detector over a wide energy range. Methods: The energy dependence of W1 scintillation detector was tested with: 1) 50–225 keV beams generated by an animal irradiator, 2) a Leksell Gamma Knife Perfexion Co-60 source, 3) 6MV, 6FFF, 10FFF and 15MV photon beams, and 4) 6–20MeV electron beams from a linac. Calibrated linac beams were used to deliver 100 cGy to the detector at dmax in water under reference conditions. The gamma-knife measurement was performed in solid water (100 cGy with 16mm collimator). The low energy beams were calibratedmore » with an ion chamber in air (TG-61), and the scintillation detector was placed at the same location as the ionization chamber during calibration. For the linac photon and electron beams, dose rate dependence was tested for 100–2400 and 100–800 MU/min. Results: The scintillation detector demonstrated strong energy dependence in the range of 50–225keV. The measured values were lower than the delivered dose and increased as the energy increased. Therapeutic photon beams showed energy independence with variations less than 1%. Therapeutic electron beams displayed the same sensitivity of ∼2–3% at their corresponding dmax depths. The change in dose-rate of photon and electron beams within the therapeutic energy range did not affect detector output (<0.5%). Measurements acquired with the gamma knife showed that the output data agreed with the delivered dose up to 3%. Conclusion: W1 scintillation detector output has a strong energy dependence in the diagnostic and orthovoltage energy range. Therapeutic photon beams exhibited energy independence with no observable dose-rate dependence. This study may aid in the implementation of a scintillation detector in QA programs by providing energy calibration factors.« less
Design and development of the 6-18 MeV electron beam system for medical and other applications
NASA Astrophysics Data System (ADS)
Shahzad, A.; Phatangare, A. B.; Bharud, V. D.; Bhadane, M. S.; Tahakik, C. D.; Patil, B. J.; Dahiwale, S. S.; Chavan, S. T.; Pethe, S. N.; Dhole, S. D.; Bhoraskar, V. N.
2017-12-01
A system for the electron and photon therapy has been designed and developed at SAMEER, IITB, Mumbai. All the components of the system such as the 270° beam bending electromagnet, trim coils, magnet chamber, electron scattering foil, slits, applicators, etc., were designed and fabricated indigenously. The electrons of 6, 8, 9, 12, 15 and 18 MeV energies were provided by a linear accelerator, indigenously designed and made at SAMEER, IITB campus, Mumbai. The electron beam from the LINAC enters the magnet chamber horizontally, and after deflection and focusing in the 270° bending magnet, comes out of the exit port, and travels a straight path vertically down. After passing through the beryllium and tantalum scattering foils, the electron beam gets scattered and turns into a solid cone shape such that the diameter increases with the travel distance. The simulation results indicate that at the exit port of the 270° beam bending magnet, the electron beam has a divergence angle of ≤ 3 mrad and diameter ∼2-3 mm, and remains constant over 6-18 MeV. Normally, 6-18 MeV electrons are used for the electron therapy of skin and malignant cancer near the skin surface. On a plane at a distance of 100 cm from the scattering foils, the size of the electron beam could be varied from 10 cm × 10 cm to 25 cm × 25 cm using suitable applicators and slits. Different types of applicators were therefore designed and fabricated to provide required beam profile and dose of electrons to a patient. The 6 MeV cyclic electron accelerator called Race-Track Microtron of S. P. Pune University, Pune, was extensively used for studying the performances of the scattering foils, electron beam uniformity and radiation dose measurement. Different types of thermoluminescent dosimetry dosimeters were developed to measure dose in the range of 1-10kGy.
Wronski, Matt; Yeboah, Collins
2015-01-01
Lens dose is a concern during the treatment of facial lesions with anterior electron beams. Lead shielding is routinely employed to reduce lens dose and minimize late complications. The purpose of this work is twofold: 1) to measure dose profiles under large‐area lead shielding at the lens depth for clinical electron energies via film dosimetry; and 2) to assess the accuracy of the Pinnacle treatment planning system in calculating doses under lead shields. First, to simulate the clinical geometry, EBT3 film and 4 cm wide lead shields were incorporated into a Solid Water phantom. With the lead shield inside the phantom, the film was positioned at a depth of 0.7 cm below the lead, while a variable thickness of solid water, simulating bolus, was placed on top. This geometry was reproduced in Pinnacle to calculate dose profiles using the pencil beam electron algorithm. The measured and calculated dose profiles were normalized to the central‐axis dose maximum in a homogeneous phantom with no lead shielding. The resulting measured profiles, functions of bolus thickness and incident electron energy, can be used to estimate the lens dose under various clinical scenarios. These profiles showed a minimum lead margin of 0.5 cm beyond the lens boundary is required to shield the lens to ≤10% of the dose maximum. Comparisons with Pinnacle showed a consistent overestimation of dose under the lead shield with discrepancies of ∼25% occurring near the shield edge. This discrepancy was found to increase with electron energy and bolus thickness and decrease with distance from the lead edge. Thus, the Pinnacle electron algorithm is not recommended for estimating lens dose in this situation. The film measurements, however, allow for a reasonable estimate of lens dose from electron beams and for clinicians to assess the lead margin required to reduce the lens dose to an acceptable level. PACS number(s): 87.53.Bn, 87.53.Kn, 87.55.‐x, 87.55.D‐ PMID:27074448
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feygelman, Vladimir; Department of Physics, University of Manitoba, Winnipeg, MB; Mandelzweig, Yuri
2015-01-15
Matching electron beams without secondary collimators (applicators) were used for treatment of extensive, recurrent chest-wall carcinoma. Due to the wide penumbra of such beams, the homogeneity of the dose distribution at and around the junction point is clinically acceptable and relatively insensitive to positional errors. Specifically, dose around the junction point is homogeneous to within ±4% as calculated from beam profiles, while the positional error of 1 cm leaves this number essentially unchanged. The experimental isodose distribution in an anthropomorphic phantom supports this conclusion. Two electron beams with wide penumbra were used to cover the desired treatment area with satisfactorymore » dose homogeneity. The technique is relatively simple yet clinically useful and can be considered a viable alternative for treatment of extensive chest-wall disease. The steps are suggested to make this technique more universal.« less
The response of Kodak EDR2 film in high-energy electron beams.
Gerbi, Bruce J; Dimitroyannis, Dimitri A
2003-10-01
Kodak XV2 film has been a key dosimeter in radiation therapy for many years. The advantages of the recently introduced Kodak EDR2 film for photon beam dosimetry have been the focus of several IMRT verification dosimetry publications. However, no description of this film's response to electron beams exists in the literature. We initiated a study to characterize the response and utility of this film for electron beam dosimetry. We exposed a series of EDR2 films to 6, 9, 12, 16, and 20 MeV electrons in addition to 6 and 18 MV x rays to develop standard characteristic curves. The linac was first calibrated to ensure that the delivered dose was known accurately. All irradiations were done at dmax in polystyrene for both photons and electrons, all films were from the same batch, and were developed at the same time. We also exposed the EDR2 films in a solid water phantom to produce central axis depth dose curves. These data were compared against percent depth dose curves measured in a water phantom using an IC-10 ion chamber, Kodak XV2 film, and a PTW electron diode. The response of this film was the same for both 6 and 18 MV x rays, but showed an apparent energy-dependent enhancement for electron beams. The response of the film also increased with increasing electron energy. This caused the percent depth dose curves using film to be shifted toward the surface compared to the ion chamber data.
Investigation of viability of plant tissue in the environmental scanning electron microscopy.
Zheng, Tao; Waldron, K W; Donald, Athene M
2009-11-01
The advantages of environmental scanning electron microscopy (ESEM) make it a suitable technique for studying plant tissue in its native state. There have been few studies on the effects of ESEM environment and beam damage on the viability of plant tissue. A simple plant tissue, Allium cepa (onion) upper epidermal tissue was taken as the model for study. The change of moisture content of samples was studied at different relative humidities. Working with the electron beam on, viability tests were conducted for samples after exposure in the ESEM under different operating conditions to investigate the effect of electron beam dose on the viability of samples. The results suggested that without the electron beam, the ESEM chamber itself can prevent the loss of initial moisture if its relative humidity is maintained above 90%. With the electron beam on, the viability of Allium cepa (onion) cells depends both on the beam accelerating voltage and the electron dose/unit area hitting the sample. The dose can be controlled by several of the ESEM instrumental parameters. The detailed process of beam damage on cuticle-down and cuticle-up samples was investigated and compared. The results indicate that cuticular adhesion to the cell wall is relatively weak, but highly resistant to electron beam damage. Systematic study on the effect of ESEM operation parameters has been done. Results qualitatively support the intuitive expectations, but demonstrate quantitatively that Allium cepa epidermal cells are able to be kept in a hydrated and viable state under relevant operation condition inside ESEM, providing a basis for further in situ experiments on plant tissues.
Measurement and interpretation of electron angle at MABE beam stop
NASA Astrophysics Data System (ADS)
Sanford, T. W. L.; Coleman, P. D.; Poukey, J. W.
1985-02-01
The mean angle of incidence at the beam stop of a 60 kA, 7 MV annular electron beam, in the 20 kG guide field of the MABE accelerator, was determined. Radiation dose measured in TLD arrays mounted downstream of the stop is compared with the radiation dose expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15(0) + or - 2(0). A comparison of theta with that expected from the Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.
Pencil-beam redefinition algorithm dose calculations for electron therapy treatment planning
NASA Astrophysics Data System (ADS)
Boyd, Robert Arthur
2001-08-01
The electron pencil-beam redefinition algorithm (PBRA) of Shiu and Hogstrom has been developed for use in radiotherapy treatment planning (RTP). Earlier studies of Boyd and Hogstrom showed that the PBRA lacked an adequate incident beam model, that PBRA might require improved electron physics, and that no data existed which allowed adequate assessment of the PBRA-calculated dose accuracy in a heterogeneous medium such as one presented by patient anatomy. The hypothesis of this research was that by addressing the above issues the PBRA-calculated dose would be accurate to within 4% or 2 mm in regions of high dose gradients. A secondary electron source was added to the PBRA to account for collimation-scattered electrons in the incident beam. Parameters of the dual-source model were determined from a minimal data set to allow ease of beam commissioning. Comparisons with measured data showed 3% or better dose accuracy in water within the field for cases where 4% accuracy was not previously achievable. A measured data set was developed that allowed an evaluation of PBRA in regions distal to localized heterogeneities. Geometries in the data set included irregular surfaces and high- and low-density internal heterogeneities. The data was estimated to have 1% precision and 2% agreement with accurate, benchmarked Monte Carlo (MC) code. PBRA electron transport was enhanced by modeling local pencil beam divergence. This required fundamental changes to the mathematics of electron transport (divPBRA). Evaluation of divPBRA with the measured data set showed marginal improvement in dose accuracy when compared to PBRA; however, 4% or 2mm accuracy was not achieved by either PBRA version for all data points. Finally, PBRA was evaluated clinically by comparing PBRA- and MC-calculated dose distributions using site-specific patient RTP data. Results show PBRA did not agree with MC to within 4% or 2mm in a small fraction (<3%) of the irradiated volume. Although the hypothesis of the research was shown to be false, the minor dose inaccuracies should have little or no impact on RTP decisions or patient outcome. Therefore, given ease of beam commissioning, documentation of accuracy, and calculational speed, the PBRA should be considered a practical tool for clinical use.
USDA-ARS?s Scientific Manuscript database
The effects of storage and low-dose electron-beam (e-beam) irradiation on health-promoting compounds were evaluated in the potato cultivar Atlantic. Tubers were either not exposed or subjected to 200 Gy and were either sampled immediately or stored at either 4 degrees C or ambient temperature for 10...
NASA Astrophysics Data System (ADS)
Engohang-Ndong, Jean; Uribe, R. M.; Gregory, Roger; Gangoda, Mahinda; Nickelsen, Mike G.; Loar, Philip
2015-07-01
Wastewater treatment plants produce large amounts of biosolids that can be utilized for land applications. However, prior to their use, these biosolids must be treated to eliminate risks of infections and to reduce upsetting odors. In this study, microbiological and chemical analyzes were performed before and after treatment of sewage sludge with 3 MeV of an electron beam accelerator in a pilot processing plant. Thus, we determined that dose 4.5 kGy was required to reduce fecal coliform counts to safe levels for land applications of sludge while, 14.5 kGy was necessary to decrease Ascaris ova counts to safe levels. Furthermore, at low doses, electron beam irradiation showed little effect on the concentrations of volatile organic compounds, while some increase were recorded at high doses. The concentration of dimethyl sulfide was reduced by 50-70% at irradiation doses of 25.7 kGy and 30.7 kGy respectively. By contrast, electron beam irradiation increased dimethyl disulfide concentrations. We also showed that electron beam treatment was less energy-consuming with shorter processing times than conventional techniques used to decontaminate sludge. Hence opening new avenues for large urban agglomerations to save money and time when treating biosolids for land application.
An Investigation of Nonuniform Dose Deposition From an Electron Beam
1994-08-01
to electron - beam pulse. Ceramic package HIPEC Lid Electron beam Die Bond wires TLD TLD Silver epoxy 6 package cavity die TLD’s 21 3 4 5 Figure 2...these apertures was documented in a previous experiment relating to HIFX electron -beam dosimetry .2 The hardware required for this setup was a 60-cm...impurity serves 2Gregory K. Ovrebo, Steven M. Blomquist, and Steven R. Murrill, A HIFX Electron -Beam Dosimetry System, Army Research Laboratory, ARL-TR
External audits of electron beams using mailed TLD dosimetry: preliminary results.
Gomola, I; Van Dam, J; Isern-Verdum, J; Verstraete, J; Reymen, R; Dutreix, A; Davis, B; Huyskens, D
2001-02-01
A feasibility study has been performed to investigate the possibility of using mailed thermoluminescence dosimetry (TLD) for external audits of clinical electron beams in Europe. In the frame of the EC Network Project for Quality Assurance in Radiotherapy, instruction sheets and mailing procedures have been defined for mailed TLD dosimetry using the dedicated holder developed by a panel of experts of the International Atomic Energy Agency (IAEA). Three hundred and thirty electron beam set-ups have been checked in the reference centres and some local centres of the EC Network Project and in addition through the centres participating to the EORTC Radiotherapy Group trial 22922. The mean ratio of measured dose to stated dose is 0.2% and the standard deviation of measured dose to stated dose is 3.2%. In seven beam set-ups, deviations greater than 10% were observed (max. 66%), showing the usefulness of these checks. The results of this feasibility study (instruction sheets, mailing procedures, holder) are presently endorsed by the EQUAL-ESTRO structure in order to offer in the future to all ESTRO members the possibility to request external audits of clinical electron beams.
ESR dosimeter material properties of phenols compound exposed to radiotherapeutic electron beams
NASA Astrophysics Data System (ADS)
Gallo, Salvatore; Iacoviello, Giuseppina; Bartolotta, Antonio; Dondi, Daniele; Panzeca, Salvatore; Marrale, Maurizio
2017-09-01
There is a need for a sensitive dosimeter using Electron Spin Resonance spectroscopy for use in medical applications, since non-destructive read-out and dose archival could be achieved with this method. This work reports a systematic ESR investigation of IRGANOX ® 1076 exposed to clinical electron beams produced by a LINAC used for radiation therapy treatments. Recently, dosimetric features of this material were investigated for irradiation with 60Co γ -photons and neutrons in both pellet and film shape and have been found promising thanks to their high efficiency of radiation-matter energy transfer and radical stability at room temperature. Here the analysis of the dosimetric features of these ESR dosimeters exposed to clinical electron beams at energies of 7, 10 and 14 MeV, is described in terms of dependence on microwave power and modulation amplitude, response on dose, dependence on beam type, detection limits, and signal stability after irradiation. The analysis of the ESR signal as function of absorbed dose highlights that the response of this material is linear in the dose range investigated (1-13 Gy) and is independent of the beam energy. The minimum detectable dose is found to be smaller than 1 Gy. Comparison of electron stopping power values of these dosimeters with those of water and soft tissue highlights equivalence of the response to electron beams in the energy range considered. The signal intensity was monitored for 40 days after irradiation and for all energies considered and it shows negligible variations in the first 500 h after irradiation whereas after 1100 h the signal decay is only of about 4%. In conclusion, it is found that phenolic compounds possess good dosimetric features which make it useful as a sensitive dosimeter for medical applications.
A Dose-Rate Effect in Single-Particle Electron Microscopy
Chen, James Z.; Sachse, Carsten; Xu, Chen; Mielke, Thorsten; Spahn, Christian M. T.; Grigorieff, Nikolaus
2008-01-01
A low beam-intensity, low electron-dose imaging method has been developed for single-particle electron cryo-microscopy (cryo-EM). Experiments indicate that the new technique can reduce beam-induced specimen movement and secondary radiolytic effects, such as “bubbling”. The improvement in image quality, especially for multiple-exposure data collection, will help single-particle cryo-EM to reach higher resolution. PMID:17977018
NASA Astrophysics Data System (ADS)
Fuochi, P. G.; Onori, S.; Casali, F.; Chirco, P.
1993-10-01
A 12 MeV linear accelerator is currently used for electron beam processing of power semiconductor devices for lifetime control and, on an experimental basis, for food irradiation, sludge treatment etc. In order to control the irradiation process a simple, quick and reliable method for a direct evaluation of dose and fluence in a broad electron beam has been developed. This paper presents the results obtained using a "charge collector" which measures the charge absorbed in a graphite target exposed in air. Calibration of the system with super-Fricke dosimeter and comparison of absorbed dose results obtained with plastic dosimeters and alanine pellets are discussed.
SU-E-T-451: Accuracy and Application of the Standard Imaging W1 Scintillator Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, M; McEwen, M
2014-06-01
Purpose: To evaluate the Standard Imaging W1 scintillator dosimeter in a range of clinical radiation beams to determine its range of possible applications. Methods: The W1 scintillator is a small perturbation-free dosimeter which is of interest in absolute and relative clinical dosimetry due to its small size and water equivalence. A single version of this detector was evaluated in Co-60 and linac photon and electron beams to investigate the following: linearity, sensitivity, precision, and dependence on electrometer type. In addition, depth-dose and cross-plane profiles were obtained in both photon and electron beams and compared with data obtained with wellbehaved ionizationmore » chambers. Results: In linac beams the precision and linearity was very impressive, with typical values of 0.3% and 0.1% respectively. Performance in a Co-60 beam was much poorer (approximately three times worse) and it is not clear whether this is due to the lower signal current or the effect of the continuous beam (rather than pulsed beam of the linac measurements). There was no significant difference in the detector reading when using either the recommended SI Supermax electrometer or two independent high-quality electrometers, except for low signal levels, where the Supermax exhibited an apparent threshold effect, preventing the measurement of the bremsstrahlung background in electron depth-dose curves. Comparisons with ion chamber measurements in linac beams were somewhat variable: good agreement was seen for cross-profiles (photon and electron beams) and electron beam depth-dose curves, generally within the 0.3% precision of the scintillator but systematic differences were observed as a function of measurement depth in photon beam depth-dose curves. Conclusion: A first look would suggest that the W1 scintillator has applications beyond small field dosimetry but performance appears to be limited to higher doserate and/or pulsed radiation beams. Further work is required to resolve discrepancies compared to ion chambers.« less
SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawad, M Abdel; Elgohary, M; Hassaan, M
Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less
Wiklund, Kristin; Olivera, Gustavo H; Brahme, Anders; Lind, Bengt K
2008-07-01
To speed up dose calculation, an analytical pencil-beam method has been developed to calculate the mean radial dose distributions due to secondary electrons that are set in motion by light ions in water. For comparison, radial dose profiles calculated using a Monte Carlo technique have also been determined. An accurate comparison of the resulting radial dose profiles of the Bragg peak for (1)H(+), (4)He(2+) and (6)Li(3+) ions has been performed. The double differential cross sections for secondary electron production were calculated using the continuous distorted wave-eikonal initial state method (CDW-EIS). For the secondary electrons that are generated, the radial dose distribution for the analytical case is based on the generalized Gaussian pencil-beam method and the central axis depth-dose distributions are calculated using the Monte Carlo code PENELOPE. In the Monte Carlo case, the PENELOPE code was used to calculate the whole radial dose profile based on CDW data. The present pencil-beam and Monte Carlo calculations agree well at all radii. A radial dose profile that is shallower at small radii and steeper at large radii than the conventional 1/r(2) is clearly seen with both the Monte Carlo and pencil-beam methods. As expected, since the projectile velocities are the same, the dose profiles of Bragg-peak ions of 0.5 MeV (1)H(+), 2 MeV (4)He(2+) and 3 MeV (6)Li(3+) are almost the same, with about 30% more delta electrons in the sub keV range from (4)He(2+)and (6)Li(3+) compared to (1)H(+). A similar behavior is also seen for 1 MeV (1)H(+), 4 MeV (4)He(2+) and 6 MeV (6)Li(3+), all classically expected to have the same secondary electron cross sections. The results are promising and indicate a fast and accurate way of calculating the mean radial dose profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L; Fan, J; Eldib, A
Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-housemore » developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.« less
Björk, P; Knöös, T; Nilsson, P
2000-11-01
The aim of the present study is to examine the validity of using silicon semiconductor detectors in degraded electron beams with a broad energy spectrum and a wide angular distribution. A comparison is made with diamond detector measurements, which is the dosimeter considered to give the best results provided that dose rate effects are corrected for. Two-dimensional relative absorbed dose distributions in electron beams (6-20 MeV) for intraoperative radiation therapy (IORT) are measured in a water phantom. To quantify deviations between the detectors, a dose comparison tool that simultaneously examines the dose difference and distance to agreement (DTA) is used to evaluate the results in low- and high-dose gradient regions, respectively. Uncertainties of the experimental measurement setup (+/- 1% and +/- 0.5 mm) are taken into account by calculating a composite distribution that fails this dose-difference and DTA acceptance limit. Thus, the resulting area of disagreement should be related to differences in detector performance. The dose distributions obtained with the diode are generally in very good agreement with diamond detector measurements. The buildup region and the dose falloff region show good agreement with increasing electron energy, while the region outside the radiation field close to the water surface shows an increased difference with energy. The small discrepancies in the composite distributions are due to several factors: (a) variation of the silicon-to-water collision stopping-power ratio with electron energy, (b) a more pronounced directional dependence for diodes than for diamonds, and (c) variation of the electron fluence perturbation correction factor with depth. For all investigated treatment cones and energies, the deviation is within dose-difference and DTA acceptance criteria of +/- 3% and +/- 1 mm, respectively. Therefore, p-type silicon diodes are well suited, in the sense that they give results in close agreement with diamond detectors, for practical measurements of relative absorbed dose distributions in degraded electron beams used for IORT.
NASA Astrophysics Data System (ADS)
Fan, Xuetong; Sokorai, Kimberly; Weidauer, André; Gotzmann, Gaby; Rögner, Frank-Holm; Koch, Eckhard
2017-01-01
Sprouts have frequently been implicated in outbreaks of foodborne illnesses, mostly due to contaminated seeds. Intervention technologies to decontaminate seeds without affecting sprout yield are needed. In the present study, we compared gamma rays with electron beam in inactivating E. coli artificially inoculated on three seeds (fenugreek, clover and mung bean) that differed in size and surface morphology. Furthermore, the germination and growth of irradiated seeds were evaluated. Results showed that the D10 values (dose required to achieve 1 log reduction) for E. coli K12 on mung bean, clover, and fenugreek were 1.11, 1.21 and 1.40 kGy, respectively. To achieve a minimum 5-log reduction of E. coli, higher doses were needed on fenugreek than on mung bean or clover. Electron beam treatment at doses up to 12 kGy could not completely inactivate E. coli inoculated on all seeds even though most of the seeds were E. coli-free after 4-12 kGy irradiation. Gamma irradiation at doses up to 6 kGy did not significantly affect the germination rate of clover and fenugreek seeds but reduced the germination rate of mung bean seeds. Doses of 2 kGy gamma irradiation did not influence the growth of seeds while higher doses of gamma irradiation reduced the growth rate. Electron beam treatment at doses up to 12 kGy did not have any significant effect on germination or growth of the seeds. SEM imaging indicated there were differences in surface morphology among the three seeds, and E. coli resided in cracks and openings of seeds, making surface decontamination of seeds with low energy electron beam a challenge due to the low penetration ability. Overall, our results suggested that gamma rays and electron beam had different effects on E. coli inactivation and germination or growth of seeds. Future efforts should focus on optimization of electron bean parameters to increase penetration to inactivate E. coli without causing damage to the seeds.
Brown, Jr., R. Malcolm; Barnes, Zack [Austin, TX; Sawatari, Chie [Shizuoka, JP; Kondo, Tetsuo [Kukuoka, JP
2008-02-26
The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.
Petersson, Kristoffer; Jaccard, Maud; Germond, Jean-François; Buchillier, Thierry; Bochud, François; Bourhis, Jean; Vozenin, Marie-Catherine; Bailat, Claude
2017-03-01
The purpose of this work was to establish an empirical model of the ion recombination in the Advanced Markus ionization chamber for measurements in high dose rate/dose-per-pulse electron beams. In addition, we compared the observed ion recombination to calculations using the standard Boag two-voltage-analysis method, the more general theoretical Boag models, and the semiempirical general equation presented by Burns and McEwen. Two independent methods were used to investigate the ion recombination: (a) Varying the grid tension of the linear accelerator (linac) gun (controls the linac output) and measuring the relative effect the grid tension has on the chamber response at different source-to-surface distances (SSD). (b) Performing simultaneous dose measurements and comparing the dose-response, in beams with varying dose rate/dose-per-pulse, with the chamber together with dose rate/dose-per-pulse independent Gafchromic™ EBT3 film. Three individual Advanced Markus chambers were used for the measurements with both methods. All measurements were performed in electron beams with varying mean dose rate, dose rate within pulse, and dose-per-pulse (10 -2 ≤ mean dose rate ≤ 10 3 Gy/s, 10 2 ≤ mean dose rate within pulse ≤ 10 7 Gy/s, 10 -4 ≤ dose-per-pulse ≤ 10 1 Gy), which was achieved by independently varying the linac gun grid tension, and the SSD. The results demonstrate how the ion collection efficiency of the chamber decreased as the dose-per-pulse increased, and that the ion recombination was dependent on the dose-per-pulse rather than the dose rate, a behavior predicted by Boag theory. The general theoretical Boag models agreed well with the data over the entire investigated dose-per-pulse range, but only for a low polarizing chamber voltage (50 V). However, the two-voltage-analysis method and the Burns & McEwen equation only agreed with the data at low dose-per-pulse values (≤ 10 -2 and ≤ 10 -1 Gy, respectively). An empirical model of the ion recombination in the chamber was found by fitting a logistic function to the data. The ion collection efficiency of the Advanced Markus ionization chamber decreases for measurements in electron beams with increasingly higher dose-per-pulse. However, this chamber is still functional for dose measurements in beams with dose-per-pulse values up toward and above 10 Gy, if the ion recombination is taken into account. Our results show that existing models give a less-than-accurate description of the observed ion recombination. This motivates the use of the presented empirical model for measurements with the Advanced Markus chamber in high dose-per-pulse electron beams, as it enables accurate absorbed dose measurements (uncertainty estimation: 2.8-4.0%, k = 1). The model depends on the dose-per-pulse in the beam, and it is also influenced by the polarizing chamber voltage, with increasing ion recombination with a lowering of the voltage. © 2017 American Association of Physicists in Medicine.
Effectiveness of high energy electron beam against spore forming bacteria and viruses in slurry
NASA Astrophysics Data System (ADS)
Skowron, Krzysztof; Paluszak, Zbigniew; Olszewska, Halina; Wieczorek, Magdalena; Zimek, Zbigniew; Śrutek, Mścisław
2014-08-01
The aim of this study was to evaluate the efficacy of high energy electron beam effect against the most resistant indicators - spore forming bacteria (Clostridium sporogenes) and viruses (BPV) - which may occur in slurry. The applied doses of electron beam were 0, 1, 2, 3, 5, 7, 10 and 12 kGy. The theoretic inactivating dose of high energy electron beam for Clostridium sporogenes spores calculated based on the polynomial curve equation was 11.62 kGy, and determined on the basis of regression line equation for BPV virus was equal 23.49 kGy. The obtained results showed a quite good effectiveness of irradiation in bacterial spores inactivation, whereas relatively poor against viruses.
Higher energy: is it necessary, is it worth the cost for radiation oncology?
Das, I J; Kase, K R
1992-01-01
The physical characteristics of the interactions of megavoltage photons and electrons with matter provide distinct advantages, relative to low-energy (orthovoltage) x rays, that lead to better radiation dose distributions in patients. Use of these high-energy radiations has resulted in better patient care, which has been reflected in improved radiation treatment outcome in recent years. But, as the desire for higher energy radiation beams increases, it becomes important to determine whether the physical characteristics that make megavoltage beams beneficial continue to provide a net advantage. It is demonstrated that, in fact, there is an energy range from 4 to 15 MV for photons and 4 to 20 MeV for electrons that is optimally suited for the treatment of cancer in humans. Radiation beams that exceed these maximum energies were found to add no advantage. This is because the costs (price of unit, installation, maintenance, shielding for neutron and photons) are not justified by either improved physical characteristics of the radiation (penetration, skin sparing, dose distribution) or treatment outcome. In fact, for photon beams some physical characteristics result in less desirable dose distributions, less accurate dosimetry, and increased safety problems as the energy increases for example, increasingly diffuse beam edges, loss of electron equilibrium, uncertainty in dose perturbations at interfaces, increased neutron contamination, and potential for higher personnel dose. The special features that make electron beams useful at lower energies, for example, skin sparing and small penetration, are lost at high energies. These physical factors are analyzed together with the economic factors related to radiation therapy patient care using megavoltage beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan; Sarfehnia, Arman
Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials wasmore » also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol. General agreement between the relative electron energy dependence of the PTW Roos data measured in this work and a recent MC-based study are also shown. Conclusions: This is the first time that water calorimetry has been successfully used to measure electron beam quality conversion factors for energies as low as 6 MeV (R{sub 50} = 2.25 cm)« less
NASA Astrophysics Data System (ADS)
Shettigar, Nayana; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Eljald, E. M.; Regragui, M.; Antony, Albin; Rao, Ashok; Sanjeev, Ganesh; Ajeyakashi, K. C.; Poornesh, P.
2017-11-01
We report the third-order nonlinear optical properties of electron beam treated Indium doped ZnO (Zn1-xInxO (x = 0.03) thin films at different dose rate. Zn1-xInxO (x = 0.03) thin films prepared by spray pyrolysis deposition technique were irradiated using 8 MeV electron beam at dose rates ranging from 1 kGy to 4 kGy. X-ray diffraction patterns were obtained to examine the structural changes, The transformation from sphalerite to wurtzite structure of ZnO was observed which indicates occurrence of structural changes due to irradiation. Morphology of irradiated thin films examined using atomic force microscopy (AFM) technique indicates the surface roughness varying with irradiation dose rate. The switching over from Saturable Absorption (SA) to Reverse Saturable Absorption (RSA) behaviour was noted when the irradiation dose rate was increased from 1 kGy to 4 kGy. The significant changes observed in the third-order nonlinear optical susceptibility χ(3) of the Zn1-xInxO (x = 0.03) thin films is attributed mainly due to electron beam irradiation. The study indicates that nonlinear optical parameters can be controlled by electron beam irradiation by choosing appropriate dose rate which is very much essential for device applications. Hence Zn1-xInxO (x = 0.03) materialize as a promising material for use in nonlinear optical device applications.
A comparison of TPS and different measurement techniques in small-field electron beams.
Donmez Kesen, Nazmiye; Cakir, Aydin; Okutan, Murat; Bilge, Hatice
2015-01-01
In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5cm and smaller, for nominal energies of 6, 9, and 15MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15MeV and 32% for 9MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Measurement and interpretation of electron angle at MABE beam stop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.
1985-02-01
The mean angle of incidence at the beam stop of a 60 kA, 7 MV annular electron beam, in the 20 kG guide field of the MABE accelerator, is determined. Radiation dose measured in TLD arrays mounted downstream of the stop is compared with the radiation dose expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15/sup 0/ +- 2/sup 0/. Comparing this theta with thatmore » expected from the Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.« less
TLD postal dose intercomparison for megavoltage units in Poland.
Izewska, J; Gajewski, R; Gwiazdowska, B; Kania, M; Rostkowska, J
1995-08-01
The aim of the TLD pilot study was to investigate and to reduce the uncertainties involved in the measurements of absorbed dose and to improve the consistency in dose determination in the regional radiotherapy centres in Poland. The intercomparison was organized by the SSDL. It covered absorbed dose measurements under reference conditions for Co-60, high energy X-rays and electron beams. LiF powder type MT-N was used for the irradiations and read with the Harshaw TLD reader model 2000B/2000C. The TLD system was set up and an analysis of the factors influencing the accuracy of absorbed dose measurements with TL-detectors was performed to evaluate and minimize the measurement uncertainty. A fading not exceeding 2% in 12 weeks was found. The relative energy correction factor did not exceed 3% for X-rays in the range 4-15 MV, and 4% for electron beams between 6 and 20 MeV. A total of 34 beams was checked. Deviation of +/- 3.5% stated and evaluated dose was considered acceptable for photons and +/- 5% for electron beams. The results for Co-60, high energy X-rays and electron beams showed that there were two, three and no centres, respectively, beyond acceptance levels. The sources of errors for all deviations out of this range were thoroughly investigated, discussed and corrected, however two deviations remained unexplained. The pilot study resulted in an improvement of the accuracy and consistency of dosimetry in Poland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Trovati, S; Loo, B
Purpose: To study the impact of electron beam size, target thickness, and target temperature on the ability of the flattening filter-free mode (FFF) treatment head to deliver high-dose-rate irradiations. Methods: The dose distribution and transient temperature of the X-ray target under 10 MeV electron beam with pulse length of 5 microseconds, and repetition rate of 1000 Hz was studied. A MCNP model was built to calculate the percentage depth dose (PPD) distribution in a water phantom at a distance of 100 cm. ANSYS software was used to run heat transfer simulations. The PPD and temperature for both tungsten and W25Remore » targets for different electron beam sizes (FHWM 0.2, 0.5, 1 and 2 mm) and target thickness (0.2 to 2 mm) were studied. Results: Decreasing the target thickness from 1 mm to 0.5 mm, caused a surface dose increase about 10 percent. For both target materials, the peak temperature was about 1.6 times higher for 0.5 mm electron beam compared to the 1 mm beam after reaching their equilibrium. For increasing target thicknesses, the temperature rise caused by the first pulse is similar for all thicknesses, however the temperature difference for subsequent pulses becomes larger until a constant ratio is reached. The target peak temperature after reaching equilibrium can be calculated by adding the steady state temperature and the amplitude of the temperature oscillation. Conclusion: This work indicates the potential to obtain high dose rate irradiation by selecting target material, geometry and electron beam parameters. W25Re may not outperformed tungsten when the target is thick due to its relatively low thermal conductivity. The electron beam size only affects the target temperature but not the PPD. Thin target is preferred to obtain high dose rate and low target temperature, however, the resulting high surface dose is a major concern. NIH funding:R21 EB015957-01; DOD funding:W81XWH-13-1-0165 BL, PM, PB, and RF are founders of TibaRay, Inc. BL is also a borad member. BL and PM have received research grants from Varian Medical System, Inc. and RaySearch Laboratory. RF is an employee of Siemens Healthcare GmbH.« less
1991-08-01
The outer perimeter of the converter was attached to the C ring with copper tape. Thermoluminescent dosimeters ( TLDs )* and a coaxial x-ray diode...CaF2) TLDs in Al pillboxes for electronic equilibrium. 7 Figure 2. HIFX beam 400 pinch at 0.05 Torr, Y4 38o in. from face. _360O E 340 d 320 - .~. 300...AD-A239 558Hu D L M-91 -111, 1, 1 ,11I Aucr,, 1991 Electron -Beam-Pinch Experiment at Harry Diamond Laboratories: Providing for a High-Dose-Rate
Huang, Yanxiao; Willomitzer, Christian; Zakaria, Golam Abu; Hartmann, Guenther H
2010-01-01
Measurements of depth-dose curves in water phantom using a cylindrical ionization chamber require that its effective point of measurement is located at the measuring depth. Recommendations for the position of the effective point of measurement with respect to the central axis valid for high-energy electron and photon beams are given in dosimetry protocols. According to these protocols, the use of a constant shift P(eff) is currently recommended. However, this is still based on a very limited set of experimental results. It is therefore expected that an improved knowledge of the exact position of the effective point of measurement will further improve the accuracy of dosimetry. Recent publications have revealed that the position of the effective point of measurement is indeed varying with beam energy, field size and also with chamber geometry. The aim of this study is to investigate whether the shift of P(eff) can be taken to be constant and independent from the beam energy. An experimental determination of the effective point of measurement is presented based on a comparison between cylindrical chambers and a plane-parallel chamber using conventional dosimetry equipment. For electron beams, the determination is based on the comparison of halfvalue depth R(50) between the cylindrical chamber of interest and a well guarded plane-parallel Roos chamber. For photon beams, the depth of dose maximum, d(max), the depth of 80% dose, d(80), and the dose parameter PDD(10) were used. It was again found that the effective point of measurement for both, electron and photon beams Dosimetry, depends on the beam energy. The deviation from a constant value remains very small for photons, whereas significant deviations were found for electrons. It is therefore concluded that use of a single upstream shift value from the centre of the cylindrical chamber as recommended in current dosimetry protocols is adequate for photons, however inadequate for accurate electron beam dosimetry.
Effects of ion- and electron-beam treatment on surface physicochemical properties of polylactic acid
NASA Astrophysics Data System (ADS)
Pukhova, I. V.; Savkin, K. P.; Laput, O. A.; Lytkina, D. N.; Botvin, V. V.; Medovnik, A. V.; Kurzina, I. A.
2017-11-01
We describe our investigations of the surface physicochemical and mechanical properties of polylactic acid modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ions/cm2 at energies of 20 keV (for C and Ar) and 40 keV (for Ag), and by electron beam treatment with pulse-width of 100-300 μs in 50 μs increments at a beam energy 8 keV. Carbonyl bonds (sbnd Cdbnd O) related IR peak was reduced after ion and electron beam irradiation. Molecular weight of PLA decreases twice and does not depend on the nature of the bombarding particles. The microhardness of treated samples decreases by a factor of 1.3, and the surface conductivity increases by 6 orders of magnitude after ion implantation, and increases only modestly after electron beam treatment. Atomic force microscopy shows that surface roughness increases with irradiation dose. Samples irradiated with Ag to a dose of 1 × 1016 ions/cm2 show the greatest roughness of 190 nm.
NASA Astrophysics Data System (ADS)
Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.
2015-11-01
Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.
Gorken, I B; Kentli, S; Alanyali, H; Karagüler, Z; Kinay, M
2002-01-01
It is reported that low dose radiation received by the contralateral breast (CLB) during adjuvant radiotherapy (RT) is carcinogenic. This trial was planned to evaluate the CLB skin doses received during adjuvant RT of breast carcinoma. Twenty-four breast carcinoma patients treated locally or locoregionally with adjuvant RT were included. RT was performed with only tangential fields (TA) in 6 patients whereas 9 patients had an extra internal mammary (IM) field (TAIM). The remaining 9 patients received 5-field locoregional RT (5FLR). All patients were treated with wedge filters except for 3 TA patients. Of 9 5FLR patients IM fields were treated with Co60 in 5 and with electrons in the remaining 4 patients. LiF(2)-based Ribbon type thermoluminescent dosimeters (TLD) were used for dose evaluation. An average of 10 TLD's, placed with 1 cm gaps beginning from the medial border of the treatment field along the central axis were used to obtain dose measurements. Median measure of TLD's between 2-8 cm and maximum dose point (MDP) values in the same range were used to evaluate the CLB dose. In TA patients the CLB skin received 6.3% of the total dose in patients treated with wedge filters and 7.13% with half-beam blocks. For 6 TAIM patients with IM fields treated with Co60, the CLB dose was 7.24%. In 5 of 9 5FLR patients, whose IM fields were treated with Co60 the CLB skin received 8.8% of the total dose, while for electron beam therapy the CLB dose was 5.44%. CLB median MDP values were as follows: 12.76% in TA patients treated with wedge filters and 11.45% with half-beam blocking; 11.89% in TAIM patients with IM fields treated with Co60 and 7.83% with electron beams; 12.29% in 5FLR patients of whose IM fields were treated with Co60 and 8.94% with electron beams. When compared to wedge filters, halfbeam blocks caused 13% increase in CLB doses. If IM fields were added, 27.5% and 62% increases at CLB doses were established with Co60 when compared to electron beam RT in 3-field and 5-field treatments, respectively. CLB doses increased by 15-40% with the increased number of treatment fields. MDP values were also found to be higher with IM fields treated with Co60, but the number of treatment fields and accessories used seemed to have no effect on MDP doses. We conclude that by using wedge filters instead of half-beam blocks and by increasing the number of fractions treated with electron energies for IM fields, apparent decreases in CLB doses can be obtained. Large number of cases is needed to statistically establish the significant differences between subgroups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LIU, B; Zhu, T
Purpose: The dose in the buildup region of a photon beam is usually determined by the transport of the primary secondary electrons and the contaminating electrons from accelerator head. This can be quantified by the electron disequilibrium factor, E, defined as the ratio between total dose and equilibrium dose (proportional to total kerma), E = 1 in regions beyond buildup region. Ecan be different among accelerators of different models and/or manufactures of the same machine. This study compares E in photon beams from different machine models/ Methods: Photon beam data such as fractional depth dose curve (FDD) and phantom scattermore » factors as a function of field size and phantom depth were measured for different Linac machines. E was extrapolated from these fractional depth dose data while taking into account inverse-square law. The ranges of secondary electron were chosen as 3 and 6 cm for 6 and 15 MV photon beams, respectively. The field sizes range from 2x2 to 40x40 cm{sup 2}. Results: The comparison indicates the standard deviations of electron contamination among different machines are about 2.4 - 3.3% at 5 mm depth for 6 MV and 1.2 - 3.9% at 1 cm depth for 15 MV for the same field size. The corresponding maximum deviations are 3.0 - 4.6% and 2 - 4% for 6 and 15 MV, respectively. Both standard and maximum deviations are independent of field sizes in the buildup region for 6 MV photons, and slightly decreasing with increasing field size at depths up to 1 cm for 15 MV photons. Conclusion: The deviations of electron disequilibrium factor for all studied Linacs are less than 3% beyond the depth of 0.5 cm for the photon beams for the full range of field sizes (2-40 cm) so long as they are from the same manufacturer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salem, Ahmed, E-mail: ahmed.salem@doctors.org.uk; Mohamad, Issa; Dayyat, Abdulmajeed
2015-10-01
Radiation pneumonitis is a well-documented side effect of radiation therapy for breast cancer. The purpose of this study was to compare combined photon-electron, photon-only, and electron-only plans in the radiation treatment of the supraclavicular lymph nodes. In total, 13 patients requiring chest wall and supraclavicular nodal irradiation were planned retrospectively using combined photon-electron, photon-only, and electron-only supraclavicular beams. A dose of 50 Gy over 25 fractions was prescribed. Chest wall irradiation parameters were fixed for all plans. The goal of this planning effort was to cover 95% of the supraclavicular clinical target volume (CTV) with 95% of the prescribed dosemore » and to minimize the volume receiving ≥ 105% of the dose. Comparative end points were supraclavicular CTV coverage (volume covered by the 95% isodose line), hotspot volume, maximum radiation dose, contralateral breast dose, mean total lung dose, total lung volume percentage receiving at least 20 Gy (V{sub 20} {sub Gy}), heart volume percentage receiving at least 25 Gy (V{sub 25} {sub Gy}). Electron and photon energies ranged from 8 to 18 MeV and 4 to 6 MV, respectively. The ratio of photon-to-electron fractions in combined beams ranged from 5:20 to 15:10. Supraclavicular nodal coverage was highest in photon-only (mean = 96.2 ± 3.5%) followed closely by combined photon-electron (mean = 94.2 ± 2.5%) and lowest in electron-only plans (mean = 81.7 ± 14.8%, p < 0.001). The volume of tissue receiving ≥ 105% of the prescription dose was higher in the electron-only (mean = 69.7 ± 56.1 cm{sup 3}) as opposed to combined photon-electron (mean = 50.8 ± 40.9 cm{sup 3}) and photon-only beams (mean = 32.2 ± 28.1 cm{sup 3}, p = 0.114). Heart V{sub 25} {sub Gy} was not statistically different among the plans (p = 0.999). Total lung V{sub 20} {sub Gy} was lowest in electron-only (mean = 10.9 ± 2.3%) followed by combined photon-electron (mean = 13.8 ± 2.3%) and highest in photon-only plans (mean = 16.2 ± 3%, p < 0.001). As expected, photon-only plans demonstrated the highest target coverage and total lung V{sub 20} {sub Gy}. The superiority of electron-only beams, in terms of decreasing lung dose, is set back by the dosimetric hotspots associated with such plans. Combined photon-electron treatment is a feasible technique for supraclavicular nodal irradiation and results in adequate target coverage, acceptable dosimetric hotspot volume, and slightly reduced lung dose.« less
Enhancing the effect of 4MeV electron beam using gold nanoparticles in breast cancer cells.
Mehrnia, Somayeh Sadat; Hashemi, Bijan; Mowla, Seyed Javad; Arbabi, Azim
2017-03-01
Gold nanoparticles (GNPs) have been applied as radiosensitizer in radiotherapy. Limited reports have shown that GNPs may be effective as a dose enhancer agent for electron radiation therapy. Some Monte Carlo Simulation studies have shown that selecting suitable size of GNPs and electron energies are critical for effective dose enhancement. The aim of this study was to assess possible radiosensitization effect of GNPs on cancer cell treated with 4MeV electron beams. Approximately 10nm GNPs were synthesized and characterized by electron microscope and dynamic light scattering. MCF-7 and MDA-MB-231 breast cancer cells were used and their viability was measured by MTT assay. Radiosensitization effect of GNPs under 4MeV electron beams was measured by clonogenic assay. The result showed a concentration dependent uptake of GNPs without reducing cell viability at concentrations ≤50mg/L. Incubation of cancer cells with GNPs caused a significant decrease in their viability following exposure to electron beams as well as a decrease in their survival fraction when compared to control. The sensitizer enhancement ratio (SER) by electron beams in MCF-7 cells was 1.43 and 1.40 in presence of 25 and 50mg/L GNPs, respectively. For MDA-MB-231 cells, it was 1.62 in presence of 25mg/L GNPs. Our data demonstrated the significant dose enhancement of the GNPs in combination with 4MeV electron beams that could be applicable for the treatment of superficial tumors and intra operative radiation therapy. Copyright © 2017. Published by Elsevier Ltd.
SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chibani, O; Price, R; Ma, C
Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows thatmore » the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.« less
NASA Astrophysics Data System (ADS)
Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.
2017-07-01
The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.
Characterization of the Exradin W1 scintillator for use in radiotherapy.
Carrasco, P; Jornet, N; Jordi, O; Lizondo, M; Latorre-Musoll, A; Eudaldo, T; Ruiz, A; Ribas, M
2015-01-01
To evaluate the main characteristics of the Exradin W1 scintillator as a dosimeter and to estimate measurement uncertainties when used in radiotherapy. We studied the calibration procedure, energy and modality dependence, short-term repeatability, dose-response linearity, angular dependence, temperature dependence, time to reach thermal equilibrium, dose-rate dependence, water-equivalent depth of the effective measurement point, and long-term stability. An uncertainty budget was derived for relative and absolute dose measurements in photon and electron beams. Exradin W1 showed a temperature dependence of -0.225% °C(-1). The loss of sensitivity with accumulated dose decreased with use. The sensitivity of Exradin W1 was energy independent for high-energy photon and electron beams. All remaining dependencies of Exradin W1 were around or below 0.5%, leading to an uncertainty budget of about 1%. When a dual channel electrometer with automatic trigger was not used, timing effects became significant, increasing uncertainties by one order of magnitude. The Exradin W1 response is energy independent for high energy x-rays and electron beams, and only one calibration coefficient is needed. A temperature correction factor should be applied to keep uncertainties around 2% for absolute dose measurements and around 1% for relative measurements in high-energy photon and electron beams. The Exradin W1 scintillator is an excellent alternative to detectors such as diodes for relative dose measurements.
Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Saeedi-Moghadam, M; Jalli, R; Sina, S
2018-01-01
MRI-only treatment planning (TP) can be advantageous in paediatric radiotherapy. However, electron density extraction is necessary for dose calculation. Normally, after bone segmentation, a bulk density is assigned. However, the variation of bone bulk density in patients makes the creation of pseudo CTs challenging. This study aims to assess the effects of bone density variations in children on radiation attenuation and dose calculation for MRI-only TP. Bone contents of <15-year-old children were calculated, and substituted in the Oak Ridge National Laboratory paediatric phantoms. The percentage depth dose and beam profile of 150 kVp and 6 MV photon and 6 MeV electron beams were then calculated using Xcom, MCNPX (Monte Carlo N-particle version X) and ORLN phantoms. Using 150 kVp X-rays, the difference in attenuation coefficient was almost 5% between an 11-year-old child and a newborn, and ~8% between an adult and a newborn. With megavoltage radiation, the differences were smaller but still important. For an 18 MV photon beam, the difference of radiation attenuation between an 11-year-old child and a newborn was 4% and ~7.4% between an adult and a newborn. For 6 MeV electrons, dose differences were observed up to the 2 cm depth. The percentage depth dose difference between 1 and 10-year-olds was 18.5%, and between 10 and 15-year-olds was 24%. The results suggest that for MRI-only TP of photon- or electron-beam radiotherapy, the bone densities of each age group should be defined separately for accurate dose calculation. Advances in knowledge: This study highlights the need for more age-specific determination of bone electron density for accurate dose calculations in paediatric MRI-only radiotherapy TP.
NASA Technical Reports Server (NTRS)
Edwards, David L.
1999-01-01
In-vacuum electron beam welding is a technology that NASA considered as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. The radiation exposure to astronauts performing the in-vacuum electron beam welding must be characterized and minimized to insure safe operating conditions. This investigation characterized the x-ray environment due to operation of an in-vacuum electron beam welding tool. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests consisted of Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) and exposed to x-ray radiation generated by operation of an in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 KeV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by electron impact with metal. These x-ray spectra were used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the TLD values.
NASA Astrophysics Data System (ADS)
Beddar, A. S.; Tailor, R. C.
2004-04-01
A new approach to intraoperative radiation therapy led to the development of mobile linear electron accelerators that provide lower electron energy beams than the usual conventional accelerators commonly encountered in radiotherapy. Such mobile electron accelerators produce electron beams that have nominal energies of 4, 6, 9 and 12 MeV. This work compares the absorbed dose output calibrations using both the AAPM TG-51 and TG-21 dose calibration protocols for two types of ion chambers: a plane-parallel (PP) ionization chamber and a cylindrical ionization chamber. Our results indicate that the use of a 'Markus' PP chamber causes 2 3% overestimation in dose output determination if accredited dosimetry-calibration laboratory based chamber factors \\big(N_{{\\rm D},{\\rm w}}^{{}^{60}{\\rm Co}}, N_x\\big) are used. However, if the ionization chamber factors are derived using a cross-comparison at a high-energy electron beam, then a good agreement is obtained (within 1%) with a calibrated cylindrical chamber over the entire energy range down to 4 MeV. Furthermore, even though the TG-51 does not recommend using cylindrical chambers at the low energies, our results show that the cylindrical chamber has a good agreement with the PP chamber not only at 6 MeV but also down to 4 MeV electron beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schembri, V.; Heijmen, B. J. M.
2007-06-15
Introduction and Purpose: Conventional x-ray films and radiochromic films have inherent challenges for high precision radiotherapy dosimetry. Here we have investigated basic characteristics of optically stimulated luminescence (OSL) of irradiated films containing carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) for dosimetry in therapeutic photon and electron beams. Materials and Methods: The OSL films consist of a polystyrene sheet, with a top layer of a mixture of single crystals of Al{sub 2}O{sub 3}:C, ground into a powder, and a polyester base. The total thickness of the films is 0.3 mm. Measurements have been performed in a water equivalent phantom, using 4, 6,more » 10, and 18 MV photon beams, and 6-22 MeV electron beams. The studies include assessment of the film response (acquired OSL signal/delivered dose) on delivered dose (linearity), dose rate (1-6 Gy/min), beam quality, field size and depth (6 MV, ranges 4x4-30x30 cm{sup 2}, d{sub max}-35 cm). Doses have been derived from ionization chamber measurements. OSL films have also been compared with conventional x-ray and GafChromic films for dosimetry outside the high dose area, with a high proportion of low dose scattered photons. In total, 787 OSL films have been irradiated. Results: Overall, the OSL response for electron beams was 3.6% lower than for photon beams. Differences between the various electron beam energies were not significant. The 6 and 18 MV photon beams differed in response by 4%. No response dependencies on dose rate were observed. For the 6 MV beam, the field size and depth dependencies of the OSL response were within {+-}2.5%. The observed inter-film response variation for films irradiated with the same dose varied from 1% to 3.2% (1 SD), depending on the measurement day. At a depth of 20 cm, 5 cm outside the 20x20 cm{sup 2} 6 and 18 MV beams, an over response of 17% was observed. In contrast to GafChromic and conventional x-ray films, the response of the Al{sub 2}O{sub 3}:C films is linear in the clinically relevant dose range 0-200 cGy. Conclusions: Measurement of the OSL signal of irradiated films containing Al{sub 2}O{sub 3}:C is a promising technique for film dosimetry in radiotherapy with no or small response variations with dose rate, beam quality, field size and depth, and a linear response from 0 to 200 cGy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu
2015-05-15
Purpose: To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. Methods: In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimatedmore » field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm{sup 2} were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R{sub 100}, R{sub 50}, R{sub p}, and R{sub p+} for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Results: Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R{sub 100}, R{sub 50}, and R{sub p} were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. Conclusions: We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated field sizes from 3 × 3 to 25 × 25 cm{sup 2} were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.« less
Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen
2015-05-01
To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm(2) were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R100, R50, Rp, and Rp+ for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R100, R50, and Rp were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated field sizes from 3 × 3 to 25 × 25 cm(2) were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.
Looe, Hui Khee; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn
2017-06-21
The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavanaugh, James A.; Hogstrom, Kenneth R.; Fontenot, Jonas P.
2013-02-15
Purpose: The purpose of this study was to demonstrate that a bolus electron conformal therapy (ECT) dose plan and a mixed beam plan, composed of an intensity modulated x-ray therapy (IMXT) dose plan optimized on top of the bolus ECT plan, can be accurately delivered. Methods: Calculated dose distributions were compared with measured dose distributions for parotid and chest wall (CW) bolus ECT and mixed beam plans, each simulated in a cylindrical polystyrene phantom that allowed film dose measurements. Bolus ECT plans were created for both parotid and CW PTVs (planning target volumes) using 20 and 16 MeV beams, respectively,more » whose 90% dose surface conformed to the PTV. Mixed beam plans consisted of an IMXT dose plan optimized on top of the bolus ECT dose plan. The bolus ECT, IMXT, and mixed beam dose distributions were measured using radiographic films in five transverse and one sagittal planes for a total of 36 measurement conditions. Corrections for film dose response, effects of edge-on photon irradiation, and effects of irregular phantom optical properties on the Cerenkov component of the film signal resulted in high precision measurements. Data set consistency was verified by agreement of depth dose at the intersections of the sagittal plane with the five measured transverse planes. For these same depth doses, results for the mixed beam plan agreed with the sum of the individual depth doses for the bolus ECT and IMXT plans. The six mean measured planar dose distributions were compared with those calculated by the treatment planning system for all modalities. Dose agreement was assessed using the 4% dose difference and 0.2 cm distance to agreement. Results: For the combined high-dose region and low-dose region, pass rates for the parotid and CW plans were 98.7% and 96.2%, respectively, for the bolus ECT plans and 97.9% and 97.4%, respectively, for the mixed beam plans. For the high-dose gradient region, pass rates for the parotid and CW plans were 93.1% and 94.62%, respectively, for the bolus ECT plans and 89.2% and 95.1%, respectively, for the mixed beam plans. For all regions, pass rates for the parotid and CW plans were 98.8% and 97.3%, respectively, for the bolus ECT plans and 97.5% and 95.9%, respectively, for the mixed beam plans. For the IMXT component of the mixed beam plans, pass rates for the parotid and CW plans were 93.7% and 95.8%. Conclusions: Bolus ECT and mixed beam therapy dose delivery to the phantom were more accurate than IMXT delivery, adding confidence to the use of planning, fabrication, and delivery for bolus ECT tools either alone or as part of mixed beam therapy. The methodology reported in this work could serve as a basis for future standardization of the commissioning of bolus ECT or mixed beam therapy. When applying this technology to patients, it is recommended that an electron dose algorithm more accurate than the pencil beam algorithm, e.g., a Monte Carlo algorithm or analytical transport such as the pencil beam redefinition algorithm, be used for planning to ensure the desired accuracy.« less
Di Venanzio, C; Marinelli, Marco; Tonnetti, A; Verona-Rinati, G; Falco, M D; Pimpinella, M; Ciccotelli, A; De Stefano, S; Felici, G; Marangoni, F
2015-12-01
To characterize a synthetic diamond dosimeter (PTW Freiburg microDiamond 60019) in high dose-per-pulse electron beams produced by an Intra Operative Radiation Therapy (IORT) dedicated accelerator. The dosimetric properties of the microDiamond were assessed under 6, 8 and 9 MeV electron beams by a NOVAC11 mobile accelerator (Sordina IORT Technologies S.p.A.). The characterization was carried out with dose-per-pulse ranging from 26 to 105 mGy per pulse. The microDiamond performance was compared with an Advanced Markus ionization chamber and a PTW silicon diode E in terms of dose linearity, percentage depth dose (PDD) curves, beam profiles and output factors. A good linearity of the microDiamond response was verified in the dose range from 0.2 Gy to 28 Gy. A sensitivity of 1.29 nC/Gy was measured under IORT electron beams, resulting within 1% with respect to the one obtained in reference condition under (60)Co gamma irradiation. PDD measurements were found in agreement with the ones by the reference dosimeters, with differences in R50 values below 0.3 mm. Profile measurements evidenced a high spatial resolution of the microDiamond, slightly worse than the one of the silicon diode. The penumbra widths measured by the microDiamond resulted approximately 0.5 mm larger than the ones by the Silicon diode. Output factors measured by the microDiamond were found within 2% with those obtained by the Advanced Markus down to 3 cm diameter field sizes. The microDiamond dosimeter was demonstrated to be suitable for precise dosimetry in IORT applications under high dose-per-pulse conditions. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y.; Nonaka, T.
2016-05-15
For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films andmore » Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.« less
Matsui, S; Mori, Y; Nonaka, T; Hattori, T; Kasamatsu, Y; Haraguchi, D; Watanabe, Y; Uchiyama, K; Ishikawa, M
2016-05-01
For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.
Jaccard, Maud; Petersson, Kristoffer; Buchillier, Thierry; Germond, Jean-François; Durán, Maria Teresa; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François O; Bailat, Claude
2017-02-01
The aim of this study was to assess the suitability of Gafchromic EBT3 films for reference dose measurements in the beam of a prototype high dose-per-pulse linear accelerator (linac), capable of delivering electron beams with a mean dose-rate (Ḋ m ) ranging from 0.07 to 3000 Gy/s and a dose-rate in pulse (Ḋ p ) of up to 8 × 10 6 Gy/s. To do this, we evaluated the overall uncertainties in EBT3 film dosimetry as well as the energy and dose-rate dependence of their response. Our dosimetric system was composed of EBT3 Gafchromic films in combination with a flatbed scanner and was calibrated against an ionization chamber traceable to primary standard. All sources of uncertainties in EBT3 dosimetry were carefully analyzed using irradiations at a clinical radiotherapy linac. Energy dependence was investigated with the same machine by acquiring and comparing calibration curves for three different beam energies (4, 8 and 12 MeV), for doses between 0.25 and 30 Gy. Ḋ m dependence was studied at the clinical linac by changing the pulse repetition frequency (f) of the beam in order to vary Ḋ m between 0.55 and 4.40 Gy/min, while Ḋ p dependence was probed at the prototype machine for Ḋ p ranging from 7 × 10 3 to 8 × 10 6 Gy/s. Ḋ p dependence was first determined by studying the correlation between the dose measured by films and the charge of electrons measured at the exit of the machine by an induction torus. Furthermore, we compared doses from the films to independently calibrated thermo-luminescent dosimeters (TLD) that have been reported as being dose-rate independent up to such high dose-rates. We report that uncertainty below 4% (k = 2) can be achieved in the dose range between 3 and 17 Gy. Results also demonstrated that EBT3 films did not display any detectable energy dependence for electron beam energies between 4 and 12 MeV. No Ḋ m dependence was found either. In addition, we obtained excellent consistency between films and TLDs over the entire Ḋ p range attainable at the prototype linac confirming the absence of any dose-rate dependence within the investigated range (7 × 10 3 to 8 × 10 6 Gy/s). This aspect was further corroborated by the linear relationship between the dose-per-pulse (D p ) measured by films and the charge per pulse (C p ) measured at the prototype linac exit. Our study shows that the use of EBT3 Gafchromic films can be extended to reference dosimetry in pulsed electron beams with a very high dose rate. The measurement results are associated with an overall uncertainty below 4% (k = 2) and are dose-rate and energy independent. © 2016 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Lin, Yi-Chun; Huang, Tseng-Te; Liu, Yuan-Hao; Chen, Wei-Lin; Chen, Yen-Fu; Wu, Shu-Wei; Nievaart, Sander; Jiang, Shiang-Huei
2015-06-01
The paired ionization chambers (ICs) technique is commonly employed to determine neutron and photon doses in radiology or radiotherapy neutron beams, where neutron dose shows very strong dependence on the accuracy of accompanying high energy photon dose. During the dose derivation, it is an important issue to evaluate the photon and electron response functions of two commercially available ionization chambers, denoted as TE(TE) and Mg(Ar), used in our reactor based epithermal neutron beam. Nowadays, most perturbation corrections for accurate dose determination and many treatment planning systems are based on the Monte Carlo technique. We used general purposed Monte Carlo codes, MCNP5, EGSnrc, FLUKA or GEANT4 for benchmark verifications among them and carefully measured values for a precise estimation of chamber current from absorbed dose rate of cavity gas. Also, energy dependent response functions of two chambers were calculated in a parallel beam with mono-energies from 20 keV to 20 MeV photons and electrons by using the optimal simple spherical and detailed IC models. The measurements were performed in the well-defined (a) four primary M-80, M-100, M120 and M150 X-ray calibration fields, (b) primary 60Co calibration beam, (c) 6 MV and 10 MV photon, (d) 6 MeV and 18 MeV electron LINACs in hospital and (e) BNCT clinical trials neutron beam. For the TE(TE) chamber, all codes were almost identical over the whole photon energy range. In the Mg(Ar) chamber, MCNP5 showed lower response than other codes for photon energy region below 0.1 MeV and presented similar response above 0.2 MeV (agreed within 5% in the simple spherical model). With the increase of electron energy, the response difference between MCNP5 and other codes became larger in both chambers. Compared with the measured currents, MCNP5 had the difference from the measurement data within 5% for the 60Co, 6 MV, 10 MV, 6 MeV and 18 MeV LINACs beams. But for the Mg(Ar) chamber, the derivations reached 7.8-16.5% below 120 kVp X-ray beams. In this study, we were especially interested in BNCT doses where low energy photon contribution is less to ignore, MCNP model is recognized as the most suitable to simulate wide photon-electron and neutron energy distributed responses of the paired ICs. Also, MCNP provides the best prediction of BNCT source adjustment by the detector's neutron and photon responses.
Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki
2013-03-01
Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.
Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G
2010-04-01
The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.
PTW-diamond detector: dose rate and particle type dependence.
Fidanzio, A; Azario, L; Miceli, R; Russo, A; Piermattei, A
2000-11-01
In this paper the suitability of a PTW natural diamond detector (DD) for relative and reference dosimetry of photon and electron beams, with dose per pulse between 0.068 mGy and 0.472 mGy, was studied and the results were compared with those obtained by a stereotactic silicon detector (SFD). The results show that, in the range of the examined dose per pulse the DD sensitivity changes up to 1.8% while the SFD sensitivity changes up to 4.5%. The fitting parameter, delta, used to correct the dose per pulse dependence of solid state detectors, was delta = 0.993 +/- 0.002 and delta = 1.025 +/- 0.002 for the diamond detector and for the silicon diode, respectively. The delta values were found to be independent of particle type of two conventional beams (a 10 MV x-ray beam and a 21 MeV electron beam). So if delta is determined for a radiotherapy beam, it can be used to correct relative dosimetry for other conventional radiotherapy beams. Moreover the diamond detector shows a calibration factor which is independent of beam quality and particle type, so an empirical dosimetric formalism is proposed here to obtain the reference dosimetry. This formalism is based on a dose-to-water calibration factor and on an empirical coefficient, that takes into account the reading dependence on the dose per pulse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, C; Palma, B; Qu, B
2014-06-01
Purpose: To evaluate the effect of metal implants on treatment plans for radiation therapy with very high-energy electron (VHEE) beams. Methods: The DOSXYZnrc/BEAMnrc Monte Carlo (MC) codes were used to simulate 50–150MeV VHEE beam dose deposition and its effects on steel and titanium (Ti) heterogeneities in a water phantom. Heterogeneities of thicknesses ranging from 0.5cm to 2cm were placed at 10cm depth. MC was also used to calculate electron and photon spectra generated by the VHEE beams' interaction with metal heterogeneities. The original VMAT patient dose calculation was planned in Eclipse. Patient dose calculations with MC-generated beamlets were planned usingmore » a Matlab GUI and research version of RayStation. VHEE MC treatment planning was performed on water-only geometry and water with segmented prostheses (steel and Ti) geometries with 100MeV and 150MeV beams. Results: 100MeV PDD 5cm behind steel/Ti heterogeneity was 51% less than in the water-only phantom. For some cases, dose enhancement lateral to the borders of the phantom increased the dose by up to 22% in steel and 18% in Ti heterogeneities. The dose immediately behind steel heterogeneity decreased by an average of 6%, although for 150MeV, the steel heterogeneity created a 23% increase in dose directly behind it. The average dose immediately behind Ti heterogeneities increased 10%. The prostate VHEE plans resulted in mean dose decrease to the bowel (20%), bladder (7%), and the urethra (5%) compared to the 15MV VMAT plan. The average dose to the body with prosthetic implants was 5% higher than to the body without implants. Conclusion: Based on MC simulations, metallic implants introduce dose perturbations to VHEE beams from lateral scatter and backscatter. However, when performing clinical planning on a prostate case, the use of multiple beams and inverse planning still produces VHEE plans that are dosimetrically superior to photon VMAT plans. BW Loo and P Maxim received research support from RaySearch laboratories; B Hardemark and E Hynning are employees of RaySearch.« less
Dose in bone and tissue near bone-tissue interface from electron beam.
Shiu, A S; Hogstrom, K R
1991-08-01
This work has quantitatively studied the variation of dose both within bone and in unit density tissue near bone-tissue interfaces. Dose upstream of a bone-tissue interface is increased because of an increase in the backscattered electrons from the bone. The magnitude of this effect was measured using a thin parallel-plate ionization chamber upstream of a polymethyl methacrylate (PMMA)-hard bone interface. The electron backscatter factor (EBF) increased rapidly with bone thickness until a full EBF was achieved. This occurred at approximately 3.5 mm at 2 MeV and 6 mm at 13.1 MeV. The full EBF at the interface ranged from approximately 1.018 at 13.1 MeV to 1.05 at 2 MeV. It was also observed that the EBF had a dependence on the energy spectrum at the interface. The penetration of the backscattered electrons in the upstream direction of PMMA was also measured. The dose penetration fell off rapidly in the upstream direction of the interface. Dose enhancement to unit density tissue in bone was measured for an electron beam by placing thermoluminescent dosimeters (TLDs) in a PMMA-bone-PMMA phantom. The maximum dose enhancement in bone was approximately 7% of the maximum dose in water. However, the pencil-beam algorithm of Hogstrom et al. predicted an increase of only 1%, primarily owing to the inverse-square correction. Film was also used to measure the dose enhancement in bone. The film plane was aligned either perpendicular or parallel to the central axis of the beam. The film data indicated that the maximum dose enhancement in bone was approximately 8% for the former film alignment (which was similarly predicted by the TLD measurements) and 13% for the latter film alignment. These results confirm that the X ray film is not suitable to be irritated "edge on" in an inhomogeneous phantom without making perturbation corrections resulting from the film acting as a long narrow inhomogeneous cavity within the bone. In addition, the results give the radiotherapist a basis for clinical judgment when electron beams are used to treat lesions behind bone or near bony structures. We feel these data enhance the ability to recognize the shortcomings of the current dose calculation algorithm used clinically.
Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg
2012-01-01
The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.
Wang, Jinghui; Trovati, Stefania; Borchard, Philipp M; Loo, Billy W; Maxim, Peter G; Fahrig, Rebecca
2017-12-01
To study the impact of target geometrical and linac operational parameters, such as target material and thickness, electron beam size, repetition rate, and mean current on the ability of the radiotherapy treatment head to deliver high-dose-rate x-ray irradiation in the context of novel linear accelerators capable of higher repetition rates/duty cycle than conventional clinical linacs. The depth dose in a water phantom without a flattening filter and heat deposition in an x-ray target by 10 MeV pulsed electron beams were calculated using the Monte-Carlo code MCNPX, and the transient temperature behavior of the target was simulated by ANSYS. Several parameters that affect both the dose distribution and temperature behavior were investigated. The target was tungsten with a thickness ranging from 0 to 3 mm and a copper heat remover layer. An electron beam with full width at half maximum (FWHM) between 0 and3 mm and mean current of 0.05-2 mA was used as the primary beam at repetition rates of 100, 200, 400, and 800 Hz. For a 10 MeV electron beam with FWHM of 1 mm, pulse length of 5 μs, by using a thin tungsten target with thickness of 0.2 mm instead of 1 mm, and by employing a high repetition rate of 800 Hz instead of 100 Hz, the maximum dose rate delivered can increase two times from 0.57 to 1.16 Gy/s. In this simple model, the limiting factor on dose rate is the copper heat remover's softening temperature, which was considered to be 500°C in our study. A high dose rate can be obtained by employing thin targets together with high repetition rate electron beams enabled by novel linac designs, whereas the benefit of thin targets is marginal at conventional repetition rates. Next generation linacs used to increase dose rate need different target designs compared to conventional linacs. © 2017 American Association of Physicists in Medicine.
Electron beam irradiation for biological decontamination of Spirulina platensis
NASA Astrophysics Data System (ADS)
Brasoveanu, Mirela; Nemtanu, Monica; Minea, R.; Grecu, Maria Nicoleta; Mazilu, Elena; Radulescu, Nora
2005-10-01
The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.
Oxidation of Carbon Nanotubes in an Ionizing Environment.
Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert
2016-02-10
In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.
Radiation and chemical pretreatment of cellulosic waste
NASA Astrophysics Data System (ADS)
Chosdu, Rahayu; Hilmy, Nazly; Erizal; Erlinda, T. B.; Abbas, B.
1993-10-01
RADIATION AND CHEMICAL PRETREATMENT OF CELLULOSIC WASTE. Combination pretreatment of cellulosic wastes such as corn stalk, cassava bark and peanut husk were studied using chemical and irradiation of electron beam. The effect of 2 % NaOH and irradiation at the doses of 100, 300 and 500 kGy on the cellulosic wastes were evaluated by measurement of the glucose yield in enzymatic hydrolysis. Irradiation was carried out with an electron beam machine EPS-300 (Energy 300 kev, current 50 mA). The result shows that the glucose yield were higher by increasing of dose irradiation and treated with 2 % of NaOH especially in corn stalk. The glucose yield of corn stalk were 20 % in untreated samples and increases to 43 % after treated with electron beam irradiation at the dose of 500 kGy and 2 % NaOH. Cassava bark and peanut husk show the glucose yield are only 3.5, and 2.5% respectively. The effect of E-beam current in enzymatic hydrolysis of corn stalk, and preliminary studied E-beam radiation pretreatment of cassava bark are also reported.
Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K
2009-06-07
Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.
NASA Astrophysics Data System (ADS)
Kim, Sok Won; Park, K.; Lee, S. H.; Kang, J. S.; Kang, K. H.
2007-06-01
Since the restrictions for environmental protection being strengthened, thermoplastics reinforced with natural fibers (NF’s), such as jute, kenaf, flax, etc. have appeared as alternatives to chemical plastics for automobile interior materials. In this study, the thermal conductivity, tensile strength, and deformation of several kinds of thermoplastic composites composed of 50% polypropylene (PP) and 50% natural fiber (NF) irradiated by an electron beam (energy: 0.5 MeV, dose: 0 20 kGy) were measured. The length and thickness of PP and NF are 80 ± 10 mm and 40 120 μm, respectively. The results show that the thermal conductivity and the tensile strength changed and became minimum, when the dose of the electron beam was 10 kGy. However, the effect of the dose on the deformation was not clear.
Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types.
Muir, B R; Rogers, D W O
2014-11-01
To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers' effective point of measurement (EPOM) and beam quality conversion factors. The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R50 converted from I50 (calculated using ion chamber simulations in phantom) to R50 calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, kQ, as a function of R50. The optimal shift of cylindrical chambers is found to be less than the 0.5 rcav recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 rcav. Values of kecal are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R50 = 7.5 cm (kQ (')) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.
Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L.
2015-09-15
Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed usingmore » a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7–13 MeV) and the 1.0-cm (13–20 MeV) R{sub 90} spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R{sub 80–20} decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. Conclusions: The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6–20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.« less
Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.
McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P
2015-09-01
The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7-13 MeV) and the 1.0-cm (13-20 MeV) R90 spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R80-20 decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6-20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.
Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M
2013-02-01
To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.
Critical analysis of industrial electron accelerators
NASA Astrophysics Data System (ADS)
Korenev, S.
2004-09-01
The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterlization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.
NASA Astrophysics Data System (ADS)
Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.
2003-08-01
Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.
Doucet, R; Olivares, M; DeBlois, F; Podgorsak, E B; Kawrakow, I; Seuntjens, J
2003-08-07
Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 x 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid Water (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safigholi, Habib; Meigooni, A S.; University of Nevada Las Vegas
Purpose: Recently, different applicators are designed for treatment of the skin cancer such as scalp and legs, using Ir-192 HDR Brachytherapy Sources (IR-HDRS), Miniature Electronic Brachytherapy Sources (MEBXS), and External Electron Beam Radiation Therapy (EEBRT). Although, all of these methodologies may deliver the desired radiation dose to the skin, the dose to the underlying bone may become the limiting factor for selection of the optimum treatment technique. In this project the radiation dose delivered to the underlying bone has been evaluated as a function of the radiation source and thickness of the underlying bone. Methods: MC simulations were performed usingmore » MCNP5 code. In these simulations, the mono-energetic and non-divergent photon beams of 30 keV, 50 keV, and 70 keV for MEBXS, 380 keV photons for IR-HDRS, and 6 MeV mono-energetic electron beam for EEBRT were modeled. A 0.5 cm thick soft tissue (0.3 cm skin and 0.2 cm adipose) with underlying 0.5 cm cortical bone followed by 14 cm soft tissue are utilized for simulations. Results: Dose values to bone tissue as a function of beam energy and beam type, for a delivery of 5000 cGy dose to skin, were compared. These results indicate that for delivery of 5000 cGy dose to the skin surface with 30 keV, 50 keV, 70 keV of MEBXS, IR-HDRS, and EEBRT techniques, bone will receive 31750 cGy, 27450 cGy, 18550 cGy, 4875 cGy, and 10450 cGy, respectively. Conclusion: The results of these investigations indicate that, for delivery of the same skin dose, average doses received by the underlying bone are 5.2 and 2.2 times larger with a 50 keV MEBXS and EEBRT techniques than IR-HDRS, respectively.« less
A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector.
Asuni, G; Jensen, J M; McCurdy, B M C
2011-02-21
A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle(3) dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the contaminant electron source model of the Eclipse AAA dose algorithm. The off-axis coefficient in the Pinnacle(3) dose calculation algorithm decreases in the presence of TRD compared to without the device. The electron model parameters were modified to reflect the increase in electron contamination with the TRD, a necessary step for accurate beam modeling when using the device.
NASA Astrophysics Data System (ADS)
Taghinejad-Roudbaneh, M.; Ebrahimi, S. R.; Azizi, S.; Shawrang, P.
2010-12-01
The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased ( P<0.01). From in situ results, irradiation of canola meal at doses of 45 kGy decreased ( P<0.05) the effective degradibility of crude protein (CP) by 14%, compared with an untreated sample. In vitro CP digestibility of EB-irradiated canola meal at doses of 15 and 30 kGy was improved ( P<0.05). Electrophoresis results showed that napin and cruciferin sub-units of 30 and 45 kGy EB-irradiated canola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.
Muir, B; Rogers, D; McEwen, M
2012-07-01
When current dosimetry protocols were written, electron beam data were limited and had uncertainties that were unacceptable for reference dosimetry. Protocols for high-energy reference dosimetry are currently being updated leading to considerable interest in accurate electron beam data. To this end, Monte Carlo simulations using the EGSnrc user-code egs_chamber are performed to extract relevant data for reference beam dosimetry. Calculations of the absorbed dose to water and the absorbed dose to the gas in realistic ion chamber models are performed as a function of depth in water for cobalt-60 and high-energy electron beams between 4 and 22 MeV. These calculations are used to extract several of the parameters required for electron beam dosimetry - the beam quality specifier, R 50 , beam quality conversion factors, k Q and k R50 , the electron quality conversion factor, k' R50 , the photon-electron conversion factor, k ecal , and ion chamber perturbation factors, P Q . The method used has the advantage that many important parameters can be extracted as a function of depth instead of determination at only the reference depth as has typically been done. Results obtained here are in good agreement with measured and other calculated results. The photon-electron conversion factors obtained for a Farmer-type NE2571 and plane-parallel PTW Roos, IBA NACP-02 and Exradin A11 chambers are 0.903, 0.896, 0.894 and 0.906, respectively. These typically differ by less than 0.7% from the contentious TG-51 values but have much smaller systematic uncertainties. These results are valuable for reference dosimetry of high-energy electron beams. © 2012 American Association of Physicists in Medicine.
Beam scrubbing of beam pipes during the first commissioning of SuperKEKB
NASA Astrophysics Data System (ADS)
Suetsugu, Y.; Shibata, K.; Ishibashi, T.; Kanazawa, K.; Shirai, M.; Terui, S.; Hisamatsu, H.
2018-02-01
The first (Phase-1) commissioning of SuperKEKB-an electron-positron collider with asymmetric energies located at KEK, in Tsukuba, Japan-started in February 2016, after more than five years of upgrading work on KEKB, and successfully ended in June of the same year. This paper describes one major task of Phase-1 commissioning: beam scrubbing the surface of the beam pipes, to prepare them for a sufficiently long beam lifetime and low background noise in the next commissioning, when a new particle detector will be installed. The pressure rises per unit beam current (dP/dI [Pa A-1]) were continuously monitored, and the coefficient of photon-stimulated desorption (PSD), η [molecules photon-1], was evaluated in the arc sections. The value of η decreased steadily with the beam dose, as expected. For arc sections in the positron ring, where most of the beam pipes were newly fabricated, the decrease in η against the photon dose (D) was similar to that previously reported; that is: η ∝ D-0.5 ∼ 0.8. At high storage beam currents, the evolution of η was affected by gas desorption resulting from the multipacting of electrons-that is, the electron cloud effect (ECE), which is a phenomenon particular to high-intensity positron rings. For the arc sections in the electron ring, η also decreased smoothly with the photon dose D, approximately as ∝ D-0.8. Given that most of these beam pipes were reused from KEKB, the value of η was much lower than that of the positron ring, and also lower than that of the electron ring of KEKB from the early stages of D. This implies that the surface of the reused beam pipes remembered the conditions in the KEKB, which is a known memory effect. The results obtained for η are compared with those obtained in various other accelerators.
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)
NASA Astrophysics Data System (ADS)
Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun
2015-09-01
Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun
2015-10-07
Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.
Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L
2013-01-01
Both gamma ray and electron beam irradiation are widely used as a means of medical device sterilisation. However, it is known that the radiation produced by both processes can lead to undesirable changes within biomedical polymers. The main objective of this research was to conduct a comparative study on the two key radiosterilisation methods (gamma ray and electron beam) in order to identify the more detrimental process in terms of the mechanical, structural, chemical and thermal properties of a common biomedical grade polymer. Poly (ether-block-amide) (PEBA) was prepared by injection moulding ASTM testing specimens and these were exposed to an extensive range of irradiation doses (5-200 kGy) in an air atmosphere. The effect of varying the irradiation dose concentration on the resultant PEBA properties was apparent. For instance, the tensile strength, percentage elongation at break and shore D hardness can be increased/decreased by controlling the aforementioned criteria. In addition, it was observed that the stiffness of the material increased with incremental irradiation doses as anticipated. Melt flow index demonstrated a dramatic increase in the melting strength of the material indicating a sharp increase in molecular weight. Conversely, modulated differential scanning calorimetry established that there were no significant alterations to the thermal transitions. Noteworthy trends were observed for the dynamic frequency sweeps of the material, where the crosslink density increased according to an increase in electron beam irradiation dose. Trans-vinylene unsaturations and the carbonyl group concentration increased with an increment in irradiation dose for both processes when observed by FTIR. The relationship between the irradiation dose rate, mechanical properties and the subsequent surface properties of PEBA material is further elucidated throughout this paper. This study revealed that the gamma irradiation process produced more adverse effects in the PEBA material in contrast to the electron beam irradiation process. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bittencourt, Carla; Bals, Sara; Van Tendeloo, Gustaaf
2013-01-01
Summary Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature. PMID:23399584
Detrimental effects of electron beam irradiation on the cowpea bruchid Callosobruchus maculatus.
Sang, Wen; Speakmon, Mickey; Zhou, Lan; Wang, Yu; Lei, Chaoliang; Pillai, Suresh D; Zhu-Salzman, Keyan
2016-04-01
Electron beam (eBeam) irradiation technology is an environmentally friendly, chemical-free alternative for disinfesting insect pests of stored grains. The underlying hypothesis is that specific doses of eBeam will have defined detrimental effects on the different life stages. We evaluated the effects of eBeam exposure in a range of doses (0.03-0.12 kGy) on the development of the cowpea bruchid (Callosobruchus maculatus) at various stages of its life cycle. Differential radiosensitivity was detected during egg development. Early and intermediate stages of eggs never hatched after exposure to a dose of 0.03 kGy, whereas a substantial portion of black-headed (i.e. late) eggs survived irradiation even at 0.12 kGy. However, further development of the hatched larvae was inhibited. Although midgut protein digestion remained intact, irradiated larvae (0.06 kGy or higher) failed to develop into normal living adults; rather, they died as pupae or abnormally eclosed adults, suggesting a detrimental effect of eBeam on metamorphosis. Emerged irradiated pupae had shorter longevity and were unable to produce any eggs at 0.06 kGy or higher. At this dose range, eggs laid by irradiated adults were not viable. eBeam treatment shortened adult longevity in a dose-dependent manner. Reciprocal crosses indicated that females were more sensitive to eBeam exposure than their male counterparts. Dissection of the female reproductive system revealed that eBeam treatment prevented formation of oocytes. eBeam irradiation has very defined effects on cowpea bruchid development and reproduction. A dose of 0.06 kGy could successfully impede cowpea burchid population expansion. This information can be exploited for post-harvest insect control of stored grains. © 2015 Society of Chemical Industry.
Flexible foils formed by a prolonged electron beam irradiation in scanning electron microscope
NASA Astrophysics Data System (ADS)
Čechal, Jan; Šikola, Tomáš
2017-11-01
The ubiquitous presence of hydrocarbon contamination on solid surfaces alters their inherent physical properties and complicates the surface analyses. An irradiation of sample surface with electron beam can lead to the chemical transformation of the hydrocarbon layer to carbon films, which are flexible and capable of acting as a barrier for chemical etching of an underlying material. The growth of these foils is limited by supply of hydrocarbons to the writing beam position rather than the electron dose or electron beam current. The prepared films can find their applications in fabrication of surface nanostructures without a need of an electron sensitive resist material.
Absolute dose determination in high-energy electron beams: Comparison of IAEA dosimetry protocols
Sathiyan, S.; Ravikumar, M.
2008-01-01
In this study, absorbed doses were measured and compared for high-energy electrons (6, 9, 12, 16, and 20 MeV) using International Atomic Energy Agency (IAEA), Technical Reports Series No. 277 (TRS), TRS 381, and TRS 398 dosimetry protocols. Absolute dose measurements were carried out using FC65-G Farmer chamber and Nordic Association of Clinical Physicists (NACP) parallel plate chamber with DOSE1 electrometer in WP1-D water phantom for reference field size of 15 × 15 cm2 at 100 cm source-to-surface distance. The results show that the difference between TRS 398 and TRS 381 was about 0.24% to 1.3% depending upon the energy, and the maximum difference between TRS 398 and TRS 277 was 1.5%. The use of cylindrical chamber in electron beam gives the maximum dose difference between the TRS 398 and TRS 277 in the order of 1.4% for energies above 10 MeV (R50 > 4 g/cm2). It was observed that the accuracy of dose estimation was better with the protocols based on the water calibration procedures, as no conversion quantities are involved for conversion of dose from air to water. The cross-calibration procedure of parallel plate chamber with high-energy electron beams is recommended as it avoids pwall correction factor entering into the determination of kQ,Qo. PMID:19893700
Dosimetric characteristics of electron beams produced by a mobile accelerator for IORT.
Pimpinella, M; Mihailescu, D; Guerra, A S; Laitano, R F
2007-10-21
Energy and angular distributions of electron beams with different energies were simulated by Monte Carlo calculations. These beams were generated by the NOVAC7 system (Hitesys, Italy), a mobile electron accelerator specifically dedicated to intra-operative radiation therapy (IORT). The electron beam simulations were verified by comparing the measured dose distributions with the corresponding calculated distributions. As expected, a considerable difference was observed in the energy and angular distributions between the IORT beams studied in the present work and the electron beams produced by conventional accelerators for non-IORT applications. It was also found that significant differences exist between the IORT beams used in this work and other IORT beams with different collimation systems. For example, the contribution from the scattered electrons to the total dose was found to be up to 15% higher in the NOVAC7 beams. The water-to-air stopping power ratios of the IORT beams used in this work were calculated on the basis of the beam energy distributions obtained by the Monte Carlo simulations. These calculated stopping power ratios, s(w,air), were compared with the corresponding s(w,air) values recommended by the TRS-381 and TRS-398 IAEA dosimetry protocols in order to estimate the deviations between a dosimetry based on generic parameters and a dosimetry based on parameters specifically obtained for the actual IORT beams. The deviations in the s(w,air) values were found to be as large as up to about 1%. Therefore, we recommend that a preliminary analysis should always be made when dealing with IORT beams in order to assess to what extent the possible differences in the s(w,air) values have to be accounted for or may be neglected on the basis of the specific accuracy needed in clinical dosimetry.
Weaver, R D; Gerbi, B J; Dusenbery, K E
1995-09-30
To determine acceptable dose variation using thermoluminescent dosimeters (TLD) in the treatment of Mycosis Fungoides with total skin electron beam (TSEB) irradiation. From 1983 to 1993, 22 patients were treated with total skin electron beam therapy in the standing position. A six-field technique was used to deliver 2 Gy in two days, treating 4 days per week, to a total dose of 35 to 40 Gy using a degraded 9 MeV electron beam. Thermoluminescent dosimeters were placed on several locations of the body and the results recorded. The variations in these readings were analyzed to determine normal dose variation for various body locations during TSEB. The dose to flat surfaces of the body was essentially the same as the dose to the prescription point. The dose to tangential surfaces was within +/- 10% of the prescription dose, but the readings showed much more variation (up to 24%). Thin areas of the body showed large deviations from the prescription dose along with a large amount of variation in the readings (up to 22%). Special areas of the body, such as the perineum and eyelid, showed large deviations from the prescription dose with very large (up to 40%) variations in the readings. The TLD results of this study will be used as a quality assurance check for all new patients treated with TSEB. The results of the TLDs will be compared with this baseline study to determine if the delivered dose is within acceptable ranges. If the TLD results fall outside the acceptable limits established above, then the patient position can be modified or the technique itself evaluated.
Electron beam irradiation of gemstone for color enhancement
NASA Astrophysics Data System (ADS)
Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi
2012-09-01
Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.
Electron beam irradiation of gemstone for color enhancement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah
2012-09-26
Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors.more » The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.« less
The impact of electron beam irradiation on Low density polyethylene and Ethylene vinyl acetate
NASA Astrophysics Data System (ADS)
Sabet, Maziyar; Soleimani, Hassan
2017-05-01
Improvement of measured gel content, hardness, tensile strength and elongation at break of Ethylene vinyl acetate (EVA) have confirmed positive effect of electron beam irradiation on EVA. Results obtained from both gel content tests show that degree of cross-linking in amorphous regions is dependent on dose. A significant improvement in tensile strength of neat EVA samples is obtained upon electron-beam radiation up to 210 kGy. Similarly, hardness properties of Low-density polyethylene (LDPE) improvewith increasing electron beam irradiation. This article deals with the impacts of electron beam (EB) irradiation on the properties of LDPE and Ethylene-Vinyl Acetate (EVA) as the two common based formulations for wire and cable applications.
A new radiochromic dosimeter film
NASA Astrophysics Data System (ADS)
Sidney, L. N.; Lynch, D. C.; Willet, P. S.
By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.
Kilovoltage energy imaging with a radiotherapy linac with a continuously variable energy range.
Roberts, D A; Hansen, V N; Thompson, M G; Poludniowski, G; Niven, A; Seco, J; Evans, P M
2012-03-01
In this paper, the effect on image quality of significantly reducing the primary electron energy of a radiotherapy accelerator is investigated using a novel waveguide test piece. The waveguide contains a novel variable coupling device (rotovane), allowing for a wide continuously variable energy range of between 1.4 and 9 MeV suitable for both imaging and therapy. Imaging at linac accelerating potentials close to 1 MV was investigated experimentally and via Monte Carlo simulations. An imaging beam line was designed, and planar and cone beam computed tomography images were obtained to enable qualitative and quantitative comparisons with kilovoltage and megavoltage imaging systems. The imaging beam had an electron energy of 1.4 MeV, which was incident on a water cooled electron window consisting of stainless steel, a 5 mm carbon electron absorber and 2.5 mm aluminium filtration. Images were acquired with an amorphous silicon detector sensitive to diagnostic x-ray energies. The x-ray beam had an average energy of 220 keV and half value layer of 5.9 mm of copper. Cone beam CT images with the same contrast to noise ratio as a gantry mounted kilovoltage imaging system were obtained with doses as low as 2 cGy. This dose is equivalent to a single 6 MV portal image. While 12 times higher than a 100 kVp CBCT system (Elekta XVI), this dose is 140 times lower than a 6 MV cone beam imaging system and 6 times lower than previously published LowZ imaging beams operating at higher (4-5 MeV) energies. The novel coupling device provides for a wide range of electron energies that are suitable for kilovoltage quality imaging and therapy. The imaging system provides high contrast images from the therapy portal at low dose, approaching that of gantry mounted kilovoltage x-ray systems. Additionally, the system provides low dose imaging directly from the therapy portal, potentially allowing for target tracking during radiotherapy treatment. There is the scope with such a tuneable system for further energy reduction and subsequent improvement in image quality.
Characterization and prediction of monomer-based dose rate effects in electron-beam polymerization
NASA Astrophysics Data System (ADS)
Schissel, Sage M.; Lapin, Stephen C.; Jessop, Julie L. P.
2017-12-01
Properties of some materials produced by electron-beam (EB) induced polymerization appear dependent upon the rate at which the initiating dose was delivered. However, the magnitude of these dose rate effects (DREs) can vary greatly with different monomer formulations, suggesting DREs are dependent on chemical structure. The relationship among dose, dose rate, conversion, and the glass transition temperature (Tg) of the cured material was explored for an acrylate monomer series. A strong correlation was determined between the DRE magnitude and monomer size, and this correlation may be attributed to chain transfer. Using the Tg shift caused by changes in dose, a preliminary predictive relationship was developed to estimate the magnitude of the Tg DRE, enabling scale-up of process variables for polymers prone to dose rate effects.
O'Shea, Tuathan P; Foley, Mark J; Faddegon, Bruce A
2011-06-01
Monte Carlo (MC) simulation can be used for accurate electron beam treatment planning and modeling. Measurement of large electron fields, with the applicator removed and secondary collimator wide open, has been shown to provide accurate simulation parameters, including asymmetry in the measured dose, for the full range of clinical field sizes and patient positions. Recently, disassembly of the treatment head of a linear accelerator has been used to refine the simulation of the electron beam, setting tightly measured constraints on source and geometry parameters used in simulation. The simulation did not explicitly include the known deflection of the electron beam by a fringe magnetic field from the bending magnet, which extended into the treatment head. Instead, the secondary scattering foil and monitor chamber were unrealistically laterally offset to account for the beam deflection. This work is focused on accounting for this fringe magnetic field in treatment head simulation. The magnetic field below the exit window of a Siemens Oncor linear accelerator was measured with a Tesla-meter from 0 to 12 cm from the exit window and 1-3 cm off-axis. Treatment head simulation was performed with the EGSnrc/BEAMnrc code, modified to incorporate the effect of the magnetic field on charged particle transport. Simulations were used to analyze the sensitivity of dose profiles to various sources of asymmetry in the treatment head. This included the lateral spot offset and beam angle at the exit window, the fringe magnetic field and independent lateral offsets of the secondary scattering foil and electron monitor chamber. Simulation parameters were selected within the limits imposed by measurement uncertainties. Calculated dose distributions were then compared with those measured in water. The magnetic field was a maximum at the exit window, increasing from 0.006 T at 6 MeV to 0.020 T at 21 MeV and dropping to approximately 5% of the maximum at the secondary scattering foil. It was up to three times higher in the bending plane, away from the electron gun, and symmetric within measurement uncertainty in the transverse plane. Simulations showed the magnetic field resulted in an offset of the electron beam of 0.80 cm (mean) at the machine isocenter for the exit window only configuration. The fringe field resulted in a 3.5%-7.6% symmetry and 0.25-0.35 cm offset of the clinical beam R(max) profiles. With the magnetic field included in simulations, a single (realistic) position of the secondary scattering foil and monitor chamber was selected. Measured and simulated dose profiles showed agreement to an average of 2.5%/0.16 cm (maximum: 3%/0.2 cm), which is a better match than previously achieved without incorporating the magnetic field in the simulation. The undulations from the 3 stepped layers of the secondary scattering foil, evident in the measured profiles of the higher energy beams, are now aligned with those in the simulated beam. The simulated fringe magnetic field had negligible effect on the central axis depth dose curves and cross-plane dose profiles. The fringe magnetic field is a significant contributor to the electron beam in-plane asymmetry. With the magnetic field included explicitly in the simulation, realistic monitor chamber and secondary scattering foil positions have been achieved, and the calculated fluence and dose distributions are more accurate.
De Angelis, C; Onori, S; Pacilio, M; Cirrone, G A P; Cuttone, G; Raffaele, L; Bucciolini, M; Mazzocchi, S
2002-02-01
The dosimetric properties of two PTW Riga diamond detectors type 60003 were studied in high-energy photon and electron therapy beam. Properties under study were current-voltage characteristic, polarization effect, time stability of response, dose response, dose-rate dependence, temperature stability, and beam quality dependence of the sensitivity factor. Differences were shown between the two detectors for most of the previous properties. Also, the observed behavior was, to some extent, different from what was reported in the PTW technical specifications. The necessity to characterize each diamond detector individually was addressed.
Measurement and interpretation of electron angle at mabe beam stop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.
1985-10-01
This analysis shows that radiation measurements combined with a sophisticated simulation provides a simple but powerful tool for estimating beam temperature in intense pulsed annular electron-beam accelerators. Specifically, the mean angle of incidence of a 60 kA, 7 MeV annular electron-beam at the beam stop of the MABE accelerator and the transverse beam temperature are determined. The angle is extracted by comparing dose profiles measured downstream of the stop with that expected from a simulation of the electron/photon transport in the stop. By calculating and removing the effect on the trajectories due to the change in electric field near themore » stop, the beam temperature is determined. Such measurements help give insight to beam generation and propagation within the accelerator.« less
Study of Dose Perturbation at Bone-Tissue Interfaces in Megavoltage Photon Beam Therapy.
NASA Astrophysics Data System (ADS)
Das, Indra Jeet
Dose perturbations during photon beam irradiation occur at interfaces between two dissimilar media due to the loss of electronic equilibrium. The human body contains many different types of interfaces between soft tissue and other media such as, air cavities, lungs, bones, and high atomic number (Z) materials. The dose to critical organs in the vicinity of high Z interfaces, is what leads to this project. This work describes the dose perturbation at high Z (from bone to lead) interfaces with soft tissue for clinically used megavoltage photon beams in the range of CO-60 gamma rays to 24 MV X-rays. It is divided into three main sections: (1) the dose outside the inhomogeneity in the direction of backscatter, (2) the dose inside the inhomogeneity, and (3) the dose on the photon transmission side of the inhomogeneity. Using different types of parallel plate ion chambers, TLD (powder and chip), and film as dosimeters, the dose perturbation is studied as a function of photon energy, thickness, width, and depth of inhomogeneity, distance from the interface and radiation field size. The concept of Bragg-Gray cavity theory is applied and verified for dose determination inside the inhomogeneity. A significant dose enhancement has been observed on the backscatter side for all photon energies. It is strongly dependent on the atomic number of the inhomogeneity and less dependent on the photon energy, thickness, depth, width, and field size. In the forward direction, a dose reduction occurs at the interface at beam energies lower than 10 MV, whereas a dose enhancement occurs for higher photon energies. The interface effect persists up to a few millimeters on the backscatter side but a distance equivalent to the secondary electron range for the particular photon beams in the forward direction. The dose perturbation is explained on the basis of production and transport of secondary electrons. Empirical functions are derived from the experimental data to predict the dose distribution in the vicinity of an inhomogeneity. These equations could form the basis of a treatment planning system that would accurately represent the dose both at the interface and surrounding tissue.
Zakaria, Golam Abu; Schütte, Wilhelm
2003-01-01
The determination of absorbed dose to water for high-energy photon and electron beams is performed in Germany according to the dosimetry protocol DIN 6800-2 (1997). At an international level, the main protocols used are the AAPM dosimetry protocol TG-51 (1999) and the IAEA Code of Practice TRS-398 (2000). The present paper systematically compares these three dosimetry protocols, and identifies similarities and differences. The investigations were performed using 4 and 10 MV photon beams, as well as 6, 8, 9, 10, 12 and 14 MeV electron beams. Two cylindrical and two plane-parallel type chambers were used for measurements. In general, the discrepancies among the three protocols were 1.0% for photon beams and 1.6% for electron beams. Comparative measurements in the context of measurement technical control (MTK) with TLD showed a deviation of less than 1.3% between the measurements obtained according to protocols DIN 6800-2 and MTK (exceptions: 4 MV photons with 2.9% and 6 MeV electrons with 2.4%). While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using both cylindrical and plane-parallel chambers (the latter used after a cross-calibration to a cylindrical chamber, as required by the respective dosimetry protocols). Notably, unlike recommended in the corresponding protocols, we found out that cylindrical chambers can be used also for energies from 6 to 10 MeV.
SU-E-J-17: A Study of Accelerator-Induced Cerenkov Radiation as a Beam Diagnostic and Dosimetry Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, F; Tosh, R
2014-06-01
Purpose: To investigate accelerator-induced Cerenkov radiation imaging as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams in a water phantom was imaged using a camera system comprised of a high-sensitivity thermoelectrically-cooled CCD camera coupled to a large aperture (f/0.75) objective lens with 16:1 magnification. This large format lens allows a significant amount of the available Cerenkov light to be collected and focused onto the CCD camera to form the image. Preliminary images, obtained with 6 MV photon beams, used an unshielded camera mounted horizontally with the beam normal to the water surface,more » and confirmed the detection of Cerenkov radiation. Several improvements were subsequently made including the addition of radiation shielding around the camera, and altering of the beam and camera angles to give a more favorable geometry for Cerenkov light collection. A detailed study was then undertaken over a range of electron and photon beam energies and dose rates to investigate the possibility of using this technique for beam diagnostics and dosimetry. Results: A series of images were obtained at a fixed dose rate over a range of electron energies from 6 to 20 MeV. The location of maximum intensity was found to vary linearly with the energy of the beam. A linear relationship was also found between the light observed from a fixed point on the central axis and the dose rate for both photon and electron beams. Conclusion: We have found that the analysis of images of beam-induced Cerenkov light in a water phantom has potential for use as a beam diagnostic and medical dosimetry tool. Our future goals include the calibration of the light output in terms of radiation dose and development of a tomographic system for 3D Cerenkov imaging in water phantoms and other media.« less
Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirgayussa, I Gde Eka, E-mail: ekadirgayussa@gmail.com; Yani, Sitti; Haryanto, Freddy, E-mail: freddy@fi.itb.ac.id
2015-09-30
Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDPmore » and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good criteria of dose difference in PDD and dose profiles were achieve using incident electron energy 6.4 MeV.« less
NASA Astrophysics Data System (ADS)
Hwang, Sunghwan; Han, Chang Wan; Venkatakrishnan, Singanallur V.; Bouman, Charles A.; Ortalan, Volkan
2017-04-01
Scanning transmission electron microscopy (STEM) has been successfully utilized to investigate atomic structure and chemistry of materials with atomic resolution. However, STEM’s focused electron probe with a high current density causes the electron beam damages including radiolysis and knock-on damage when the focused probe is exposed onto the electron-beam sensitive materials. Therefore, it is highly desirable to decrease the electron dose used in STEM for the investigation of biological/organic molecules, soft materials and nanomaterials in general. With the recent emergence of novel sparse signal processing theories, such as compressive sensing and model-based iterative reconstruction, possibilities of operating STEM under a sparse acquisition scheme to reduce the electron dose have been opened up. In this paper, we report our recent approach to implement a sparse acquisition in STEM mode executed by a random sparse-scan and a signal processing algorithm called model-based iterative reconstruction (MBIR). In this method, a small portion, such as 5% of randomly chosen unit sampling areas (i.e. electron probe positions), which corresponds to pixels of a STEM image, within the region of interest (ROI) of the specimen are scanned with an electron probe to obtain a sparse image. Sparse images are then reconstructed using the MBIR inpainting algorithm to produce an image of the specimen at the original resolution that is consistent with an image obtained using conventional scanning methods. Experimental results for down to 5% sampling show consistency with the full STEM image acquired by the conventional scanning method. Although, practical limitations of the conventional STEM instruments, such as internal delays of the STEM control electronics and the continuous electron gun emission, currently hinder to achieve the full potential of the sparse acquisition STEM in realizing the low dose imaging condition required for the investigation of beam-sensitive materials, the results obtained in our experiments demonstrate the sparse acquisition STEM imaging is potentially capable of reducing the electron dose by at least 20 times expanding the frontiers of our characterization capabilities for investigation of biological/organic molecules, polymers, soft materials and nanostructures in general.
Measurement of absorbed dose with a bone-equivalent extrapolation chamber.
DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B
2002-03-01
A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.
Karsch, L; Beyreuther, E; Burris-Mog, T; Kraft, S; Richter, C; Zeil, K; Pawelke, J
2012-05-01
The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10(11) Gy∕s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. The dosimeters are dose rate independent up to 4●10(9) Gy∕s within 2% (OSL and TLD) and up to 15●10(9) Gy∕s within 5% (EBT films). The diamond detectors show strong dose rate dependence. TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karsch, L.; Beyreuther, E.; Burris-Mog, T.
Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the numbermore » of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.« less
2 MeV linear accelerator for industrial applications
NASA Astrophysics Data System (ADS)
Smith, Richard R.; Farrell, Sherman R.
1997-02-01
RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.
SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, I; Andersen, A; Coutinho, L
2015-06-15
Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factormore » (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.« less
Effects associated with nanostructure fabrication using in situ liquid cell TEM technology
Chen, Xin; Zhou, Lihui; Wang, Ping; ...
2015-07-28
We studied silicon, carbon, and SiC x nanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems. Nanodots obtained from fixed electron beam irradiation followed a universal size versus beam dose trend, with precursor concentrations from pure SiCl 4 to 0 % SiCl 4 in CH 2Cl 2, and electron beamintensity ranges of two orders of magnitude, showing good controllability of the deposition. Secondary electrons contributed to the determination of the lateral sizes of the nanostructures, while the primary beam appeared to have an effect in reducing the vertical growth rate. These results can be used to generatemore » donut-shaped nanostructures. Using a scanning electron beam, line structures with both branched and unbranched morphologies were also obtained. As a result, the liquid-phase electron-beam induced deposition technology is shown to be an effective tool for advanced nanostructured material generation.« less
A reticle retrofit and dosimetric consideration for a linear accelerator.
Krithivas, V
1996-01-01
An imperfect reticle system in an accelerator causes uncertainties in source-skin distance (SSD), off-axis distance (OAD), isocenter, and so forth. A reticle was designed and fabricated, and its implications on x-ray and electron beam dosimetry were investigated. A new reticle frame was dimensioned to fit snugly in the accelerator. The frame was fabricated to carry a pair of adjustable cross wires and to allow the machine operation in the photon and electron modes. The impact of the cross wires on 6 MV photon and 5-10 MeV electron beam parameters such as dose rate (Gy/monitor unit), beam uniformity, surface dose, and so forth, were studied using suitable ion chambers and phantoms. The retrofitted system offered long-term mechanical stability leading to precise SSD, OAD, and isocenter measurements. Changes introduced by the cross wires on the 6 MV photon and 5-10 MeV electron beams are presented. Long-term stability of a reticle in an accelerator is important for an accurate patient setup and for making reliable dosimetric measurements. Beam characteristrics have to be studied whenever modifications on a reticle system are made.
NASA Astrophysics Data System (ADS)
Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria
2015-09-01
In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus ionization chamber and Monte Carlo results (within about 3%) for both flat and bevelled applicators.
NASA Astrophysics Data System (ADS)
Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi
2008-10-01
In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.
Krauss, A; Kapsch, R-P
2018-02-06
For the ionometric determination of the absorbed dose to water, D w , in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q , are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm × 10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.
NASA Astrophysics Data System (ADS)
Krauss, A.; Kapsch, R.-P.
2018-02-01
For the ionometric determination of the absorbed dose to water, D w, in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q, are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm × 10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.
Nicolini, G; Abraham, S; Fogliata, A; Jordaan, A; Clivio, A; Vanetti, E; Cozzi, L
2013-03-01
To evaluate the use of volumetric-modulated arc therapy [VMAT, RapidArc® (RA); Varian Medical Systems, Palo Alto, CA] for the treatment of cutaneous Kaposi's sarcoma (KS) of lower extremities with adequate target coverage and high bone sparing, and to compare VMAT with electron beam therapy. 10 patients were planned with either RA or electron beams. The dose was prescribed to 30 Gy, 10 fractions, to mean the planning target volume (PTV), and significant maximum dose to bone was limited to 30 Gy. Plans were designed for 6-MV photon beams for RA and 6 MeV for electrons. Dose distributions were computed with AcurosXB® (Varian Medical Systems) for photons and with a Monte Carlo algorithm for electrons. V(90%) was 97.3±1.2 for RA plans and 78.2±2.6 for electrons; similarly, V(107%) was 2.5±2.2 and 37.7±3.4, respectively. RA met coverage criteria. Concerning bone sparing, D(2%) was 29.6±1.1 for RA and 31.0±2.4 for electrons. Although acceptable for bone involvement, pronounced target coverage violations were obtained for electron plans. Monitor units were similar for electrons and RA, although for the latter they increased when superior bone sparing was imposed. Delivery times were 12.1±4.0 min for electrons and 4.8±1.3 min for the most modulated RA plans. High plan quality was shown for KS in the lower extremities using VMAT, and this might simplify their management in comparison with the more conventional usage of electrons, particularly in institutes with limited staff resources and heavy workloads. VMAT is also dosimetrically extremely advantageous in a typology of treatments where electron beam therapy is mainly considered to be effective owing to the limited penetration of the beams.
Jankowska, Petra J; Kong, Christine; Burke, Kevin; Harrington, Kevin J; Nutting, Christopher
2007-10-01
High dose irradiation of the posterior cervical lymph nodes usually employs applied electron fields to treat the target volume and maintain the spinal cord dose within tolerance. In the light of recent advances in elective lymph node localisation we investigated optimization of field shape and electron energy to treat this target volume. In this study, three sequential hypotheses were tested. Firstly, that customization of the electron fields based on the nodal PTV outlined gives better PTV coverage than conventional field delineation. Using the consensus guidelines, customization of the electron field shape was compared to conventional fields based on bony landmarks. Secondly, that selection of electron energy using DVHs for spinal cord and PTV improves the minimum dose to PTV. Electron dose-volume histograms (DVHs) for the PTV, spinal cord and para-vertebral muscles, were generated using the Monte Carlo electron algorithm. These DVHs were used to compare standard vs optimized electron energy calculations. Finally, that combination of field customization and electron energy optimization improves both the minimum and mean doses to PTV compared with current standard practice. Customized electron beam shaping based on the consensus guidelines led to fewer geographical misses than standard field shaping. Customized electron energy calculation led to higher minimum doses to the PTV. Overall, the customization of field shape and energy resulted in an improved mean dose to the PTV (92% vs 83% p=0.02) and a 27% improvement in the minimum dose delivered to the PTV (45% vs 18% p=0.0009). Optimization of electron field shape and beam energy based on current consensus guidelines led to significant improvement in PTV coverage and may reduce recurrence rates.
Looe, Hui Khee; Harder, Dietrich; Poppe, Björn
2017-02-07
The lateral dose response function is a general characteristic of the volume effect of a detector used for photon dosimetry in a water phantom. It serves as the convolution kernel transforming the true absorbed dose to water profile, which would be produced within the undisturbed water phantom, into the detector-measured signal profile. The shape of the lateral dose response function characterizes (i) the volume averaging attributable to the detector's size and (ii) the disturbance of the secondary electron field associated with the deviation of the electron density of the detector material from the surrounding water. In previous work, the characteristic dependence of the shape of the lateral dose response function upon the electron density of the detector material was studied for 6 MV photons by Monte Carlo simulation of a wall-less voxel-sized detector (Looe et al 2015 Phys. Med. Biol. 60 6585-07). This study is here continued for 60 Co gamma rays and 15 MV photons in comparison with 6 MV photons. It is found (1) that throughout these photon spectra the shapes of the lateral dose response functions are retaining their characteristic dependence on the detector's electron density, and (2) that their energy-dependent changes are only moderate. This appears as a practical advantage because the lateral dose response function can then be treated as practically invariant across a clinical photon beam in spite of the known changes of the photon spectrum with increasing distance from the beam axis.
Measurement and interpretation of electron angle at MABE beam stop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.
1985-01-01
This analysis shows that radiation measurements combined with a sophisticated simulation provides a simple but powerful tool for estimating beam temperature in intense pulsed annular electron-beam accelerators. Specifically, the mean angle of incidence of a 60 kA, 7 MeV annular electron-beam at the beam stop of the MABE accelerator and the transverse beam temperature are determined. The angle is extracted by comparing dose profiles measured downstream of the stop with that expected from a simulation of the electron/photon transport in the stop. By calculating and removing the effect on the trajectories due to the change in electric field near themore » stop, the beam temperature is determined. Such measurements help give insight to beam generation and propagation within the accelerator. 9 refs., 6 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darafsheh, A; Kassaee, A; Finlay, J
Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanismmore » of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.« less
Wang, L; Rogers, Dwo
2008-07-01
The replacement correction factor (P repl ) in ion chamber dosimetry accounts for the effects of the medium being replaced by the air cavity of the chamber. In TG-21, P repl was conceptually separated into two components: fluence correction, P fl , and gradient correction, P gr . In TG-51, for electron beams, the calibration is at d ref where P gr is required for cylindrical chambers and P fl is unknown and assumed to be the same as that for a beam having the same mean electron energy at d max . For cylindrical chambers in high-energy photon beams, P repl also represents a major uncertainty in current dosimetry protocols. In this study, P repl is calculated with high precision (<0.1%) by the Monte Carlo method as the ratio of the dose in a phantom to the dose scored in water-walled cylindrical cavities of various radii (with the center of the cavity being the point of measurement) in both high energy photon and electron beams. It is found that, for electron beams, the mean electron energy at depth is a good beam quality specifier for P fl ; and TG-51's adoption of P fl at d max with the same mean electron energy for use at d ref is proven to be accurate. For Farmer chambers in photon beams, there is essentially no beam quality dependence for P repl values. In a Co photon beam, the calculated P repl is about 0.4-0.6% higher than the TG-21 value, indicating TG-21 (and TG-51) used incorrect values of P repl for cylindrical chambers. © 2008 American Association of Physicists in Medicine.
Mixed feed and its ingredients electron beam decontamination
NASA Astrophysics Data System (ADS)
Bezuglov, V. V.; Bryazgin, A. A.; Vlasov, A. Yu; Voronin, L. A.; Ites, Yu V.; Korobeynikov, M. V.; Leonov, S. V.; Leonova, M. A.; Tkachenko, V. O.; Shtarklev, E. A.; Yuskov, Yu G.
2017-01-01
Electron beam treatment is used for food processing for decades to prevent or minimize food losses and prolong storage time. This process is also named cold pasteurization. Mixed feed ingredients supplied in Russia regularly occur to be contaminated. To reduce contamination level the contaminated mixed feed ingredients samples were treated by electron beam with doses from 2 to 12 kGy. The contamination levels were decreased to the level that ensuring storage time up to 1 year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, M. A. Pagnan, E-mail: miguelangel.pagnan@hotmail.com; Mitsoura, E., E-mail: meleni@uaemex.mx; Oviedo, J.O. Hernández
Mycosis fungoides is a cutaneous lymphoma that accounts for 2–3% of all lymphomas. Several clinical studies have demonstrated the effectiveness of TSEBT (Total Skin Electron Beam Therapy) in patients with mycosis fungoides. It is important to develop this technique and make it available to a larger number of patients in Mexico. Because large fields for electron TSEBT are required in order to cover the entire body of the patient, beam characterization at conventional treatment distances is not sufficient and a calibration distance of 500cm or higher is required. Materials and methods: Calibration of radiochromic Gafchromic® EBT2 film (RCF) for electronsmore » was performed in a solid water phantom (Scanditronix Wellhöfer) at a depth of 1.4cm and a Source Axis Distance (SAD) of 100cm. A polynomial fit was applied to the calibration curve, in order to obtain the equation relating dose response with optical density. The spatial distribution is obtained in terms of percentage of the dose, placing 3×3cm samples of RCF on the acrylic screen, which is placed in front of the patient in order to obtain maximum absorbed dose on the skin, covering an area of 200×100cm{sup 2}. The Percentage Depth Dose (PDD) curve was obtained placing RCF samples at depths of 0, 1, 1.2, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8 and 9cm in the solid water phantom, irradiated with an ELEKTA SINERGY Linear Accelerator electron beam, with an energy of 6 MeV, at a Source Skin Distance (SSD) of 500cm, with 1000MU = 100Gy, with a cone of 40×40cm and gantry angle of 90°. The RCFs were scanned on a flatbed scanner (EPSON EXPRESSION 10000 XL) and the images were processed with the ImageJ program using a region of interest (ROI) of 1×1cm{sup 2}. Results: The relative spatial dose distribution and the percentage depth dose for a SSD of 500±0.5cm, over an area of 200×100cm{sup 2} was obtained, resulting to an effective maximum dose depth (Z{sub ref}) for electrons of 1.4±0.05cm. Using the same experimental data, horizontal and vertical beam profiles were also graphed, showing a horizontal symmetry of ±035%, horizontal flatness of ±3.62%, vertical symmetry of ±2.1% and vertical flatness of ±14.2%. Conclusions: The electron beam was characterized and the data obtained were useful to determine the spatial dose distribution to a SSD of 500±0.5cm, in an area of 200×100cm{sup 2}. Dose profiles were obtained both horizontally and vertically, thus allowing to assess electron beam symmetry and flatness. PDD analysis up to a depth of 9±0.05cm, has made possible to establish the depth of electron penetration, assuring an only skin irradiation treatment.« less
NASA Astrophysics Data System (ADS)
Samat, N.; Motsidi, S. N. R.; Lazim, N. H. M.
2018-01-01
The purpose of this research was to evaluate the influence of dose level of electron beam on the compatibilization behavior of recycled polypropylene (rPP) in rPP/microcrystalline cellulose (MCC) composites. Initially, the rPP was irradiated with various dose of electron beam (5 kGy up to 250 kGy) which then mixed with unirradiated rPP (u-rPP) at a ratio of 30:70 respectively. The composites were prepared by incorporating a series wt% of MCC fibers into rPP (u-rPP : i-rPP) using extruder and finally moulded with an injection moulding machine. The compatibility behavior of irradiated rPP (i-rPP) were analysed with mechanical tensile and thermal methods. The results of mechanical analysis showed great improvement in tensile modulus but an increase in radiation dosage gradually decreased this property. Nevertheless, the tensile strength exhibited a minor effect. The thermal stability of composites is lowered with increase in the absorbed dose, more significantly at higher content of MCC. Fracture surface observations reveal adhesion between the cellulose and rPP matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faddegon, Bruce A.; Wu, Vincent; Pouliot, Jean
2008-12-15
Megavoltage cone beam computed tomography (MVCBCT) is routinely used for visualizing anatomical structures and implanted fiducials for patient positioning in radiotherapy. MVCBCT using a 6 MV treatment beam with high atomic number (Z) target and flattening filter in the beamline, as done conventionally, has lower image quality than can be achieved with a MV beam due to heavy filtration of the low-energy bremsstrahlung. The unflattened beam of a low Z target has an abundance of diagnostic energy photons, detected with modern flat panel detectors with much higher efficiency given the same dose to the patient. This principle guided the developmentmore » of a new megavoltage imaging beamline (IBL) for a commercial radiotherapy linear accelerator. A carbon target was placed in one of the electron primary scattering foil slots on the target-foil slide. A PROM on a function controller board was programed to put the carbon target in place for MVCBCT. A low accelerating potential of 4.2 MV was used for the IBL to restrict leakage of primary electrons through the target such that dose from x rays dominated the signal in the monitor chamber and the patient surface dose. Results from phantom and cadaver images demonstrated that the IBL had much improved image quality over the treatment beam. For similar imaging dose, the IBL improved the contrast-to-noise ratio by as much as a factor of 3 in soft tissue over that of the treatment beam. The IBL increased the spatial resolution by about a factor of 2, allowing the visualization of finer anatomical details. Images of the cadaver contained useful information with doses as low as 1 cGy. The IBL may be installed on certain models of linear accelerators without mechanical modification and results in significant improvement in the image quality with the same dose, or images of the same quality with less than one-third of the dose.« less
Resist characteristics with direct-write electron beam and SCALPEL exposure system
NASA Astrophysics Data System (ADS)
Sato, Mitsuru; Omori, Katsumi; Ishikawa, Kiyoshi; Nakayama, Toshimasa; Novembre, Anthony E.; Ocola, Leonidas E.
1999-06-01
High acceleration voltage electron beam exposure is one of the possible candidates for post-optical lithography. The use of electrons, instead of photons, avoids optical related problems such as the standing wave issues. However, resists must conform to certain needs for the SCALPEL system, such as exposure in a vacuum chamber with 100kv electron beams. Taking into account the challenging requirements of high resolution, high sensitivity, low bake dependency and no outgassing, TOK has been able to develop resists to meet most of the SCALPEL system needs. However, due to the nature of chemical amplification and the PEB dependency, as is the case with DUV resist which varies for different features, we must recommend different resist for multiple features such as dense lines, isolated lines and contact holes. TOK has designed an electron beam negative resist, EN-009, which demonstrate 100nm pattern resolution. The dose to print on the SCALPEL system is 5.0(mu) C/cm2. The electron beam positive resist, EP-004M, has been designed for line and space patterns. The dose to print on the SCALPEL system is 8.25(mu) C/cm2. The processing conditions are standard, using 0.26N developer. These are the lowest exposure energies reported to date for similar resolution on this exposure tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L; Eldib, A; Li, J
Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reducemore » the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin.« less
Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno
2014-01-01
A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066
Some computer graphical user interfaces in radiation therapy.
Chow, James C L
2016-03-28
In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations.
Dose calculation for electron therapy using an improved LBR method.
Gebreamlak, Wondesen T; Tedeschi, David J; Alkhatib, Hassaan A
2013-07-01
To calculate the percentage depth dose (PDD) of any irregularly shaped electron beam using a modified lateral build-up ratio (LBR) method. Percentage depth dose curves were measured using 6, 9, 12, and 15 MeV electron beam energies for applicator cone sizes of 6 × 6, 10 × 10, 14 × 14, and 20 × 20 cm(2). Circular cutouts for each cone were prepared from 2.0 cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. The LBR for each circular cutout was calculated from the measured PDD curve using the open field of the 14 × 14 cm(2) cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter [σR(z)] of the electron shower was calculated. Unlike the commonly accepted assumption that σR(z) is independent of cutout size, it is shown that its value increases linearly with circular cutout size (R). Using this characteristic of the lateral spread parameter, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. In this research, it is shown that the lateral spread parameter σR(z) increases with cutout size. For radii of circular cutout sizes up to the equilibrium range of the electron beam, the increase of σR(z) with the cutout size is linear. The percentage difference of the calculated PDD curve from the measured PDD data for irregularly shaped cutouts was under 1.0% in the region between the surface and therapeutic range of the electron beam. Similar results were obtained for four electron beam energies (6, 9, 12, and 15 MeV).
Carinou, Eleutheria; Stamatelatos, Ion Evangelos; Kamenopoulou, Vassiliki; Georgolopoulou, Paraskevi; Sandilos, Panayotis
The development of a computational model for the treatment head of a medical electron accelerator (Elekta/Philips SL-18) by the Monte Carlo code mcnp-4C2 is discussed. The model includes the major components of the accelerator head and a pmma phantom representing the patient body. Calculations were performed for a 14 MeV electron beam impinging on the accelerator target and a 10 cmx10 cm beam area at the isocentre. The model was used in order to predict the neutron ambient dose equivalent at the isocentre level and moreover the neutron absorbed dose distribution within the phantom. Calculations were validated against experimental measurements performed by gold foil activation detectors. The results of this study indicated that the equivalent dose at tissues or organs adjacent to the treatment field due to photoneutrons could be up to 10% of the total peripheral dose, for the specific accelerator characteristics examined. Therefore, photoneutrons should be taken into account when accurate dose calculations are required to sensitive tissues that are adjacent to the therapeutic X-ray beam. The method described can be extended to other accelerators and collimation configurations as well, upon specification of treatment head component dimensions, composition and nominal accelerating potential.
Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R
2014-03-01
Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Total-dose radiation effects data for semiconductor devices, volume 2
NASA Technical Reports Server (NTRS)
Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.
1981-01-01
Total ionizing dose radiation test data on integrated circuits are analyzed. Tests were performed with the electron accelerator (Dynamitron) that provides a steady state 2.5 MeV electron beam. Some radiation exposures were made with a Cobalt-60 gamma ray source. The results obtained with the Cobalt-60 source are considered an approximate measure of the radiation damage that would be incurred by an equivalent dose of electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.
Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. As a result, the use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO 3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less
Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.; ...
2016-10-17
Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. The use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syh, J; Syh, J; Patel, B
Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists ofmore » multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. L. W.; Rogers, D. W. O.
In current dosimetry protocols for electron beams, for plane-parallel chambers, the effective point of measurement is at the front face of the cavity, and, for cylindrical chambers, it is at a point shifted 0.5r upstream from the cavity center. In this study, Monte Carlo simulations are employed to study the issue of effective point of measurement for both plane-parallel chambers and cylindrical thimble chambers in electron beams. It is found that there are two ways of determining the position of the effective point of measurement: One is to match the calculated depth-ionization curve obtained from a modeled chamber to amore » calculated depth-dose curve; the other is to match the electron fluence spectrum in the chamber cavity to that in the phantom. For plane-parallel chambers, the effective point of measurement determined by the first method is generally not at the front face of the chamber cavity, which is obtained by the second method, but shifted downstream toward the cavity center by an amount that could be larger than one-half a millimeter. This should not be ignored when measuring depth-dose curves in electron beams. For cylindrical chambers, these two methods also give different positions of the effective point of measurement: The first gives a shift of 0.5r, which is in agreement with measurements for high-energy beams and is the same as the value currently used in major dosimetry protocols; the latter gives a shift of 0.8r, which is closer to the value predicted by a theoretical calculation assuming no-scatter conditions. The results also show that the shift of 0.8r is more appropriate if the cylindrical chamber is to be considered as a Spencer-Attix cavity. In electron beams, since the water/air stopping-power ratio changes with depth in a water phantom, the difference of the two shifts (0.3r) will lead to an incorrect evaluation of the water/air stopping-power ratio at the point of measurement, thus resulting in a systematic error in determining the absorbed dose by cylindrical chambers. It is suggested that a shift of 0.8r be used for electron beam calibrations with cylindrical chambers and a shift of 0.4r-0.5r be used for depth-dose measurements.« less
Wang, L L W; Rogers, D W O
2009-06-01
In current dosimetry protocols for electron beams, for plane-parallel chambers, the effective point of measurement is at the front face of the cavity, and, for cylindrical chambers, it is at a point shifted 0.5r upstream from the cavity center. In this study, Monte Carlo simulations are employed to study the issue of effective point of measurement for both plane-parallel chambers and cylindrical thimble chambers in electron beams. It is found that there are two ways of determining the position of the effective point of measurement: One is to match the calculated depth-ionization curve obtained from a modeled chamber to a calculated depth-dose curve; the other is to match the electron fluence spectrum in the chamber cavity to that in the phantom. For plane-parallel chambers, the effective point of measurement determined by the first method is generally not at the front face of the chamber cavity, which is obtained by the second method, but shifted downstream toward the cavity center by an amount that could be larger than one-half a millimeter. This should not be ignored when measuring depth-dose curves in electron beams. For cylindrical chambers, these two methods also give different positions of the effective point of measurement: The first gives a shift of 0.5r, which is in agreement with measurements for high-energy beams and is the same as the value currently used in major dosimetry protocols; the latter gives a shift of 0.8r, which is closer to the value predicted by a theoretical calculation assuming no-scatter conditions. The results also show that the shift of 0.8r is more appropriate if the cylindrical chamber is to be considered as a Spencer-Attix cavity. In electron beams, since the water/air stopping-power ratio changes with depth in a water phantom, the difference of the two shifts (0.3r) will lead to an incorrect evaluation of the water/air stopping-power ratio at the point of measurement, thus resulting in a systematic error in determining the absorbed dose by cylindrical chambers. It is suggested that a shift of 0.8r be used for electron beam calibrations with cylindrical chambers and a shift of 0.4r-0.5r be used for depth-dose measurements.
SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, B; Rogers, D
2013-06-15
Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber inmore » high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.« less
SU-E-T-523: On the Radiobiological Impact of Lateral Scatter in Proton Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuvel, F Van den; Deruysscher, D
2014-06-01
Introduction: In proton therapy, justified concern has been voiced with respect to an increased efficiency in cell kill at the distal end of the Bragg peak. This coupled with range uncertainty is a counter indication to use the Bragg peak to define the border of a treated volume with a critical organ. An alternative is to use the lateral edge of the proton beam, obtaining more robust plans. We investigate the spectral and biological effects of the lateral scatter . Methods: A general purpose Monte Carlo simulation engine (MCNPX 2.7c) installed on a Scientific Linux cluster, calculated the dose depositionmore » spectrum of protons, knock on electrons and generated neutrons for a proton beam with maximal kinetic energy of 200MeV. Around the beam at different positions in the beam direction the spectrum is calculated in concentric rings of thickness 1cm. The deposited dose is converted to a double strand break map using an analytical expression.based on micro dosimetric calculations using a phenomenological Monte Carlo code (MCDS). A strict version of RBE is defined as the ratio of generation of double strand breaks in the different modalities. To generate the reference a Varian linac was modelled in MCNPX and the generated electron dose deposition spectrum was used . Results: On a pristine point source 200MeV beam the RBE before the Bragg peak was of the order of 1.1, increasing to 1.7 right behind the Bragg peak. When using a physically more realistic beam of 10cm diameter the effect was smaller. Both the lateral dose and RBE increased with increasing beam depth, generating a dose deposition with mixed biological effect. Conclusions: The dose deposition in proton beams need to be carefully examined because the biological effect will be different depending on the treatment geometry. Deeply penetrating proton beams generate more biologically effective lateral scatter.« less
Electron beam therapy with coil-generated magnetic fields.
Nardi, Eran; Barnea, Gideon; Ma, Chang-Ming
2004-06-01
This paper presents an initial study on the issues involved in the practical implementation of the use of transverse magnetic fields in electron beam therapy. By using such magnetic fields the dose delivered to the tumor region can increase significantly relative to that deposited to the healthy tissue. Initially we calculated the magnetic fields produced by the Helmholtz coil and modified Helmholtz coil configurations. These configurations, which can readily be used to generate high intensity magnetic fields, approximate the idealized magnetic fields studied in our previous publications. It was therefore of interest to perform a detailed study of the fields produced by these configurations. Electron beam dose distributions for 15 MeV electrons were calculated using the ACCEPTM code for a 3T transverse magnetic field produced by the modified Helmholtz configuration. The dose distribution was compared to those obtained with no magnetic field. The results were similar to those obtained in our previous work, where an idealized step function magnetic field was used and a 3T field was shown to be the optimal field strength. A simpler configuration was also studied in which a single external coil was used to generate the field. Electron dose distributions are also presented for a given geometry and given magnetic field strength using this configuration. The results indicate that this method is more difficult to apply to radiotherapy due to its lack of symmetry and its irregularity. For the various configurations dealt with here, a major problem is the need to shield the magnetic field in the beam propagation volume, a topic that must be studied in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawahara, D; Medical and Dental Sciences Course, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima; Ozawa, S
Purpose: SBRT combining transarterial chemoembolization with Lipiodol is expected to improve local control. Our showed that the dose enhancement effect in the Lipiodol with 10X flattening filter free (FFF) was inserted. This study was to investigate the energy fluence variations of electron in the Lipiodol using flattened (FF) and FFF beams. Methods: FF and FFF for 6X and 10X beams by TrueBeam were used in this study. The Lipiodol (3 X 3 X 3 cm{sup 3}) was located at the depth of 5 cm in water, the dose enhancement factor (DEF) and energy fluence were calculated by Monte Carlo (MC)more » calculations (PHITS). Results: DEFs with FF and FFF of 6X were 17.1% and 24.3% at rebuild-up region in the Lipiodol (5.3cm depth), 7.0% and 17.0% at the center of Lipiodol (6.5cm depth), and −13.2% and −8.2% at behind Lipiodol (8.3cm depth). DEFs with FF and FFF of 10X were 21.7% and 15.3% at rebuild-up region, 8.2% and 10.5% at the center of Lipiodol, and −14.0% and −8.6% at behind Lipiodol. Spectral results showed that the FFF beam contained more low-energy (0–0.3MeV) component of electrons than FF beam, and FF beam contained more high-energy (over 0.3MeV) electrons than FFF beam in Lipiodol. Behind the Lipiodol, build-down effect with FF beam was larger than FFF beam because FF beam contained more high energy electrons. The difference of DEFs between FFF and FF beams for 6X were larger than for 10X. This is because 10X beam contained more high-energy electrons. Conclusion: It was found that the 6XFFF beam gives the largest change of energy fluence and the largest DEF in this study. These phenomena are mainly caused by component of low-energy electrons, and this energy is almost correspond to the boundary of photo electronic dominant and Compton scattering dominant region for photon beams.« less
NASA Astrophysics Data System (ADS)
Cummings, K. D.; Frye, R. C.; Rietman, E. A.
1990-10-01
This letter describes the initial results of using a theoretical determination of the proximity function and an adaptively trained neural network to proximity-correct patterns written on a Cambridge electron beam lithography system. The methods described are complete and may be applied to any electron beam exposure system that can modify the dose during exposure. The patterns produced in resist show the effects of proximity correction versus noncorrected patterns.
Lim, Seung Joo; Kim, Tak-Hyun; Lee, Sang-hun; Kim, Jun-young; Kim, Sun-kyoung
2013-06-01
Swine wastewater was treated using an ion exchange biological reactor (IEBR). Organic matter and nutrient in swine wastewater were pre-treated by electron beam irradiation. The optimal dose for solubilization of organic matter in swine wastewater ranged from 20 kGy to 75 kGy. The carbohydrates, proteins, and lipids were investigated as proteins and lipids mainly contained the solubilized organic matter. The solubilization of organic matter in swine wastewater was affected by the combination effects of temperature and dose. The maximum chemical oxygen demand (COD) and ammonia removal efficiencies were 74.4% and 76.7% at a dose of 0 kGy under room temperatures (23.0°C). The removal of ammonia was significantly affected by low temperature (15.3°C). On the other hand, the removal of phosphorus was not a function of electron beam irradiation or temperature because struvite is one of the main removal mechanisms under anoxic conditions. Published by Elsevier Ltd.
The evaluation of 6 and 18 MeV electron beams for small animal irradiation
NASA Astrophysics Data System (ADS)
Chao, T. C.; Chen, A. M.; Tu, S. J.; Tung, C. J.; Hong, J. H.; Lee, C. C.
2009-10-01
A small animal irradiator is critical for providing optimal radiation dose distributions for pre-clinical animal studies. This paper focuses on the evaluation of using 6 or 18 MeV electron beams as small animal irradiators. Compared with all other prototypes which use photons to irradiate small animals, an electron irradiator has many advantages in its shallow dose distribution. Two major approaches including simulation and measurement were used to evaluate the feasibility of applying electron beams in animal irradiation. These simulations and measurements were taken in three different fields (a 6 cm × 6 cm square field, and 4 mm and 30 mm diameter circular fields) and with two different energies (6 MeV and 18 MeV). A PTW Semiflex chamber in a PTW-MP3 water tank, a PTW Markus chamber type 23343, a PTW diamond detector type 60003 and KODAK XV films were used to measure PDDs, lateral beam profiles and output factors for either optimizing parameters of Monte Carlo simulation or to verify Monte Carlo simulation in small fields. Results show good agreement for comparisons of percentage depth doses (<=2.5% for 6 MeV e; <=1.8% for 18 MeV e) and profiles (FWHM <= 0.5 mm) between simulations and measurements on the 6 cm field. Greater deviation can be observed in the 4 mm field, which is mainly caused by the partial volume effects of the detectors. The FWHM of the profiles for the 18 MeV electron beam is 32.6 mm in the 30 mm field, and 4.7 mm in the 4 mm field at d90. It will take 1-13 min to complete one irradiation of 5-10 Gy. In addition, two different digital phantoms were also constructed, including a homogeneous cylindrical water phantom and a CT-based heterogeneous mouse phantom, and were implemented into Monte Carlo to simulate dose distribution with different electron irradiations.
Ghasroddashti, E; Sawchuk, S
2008-07-01
To assess a diode detector array (MapCheck) for commissioning, quality assurance (QA); and patient specific QA for electrons. 2D dose information was captured for various depths at several square fields ranging from 2×2 to 25×25cm 2 , and 9 patient customized cutouts using both Mapcheck and a scanning water phantom. Beam energies of 6, 9, 12, 16 and 20 MeV produced by Varian linacs were used. The water tank, beam energies and fields were also modeled on the Pinnacle planning system obtaining dose information. Mapcheck, water phantom and Pinnacle results were compared. Relative output factors (ROF) acquired with Mapcheck were compared to an in-house algorithm (JeffIrreg). Inter- and intra-observer variability was also investigated Results: Profiles and %DD data for Mapcheck, water tank, and Pinnacle agree well. High-dose, low-dose-gradient comparisons agree to within 1% between Mapcheck and water phantom. Field size comparisons showed mostly sub-millimeter agreement. ROFs for Mapcheck and JeffIrreg agreed within 2.0% (mean=0.9%±0.6%). The current standard for electron commissioning and QA is the scanning water tank which may be inefficient. Our results demonstrate that MapCheck can potentially be an alternative. Also the dose distributions for patient specific electron treatment require verification. This procedure is particularly challenging when the minimum dimension across the central axis of the cutout is smaller than the range of the electrons in question. Mapcheck offers an easy and efficient way of determining patient dose distributions especially compared to using the alternatives, namely, ion chamber and film. © 2008 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Salguero, Francisco Javier; Arráns, Rafael; Atriana Palma, Bianey; Leal, Antonio
2010-03-01
The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.
Benchmarking the minimum Electron Beam (eBeam) dose required for the sterilization of space foods
NASA Astrophysics Data System (ADS)
Bhatia, Sohini S.; Wall, Kayley R.; Kerth, Chris R.; Pillai, Suresh D.
2018-02-01
As manned space missions extend in length, the safety, nutrition, acceptability, and shelf life of space foods are of paramount importance to NASA. Since food and mealtimes play a key role in reducing stress and boredom of prolonged missions, the quality of food in terms of appearance, flavor, texture, and aroma can have significant psychological ramifications on astronaut performance. The FDA, which oversees space foods, currently requires a minimum dose of 44 kGy for irradiated space foods. The underlying hypothesis was that commercial sterility of space foods could be achieved at a significantly lower dose, and this lowered dose would positively affect the shelf life of the product. Electron beam processed beef fajitas were used as an example NASA space food to benchmark the minimum eBeam dose required for sterility. A 15 kGy dose was able to achieve an approximately 10 log reduction in Shiga-toxin-producing Escherichia coli bacteria, and a 5 log reduction in Clostridium sporogenes spores. Furthermore, accelerated shelf life testing (ASLT) to determine sensory and quality characteristics under various conditions was conducted. Using Multidimensional gas-chromatography-olfactometry-mass spectrometry (MDGC-O-MS), numerous volatiles were shown to be dependent on the dose applied to the product. Furthermore, concentrations of off -flavor aroma compounds such as dimethyl sulfide were decreased at the reduced 15 kGy dose. The results suggest that the combination of conventional cooking combined with eBeam processing (15 kGy) can achieve the safety and shelf-life objectives needed for long duration space-foods.
NASA Astrophysics Data System (ADS)
Sramek, Benjamin Koerner
The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and neck phantoms. The conclusions of this investigation were: (1) the implementation of intermediate view estimation techniques to megavoltage cone-beam CT produced improvements in image quality, with the largest impact occurring for smaller numbers of initially-acquired projections, (2) the SPECS scatter correction algorithm could be successfully incorporated into projection data acquired using an electronic portal imaging device during megavoltage cone-beam CT image reconstruction, (3) a large range of SPECS parameters were shown to reduce cupping artifacts as well as improve reconstruction accuracy, with application to anthropomorphic phantom geometries improving the percent difference in reconstructed electron density for soft tissue from -13.6% to -2.0%, and for cortical bone from -9.7% to 1.4%, (4) dose measurements in the anthropomorphic phantoms showed consistent agreement between planar measurements using radiochromic film and point measurements using thermoluminescent dosimeters, and (5) a comparison of normalized dose measurements acquired with radiochromic film to those calculated using multiple treatment planning systems, accelerator-detector combinations, patient geometries and accelerator outputs produced a relatively good agreement.
Jeong, Seul-Gi; Kang, Dong-Hyun
2017-06-01
This study was conducted to investigate the efficacy of gamma and electron beam irradiation to inactivate foodborne pathogens in ready-to-bake cookie dough and to determine the effect on quality by measuring color and texture changes. Cookie dough inoculated with Escherichia coli O157:H7, Salmonella Typhimurium, or Listeria monocytogenes was subjected to gamma and electron beam irradiation, with doses ranging from 0 to 3 kGy. As the radiation dose increased, the inactivation effect increased among all tested pathogens. After 3.0 kGy of gamma and electron beam irradiation, numbers of inoculated pathogens were reduced to below the detection limit (1 log CFU/g). The D 10 -values of E. coli O157:H7, S. Typhimurium, and L. monocytogenes in cookie dough treated with gamma rays were 0.53, 0.51, and 0.71 kGy, respectively, which were similar to those treated by electron beam with the same dose. Based on the D 10 -value of pathogens in cookie dough, L. monocytogenes showed more resistance to both treatments than did E. coli O157:H7 and S. Typhimurium. Color values and textural characteristics of irradiated cookie dough were not significantly (P > 0.05) different from the control. These results suggest that irradiation can be applied to control pathogens in ready-to-bake cookie dough products without affecting quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Decontamination of food packaging using electron beam—status and prospects
NASA Astrophysics Data System (ADS)
Mittendorfer, J.; Bierbaumer, H. P.; Gratzl, F.; Kellauer, E.
2002-03-01
In this paper the status of food packaging disinfection decontamination using electron beam at Mediscan GmbH is presented. The first section of the paper describes the activities at the service center, where food packaging materials, e.g. yoghurt cups are decontaminated in their final shipment containers. As important step in the hazard analysis and critical control point of food processing, microbiological uncontaminated food packaging material is of public interest and attracts a lot of attention from packaging material producers and food processors. The dose ranges for different sterility assurance levels are discussed and results from microbiological test are presented. Studies at Mediscan have demonstrated, that an electron beam treatment at a dose of 5-7 kGy is most effective against yeast and mold, which are mainly responsible for spoilage and short shelf-life of a variety of products. The second section is devoted to the field of inline decontamination of food packaging and sterilization of pharmaceutical packaging material and the research currently conducted at Mediscan. The requirements for industrial inline electron beam systems are summarized and design concepts discussed in terms of beam energy, beam current, irradiation topology, product handling and shielding.
Linear inductive voltage adders (IVA) for advanced hydrodynamic radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Boyes, J.D.; Johnson, D.L.
The electron beam which drifts through the multiple cavities of conventional induction linacs (LIA) is replaced in an IVA by a cylindrical metal conductor which extends along the entire length of the device and effectuates the addition of the accelerator cavity voltages. In the approach to radiography, the linear inductive voltage adder drives a magnetically immersed electron diode with a millimeter diameter cathode electrode and a planar anode/bremsstrahlung converter. Both anode and cathode electrodes are immersed in a strong (15--50 T) solenoidal magnetic field. The electron beam cross section is approximately of the same size as the cathode needle andmore » generates a similar size, very intense x-ray beam when it strikes the anode converter. An IVA driven diode can produce electron beams of equal size and energy as a LIA but with much higher currents (40--50 kA versus 4--5 kA), simpler hardware and thus lower cost. The authors present here first experimental validations of the technology utilizing HERMES 3 and SABRE IVA accelerators. The electron beam voltage and current were respectively of the order of 10 MV and 40 kA. X-ray doses of up to 1 kR {at} 1 m and spot sizes as small as 1.7 mm (at 200 R doses) were measured.« less
Commissioning a p-type silicon diode for use in clinical electron beams.
Eveling, J N; Morgan, A M; Pitchford, W G
1999-01-01
Commissioning measurements were carried out on a p-type silicon diode detector for use in patient monitoring in high energy electron beams. Characteristics specific to the diode were examined. The variation in diode sensitivity with dose per pulse was found to be less than 1% over a range 0.069-0.237 mGy/pulse. The diode exhibited a sensitivity variation with accumulated dose of 10% per kGy and a sensitivity variation with surface temperature of 0.26%/degree C. The dependence of the diode response on the direction of the incident electron beam was investigated. Results were found to exceed the manufacturer's specifications. Output factors measured with the diode agree to within 1.5% of those measured with an NACP-02 air ionization chamber. The detector showed a variation in response with energy of 0.8% over the energy range 4-15 MeV. Prior to introducing the diode into clinical use, an assessment of beam perturbation directly behind the diode was made. The maximum reduction in local dose directly behind the diode at a depth of 1.0 cm below the surface was approximately 13% at 4 and 15 MeV.
SU-F-P-49: Comparison of Mapcheck 2 Commission for Photon and Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J; Yang, C; Morris, B
2016-06-15
Purpose: We will investigate the performance variation of the MapCheck2 detector array with different array calibration and dose calibration pairs from different radiation therapy machine. Methods: A MapCheck2 detector array was calibrated on 3 Elekta accelerators with different energy of photon (6 MV, 10 MV, 15 MV and 18 MV) and electron (6 MeV, 9 MeV, 12 MeV, 15 MeV, 18 MeV and 20 MeV) beams. Dose calibration was conducted by referring a water phantom measurement following TG-51 protocol and commission data for each accelerator. A 10 cm × 10 cm beam was measured. This measured map was morphed bymore » applying different calibration pairs. Then the difference was quantified by comparing the doses and similarity using gamma analysis of criteria (0.5 %, 0 mm). Profile variation was evaluated on a same dataset with different calibration pairs. The passing rate of an IMRT QA planar dose was calculated by using 3 mm and 3% criteria and compared with respect to each calibration pairs. Results: In this study, a dose variation up to 0.67% for matched photons and 1.0% for electron beams is observed. Differences of flatness and symmetry can be as high as 1% and 0.7% respectively. Gamma analysis shows a passing rate ranging from 34% to 85% for the standard 10 × 10 cm field. Conclusion: Our work demonstrated that a customized array calibration and dose calibration for each machine is preferred to fulfill a high standard patient QA task.« less
Direct-write liquid phase transformations with a scanning transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.
The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H 2PdCl 4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less
Direct-write liquid phase transformations with a scanning transmission electron microscope
Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; ...
2016-08-03
The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H 2PdCl 4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less
The electron accelerator utilized in this treatment process has a potential of 1.5 MeV, rated from 0 to 50 mA, providing radiation doses of 0-850 krad (0-8.5 kGy). The horizontal electron beam is scanned at 200 Hz and impacts the waste stream as it flows over a weir approximately...
Optimization of Monte Carlo dose calculations: The interface problem
NASA Astrophysics Data System (ADS)
Soudentas, Edward
1998-05-01
High energy photon beams are widely used for radiation treatment of deep-seated tumors. The human body contains many types of interfaces between dissimilar materials that affect dose distribution in radiation therapy. Experimentally, significant radiation dose perturbations has been observed at such interfaces. The EGS4 Monte Carlo code was used to calculate dose perturbations at boundaries between dissimilar materials (such as bone/water) for 60Co and 6 MeV linear accelerator beams using a UNIX workstation. A simple test of the reliability of a random number generator was also developed. A systematic study of the adjustable parameters in EGS4 was performed in order to minimize calculational artifacts at boundaries. Calculations of dose perturbations at boundaries between different materials showed that there is a 12% increase in dose at water/bone interface, and a 44% increase in dose at water/copper interface. with the increase mainly due to electrons produced in water and backscattered from the high atomic number material. The dependence of the dose increase on the atomic number was also investigated. The clinically important case of using two parallel opposed beams for radiation therapy was investigated where increased doses at boundaries has been observed. The Monte Carlo calculations can provide accurate dosimetry data under conditions of electronic non-equilibrium at tissue interfaces.
NASA Astrophysics Data System (ADS)
Kim, Sok Won; Oh, Seungmin; Lee, Kyuse
2007-11-01
With restrictions for environmental protection being strengthened, the thermoplastics reinforced with natural fibers (NFs) such as jute, kenaf, flax, etc., appeared as an automobile interior material instead of the chemical plastics. Regardless of many advantages, one shortcoming is the deformation after being formed in high temperature of about 200 °C, caused by the poor adhesion between the natural fibers and thermoplastics. Also, the energy saving in connection with car air-conditioning becomes very important. In this study, the thermal conductivity, tensile strength, and deformation of several kinds of thermoplastic composites composing of 50% polypropylene (PP) and 50% natural fiber irradiated by the electron beam (energy: 0.5 MeV, dose: 0-20 kGy) were measured. The length and thickness of PP and NF are 80±10 mm and 40-120 μm, respectively. The results show that the thermal conductivity and the tensile strength changed and became minimum when the dose of electron beam is 10 kGy, and the deformation after the thermal cycle were reduced by the electron beam.
Decomposition of PCBs in transformer oil using an electron beam accelerator
NASA Astrophysics Data System (ADS)
Jung, In-Ha; Lee, Myun-Joo; Mah, Yoon-Jung
2012-07-01
Decomposition of PCBs in commercially used transformer oil used for more than 30 years has been carried out at normal temperature and pressure without any additives using an electron beam accelerator. The experiments were carried out in two ways: batch and continuous pilot plant with 1.5 MeV of energy, a 50 mA current, and 75 kW of power in a commercial scale accelerator. The electron beam irradiation seemed to transform large molecular weight compounds into lower ones, but the impact was considered too small on the physical properties of oil. Residual concentrations of PCBs after irradiation depend on the absorption dose of the electron beam energy, but aliphatic chloride compounds were produced at higher doses of irradiation. As the results from FT-NMR, chloride ions decomposed from the PCBs are likely to react with aliphatic hydro carbon compounds rather than existing as free radical ions in the transformer oil. Since this is a dry process, treated oil can be used as cutting oil or machine oil for heavy equipment without any additional treatments.
Beam line shielding calculations for an Electron Accelerator Mo-99 production facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mocko, Michal
2016-05-03
The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report themore » resulting neutron and photon dose fields.« less
Nikiforov, S V; Kortov, V S
2014-11-01
The main thermoluminescent (TL) and dosimetric properties of the detectors based on anion-defective crystalline and nanostructured aluminium oxide after exposure to a high-current pulse electron beam are studied. TL peaks associated with deep-trapping centres are registered. It is shown that the use of deep-trap TL at 200-600°С allows registering absorbed doses up to 750 kGy for single-crystalline detectors and those up to 6 kGy for nanostructured ones. A wide range of the doses registered, high reproducibility of the TL signal and low fading contribute to a possibility of using single-crystalline and nanostructured aluminium oxide for the dosimetry of high-current pulse electron beams. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Differential pencil beam dose computation model for photons.
Mohan, R; Chui, C; Lidofsky, L
1986-01-01
Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.
NASA Astrophysics Data System (ADS)
Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Ganesh, S.; Devendrappa, H.
2018-05-01
The polymer (PVdF-co-HFP: LiClO4=90:10, PHL10) electrolyte films prepared by solution casting method and studied morphology, dielectric properties and ac conductivity before and after electron beam (EB) irradiation. The polarized optical micrographs reveals size of spherulite reduced with increasing EB dose represents increase in amorphousity. The dielectric measurements were studied at different temperatures and observed increase with frequency at different temperatures upon EB irradiation. The ac conductivity increases with frequency due to effect of EB dose.
el-Khatib, E; Antolak, J; Scrimger, J
1992-01-01
Film and thermoluminescent dosimetry (TLD) are investigated in heterogeneous phantoms irradiated by high-energy electron beams. Both film and TLD are practical dosimeters for multiple and moving beam radiotherapy. The accuracy and precision of these dosimeters for radiation dose measurements in homogeneous water-equivalent phantoms has been discussed in the literature. However, film and TLD are often used for dose measurements in heterogeneous phantoms. In those situations perturbations are produced which are related to the density and atomic number of the phantom material and the physical size and orientation of the dosimeter. In our experiments the relative dose measurements in homogeneous phantoms were the same regardless of dosimeter or dosimeter orientation. However, significant differences were observed between the dose measurements within the inhomogeneity. These differences were influenced by the type and orientation of the dosimeter in addition to the properties of the heterogeneity. These differences could be reproduced with Monte Carlo calculations and modeling of the experimental conditions.
Room scatter effects in Total Skin Electron Irradiation: Monte Carlo simulation study.
Nevelsky, Alexander; Borzov, Egor; Daniel, Shahar; Bar-Deroma, Raquel
2017-01-01
Total Skin Electron Irradiation (TSEI) is a complex technique which usually involves the use of large electron fields and the dual-field approach. In this situation, many electrons scattered from the treatment room floor are produced. However, no investigations of the effect of scattered electrons in TSEI treatments have been reported. The purpose of this work was to study the contribution of floor scattered electrons to skin dose during TSEI treatment using Monte Carlo (MC) simulations. All MC simulations were performed with the EGSnrc code. Influence of beam energy, dual-field angle, and floor material on the contribution of floor scatter was investigated. Spectrum of the scattered electrons was calculated. Measurements of dose profile were performed in order to verify MC calculations. Floor scatter dependency on the floor material was observed (at 20 cm from the floor, scatter contribution was about 21%, 18%, 15%, and 12% for iron, concrete, PVC, and water, respectively). Although total dose profiles exhibited slight variation as functions of beam energy and dual-field angle, no dependence of the floor scatter contribution on the beam energy or dual-field angle was found. The spectrum of the scattered electrons was almost uniform between a few hundred KeV to 4 MeV, and then decreased linearly to 6 MeV. For the TSEI technique, dose contribution due to the electrons scattered from the room floor may be clinically significant and should be taken into account during design and commissioning phases. MC calculations can be used for this task. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Evaluation of in vivo dose measurements for patients undergoing electron boost treatments.
Verney, J N; Morgan, A M
2001-06-01
This study evaluated p-type silicon diodes for use in in vivo dosimetry in clinical electron beams. A calibrated p-type silicon diode detector was used to measure the dose received by the patient in the centre of the field. Readings were corrected for energy, temperature and stand-off of the electron applicator from the patient surface. The mean difference between measured and prescribed dose was 1.04% (95% CI 0.72 to 1.36 %).
Some computer graphical user interfaces in radiation therapy
Chow, James C L
2016-01-01
In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations. PMID:27027225
Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation
NASA Astrophysics Data System (ADS)
Vali, Indudhar Panduranga; Shetty, Pramoda Kumara; Mahesha, M. G.; Petwal, V. C.; Dwivedi, Jishnu; Choudhary, R. J.
2017-06-01
The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I-V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (ΦB), ideality factor (n) and series resistance (Rs). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of ΦB was observed as a function of EBI dose. The improved n with increased ΦB is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune Schottky contact parameters by metal deposition on the electron beam irradiated n-Si wafers.
NASA Astrophysics Data System (ADS)
Ansari, M.; Abbasi Davani, F.; Lamehi Rashti, M.; Monadi, Sh.; Emami, H.
2018-05-01
Total skin electron irradiation technique is used in treatment of the mycosis fungoid. The implementation of this technique requires non-standard measurements and complex dosimetry methods. Depending on the linear accelerator (Linac) type, bunker size, room dimensions and dosimetry equipment, the design of instruments for appropriate set up and implementation of TSEI in different radiation therapy centers varies. The studies which have been done in this article provide an introduction to the implementing of this method for the first time in Iran and its results can be used for the centers with similar specifications in the world. This article determined the electron beam characteristic of TSEI for the only electron accelerator, located at the radiation center of the Seyed Alshohada Hospital of Isfahan (NEPTUN 10PC), by performing Monte Carlo simulations and using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). For the best uniformity of the vertical profile, the optimal angle of gantry was defined at SSD=350 cm. The effect of the degrader plane that is located at a distance of 20 cm from the patient surface, was evaluated on the amount of energy reduction of the beam, the opening of the electron beam field and the homogeneity of the dose distribution. The transversal dose distribution from the whole treatment with Stanford technique (six dual fields) and Rotational technique was simulated in a CT-based anthropomorphic phantom. Also, the percentage depth dose in the head, neck, thorax, abdomen and legs was obtained for both methods. The simulation results show that the 20o angle between the horizontal and the beam central axis is optimal in order to provide the best vertical dose uniformity. The mean energy decreases from 6.1 MeV (the exit window) to 3 MeV (the treatment surface) by placing a degrader with 0.8 cm thickness in front of the treatment plane. FWHM of the angular distribution of the electron beam increased from 15o at SSD=100 cm to more than 30o on the treatment surface by traversing the PMMA degrader. The MC calculated percentage depth dose curves in different organs of anthropomorphic phantom for RTSEI indicates that the depth of maximum dose is on the surface of the phantom and Isodose curve of 80% is formed at a depth less than 4 mm. the results also show, with the degrader plane in front of the patient, the degree of homogeneity of the dose distribution for both Stanford and rotational techniques is the same.
Abraham, S; Fogliata, A; Jordaan, A; Clivio, A; Vanetti, E; Cozzi, L
2013-01-01
Objective: To evaluate the use of volumetric-modulated arc therapy [VMAT, RapidArc® (RA); Varian Medical Systems, Palo Alto, CA] for the treatment of cutaneous Kaposi’s sarcoma (KS) of lower extremities with adequate target coverage and high bone sparing, and to compare VMAT with electron beam therapy. Methods: 10 patients were planned with either RA or electron beams. The dose was prescribed to 30 Gy, 10 fractions, to mean the planning target volume (PTV), and significant maximum dose to bone was limited to 30 Gy. Plans were designed for 6-MV photon beams for RA and 6 MeV for electrons. Dose distributions were computed with AcurosXB® (Varian Medical Systems) for photons and with a Monte Carlo algorithm for electrons. Results: V90% was 97.3±1.2 for RA plans and 78.2±2.6 for electrons; similarly, V107% was 2.5±2.2 and 37.7±3.4, respectively. RA met coverage criteria. Concerning bone sparing, D2% was 29.6±1.1 for RA and 31.0±2.4 for electrons. Although acceptable for bone involvement, pronounced target coverage violations were obtained for electron plans. Monitor units were similar for electrons and RA, although for the latter they increased when superior bone sparing was imposed. Delivery times were 12.1±4.0 min for electrons and 4.8±1.3 min for the most modulated RA plans. Conclusion: High plan quality was shown for KS in the lower extremities using VMAT, and this might simplify their management in comparison with the more conventional usage of electrons, particularly in institutes with limited staff resources and heavy workloads. Advances in knowledge: VMAT is also dosimetrically extremely advantageous in a typology of treatments where electron beam therapy is mainly considered to be effective owing to the limited penetration of the beams. PMID:23392192
Hermannsdörfer, Justus; Tinnemann, Verena; Peckys, Diana B; de Jonge, Niels
2016-06-01
Whole cells can be studied in their native liquid environment using electron microscopy, and unique information about the locations and stoichiometry of individual membrane proteins can be obtained from many cells thus taking cell heterogeneity into account. Of key importance for the further development of this microscopy technology is knowledge about the effect of electron beam radiation on the samples under investigation. We used environmental scanning electron microscopy (ESEM) with scanning transmission electron microscopy (STEM) detection to examine the effect of radiation for whole fixed COS7 fibroblasts in liquid. The main observation was the localization of nanoparticle labels attached to epidermal growth factor receptors (EGFRs). It was found that the relative distances between the labels remained mostly unchanged (<1.5%) for electron doses ranging from the undamaged native state at 10 e-/Å2 toward 103 e-/Å2. This dose range was sufficient to determine the EGFR locations with nanometer resolution and to distinguish between monomers and dimers. Various different forms of radiation damage became visible at higher doses, including severe dislocation, and the dissolution of labels.
Kawahara, Daisuke; Ozawa, Shuichi; Saito, Akito; Kimura, Tomoki; Suzuki, Tatsuhiko; Tsuneda, Masato; Tanaka, Sodai; Hioki, Kazunari; Nakashima, Takeo; Ohno, Yoshimi; Murakami, Yuji; Nagata, Yasushi
2018-01-01
Lipiodol was used for stereotactic body radiotherapy combining trans arterial chemoembolization. Lipiodol used for tumour seeking in trans arterial chemoembolization remains in stereotactic body radiation therapy. In our previous study, we reported the dose enhancement effect in Lipiodol with 10× flattening-filter-free (FFF). The objective of our study was to evaluate the dose enhancement and energy spectrum of photons and electrons due to the Lipiodol depth with flattened (FF) and FFF beams. FF and FFF for 6 MV beams from TrueBeam were used in this study. The Lipiodol (3 × 3 × 3 cm 3 ) was located at depths of 1, 3, 5, 10, 20, and 30 cm in water. The dose enhancement factor (DEF) and the energy fluence were obtained by Monte Carlo calculations of the particle and heavy ion transport code system (PHITS). The DEFs at the centre of Lipiodol with the FF beam were 6.8, 7.3, 7.6, 7.2, 6.1, and 5.7% and those with the FFF beam were 20.6, 22.0, 21.9, 20.0, 12.3, and 12.1% at depths of 1, 3, 5, 10, 20, and 30 cm, respectively, where Lipiodol was located in water. Moreover, spectrum results showed that more low-energy photons and electrons were present at shallow depth where Lipiodol was located in water. The variation in the low-energy spectrum due to the depth of the Lipiodol position was more explicit with the FFF beam than that with the FF beam. The current study revealed variations in the DEF and energy spectrum due to the depth of the Lipiodol position with the FF and FFF beams. Although the FF beam could reduce the effect of energy dependence due to the depth of the Lipiodol position, the dose enhancement was overall small. To cause a large dose enhancement, the FFF beam with the distance of the patient surface to Lipiodol within 10 cm should be used.
NASA Astrophysics Data System (ADS)
Smith, Clare L.; Ankers, Elizabeth; Best, Stephen P.; Gagliardi, Frank; Katahira, Kai; Tsunei, Yseu; Tominaga, Takahiro; Geso, Moshi
2017-12-01
The suitability of IRGANOX®1076 in paraffin wax as a near-tissue equivalent radiation dosimeter was investigated for various radiotherapy beam types; kV and MV X-rays, electrons and protons over clinically-relevant doses (2 -20 Gy). The radical formed upon exposure to ionising radiations was measured by Electron Paramagnetic Resonance (EPR) spectroscopy, and the single peak signal obtained for solid solutions of IRGANOX®1076 in wax is attributed to the phenoxyl radical obtained by net loss of H•. Irradiation of solid IRGANOX®1076 gives a doublet consistent with the formation of the phenol cation radical, obtained by electron loss. Solid solutions of IRGANOX®1076 in paraffin wax give a linear dose response for all types of radiations examined, which was energy independent for MV, electron and proton beams, and energy-dependent for kV X-ray irradiation. Reliable dose measurements were obtained with exposures as low as 2 Gy, and comparisons with alanine wax-pellets containing the same amount of dosimeter material (w/w) gave similar responses for all beam types investigated. Post-irradiation measurements (up to 77 days for proton irradiation for samples stored in the dark and at room temperature) indicate good signal stability with minimal signal fading (between 1.6 to 3.8%). Relative to alanine dosimeters, solid solutions of IRGANOX®1076 in wax give EPR signals with better sensitivity at low dose and do not significantly change with the orientation of the sample. Solid solutions of IRGANOX®1076 are ideal for applications in radiotherapy dosimetry for X-rays and charged particles, as IRGANOX®1076 is relatively cheap, can easily and reproducibly prepared in wax and be moulded to different shapes.
Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony
2016-03-08
Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.
A scintillating gas detector for 2D dose measurements in clinical carbon beams.
Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B
2008-09-07
A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.
A scintillating gas detector for 2D dose measurements in clinical carbon beams
NASA Astrophysics Data System (ADS)
Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.
2008-09-01
A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.
NASA Astrophysics Data System (ADS)
Cromar, P. F.
1984-12-01
In this thesis results are presented from a study of the off-axis X and Gamma radiation field caused by a highly relativistic electron beam in liquid Nitrogen at various path lengths out to 2 radiation lengths. The off-axis dose in Silicon was calculated using electron/photon transport code CYLTRAN and measured using thermal luminescent dosimeters (TLD's). Calculations were performed on a CDC-7600 computer ar Los Alamos National Laboratory and measurements were made using the Naval Postgraduate School 100 Mev Linac. Comparison of the results is made and CYLTRAN is found to be in agreement with experimentally measured values. The CYLTRAN results are extended to the off-axis dose caused by a 100 Mev electron beam in air at Standard Temperature and Pressure (STP).
Beam energy considerations for gold nano-particle enhanced radiation treatment.
Van den Heuvel, F; Locquet, Jean-Pierre; Nuyts, S
2010-08-21
A novel approach using nano-technology enhanced radiation modalities is investigated. The proposed methodology uses antibodies labeled with organically inert metals with a high atomic number. Irradiation using photons with energies in the kilo-electron volt (keV) range shows an increase in dose due to a combination of an increase in photo-electric interactions and a pronounced generation of Auger and/or Coster-Krönig (A-CK) electrons. The dependence of the dose deposition on various factors is investigated using Monte Carlo simulation models. The factors investigated include agent concentration, spectral dependence looking at mono-energetic sources as well as classical bremsstrahlung sources. The optimization of the energy spectrum is performed in terms of physical dose enhancement as well as the dose deposited by Auger and/or Coster-Krönig electrons and their biological effectiveness. A quasi-linear dependence on concentration and an exponential decrease within the target medium is observed. The maximal dose enhancement is dependent on the position of the target in the beam. Apart from irradiation with low-photon energies (10-20 keV) there is no added benefit from the increase in generation of Auger electrons. Interestingly, a regular 110 kVp bremsstrahlung spectrum shows a comparable enhancement in comparison with the optimized mono-energetic sources. In conclusion we find that the use of enhanced nano-particles shows promise to be implemented quite easily in regular clinics on a physical level due to the advantageous properties in classical beams.
Beam energy considerations for gold nano-particle enhanced radiation treatment
NASA Astrophysics Data System (ADS)
Van den Heuvel, F.; Locquet, Jean-Pierre; Nuyts, S.
2010-08-01
A novel approach using nano-technology enhanced radiation modalities is investigated. The proposed methodology uses antibodies labeled with organically inert metals with a high atomic number. Irradiation using photons with energies in the kilo-electron volt (keV) range shows an increase in dose due to a combination of an increase in photo-electric interactions and a pronounced generation of Auger and/or Coster-Krönig (A-CK) electrons. The dependence of the dose deposition on various factors is investigated using Monte Carlo simulation models. The factors investigated include agent concentration, spectral dependence looking at mono-energetic sources as well as classical bremsstrahlung sources. The optimization of the energy spectrum is performed in terms of physical dose enhancement as well as the dose deposited by Auger and/or Coster-Krönig electrons and their biological effectiveness. A quasi-linear dependence on concentration and an exponential decrease within the target medium is observed. The maximal dose enhancement is dependent on the position of the target in the beam. Apart from irradiation with low-photon energies (10-20 keV) there is no added benefit from the increase in generation of Auger electrons. Interestingly, a regular 110 kVp bremsstrahlung spectrum shows a comparable enhancement in comparison with the optimized mono-energetic sources. In conclusion we find that the use of enhanced nano-particles shows promise to be implemented quite easily in regular clinics on a physical level due to the advantageous properties in classical beams.
Evaluation and comparison of absorbed dose for electron beams by LiF and diamond dosimeters
NASA Astrophysics Data System (ADS)
Mosia, G. J.; Chamberlain, A. C.
2007-09-01
The absorbed dose response of LiF and diamond thermoluminescent dosimeters (TLDs), calibrated in 60Co γ-rays, has been determined using the MCNP4B Monte Carlo code system in mono-energetic megavoltage electron beams from 5 to 20 MeV. Evaluation of the dose responses was done against the dose responses of published works by other investigators. Dose responses of both dosimeters were compared to establish if any relation exists between them. The dosimeters were irradiated in a water phantom with the centre of their top surfaces (0.32×0.32 cm 2), placed at dmax perpendicular to the radiation beam on the central axis. For LiF TLD, dose responses ranged from 0.945±0.017 to 0.997±0.011. For the diamond TLD, the dose response ranged from 0.940±0.017 to 1.018±0.011. To correct for dose responses by both dosimeters, energy correction factors were generated from dose response results of both TLDs. For LiF TLD, these correction factors ranged from 1.003 up to 1.058 and for diamond TLD the factors ranged from 0.982 up to 1.064. The results show that diamond TLDs can be used in the place of the well-established LiF TLDs and that Monte Carlo code systems can be used in dose determinations for radiotherapy treatment planning.
Testing of the analytical anisotropic algorithm for photon dose calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esch, Ann van; Tillikainen, Laura; Pyykkonen, Jukka
2006-11-15
The analytical anisotropic algorithm (AAA) was implemented in the Eclipse (Varian Medical Systems) treatment planning system to replace the single pencil beam (SPB) algorithm for the calculation of dose distributions for photon beams. AAA was developed to improve the dose calculation accuracy, especially in heterogeneous media. The total dose deposition is calculated as the superposition of the dose deposited by two photon sources (primary and secondary) and by an electron contamination source. The photon dose is calculated as a three-dimensional convolution of Monte-Carlo precalculated scatter kernels, scaled according to the electron density matrix. For the configuration of AAA, an optimizationmore » algorithm determines the parameters characterizing the multiple source model by optimizing the agreement between the calculated and measured depth dose curves and profiles for the basic beam data. We have combined the acceptance tests obtained in three different departments for 6, 15, and 18 MV photon beams. The accuracy of AAA was tested for different field sizes (symmetric and asymmetric) for open fields, wedged fields, and static and dynamic multileaf collimation fields. Depth dose behavior at different source-to-phantom distances was investigated. Measurements were performed on homogeneous, water equivalent phantoms, on simple phantoms containing cork inhomogeneities, and on the thorax of an anthropomorphic phantom. Comparisons were made among measurements, AAA, and SPB calculations. The optimization procedure for the configuration of the algorithm was successful in reproducing the basic beam data with an overall accuracy of 3%, 1 mm in the build-up region, and 1%, 1 mm elsewhere. Testing of the algorithm in more clinical setups showed comparable results for depth dose curves, profiles, and monitor units of symmetric open and wedged beams below d{sub max}. The electron contamination model was found to be suboptimal to model the dose around d{sub max}, especially for physical wedges at smaller source to phantom distances. For the asymmetric field verification, absolute dose difference of up to 4% were observed for the most extreme asymmetries. Compared to the SPB, the penumbra modeling is considerably improved (1%, 1 mm). At the interface between solid water and cork, profiles show a better agreement with AAA. Depth dose curves in the cork are substantially better with AAA than with SPB. Improvements are more pronounced for 18 MV than for 6 MV. Point dose measurements in the thoracic phantom are mostly within 5%. In general, we can conclude that, compared to SPB, AAA improves the accuracy of dose calculations. Particular progress was made with respect to the penumbra and low dose regions. In heterogeneous materials, improvements are substantial and more pronounced for high (18 MV) than for low (6 MV) energies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebe, M; Pacaci, P; Mabhouti, H
Purpose: In this study, the two available calculation algorithms of the Varian Eclipse treatment planning system(TPS), the electron Monte Carlo(eMC) and General Gaussian Pencil Beam(GGPB) algorithms were used to compare measured and calculated peripheral dose distribution of electron beams. Methods: Peripheral dose measurements were carried out for 6, 9, 12, 15, 18 and 22 MeV electron beams of Varian Triology machine using parallel plate ionization chamber and EBT3 films in the slab phantom. Measurements were performed for 6×6, 10×10 and 25×25cm{sup 2} cone sizes at dmax of each energy up to 20cm beyond the field edges. Using the same filmmore » batch, the net OD to dose calibration curve was obtained for each energy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution measured using parallel plate ionization chamber and EBT3 film and calculated by eMC and GGPB algorithms were compared. The measured and calculated data were then compared to find which algorithm calculates peripheral dose distribution more accurately. Results: The agreement between measurement and eMC was better than GGPB. The TPS underestimated the out of field doses. The difference between measured and calculated doses increase with the cone size. The largest deviation between calculated and parallel plate ionization chamber measured dose is less than 4.93% for eMC, but it can increase up to 7.51% for GGPB. For film measurement, the minimum gamma analysis passing rates between measured and calculated dose distributions were 98.2% and 92.7% for eMC and GGPB respectively for all field sizes and energies. Conclusion: Our results show that the Monte Carlo algorithm for electron planning in Eclipse is more accurate than previous algorithms for peripheral dose distributions. It must be emphasized that the use of GGPB for planning large field treatments with 6 MeV could lead to inaccuracies of clinical significance.« less
Dosimetric characteristics with spatial fractionation using electron grid therapy.
Meigooni, A S; Parker, S A; Zheng, J; Kalbaugh, K J; Regine, W F; Mohiuddin, M
2002-01-01
Recently, promising clinical results have been shown in the delivery of palliative treatments using megavoltage photon grid therapy. However, the use of megavoltage photon grid therapy is limited in the treatment of bulky superficial lesions where critical radiosensitive anatomical structures are present beyond tumor volumes. As a result, spatially fractionated electron grid therapy was investigated in this project. Dose distributions of 1.4-cm-thick cerrobend grid blocks were experimentally determined for electron beams ranging from 6 to 20 MeV. These blocks were designed and fabricated at out institution to fit into a 20 x 20-cm(2) electron cone of a commercially available linear accelerator. Beam profiles and percentage depth dose (PDD) curves were measured in Solid Water phantom material using radiographic film, LiF TLD, and ionometric techniques. Open-field PDD curves were compared with those of single holes grid with diameters of 1.5, 2.0, 2.5, 3.0, and 3.5 cm to find the optimum diameter. A 2.5-cm hole diameter was found to be the optimal size for all electron energies between 6 and 20 MeV. The results indicate peak-to-valley ratios decrease with depth and the largest ratio is found at Dmax. Also, the TLD measurements show that the dose under the blocked regions of the grid ranged from 9.7% to 39% of the dose beneath the grid holes, depending on the measurement location and beam energy.
Stelescu, Maria-Daniela; Craciun, Gabriela; Dumitrascu, Maria
2014-01-01
A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica). The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics. PMID:24688419
Qing, Xian; Huang, Jin-Qiong; Yu, Xiao-Wei; Zhang, Su-Kun; Yang, Yan-Yan; Ren, Ming-Zhong; Wen, Yu-Long
2014-07-01
Concentrations and distribution characteristics of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (2,3,7,8-PCDD/Fs) were analyzed in waste water from a paper mill. And concentrations of 2,3,7,8-PCDD/Fs in waste water before and after electron beam irradiation with different doses were compared. The feasibility, mechanism and rates of 2,3,7,8-PCDD/Fs degradation were discussed. The PCDD/Fs concentrations and corresponding I-TEQ (toxic equivalent quantity) values were 239 pg x L(-1) and 41.0 pg x L(-1), respectively, in the waste water. The concentrations of total 2,3,7,8-PCDD/Fs decreased after electron beam radiolysis at a dose of 30 kGy and 60 kGy with degradation rates of 5.27% and 23.6%, respectively.
Stelescu, Maria-Daniela; Manaila, Elena; Craciun, Gabriela; Dumitrascu, Maria
2014-01-01
A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica). The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics.
NASA Technical Reports Server (NTRS)
Salyer, I. O.
1980-01-01
The electron irradiation conditions required to prepare thermally from stable high density polyethylene (HDPE) were defined. The conditions were defined by evaluating the heat of fusion and the melting temperature of several HDPE specimens. The performance tests conducted on the specimens, including the thermal cycling tests in the thermal energy storage unit are described. The electron beam irradiation tests performed on the specimens, in which the total radiation dose received by the pellets, the electron beam current, the accelerating potential, and the atmospheres were varied, are discussed.
Williams, Calum; Bartholomew, Richard; Rughoobur, Girish; Gordon, George S D; Flewitt, Andrew J; Wilkinson, Timothy D
2016-12-02
High-energy electron beam lithography for patterning nanostructures on insulating substrates can be challenging. For high resolution, conventional resists require large exposure doses and for reasonable throughput, using typical beam currents leads to charge dissipation problems. Here, we use UV1116 photoresist (Dow Chemical Company), designed for photolithographic technologies, with a relatively low area dose at a standard operating current (80 kV, 40-50 μC cm -2 , 1 nAs -1 ) to pattern over large areas on commercially coated ITO-glass cover slips. The minimum linewidth fabricated was ∼33 nm with 80 nm spacing; for isolated structures, ∼45 nm structural width with 50 nm separation. Due to the low beam dose, and nA current, throughput is high. This work highlights the use of UV1116 photoresist as an alternative to conventional e-beam resists on insulating substrates. To evaluate suitability, we fabricate a range of transmissive optical devices, that could find application for customized wire-grid polarisers and spectral filters for imaging, which operate based on the excitation of surface plasmon polaritons in nanosized geometries, with arrays encompassing areas ∼0.25 cm 2 .
NASA Astrophysics Data System (ADS)
Williams, Calum; Bartholomew, Richard; Rughoobur, Girish; Gordon, George S. D.; Flewitt, Andrew J.; Wilkinson, Timothy D.
2016-12-01
High-energy electron beam lithography for patterning nanostructures on insulating substrates can be challenging. For high resolution, conventional resists require large exposure doses and for reasonable throughput, using typical beam currents leads to charge dissipation problems. Here, we use UV1116 photoresist (Dow Chemical Company), designed for photolithographic technologies, with a relatively low area dose at a standard operating current (80 kV, 40-50 μC cm-2, 1 nAs-1) to pattern over large areas on commercially coated ITO-glass cover slips. The minimum linewidth fabricated was ˜33 nm with 80 nm spacing; for isolated structures, ˜45 nm structural width with 50 nm separation. Due to the low beam dose, and nA current, throughput is high. This work highlights the use of UV1116 photoresist as an alternative to conventional e-beam resists on insulating substrates. To evaluate suitability, we fabricate a range of transmissive optical devices, that could find application for customized wire-grid polarisers and spectral filters for imaging, which operate based on the excitation of surface plasmon polaritons in nanosized geometries, with arrays encompassing areas ˜0.25 cm2.
Sung, Wonmo; Park, Jong In; Kim, Jung-in; Carlson, Joel; Ye, Sung-Joon
2017-01-01
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans. PMID:28493940
Sung, Wonmo; Park, Jong In; Kim, Jung-In; Carlson, Joel; Ye, Sung-Joon; Park, Jong Min
2017-01-01
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.
1981-06-01
hollow with most of the electrons moving near the outer circumference of the plasma channel. CaF2:Mn thermoluminescent dosimeter ( TLD ) radiation...dose measurements with the TLDs shielded all around with 0.76 mm aluminum and back-shielded with 4.72 mm aluminum (so as to eliminate electron ...27.3 INJECTION AND PROPAGATION OF ~1ULTIPLE RELATIVISTIC ELECTRON BEAMS INTO PREFORMED PLASMA CHANNELS FOR HIGH-POWER X-RAY PRODUCTION F. J
Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V
2011-02-07
The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.
Wearable glass beads for in vivo dosimetry of total skin electron irradiation treatments
NASA Astrophysics Data System (ADS)
Nabankema, S. K.; Jafari, S. M.; Peet, S. C.; Binny, D.; Sylvander, S. R.; Crowe, S. B.
2017-11-01
Glass beads have recently been proposed for use as radiation therapy dosimeters. Glass beads have a number of characteristics that make them suitable for in vivo skin dose measurements, including an ability to be worn on a string, and therefore avoid possible patient discomfort that may result from the use of adhesives. In this study, their use for in vivo dose measurements in total skin electron irradiation treatments has been tested. First, the dosimetric properties of cylindrical beads with a 3 mm diameter were characterised using electron fields produced by a linear accelerator. The mean individual bead reproducibility was demonstrated to be within 3%; and a batch variation of 7% was observed. The beads were shown to have a linear dose response, and both dose rate and beam energy independence, within the measurement uncertainty. Phantom measurements were then performed for a total skin electron irradiation beam arrangement, and results compared against optically stimulated luminescent dosimeters at five anatomical sites. For a majority of measurement locations, agreement within 3% was observed between the two dosimetry techniques, demonstrating the feasibility of glass beads as in vivo dosimeters for total skin electron irradiation; though further investigation may be needed to minimise uncertainty in results.
Applicability of Topaz Composites to Electron Dosimetry
NASA Astrophysics Data System (ADS)
Bomfim, K. S.; Souza, D. N.
2010-11-01
Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanier, M; Wronski, M; Yeboah, C
The purpose of this work is twofold: 1) to measure dose profiles under lead shielding at the level of the lens for a range of clinical electron energies via film dosimetry; and, 2) to assess the validity of the Pinnacle treatment planning system (TPS) in calculating the penumbral doses under lead shielding with the heterogeneous electron algorithm. First, a film calibration curve that spanned the electron energies of interest, 6–18MeV, was created. Next, EBT3 film and lead shielding were incorporated into a solid water phantom with the film positioned 7mm below the lead and a variable thickness of bolus onmore » top. This geometry was reproduced in the Pinnacle TPS and used to calculate dose profiles using the heterogeneous electron algorithm. The measured vs. calculated dose profiles were normalized to d{sub max} in a homogeneous phantom with no lead shielding and compared. Pinnacle consistently overestimated the dose distal to the lead shielding with significant discrepancies occurring near the edge of the lead shield reaching 25% at the edge and 35% in the open field region. The film measurements showed that a minimum lead margin of 5mm extending beyond the diameter of the lens is required to adequately shield the lens to ≤10% of the dose at d{sub max}. These measurements allow for a reasonable estimate of the dose to the lens from anterior electron beams. They also allow for clinicians to assess the extent of the lead margin required to reduce the lens dose to an acceptable amount prior to radiotherapy treatment.« less
NASA Astrophysics Data System (ADS)
Liu, B. H.; Teo, H. W.; Mo, Z. H.; Mai, Z. H.; Lam, J.; Xue, J. M.; Zhao, Y. Z.; Tan, P. K.
2017-01-01
Using in situ transmission electron microscopy (TEM), we studied boron diffusion and segregation in CoFeB/SiO2 nanostructured thin film stacks. We also investigated how these phenomena affected the phase and microstructure of CoFeB thin films under electron beam irradiation at 300 kV. A unique phase transformation was observed in CoFeB thin films under high-dose electron irradiation, from a polycrystalline Co3Fe to a unilateral amorphous phase of Co3Fe and nanocrystalline FexCo23-xB6. The unilateral amorphization of the Co3Fe film showed an electron-dose-rate sensitivity with a threshold dose rate. Detailed in situ TEM studies revealed that the unilateral amorphization of the Co3Fe film arose from boron segregation at the bottom of the Co3Fe thin film induced by radiation-enhanced diffusion of boron atoms that were displaced by electron knock-on effects. The radiation-induced nanocrystallization of FexCo23-xB6 was also found to be dose-rate sensitive with a higher electron beam current leading to earlier nucleation and more rapid grain growth. The nanocrystallization of FexCo23-xB6 occurred preferentially at the CoFeB/SiO2 interface. Kinetic studies by in situ TEM revealed the surface crystallization and diffusion-controlled nucleation and grain growth mechanisms. The radiation-enhanced atomic diffusivity and high-concentration of radiation-induced point defects at the Co3Fe/SiO2 interface enhanced the local short-range ordering of Fe, Co, and B atoms, favoring nucleation and grain growth of FexCo23-xB6 at the interface.
SU-F-BRCD-03: Dose Calculation of Electron Therapy Using Improved Lateral Buildup Ratio Method.
Gebreamlak, W; Tedeschi, D; Alkhatib, H
2012-06-01
To calculate the percentage depth dose of any irregular shape electron beam using modified lateral build-up-ratio method. Percentage depth dose (PDD) curves were measured using 6, 9, 12, and 15MeV electron beam energies for applicator cone sizes of 6×6, 10×10, 14×14, and 14×14cm 2 . Circular cutouts for each cone were prepared from 2.0cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. The scanning was done using a water tank and two diodes - one for the signal and the other a stationary reference outside the tank. The water surface was determined by scanning the signal diode slowly from water to air and by noting the sharp change of the percentage depth dose curve at the water/air interface. The lateral build-up-ratio (LBR) for each circular cutout was calculated from the measured PDD curve using the open field of the 14×14 cm 2 cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter (sigma) of the electron shower was calculated. Unlike the commonly accepted assumption that sigma is independent of cutout size, it is shown that the sigma value increases linearly with circular cutout size. Using this characteristic of sigma, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. In this research, it is shown that sigma increases with cutout size. For radius of circular cutout sizes up to the equilibrium range of the electron beam, the increase of sigma with the cutout size is linear. The percentage difference of the calculated PDD from the measured PDD for irregularly shaped cutouts was under 1.0%. Similar Result was obtained for four electron beam energies (6, 9, 12, and 15MeV). © 2012 American Association of Physicists in Medicine.
Cho, S H; Lowenstein, J R; Balter, P A; Wells, N H; Hanson, W F
2000-01-01
A new calibration protocol, developed by the AAPM Task Group 51 (TG-51) to replace the TG-21 protocol, is based on an absorbed-dose to water standard and calibration factor (N(D,w)), while the TG-21 protocol is based on an exposure (or air-kerma) standard and calibration factor (N(x)). Because of differences between these standards and the two protocols, the results of clinical reference dosimetry based on TG-51 may be somewhat different from those based on TG-21. The Radiological Physics Center has conducted a systematic comparison between the two protocols, in which photon and electron beam outputs following both protocols were compared under identical conditions. Cylindrical chambers used in this study were selected from the list given in the TG-51 report, covering the majority of current manufacturers. Measured ratios between absorbed-dose and air-kerma calibration factors, derived from the standards traceable to the NIST, were compared with calculated values using the TG-21 protocol. The comparison suggests that there is roughly a 1% discrepancy between measured and calculated ratios. This discrepancy may provide a reasonable measure of possible changes between the absorbed-dose to water determined by TG-51 and that determined by TG-21 for photon beam calibrations. The typical change in a 6 MV photon beam calibration following the implementation of the TG-51 protocol was about 1%, regardless of the chamber used, and the change was somewhat smaller for an 18 MV photon beam. On the other hand, the results for 9 and 16 MeV electron beams show larger changes up to 2%, perhaps because of the updated electron stopping power data used for the TG-51 protocol, in addition to the inherent 1% discrepancy presented in the calibration factors. The results also indicate that the changes may be dependent on the electron energy.
Marre, D; Ferreira, I H; Bridier, A; Björeland, A; Svensson, H; Dutreix, A; Chavaudra, J
2000-12-01
Absorbed dose determination with thermoluminescent dosimeters (TLDs) generally relies on calibration in 60Co gamma-ray reference beams. The energy correction factor fCo(E) for electron beams takes into account the difference between the response of the TLD in the beam of energy E and in the 60Co gamma-ray beam. In this work, fCo(E) was evaluated for an LiF powder irradiated in electron beams of 6 to 20 MeV (Varian 2300C/D) and 10 to 50 MeV (Racetrack MM50), and its variation with electron energy, TLD size and nature of the surrounding medium was also studied for LiF powder. The results have been applied to the ESTRO-EQUAL mailed dosimetry quality assurance network. Monte Carlo calculations (EGS4, PENELOPE) and experiments have been performed for the LiF powder (rho = 1.4 g cm3) (DTL937, Philitech, France), read on a home made reader and a PCL3 automatic reader (Fimel, France). The TLDs were calibrated using Fricke dosimetry and compared with three ionization chambers (NE2571, NACP02, ROOS). The combined uncertainties in the experimental fCo(E) factors determined in this work are less than about 0.4% (1 SD), which is appreciably smaller than the uncertainties up to 1.4% (1 SD) reported for other calculated values in the literature. Concerning the Varian 2300C/D beams, the measured fCo(E) values decrease from 1.065 to 1.049 +/- 0.004 (1 SD) when the energy at depth in water increases from 2.6 to 14.1 MeV; the agreement with Monte Carlo calculations is better than 0.5%. For the Racetrack MM50 pulsed-scanned beams, the average experimental value of fCo(E) is 1.071 +/- 0.005 (1 SD) for a mean electron energy at depth Ez ranging from 4.3 to 36.3 MeV: fCo(E) is up to 2% higher for the MM50 beams than for the 2300C/D beams in the range of the tested energies. The energy correction factor for LiF powder (3 mm diameter and 15 mm length) varies with beam quality and type (pulsed or pulsed-scanning), cavity size and nature of the surrounding medium. The fCo(E) values obtained for the LiF powder (3 mm diameter and 15 mm length) irradiated in water, have been applied to the EQUAL external audit network, leading to a good agreement between stated and measured doses, with a mean value of 1.002 +/- 0.022 (1 SD), for 170 beam outputs checked (36 electron beam energies) in 13 'reference' radiotherapy centres in Europe. Such fCo(E) data improve the accuracy of the absorbed dose TLD determination in electron beams, justifying their use for quality control in radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah
2014-09-03
In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev butmore » at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.« less
Budanec, M; Knezević, Z; Bokulić, T; Mrcela, I; Vrtar, M; Vekić, B; Kusić, Z
2008-12-01
This work studied the percent depth doses of (60)Co photon beams in the buildup region of a plastic phantom by LiF TLD measurements and by Monte Carlo calculations. An agreement within +/-1.5% was found between PDDs measured by TLD and calculated by the Monte Carlo method with the TLD in a plastic phantom. The dose in the plastic phantom was scored in voxels, with thickness scaled by physical and electron density. PDDs calculated by electron density scaling showed a better match with PDD(TLD)(MC); the difference is within +/-1.5% in the buildup region for square and rectangular field sizes.
Binukumar, John Pichy; Amri, Iqbal Al; Davis, Cheriyathmanjiyil Antony
2016-01-01
Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue‐equivalent properties. We investigated a commercially available ‘microdiamond’ detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1 mm, thickness 1×10−3mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ±0.17% (1 SD) (n=11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stopping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long‐term stability and reproducibility. Based on micro‐dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PACS number(s): 87.56.Da PMID:27074452
Gafchromic EBT3 film dosimetry in electron beams — energy dependence and improved film read‐out
Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti
2016-01-01
For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of experimental and Monte Carlo (MC)‐simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read‐out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose‐dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ±50 pixel values (PVs). To improve the read‐out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scanner glass can be detected and eliminated. Responses from red and green channels were averaged for read‐out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k=2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC‐simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV–16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read‐out procedure established, the nearly uniform energy dependence found and the estimated uncertainties, the EBT3 film was concluded to be a suitable 2D dosimeter for measuring electron or mixed photon/electron dose distributions in water phantom. Uncertainties of 3.7% (k=2) for absolute and 2.3% (k=2) for relative dose were estimated. PACS numbers: 87.53.Bn, 87.55.K‐, 87.55.Qr PMID:26894368
In situ TEM observation of preferential amorphization in single crystal Si nanowire
NASA Astrophysics Data System (ADS)
Su, Jiangbin; Zhu, Xianfang
2018-06-01
The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.
In situ TEM observation of preferential amorphization in single crystal Si nanowire.
Su, Jiangbin; Zhu, Xianfang
2018-06-08
The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.
Computational study of radiation doses at UNLV accelerator facility
NASA Astrophysics Data System (ADS)
Hodges, Matthew; Barzilov, Alexander; Chen, Yi-Tung; Lowe, Daniel
2017-09-01
A Varian K15 electron linear accelerator (linac) has been considered for installation at University of Nevada, Las Vegas (UNLV). Before experiments can be performed, it is necessary to evaluate the photon and neutron spectra as generated by the linac, as well as the resulting dose rates within the accelerator facility. A computational study using MCNPX was performed to characterize the source terms for the bremsstrahlung converter. The 15 MeV electron beam available in the linac is above the photoneutron threshold energy for several materials in the linac assembly, and as a result, neutrons must be accounted for. The angular and energy distributions for bremsstrahlung flux generated by the interaction of the 15 MeV electron beam with the linac target were determined. This source term was used in conjunction with the K15 collimators to determine the dose rates within the facility.
Sawkey, D L; Faddegon, B A
2009-03-01
Monte Carlo simulations of x-ray beams typically take parameters of the electron beam in the accelerating waveguide to be free parameters. In this paper, a methodology is proposed and implemented to determine the energy, spectral width, and beam divergence of the electron source. All treatment head components were removed from the beam path, leaving only the exit window. With the x-ray target and flattener out of the beam, uncertainties in physical characteristics and relative position of the target and flattening filter, and in spot size, did not contribute to uncertainty in the energy. Beam current was lowered to reduce recombination effects. The measured dose distributions were compared with Monte Carlo simulation of the electron beam through the treatment head to extract the electron source characteristics. For the nominal 6 and 18 MV x-ray beams, the energies were 6.51 +/- 0.15 and 13.9 +/- 0.2 MeV, respectively, with the uncertainties resulting from uncertainties in the detector position in the measurement and in the stopping power in the simulations. Gaussian spectral distributions were used, with full widths at half maximum ranging from 20 +/- 4% at 6 MV to 13 +/- 4% at 18 MV required to match the fall-off portion of the percent-depth ionization curve. Profiles at the depth of maximum dose from simulations that used the manufacturer-specified exit window geometry and no beam divergence were 2-3 cm narrower than measured profiles. Two simulation configurations yielding the measured profile width were the manufacturer-specified exit window thickness with electron source divergences of 3.3 degrees at 6 MV and 1.8 degrees at 18 MV and an exit window 40% thicker than the manufacturer's specification with no beam divergence. With the x-ray target in place (and no flattener), comparison of measured to simulated profiles sets upper limits on the electron source divergences of 0.2 degrees at 6 MV and 0.1 degrees at 18 MV. A method of determining source characteristics without mechanical modification of the treatment head, and therefore feasible in clinics, is presented. The energies and spectral widths determined using this method agree with those determined with only the exit window in the beam path.
Pradhan, A S; Quast, U; Sharma, P K
1994-09-01
A simple and fast, but sensitive TLD method for the measurement of energy and homogeneity of therapeutically used electron beams has been developed and tested. This method is based on the fact that when small thicknesses of high-Z absorbers such as lead are interposed in the high-energy electron beams, the transmitted radiation increases with the energy of the electron beams. Consequently, the ratio of readouts of TLDS held on the two sides of a lead plate varied sharply (by factor of 70) with a change in energy of the electron beam from 5 MeV to 18 MeV, offering a very sensitive method for the measurement of the energy of electron beams. By using the ratio of TL readouts of two types of TLD ribbon with widely different sensitivities, LiF TLD-700 ribbons on the upstream side and highly sensitive CaF2:Dy TLD-200 ribbons on the downstream side, an electron energy discrimination of better than +/- 0.1 MeV could be achieved. The homogeneity of the electron beam energy and the absorbed dose was measured by using a jig in which the TLDS were held in the desired array on both sides of a 4 mm thick lead plate. The method takes minimal beam time and makes it possible to carry out measurements for the audit of the quality of electron beams as well as for intercomparison of beams by mail.
NASA Astrophysics Data System (ADS)
Babitha, K. K.; Sreedevi, A.; Priyanka, K. P.; Ganesh, S.; Varghese, Thomas
2018-06-01
The effect of 8 MeV electron beam irradiation on the thermal, structural and electrical properties of CeO2 nanoparticles synthesized by chemical precipitation route was investigated. The dose dependent effect of electron irradiation was studied using various characterization techniques such as, thermogravimetric and differential thermal analyses, X-ray diffraction, Fourier transformed infrared spectroscopy and impedance spectroscopy. Systematic investigation based on the results of structural studies confirm that electron beam irradiation induces defects and particle size variation on CeO2 nanoparticles, which in turn results improvements in AC conductivity, dielectric constant and loss tangent. Structural modifications and high value of dielectric constant for CeO2 nanoparticles due to electron beam irradiation make it as a promising material for the fabrication of gate dielectric in metal oxide semiconductor devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Christian; Pawelke, Joerg; Karsch, Leonhard
Purpose: The aim of this article is to investigate the energy dependence of the radiochromic film type, Gafchromic EBT-1, when scanned with a flatbed scanner for film readout. Methods: Dose response curves were determined for 12 different beam qualities ranging from a 10 kVp x-ray beam to a 15 MVp x-ray beam and include also two high energy electron beam qualities (6 and 18 MeV). The dose responses measured as net optical density (netOD) for the different beam qualities were normalized to the response of a reference beam quality (6 MVp). Results: A strong systematic energy dependence of the filmmore » response was found. The lower the effective beam energy, the less sensitive the EBT-1 films get. The maximum decrease in dose for the same film response between the 25 kVp and 6 MVp beam qualities was 44%. Additionally, a difference in energy dependence for different doses was discovered, meaning that higher doses show a smaller dependency on energy than lower doses. The maximum decrease in the normalized netOD was found to be 25% for a dose of 0.5 Gy relative to the normalized netOD for 10 Gy. Moreover, a scaling procedure is introduced, allowing the correction of the energy dependence for the investigated beam qualities and also for comparable x-ray beam qualities within the energy range studied. Conclusions: A strong energy dependence for EBT-1 radiochromic films was found. The films were readout with a flatbed scanner. If the effective beam energy is known, the energy dependence can be corrected with the introduced scaling procedure. Further investigation of the influence of the spectral band of the readout device on energy dependence is needed to understand the reason for the different energy dependences found in this and previous works.« less
Matsunaga, Masahiro; Higuchi, Ayaka; He, Guanchen; Yamada, Tetsushi; Krüger, Peter; Ochiai, Yuichi; Gong, Yongji; Vajtai, Robert; Ajayan, Pulickel M; Bird, Jonathan P; Aoki, Nobuyuki
2016-10-05
Utilizing an innovative combination of scanning-probe and spectroscopic techniques, supported by first-principles calculations, we demonstrate how electron-beam exposure of field-effect transistors, implemented from ultrathin molybdenum disulfide (MoS 2 ), may cause nanoscale structural modifications that in turn significantly modify the electrical operation of these devices. Quite surprisingly, these modifications are induced by even the relatively low electron doses used in conventional electron-beam lithography, which are found to induce compressive strain in the atomically thin MoS 2 . Likely arising from sulfur-vacancy formation in the exposed regions, the strain gives rise to a local widening of the MoS 2 bandgap, an idea that is supported both by our experiment and by the results of first-principles calculations. A nanoscale potential barrier develops at the boundary between exposed and unexposed regions and may cause extrinsic variations in the resulting electrical characteristics exhibited by the transistor. The widespread use of electron-beam lithography in nanofabrication implies that the presence of such strain must be carefully considered when seeking to harness the potential of atomically thin transistors. At the same time, this work also promises the possibility of exploiting the strain as a means to achieve "bandstructure engineering" in such devices.
Zakaria, A; Schuette, W; Younan, C
2011-01-01
The preceding DIN 6800-2 (1997) protocol has been revised by a German task group and its latest version was published in March 2008 as the national standard dosimetry protocol DIN 6800-2 (2008 March). Since then, in Germany the determination of absorbed dose to water for high-energy photon and electron beams has to be performed according to this new German dosimetry protocol. The IAEA Code of Practice TRS 398 (2000) and the AAPM TG-51 are the two main protocols applied internationally. The new German version has widely adapted the methodology and dosimetric data of TRS-398. This paper investigates systematically the DIN 6800-2 protocol and compares it with the procedures and results obtained by using the international protocols. The investigation was performed with 6 MV and 18 MV photon beams as well as with electron beams from 5 MeV to 21 MeV. While only cylindrical chambers were used for photon beams, the measurements of electron beams were performed by using cylindrical and plane-parallel chambers. It was found that the discrepancies in the determination of absorbed dose to water among the three protocols were 0.23% for photon beams and 1.2% for electron beams. The determination of water absorbed dose was also checked by a national audit procedure using TLDs. The comparison between the measurements following the DIN 6800-2 protocol and the TLD audit-procedure confirmed a difference of less than 2%. The advantage of the new German protocol DIN 6800-2 lies in the renouncement on the cross calibration procedure as well as its clear presentation of formulas and parameters. In the past, the different protocols evoluted differently from time to time. Fortunately today, a good convergence has been obtained in concepts and methods. PMID:22287987
Zakaria, A; Schuette, W; Younan, C
2011-04-01
The preceding DIN 6800-2 (1997) protocol has been revised by a German task group and its latest version was published in March 2008 as the national standard dosimetry protocol DIN 6800-2 (2008 March). Since then, in Germany the determination of absorbed dose to water for high-energy photon and electron beams has to be performed according to this new German dosimetry protocol. The IAEA Code of Practice TRS 398 (2000) and the AAPM TG-51 are the two main protocols applied internationally. The new German version has widely adapted the methodology and dosimetric data of TRS-398. This paper investigates systematically the DIN 6800-2 protocol and compares it with the procedures and results obtained by using the international protocols. The investigation was performed with 6 MV and 18 MV photon beams as well as with electron beams from 5 MeV to 21 MeV. While only cylindrical chambers were used for photon beams, the measurements of electron beams were performed by using cylindrical and plane-parallel chambers. It was found that the discrepancies in the determination of absorbed dose to water among the three protocols were 0.23% for photon beams and 1.2% for electron beams. The determination of water absorbed dose was also checked by a national audit procedure using TLDs. The comparison between the measurements following the DIN 6800-2 protocol and the TLD audit-procedure confirmed a difference of less than 2%. The advantage of the new German protocol DIN 6800-2 lies in the renouncement on the cross calibration procedure as well as its clear presentation of formulas and parameters. In the past, the different protocols evoluted differently from time to time. Fortunately today, a good convergence has been obtained in concepts and methods.
NASA Astrophysics Data System (ADS)
Gotzmann, G.; Portillo, J.; Wronski, S.; Kohl, Y.; Gorjup, E.; Schuck, H.; Rögner, F. H.; Müller, M.; Chaberny, I. F.; Schönfelder, J.; Wetzel, C.
2018-09-01
Over the last decades, the medical device industry has grown significantly. Complex and highly functionalized medical devices and implants are being developed to improve patient treatment and to enhance their health-related quality of life. However, medical devices from this new generation often cannot be sterilized by standard methods such as autoclaving or sterilizing gases, as they are temperature sensitive, containing electronic components like sensors and microchips, or consist of polymers. Gamma irradiation for sterilization of such products is also problematic due to long processing times under highly reactive conditions resulting in material degradation or loss of functionality. Low-energy electron-beam treatment could enable irradiation sterilization of medical surfaces within seconds. This method is very fast in comparison to gamma irradiation because of its high dose rate and therefore degradation processes of polymers can be reduced or even prevented. Additionally, electron penetration depth can be precisely controlled to prevent damage of sensitive components like electronics and semiconductors. The presented study focuses on two key aspects: 1.) Can new and highly functionalized medical products in future be sterilized using low-energy electron-beam irradiation; and 2.) Is the low-energy electron-beam technology suitable to be set up on-site to speed up sterilization processing or make it available "just-in-time". To address these questions, different test specimens were chosen with complex geometry or electronic functional parts to gather information about the limitations and chances for this new approach. The test specimens were inoculated with clinical relevant test organisms (Pseudomonas aeruginosa) as well as with approved radiation resistant organisms (Deinococcus radiodurans and Bacillus pumilus) to prove the suitability of low-energy electron-beam treatment for the above-mentioned medical products. The calculation of the D10 value for B. pumilus revealed equal efficacy when compared to standard high-energy irradiation sterilization. All of the above-mentioned germs were successfully inactivated by low-energy electron-beam treatment when test specimens were inoculated with a germ load > 10^6 CFU and treated with doses ≥ 10 kGy (for B. pumilus and P. aeruginosa) and > 300 kGy (for D. radiodurans) respectively. As an example, for specialized electronic components to be sterilized, an impedance sensor for cell culture applications was sterilized and unimpaired functionality was demonstrated even after five repeated sterilization cycles to a total dose of 50 kGy. To address the second aspect of on-site suitability of this technology, the product handling for low-energy electron-beam treatment had to be adapted to minimize the size of the electron-beam facility. Therefore, a mini electron-beam source was used and a specialized sample holder and 3D-handling regime were developed to allow reproducible surface treatment for complex product geometries. Inactivation of B. pumilus inoculated medical screws (> 10^6 CFU) was successful using the developed handling procedure. In addition, a packaging material (PET12/PE50) for medical products was investigated for its suitability for low-energy irradiation sterilization. Biocompatibility assessment revealed the material to be eligible for this application as even overdoses did not impair the biocompatibility of the material. With these results, the principal suitability of low-energy electron-beam treatment for sterilization of medical products containing electronics like sensors is demonstrated. The low-energy technology and the specialized 3D-handling regime allow the on-site setup of the technology in hospitals, medical practices or any other point of care.
Nariyama, Nobuteru
2017-12-01
Scanning of dosimeters facilitates dose distribution measurements with fine spatial resolutions. This paper presents a method of conversion of the scanning results to water-dose profiles and provides an experimental verification. An Advanced Markus chamber and a diamond detector were scanned at a resolution of 6 μm near the beam edges during irradiation with a 25-μm-wide white narrow x-ray beam from a synchrotron radiation source. For comparison, GafChromic films HD-810 and HD-V2 were also irradiated. The conversion procedure for the water dose values was simulated with Monte Carlo photon-electron transport code as a function of the x-ray incidence position. This method was deduced from nonstandard beam reference-dosimetry protocols used for high-energy x-rays. Among the calculated nonstandard beam correction factors, P wall , which is the ratio of the absorbed dose in the sensitive volume of the chamber with water wall to that with a polymethyl methacrylate wall, was found to be the most influential correction factor in most conditions. The total correction factor ranged from 1.7 to 2.7 for the Advanced Markus chamber and from 1.15 to 1.86 for the diamond detector as a function of the x-ray incidence position. The water dose values obtained with the Advanced Markus chamber and the HD-810 film were in agreement in the vicinity of the beam, within 35% and 18% for the upper and lower sides of the beam respectively. The beam width obtained from the diamond detector was greater, and the doses out of the beam were smaller than the doses of the others. The comparison between the Advanced Markus chamber and HD-810 revealed that the dose obtained with the scanned chamber could be converted to the water dose around the beam by applying nonstandard beam reference-dosimetry protocols. © 2017 American Association of Physicists in Medicine.
Study of multilayer polymer materials after ionization treatment
NASA Astrophysics Data System (ADS)
Tarasyuk, V. T.; Semkina, A. A.; Solovyeva, V. I.; Fedotova, D. D.; Strokova, N. E.; Malenko, D. M.; Baranov, O. V.; Bakumenko, A. V.; Puchkov, S. N.; Prokopenko, A. V.
2017-12-01
Electron-beam technologies of food products processing involves the use of modern packaging materials in form of polymer films of different composition. The objective of the research is to study the impact of accelerated electrons on the structure of the polymeric packaging materials used for storage of agricultural products. It was investigated radiation exposure on film material PE/PA (80/20) with a thickness of 80 mkm. This film used for storage of vegetables and fruits and has the necessary indicators for gas and vapor permeability. Electron beam treatment of the films was performed on a compact radiation sterilization installation with local bio-protection with electron energy of 5 MeV. A polymer films were irradiated with doses from 1 to 10 kGy. Changing the structure of the film composition was monitored by IR spectrometry. As a result of irradiation by accelerated electrons with doses up to 18 kGy is established that the polymer film is modification of the polymeric material in the form of a partial degradation with subsequent intra-molecular crosslinking. This improves the physico-mechanical properties in the transverse direction, and such film can be used for food packaging before electron-beam treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorjiara, Tina; Kuncic, Zdenka; Doran, Simon
2012-11-15
Purpose: To evaluate the water and tissue equivalence of a new PRESAGE{sup Registered-Sign} 3D dosimeter for proton therapy. Methods: The GEANT4 software toolkit was used to calculate and compare total dose delivered by a proton beam with mean energy 62 MeV in a PRESAGE{sup Registered-Sign} dosimeter, water, and soft tissue. The dose delivered by primary protons and secondary particles was calculated. Depth-dose profiles and isodose contours of deposited energy were compared for the materials of interest. Results: The proton beam range was found to be Almost-Equal-To 27 mm for PRESAGE{sup Registered-Sign }, 29.9 mm for soft tissue, and 30.5 mmmore » for water. This can be attributed to the lower collisional stopping power of water compared to soft tissue and PRESAGE{sup Registered-Sign }. The difference between total dose delivered in PRESAGE{sup Registered-Sign} and total dose delivered in water or tissue is less than 2% across the entire water/tissue equivalent range of the proton beam. The largest difference between total dose in PRESAGE{sup Registered-Sign} and total dose in water is 1.4%, while for soft tissue it is 1.8%. In both cases, this occurs at the distal end of the beam. Nevertheless, the authors find that PRESAGE{sup Registered-Sign} dosimeter is overall more tissue-equivalent than water-equivalent before the Bragg peak. After the Bragg peak, the differences in the depth doses are found to be due to differences in primary proton energy deposition; PRESAGE{sup Registered-Sign} and soft tissue stop protons more rapidly than water. The dose delivered by secondary electrons in the PRESAGE{sup Registered-Sign} differs by less than 1% from that in soft tissue and water. The contribution of secondary particles to the total dose is less than 4% for electrons and Almost-Equal-To 1% for protons in all the materials of interest. Conclusions: These results demonstrate that the new PRESAGE{sup Registered-Sign} formula may be considered both a tissue- and water-equivalent 3D dosimeter for a 62 MeV proton beam. The results further suggest that tissue-equivalent thickness may provide better dosimetric and geometric accuracy than water-equivalent thickness for 3D dosimetry of this proton beam.« less
A test of the IAEA code of practice for absorbed dose determination in photon and electron beams
NASA Astrophysics Data System (ADS)
Leitner, Arnold; Tiefenboeck, Wilhelm; Witzani, Josef; Strachotinsky, Christian
1990-12-01
The IAEA (International Atomic Energy Agency) code of practice TRS 277 gives recommendations for absorbed dose determination in high energy photon and electron beams based on the use of ionization chambers calibrated in terms of exposure of air kerma. The scope of the work was to test the code for cobalt 60 gamma radiation and for several radiation qualities at four different types of electron accelerators and to compare the ionization chamber dosimetry with ferrous sulphate dosimetry. The results show agreement between the two methods within about one per cent for all the investigated qualities. In addition the response of the TLD capsules of the IAEA/WHO TL dosimetry service was determined.
Comparisons between MCNP, EGS4 and experiment for clinical electron beams.
Jeraj, R; Keall, P J; Ostwald, P M
1999-03-01
Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.
MO-F-16A-02: Simulation of a Medical Linear Accelerator for Teaching Purposes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlone, M; Lamey, M; Anderson, R
Purpose: Detailed functioning of linear accelerator physics is well known. Less well developed is the basic understanding of how the adjustment of the linear accelerator's electrical components affects the resulting radiation beam. Other than the text by Karzmark, there is very little literature devoted to the practical understanding of linear accelerator functionality targeted at the radiotherapy clinic level. The purpose of this work is to describe a simulation environment for medical linear accelerators with the purpose of teaching linear accelerator physics. Methods: Varian type lineacs were simulated. Klystron saturation and peak output were modelled analytically. The energy gain of anmore » electron beam was modelled using load line expressions. The bending magnet was assumed to be a perfect solenoid whose pass through energy varied linearly with solenoid current. The dose rate calculated at depth in water was assumed to be a simple function of the target's beam current. The flattening filter was modelled as an attenuator with conical shape, and the time-averaged dose rate at a depth in water was determined by calculating kerma. Results: Fifteen analytical models were combined into a single model called SIMAC. Performance was verified systematically by adjusting typical linac control parameters. Increasing klystron pulse voltage increased dose rate to a peak, which then decreased as the beam energy was further increased due to the fixed pass through energy of the bending magnet. Increasing accelerator beam current leads to a higher dose per pulse. However, the energy of the electron beam decreases due to beam loading and so the dose rate eventually maximizes and the decreases as beam current was further increased. Conclusion: SIMAC can realistically simulate the functionality of a linear accelerator. It is expected to have value as a teaching tool for both medical physicists and linear accelerator service personnel.« less
Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Gingras, Luc; Beaulieu, Luc
2011-10-01
This work presents the experimental extraction of the perturbation factor in megavoltage electron beams for three models of silicon diodes (IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded) using a plastic scintillation detector (PSD). The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6-, 12-, and 18-MeV clinical electron beams. They also measured depth-dose curves using the IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded diodes. The authors used the depth-dose curves measured with the PSD as a perturbation-free reference to extract the perturbation factors of the diodes. The authors found that the perturbation factors for the diodes increased substantially with depth, especially for low-energy electron beams. The experimental results show the same trend as published Monte Carlo simulation results for the EFD diode; however, the perturbations measured experimentally were greater. They found that using an effective point of measurement (EPOM) placed slightly away from the source reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. The manufacturer recommended EPOM appears to be incorrect at low electron energy (6 MeV). In addition, the perturbation factors for diodes may be greater than predicted by Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Palmans, Hugo; Nafaa, Laila; de Patoul, Nathalie; Denis, Jean-Marc; Tomsej, Milan; Vynckier, Stefaan
2003-05-01
New codes of practice for reference dosimetry in clinical high-energy photon and electron beams have been published recently, to replace the air kerma based codes of practice that have determined the dosimetry of these beams for the past twenty years. In the present work, we compared dosimetry based on the two most widespread absorbed dose based recommendations (AAPM TG-51 and IAEA TRS-398) with two air kerma based recommendations (NCS report-5 and IAEA TRS-381). Measurements were performed in three clinical electron beam energies using two NE2571-type cylindrical chambers, two Markus-type plane-parallel chambers and two NACP-02-type plane-parallel chambers. Dosimetry based on direct calibrations of all chambers in 60Co was investigated, as well as dosimetry based on cross-calibrations of plane-parallel chambers against a cylindrical chamber in a high-energy electron beam. Furthermore, 60Co perturbation factors for plane-parallel chambers were derived. It is shown that the use of 60Co calibration factors could result in deviations of more than 2% for plane-parallel chambers between the old and new codes of practice, whereas the use of cross-calibration factors, which is the first recommendation in the new codes, reduces the differences to less than 0.8% for all situations investigated here. The results thus show that neither the chamber-to-chamber variations, nor the obtained absolute dose values are significantly altered by changing from air kerma based dosimetry to absorbed dose based dosimetry when using calibration factors obtained from the Laboratory for Standard Dosimetry, Ghent, Belgium. The values of the 60Co perturbation factor for plane-parallel chambers (katt . km for the air kerma based and pwall for the absorbed dose based codes of practice) that are obtained from comparing the results based on 60Co calibrations and cross-calibrations are within the experimental uncertainties in agreement with the results from other investigators.
TLD linearity vs. beam energy and modality.
Troncalli, Andrew J; Chapman, Jane
2002-01-01
Thermoluminescent dosimetry (TLD) is considered to be a valuable dosimetric tool in determining patient dose. Lithium fluoride doped with magnesium and titanium (TLD-100) is widely used, as it does not display widely divergent energy dependence. For many years, we have known that TLD-100 shows supralinearity to dose. In a radiotherapy clinic, there are multiple energies and modality beams. This work investigates whether individual linearity corrections must be used for each beam or whether a single correction can be applied to all beams. The response of TLD as a function of dose was measured from 25 cGy to 1000 cGy on both electrons and photons from 6 to 18 MeV. This work shows that, within our measurement uncertainty, TLD-100 exhibits supralinearity at all megavoltage energies and modalities.
Inductive voltage adder advanced hydrodynamic radiographic technology demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Poukey, J.W.; Maenchen
This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorut, F.; Imbert, G.; Roggero, A.
In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, withmore » a densification of the layer and a loss of carbon and hydrogen elements being observed.« less
NASA Astrophysics Data System (ADS)
Khledi, Navid; Arbabi, Azim; Sardari, Dariush; Mohammadi, Mohammad; Ameri, Ahmad
2015-02-01
Depending on the location and depth of tumor, the electron or photon beams might be used for treatment. Electron beam have some advantages over photon beam for treatment of shallow tumors to spare the normal tissues beyond of the tumor. In the other hand, the photon beam are used for deep targets treatment. Both of these beams have some limitations, for example the dependency of penumbra with depth, and the lack of lateral equilibrium for small electron beam fields. In first, we simulated the conventional head configuration of Varian 2300 for 16 MeV electron, and the results approved by benchmarking the Percent Depth Dose (PDD) and profile of the simulation and measurement. In the next step, a perforated Lead (Pb) sheet with 1mm thickness placed at the top of the applicator holder tray. This layer producing bremsstrahlung x-ray and a part of the electrons passing through the holes, in result, we have a simultaneous mixed electron and photon beam. For making the irradiation field uniform, a layer of steel placed after the Pb layer. The simulation was performed for 10×10, and 4×4 cm2 field size. This study was showed the advantages of mixing the electron and photon beam by reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size.
De Vries, Rowen J; Marsh, Steven
2015-11-08
Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2-14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997 ± 0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs.
Marsh, Steven
2015-01-01
Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2 mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2–14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997±0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs. PACS numbers: 87.53.Bn, 87.55.K‐, 87.56.bd PMID:26699566
Real-time simulator for designing electron dual scattering foil systems.
Carver, Robert L; Hogstrom, Kenneth R; Price, Michael J; LeBlanc, Justin D; Pitcher, Garrett M
2014-11-08
The purpose of this work was to develop a user friendly, accurate, real-time com- puter simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator allows for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator also is a powerful educational tool. The simulator consists of an analytical algorithm for calculating electron fluence and X-ray dose and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with the reduced Gaussian formalism for scattering powers. The simulator also estimates central-axis and off-axis X-ray dose arising from the dual foil system. Once the geometry of the accelerator is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scat- tering foil material and Gaussian shape (thickness and sigma), and beam energy. The off-axis electron relative fluence or total dose profile and central-axis X-ray dose contamination are computed and displayed in real time. The simulator was validated by comparison of off-axis electron relative fluence and X-ray percent dose profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV, using present foils on an Elekta radiotherapy accelerator, the simulator was able to reproduce MC profiles to within 2% out to 20 cm from the central axis. The central-axis X-ray percent dose predictions matched measured data to within 0.5%. The calculation time was approximately 100 ms using a single Intel 2.93 GHz processor, which allows for real-time variation of foil geometrical parameters using slider bars. This work demonstrates how the user-friendly GUI and real-time nature of the simulator make it an effective educational tool for gaining a better understanding of the effects that various system parameters have on a relative dose profile. This work also demonstrates a method for using the simulator as a design tool for creating custom dual scattering foil systems in the clinical range of beam energies (6-20 MeV).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuess, Peter, E-mail: Peter.kuess@meduniwien.ac.at
Purpose: For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. Methods: The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of themore » VersaHD, the energy of FFF{sub M} (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFF{sub U} beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. Results: For the 6 MV FFF{sub M} beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFF{sub M} and FF beams, only %dd(10){sub x} and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFF{sub U} beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFF{sub M} beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR{sub 20,10} and %dd(10){sub x}. In contrast to that, the DPBQS’s two parameters of the 10 MV FFF{sub M} beam were substantially higher compared to those for the 10 MV FF beam. Conclusions: PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of 0.8% for 6 MV FF and 6 MV FFF{sub M} beams, while for 10 MV beams, they differed by 6.4%. This shows that the DPBQS can provide a differentiation of photon beam characteristics that would remain hidden by the use of a single beam quality specifier, such as %dd(10){sub x} or HVL.« less
NASA Astrophysics Data System (ADS)
Minea, R.; Oproiu, C.; Pascanu, S.; Matei, C.; Ferdes, O.
1996-06-01
The potential of ionizing radiation treatment for food preservation, shelf-life extension, control of microbial load and reduction of pathogenic microorganism was demonstrated. The irradiations were performed under normal conditions on the Institute of Physics and Technology for Radiation Device's linear electron accelerator, which has the following parameters: 5 μA mean beam current, 6 MeV electron mean energy, pulse period 3.5 μs and dose rates between 100-1500 Gy/min. This research project was aimed at assuring the consumer's acceptance for radiation-treated food and to obtain a significant reduction of food losses. We also propose a promising solution for the radiation processing of some bulk food products at the place of storage, consisting of a mobile electron accelerator. The main characteristics of the mobile electron accelerator are: electron energy 3 to 5 MeV, maximum beam power 5 kW, vertical electron beam; irradiation is possible both with electron beams and with bremsstrahlung. The results of our preliminary research lead to the conclusion that electron-beam irradiation and the use of electron accelerators is a promising solution for food preservation and food safety. Interesting future applications are outlined.
Influence of electron irradiation on the structural and thermal properties of silk fibroin films
NASA Astrophysics Data System (ADS)
Asha, S.; Sangappa, Sanjeev, Ganesh
2015-06-01
Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.
NASA Astrophysics Data System (ADS)
Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik
2018-02-01
When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.
A system for electron therapy dosimetry surveys with thermoluminescence dosimeters.
Soares, C G; Ehrlich, M; Padikal, T N; Gromadzki, Z C
1982-11-01
Radiation-therapy dosimetry surveys employing thermoluminescence dosimeters (TLDs) are now being considered for high-energy electron beams. Using a system of individually calibrated pressed LiF TLDs in a water and a polystyrene phantom, we established that the distortions of depth-dose distributions in non-conducting materials previously observed at high absorbed doses and high dose rates were not detectable in the present geometry at doses and dose rates as much as 40 times higher than those employed in radiation therapy. The system was then used to measure TLD response in water and in polystyrene in the nominal electron-energy range from 7 to 18 MeV. In the water phantom, the well-known trend for TLD response to decrease with increasing electron energy was observed. In the polystyrene phantom, TLD response was found to be independent of electron energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asha, S.; Sangappa,; Sanjeev, Ganesh, E-mail: ganeshanjeev@rediffmail.com
Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.
NASA Astrophysics Data System (ADS)
Whitlow, Harry J.; Guibert, Edouard; Jeanneret, Patrick; Homsy, Alexandra; Roth, Joy; Krause, Sven; Roux, Adrien; Eggermann, Emmanuel; Stoppini, Luc
2017-08-01
Irradiation with ∼3 MeV proton fluences of 106-109 protons cm-2 have been applied to study the effects on human brain tissue corresponding to single-cell irradiation doses and doses received by electronic components in low-Earth orbit. The low fluence irradiations were carried out using a proton microbeam with the post-focus expansion of the beam; a method developed by the group of Breese [1]. It was found from electrophysiological measurements that the mean neuronal frequency of human brain tissue decreased to zero as the dose increased to 0-1050 Gy. Enhancement-mode MOSFET transistors exhibited a 10% reduction in threshold voltage for 2.7 MeV proton doses of 10 Gy while a NPN bipolar transistor required ∼800 Gy to reduce the hfe by 10%, which is consistent the expected values.
Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.
2014-01-01
Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care. PMID:24506635
An Evaluation of Bipolar Junction Transistors as Dosimeter for Megavoltage Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passos, Renan Garcia de; Vidal da Silva, Rogerio Matias; Silva, Malana Marcelina Almeida
Dosimetry is an extremely important field in medical applications of radiation and nowadays, electron beam is a good option for superficial tumor radiotherapy. Normally, the applied dose to the patient both in diagnostic and therapy must be monitored to prevent injuries and ensure the success of the treatment, therefore, we should always look for improving of the dosimetric methods. Accordingly, the aim of this work is about the use of a bipolar junction transistor (BJT) for electron beam dosimetry. After previous studies, such an electronic device can work as a dosimeter when submitted to ionizing radiation of photon beam. Actually,more » a typical BJT consists of two PN semiconductor junctions resulting in the NPN structure device, for while, and each semiconductor is named as collector (C), base (B) and emitter (E), respectively. Although the transistor effect, which corresponds to the current amplification, be accurately described by the quantum physics, one can utilize a simple concept from the circuit theory: the base current IB (input signal) is amplified by a factor of β resulting in the collector current IC (output signal) at least one hundred times greater the IB. In fact, the BJT is commonly used as a current amplifier with gain β=I{sub C}/I{sub B}, therefore, it was noticed that this parameter is altered when the device is exposed to ionizing radiation. The current gain alteration can be explained by the trap creation and the positive charges build up, beside the degradation of the lattice structure. Then, variations of the gain of irradiated transistors may justify their use as a dosimeter. Actually, the methodology is based on the measurements of the I{sub C} variations whereas I{sub B} is maintained constant. BC846 BJT type was used for dose monitoring from passive-mode measurements: evaluation of its electrical characteristic before and after irradiation procedure. Thus, IC readings were plotted as a function of the applied dose in 6 MeV electron beam from a linear accelerator, Clinac iX. The results show that this new methodology could be an alternative to study the dose in superficial tumors in radiation oncology. (authors)« less
NASA Astrophysics Data System (ADS)
Mahato, Dip Narayan
This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles. Measurements were performed on the development of coherent scatter imaging to provide tissue type information in mammography. Atomic coordinates from x-ray diffraction data were used to study the nuclear quadrupole interactions and nature of molecular binding in DNA/RNA nucleobases and molecular solid BF3 systems.
ORANGE: a Monte Carlo dose engine for radiotherapy.
van der Zee, W; Hogenbirk, A; van der Marck, S C
2005-02-21
This study presents data for the verification of ORANGE, a fast MCNP-based dose engine for radiotherapy treatment planning. In order to verify the new algorithm, it has been benchmarked against DOSXYZ and against measurements. For the benchmarking, first calculations have been done using the ICCR-XIII benchmark. Next, calculations have been done with DOSXYZ and ORANGE in five different phantoms (one homogeneous, two with bone equivalent inserts and two with lung equivalent inserts). The calculations have been done with two mono-energetic photon beams (2 MeV and 6 MeV) and two mono-energetic electron beams (10 MeV and 20 MeV). Comparison of the calculated data (from DOSXYZ and ORANGE) against measurements was possible for a realistic 10 MV photon beam and a realistic 15 MeV electron beam in a homogeneous phantom only. For the comparison of the calculated dose distributions and dose distributions against measurements, the concept of the confidence limit (CL) has been used. This concept reduces the difference between two data sets to a single number, which gives the deviation for 90% of the dose distributions. Using this concept, it was found that ORANGE was always within the statistical bandwidth with DOSXYZ and the measurements. The ICCR-XIII benchmark showed that ORANGE is seven times faster than DOSXYZ, a result comparable with other accelerated Monte Carlo dose systems when no variance reduction is used. As shown for XVMC, using variance reduction techniques has the potential for further acceleration. Using modern computer hardware, this brings the total calculation time for a dose distribution with 1.5% (statistical) accuracy within the clinical range (less then 10 min). This means that ORANGE can be a candidate for a dose engine in radiotherapy treatment planning.
Zink, F E; McCollough, C H
1994-08-01
The unique geometry of electron-beam CT (EBCT) scanners produces radiation dose profiles with widths which can be considerably different from the corresponding nominal scan width. Additionally, EBCT scanners produce both complex (multiple-slice) and narrow (3 mm) radiation profiles. This work describes the measurement of the axial dose distribution from EBCT within a scattering phantom using film dosimetry methods, which offer increased convenience and spatial resolution compared to thermoluminescent dosimetry (TLD) techniques. Therapy localization film was cut into 8 x 220 mm strips and placed within specially constructed light-tight holders for placement within the cavities of a CT Dose Index (CTDI) phantom. The film was calibrated using a conventional overhead x-ray tube with spectral characteristics matched to the EBCT scanner (130 kVp, 10 mm A1 HVL). The films were digitized at five samples per mm and calibrated dose profiles plotted as a function of z-axis position. Errors due to angle-of-incidence and beam hardening were estimated to be less than 5% and 10%, respectively. The integral exposure under film dose profiles agreed with ion-chamber measurements to within 15%. Exposures measured along the radiation profile differed from TLD measurements by an average of 5%. The film technique provided acceptable accuracy and convenience in comparison to conventional TLD methods, and allowed high spatial-resolution measurement of EBCT radiation dose profiles.
Electron beam radiation of dried fruits and nuts to reduce yeast and mold bioburden.
Ic, Erhan; Kottapalli, Bala; Maxim, Joseph; Pillai, Suresh D
2007-04-01
Dried fruits and nuts make up a significant portion of the commodities traded globally, and the presence of yeasts and molds on dried fruits and nuts can be a public health risk because of the potential for exposure to toxigenic fungi. Since current postharvest treatment technologies are rather limited for dried fruits and nuts, electron beam (E-beam) radiation experiments were performed to determine the doses required to reduce the yeast and mold bioburden of raisins, walnuts, and dates. The indigenous yeast and mold bioburden on a select number of commodities sold at retail ranged from 10(2) to 10(3) CFU/g. E-beam inactivation kinetics based on the linear model suggest that the decimal reduction dose required to eliminate 90% of the microbial population (D10-value) of these indigenous fungal populations ranges from 1.09 to 1.59 kGy. Some samples, however, exhibited inactivation kinetics that were better modeled by a quadratic model. The results indicate that different commodities can contain molds and yeasts of varying resistance to ionizing radiation. It is thus essential for the dried fruit and nut industry to determine empirically the minimum E-beam dose that is capable of reducing or eliminating the bioburden of yeasts and molds in their specific commodities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palma, B; Bazalova, M; Qu, B
Purpose: We evaluated the effect of very high-energy electron (VHEE) beam parameters on the planning of a lung cancer case by means of Monte Carlo simulations. Methods: We simulated VHEE radiotherapy plans using the EGSnrc/BEAMnrc-DOSXYZnrc code. We selected a lung cancer case that was treated with 6MV photon VMAT to be planned with VHEE. We studied the effect of beam energy (80 MeV, 100 MeV, and 120 MeV), number of equidistant beams (16 or 32), and beamlets sizes (3 mm, 5 mm or 7 mm) on PTV coverage, sparing of organs at risk (OARs) and dose conformity. Inverse-planning optimization wasmore » performed in a research version of RayStation (RaySearch Laboratories AB) using identical objective functions and constraints for all VHEE plans. Results: Similar PTV coverage and dose conformity was achieved by all the VHEE plans. The 100 MeV and 120 MeV VHEE plans were equivalent amongst them and were superior to the 80 MeV plan in terms of OARs sparing. The effect of using 16 or 32 equidistant beams was a mean difference in average dose of 2.4% (0%–7.7%) between the two plans. The use of 3 mm beamlet size systematically reduced the dose to all the OARs. Based on these results we selected the 100MeV-16beams-3mm-beamlet-size plan to compare it against VMAT. The selected VHEE plan was more conformal than VMAT and improved OAR sparing (heart and trachea received 125% and 177% lower dose, respectively) especially in the low-dose region. Conclusion: We determined the VHEE beam parameters that maximized the OAR dose sparing and dose conformity of the actually delivered VMAT plan of a lung cancer case. The selected parameters could be used for the planning of other treatment sites with similar size, shape, and location. For larger targets, a larger beamlet size might be used without significantly increasing the dose. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Americas. E Hynning: Employee, RaySearch Americas. B Qu: None. B Loo Jr.: Research support, RaySearch, Varian. P Maxim: Research support, RaySearch, Varian.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butson, M
Purpose: Intraoral electron shields used in radiotherapy are designed to minimize radiation exposure to non-treatment tissue. Sites where shields are used include but are not limited to, the treatment of lips, cheeks and ears whilst shielding the underlying oral cavity, tongue, gingival or temporal region. However their use produces an enhancement in dose on the beam side caused by an increase in electron backscatter radiation. This work designs a new shield incorporating copper, aluminium and wax in a step down filter arrangement to minimise backscatter whilst minimizing overall shield thickness. Methods: For electron beams ranging from 6 MeV to 10more » MeV, shields of varying designs and thicknesses were assessed to determine the thinnest shield design that could be produced whilst minimising backscattered radiation to a clinically acceptable level. This was performed with conventional lead and wax shields as well as varying quantities of aluminium and copper foils. Results: From tested shield designs, a new shield design of 4 mm lead, 0.6 mm copper, 1.0 mm aluminium and 1.5 mm wax (3.1 mm added filtration, 7.1 mm total thickness) provided a clinically acceptable (no greater than 110% dose) backscatter and transmission reduction and matched a standard 4.5 mm lead and 10 mm wax (total thickness 14.5 mm) electron shield. Dose enhancement values of no more than 10 % were measured utilising this shield design with a 50 % reduction in shield thickness. Conclusion: The thinner layered shield reduced backscattered radiation dose to less than 10% enhancement for beam energies on 10 MeV and less and will allow easier patient set up. The thinner shields are tolerated better by patients when mucosal reactions occur as they place less physical pressure on these sites during treatment due to their smaller size and thickness.« less
Craciun, Gabriela; Manaila, Elena; Stelescu, Maria Daniela
2016-01-01
The efficiency of polyfunctional monomers as cross-linking co-agents on the chemical properties of natural rubber vulcanized by electron beam irradiation was studied. The following polyfunctional monomers were used: trimethylolpropane-trimethacrylate, zinc-diacrylate, ethylene glycol dimethacrylate, triallylcyanurate and triallylisocyanurate. The electron beam treatment was done using irradiation doses in the range of 75 kGy–300 kGy. The gel fraction, crosslink density and effects of different aqueous solutions, by absorption tests, have been investigated as a function of polyfunctional monomers type and absorbed dose. The samples gel fraction and crosslink density were determined on the basis of equilibrium solvent-swelling measurements by applying the modified Flory–Rehner equation for tetra functional networks. The absorption tests were done in accordance with the SR ISI 1817:2015 using distilled water, acetic acid (10%), sodium hydroxide (1%), ethylic alcohol (96%), physiological serum (sodium chloride 0.9%) and glucose (glucose monohydrate 10%). The samples structure and morphology were investigated by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy techniques. PMID:28774150
Craciun, Gabriela; Manaila, Elena; Stelescu, Maria Daniela
2016-12-21
The efficiency of polyfunctional monomers as cross-linking co-agents on the chemical properties of natural rubber vulcanized by electron beam irradiation was studied. The following polyfunctional monomers were used: trimethylolpropane-trimethacrylate, zinc-diacrylate, ethylene glycol dimethacrylate, triallylcyanurate and triallylisocyanurate. The electron beam treatment was done using irradiation doses in the range of 75 kGy-300 kGy. The gel fraction, crosslink density and effects of different aqueous solutions, by absorption tests, have been investigated as a function of polyfunctional monomers type and absorbed dose. The samples gel fraction and crosslink density were determined on the basis of equilibrium solvent-swelling measurements by applying the modified Flory-Rehner equation for tetra functional networks. The absorption tests were done in accordance with the SR ISI 1817:2015 using distilled water, acetic acid (10%), sodium hydroxide (1%), ethylic alcohol (96%), physiological serum (sodium chloride 0.9%) and glucose (glucose monohydrate 10%). The samples structure and morphology were investigated by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy techniques.
Monte Carlo simulation of electron beams from an accelerator head using PENELOPE.
Sempau, J; Sánchez-Reyes, A; Salvat, F; ben Tahar, H O; Jiang, S B; Fernández-Varea, J M
2001-04-01
The Monte Carlo code PENELOPE has been used to simulate electron beams from a Siemens Mevatron KDS linac with nominal energies of 6, 12 and 18 MeV. Owing to its accuracy, which stems from that of the underlying physical interaction models, PENELOPE is suitable for simulating problems of interest to the medical physics community. It includes a geometry package that allows the definition of complex quadric geometries, such as those of irradiation instruments, in a straightforward manner. Dose distributions in water simulated with PENELOPE agree well with experimental measurements using a silicon detector and a monitoring ionization chamber. Insertion of a lead slab in the incident beam at the surface of the water phantom produces sharp variations in the dose distributions, which are correctly reproduced by the simulation code. Results from PENELOPE are also compared with those of equivalent simulations with the EGS4-based user codes BEAM and DOSXYZ. Angular and energy distributions of electrons and photons in the phase-space plane (at the downstream end of the applicator) obtained from both simulation codes are similar, although significant differences do appear in some cases. These differences, however, are shown to have a negligible effect on the calculated dose distributions. Various practical aspects of the simulations, such as the calculation of statistical uncertainties and the effect of the 'latent' variance in the phase-space file, are discussed in detail.
Multiple scattering theory for total skin electron beam design.
Antolak, J A; Hogstrom, K R
1998-06-01
The purpose of this manuscript is to describe a method for designing a broad beam of electrons suitable for total skin electron irradiation (TSEI). A theoretical model of a TSEI beam from a linear accelerator with a dual scattering system has been developed. The model uses Fermi-Eyges theory to predict the planar fluence of the electron beam after it has passed through various materials between the source and the treatment plane, which includes scattering foils, monitor chamber, air, and a plastic diffusing plate. Unique to this model is its accounting for removal of the tails of the electron beam profile as it passes through the primary x-ray jaws. A method for calculating the planar fluence profile for an obliquely incident beam is also described. Off-axis beam profiles and percentage depth doses are measured with ion chambers, film, and thermoluminescent dosimeters (TLD). The measured data show that the theoretical model can accurately predict beam energy and planar fluence of the electron beam at normal and oblique incidence. The agreement at oblique angles is not quite as good but is sufficiently accurate to be of predictive value when deciding on the optimal angles for the clinical TSEI beams. The advantage of our calculational approach for designing a TSEI beam is that many different beam configurations can be tested without having to perform time-consuming measurements. Suboptimal configurations can be quickly dismissed, and the predicted optimal solution should be very close to satisfying the clinical specifications.
Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Shoji; Namba, Hideki; Tokunaga, Okihiro
1995-06-01
Construction of a pilot plant of the treatment capacity of 12,000 m{sup 3}N/h flue gas was completed in November, 1992 in the Shin-Nagoya Thermal Power Station, Nagoya for electron beam purification of flue-gas from coal combustion boiler and the operation had been continued during one year. The results obtained In the tests shows that the target removal efficiency for SO{sub 2} (94 %) and for NO{sub x} (80 %) was achieved with appropriate operation conditions (electron beam dose, temperature, amount of ammonia etc.). The effective collection of powdery by-products was performed by an electrostatic precipitator.
Atmospheric Gaseous Plasma with Large Dimensions
NASA Astrophysics Data System (ADS)
Korenev, Sergey
2012-10-01
The forming of atmospheric plasma with large dimensions using electrical discharge typically uses the Dielectric Barrier Discharge (DBD). The study of atmospheric DBD was shown some problems related to homogeneous volume plasma. The volume of this plasma determines by cross section and gas gap between electrode and dielectric. The using of electron beam for volume ionization of air molecules by CW relativistic electron beams was shown the high efficiency of this process [1, 2]. The main advantage of this approach consists in the ionization of gas molecules by electrons in longitudinal direction determines by their kinetic energy. A novel method for forming of atmospheric homogeneous plasma with large volume dimensions using ionization of gas molecules by pulsed non-relativistic electron beams is presented in the paper. The results of computer modeling for delivered doses of electron beams in gases and ionization are discussed. The structure of experimental bench with plasma diagnostics is considered. The preliminary results of forming atmospheric plasma with ionization gas molecules by pulsed nanosecond non-relativistic electron beam are given. The analysis of potential applications for atmospheric volume plasma is presented. Reference: [1] S. Korenev. ``The ionization of air by scanning relativistic high power CW electron beam,'' 2002 IEEE International Conference on Plasma Science. May 2002, Alberta, Canada. [2] S. Korenev, I. Korenev. ``The propagation of high power CW scanning electron beam in air.'' BEAMS 2002: 14th International Conference on High-Power Particle Beams, Albuquerque, New Mexico (USA), June 2002, AIP Conference Proceedings Vol. 650(1), pp. 373-376. December 17.
NASA Astrophysics Data System (ADS)
Guo, Dan
2017-01-01
Fully biodegradable biocomposites based on crops straw and poly(vinyl alcohol) was prepared through thermal processing, and the effect of electron beam radiation processing with N,N-methylene double acrylamide as radiation sensitizer on mechanical and thermal properties of the biocomposites were investigated. The results showed that, when the radiation dose were in the range of 0-50 kGy, the mechanical and thermal properties of the biocomposites could be improved significantly through the electron beam radiation processing, and the interface compatibility was also improved because of the formation of stable cross-linked network structure, when the radiation dose were above the optimal value (50 kGy), the comprehensive properties of the biocomposites were gradually destroyed. EB radiation processing could be used as an effective technology to improve the comprehensive performance of the biocomposites, and as a green and efficient processing technology, radiation processing takes place at room temperature, and no contamination and by-product are possible.
TG‐51: Experience from 150 institutions, common errors, and helpful hints
Tailor, R. C.; Hanson, W. F.; Ibbott, G. S.
2003-01-01
The Radiological Physics Center (RPC) is a resource to the medical physics community for assistance regarding dosimetry procedures. Since the publication of the AAPM TG‐51 calibration protocol, the RPC has responded to numerous phone calls raising questions and describing areas in the protocol where physicists have had problems. At the beginning of the year 2000, the RPC requested that institutions participating in national clinical trials provide the change in measured beam output resulting from the conversion from the TG‐21 protocol to TG‐51. So far, the RPC has received the requested data from ~ 150 of the ~ 1300 institutions in the RPC program. The RPC also undertook a comparison of TG‐21 and TG‐51 and determined the expected change in beam calibration for ion chambers in common use, and for the range of photon and electron beam energies used clinically. Analysis of these data revealed two significant outcomes: (i) a large number (~ 1/2) of the reported calibration changes for photon and electron beams were outside the RPC's expected values, and (ii) the discrepancies in the reported versus the expected dose changes were as large as 8%. Numerous factors were determined to have contributed to these deviations. The most significant factors involved the use of plane‐parallel chambers, the mixing of phantom materials and chambers between the two protocols, and the inconsistent use of depth‐dose factors for transfer of dose from the measurement depth to the depth of dose maximum. In response to these observations, the RPC has identified a number of circumstances in which physicists might have difficulty with the protocol, including concerns related to electron calibration at low energies (R50<2cm), and the use of a cylindrical chamber at 6 MeV electrons. In addition, helpful quantitative hints are presented, including the effect of the prescribed lead filter for photon energy measurements, the impact of shifting the chamber depth for photon depth‐dose measurements, and the impact of updated stopping‐power data used in TG‐51versus that used in TG‐21, particularly for electron calibrations. PACS number(s): 87.53.–j, 87.66.–a PMID:12777144
NASA Astrophysics Data System (ADS)
Bhat, Rajeev; Sridhar, K. R.; Karim, A. A.
2010-09-01
Lotus seeds are nutraceutically valued natural plant produce, which succumbs to microbial contamination, predominantly to toxigenic moulds. Results of the present study revealed seed coat portion to harbor higher proportion of microbial load, particularly fungi than cotyledon portion. Among the mycotoxins analyzed, aflatoxins (B 1, B 2, G 1 and G 2) were below detectable limits, while the seeds were devoid of Ochratoxin-A (OTA). Application of different doses of electron beam and gamma irradiation (0, 2.5, 5, 7.5, 10, 15 and 30 kGy) for decontamination purpose revealed significant dose-dependent decrease in the fungal contaminants ( P<0.05). However, the contaminant yeasts could survive up to 10 kGy dose, which could be completely eliminated at 15 kGy. From the results obtained, a dose range between 10 and 15 kGy is recommended for complete decontamination, as these doses have also been shown earlier to have minimal effects on nutritional and functional properties of lotus seeds.
Magne, S; Auger, L; Bordy, J M; de Carlan, L; Isambert, A; Bridier, A; Ferdinand, P; Barthe, J
2008-01-01
This article proposes an innovative multichannel optically stimulated luminescence (OSL) dosemeter for on-line in vivo dose verification in radiation therapy. OSL fibre sensors incorporating small Al(2)O(3):C fibre crystals (TLD(500)) have been tested with an X-ray generator. A reproducible readout procedure should reduce the fading-induced uncertainty ( approximately - 1% per decade). OSL readouts are temperature-dependent [ approximately 0.3% K(-1) when OSL stimulation is performed at the same temperature as irradiation; approximately 0.16% K(-1) after thermalisation (20 degrees C)]. Sensor calibration and depth-dose measurements with electron beams have been performed with a Saturne 43 linear accelerator in reference conditions at CEA-LNHB (ionising radiation reference laboratory in France). Predosed OSL sensors show a good repeatability in multichannel operation and independence versus electron energy in the range (9, 18 MeV). The difference between absorbed doses measured by OSL and an ionisation chamber were within +/-0.9% (for a dose of about 1 Gy) despite a sublinear calibration curve.
Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array
Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen
2015-01-01
The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552
Marsolat, F; Tromson, D; Tranchant, N; Pomorski, M; Le Roy, M; Donois, M; Moignau, F; Ostrowsky, A; De Carlan, L; Bassinet, C; Huet, C; Derreumaux, S; Chea, M; Cristina, K; Boisserie, G; Bergonzo, P
2013-11-07
Recent developments of new therapy techniques using small photon beams, such as stereotactic radiotherapy, require suitable detectors to determine the delivered dose with a high accuracy. The dosimeter has to be as close as possible to tissue equivalence and to exhibit a small detection volume compared to the size of the irradiation field, because of the lack of lateral electronic equilibrium in small beam. Characteristics of single crystal diamond (tissue equivalent material Z = 6, high density) make it an ideal candidate to fulfil most of small beam dosimetry requirements. A commercially available Element Six electronic grade synthetic diamond was used to develop a single crystal diamond dosimeter (SCDDo) with a small detection volume (0.165 mm(3)). Long term stability was studied by irradiating the SCDDo in a (60)Co beam over 14 h. A good stability (deviation less than ± 0.1%) was observed. Repeatability, dose linearity, dose rate dependence and energy dependence were studied in a 10 × 10 cm(2) beam produced by a Varian Clinac 2100 C linear accelerator. SCDDo lateral dose profile, depth dose curve and output factor (OF) measurements were performed for small photon beams with a micro multileaf collimator m3 (BrainLab) attached to the linac. This study is focused on the comparison of SCDDo measurements to those obtained with different commercially available active detectors: an unshielded silicon diode (PTW 60017), a shielded silicon diode (Sun Nuclear EDGE), a PinPoint ionization chamber (PTW 31014) and two natural diamond detectors (PTW 60003). SCDDo presents an excellent spatial resolution for dose profile measurements, due to its small detection volume. Low energy dependence (variation of 1.2% between 6 and 18 MV photon beam) and low dose rate dependence of the SCDDo (variation of 1% between 0.53 and 2.64 Gy min(-1)) are obtained, explaining the good agreement between the SCDDo and the efficient unshielded diode (PTW 60017) in depth dose curve measurements. For field sizes ranging from 0.6 × 0.6 to 10 × 10 cm(2), OFs obtained with the SCDDo are between the OFs measured with the PinPoint ionization chamber and the Sun Nuclear EDGE diode that are known to respectively underestimate and overestimate OF values in small beam, due to the large detection volume of the chamber and the non-water equivalence of both detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasso, A.; Ferrari, A.; Ferrari, A.
In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators [1]. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, andmore » with the SLAC data.« less
Antony, R; Suja Pon Mini, P S; Theodore David Manickam, S; Sanjeev, Ganesh; Mitu, Liviu; Balakumar, S
2015-01-01
Chitosan (a biopolymer) anchored Cu(II) and Ni(II) Schiff base complexes, [M(OIAC)Cl2] (M: Cu/Ni and OIAC: ([2-oxo-1H-indol-3-ylidene]amino)chitosan) were electron beam irradiated by different doses (100 Gy, 1 kGy and 10 kGy). The electron beam has shown potential impact on biopolymer's support, in detail chain linking and chain scissoring, as evidenced by viscosity studies, FT-IR and X-ray diffraction spectroscopic techniques. Due to these structural changes, thermal properties of the complexes were found to be changed. The surface of these heterogeneous complexes was also effectually altered by electron beam. As a consequence, pores and holes were created as probed by SEM technique. The catalytic activity of both non-irradiated and irradiated complexes was investigated in the aerobic oxidation of cyclohexane using hydrogen peroxide oxidant. The catalytic ability of the complexes was enhanced significantly after irradiation as the result of surface changes. The reusability of the complexes was also greatly affected because of the structural variations in polymeric support. In terms of both better catalytic activity along with the reusability, 1 kGy is suggested as the best dose to attain adequate increase in catalytic activity and good reusability. Copyright © 2015 Elsevier B.V. All rights reserved.
Kisielowski, C.; Frei, H.; Specht, P.; ...
2016-11-02
This article summarizes core aspects of beam-sample interactions in research that aims at exploiting the ability to detect single atoms at atomic resolution by mid-voltage transmission electron microscopy. Investigating the atomic structure of catalytic Co 3O 4 nanocrystals underscores how indispensable it is to rigorously control electron dose rates and total doses to understand native material properties on this scale. We apply in-line holography with variable dose rates to achieve this goal. Genuine object structures can be maintained if dose rates below ~100 e/Å 2s are used and the contrast required for detection of single atoms is generated by capturing largemore » image series. Threshold doses for the detection of single atoms are estimated. An increase of electron dose rates and total doses to common values for high resolution imaging of solids stimulates object excitations that restructure surfaces, interfaces, and defects and cause grain reorientation or growth. We observe a variety of previously unknown atom configurations in surface proximity of the Co 3O 4 spinel structure. These are hidden behind broadened diffraction patterns in reciprocal space but become visible in real space by solving the phase problem. Finallly, an exposure of the Co 3O 4 spinel structure to water vapor or other gases induces drastic structure alterations that can be captured in this manner.« less
Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva
2017-05-01
We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.
Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva
2017-02-01
We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wongkrongsak, Soraya; Tangthong, Theeranan; Pasanphan, Wanvimol
2016-01-01
The research proposes a novel water-soluble silk fibroin nanoparticles (WSSF-NPs) created by electron beam irradiation. In this report, we demonstrate the effects of electron beam irradiation doses ranging from 1 to 30 kGy on the molecular weight (MW), nanostructure formation, antioxidant activity and reducing power of the WSSF-NPs. Electron beam-induced degradation of SF causing MW reduction from 250 to 37 kDa. Chemical characteristic functions of SF still remained after exposing to electron beam. The WSSF-NPs with the MW of 37 kDa exhibited spherical morphology with a nanoscaled size of 40 nm. Antioxidant activities and reducing powers were investigated using 2,2-diphenyl-1-picrylhryl free radical (DPPH•) scavenging activity and ferric reducing antioxidant power (FRAP) assays, respectively. The WSSF-NPs showed greater antioxidant activity and reducing power than non-irradiated SF. By increasing their antioxidant and reducing power efficiencies, WSSF-NPs potentially created gold nanocolloid. WSSF-NPs produced by electron beam irradiation would be a great merit for the uses as a natural antioxidant additive and a green reducing agent in biomedical, cosmetic and food applications.
Active control of bright electron beams with RF optics for femtosecond microscopy
Williams, J.; Zhou, F.; Sun, T.; ...
2017-08-01
A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. In this paper, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimalmore » compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ~100 fs and ~1 eV resolutions with 10 6 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches.« less
Active control of bright electron beams with RF optics for femtosecond microscopy
Williams, J.; Zhou, F.; Sun, T.; Tao, Z.; Chang, K.; Makino, K.; Berz, M.; Duxbury, P. M.; Ruan, C.-Y.
2017-01-01
A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. Here, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimal compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ∼100 fs and ∼1 eV resolutions with 106 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches. PMID:28868325
Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.
Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G
2011-05-01
Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments.
Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate
Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.
2011-01-01
Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments. PMID:21525648
Food Irradiation Using Electron Beams and X-Rays
NASA Astrophysics Data System (ADS)
Miller, Bruce
2003-04-01
In this presentation we will discuss the technology of food irradiation using electron accelerators. Food irradiation has generally come to describe the use of ionizing radiation to decrease the population of, or prevent the growth of, undesirable biological organisms in food. The many beneficial applications include insect disinfestation, sprouting inhibition, delayed ripening, and the enhanced safety and sterilization of fresh and frozen meat products, seafood, and eggs. With special regard to food safety, bacteria such as Salmonella enteridis, Listeria monocytogenes, Campylobacter jejuni and Escherichia coli serotype O157:H7 are the primary causes of food poisoning in industrialized countries. Ionizing doses in the range of only 1-5 kilogray (kGy) can virtually eliminate these organisms from food, without affecting the food's sensory and nutritional qualities, and without inducing radioactivity. The key elements of an accelerator-based irradiation facility include the accelerator system, a scanning system, and a material handling system that moves the product through the beam in a precisely controlled manner. Extensive radiation shielding is necessary to reduce the external dose to acceptable levels, and a safety system is necessary to prevent accidental exposure of personnel during accelerator operation. Parameters that affect the dose distribution must be continuously monitored and controlled with process control software. The choice of electron beam vs x-ray depends on the areal density (density times thickness) of the product and the anticipated mass throughput. To eliminate nuclear activation concerns, the maximum kinetic energy of the accelerator is limited by regulation to 10 MeV for electron beams, and 5 MeV for x-rays. From penetration considerations, the largest areal density that can be treated by double-sided electron irradiation at 10 MeV is about 8.8 g/cm2. Products having greater areal densities must be processed using more penetrating x-rays. The mass throughput (dM/dt in kg/s) of an accelerator-based system is proportional to the average beam power (P in kW), and inversely proportional to the minimum required dose (Dm in kGy, with 1 kGy = 1 kJ/kg). The constant of proportionality is the mass throughput efficiency. Throughput efficiencies of 0.4 or better are typical of electron beam installations, but are only 0.025-0.035 for x-ray installations, primarily because of the inefficiency of bremsstrahlung generation at 5 MeV (about 8an axially-coupled, standing-wave, L-band linac with an average power in excess of 100 kW to achieve reasonable throughput rates with x-ray processing. Various design aspects of this new machine will be presented.
Dose controlled low energy electron irradiator for biomolecular films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S. V. K., E-mail: svkk@tifr.res.in; Tare, Satej T.; Upalekar, Yogesh V.
2016-03-15
We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at −20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface weremore » developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.« less
Field size dependent mapping of medical linear accelerator radiation leakage
NASA Astrophysics Data System (ADS)
Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima
2015-03-01
The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.
Biltekin, Fatih; Yeginer, Mete; Ozyigit, Gokhan
2015-07-01
We analysed the effects of field size, depth, beam modifier and beam type on the amount of in-field and out-of-field neutron contamination for medical linear accelerators (linacs). Measurements were carried out for three high-energy medical linacs of Elekta Synergy Platform, Varian Clinac DHX High Performance and Philips SL25 using bubble detectors. The photo-neutron measurements were taken in the first two linacs with 18 MV nominal energy, whereas the electro-neutrons were measured in the three linacs with 9 MeV, 10 MeV, 15 MeV and 18 MeV. The central neutron doses increased with larger field sizes as a dramatic drop off was observed in peripheral areas. Comparing with the jaws-shaped open-field of 10 × 10 cm, the motorised and physical wedges contributed to neutron contamination at central axis by 60% and 18%, respectively. The similar dose increment was observed in MLC-shaped fields. The contributions of MLCs were in the range of 55-59% and 19-22% in Elekta and Varian linacs comparing with 10 × 10 and 20 × 20 cm open fields shaped by the jaws, respectively. The neutron doses at shallow depths were found to be higher than the doses found at deeper regions. The electro-neutron dose at the 18 MeV energy was higher than the doses at the electron energies of 15 MeV and 9 MeV by a factor of 3 and 50, respectively. The photo- and electro-neutron dose should be taken into consideration in the radiation treatment with high photon and electron energies. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Figueroa, R G; Valente, M
2015-09-21
The main purpose of this work is to determine the feasibility and physical characteristics of a new teletherapy device of radiation therapy based on the application of a convergent x-ray beam of energies like those used in radiotherapy providing highly concentrated dose delivery to the target. We have denominated it Convergent Beam Radio Therapy (CBRT). Analytical methods are developed first in order to determine the dosimetry characteristic of an ideal convergent photon beam in a hypothetical water phantom. Then, using the PENELOPE Monte Carlo code, a similar convergent beam that is applied to the water phantom is compared with that of the analytical method. The CBRT device (Converay(®)) is designed to adapt to the head of LINACs. The converging beam photon effect is achieved thanks to the perpendicular impact of LINAC electrons on a large thin spherical cap target where Bremsstrahlung is generated (high-energy x-rays). This way, the electrons impact upon various points of the cap (CBRT condition), aimed at the focal point. With the X radiation (Bremsstrahlung) directed forward, a system of movable collimators emits many beams from the output that make a virtually definitive convergent beam. Other Monte Carlo simulations are performed using realistic conditions. The simulations are performed for a thin target in the shape of a large, thin, spherical cap, with an r radius of around 10-30 cm and a curvature radius of approximately 70 to 100 cm, and a cubed water phantom centered in the focal point of the cap. All the interaction mechanisms of the Bremsstrahlung radiation with the phantom are taken into consideration for different energies and cap thicknesses. Also, the magnitudes of the electric and/or magnetic fields, which are necessary to divert clinical-use electron beams (0.1 to 20 MeV), are determined using electromagnetism equations with relativistic corrections. This way the above-mentioned beam is manipulated and guided for its perpendicular impact upon the spherical cap. The first results that were achieved show in-depth dose peaks, having shapes qualitatively similar to those from hadrontherapy techniques. The obtained results demonstrate that in-depth dose peaks are generated at the focus point or isocenter. These results are consistent with those obtained with Monte Carlo codes. The peak-focus is independent of the energy of the photon beam, though its intensity is not. The realistic results achieved with the Monte Carlo code show that the Bremsstrahlung generated on the thin cap is mainly directed towards the focus point. The aperture angle at each impact point depends primarily on the energy beam, the atomic number Z and the thickness of the target. There is also a poly-collimator coaxial to the cap or ring with many holes, permitting a clean convergent-exit x-ray beam with a dose distribution that is similar to the ideal case. The electric and magnetic fields needed to control the deflection of the electron beams in the CBRT geometry are highly feasible using specially designed electric and/or magnetic devices that, respectively, have voltage and current values that are technically achievable. However, it was found that magnetic devices represent a more suitable option for electron beam control, especially at high energies. The main conclusion is that the development of such a device is feasible. Due to its features, this technology might be considered a powerful new tool for external radiotherapy with photons.
Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code
NASA Astrophysics Data System (ADS)
Peri, Eyal; Orion, Itzhak
2017-09-01
High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.
EPR/alanine dosimetry for two therapeutic proton beams
NASA Astrophysics Data System (ADS)
Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony
2016-02-01
In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connell, T; Papaconstadopoulos, P; Alexander, A
2014-08-15
Modulated electron radiation therapy (MERT) offers the potential to improve healthy tissue sparing through increased dose conformity. Challenges remain, however, in accurate beamlet dose calculation, plan optimization, collimation method and delivery accuracy. In this work, we investigate the accuracy and efficiency of an end-to-end MERT plan and automated-delivery workflow for the electron boost portion of a previously treated whole breast irradiation case. Dose calculations were performed using Monte Carlo methods and beam weights were determined using a research-based treatment planning system capable of inverse optimization. The plan was delivered to radiochromic film placed in a water equivalent phantom for verification,more » using an automated motorized tertiary collimator. The automated delivery, which covered 4 electron energies, 196 subfields and 6183 total MU was completed in 25.8 minutes, including 6.2 minutes of beam-on time with the remainder of the delivery time spent on collimator leaf motion and the automated interfacing with the accelerator in service mode. The delivery time could be reduced by 5.3 minutes with minor electron collimator modifications and the beam-on time could be reduced by and estimated factor of 2–3 through redesign of the scattering foils. Comparison of the planned and delivered film dose gave 3%/3 mm gamma pass rates of 62.1, 99.8, 97.8, 98.3, and 98.7 percent for the 9, 12, 16, 20 MeV, and combined energy deliveries respectively. Good results were also seen in the delivery verification performed with a MapCHECK 2 device. The results showed that accurate and efficient MERT delivery is possible with current technologies.« less
NASA Astrophysics Data System (ADS)
Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese
2016-03-01
In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.
SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadhan; Way, S; Arentsen, L
2016-06-15
Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R{sub 80–20} electron distal falloff distancemore » and number of particle histories was set at 500,000 per cm{sup 2}. Percent depth dose scans and beam profiles at dmax, d{sub 90} and d{sub 80} depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom{sup 2} scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d{sub 90} and d{sub 80} depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.« less
Technical Note: Dose gradients and prescription isodose in orthovoltage stereotactic radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagerstrom, Jessica M., E-mail: fagerstrom@wisc.edu; Bender, Edward T.; Culberson, Wesley S.
Purpose: The purpose of this work is to examine the trade-off between prescription isodose and dose gradients in orthovoltage stereotactic radiosurgery. Methods: Point energy deposition kernels (EDKs) describing photon and electron transport were calculated using Monte Carlo methods. EDKs were generated from 10 to 250 keV, in 10 keV increments. The EDKs were converted to pencil beam kernels and used to calculate dose profiles through isocenter from a 4π isotropic delivery from all angles of circularly collimated beams. Monoenergetic beams and an orthovoltage polyenergetic spectrum were analyzed. The dose gradient index (DGI) is the ratio of the 50% prescription isodosemore » volume to the 100% prescription isodose volume and represents a metric by which dose gradients in stereotactic radiosurgery (SRS) may be evaluated. Results: Using the 4π dose profiles calculated using pencil beam kernels, the relationship between DGI and prescription isodose was examined for circular cones ranging from 4 to 18 mm in diameter and monoenergetic photon beams with energies ranging from 20 to 250 keV. Values were found to exist for prescription isodose that optimize DGI. Conclusions: The relationship between DGI and prescription isodose was found to be dependent on both field size and energy. Examining this trade-off is an important consideration for designing optimal SRS systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova, M; Qu, B; Palma, B
2014-06-15
Purpose: To develop a tool for treatment planning optimization for fast radiotherapy delivered with very high-energy electron beams (VHEE) and to compare VHEE plans to state-of-the-art plans for challenging pelvis and H'N cases. Methods: Treatment planning for radiotherapy delivered with VHEE scanning pencil beams was performed by integrating EGSnrc Monte Carlo (MC) dose calculations with spot scanning optimization run in a research version of RayStation. A Matlab GUI for MC beamlet generation was developed, in which treatment parameters such as the pencil beam size and spacing, energy and number of beams can be selected. Treatment planning study for H'N andmore » pelvis cases was performed and the effect of treatment parameters on the delivered dose distributions was evaluated and compared to the clinical treatment plans. The pelvis case with a 691cm3 PTV was treated with 2-arc 15MV VMAT and the H'N case with four PTVs with total volume of 531cm3 was treated with 4-arc 6MV VMAT. Results: Most studied VHEE plans outperformed VMAT plans. The best pelvis 80MeV VHEE plan with 25 beams resulted in 12% body dose sparing and 8% sparing to the bowel and right femur compared to the VMAT plan. The 100MeV plan was superior to the 150MeV plan. Mixing 100 and 150MeV improved dose sparing to the bladder by 7% compared to either plan. Plans with 16 and 36 beams did not significantly affect the dose distributions compared to 25 beam plans. The best H'N 100MeV VHEE plan decreased mean doses to the brainstem, chiasm, and both globes by 10-42% compared to the VMAT plan. Conclusion: The pelvis and H'N cases suggested that sixteen 100MeV beams might be sufficient specifications of a novel VHEE treatment machine. However, optimum machine parameters will be determined with the presented VHEE treatment-planning tool for a large number of clinical cases. BW Loo and P Maxim received research support from RaySearch Laboratories. E Hynning and B Hardemark are employees of RaySearch Laboratories.« less
Yeo, Inhwan Jason; Jung, Jae Won; Yi, Byong Yong; Kim, Jong Oh
2013-01-01
Purpose: When an intensity-modulated radiation beam is delivered to a moving target, the interplay effect between dynamic beam delivery and the target motion due to miss-synchronization can cause unpredictable dose delivery. The portal dose image in electronic portal imaging device (EPID) represents radiation attenuated and scattered through target media. Thus, it may possess information about delivered radiation to the target. Using a continuous scan (cine) mode of EPID, which provides temporal dose images related to target and beam movements, the authors’ goal is to perform four-dimensional (4D) dose reconstruction. Methods: To evaluate this hypothesis, first, the authors have derived and subsequently validated a fast method of dose reconstruction based on virtual beamlet calculations of dose responses using a test intensity-modulated beam. This method was necessary for processing a large number of EPID images pertinent for four-dimensional reconstruction. Second, cine mode acquisition after summation over all images was validated through comparison with integration mode acquisition on EPID (IAS3 and aS1000) for the test beam. This was to confirm the agreement of the cine mode with the integrated mode, specifically for the test beam, which is an accepted mode of image acquisition for dosimetry with EPID. Third, in-phantom film and exit EPID dosimetry was performed on a moving platform using the same beam. Heterogeneous as well as homogeneous phantoms were used. The cine images were temporally sorted at 10% interval. The authors have performed dose reconstruction to the in-phantom plane from the sorted cine images using the above validated method of dose reconstruction. The reconstructed dose from each cine image was summed to compose a total reconstructed dose from the test beam delivery, and was compared with film measurements. Results: The new method of dose reconstruction was validated showing greater than 95.3% pass rates of the gamma test with the criteria of dose difference of 3% and distance to agreement of 3 mm. The dose comparison of the reconstructed dose with the measured dose for the two phantoms showed pass rates higher than 96.4% given the same criteria. Conclusions: Feasibility of 4D dose reconstruction was successfully demonstrated in this study. The 4D dose reconstruction demonstrated in this study can be a promising dose validation method for radiation delivery on moving organs. PMID:23635250
NASA Astrophysics Data System (ADS)
Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka
2018-05-01
The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.
Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y
2011-05-01
The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.
Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution
NASA Astrophysics Data System (ADS)
Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon
2008-12-01
In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 °C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.ed
Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume ofmore » the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). Results: For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. Conclusions: The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.« less
Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan
2016-07-01
A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.
1981-09-15
OW #gV Or aftoa inmbt) EXCEDE, electron beam, thermosphere, aurora, LWIR , NO + air afterglow, hypersonic wake AG? (C mw~m M ~re 1o AM C@ " Cow lame...REGION 5 EXCEDE SPECTRAL: LWIR SIGNATURE ANALYSIS 28 HYPERSONIC WAKE EFFECTS ON EXCEDE: SPECTRAL LOW ALTITUDE DATA INTERPRETATION 47 LONG LIVED BEAM...physical displacement of gun 4 from the two CVFs, however, meant that the very nonuniform dosing in the immediate vicinity of the electron gun is not the
Effect of electron irradiation dose on the performance of avalanche photodiode electron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawauchi, Taizo; Wilde, Markus; Fukutani, Katsuyuki
2009-01-01
Avalanche photodiodes (APDs) are efficient detectors for electrons with energies below 100 keV. The damaging effects of 8 keV electron beam irradiation on the dark current and the output signal of the APD detector were investigated in this study. The APD dark current increases after electron doses exceeding 1.4x10{sup 13} cm{sup -2}. Preirradiation by high doses of 8 keV electrons further causes a deformation of the pulse height distribution of the APD output in the subsequent detection of low-flux electrons. This effect is particularly prominent when the energy of the detected electrons is lower than that of the damaging electrons.more » By comparing the experimental data with results of a simulation based on an electron trapping model, we conclude that the degradation of the APD performance is attributable to an enhancement of secondary-electron trapping at irradiation induced defects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schueler, E; Loo, B; Maxim, P
2016-06-15
Purpose: The aim of this study was to evaluate the performance of very high-energy electron (VHEE) beams in comparison to clinically delivered treatment plans generated with volumetric modulated arc therapy (VMAT) and proton pencil beam scanning (PBS) technology. Methods: Three clinical cases were selected (prostate, lung, and pediatric CNS). The VHEE plans were calculated in the Monte Carlo EGSnrc code and pencil beam doses were calculated using the DOSxyznrc MC code for 100 and 200 MeV beams. Treatment plans with VHEE, VMAT, and PBS were optimized in a research version of RayStation using an in house build script in ordermore » to minimize operator bias between the different techniques. Results: For the prostate cancer case, the PBS plan showed lower mean organ at risk (OAR) doses compared to the other modalities. An exception was the femoral heads, due to the lateral beam arrangements. The VMAT plan showed lower mean doses to the rectum and the bladder compared to the 100 MeV VHEE plan. The lung cancer case showed minor differences between the three modalities. However, the PBS plan showed a lower contralateral lung dose. The pediatric CNS case showed a better conformity and lower spinal cord dose for the 100 MeV VHEE plan. For all cases, the 200 MeV VHEE plans were found to be similar to or better than the 100 MeV VHEE plans. Conclusion: The present study showed that VHEE plans are similar or superior to VMAT plans with reduced mean OAR dose and increased target conformity for a variety of clinical cases. With increased VHEE energy, better conformity and even higher reductions in mean OAR doses can be achieved. Funding: DoD, Award#:W81XWH-13-1-0165, Weston Havens Foundation, Bio-X (Stanford University), the Office of the Dean of the Medical School, the Office of the Provost (Stanford University), and the Swedish Childhood Cancer Foundation. BL and PM are founders of TibaRay,Inc. BL and PM have received research grants from Varian and RaySearch Laboratory.« less
NASA Astrophysics Data System (ADS)
Wei, Jikun; Sandison, George A.; Hsi, Wen-Chien; Ringor, Michael; Lu, Xiaoyi
2006-10-01
Accurate dose calculation is essential to precision radiation treatment planning and this accuracy depends upon anatomic and tissue electron density information. Modern treatment planning inhomogeneity corrections use x-ray CT images and calibrated scales of tissue CT number to electron density to provide this information. The presence of metal in the volume scanned by an x-ray CT scanner causes metal induced image artefacts that influence CT numbers and thereby introduce errors in the radiation dose distribution calculated. This paper investigates the dosimetric improvement achieved by a previously proposed x-ray CT metal artefact suppression technique when the suppressed images of a patient with bilateral hip prostheses are used in commercial treatment planning systems for proton, electron or photon therapies. For all these beam types, this clinical image and treatment planning study reveals that the target may be severely underdosed if a metal artefact-contaminated image is used for dose calculations instead of the artefact suppressed one. Of the three beam types studied, the metal artefact suppression is most important for proton therapy dose calculations, intermediate for electron therapy and least important for x-ray therapy but still significant. The study of a water phantom having a metal rod simulating a hip prosthesis indicates that CT numbers generated after image processing for metal artefact suppression are accurate and thus dose calculations based on the metal artefact suppressed images will be of high fidelity.
Evaluation of degradation of antibiotic tetracycline in pig manure by electron beam irradiation.
Cho, Jae-Young
2010-04-01
This study was carried out to evaluate the degradation efficiency and intermediate products of the tetracycline from artificially contaminated pig manure using of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of tetracycline was 42.77% at 1 kGy, 64.20% at 3 kGy, 77.83% at 5 kGy, and 90.50% at 10 kGy. The initial concentration of tetracycline (300 mg kg(-1)) in pig manure decreased significantly to 24.2 +/- 5.3 mg kg(-1) after electron beam irradiation at 10 kGy. The radiolytic degradation products of tetracycline were 1,4-benzenedicarboxylic acid, hexadecanoic acid, 9-octadecenamide, 11-octadecenamide, and octadecanoic acid.
NASA Astrophysics Data System (ADS)
Lucero, J. F.; Rojas, J. I.
2016-07-01
Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient's entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucero, J. F., E-mail: fernando.lucero@hoperadiotherapy.com.gt; Hope International, Guatemala; Rojas, J. I., E-mail: isaac.rojas@siglo21.cr
Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient’s entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.
Cross, P; Freeman, N
1997-06-01
The purpose of Part 2 study of calibration methods for plane parallel ionisation chambers was to determine the feasibility of using beams of calibration of the MARKUS chamber other than the standard AAPM TG39 reference beams of 60Co and a high energy electron beam (E0 > or = 15 MeV). A previous study of the NACP chamber had demonstrated an acceptable level of accuracy with corresponding spread of -0.5% to +0.8% for its calibration in non-standard situations (medium to low energy electron and photon beams). For non-standard situations the spread in NDMARKUS values was found to be +/-2.5%. The results suggest that user calibrations of the MARKUS chamber in non-standard situations are associated with more uncertainties than is the case with the NACP chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butson, M; Carroll, S; Whitaker, M
2015-06-15
Purpose: Tangential breast irradiation is a standard treatment technique for breast cancer therapy. One aspect of dose delivery includes dose delivered to the skin caused by electron contamination. This effect is especially important for highly oblique beams used on the medical tangent where the electron contamination deposits dose on the contralateral breast side. This work aims to investigate and predict as well as define a method to reduce this dose during tangential breast radiotherapy. Methods: Analysis and calculation of breast skin and subcutaneous dose is performed using a Varian Eclipse planning system, AAA algorithm for 6MV x-ray treatments. Measurements weremore » made using EBT3 Gafchromic film to verify the accuracy of planning data. Various materials were tested to assess their ability to remove electron contamination on the contralateral breast. Results: Results showed that the Varian Eclipse AAA algorithm could accurately estimate contralateral breast dose in the build-up region at depths of 2mm or deeper. Surface dose was underestimated by the AAA algorithm. Doses up to 12% of applied dose were seen on the contralateral breast surface and up to 9 % at 2mm depth. Due to the nature of this radiation, being mainly low energy electron contamination, a bolus material could be used to reduce this dose to less than 3%. This is accomplished by 10 mm of superflab bolus or by 1 mm of lead. Conclusion: Contralateral breast skin and subcutaneous dose is present for tangential breast treatment and has been measured to be up to 12% of applied dose from the medial tangent beam. This dose is deposited at shallow depths and is accurately calculated by the Eclipse AAA algorithm at depths of 2mm or greater. Bolus material placed over the contralateral can be used to effectively reduce this skin dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Shigeya, E-mail: shi-nakamura@hitachi-chem.co.jp; Tokumitsu, Katsuhisa
The effects of electron beam irradiation on the mechanical and thermal properties of polypropylene (PP) and polyamide6 (PA6) blends-with talc 20 wt% as filler, SEBS-g-MAH as compatibilizer, and triallyl isocyanurate as crosslinking agent-were investigated. Although the tensile and flexural moduli and strengths of the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC could be increased by the application of electron beam irradiation, the impact strength was decreased. Ddifferential scanning calorimetryer measurements showed that the melting temperatures of all PP/PA6 blends were decreased with increases in the electron beam irradiationdose. From dynamic mechanical analyzer results, a storage modulus curve in the plateaumore » region was observed only in the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC; the storage modulus increased with increasing electron beam irradiation dose, indicating that the three-dimensional network developed gradually in the more amorphous PA6. As a result, the most significant improvement observed in heat distortion tests under high load (1.8 MPa) occurred at 200 kGy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, L; Wootton, L; Gopan, O
Purpose: Electron therapy for the treatment of ocular lymphomas requires the lens to be shielded to prevent secondary cataracts. This work evaluates the dosimetry under a suspended eyeshield with and without bolus for low energy electron fields. Methods: Film (GafChromic EBT3) dosimetry and relative output factors were measured for 6, 8, and 10 MeV electron energies. A customized 5 cm diameter circle electron orbital cutout was constructed for a 6×6 cm applicator with a lens shield, 1 cm diameter Cerrobend cylinder with 2.2 cm length, suspended from an XV film covering the open field. Relative output factors were measured usingmore » a Scanditronix electron diode in a solid water phantom. Depth dose profiles were collected for bolus thicknesses of 0, 3, and 5 mm in solid water at a source to surface distance (SSD) of 100 cm. These measurements were repeated in a Rando phantom. Results: At 5 mm, the approximate distance of the lens from the surface of the cornea, the estimated dose in solid water under the suspended lens shield was reduced to 16%, 14%, and 13% of the unblocked dose at the same depth, for electron energies of 6, 8, and 10 MeV, respectively. Applying bolus increased estimated doses under the block to 22% for 3-mm and 32% for 5-mm thicknesses for a 6 MeV incident electron beam. This effect is reduced for higher energies where the corresponding values were 15.5% and 18% for 3-mm and 5-mm for an 8 MeV electron beam. Conclusion: The application of bolus to treat superficial eye lesions of the conjunctiva increases lens dose at a depth of 5-mm under the shielding block with decreasing electron energy. Careful selection of electron energy is needed to account for electron scatter under the lens shield with the application of bolus in order to prevent cataracts.« less
Electron beam irradiation of Matricaria chamomilla L. for microbial decontamination
NASA Astrophysics Data System (ADS)
Nemţanu, Monica R.; Kikuchi, Irene Satiko; de Jesus Andreoli Pinto, Terezinha; Mazilu, Elena; Setnic, Silvia; Bucur, Marcela; Duliu, Octavian G.; Meltzer, Viorica; Pincu, Elena
2008-05-01
Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiansyah, D.; Haryanto, F.; Male, S.
2014-09-30
Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file ismore » used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayler, E; Charpentier, P; Micaily, B
2015-06-15
Purpose The purpose of this work is to publish beam data from Elekta Synergy(R) linear accelerators with Agility(TM) MLC for total skin electron beam (TSEB) therapy using the HDRE1 (High Dose Rate Electron 6MeV) energy. Method & Materials The optimal gantry angles for TSEB were determined using ion chamber measurements along a vertical profile at 450cm SSD. After gantry angles were chosen, field uniformity was measured over the entire treatment area. Uniformity was measured with and without the patient support device, allowing the dosimetric effect of the support device to be determined. Beam output and PDD were measured at themore » calibration point (450cm SSD) for a dual beam using a parallel plate chamber in solid water. These measurements were repeated with the chamber and phantom rotated about the patient isocenter at various angles, in order to measure the contribution from oblique beams. This technique provides a precise measurement of the treatment skin dose (TSD). Lastly, ion chamber measurements were verified by film and diodes. Results The optimal gantry angle for 450 cm SSD was determined to be 90±16°. This achieved uniformity better than 96% on the vertical axis, and 92% along the horizontal axis. HDRE1 was calibrated to deliver 10 cGy/MU at standard geometry (100 cm SSD, 1.2 cm depth). Thus at TSEB geometry (450 cm SSD, 0.1 cm depth) the output of the AP dual field was measured to be 0.35 cGy/MU. The TSD of a 20 cm radius cylinder for six (equally, 60° spaced) dual fields was measured to be 1.19 cGy/MU. Percent Depth Dose data for the AP dual field and TSD are shown in Figure 2. Conclusion This paper provides a modern procedure for commissioning TSEB therapy on a linear accelerator, and clinical beam data for the Elekta Synergy(R) with Agility(TM) MLC.« less
NASA Astrophysics Data System (ADS)
Shamsian, Neda; Bidabadi, Babak Shirani; Pirjamadi, Hosein
2017-07-01
An indirect method is proposed for measuring the relative energy spectrum of the pulsed electron beam of a plasma focus device. The Bremsstrahlung x-ray, generated by the collision of electrons against the anode surface, was measured behind lead filters with various thicknesses using a radiographic film system. A matrix equation was considered in order to explain the relation between the x-ray dose and the spectral amplitudes of the electron beam. The electron spectrum of the device was measured at 0.6 mbar argon and 22 kV charging voltage, in four discrete energy intervals extending up to 500 keV. The results of the experiments show that most of the electrons are emitted in the 125-375 keV energy range and the spectral amplitude becomes negligible beyond 375 keV.
Simultaneous optimization of photons and electrons for mixed beam radiotherapy
NASA Astrophysics Data System (ADS)
Mueller, S.; Fix, M. K.; Joosten, A.; Henzen, D.; Frei, D.; Volken, W.; Kueng, R.; Aebersold, D. M.; Stampanoni, M. F. M.; Manser, P.
2017-07-01
The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.
Simultaneous optimization of photons and electrons for mixed beam radiotherapy.
Mueller, S; Fix, M K; Joosten, A; Henzen, D; Frei, D; Volken, W; Kueng, R; Aebersold, D M; Stampanoni, M F M; Manser, P
2017-06-26
The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.
1991-09-01
2 2. Dosimetry ............................................. 4 C. OVERVIEW OF EXPERIMENT............................... 5 11. ELECTRON BEAM...From these measurements, the dose was calculated and then compared to a measured dose obtained from TLD dosimetry . Technical 5 problems with the...LINAC precluded TLD dosimetry from being accomplished during the first run and, therefore, was performed on the second run only. After irradiation, a NaI
Detection of IMRT delivery errors based on a simple constancy check of transit dose by using an EPID
NASA Astrophysics Data System (ADS)
Baek, Tae Seong; Chung, Eun Ji; Son, Jaeman; Yoon, Myonggeun
2015-11-01
Beam delivery errors during intensity modulated radiotherapy (IMRT) were detected based on a simple constancy check of the transit dose by using an electronic portal imaging device (EPID). Twenty-one IMRT plans were selected from various treatment sites, and the transit doses during treatment were measured by using an EPID. Transit doses were measured 11 times for each course of treatment, and the constancy check was based on gamma index (3%/3 mm) comparisons between a reference dose map (the first measured transit dose) and test dose maps (the following ten measured dose maps). In a simulation using an anthropomorphic phantom, the average passing rate of the tested transit dose was 100% for three representative treatment sites (head & neck, chest, and pelvis), indicating that IMRT was highly constant for normal beam delivery. The average passing rate of the transit dose for 1224 IMRT fields from 21 actual patients was 97.6% ± 2.5%, with the lower rate possibly being due to inaccuracies of patient positioning or anatomic changes. An EPIDbased simple constancy check may provide information about IMRT beam delivery errors during treatment.
Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT
NASA Astrophysics Data System (ADS)
Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive
2013-10-01
Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the isopropanol gel dosimeter over the same energy range. For x-ray beams over the energy range 180 keV-18 MV, both gel dosimeters have less than 2% discrepancy with water. For megavoltage electron beams, the dose differences with water reach 7% and 14% for the co-solvent free gel dosimeter and the isopropanol gel dosimeter, respectively. Our results demonstrate that for x-ray beam dosimetry with photon energies higher than 100 keV and megavoltage electron beams, correction factors are needed for both NIPAM gels to be used as water equivalent dosimeters.
2015-09-01
used to simulate 50- 150MeV VHEE beam dose deposition and its effects on steel and titanium (Ti) heterogeneities in a water phantom. Heterogeneities of...and water with segmented prostheses ( steel and Ti) geometries with 100MeV and 150MeV beams. Results: 100MeV PDD 5cm behind steel /Ti heterogeneity...in steel and 18% in Ti heterogeneities. The dose immediately behind steel heterogeneity decreased by an average of 6%, although for 150MeV, the
Electron beam technology for multipollutant emissions control from heavy fuel oil-fired boiler.
Chmielewski, Andrzej G; Ostapczuk, Anna; Licki, Janusz
2010-08-01
The electron beam treatment technology for purification of exhaust gases from the burning of heavy fuel oil (HFO) mazout with sulfur content approximately 3 wt % was tested at the Institute of Nuclear Chemistry and Technology laboratory plant. The parametric study was conducted to determine the sulfur dioxide (SO2), oxides of nitrogen (NO(x)), and polycyclic aromatic hydrocarbon (PAH) removal efficiency as a function of temperature and humidity of irradiated gases, absorbed irradiation dose, and ammonia stoichiometry process parameters. In the test performed under optimal conditions with an irradiation dose of 12.4 kGy, simultaneous removal efficiencies of approximately 98% for SO2, and 80% for NO(x) were recorded. The simultaneous decrease of PAH and one-ringed aromatic hydrocarbon (benzene, toluene, and xylenes [BTX]) concentrations was observed in the irradiated flue gas. Overall removal efficiencies of approximately 42% for PAHs and 86% for BTXs were achieved with an irradiation dose 5.3 kGy. The decomposition ratio of these compounds increased with an increase of absorbed dose. The decrease of PAH and BTX concentrations was followed by the increase of oxygen-containing aromatic hydrocarbon concentrations. The PAH and BTX decomposition process was initialized through the reaction with hydroxyl radicals that formed in the electron beam irradiated flue gas. Their decomposition process is based on similar principles as the primary reaction concerning SO2 and NO(x) removal; that is, free radicals attack organic compound chains or rings, causing volatile organic compound decomposition. Thus, the electron beam flue gas treatment (EBFGT) technology ensures simultaneous removal of acid (SO2 and NO(x)) and organic (PAH and BTX) pollutants from flue gas emitted from burning of HFO. This technology is a multipollutant emission control technology that can be applied for treatment of flue gas emitted from coal-, lignite-, and HFO-fired boilers. Other thermal processes such as metallurgy and municipal waste incinerators are potential candidates for this technology application.
Curing Composite Materials Using Lower-Energy Electron Beams
NASA Technical Reports Server (NTRS)
Byrne, Catherine A.; Bykanov, Alexander
2004-01-01
In an improved method of fabricating composite-material structures by laying up prepreg tapes (tapes of fiber reinforcement impregnated by uncured matrix materials) and then curing them, one cures the layups by use of beams of electrons having kinetic energies in the range of 200 to 300 keV. In contrast, in a prior method, one used electron beams characterized by kinetic energies up to 20 MeV. The improved method was first suggested by an Italian group in 1993, but had not been demonstrated until recently. With respect to both the prior method and the present improved method, the impetus for the use of electron- beam curing is a desire to avoid the high costs of autoclaves large enough to effect thermal curing of large composite-material structures. Unfortunately, in the prior method, the advantages of electron-beam curing are offset by the need for special walls and ceilings on curing chambers to shield personnel from x rays generated by impacts of energetic electrons. These shields must be thick [typically 2 to 3 ft (about 0.6 to 0.9 m) if made of concrete] and are therefore expensive. They also make it difficult to bring large structures into and out of the curing chambers. Currently, all major companies that fabricate composite-material spacecraft and aircraft structures form their layups by use of automated tape placement (ATP) machines. In the present improved method, an electron-beam gun is attached to an ATP head and used to irradiate the tape as it is pressed onto the workpiece. The electron kinetic energy between 200 and 300 keV is sufficient for penetration of the ply being laid plus one or two of the plies underneath it. Provided that the electron-beam gun is properly positioned, it is possible to administer the required electron dose and, at the same time, to protect personnel with less shielding than is needed in the prior method. Adequate shielding can be provided by concrete walls 6 ft (approximately equal to 1.8 m) high and 16 in. (approximately equal to 41 cm) thick, without a ceiling. The success of the present method depends on the use of a cationic epoxy as the matrix material in the prepreg tape, heating the prepreg tape to a temperature of 50 C immediately prior to layup, and exposing the workpiece to an electron-beam dose of approximately 2 Mrad. Experiments have shown that structures fabricated by the present method have the same mechanical properties as those of nominally identical structures fabricated by the prior method with electron beams of 3 to 4 MeV.
TREE Preferred Procedures, Selected Electronic Parts.
1982-01-31
presented. Chapter 5 covers dosimetry and environmental correlation procedures. Neutron measurements, photon and electron measurements, and pulse...complications from nonuniformity of dose and to provide accurate dosimetry , exposures should be performed under conditions of electron equi- librium. Unless...nonconducting dosimetry materials or test articles are exposed to intense electron beams characteristic of flash X-ray machines, the effect of the potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
A, Popescu I; Lobo, J; Sawkey, D
2014-06-15
Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulationsmore » in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the TrueBeam MC literature. This work has been partially funded by Varian Medical Systems.« less
NASA Astrophysics Data System (ADS)
Alexander, A.; DeBlois, F.; Stroian, G.; Al-Yahya, K.; Heath, E.; Seuntjens, J.
2007-07-01
Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM_RT, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform-independent, large-scale MC treatment planning for different treatment sites. Patient recalculations were performed to validate the software and ensure proper functionality.
Process margin enhancement for 0.25-μm metal etch process
NASA Astrophysics Data System (ADS)
Lee, Chung Y.; Ma, Wei Wen; Lim, Eng H.; Cheng, Alex T.; Joy, Raymond; Ross, Matthew F.; Wong, Selmer S.; Marlowe, Trey
2000-06-01
This study evaluates electron beam stabilization of UV6, a positive tone Deep-UV (DUV) resist from Shipley, for a 0.25 micrometer metal etch application. Results are compared between untreated resist and resist treated with different levels of electron beam stabilization. The electron beam processing was carried out in an ElectronCureTM flood electron beam exposure system from Honeywell International Inc., Electron Vision. The ElectronCureTM system utilizes a flood electron beam source which is larger in diameter than the substrate being processed, and is capable of variable energy so that the electron range is matched to the resist film thickness. Changes in the UV6 resist material as a result of the electron beam stabilization are monitored via spectroscopic ellipsometry for film thickness and index of refraction changes and FTIR for analysis of chemical changes. Thermal flow stability is evaluated by applying hot plate bakes of 150 degrees Celsius and 200 degrees Celsius, to patterned resist wafers with no treatment and with an electron beam dose level of 2000 (mu) C/cm2. A significant improvement in the thermal flow stability of the patterned UV6 resist features is achieved with the electron beam stabilization process. Etch process performance of the UV6 resist was evaluated by performing a metal pattern transfer process on wafers with untreated resist and comparing these with etch results on wafers with different levels of electron beam stabilization. The etch processing was carried out in an Applied Materials reactor with an etch chemistry including BCl3 and Cl2. All wafers were etched under the same conditions and the resist was treated after etch to prevent further erosion after etch but before SEM analysis. Post metal etch SEM cross-sections show the enhancement in etch resistance provided by the electron beam stabilization process. Enhanced process margin is achieved as a result of the improved etch resistance, and is observed in reduced resist side-wall angles after etch. Only a slight improvement is observed in the isolated to dense bias effects of the etch process. Improved CD control is also achieved by applying the electron beam process, as more consistent CDs are observed after etch.
Villavicencio, Anna L C H; Heleno, Sandrina A; Calhelha, Ricardo C; Santos-Buelga, Celestino; Barros, Lillian; Ferreira, Isabel C F R
2018-02-15
As edible flowers are highly perishable, irradiation technology can be applied to increase their shelf life, as also for phytosanitary purposes. Herein, flowers of Bauhinia variegata L. var. candida alba Buch.-Ham were submitted to electron beam irradiation at the doses of 0.5, 0.8 and 1kGy, to study the effects in the nutritional and chemical profiles, and also in antioxidant, cytotoxic and anti-inflammatory activities. The petals of white flowers revealed interesting bioactive properties being kaempferol derivatives the most abundant compounds, especially kaempferol-3-O-rutinoside. The applied irradiation doses did not highly affect the nutritional profile. No changes were produced in cytotoxicity, but the anti-inflammatory activity slightly decreased. However, the antioxidant activity was increased, especially in the dose of 0.5kGy, in agreement with the higher content in phenolic compounds found at this dose. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ferretti, A; Martignano, A; Simonato, F; Paiusco, M
2014-02-01
The aim of the present work was the validation of the VMC(++) Monte Carlo (MC) engine implemented in the Oncentra Masterplan (OMTPS) and used to calculate the dose distribution produced by the electron beams (energy 5-12 MeV) generated by the linear accelerator (linac) Primus (Siemens), shaped by a digital variable applicator (DEVA). The BEAMnrc/DOSXYZnrc (EGSnrc package) MC model of the linac head was used as a benchmark. Commissioning results for both MC codes were evaluated by means of 1D Gamma Analysis (2%, 2 mm), calculated with a home-made Matlab (The MathWorks) program, comparing the calculations with the measured profiles. The results of the commissioning of OMTPS were good [average gamma index (γ) > 97%]; some mismatches were found with large beams (size ≥ 15 cm). The optimization of the BEAMnrc model required to increase the beam exit window to match the calculated and measured profiles (final average γ > 98%). Then OMTPS dose distribution maps were compared with DOSXYZnrc with a 2D Gamma Analysis (3%, 3 mm), in 3 virtual water phantoms: (a) with an air step, (b) with an air insert, and (c) with a bone insert. The OMTPD and EGSnrc dose distributions with the air-water step phantom were in very high agreement (γ ∼ 99%), while for heterogeneous phantoms there were differences of about 9% in the air insert and of about 10-15% in the bone region. This is due to the Masterplan implementation of VMC(++) which reports the dose as "dose to water", instead of "dose to medium". Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.
2015-05-01
Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhangyi; Qi, Jianqi, E-mail: qijianqi@scu.edu.cn; Zhou, Li
2015-12-07
We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd{sub 2}Zr{sub 2}O{sub 7} synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd{sub 2}Zr{sub 2}O{sub 7} and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm{sup 2}). The crystallization occurred on the nanoscale upon ionizationmore » irradiation at 400 °C after a dose of less than 10{sup 17} electrons/cm{sup 2}. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.« less
Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald
2016-01-01
In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861
Neutron skyshine from end stations of the Continuous Electron Beam Accelerator Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Rai-Ko S.
1991-12-01
The MORSE{_}CG code from Oak Ridge National Laboratory was applied to the estimation of the neutron skyshine from three end stations of the Continuous Electron Beam Accelerator Facility (CEBAF), Newport News, VA. Calculations with other methods and an experiment had been directed at assessing the annual neutron dose equivalent at the site boundary. A comparison of results obtained with different methods is given, and the effect of different temperatures and humidities will be discussed.
Neutron skyshine from end stations of the Continuous Electron Beam Accelerator Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Rai-Ko S.
1991-12-01
The MORSE{ }CG code from Oak Ridge National Laboratory was applied to the estimation of the neutron skyshine from three end stations of the Continuous Electron Beam Accelerator Facility (CEBAF), Newport News, VA. Calculations with other methods and an experiment had been directed at assessing the annual neutron dose equivalent at the site boundary. A comparison of results obtained with different methods is given, and the effect of different temperatures and humidities will be discussed.
Mohd Nasir, Norlirubayah; Teo Ming, Ting; Ahmadun, Fakhru'l-Razi; Sobri, Shafreeza
2010-01-01
The research conducted a study on decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. The purposes of this research are to remove pollutant through decomposition and to enhance the biodegradability of textile wastewater. The wastewater is treated using electron beam irradiation as a pre-treatment before undergo an activated sludge process. As a result, for non-irradiated wastewater, the COD removal was achieved to be between 70% and 79% after activated sludge process. The improvement of COD removal efficiency increased to 94% after irradiation of treated effluent at the dose of 50 kGy. Meanwhile, the BOD(5) removal efficiencies of non-irradiated and irradiated textile wastewater were reported to be between 80 and 87%, and 82 and 99.2%, respectively. The maximum BOD(5) removal efficiency was achieved at day 1 (HRT 5 days) of the process of an irradiated textile wastewater which is 99.2%. The biodegradability ratio of non-irradiated wastewater was reported to be between 0.34 and 0.61, while the value of biodegradability ratio of an irradiated wastewater increased to be between 0.87 and 0.96. The biodegradability enhancement of textile wastewater is increased with increasing the doses. Therefore, an electron beam radiation holds a greatest application of removing pollutants and also on enhancing the biodegradability of textile wastewater.
Skowron, Krzysztof; Grudlewska, Katarzyna; Gryń, Grzegorz; Skowron, Karolina Jadwiga; Świeca, Agnieszka; Paluszak, Zbigniew; Zimek, Zbigniew; Rafalski, Andrzej; Gospodarek-Komkowska, Eugenia
2018-05-04
To investigate the effect of gamma radiation and high energy electron beam doses on the inactivation of antibiotic-susceptible and antibiotic-resistant Listeria monocytogenes strains inoculated on the surface of raw salmon fillets stored at different temperature (-20°C, 4°C and 25°C). The population of bacteria strains resistance to penicillin, ampicillin, meropenem, erythromycin and trimethoprim-sulfamethoxazole was generated. When using gamma irradiation, the theoretical lethal dose ranged from 1.44 to 5.68 kGy and for electron beam the values ranged from 2.99 to 6.83 kGy. The theoretical lethal dose for both radiation methods was higher for antibiotic-resistant strains. Gamma radiation proved to be a more effective method for extending salmon fillet shelf-life. The evaluation of PFGE electrophoregram revealed that the repair of radiation-caused DNA damage occurred faster in antibiotic-resistant L. monocytogenes strains. The number of live L. monocytogenes cells, 40 hours after irradiation, also was higher in antibiotic-resistant strain suspension. The present study showed that gamma radiation was more effective in the elimination of the tested microorganisms and food preservation, than a high energy electron beam. The antibiotic-resistant L. monocytogenes strains were more resistant to both radiation methods. There are a lot of research on the effect of radiation on the number of bacteria in food products. However, there is almost no information about the effect of strain properties, such as drug susceptibility, virulence, etc., on their resistance to ionizing radiation. An increasing number of drug resistant bacterial strains isolated from food, encourages to take up this research subject. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey
2015-05-15
Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphicalmore » user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric plan, OAR doses were up to 70% lower and the integral dose was 33% lower for VHEE compared to 6 MV VMAT. Additionally, VHEE conformity indices (CI{sub 100} = 1.09 and CI{sub 50} = 4.07) were better than VMAT conformity indices (CI{sub 100} = 1.30 and CI{sub 50} = 6.81). The 100 MeV VHEE lung plan resulted in mean dose decrease to all OARs by up to 27% for the same target coverage compared to the clinical 6 MV flattening filter-free (FFF) VMAT plan. The 100 MeV prostate plan resulted in 3% mean dose increase to the penile bulb and the urethra, but all other OAR mean doses were lower compared to the 15 MV VMAT plan. The lung case CI{sub 100} and CI{sub 50} conformity indices were 3% and 8% lower, respectively, in the VHEE plan compared to the VMAT plan. The prostate case CI{sub 100} and CI{sub 50} conformity indices were 1% higher and 8% lower, respectively, in the VHEE plan compared to the VMAT plan. Conclusions: The authors have developed a treatment planning workflow for MC dose calculation of pencil beams and optimization for treatment planning of VHEE radiotherapy. The authors have demonstrated that VHEE plans resulted in similar or superior dose distributions for pediatric, lung, and prostate cases compared to clinical VMAT plans.« less
Shielding synchrotron light sources: Advantages of circular shield walls tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.
Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less
Shielding synchrotron light sources: Advantages of circular shield walls tunnels
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.
2016-04-26
Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less
NASA Astrophysics Data System (ADS)
Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Basappa, M.; Ganesh, S.; Devendrappa, H.
2018-05-01
The effect of electron beam (EB) irradiation on polymer electrolyte (PVDF-HFP: LiClO4=90:10, PHL10) films prepared by solution casting method. FT-IR confirms the complexation between salt and polymer upon EB dose. Degradation of polymer and decrease in % of crystallinity from 50.10 to 40.96 at 2θ=19.90° at 120 kGy dose indicates increased amorphousity confirmed by XRD. The TGA result show decrease in Tm from 460 °C to 418 °C is leads to degradation of polymer chain at higher dosage. The dielectric parameters have been determined and observed decreasing trend with increased frequency as well as temperature due to increase the mobility of charge carrier confirms the capacitive nature. I-V plots exhibit an ohmic behavior with applied voltage and irradiation dose. The results notice the change in polymer properties upon irradiation.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Joo; Ham, Jun-Sang; Lee, Ju-Woon; Kim, Keehyuk; Ha, Sang-Do; Jo, Cheorun
2010-06-01
The objective of this study was to identify the efficacy of gamma and electron beam irradiation of the food-borne pathogens ( Listeria monocytogenes and Staphylococcus aureus) in sliced and pizza cheeses commercially available in the Korean market. Total aerobic bacteria and yeast/mold in the cheeses ranged from 10 2 to 10 3 Log CFU/g. Irradiation of 1 kGy for sliced cheese and 3 kGy for pizza cheese were sufficient to lower the total aerobic bacteria to undetectable levels (10 1 CFU/g). Pathogen inoculation test revealed that gamma irradiation was more effective than electron beam irradiation at the same absorbed dose, and the ranges of the D 10 values were from 0.84 to 0.93 kGy for L. monocytogenes and from 0.60 to 0.63 kGy for S. aureus. Results suggest that a low dose irradiation can improve significantly the microbial quality and reduce the risk of contamination of sliced and pizza cheeses by the food-borne pathogens which can potentially occur during processing.
Generation and dose distribution measurement of flash x-ray in KALI-5000 system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, Rakhee; Roy, Amitava; Mitra, S.
2008-10-15
Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm{sup 2} current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO{sub 4}:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance {approx}1/x{sup n}, where n varies from 1.8 to 1.85. Amore » maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.« less
Simulation of angular and energy distributions of the PTB beta secondary standard.
Faw, R E; Simons, G G; Gianakon, T A; Bayouth, J E
1990-09-01
Calculations and measurements have been performed to assess radiation doses delivered by the PTB Secondary Standard that employs 147Pm, 204Tl, and 90Sr:90Y sources in prescribed geometries, and features "beam-flattening" filters to assure uniformity of delivered doses within a 5-cm radius of the axis from source to detector plane. Three-dimensional, coupled, electron-photon Monte Carlo calculations, accounting for transmission through the source encapsulation and backscattering from the source mounting, led to energy spectra and angular distributions of electrons penetrating the source encapsulation that were used in the representation of pseudo sources of electrons for subsequent transport through the atmosphere, filters, and detectors. Calculations were supplemented by measurements made using bare LiF TLD chips on a thick polymethyl methacrylate phantom. Measurements using the 204Tl and 90Sr:90Y sources revealed that, even in the absence of the beam-flattening filters, delivered dose rates were very uniform radially. Dosimeter response functions (TLD:skin dose ratios) were calculated and confirmed experimentally for all three beta-particle sources and for bare LiF TLDs ranging in mass thickness from 10 to 235 mg cm-2.
Measurement of energy deposited by charged particle beams in composite targets. [0. 5 to 28. 5 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crase, K.; Farley, W.E.; Kruger, H.
1977-11-03
The energies deposited in composite targets by proton beams from 0.8 to 28.5 GeV energy and by an electron beam at 0.5 GeV energy were measured. The targets consisted of various thicknesses of /sup 238/U shower plates backed by a composite detector plate consisting of a 5-cm-thick CH/sub 2/ moderator and a 0.635-cm /sup 238/U plate. The spacing between the shower and detector plates was varied to allow different spreading of the shower between plates. Passive detectors (thermoluminescence dosimeters, Lexan fission track recorders, photographic emulsions, and removable /sup 238/U pieces) were used to measure the fission-fragment dose and the nonfissionmore » dose at various depths and radial positions in the targets. Plots and numerical values of the measured doses are presented for comparison with computer code calculations. To provide a basis for comparison of the effects of different particle beam energies, data along the beam axes are presented as specific dose (cal/g per incident integrated kJ/cm/sup 2/). In general, the higher the incident proton energy, the larger is the dose in the back of the target relative to that in the front.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuong, A; Chow, J
Purpose: This study investigated the surface dose variation in preclinical irradiation using small animal, when monoenergetic photon beams with energy range from 50 keV to 1.25 MeV were used. Methods: Inhomogeneous, homogeneous and bone-tissue homogeneous mouse phantom based on the same CT image set were used. The homogeneous and bone-tissue homogeneous phantom were created with the relative electron density of all and only bone voxels of the mouse overridden to one, respectively. Monte Carlo simulation based on the EGSnrc-based code was used to calculate the surface dose, when the phantoms were irradiated by a 360° photon arc with energies rangingmore » from 50 keV to 1.25 MeV. The mean surface doses of the three phantoms were calculated. In addition, the surface doses from partial arcs, 45°–315°, 125°–225°, 45°–125° and 225°–315° covering the anterior, posterior, right lateral and left lateral region of the mouse were determined using different photon beam energies. Results: When the prescribed dose at the isocenter of the mouse was 2 Gy, the maximum mean surface doses, found at the 50-keV photon beams, were 0.358 Gy, 0.363 Gy and 0.350 Gy for the inhomogeneous, homogeneous and bone-tissue homogeneous mouse phantom, respectively. The mean surface dose of the mouse was found decreasing with an increase of the photon beam energy. For surface dose in different orientations, the lateral regions of the mouse were receiving lower dose than the anterior and posterior regions. This may be due to the increase of beam attenuation along the horizontal (left-right) axis than the vertical (anterior-posterior) in the mouse. Conclusion: It is concluded that consideration of phantom inhomogeneity in the dose calculation resulted in a lower mean surface dose of the mouse. The mean surface dose also decreased with an increase of photon beam energy in the kilovoltage range.« less
SU-E-T-223: Computed Radiography Dose Measurements of External Radiotherapy Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aberle, C; Kapsch, R
2015-06-15
Purpose: To obtain quantitative, two-dimensional dose measurements of external radiotherapy beams with a computed radiography (CR) system and to derive volume correction factors for ionization chambers in small fields. Methods: A commercial Kodak ACR2000i CR system with Kodak Flexible Phosphor Screen HR storage foils was used. Suitable measurement conditions and procedures were established. Several corrections were derived, including image fading, length-scale corrections and long-term stability corrections. Dose calibration curves were obtained for cobalt, 4 MV, 8 MV and 25 MV photons, and for 10 MeV, 15 MeV and 18 MeV electrons in a water phantom. Inherent measurement inhomogeneities were studiedmore » as well as directional dependence of the response. Finally, 2D scans with ionization chambers were directly compared to CR measurements, and volume correction factors were derived. Results: Dose calibration curves (0.01 Gy to 7 Gy) were obtained for multiple photon and electron beam qualities. For each beam quality, the calibration curves can be described by a single fit equation over the whole dose range. The energy dependence of the dose response was determined. The length scale on the images was adjusted scan-by-scan, typically by 2 percent horizontally and by 3 percent vertically. The remaining inhomogeneities after the system’s standard calibration procedure were corrected for. After correction, the homogeneity is on the order of a few percent. The storage foils can be rotated by up to 30 degrees without a significant effect on the measured signal. First results on the determination of volume correction factors were obtained. Conclusion: With CR, quantitative, two-dimensional dose measurements with a high spatial resolution (sub-mm) can be obtained over a large dose range. In order to make use of these advantages, several calibrations, corrections and supporting measurements are needed. This work was funded by the European Metrology Research Programme (EMRP) project HLT09 MetrExtRT Metrology for Radiotherapy using Complex Radiation Fields.« less
Design and experimental research on a self-magnetic pinch diode under MV
NASA Astrophysics Data System (ADS)
Pengfei, ZHANG; Yang, HU; Jiang, SUN; Yan, SONG; Jianfeng, SUN; Zhiming, YAO; Peitian, CONG; Mengtong, QIU; Aici, QIU
2018-01-01
A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was developed in accordance with the principle of pinhole imaging. The designed SMPD and the corresponding measuring system were tested under ∼MV, with 1.75 × 2 mm2 oval x-ray spots (AWE defined) and forward directed dose 1.6 rad at 1 m. Results confirmed that the anode foil can significantly strengthen the electron beam pinch focus, and the focal spot measuring system can collect clear focal spot images. This finding indicated that the principle and method are feasible.
Fernández-Varea, J M; Andreo, P; Tabata, T
1996-07-01
Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth-dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stathakis, S; Defoor, D; Saenz, D
Purpose: Stereotactic radiosurgery (SRS) outcomes are related to the delivered dose to the target and to surrounding tissue. We have commissioned a Monte Carlo based dose calculation algorithm to recalculated the delivered dose planned using pencil beam calculation dose engine. Methods: Twenty consecutive previously treated patients have been selected for this study. All plans were generated using the iPlan treatment planning system (TPS) and calculated using the pencil beam algorithm. Each patient plan consisted of 1 to 3 targets and treated using dynamically conformal arcs or intensity modulated beams. Multi-target treatments were delivered using multiple isocenters, one for each target.more » These plans were recalculated for the purpose of this study using a single isocenter. The CT image sets along with the plan, doses and structures were DICOM exported to Monaco TPS and the dose was recalculated using the same voxel resolution and monitor units. Benchmark data was also generated prior to patient calculations to assess the accuracy of the two TPS against measurements using a micro ionization chamber in solid water. Results: Good agreement, within −0.4% for Monaco and +2.2% for iPlan were observed for measurements in water phantom. Doses in patient geometry revealed up to 9.6% differences for single target plans and 9.3% for multiple-target-multiple-isocenter plans. The average dose differences for multi-target-single-isocenter plans were approximately 1.4%. Similar differences were observed for the OARs and integral dose. Conclusion: Accuracy of the beam is crucial for the dose calculation especially in the case of small fields such as those used in SRS treatments. A superior dose calculation algorithm such as Monte Carlo, with properly commissioned beam models, which is unaffected by the lack of electronic equilibrium should be preferred for the calculation of small fields to improve accuracy.« less
Cherenkov imaging for Total Skin Electron Therapy (TSET)
NASA Astrophysics Data System (ADS)
Xie, Yunhe; Petroccia, Heather; Maity, Amit; Miao, Tianshun; Zhu, Yihua; Bruza, Petr; Pogue, Brian W.; Andreozzi, Jacqueline M.; Plastaras, John P.; Dong, Lei; Zhu, Timothy C.
2018-03-01
Total Skin Electron Therapy (TSET) utilizes high-energy electrons to treat cancers on the entire body surface. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high-energy electron beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to evaluate the dose uniformity on the surface of the patient in real-time. Each patient was also monitored during TSET via in-vivo detectors (IVD) in nine locations. Patients undergoing TSET in various conditions (whole body and half body) were imaged and analyzed, and the viability of the system to provide clinical feedback was established.
Mobit, P
2002-01-01
The energy responses of LiF-TLDs irradiated in megavoltage electron and photon beams have been determined experimentally by many investigators over the past 35 years but the results vary considerably. General cavity theory has been used to model some of the experimental findings but the predictions of these cavity theories differ from each other and from measurements by more than 13%. Recently, two groups or investigators using Monte Carlo simulations and careful experimental techniques showed that the energy response of 1 mm or 2 mm thick LiF-TLD irradiated by megavoltage photon and electron beams is not more than 5% less than unity for low-Z phantom materials like water or Perspex. However, when the depth of irradiation is significantly different from dmax and the TLD size is more than 5 mm, then the energy response is up to 12% less than unity for incident electron beams. Monte Carlo simulations of some of the experiments reported in the literature showed that some of the contradictory experimental results are reproducible with Monte Carlo simulations. Monte Carlo simulations show that the energy response of LiF-TLDs depends on the size of detector used in electron beams, the depth of irradiation and the incident electron energy. Other differences can be attributed to absolute dose determination and precision of the TL technique. Monte Carlo simulations have also been used to evaluate some of the published general cavity theories. The results show that some of the parameters used to evaluate Burlin's general cavity theory are wrong by factor of 3. Despite this, the estimation of the energy response for most clinical situations using Burlin's cavity equation agrees with Monte Carlo simulations within 1%.
Partial breast radiotherapy with simple teletherapy techniques.
Fekete, Gábor; Újhidy, Dóra; Együd, Zsófia; Kiscsatári, Laura; Marosi, Gusztáv; Kahán, Zsuzsanna; Varga, Zoltán
2015-01-01
A prospective pilot study of partial breast irradiation (PBI) with conventional vs hypofractionated schedules was set out. The study aimed to determine efficacy, acute and late side effects, and the preference of photon vs electron irradiation based on individual features. Patients were enrolled according to internationally accepted guidelines on PBI. Conformal radiotherapy plans were generated with both photon and electron beams, and the preferred technique based on dose homogeneity and the radiation exposure of healthy tissues was applied. For electron dose verification, a special phantom was constructed. Patients were randomized for fractionation schedules of 25 × 2 vs 13 × 3Gy. Skin and breast changes were registered at the time of and ≥1 year after the completion of radiotherapy. Dose homogeneity was better with photons. If the tumor bed was located in the inner quadrants, electron beam gave superior results regarding conformity and sparing of organ at risk (OAR). If the tumor was situated in the lateral quadrants, conformity was better with photons. A depth of the tumor bed ≥3.0cm predicted the superiority of photon irradiation (odds ratio [OR] = 23.6, 95% CI: 5.2 to 107.5, p < 0.001) with >90% sensitivity and specificity. After a median follow-up of 39 months, among 72 irradiated cases, 1 local relapse out of the tumor bed was detected. Acute radiodermatitis of grade I to II, hyperpigmentation, and telangiectasia developed ≥1 year after radiotherapy, exclusively after electron beam radiotherapy. The choice of electrons or photons for PBI should be based on tumor bed location; the used methods are efficient and feasible. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sumini, M.; Mostacci, D.; Tartari, A.; Mazza, A.; Cucchi, G.; Isolan, L.; Buontempo, F.; Zironi, I.; Castellani, G.
2017-11-01
In a Plasma Focus device the plasma collapses into the pinch where it reaches thermonuclear conditions for a few tens of nanoseconds, becoming a multi-radiation source. The nature of the radiation generated depends on the gas filling the chamber and the device working parameters. The self-collimated electron beam generated in the backward direction with respect to the plasma motion is one of the main radiation sources of interest also for medical applications. The electron beam may be guided against a high Z material target to produce an X-ray beam. This technique offers an ultra-high dose rate source of X-rays, able to deliver during the pinch a massive dose (up to 1 Gy per discharge for the PFMA-3 test device), as measured with EBT3 GafchromicⒸfilm tissue equivalent dosimeters. Given the stochastic behavior of the discharge process, a reliable on-line estimate of the dose-delivered is a very challenging task, in some way preventing a systematic application as a potentially interesting therapy device. This work presents an approach to linking the dose registered by the EBT3 GafchromicⒸfilms with the information contained in the signal recorded during the current discharge process. Processing the signal with the Wigner-Ville distribution, a spectrogram was obtained, displaying the information on intensity at various frequency scales, identifying the band of frequencies representative of the pinch events and define some patterns correlated with the dose.
Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns
NASA Technical Reports Server (NTRS)
Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.
2013-01-01
Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.
Antolak, J A; Cundiff, J H; Ha, C S
1998-01-01
The purpose of this report is to discuss the utilization of thermoluminescent dosimetry (TLD) in total skin electron beam (TSEB) radiotherapy to: (a) compare patient dose distributions for similar techniques on different machines, (b) confirm beam calibration and monitor unit calculations, (c) provide data for making clinical decisions, and (d) study reasons for variations in individual dose readings. We report dosimetric results for 72 cases of mycosis fungoides, using similar irradiation techniques on two different linear accelerators. All patients were treated using a modified Stanford 6-field technique. In vivo TLD was done on all patients, and the data for all patients treated on both machines was collected into a database for analysis. Means and standard deviations (SDs) were computed for all locations. Scatter plots of doses vs. height, weight, and obesity index were generated, and correlation coefficients with these variables were computed. The TLD results show that our current TSEB implementation is dosimetrically equivalent to the previous implementation, and that our beam calibration technique and monitor unit calculation is accurate. Correlations with obesity index were significant at several sites. Individual TLD results allow us to customize the boost treatment for each patient, in addition to revealing patient positioning problems and/or systematic variations in dose caused by patient variability. The data agree well with previously published TLD results for similar TSEB techniques. TLD is an important part of the treatment planning and quality assurance programs for TSEB, and routine use of TLD measurements for TSEB is recommended.
Glaser, Adam K; Zhang, Rongxiao; Gladstone, David J; Pogue, Brian W
2014-07-21
Recent studies have proposed that light emitted by the Cherenkov effect may be used for a number of radiation therapy dosimetry applications. There is a correlation between the captured light and expected dose under certain conditions, yet discrepancies have also been observed and a complete examination of the theoretical differences has not been done. In this study, a fundamental comparison between the Cherenkov emission and absorbed dose was explored for x-ray photons, electrons, and protons using both a theoretical and Monte Carlo-based analysis. Based on the findings of where dose correlates with Cherenkov emission, it was concluded that for x-ray photons the light emission would be optimally suited for narrow beam stereotactic radiation therapy and surgery validation studies, for verification of dynamic intensity-modulated and volumetric modulated arc therapy treatment plans in water tanks, near monoenergetic sources (e.g., Co-60 and brachy therapy sources) and also for entrance and exit surface imaging dosimetry of both narrow and broad beams. For electron use, Cherenkov emission was found to be only suitable for surface dosimetry applications. Finally, for proton dosimetry, there exists a fundamental lack of Cherenkov emission at the Bragg peak, making the technique of little use, although post-irradiation detection of light emission from radioisotopes could prove to be useful.
Characterisation and novel applications of glass beads as dosimeters in radiotherapy
NASA Astrophysics Data System (ADS)
Jafari, Shakardokht
The intent of external beam radiotherapy is to deliver as high a radiation dose as possible to tumour volume whilst minimizing the dose to surrounding normal tissues. Recent development of techniques such as intensity modulated radiation therapy (IMRT) and stereotactic ablative body radiotherapy (SABR) aim to extend this capability. The main feature of these techniques is to use beams which often contain small fields and very steep dose gradients. These present several dosimetric challenges including loss of charge particle equilibrium (CPE), partial occlusion of the direct-beam source and steep fall-off in dose in the penumbra. Dosimeters which are small in size relative to the radiation field dimensions are recommended for such conditions. The particular glass beads studied herein have several potentially favourable physical characteristics; they are small in size (1 to 3 mm diameter), chemically inert, inexpensive, readily available and reusable. The dosimetric characterisation of glass beads has been obtained by irradiating them in various radiotherapy beams of kilo-voltage and mega-voltage photons, megavoltage electrons, protons and carbon ions. They exhibit minimal fading compared with commercial LiF thermo-luminescent (TL) dosimeters, have high TL light transparency, high sensitivity and a large dynamic dose range that remains linear from 1 cGy to 100 Gy They have also been shown to be independent of dose rate and beam incidence angle, as well as having a low variation in response with energy over a range of megavoltage photon and electron beams. The latter characteristic is of importance, where spectral changes may occur as a function of field size and off axis location and for the use of dosimeters in postal audit situations where each institution may have slightly different quality index (QI) for their respective photon energies thus ensuring that the calibration is still valid. These properties suggest their practical use as TL dosimeters for radiotherapy dosimetry. Investigations have been performed to evaluate the feasibility of using glass beads in treatment plan verification, small field radiation dosimetry and postal dosimetry audit.
Ding, Aiping; Xing, Lei; Han, Bin
2015-07-01
To develop an efficient and robust tool for output measurement and absolute dose verification of electron beam therapy by using a high spatial-resolution and high frame-rate amorphous silicon flat panel electronic portal imaging device (EPID). The dosimetric characteristics of the EPID, including saturation, linearity, and ghosting effect, were first investigated on a Varian Clinac 21EX accelerator. The response kernels of the individual pixels of the EPID to all available electron energies (6, 9, 12, 16, and 20 MeV) were calculated by using Monte Carlo (MC) simulations, which formed the basis to deconvolve an EPID raw images to the incident electron fluence map. The two-dimensional (2D) dose distribution at reference depths in water was obtained by using the constructed fluence map with a MC simulated pencil beam kernel with consideration of the geometric and structural information of the EPID. Output factor measurements were carried out with the EPID at a nominal source-surface distance of 100 cm for 2 × 2, 3 × 3, 6 × 6, 10 × 10, and 15 × 15 cm(2) fields for all available electron energies, and the results were compared with that measured in a solid water phantom using film and a Farmer-type ion chamber. The dose distributions at a reference depth specific to each energy and the flatness and symmetry of the 10 × 10 cm(2) electron beam were also measured using EPID, and the results were compared with ion chamber array and water scan measurements. Finally, three patient cases with various field sizes and irregular cutout shapes were also investigated. EPID-measured dose changed linearly with the monitor units and showed little ghosting effect for dose rate up to 600 MU/min. The flatness and symmetry measured with the EPID were found to be consistent with ion chamber array and water scan measurements. The EPID-measured output factors for standard square fields of 2 × 2, 3 × 3, 6 × 6, 10 × 10, 15 × 15 cm(2) agreed with film and ion chamber measurements. The average discrepancy between EPID and ion chamber/film measurements was 0.81% ± 0.60% (SD) and 1.34% ± 0.75%, respectively. For the three clinical cases, the difference in output between the EPID- and ion chamber array measured values was found to be 1.13% ± 0.11%, 0.54% ± 0.10%, and 0.74% ± 0.11%, respectively. Furthermore, the γ-index analysis showed an excellent agreement between the EPID- and ion chamber array measured dose distributions: 100% of the pixels passed the criteria of 3%/3 mm. When the γ-index was set to be 2%/2 mm, the pass rate was found to be 99.0% ± 0.07%, 98.2% ± 0.14%, and 100% for the three cases. The EPID dosimetry system developed in this work provides an accurate and reliable tool for routine output measurement and dosimetric verification of electron beam therapy. Coupled with its portability and ease of use, the proposed system promises to replace the current film-based approach for fast and reliable assessment of small and irregular electron field dosimetry.
Scherf, Christian; Peter, Christiane; Moog, Jussi; Licher, Jörg; Kara, Eugen; Zink, Klemens; Rödel, Claus; Ramm, Ulla
2009-08-01
Depth dose curves and lateral dose profiles should correspond to relative dose to water in any measured point, what can be more or less satisfied with different detectors. Diamond as detector material has similar dosimetric properties like water. Silicon diodes and ionization chambers are also commonly used to acquire dose profiles. The authors compared dose profiles measured in an MP3 water phantom with a diamond detector 60003, unshielded and shielded silicon diodes 60008 and 60012 and a 0.125-cm(3) thimble chamber 233642 (PTW, Freiburg, Germany) for 6- and 25-MV photons. Electron beams of 6, 12 and 18 MeV were investigated with the diamond detector, the unshielded diode and a Markus chamber 23343. The unshielded diode revealed relative dose differences at the water surface below +10% for 6-MV and +4% for 25-MV photons compared to the diamond data. These values decreased to less than 1% within the first millimeters of water depth. The shielded diode was only required to obtain correct data of the fall-off zones for photon beams larger than 10 x 10 cm(2) because of important contributions of low-energy scattered photons. For electron radiation the largest relative dose difference of -2% was observed with the unshielded silicon diode for 6 MeV within the build-up zone. Spatial resolutions were always best with the small voluminous silicon diodes. Relative dose profiles obtained with the two silicon diodes have the same degree of accuracy as with the diamond detector.
Robar, J; Parsons, D; Berman, A; MacDonald, A
2012-06-01
This study demonstrates feasibility and advantages of volume of interest (VOI) cone beam CT (CBCT) imaging performed with an x-ray beam generated from 2.35 MeV electrons incident on a carbon linear accelerator target. The electron beam energy was reduced to 2.35 MeV in a Varian 21EX linear accelerator containing a 7.6 mm thick carbon x-ray target. Arbitrary imaging volumes were defined in the planning system to produce dynamic MLC sequences capable of tracking off-axis VOIs in phantoms. To reduce truncation artefacts, missing data in projection images were completed using a priori DRR information from the planning CT set. The feasibility of the approach was shown through imaging of an anthropomorphic phantom and the head-and-neck section of a lamb. TLD800 and EBT2 radiochromic film measurements were used to compare the VOI dose distributions with those for full-field techniques. CNR was measured for VOIs ranging from 4 to 15 cm diameter. The 2.35 MV/Carbon beam provides favorable CNR characteristics, although marked boundary and cupping artefacts arise due to truncation of projection data. These artefacts are largely eliminated using the DRR filling technique. Imaging dose was reduced by 5-10% and 75% inside and outside of the VOI, respectively, compared to full-field imaging for a cranial VOI. For the 2.35 MV/Carbon beam, CNR was shown to be approximately invariant with VOI dimension for bone and lung objects. This indicates that the advantage of the VOI approach with the low-Z target beam is substantial imaging dose reduction, not improvement of image quality. VOI CBCT using a 2.35 MV/Carbon beam is a feasible technique whereby a chosen imaging volume can be defined in the planning system and tracked during acquisition. The novel x-ray beam affords good CNR characteristics while imaging dose is localized to the chosen VOI. Funding for this project has been received from Varian Medical, Incorporated. © 2012 American Association of Physicists in Medicine.
Martin, Joannie; Beauparlant, Martin; Sauvé, Sébastien; L'Espérance, Gilles
2016-12-01
Asbestos amosite fibers were investigated to evaluate the damage caused by a transmission electron microscope (TEM) electron beam. Since elemental x-ray intensity ratios obtained by energy dispersive x-ray spectroscopy (EDS) are commonly used for asbestos identification, the impact of beam damage on these ratios was evaluated. It was determined that the magnesium/silicon ratio best represented the damage caused to the fiber. Various tests showed that most fibers have a current density threshold above which the chemical composition of the fiber is modified. The value of this threshold current density varied depending on the fiber, regardless of fiber diameter, and in some cases could not be determined. The existence of a threshold electron dose was also demonstrated. This value was dependent on the current density used and can be increased by providing a recovery period between exposures to the electron beam. This study also established that the electron beam current is directly related to the damage rate above a current density of 165 A/cm 2 . The large number of different results obtained suggest, that in order to ensure that the amosite fibers are not damaged, analysis should be conducted below a current density of 100 A/cm 2 .
Mousavi, Mehdi; Nedaei, Hassan Ali; Khoei, Samideh; Eynali, Samira; Khoshgard, Karim; Robatjazi, Mostafa; Iraji Rad, Rasoul
2017-02-01
Gold nanoparticles (GNP) have significant potential as radiosensitizer agents due to their distinctive properties. Several studies have shown that the surface modification of nanoparticles with methyl polyethylene glycol (mPEG) can increase their biocompatibility. However, the present study investigated the radiosensitization effects of mPEG-coated GNP (mPEG-GNP) in B16F10 murine melanoma cells under irradiation of 6 MeV Electron beam. The synthesized GNP were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy, and zeta potential. Enhancement of radiosensitization was evaluated by the clonogenic assay at different radiation doses of megavoltage electron beams. It was observed that mPEG-GNP with a hydrodynamic size of approximately 50 nm are almost spherical and cellular uptake occurred at all concentrations. Both proliferation efficiency and survival fraction decreased with increasing mPEG-GNP concentration. Furthermore, significant GNP sensitization occurred with a maximum dose enhancement factor of 1.22 at a concentration of 30 μM. Pegylated-GNP are taken up by B16F10 cancer cells and cause radiosensitization in the presence of 6 MeV electrons. The radiosensitization effects of GNP may probably be due to biological processes. Therefore, the underlying biological mechanisms beyond the physical dose enhancement need to be further clarified.
Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.
Chow, James C L; Leung, Michael K K
2008-06-01
The aim of this study is to investigate the influence of the body of the metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter in measuring the electron backscatter from lead. The electron backscatter factor (EBF), which is defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated by the Monte Carlo simulation using the GEANT4 code. Electron beams with energies of 4, 6, 9, and 12 MeV were used in the simulation. It was found that in the presence of the MOSFET body, the EBFs were underestimated by about 2%-0.9% for electron beam energies of 4-12 MeV, respectively. The trend of the decrease of EBF with an increase of electron energy can be explained by the small MOSFET dosimeter, mainly made of epoxy and silicon, not only attenuated the electron fluence of the electron beam from upstream, but also the electron backscatter generated by the lead underneath the dosimeter. However, this variation of the EBF underestimation is within the same order of the statistical uncertainties as the Monte Carlo simulations, which ranged from 1.3% to 0.8% for the electron energies of 4-12 MeV, due to the small dosimetric volume. Such small EBF deviation is therefore insignificant when the uncertainty of the Monte Carlo simulation is taken into account. Corresponding measurements were carried out and uncertainties compared to Monte Carlo results were within +/- 2%. Spectra of energy deposited by the backscattered electrons in dosimetric volumes with and without the lead and MOSFET were determined by Monte Carlo simulations. It was found that in both cases, when the MOSFET body is either present or absent in the simulation, deviations of electron energy spectra with and without the lead decrease with an increase of the electron beam energy. Moreover, the softer spectrum of the backscattered electron when lead is present can result in a reduction of the MOSFET response due to stronger recombination in the SiO2 gate. It is concluded that the MOSFET dosimeter performed well for measuring the electron backscatter from lead using electron beams. The uncertainty of EBF determined by comparing the results of Monte Carlo simulations and measurements is well within the accuracy of the MOSFET dosimeter (< +/- 4.2%) provided by the manufacturer.
Formation of metal nanoparticles in MgF2, CaF2 and BaF2 crystals under the electron beam irradiation
NASA Astrophysics Data System (ADS)
Bochkareva, Elizaveta S.; Sidorov, Alexander I.; Yurina, Uliana V.; Podsvirov, Oleg A.
2017-07-01
It is shown experimentally that electron beam action with electrons energies of 50 and 70 keV on MgF2, CaF2 and BaF2 crystals results in local formation in the crystal near-surface layer of Mg, Ca or Ba nanoparticles which possess plasmon resonance. In the case of MgF2 spheroidal nanoparticles are formed, in the cases of CaF2 and BaF2 - spherical. The formation of metal nanoparticles is confirmed by computer simulation in dipole quasistatic approximation. The dependence of absorption via electron irradiation dose is non-linear. It is caused by the increase of nanoparticles concentration and by the increase of nanoparticles sizes during irradiation. In the irradiated zones of MgF2 crystals, for irradiation doses less than 80 mC/cm2, the intense luminescence in a visible range appears. The practical application of fabricated composite materials for multilevel optical information recording is discussed.
A new radiotherapy surface dose detector:the MOSFET.
Butson, M J; Rozenfeld, A; Mathur, J N; Carolan, M; Wong, T P; Metcalfe, P E
1996-05-01
Radiotherapy x-ray and electron beam surface doses are accurately measurable by use of a MOS-FET detector system. The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is approximately 200-microns in diameter and consists of a 0.5-microns Al electrode on top of a 1-microns SiO2 and 300-microns Si substrate. Results for % surface dose were within +/- 2% compared to the Attix chamber and within +/- 3% of TLD extrapolation results for normally incident beams. Detectors were compared using different energies, field size, and beam modifying devices such as block trays and wedges. Percentage surface dose for 10 x 10-cm and 40 x 40-cm field size for 6-MV x rays at 100-cm SSD using the MOSFET were 16% and 42% of maximum, respectively. Factors such as its small size, immediate retrieval of results, high accuracy attainable from low applied doses, and as the MOSFET records its dose history make it a suitable in vivo dosimeter where surface and skin doses need to be determined. This can be achieved within part of the first fraction of dose (i.e., only 10 cGy is required.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Lixin; Jiang, Runqing; Osei, Ernest K.
2014-08-15
Flattening filter free (FFF) beams have been adopted by many clinics and used for patient treatment. However, compared to the traditional flattened beams, we have limited knowledge of FFF beams. In this study, we successfully modeled the 6 MV FFF beam for Varian TrueBeam accelerator with the Monte Carlo (MC) method. Both the percentage depth dose and profiles match well to the Golden Beam Data (GBD) from Varian. MC simulations were then performed to predict the relative output factors. The in-water output ratio, Scp, was simulated in water phantom and data obtained agrees well with GBD. The in-air output ratio,more » Sc, was obtained by analyzing the phase space placed at isocenter, in air, and computing the ratio of water Kerma rates for different field sizes. The phantom scattering factor, Sp, can then be obtained from the traditional way of taking the ratio of Scp and Sc. We also simulated Sp using a recently proposed method based on only the primary beam dose delivery in water phantom. Because there is no concern of lateral electronic disequilibrium, this method is more suitable for small fields. The results from both methods agree well with each other. The flattened 6 MV beam was simulated and compared to 6 MV FFF. The comparison confirms that 6 MV FFF has less scattering from the Linac head and less phantom scattering contribution to the central axis dose, which will be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems.« less
NASA Astrophysics Data System (ADS)
Kim, Junheon; Chung, Soon-Oh; Jang, Sin Ae; Jang, Miyeon; Park, Chung Gyoo
2015-07-01
Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), is an economically important and polyphagous pest, which harms various kinds of food crops and important agricultural plants, such as cotton and paprika. Effects of electron beam irradiation at six dose levels between 50 and 350 Gy on the egg (24-48 h old), the larval (4-5th instar), and the pupal (7-d old for female, 5-d old for male) development, and on the adult (1-d old) reproduction were tested to identify a potential quarantine treatment dose. Increased doses of irradiation on eggs decreased egg hatchability, pupation and adult emergence and increased larval period. ED99 values for inhibition of hatching, pupation and emergence were 460.6, 236.9 and 197.8 Gy, respectively. When larvae were irradiated with more than 280 Gy, no larvae could develop into pupae. ED99 values for inhibition of pupation and adult emergence were 265.6 and 189.6 Gy, respectively. Even though the irradiation on pupa did not completely inhibit adult emergence, most of the pupae emerged to deformed adults. When adults were irradiated, fecundity was not affected. However, F1 egg hatching was completely inhibited at the dose of 350 Gy. ED99 value for inhibition of adult emergence was estimated at 366.5 Gy. Our results suggest that electron beam irradiation could be recommendable as an alternative to MB and as a phytosanitary treatment for quarantine. A treatment dose of less than or equal to 220 Gy is suggested as a potential quarantine treatment to H. armigera egg for prevention of pupation and to larva for prevention of adult emerge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patwe, P; Mhatre, V; Dandekar, P
Purpose: 3DVH software is a patient specific quality assurance tool which estimates the 3D dose to the patient specific geometry with the help of Planned Dose Perturbation algorithm. The purpose of this study is to evaluate the impact of HU value of ArcCHECK phantom entered in Eclipse TPS on 3D dose & DVH QA analysis. Methods: Manufacturer of ArcCHECK phantom provides CT data set of phantom & recommends considering it as a homogeneous phantom with electron density (1.19 gm/cc or 282 HU) close to PMMA. We performed this study on Eclipse TPS (V13, VMS) & trueBEAM STx VMS Linac &more » ArcCHECK phantom (SNC). Plans were generated for 6MV photon beam, 20cm×20cm field size at isocentre & SPD (Source to phantom distance) of 86.7 cm to deliver 100cGy at isocentre. 3DVH software requires patients DICOM data generated by TPS & plan delivered on ArcCHECK phantom. Plans were generated in TPS by assigning different HU values to phantom. We analyzed gamma index & the dose profile for all plans along vertical down direction of beam’s central axis for Entry, Exit & Isocentre dose. Results: The global gamma passing rate (2% & 2mm) for manufacturer recommended HU value 282 was 96.3%. Detector entry, Isocentre & detector exit Doses were 1.9048 (1.9270), 1.00(1.0199) & 0.5078(0.527) Gy for TPS (Measured) respectively.The global gamma passing rate for electron density 1.1302 gm/cc was 98.6%. Detector entry, Isocentre & detector exit Doses were 1.8714 (1.8873), 1.00(0.9988) & 0.5211(0.516) Gy for TPS (Measured) respectively. Conclusion: Electron density value assigned by manufacturer does not hold true for every user. Proper modeling of electron density of ArcCHECK in TPS is essential to avoid systematic error in dose calculation of patient specific QA.« less
Characterization of the phantom material virtual water in high-energy photon and electron beams.
McEwen, M R; Niven, D
2006-04-01
The material Virtual Water has been characterized in photon and electron beams. Range-scaling factors and fluence correction factors were obtained, the latter with an uncertainty of around 0.2%. This level of uncertainty means that it may be possible to perform dosimetry in a solid phantom with an accuracy approaching that of measurements in water. Two formulations of Virtual Water were investigated with nominally the same elemental composition but differing densities. For photon beams neither formulation showed exact water equivalence-the water/Virtual Water dose ratio varied with the depth of measurement with a difference of over 1% at 10 cm depth. However, by using a density (range) scaling factor very good agreement (<0.2%) between water and Virtual Water at all depths was obtained. In the case of electron beams a range-scaling factor was also required to match the shapes of the depth dose curves in water and Virtual Water. However, there remained a difference in the measured fluence in the two phantoms after this scaling factor had been applied. For measurements around the peak of the depth-dose curve and the reference depth this difference showed some small energy dependence but was in the range 0.1%-0.4%. Perturbation measurements have indicated that small slabs of material upstream of a detector have a small (<0.1% effect) on the chamber reading but material behind the detector can have a larger effect. This has consequences for the design of experiments and in the comparison of measurements and Monte Carlo-derived values.
Electron beam technology for modifying the functional properties of maize starch
NASA Astrophysics Data System (ADS)
Nemţanu, M. R.; Minea, R.; Kahraman, K.; Koksel, H.; Ng, P. K. W.; Popescu, M. I.; Mitru, E.
2007-09-01
Maize starch is a versatile biopolymer with a wide field of applications (e.g. foods, pharmaceutical products, adhesives, etc.). Nowadays there is a continuous and intensive search for new methods and techniques to modify its functional properties due to the fact that native form of starch may exhibit some disadvantages in certain applications. Radiation technology is frequently used to change the properties of different polymeric materials. Thus, the goal of the work is to discuss the application of accelerated electron beams on maize starch in the view of changing some of its functional properties. Maize starch has been irradiated with doses up to 52.15 kGy by using electron beam technology and the modifications of differential scanning calorimetry (DSC) and pasting characteristics, paste clarity, freezing and thawing stability as well as colorimetric characteristics have been investigated. The results of the study revealed that the measured properties can be modified by electron beam treatment and, therefore, this method can be an efficient and ecological alternative to obtain modified maize starch.
Design of thermal neutron beam based on an electron linear accelerator for BNCT.
Zolfaghari, Mona; Sedaghatizadeh, Mahmood
2016-12-01
An electron linear accelerator (Linac) can be used for boron neutron capture therapy (BNCT) by producing thermal neutron flux. In this study, we used a Varian 2300 C/D Linac and MCNPX.2.6.0 code to simulate an electron-photoneutron source for use in BNCT. In order to decelerate the produced fast neutrons from the photoneutron source, which optimize the thermal neutron flux, a beam-shaping assembly (BSA) was simulated. After simulations, a thermal neutron flux with sharp peak at the beam exit was obtained in the order of 3.09×10 8 n/cm 2 s and 6.19×10 8 n/cm 2 s for uranium and enriched uranium (10%) as electron-photoneutron sources respectively. Also, in-phantom dose analysis indicates that the simulated thermal neutron beam can be used for treatment of shallow skin melanoma in time of about 85.4 and 43.6min for uranium and enriched uranium (10%) respectively. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Kim, S.; Russell, M.; Henry, M.; Kim, S. S.; Naik, R. R.; Voevodin, A. A.; Jang, S. S.; Tsukruk, V. V.; Fedorov, A. G.
2015-09-01
We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an ``n-p-n'' junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 1018 e- per cm2). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 1019 e- per cm2 results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, ``direct-write'' functional patterning of graphene-based electronic devices with potential for on-demand re-configurability.We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an ``n-p-n'' junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 1018 e- per cm2). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 1019 e- per cm2 results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, ``direct-write'' functional patterning of graphene-based electronic devices with potential for on-demand re-configurability. Electronic supplementary information (ESI) available: Optimization of a PMMA-mediated wet transfer method of graphene, transfer characteristics of all the channels, raw data of drain-source current measured by sweeping a backgate voltage and an AFM topography image and cross-sectional profiles of Fig. 4 and the corresponding electrical measurement along with an estimation of carbon diffusion coefficient. See DOI: 10.1039/c5nr04063a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, J; Jung, J; Yi, B
2015-06-15
Purpose: To test a method to reconstruct a four-dimensional (4D) dose distribution using the correlation of pre-calculated 4D electronic portal imaging device (EPID) images and measured cine-EPID images. Methods: 1. A phantom designed to simulate a tumor in lung (a polystyrene block with 3.0 cm diameter embedded in cork) was placed on a sinusoidally moving platform with 2 cm amplitude and 4 sec/cycle. Ten-phase 4D CT images were acquired for treatment planning and dose reconstruction. A 6MV photon beam was irradiated on the phantom with static (field size=5×8.5 cm{sup 2}) and dynamic fields (sliding windows, 10×10 cm{sup 2}, X1 MLCmore » closing in parallel with the tumor movement). 2. 4D and 3D doses were calculated forwardly on PTV (1 cm margin). 3. Dose images on EPID under the fields were calculated for 10 phases. 4. Cine EPID images were acquired during irradiation. 5. Their acquisition times were correlated to the phases of the phantom at which irradiation occurred by inter-comparing calculated “reference” EPID images with measured images (2D gamma comparison). For the dynamic beam, the tumor was hidden under MLCs during a portion of irradiation time; the correlation performed when the tumor was visible was extrapolated. 6. Dose for each phase was reconstructed on the 4D CT images and summed over all phases. The summation was compared with forwardly calculated 4D and 3D dose distributions. Monte Carlo methods were used for all calculations. Results: For the open and dynamic beams, the 4D reconstructed doses showed the pass rates of 92.7 % and 100 %, respectively, at the isocenter plane given 3% / 3 mm criteria. The better agreement of the dynamic beam was from its dose gradient which blurred the otherwise sharp difference between forward and reconstructed doses. This also contributed slightly better agreement in DVH of PTV. Conclusion: The feasibility of 4D reconstruction was demonstrated.« less
NASA Astrophysics Data System (ADS)
Andreo, Pedro; Saiful Huq, M.; Westermark, Mathias; Song, Haijun; Tilikidis, Aris; DeWerd, Larry; Shortt, Ken
2002-09-01
A new international Code of Practice for radiotherapy dosimetry co-sponsored by several international organizations has been published by the IAEA, TRS-398. It is based on standards of absorbed dose to water, whereas previous protocols (TRS-381 and TRS-277) were based on air kerma standards. To estimate the changes in beam calibration caused by the introduction of TRS-398, a detailed experimental comparison of the dose determination in reference conditions in high-energy photon and electron beams has been made using the different IAEA protocols. A summary of the formulation and reference conditions in the various Codes of Practice, as well as of their basic data, is presented first. Accurate measurements have been made in 25 photon and electron beams from 10 clinical accelerators using 12 different cylindrical and plane-parallel chambers, and dose ratios under different conditions of TRS-398 to the other protocols determined. A strict step-by-step checklist was followed by the two participating clinical institutions to ascertain that the resulting calculations agreed within tenths of a per cent. The maximum differences found between TRS-398 and the previous Codes of Practice TRS-277 (2nd edn) and TRS-381 are of the order of 1.5-2.0%. TRS-398 yields absorbed doses larger than the previous protocols, around 1.0% for photons (TRS-277) and for electrons (TRS-381 and TRS-277) when plane-parallel chambers are cross-calibrated. For the Markus chamber, results show a very large variation, although a fortuitous cancellation of the old stopping powers with the ND,w/NK ratios makes the overall discrepancy between TRS-398 and TRS-277 in this case smaller than for well-guarded plane-parallel chambers. Chambers of the Roos-type with a 60Co ND,w calibration yield the maximum discrepancy in absorbed dose, which varies between 1.0% and 1.5% for TRS-381 and between 1.5% and 2.0% for TRS-277. Photon beam calibrations using directly measured or calculated TPR20,10 from a percentage dose data at SSD = 100 cm were found to be indistinguishable. Considering that approximately 0.8% of the differences between TRS-398 and the NK-based protocols are caused by the change to the new type of standards, the remaining difference in absolute dose is due either to a close similarity in basic data or to a fortuitous cancellation of the discrepancies in data and type of chamber calibration. It is emphasized that the NK-ND,air and ND,w formalisms have very similar uncertainty when the same criteria are used for both procedures. Arguments are provided in support of the recommendation for a change in reference dosimetry based on standards of absorbed dose to water.
Zhang, Rongxiao; Gladstone, David J.; Williams, Benjamin B.; Glaser, Adam K.; Pogue, Brian W.; Jarvis, Lesley A.
2016-01-01
Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R2 = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial angles, to only 9.8% with the angles optimized. A linear relationship between angle spread and SSD was observed, ranging from 35° at 441 cm, to 39° at 300 cm, with no significant variation in percent-depth dose at midline (R2 = 0.998). For patient studies, factors influencing in vivo correlation between Cherenkov intensity and measured surface dose are still being investigated. Conclusions: Cherenkov intensity correlates to relative dose measured at depth of maximum dose in a uniform, flat phantom. Imaging of phantoms can thus be used to analyze and optimize TSET treatment geometry more extensively and rapidly than thermoluminescent dosimeters or ionization chambers. This work suggests that there could be an expanded role for Cherenkov imaging as a tool to efficiently improve treatment protocols and as a potential verification tool for routine monitoring of unique patient treatments. PMID:26843259
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreozzi, Jacqueline M., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org; Glaser, Adam K.; Zhang, Rongxiao
2016-02-15
Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, compositemore » images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R{sup 2} = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial angles, to only 9.8% with the angles optimized. A linear relationship between angle spread and SSD was observed, ranging from 35° at 441 cm, to 39° at 300 cm, with no significant variation in percent-depth dose at midline (R{sup 2} = 0.998). For patient studies, factors influencing in vivo correlation between Cherenkov intensity and measured surface dose are still being investigated. Conclusions: Cherenkov intensity correlates to relative dose measured at depth of maximum dose in a uniform, flat phantom. Imaging of phantoms can thus be used to analyze and optimize TSET treatment geometry more extensively and rapidly than thermoluminescent dosimeters or ionization chambers. This work suggests that there could be an expanded role for Cherenkov imaging as a tool to efficiently improve treatment protocols and as a potential verification tool for routine monitoring of unique patient treatments.« less
Coupled particle-in-cell and Monte Carlo transport modeling of intense radiographic sources
NASA Astrophysics Data System (ADS)
Rose, D. V.; Welch, D. R.; Oliver, B. V.; Clark, R. E.; Johnson, D. L.; Maenchen, J. E.; Menge, P. R.; Olson, C. L.; Rovang, D. C.
2002-03-01
Dose-rate calculations for intense electron-beam diodes using particle-in-cell (PIC) simulations along with Monte Carlo electron/photon transport calculations are presented. The electromagnetic PIC simulations are used to model the dynamic operation of the rod-pinch and immersed-B diodes. These simulations include algorithms for tracking electron scattering and energy loss in dense materials. The positions and momenta of photons created in these materials are recorded and separate Monte Carlo calculations are used to transport the photons to determine the dose in far-field detectors. These combined calculations are used to determine radiographer equations (dose scaling as a function of diode current and voltage) that are compared directly with measured dose rates obtained on the SABRE generator at Sandia National Laboratories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patwe, P; Mhatre, V; Dandekar, P
Purpose: Indigenous Farmer type chamber FAR 65 GB is a reference class 0.6 cc ion chamber. It can be used for dosimetric evaluation of photon and high energy electron beams. We studied dosimetric characteristics of the chamber for 6MV and 10MV Flattening filter free FFF photon beams available on trueBEAM STx Linac. Methods: The study was carried out on trueBEAM STx Linac having 6 and 10 MV FFF photon beam with maximum dose rate 1400 and 2400 MU per min respectively. The dosimetric device to be evaluated is Rosalina Instruments FAR 65-GB Ion Chamber with active volume 0.65 cc, totalmore » active length 23.1cm, inner diameter of cylinder 6.2mm, wall thickness 0.4mm, inner electrode diameter 1mm. Inner and outer electrodes are made from Aluminium 2.7 gm per cc and graphite 1.82 gm per cc respectively. The ion chamber was placed along central axis of beam at 10cm depth and irradiated for 10cm × 10cm field size at SAD of 100 cm in plastic phantom. We studied Precision, Dose Linearity, Dose Rate dependence, directional dependence, Recombination effect. Recombination effect was determined using standard two-voltage method. Results: 1. Measurements were reproducible std deviation of 0.0105 and type A uncertainty 0.003265 under same set of reference conditions 2. Chamber exhibit dose linearity over a wider dose range. 3. Chamber shows dose rate independence for all available dose rate range. 4. Response of chamber with the angle of incidence of radiation is constant. 5. Recombination correction factors were 1.01848 and 1.02537 for dose rate 1400 and 2400 MU per min resp. Conclusion: Our study reveals that the chamber is prone to saturation effect at dose rate of 2400 MU per min. FAR 65-GB can be used for reference dosimetry of FFF MV photon beam with proper calculation of recombination effect.« less
Localized conductive patterning via focused electron beam reduction of graphene oxide
NASA Astrophysics Data System (ADS)
Kim, Songkil; Kulkarni, Dhaval D.; Henry, Mathias; Zackowski, Paul; Jang, Seung Soon; Tsukruk, Vladimir V.; Fedorov, Andrei G.
2015-03-01
We report on a method for "direct-write" conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.
A Radiobiological Analysis of Multicenter Data for Postoperative Keloid Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flickinger, John C., E-mail: flickingerjc@upmc.ed
2011-03-15
Purpose: To identify factors significantly affecting recurrence rates after postoperative external beam radiotherapy (XRT) of keloids, and to delineate any radiation dose response and effects of radiation dose per fraction. Methods and Materials: A comprehensive literature review was performed to compile a database of 2,515 resected keloids (36.9% earlobe). Postoperative XRT was 45- to 100-kV X-rays in 27.0% or 120- to 250-kV X-rays in 11.1%, Co-60 in 1.9%, Sr-90 in 4.7%, 1.5- to 9-MeV electrons in 26.5%, and no XRT in 28.8%. In the 1,791 irradiated patients, the median radiation parameters were as follows: total dose, 15 Gy (range, 6-30more » Gy); dose per fraction, 5.0 Gy (range, 2-15 Gy); fractions, 3 (range, 1-10); and time, 7 days (range, 0-33 days). Results: Multivariate stepwise logistic regression correlated decreased keloid recurrence with earlobe location (p = 1.98E-10; odds ratio, 0.34), biologically effective dose (p = 1.01E-27), and treatment with electron beam or Co-60 vs. other techniques (p = 0.0014; odds ratio, 0.72). Different radiobiological models calculated values of {alpha}/{beta} = 1.12 to 2.86 (mean, 2.08) and time (repopulation) correction factors for biologically effective dose from 0.98 to 2.13 Gy per day (mean, 1.34) starting 10 days after surgery. Different models (with {alpha}/{beta} = 2.08) predicted that doses needed for 90% and 95% control with 3 fractions of postoperative electron beam were 16.0 to 16.2 Gy and 18.3 to 19.2 Gy, respectively, in less than 10 days for earlobe keloids and 21.5 to 22.2 Gy and 23.4 to 24.8 Gy, respectively, in less than 10 days for other sites. Conclusions: Postoperative keloid radiotherapy requires moderately high doses and optimal technique to be effective. The relatively low {alpha}/{beta} ratio indicates that radiotherapy with a limited number of fractions and high doses per fraction is the best strategy.« less
Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho
2016-01-01
An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100–130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130–140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization. PMID:27349719
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Al-Azhar University, Cairo; Jin, L
2014-06-15
Purpose: Electron arc therapy has long been proposed as the most suitable technique for the treatment of superficial tumors that follow circularly curved surfaces. However it was challenged by unsuitability of the conventional applicators and the lack of adequate 3-D dose calculation tools for arc electron beams in the treatment planning systems (TPS). Now with the availability of an electron specific multi-leaf collimator (eMLC) and an in-house Monte Carlo (MC) based TPS, we were motivated to investigate more advanced modulated electron arc (MeARC) therapy and its beneficial outcome. Methods: We initiated the study by a film measurement conducted in amore » head and neck phantom, where we delivered electron arcs in a step and shoot manner using the light field as a guide to avoid fields abutments. This step was done to insure enough clearance for the arcs with eMLC. MCBEAM and MCPLAN MC codes were used for the treatment head simulation and phantom dose calculation, respectively. Treatment plans were generated for targets drawn in real patient CTs and head and neck phantom. We utilized beams eye view available from a commercial planning system to create beamlets having same isocenter and adjoined at the scalp surface. Then dose-deposition coefficients from those beamlets were calculated for all electron energies using MCPLAN. An in-house optimization code was then used to find the optimum weights needed from individual beamlets. Results: MeARC showed a nicely tailored dose distribution around the circular curved target on the scalp. Some hot spots were noticed and could be attributed to fields abutment problem owing to the bulging nature of electron profiles. Brain dose was shown to be at lower levels compared to photon treatment. Conclusion: MeARC was shown to be a promising modality for treating scalp cases and could be beneficial to all superficial tumors with a circular curvature.« less
Improving enzymatic hydrolysis of industrial hemp ( Cannabis sativa L.) by electron beam irradiation
NASA Astrophysics Data System (ADS)
Shin, Soo-Jeong; Sung, Yong Joo
2008-09-01
The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose.
Effects of ionizing radiations on a pharmaceutical compound, chloramphenicol
NASA Astrophysics Data System (ADS)
Varshney, L.; Patel, K. M.
1994-05-01
Chloramphenicol, a broad spectrum antibiotic, has been irradiated using Cobalt-60 γ radiation and electron beam at graded radiation doses upto 100 kGy. Several degradation products and free radicals are formed on irradiation. Purity, degradation products, free radicals, discolouration, crystallinity, solubility and entropy of radiation processing have been investigated. Aqueous solutions undergo extensive radiolysis even at low doses. Physico-chemical, microbiological and toxicological tests do not show significant degradation at sterilization dose. High performance liquid chromatography (HPLC), differential scanning calorimetry (DSC), UV-spectrophotometry, diffuse reflectance spectroscopy (DRS) and electron spin resonance spectroscopy (ESR) techniques were employed for the investigations.
Alves, M J; Fernandes, Â; Barreira, J C M; Lourenço, I; Fernandes, D; Moura, A; Ribeiro, A R; Salgado, J; Antonio, A; Ferreira, I C F R
2015-03-01
The effects of irradiation (gamma-rays and electron-beams), up to 10 kGy, in the antimicrobial activity of mushroom species (Boletus edulis, Hydnum repandum, Macrolepiota procera and Russula delica) differently processed (fresh, dried, freeze) were evaluated. Clinical isolates with different resistance profiles from hospitalized patients in Local Health Unit of Mirandela, Northeast of Portugal, were used as target micro-organisms. The mushrooms antimicrobial activity did not suffer significant changes that might compromise applying irradiation as a possible mushroom conservation technology. Two kGy dose (independently of using gamma-rays or electron-beams) seemed to be the most suitable choice to irradiate mushrooms. This study provides important results in antimicrobial activity of extracts prepared from irradiated mushroom species. © 2014 The Society for Applied Microbiology.
Kim, Hyun-Joo; Choi, Jong-il; Kim, Duk-Jin; Kim, Jae-Hun; Soo Chun, Byeong; Hyun Ahn, Dong; Sun Yook, Hong; Byun, Myung-Woo; Kim, Mi-Jung; Shin, Myung-Gon; Lee, Ju-Woon
2009-01-01
Although the byproduct from Hizikia fusiformis industry had many nutrients, it is being wasted. In this study, the physiological activities of cooking drip extracts from H. fusiformis (CDHF) were determined to investigate the effect of a gamma and an electron beam irradiations. DPPH radical scavenging activity and tyrosinase and ACE inhibition effects of the gamma and electron beam irradiated CDHF extracts were increased with increasing irradiation dose. These were reasoned by the increase in the content of the total polyphenolic compound of CDHF by the gamma and electron beam irradiation. There were no differences for the radiation types. These results show that ionizing radiation could be used for enhancing the functional activity of CDHF which is a major by-product in Hizikia fusiformis processing, in various applications.
Investigation of photon beam models in heterogeneous media of modern radiotherapy.
Ding, W; Johnston, P N; Wong, T P Y; Bubb, I F
2004-06-01
This study investigates the performance of photon beam models in dose calculations involving heterogeneous media in modern radiotherapy. Three dose calculation algorithms implemented in the CMS FOCUS treatment planning system have been assessed and validated using ionization chambers, thermoluminescent dosimeters (TLDs) and film. The algorithms include the multigrid superposition (MGS) algorithm, fast Fourier Transform Convolution (FFTC) algorithm and Clarkson algorithm. Heterogeneous phantoms used in the study consist of air cavities, lung analogue and an anthropomorphic phantom. Depth dose distributions along the central beam axis for 6 MV and 10 MV photon beams with field sizes of 5 cm x 5 cm and 10 cm x 10 cm were measured in the air cavity phantoms and lung analogue phantom. Point dose measurements were performed in the anthropomorphic phantom. Calculated results with three dose calculation algorithms were compared with measured results. In the air cavity phantoms, the maximum dose differences between the algorithms and the measurements were found at the distal surface of the air cavity with a 10 MV photon beam and a 5 cm x 5 cm field size. The differences were 3.8%. 24.9% and 27.7% for the MGS. FFTC and Clarkson algorithms. respectively. Experimental measurements of secondary electron build-up range beyond the air cavity showed an increase with decreasing field size, increasing energy and increasing air cavity thickness. The maximum dose differences in the lung analogue with 5 cm x 5 cm field size were found to be 0.3%. 4.9% and 6.9% for the MGS. FFTC and Clarkson algorithms with a 6 MV photon beam and 0.4%. 6.3% and 9.1% with a 10 MV photon beam, respectively. In the anthropomorphic phantom, the dose differences between calculations using the MGS algorithm and measurements with TLD rods were less than +/-4.5% for 6 MV and 10 MV photon beams with 10 cm x 10 cm field size and 6 MV photon beam with 5 cm x 5 cm field size, and within +/-7.5% for 10 MV with 5 cm x 5 cm field size, respectively. The FFTC and Clarkson algorithms overestimate doses at all dose points in the lung of the anthropomorphic phantom. In conclusion, the MGS is the most accurate dose calculation algorithm of investigated photon beam models. It is strongly recommended for implementation in modern radiotherapy with multiple small fields when heterogeneous media are in the treatment fields.
Elenes, Egleide Y; Hunter, Shawn A
2014-08-20
Allograft safety is contingent on effective sterilization. However, current sterilization methods have been associated with decreased biomechanical strength and higher failure rates of soft-tissue allografts. In this study, electron beam (e-beam) sterilization was explored as an alternative sterilization method to preserve biomechanical integrity. We hypothesized that e-beam sterilization would not significantly alter the biomechanical properties of tendon allograft compared with aseptic, nonsterilized controls and gamma-irradiated grafts. Separate sets of forty fresh-frozen tibialis tendon allografts (four from each of ten donors) and forty bisected bone-patellar tendon-bone (BTB) allografts (four from each of ten donors) were randomly assigned to four study groups. One group received a 17.1 to 21.0-kGy gamma radiation dose; two other groups were sterilized with an e-beam at either a high (17.1 to 21.0-kGy) or low (9.2 to 12.2-kGy) dose. A fourth group served as nonsterilized controls. Each graft was cyclically loaded to 200 N of tension for 2000 cycles at a frequency of 2 Hz, allowed to relax for five minutes, and then tested in tension until failure at a 100%/sec strain rate. One-way analysis of variance testing was used to identify significant differences. Tibialis tendons sterilized with both e-beam treatments and with gamma irradiation exhibited values for cyclic tendon elongation, maximum load, maximum displacement, stiffness, maximum stress, maximum strain, and elastic modulus that were not significantly different from those of nonsterilized controls. BTB allografts sterilized with the high e-beam dose and with gamma irradiation were not significantly different in cyclic tendon elongation, maximum load, maximum displacement, stiffness, maximum stress, maximum strain, and elastic modulus from nonsterilized controls. BTB allografts sterilized with the e-beam at the lower dose were significantly less stiff than nonsterilized controls (p = 0.014) but did not differ from controls in any other properties. The difference in stiffness likely resulted from variations in tendon size rather than the treatments, as the elastic moduli of the groups were similar. The biomechanical properties of tibialis and BTB allografts sterilized with use of an e-beam at a dose range of 17.1 to 21.0 kGy were not different from those of aseptic, nonsterilized controls or gamma-irradiated allografts. E-beam sterilization can be a viable method to produce safe and biomechanically uncompromised soft-tissue allografts. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Electron beam initiated modification of acrylic elastomer in presence of polyfunctional monomers
NASA Astrophysics Data System (ADS)
Vijayabaskar, V.; Bhattacharya, S.; Tikku, V. K.; Bhowmick, Anil K.
2004-12-01
The structural changes of an acrylic rubber (ACM) in presence and absence of polyfunctional monomers like trimethylolpropane triacrylate, tripropyleneglycol diacrylate, trimethylolmethane tetraacrylate and trimethylolpropane trimethacrylate at different doses of electron beam (EB) irradiations were investigated with the help of FTIR spectroscopy (in the attenuated total reflectance mode) and sol-gel analysis. As the radiation dose increases, the concentration of carbonyl group increases in the ACM rubber due to aerial oxidation. This is corroborated from the increase in the absorbance values at 1734 and 1160 cm -1, which are due to carbonyl and C-O-C stretching frequencies, respectively. The increase in crosslinking is revealed by the increase in percentage gel content with radiation dose. The lifetime of spurs formed and the critical dose, an important criterion for overlapping of spurs have been determined for both grafted and ungrafted ACM rubber using a mathematical model. The predominance of crosslinking by electronic stopping with energetic EB projectile and the increase in effective radius of crosslinking have also been verified by this model. The doses at which the synergistic occurrence of both dislinking and endlinking steps originate have been calculated using linear energy transfer of EB. The ratio of scissioning to crosslinking for ACM rubber has been determined by using Charlesby-Pinner equation. The mechanical properties have been studied for different modified and unmodified systems and the tensile strength is found to increase with grafting of polyfunctional monomers.
Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A
NASA Technical Reports Server (NTRS)
Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.
1986-01-01
Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a Cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose.
Feasibility Studies of Parametric X-rays Use in a Medical Environment
NASA Astrophysics Data System (ADS)
Sones, Bryndol; Danon, Yaron; Blain, Ezekiel
2009-03-01
Parametric X-rays (PXR) are produced from the interaction of relativistic electrons with the periodic structure of crystal materials. Smooth X-ray energy tunability is achieved by rotating the crystal with respects to the electron beam direction. Experiments at the Rensselaer Polytechnic Institute 60-MeV LINAC produce quasi-monochromatic X-rays (6-35 keV) from various target crystals to include highly oriented pyrolytic graphite (HOPG), LiF, Si, Ge, Cu, and W using electron beam currents up to 6 uA. These experiments demonstrate the first PXR images and some of the merits of thin metallic crystals. Recent experiments with a 100-μm thick Cu crystal improve the Cu PXR (with energy ˜12 keV) to Cu fluorescence ratio by a factor of 20 compared to a 1 mm-thick Cu crystal. This study uses Monte Carlo techniques to investigate (1) PXR dose compared to emissions from simulated Mo, Rh, and W anodes for mammography applications and (2) electron scattering effects when considering LiF111, Si111, and Cu111 PXR production using electron beams with energies of 20-30 MeV. Advantages in using monochromatic PXR compared to X-rays from Mo and Rh anodes in mammography applications result in a dose per incident photon reduction by a factor of 2. Using 20 MeV electrons, the thinner Cu111 crystal for 15 keV PXR production results in an electron scattering angle of 30.7+/-0.2 mrad offering the best potential for PXR from lower energy electrons.
Soft-tissue reactions following irradiation of primary brain and pituitary tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglan, R.J.; Marks, J.E.
1981-04-01
One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface.more » Patients treated with small portals (<70 cm/sup 2/) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams.« less
Hashim, S; Al-Ahbabi, S; Bradley, D A; Webb, M; Jeynes, C; Ramli, A T; Wagiran, H
2009-03-01
Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.
NASA Astrophysics Data System (ADS)
Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.
2000-08-01
A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.
NASA Astrophysics Data System (ADS)
Yu, Kyeong Min; Moon, Hye Ji; Ryu, Min Ki; Cho, Kyoung Ik; Yun, Eui-Jung; Bae, Byung Seong
2012-09-01
Under white light illumination, amorphous indium-gallium-zinc oxide (a-IGZO)-based thin-film transistors (TFTs) showed a large negative shift of threshold voltage of more than -15 V depending on the process conditions. We investigated the influences of both gate bias and white light illumination on device properties of IGZO-based TFTs untreated and treated with high-energy electron beam irradiation (HEEBI). The TFTs were treated with HEEBI in air at room temperature (RT), electron beam energy of 0.8 MeV, and a dose of 1×1014 electrons/cm2. The HEEBI-treated TFTs showed an improved stability under negative bias illumination stress (NBIS) and positive bias illumination stress (PBIS) compared with non-HEEBI-treated TFTs, suggesting that the acceptor-like defects might be generated by HEEBI treatment near the valence band edge.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan
2013-09-01
High energy electron beam (HEEB) irradiation was used to disperse nanoscale zero-valent iron (NZVI) for reduction of Crvi to Criii in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.
Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.
Donatini, Fabrice; Pernot, Julien
2018-03-09
In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.
Magnetic properties of square Py nanowires: Irradiation dose and geometry dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehrmann, A., E-mail: andrea.ehrmann@fh-bielefeld.de; Blachowicz, T.; Komraus, S.
Arrays of ferromagnetic patterned nanostructures with single particle lateral dimensions between 160 nm and 400 nm were created by electron-beam lithography. The fourfold particles with rectangular-shaped walls around a square open area were produced from permalloy. Their magnetic properties were measured using the longitudinal magneto-optical Kerr effect. The article reports about the angle-dependent coercive fields and the influence of the e-beam radiation dose on sample shapes. It is shown that a broad range of radiation dose intensities enables reliable creation of nanostructures with parameters relevant for the desired magnetization reversal scenario. The experimental results are finally compared with micromagnetic simulations to explainmore » the findings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, C; Chow, J
Purpose: This study investigated the dose enhancement effect of using gold nanoparticles (GNP) as radiation sensitizers radiated by different photon beam energies. Microdosimetry of photon-irradiated GNP was determined by the Geant4-DNA process in the DNA scale. Methods: Monte Carlo simulation was conducted using the Geant4 toolkit (ver. 10.2). A GNP with different sizes (30, 50, and 100nm diameter sphere) and a DNA were placed in a water cube (1µm{sup 3}). The GNP was irradiated by photon beams with different energies (50, 100, and 150keV) and produced secondary electrons to increase the dose to the DNA. Energy depositions were calculated formore » both with and without GNP and to investigate the dose enhancement effect at the DNA. The distance between the GNP and DNA was varied to optimize the best GNP position to the DNA. The photon beam source was set to 200nm from the GNP in each simulation. Results: It is found that GNP had a dose enhancement effect on kV photon radiations. For Monte Carlo results on different GNP sizes, distances between the GNP and DNA, and photon beam energies, enhancement ratio was found increasing as GNP size increased. The distance between the GNP and DNA affected the result that as distance increased while the dose enhancement ratio decreased. However, the effect of changing distance was not as significant as varying the GNP size. In addition, increasing the photon beam energy also increased the dose enhancement ratio. The largest dose enhancement ratio was found to be 3.5, when the GNP (100nm diameter) irradiated by the 150keV photon beam was set to 80nm from the DNA. Conclusion: Dose enhancement was determined in the DNA with GNP in the microdosimetry scale. It is concluded that the dose enhancement varied with the photon beam energy, GNP size and distance between the GNP and DNA.« less
NASA Astrophysics Data System (ADS)
Qin, Huaili; Yang, Guang; Kuang, Shan; Wang, Qiang; Liu, Jingjing; Zhang, Xiaomin; Li, Cancan; Han, Zhiwei; Li, Yuanjing
2018-02-01
The present project will adopt the principle and technology of X-ray imaging to quickly measure the mass thickness (wherein the mass thickness of the item =density of the item × thickness of the item) of the irradiated items and thus to determine whether the packaging size and inside location of the item will meet the requirements for treating thickness upon electron beam irradiation processing. The development of algorithm of X-ray mass thickness detector as well as the prediction of dose distribution have been completed. The development of the algorithm was based on the X-ray attenuation. 4 standard modules, Al sheet, Al ladders, PMMA sheet and PMMA ladders, were selected for the algorithm development. The algorithm was optimized until the error between tested mass thickness and standard mass thickness was less than 5%. Dose distribution of all energy (1-10 MeV) for each mass thickness was obtained using Monte-carlo method and used for the analysis of dose distribution, which provides the information of whether the item will be penetrated or not, as well as the Max. dose, Min. dose and DUR of the whole item.
Helium ion microscopy of graphene: beam damage, image quality and edge contrast
NASA Astrophysics Data System (ADS)
Fox, D.; Zhou, Y. B.; O'Neill, A.; Kumar, S.; Wang, J. J.; Coleman, J. N.; Duesberg, G. S.; Donegan, J. F.; Zhang, H. Z.
2013-08-01
A study to analyse beam damage, image quality and edge contrast in the helium ion microscope (HIM) has been undertaken. The sample investigated was graphene. Raman spectroscopy was used to quantify the disorder that can be introduced into the graphene as a function of helium ion dose. The effects of the dose on both freestanding and supported graphene were compared. These doses were then correlated directly to image quality by imaging graphene flakes at high magnification. It was found that a high magnification image with a good signal to noise ratio will introduce very significant sample damage. A safe imaging dose of the order of 1013 He+ cm-2 was established, with both graphene samples becoming highly defective at doses over 5 × 1014 He+ cm-2. The edge contrast of a freestanding graphene flake imaged in the HIM was then compared with the contrast of the same flake observed in a scanning electron microscope and a transmission electron microscope. Very strong edge sensitivity was observed in the HIM. This enhanced edge sensitivity over the other techniques investigated makes the HIM a powerful nanoscale dimensional metrology tool, with the capability of both fabricating and imaging features with sub-nanometre resolution.
Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A
2016-05-08
The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and < 0.2% statistical uncertainties. The accuracy of the dose calculations using moderate smoothing and no smooth-ing were evaluated. Dose differences (eMC-calculated less measured dose) were evaluated in terms of absolute dose difference, where 100% equals the given dose, as well as distance to agreement (DTA). Dose calculations were also evaluated for calculation speed. Results from the eMC for the retromolar trigone phantom using 1% statistical uncertainty without smoothing showed calculated dose at 89% (41/46) of the measured TLD-dose points was within 3% dose difference or 3 mm DTA of the measured value. The average dose difference was -0.21%, and the net standard deviation was 2.32%. Differences as large as 3.7% occurred immediately distal to the mandible bone. Results for the nose phantom, using 1% statistical uncertainty without smoothing, showed calculated dose at 93% (53/57) of the measured TLD-dose points within 3% dose difference or 3 mm DTA. The average dose difference was 1.08%, and the net standard deviation was 3.17%. Differences as large as 10% occurred lateral to the nasal air cavities. Including smoothing had insignificant effects on the accuracy of the retromolar trigone phantom calculations, but reduced the accuracy of the nose phantom calculations in the high-gradient dose areas. Dose calculation times with 1% statistical uncertainty for the retromolar trigone and nose treatment plans were 30 s and 24 s, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.
A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications
NASA Astrophysics Data System (ADS)
Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.
2017-10-01
A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramli, Syuhada; Ahmad, S. H.; Ratnam, C. T.
2013-11-27
The aim of this article is to show the effects of the electron beam irradiation dose and presence of a compatibiliser on the thermal properties and crystallinity of EVA/WTD blends. The purpose of applying electron beam radiation with doses range 50 to 200 kGy and adding a compatibiliser was to enhance the compatibility of the studied blends and at the same time to investigate the possibility of using this technique in the process of recycling polymeric materials. As the compatibilisers, the polyethylene grafted maleic anhydride (PEgMAH) was utilized, they were added at the amounts of 1-5 phr respectively. The enhancementmore » of thermal properties was accompanied by the following effects, discussed in this article: i) an irradiated EVA/WTD blend at 200kGy was found to improve the thermal properties of EVA, ii) the addition of PEgMAH in EVA/WTD blends and the subsequent irradiation allowed prevention of degradation mechanism. iii) the ΔH{sub f} and crystallinity percentage decrease at higher PEgMAH content.« less
SU-F-T-554: Dark Current Effect On CyberKnife Beam Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chang, A
Purpose: All RF linear accelerators produce dark current to varying degrees when an accelerating voltage and RF input is applied in the absence of electron gun injection. This study is to evaluate how dark current from the linear accelerator of CyberKnife affect the dose in the reference dosimetry. Methods: The G4 CyberKnife system with 6MV photon beam was used in this study. Using the ion chamber and the diode detector, the dose was measured in water with varying time delay between acquiring charges and staring beam-on after applying high-voltage into the linear accelerator. The dose was measured after the timemore » delay with over the range of 0 to 120 seconds in the accelerating high-voltage mode without beam-on, applying 0, 10, 50, 100, and 200 MUs. For the measurements, the collimator of 60 mm was used and the detectors were placed at the depths of 10 cm with the source-to-surface distance of 80 cm. Results: The dark current was constant over time regardless of MU. The dose due to the dark current increased over time linearly with the R-squared value of 0.9983 up to 4.4 cGy for the time 120 seconds. In the dose rate setting of 720 MU/min, the relative dose when applying the accelerating voltage without beam-on was increased over time up to 0.6% but it was less than the leakage radiation resulted from the accelerated head. As the reference dosimetry condition, when 100 MU was delivered after 10 seconds time delay, the relative dose increased by 0.7% but 6.7% for the low MU (10 MU). Conclusion: In the dosimetry using CyberKnife system, the constant dark current affected to the dose. Although the time delay in the accelerating high-voltage mode without beam-on is within 10 seconds, the dose less than 100 cGy can be overestimated more than 1%.« less
LiF TLD-100 as a Dosimeter in High Energy Proton Beam Therapy-Can It Yield Accurate Results?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zullo, John R.; Kudchadker, Rajat J.; Zhu, X. Ronald
In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly inmore » the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within {+-}5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within {+-} 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yuanyuan; Munro, Catherine J.; Olszta, Matthew J.
In this work, we showcase that through precise control of the electron dose rate, state-of-the-art large solid angle energy dispersive X-ray spectroscopy (EDS) mapping in aberration-corrected scanning transmission electron microscope (STEM) is capable of faithful and unambiguous chemical characterization of the Pt and Pd distribution in a peptide-mediated nanosystem. This low-dose-rate recording scheme adds another dimension of flexibility to the design of elemental mapping experiments, and holds significant potential for extending its application to a wide variety of beam sensitive hybrid nanostructures.
Effects of irradiation source and dose level on quality characteristics of processed meat products
NASA Astrophysics Data System (ADS)
Ham, Youn-Kyung; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Choi, Yun-Sang; Song, Beom-Seok; Park, Jong-Heum; Kim, Cheon-Jei
2017-01-01
The effect of irradiation source (gamma-ray, electron-beam, and X-ray) and dose levels on the physicochemical, organoleptic and microbial properties of cooked beef patties and pork sausages was studied, during 10 days of storage at 30±1 °C. The processed meat products were irradiated at 0, 2.5, 5, 7.5, and 10 kGy by three different irradiation sources. The pH of cooked beef patties and pork sausages was unaffected by irradiation sources or their doses. The redness of beef patties linearly decreased with increasing dose level (P<0.05), obviously by e-beam irradiation compared to gamma-ray and X-ray (P<0.05). The redness of pork sausages was increased by gamma-ray irradiation, whereas it decreased by e-beam irradiation depending on absorbed dose level. No significant changes in overall acceptability were observed for pork sausages regardless of irradiation source (P>0.05), while gamma-ray irradiated beef patties showed significantly decreased overall acceptability in a dose-dependent manner (P<0.05). Lipid oxidation of samples was accelerated by irradiation depending on irradiation sources and dose levels during storage at 30 °C. E-beam reduced total aerobic bacteria of beef patties more effectively, while gamma-ray considerably decreased microbes in pork sausages as irradiation dose increased. The results of this study indicate that quality attributes of meat products, in particular color, lipid oxidation, and microbial properties are significantly influenced by the irradiation sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairchild, R.G.; Bond, V.P.
The characteristics of dose distribution, beam alignment, and radiobiological advantages accorded to high LET radiation were reviewed and compared for various particle beam radiotherapeutic modalities (neutron, Auger electrons, p, ..pi../sup -/, He, C, Ne, and Ar ions). Merit factors were evaluated on the basis of effective dose to tumor relative to normal tissue, linear energy transfer (LET), and dose localization, at depths of 1, 4, and 10 cm. In general, it was found that neutron capture therapy using an epithermal neutron beam provided the best merit factors available for depths up to 8 cm. The position of fast neutron therapymore » on the Merit Factor Tables was consistently lower than that of other particle modalities, and above only /sup 60/Co. The largest body of clinical data exists for fast neutron therapy; results are considered by some to be encouraging. It then follows that if benefits with fast neutron therapy are real, additional gains are within reach with other modalities.« less
Caracappa, Peter F.; Chao, T. C. Ephraim; Xu, X. George
2010-01-01
Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body. PMID:19430219
Caracappa, Peter F; Chao, T C Ephraim; Xu, X George
2009-06-01
Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body.
Technical Note: Out‐of‐field dose measurement at near surface with plastic scintillator detector
Bourgouin, Alexandra; Varfalvy, Nicolas
2016-01-01
Out‐of‐field dose depends on multiple factors, making peripheral dosimetry complex. Only a few dosimeters have the required features for measuring peripheral dose. Plastic scintillator dosimeters (PSDs) offer numerous dosimetric advantages as required for out‐of‐field dosimetry. The purpose of this study is to determine the potential of using PSD as a surface peripheral dosimeter. Measurements were performed with a parallel‐plate ion chamber, a small volume ion chamber, and with a PSD. Lateral‐dose measurements (LDM) at 0.5 cm depth and depth‐dose curve (PDD) were made and compared to the dose calculation provided by a treatment planning system (TPS). This study shows that a PSD can measure a dose as low as 0.51±0.17cGy for photon beam and 0.58±0.20cGy for electron beam with a difference of 0.2 and 0.1 cGy compared to a parallel‐plate ion chamber. This study demonstrates the potential of using PSD as an out‐of‐field dosimeter since measurements with PSD avoid averaging over a too‐large depth, at 1 mm diameter, and can make precise measurement at very low dose. Also, electronic equilibrium is easier to reach with PSD due to its small sensitive volume and its water equivalence. PACS number(s): 87.55.N, 87.55.km PMID:27685131
Al-Bachir, Mahfouz
2017-01-01
Microbial contamination levels and corresponding sensitivities to gamma rays (GR) and elec- tron beam (EB) irradiation were tested in chamomile (Chamomile recutta L.). Chamomile powders were treated with 10 and 20 kGy by GR and EB, respectively. Microbiological and chemical analyses were performed on controls and treated samples immediately after irradiation, and after 12 months of storage. The control samples of chamomile exhibited rather high microbiological contamination, exceeding the levels of 4 log10 CFU g-1 (CFU - colony forming units) reported by national and international authorities as the maximum permissible total count level. Irradiation with GR and EB was found to cause a reduction in microbial contamination proportionate to the dose delivered. The sterilizing effect of EB on microorganisms was higher than the GR one. A dose of 10 kGy of GR and EB significantly (p < 0.05) reduced the total bacte- rial, total coliform and total fungal contamination. A dose of 20 kGy of GR significantly (p < 0.05) reduced the total bacterial and total fungal contamination, while a 20 kGy dose of EB reduced the initial bacterial, total coliform and total fungal contamination to below detection level when the analysis was carried out im- mediately after irradiation treatment or after 12 months of storage. The comparative study demonstrated that electron beam was more effective for decontamination of chamomile powder than gamma irradiation.
SU-E-P-05: Is Routine Treatment Planning System Quality Assurance Necessary?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alaei, P
Purpose: To evaluate the variation of dose calculations using a treatment planning system (TPS) over a two year period and assessment of the need for TPS QA on regular intervals. Methods: Two phantoms containing solid water and lung- and bone-equivalent heterogeneities were constructed in two different institutions for the same brand treatment planning system. Multiple plans, consisting of photons and electron beams, including IMRT and VMAT ones, were created and calculated on the phantoms. The accuracy of dose computation in the phantoms was evaluated at the onset by dose measurements within the phantoms. The dose values at up to 24more » points of interest (POI) within the solid water, lung, and bone slabs, as well as mean doses to several regions of interest (ROI), were re-calculated over a two-year period which included two software upgrades. The variations in POI and ROI dose values were analyzed and evaluated. Results: The computed doses vary slightly month-over-month. There are noticeable variations at the times of software upgrade, if the upgrade involves remodeling and/or re-commissioning of the beams. The variations are larger in certain points within the phantom, usually in the buildup region or near interfaces, and are almost non-existent for electron beams. Conclusion: Routine TPS QA is recommended by AAPM and other professional societies, and is often required by accreditation organizations. The frequency and type of QA, though, is subject to debate. The results presented here demonstrate that the frequency of these tests could be at longer intervals than monthly. However, it is essential to perform TPS QA at the time of commissioning and after each software upgrade.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Eldib, A; Chibani, O
2015-06-15
Purpose: Co-60 beams have unique dosimetric properties for cranial treatments and thoracic cancers. The conventional concern about the high surface dose is overcome by modern system designs with rotational treatment techniques. This work investigates a novel rotational Gamma ray system for image-guided, external beam radiotherapy. Methods: The CybeRT system (Cyber Medical Corp., China) consists of a ring gantry with either one or two treatment heads containing a Gamma source and a multileaf collimator (MLC). The MLC has 60 paired leaves, and the maximum field size is either 40cmx40cm (40 pairs of 0.5cm central leaves, 20 pairs of 1cm outer leaves),more » or 22cmx40cm (32 pairs of 0.25cm central leaves, 28 pairs of 0.5cm outer leaves). The treatment head(s) can swing 35° superiorly and 8° inferiorly, allowing a total of 43° non-coplanar beam incident. The treatment couch provides 6-degrees-of-freedom motion compensation and the kV cone-beam CT system has a spatial resolution of 0.4mm. Monte Carlo simulations were used to compute dose distributions and compare with measurements. A retrospective study of 98 previously treated patients was performed to compare CybeRT with existing RT systems. Results: Monte Carlo results confirmed the CybeRT design parameters including output factors and 3D dose distributions. Its beam penumbra/dose gradient was similar to or better than that of 6MV photon beams and its isocenter accuracy is 0.3mm. Co-60 beams produce lower-energy secondary electrons that exhibit better dose properties in low-density lung tissues. Because of their rapid depth dose falloff, Co-60 beams are favorable for peripheral lung tumors with half-arc arrangements to spare the opposite lung and critical structures. Superior dose distributions were obtained for head and neck, breast, spine and lung tumors. Conclusion: Because of its accurate dose delivery and unique dosimetric properties of C-60 sources, CybeRT is ideally suited for advanced SBRT as well as conventional RT. This work was partially supported by Cyber Medical Corp.« less
Grasso, Elizabeth M; Uribe-Rendon, Roberto M; Lee, Ken
2011-01-01
During the past decade there were more than 50 reported outbreaks involving leafy green vegetables contaminated with foodborne pathogens. Leafy greens, including cabbage, are fresh foods rarely heated before consumption, which enables foodborne illness. The need for improved safety of fresh food drives the demand for nonthermal food processes to decrease the risk of pathogens while maintaining fresh quality. This study examines the efficacy of electron-beam (e-beam) irradiation in decreasing indigenous microflora on fresh-cut cabbage and determines the optimal dosage to pasteurize fresh-cut cabbage inoculated with Escherichia coli K-12. Fresh-cut cabbage (100 g) was inoculated with ∼8 log E. coli K-12 and e-beam irradiated at doses of 0, 1.0, 2.3, or 4.0 kGy. At 2.3 kGy there was <1.0 log indigenous microflora remaining, indicating greater than a 4.0-log reduction by e-beam. At a 4.0-kGy dose there was >7-log reduction of E. coli K-12 in the fresh-cut cabbage. The D(10)-value for E. coli K-12 in fresh-cut cabbage was 0.564 kGy. E-beam irradiation is thus a viable nonthermal treatment that extends the shelf life and increases the safety of fresh cabbage by reducing or eliminating indigenous microflora and unwanted pathogens.
Low-dose electron energy-loss spectroscopy using electron counting direct detectors.
Maigné, Alan; Wolf, Matthias
2018-03-01
Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.
Schüler, Emil; Eriksson, Kjell; Hynning, Elin; Hancock, Steven L; Hiniker, Susan M; Bazalova-Carter, Magdalena; Wong, Tony; Le, Quynh-Thu; Loo, Billy W; Maxim, Peter G
2017-06-01
The aim of this study was to evaluate the performance of very high-energy electron beams (VHEE) in comparison to clinically derived treatment plans generated with volumetric modulated arc therapy (VMAT) and proton pencil beam scanning (PPBS) technology. We developed a custom optimization script that could be applied automatically across modalities to eliminate operator bias during IMRT optimization. Four clinical cases were selected (prostate cancer, lung cancer, pediatric brain tumor, and head and neck cancer (HNC)). The VHEE beams were calculated in the EGSnrc/DOSXYZnrc Monte Carlo code for 100 and 200 MeV beams. Treatment plans with VHEE, VMAT, and PPBS were optimized in a research version of RayStation using an in-house developed script to minimize operator bias between the different techniques. The in-house developed script generated similar or superior plans to the clinically used plans. In the comparisons between the modalities, the integral dose was lowest for the PPBS-generated plans in all cases. For the prostate case, the 200 MeV VHEE plan showed reduced integral dose and reduced organ at risk (OAR) dose compared to the VMAT plan. For all other cases, both the 100 and the 200 MeV VHEE plans were superior to the VMAT plans, and the VHEE plans showed better conformity and lower spinal cord dose in the pediatric brain case and lower brain stem dose in the HNC case when compared to the PPBS plan. The automated optimization developed in this study generated similar or superior plans as compared to the clinically used plan and represents an unbiased approach to compare treatment plans generated for different modalities. In the present study, we also show that VHEE plans are similar or superior to VMAT plans with reduced mean OAR dose and increased target conformity for a variety of clinical cases, and VHEE plans can even achieve reductions in OAR doses compared to PPBS plans for shallow targets. With increased VHEE energy, better conformity and even higher reductions in mean OAR doses are achieved. On the whole, VHEE was intermediate between photon VMAT and PPBS for OAR sparing. © 2017 American Association of Physicists in Medicine.
Synthesis and characterization of silver/diatomite nanocomposite by electron beam irradiation
NASA Astrophysics Data System (ADS)
Hanh, Truong Thi; Thu, Nguyen Thi; Quoc, Le Anh; Hien, Nguyen Quoc
2017-10-01
Silver nanoparticles (AgNPs) with diameter about 9 nm were deposited on diatomite by irradiation under electron beam of diatomite suspension containing 10 mM AgNO3 in 1% chitosan solution, at the dose of 20.2 kGy. The AgNPs/diatomite nanocomposite was characterized by UV-Vis spectroscopy, TEM image and energy dispersive X-ray spectroscopy (EDX). The antibacterial activity of the AgNPs/diatomite against E. coli and S. aureus was evaluated by reduction of bacterial colonies on spread plates and inhibition zone diameter on diffusion disks.
van Genderen, E; Clabbers, M T B; Das, P P; Stewart, A; Nederlof, I; Barentsen, K C; Portillo, Q; Pannu, N S; Nicolopoulos, S; Gruene, T; Abrahams, J P
2016-03-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).