Electron beam extraction on plasma cathode electron sources system
NASA Astrophysics Data System (ADS)
Purwadi, Agus; Taufik, M., Lely Susita R.; Suprapto, Saefurrochman, H., Anjar A.; Wibowo, Kurnia; Aziz, Ihwanul; Siswanto, Bambang
2017-03-01
ELECTRON BEAM EXTRACTION ON PLASMA CATHODE ELECTRON SOURCES SYSTEM. The electron beam extraction through window of Plasma Generator Chamber (PGC) for Pulsed Electron Irradiator (PEI) device and simulation of plasma potential has been studied. Plasma electron beam is extracted to acceleration region for enlarging their power by the external accelerating high voltage (Vext) and then it is passed foil window of the PEI for being irradiated to any target (atmospheric pressure). Electron beam extraction from plasma surface must be able to overcome potential barrier at the extraction window region which is shown by estimate simulation (Opera program) based on data of plasma surface potential of 150 V with Ueks values are varied by 150 kV, 175 kV and 200 kV respectively. PGC is made of 304 stainless steel with cylindrical shape in 30 cm of diameter, 90 cm length, electrons extraction window as many as 975 holes on the area of (15 × 65) cm2 with extraction hole cell in 0.3 mm of radius each other, an cylindrical shape IEP chamber is made of 304 stainless steel in 70 cm diameter and 30 cm length. The research result shown that the acquisition of electron beam extraction current depends on plasma parameters (electron density ne, temperature Te), accelerating high voltage Vext, the value of discharge parameter G, anode area Sa, electron extraction window area Se and extraction efficiency value α.
Vibrational Analysis of a Shipboard Free Electron Laser Beam Path
2011-12-01
2 Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1...in Figure 2. Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1]) The narrow beam...3 is a top down view of the entire electron beam path. Figure 3. Electron Beam Line of a Notional FEL Oscillator . 2. Optical Path The optical
McIntyre, P.M.
1993-07-13
An electron tube for achieving high power at high frequency with high efficiency is described, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot there through for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.
McIntyre, Peter M.
1993-01-01
An electron tube for achieving high power at high frequency with high efficiency, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot therethrough for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.
Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.
1982-01-01
A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.
Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.
1979-12-12
A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac is described. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator, or as an amplifier in conjunction with a master oscillator laser.
Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Küchler, D.
2016-02-15
The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a waymore » to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.« less
Toivanen, V; Küchler, D
2016-02-01
The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.
Focused electron and ion beam systems
Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan
2004-07-27
An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.
NASA Astrophysics Data System (ADS)
Dileep Kumar, V.; Barnwal, Tripti A.; Mukherjee, Jaya; Gantayet, L. M.
2010-02-01
For effective evaporation of refractory metal, electron beam is found to be most suitable vapour generator source. Using electron beam, high throughput laser based purification processes are carried out. But due to highly concentrated electron beam, the vapour gets ionised and these ions lead to dilution of the pure product of laser based separation process. To estimate the concentration of these ions and extraction potential requirement to remove these ions from vapour stream, experiments have been conducted using aluminium as evaporant. The aluminium ingots were placed in water cooled copper crucible. Inserts were used to hold the evaporant, in order to attain higher number density in the vapour processing zone and also for confining the liquid metal. Parametric studies with beam power, number density and extraction potential were conducted. In this paper we discuss the trend of the generation of thermal ions and electrostatic field requirement for extraction.
Carlsten, B.E.; Haynes, W.B.
1998-02-03
A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used. 8 figs.
Carlsten, Bruce E.; Haynes, William B.
1998-01-01
A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used.
Intense steady state electron beam generator
Hershcovitch, A.; Kovarik, V.J.; Prelec, K.
1990-07-17
An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.
Intense steady state electron beam generator
Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto
1990-01-01
An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.
NASA Astrophysics Data System (ADS)
Xie, Z. Q.; Antaya, T. A.
1990-01-01
We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.
NASA Astrophysics Data System (ADS)
Xie, Z. Q.; Antaya, T. A.
1990-02-01
We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.
Brightness analysis of an electron beam with a complex profile
NASA Astrophysics Data System (ADS)
Maesaka, Hirokazu; Hara, Toru; Togawa, Kazuaki; Inagaki, Takahiro; Tanaka, Hitoshi
2018-05-01
We propose a novel analysis method to obtain the core bright part of an electron beam with a complex phase-space profile. This method is beneficial to evaluate the performance of simulation data of a linear accelerator (linac), such as an x-ray free electron laser (XFEL) machine, since the phase-space distribution of a linac electron beam is not simple, compared to a Gaussian beam in a synchrotron. In this analysis, the brightness of undulator radiation is calculated and the core of an electron beam is determined by maximizing the brightness. We successfully extracted core electrons from a complex beam profile of XFEL simulation data, which was not expressed by a set of slice parameters. FEL simulations showed that the FEL intensity was well remained even after extracting the core part. Consequently, the FEL performance can be estimated by this analysis without time-consuming FEL simulations.
Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K
2014-02-01
An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.
High Efficiency Energy Extraction from a Relativistic Electron Beam in a Strongly Tapered Undulator
Sudar, N.; Musumeci, P.; Duris, J.; ...
2016-10-19
Here we present results of an experiment where, using a 200 GW CO 2 laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54-cm-long strongly tapered helical magnetic undulator, extracting over 30% of the initial electron beam energy to coherent radiation. These results, supported by simulations of the radiation field evolution, demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.
Muir, B; Rogers, D; McEwen, M
2012-07-01
When current dosimetry protocols were written, electron beam data were limited and had uncertainties that were unacceptable for reference dosimetry. Protocols for high-energy reference dosimetry are currently being updated leading to considerable interest in accurate electron beam data. To this end, Monte Carlo simulations using the EGSnrc user-code egs_chamber are performed to extract relevant data for reference beam dosimetry. Calculations of the absorbed dose to water and the absorbed dose to the gas in realistic ion chamber models are performed as a function of depth in water for cobalt-60 and high-energy electron beams between 4 and 22 MeV. These calculations are used to extract several of the parameters required for electron beam dosimetry - the beam quality specifier, R 50 , beam quality conversion factors, k Q and k R50 , the electron quality conversion factor, k' R50 , the photon-electron conversion factor, k ecal , and ion chamber perturbation factors, P Q . The method used has the advantage that many important parameters can be extracted as a function of depth instead of determination at only the reference depth as has typically been done. Results obtained here are in good agreement with measured and other calculated results. The photon-electron conversion factors obtained for a Farmer-type NE2571 and plane-parallel PTW Roos, IBA NACP-02 and Exradin A11 chambers are 0.903, 0.896, 0.894 and 0.906, respectively. These typically differ by less than 0.7% from the contentious TG-51 values but have much smaller systematic uncertainties. These results are valuable for reference dosimetry of high-energy electron beams. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidorov, A.; Dorf, M.; Zorin, V.
2008-02-15
Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be {approx}70 {pi} mm mrad, and themore » total extracted beam current obtained at 14 kV extraction voltage was {approx}25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data.« less
Short Haul Civil Tiltrotor Contingency Power System Preliminary Design
NASA Technical Reports Server (NTRS)
Eames, David J. H.
2006-01-01
Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation.
Discharge Chamber Plasma Structure of a 30-cm NSTAR-Type Ion Engine
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Gallimore, Alec D.
2006-01-01
Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation.
Axial interaction free-electron laser
Carlsten, Bruce E.
1997-01-01
Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies.
Axial interaction free-electron laser
Carlsten, B.E.
1997-09-02
Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.
2014-02-15
An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] andmore » the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.« less
Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk
2010-02-01
We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.
Status report on the development of a tubular electron beam ion source
NASA Astrophysics Data System (ADS)
Donets, E. D.; Donets, E. E.; Becker, R.; Liljeby, L.; Rensfelt, K.-G.; Beebe, E. N.; Pikin, A. I.
2004-05-01
The theoretical estimations and numerical simulations of tubular electron beams in both beam and reflex mode of source operation as well as the off-axis ion extraction from a tubular electron beam ion source (TEBIS) are presented. Numerical simulations have been done with the use of the IGUN and OPERA-3D codes. Numerical simulations with IGUN code show that the effective electron current can reach more than 100 A with a beam current density of about 300-400 A/cm2 and the electron energy in the region of several KeV with a corresponding increase of the ion output. Off-axis ion extraction from the TEBIS, being the nonaxially symmetric problem, was simulated with OPERA-3D (SCALA) code. The conceptual design and main parameters of new tubular sources which are under consideration at JINR, MSL, and BNL are based on these simulations.
Hirano, Y; Kiyama, S; Koguchi, H; Sakakita, H
2014-02-01
Spontaneous self-focusing of ion beam with high current density (Jc ∼ 2 mA/cm(2), Ib ∼ 65 mA) in low energy region (∼150 eV) is observed in a hydrogen ion beam extracted from an ordinary bucket type ion source with three electrodes having concave shape (acceleration, deceleration, and grounded electrodes). The focusing appears abruptly in the beam energy region over ∼135-150 eV, and the Jc jumps up from 0.7 to 2 mA/cm(2). Simultaneously a strong electron flow also appears in the beam region. The electron flow has almost the same current density. Probably these electrons compensate the ion space charge and suppress the beam divergence.
Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M
2016-02-01
Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.
NASA Astrophysics Data System (ADS)
Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.
2015-11-01
Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.
Negative ion beam injection apparatus with magnetic shield and electron removal means
Anderson, Oscar A.; Chan, Chun F.; Leung, Ka-Ngo
1994-01-01
A negative ion source is constructed to produce H.sup.- ions without using Cesium. A high percentage of secondary electrons that typically accompany the extracted H.sup.- are trapped and eliminated from the beam by permanent magnets in the initial stage of acceleration. Penetration of the magnetic field from the permanent magnets into the ion source is minimized. This reduces the destructive effect the magnetic field could have on negative ion production and extraction from the source. A beam expansion section in the extractor results in a strongly converged final beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, K.; Okuda, S.; Nishioka, S.
2013-09-14
Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beammore » halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.« less
Magnetic field extraction of trap-based electron beams using a high-permeability grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurst, N. C.; Danielson, J. R.; Surko, C. M., E-mail: csurko@physics.ucsd.edu
2015-07-15
A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called “magnetic spider”). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in amore » high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described.« less
Effect of electron beam cooling on transversal and longitudinal emittance of an external proton beam
NASA Astrophysics Data System (ADS)
Kilian, K.; Machner, H.; Magiera, A.; Prasuhn, D.; von Rossen, P.; Siudak, R.; Stein, H. J.; Stockhorst, H.
2018-02-01
Benefits of electron cooling to the quality of extracted ion beams from storage rings are discussed. The transversal emittances of an external proton beam with and without electron cooling at injection energy are measured with the GEM detector assembly. While the horizontal emittance remains the vertical emittance shrinks by the cooling process. The longitudinal momentum variance is also reduced by cooling.
Single electron beam rf feedback free electron laser
Brau, C.A.; Stein, W.E.; Rockwood, S.D.
1981-02-11
A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.
Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Bellodi, G.; Dimov, V.
2016-02-15
Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT)more » section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.« less
Kim, Hyun-Joo; Choi, Jong-il; Kim, Duk-Jin; Kim, Jae-Hun; Soo Chun, Byeong; Hyun Ahn, Dong; Sun Yook, Hong; Byun, Myung-Woo; Kim, Mi-Jung; Shin, Myung-Gon; Lee, Ju-Woon
2009-01-01
Although the byproduct from Hizikia fusiformis industry had many nutrients, it is being wasted. In this study, the physiological activities of cooking drip extracts from H. fusiformis (CDHF) were determined to investigate the effect of a gamma and an electron beam irradiations. DPPH radical scavenging activity and tyrosinase and ACE inhibition effects of the gamma and electron beam irradiated CDHF extracts were increased with increasing irradiation dose. These were reasoned by the increase in the content of the total polyphenolic compound of CDHF by the gamma and electron beam irradiation. There were no differences for the radiation types. These results show that ionizing radiation could be used for enhancing the functional activity of CDHF which is a major by-product in Hizikia fusiformis processing, in various applications.
Kinetic energy offsets for multicharged ions from an electron beam ion source.
Kulkarni, D D; Ahl, C D; Shore, A M; Miller, A J; Harriss, J E; Sosolik, C E; Marler, J P
2017-08-01
Using a retarding field analyzer, we have measured offsets between the nominal and measured kinetic energy of multicharged ions extracted from an electron beam ion source (EBIS). By varying source parameters, a shift in ion kinetic energy was attributed to the trapping potential produced by the space charge of the electron beam within the EBIS. The space charge of the electron beam depends on its charge density, which in turn depends on the amount of negative charge (electron beam current) and its velocity (electron beam energy). The electron beam current and electron beam energy were both varied to obtain electron beams of varying space charge and these were related to the observed kinetic energy offsets for Ar 4+ and Ar 8+ ion beams. Knowledge of these offsets is important for studies that seek to utilize slow, i.e., low kinetic energy, multicharged ions to exploit their high potential energies for processes such as surface modification. In addition, we show that these offsets can be utilized to estimate the effective radius of the electron beam inside the trap.
Keinigs, Rhonald K.
1992-01-01
Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.
Charge neutralization apparatus for ion implantation system
Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.
1992-01-01
Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozaki, Dai; Kiriyama, Ryutaro; Takenaka, Tomoya
2012-11-06
We have developed an all-permanent magnet large bore electron cyclotron resonance ion source (ECRIS) for broad ion beam processing. The cylindrically comb-shaped magnetic field configuration is adopted for efficient plasma production and good magnetic confinement. To compensate for disadvantages of fixed magnetic configuration, a traveling wave tube amplifier (TWTA) is used. In the comb-shaped ECRIS, it is difficult to achieve controlling ion beam profiles in the whole inside the chamber by using even single frequency-controllable TWTA (11-13GHz), because of large bore size with all-magnets. We have tried controlling profiles of plasma parameters and then those of extracted ion beams bymore » launching two largely different frequencies simultaneously, i.e., multi-frequencies microwaves. Here we report ion beam profiles and corresponding plasma parameters under various experimental conditions, dependence of ion beams against extraction voltages, and influence of different electrode positions on the electron density profile.« less
Progress in the development of an H{sup −} ion source for cyclotrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etoh, H., E-mail: Hrh-Etoh@shi.co.jp; Aoki, Y.; Mitsubori, H.
2015-04-08
A multi-cusp DC H{sup −} ion source has been developed for cyclotrons in medical use. Beam optics of the H{sup −} ion beam is studied using a 2D beam trajectory code. The simulation results are compared with the experimental results obtained in the Mark I source, which has produced up to 16 mA H{sup −} ion beams. The optimum extraction voltages show good agreement between the calculation and the experimental results. A new ion source, Mark II source, is designed to achieve the next goal of producing an H{sup −} beam of 20 mA. The magnetic field configurations and the plasma electrodemore » design are optimized for Cs-seeded operation. Primary electron trajectory simulation shows that primary electrons are confined well and the magnetic filter prevents the primary electrons from entering into the extraction region.« less
The modification at CSNS ion source
NASA Astrophysics Data System (ADS)
Liu, S.; Ouyang, H.; Huang, T.; Xiao, Y.; Cao, X.; Lv, Y.; Xue, K.; Chen, W.
2017-08-01
The commissioning of CSNS front end has been finished. Above 15 mA beam intensity is obtained at the end of RFQ. For CSNS ion source, it is a type of penning surface plasma ion source, similar to ISIS ion source. To improve the operation stability and reduce spark rate, some modifications have been performed, including Penning field, extraction optics and post acceleration. PBGUNS is applied to optimize beam extraction. The co-extraction electrons are considered at PBGUNS simulation and various extracted structure are simulated aiming to make the beam through the extracted electrode without loss. The stability of ion source is improved further.
Passive and active plasma deceleration for the compact disposal of electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonatto, A., E-mail: abonatto@lbl.gov; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 700040-020; Schroeder, C. B.
2015-08-15
Plasma-based decelerating schemes are investigated as compact alternatives for the disposal of high-energy beams (beam dumps). Analytical solutions for the energy loss of electron beams propagating in passive and active (laser-driven) schemes are derived. These solutions, along with numerical modeling, are used to investigate the evolution of the electron distribution, including energy chirp and total beam energy. In the active beam dump scheme, a laser-driver allows a more homogeneous beam energy extraction and drastically reduces the energy chirp observed in the passive scheme. These concepts could benefit applications requiring overall compactness, such as transportable light sources, or facilities operating atmore » high beam power.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grisham, L. R.; Kwan, J. W.
2008-08-01
Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, andmore » with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.« less
Measurement and interpretation of electron angle at mabe beam stop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.
1985-10-01
This analysis shows that radiation measurements combined with a sophisticated simulation provides a simple but powerful tool for estimating beam temperature in intense pulsed annular electron-beam accelerators. Specifically, the mean angle of incidence of a 60 kA, 7 MeV annular electron-beam at the beam stop of the MABE accelerator and the transverse beam temperature are determined. The angle is extracted by comparing dose profiles measured downstream of the stop with that expected from a simulation of the electron/photon transport in the stop. By calculating and removing the effect on the trajectories due to the change in electric field near themore » stop, the beam temperature is determined. Such measurements help give insight to beam generation and propagation within the accelerator.« less
Rf Feedback free electron laser
Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.
1981-01-01
A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.
Fujiwara, Y; Hirano, Y; Kiyama, S; Nakamiya, A; Koguchi, H; Sakakita, H
2014-02-01
The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10(8) cm(-3) at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.
Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi
2012-08-01
We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.
Winkelmann, Tim; Cee, Rainer; Haberer, Thomas; Naas, Bernd; Peters, Andreas; Schreiner, Jochen
2014-02-01
The clinical operation at the Heidelberg Ion Beam Therapy Center (HIT) started in November 2009; since then more than 1600 patients have been treated. In a 24/7 operation scheme two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce protons and carbon ions. The modification of the low energy beam transport line and the integration of a third ion source into the therapy facility will be shown. In the last year we implemented a new extraction system at all three sources to enhance the lifetime of extraction parts and reduce preventive and corrective maintenance. The new four-electrode-design provides electron suppression as well as lower beam emittance. Unwanted beam sputtering effects which typically lead to contamination of the insulator ceramics and subsequent high-voltage break-downs are minimized by the beam guidance of the new extraction system. By this measure the service interval can be increased significantly. As a side effect, the beam emittance can be reduced allowing a less challenging working point for the ion sources without reducing the effective beam performance. This paper gives also an outlook to further enhancements at the HIT ion source testbench.
Electron-beam-driven RI separator for SCRIT (ERIS) at RIKEN RI beam factory
NASA Astrophysics Data System (ADS)
Ohnishi, T.; Ichikawa, S.; Koizumi, K.; Kurita, K.; Miyashita, Y.; Ogawara, R.; Tamaki, S.; Togasaki, M.; Wakasugi, M.
2013-12-01
We constructed a radioactive isotope (RI) separator named ERIS (electron-beam-driven RI separator for SCRIT) for the SCRIT (Self-Confinement RI Target) electron scattering facility at RIKEN RI Beam Factory (RIBF). In ERIS, production rate of fission products in the photofission of uranium is estimated to be 2.2 ×1011 fissions/s with 30 g of uranium and a 1-kW electron beam. During the commissioning of ERIS, the mass resolution and overall efficiency, including ionization, extraction, and transmission, were found to be 1660 and 21%, respectively, using natural xenon gas. The preparation of uranium carbide (UC2) RI production targets is described from which a 132Sn beam was successfully separated in our first attempt at RI production.
Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C
2014-03-01
A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.
Draganic, I N
2016-02-01
Basic vacuum calculations were performed for various operating conditions of the Los Alamos National Neutron Science H(-) Cockcroft-Walton (CW) injector and the Ion Source Test Stand (ISTS). The vacuum pressure was estimated for both the CW and ISTS at five different points: (1) inside the H(-) ion source, (2) in front of the Pierce electrode, (3) at the extraction electrode, (4) at the column electrode, and (5) at the ground electrode. A static vacuum analysis of residual gases and the working hydrogen gas was completed for the normal ion source working regime. Gas density and partial pressure were estimated for the injected hydrogen gas. The attenuation of H(-) beam current and generation of electron current in the high voltage acceleration columns and low energy beam transport lines were calculated. The interaction of H(-) ions on molecular hydrogen (H2) is discussed as a dominant collision process in describing electron stripping rates. These results are used to estimate the observed increase in the ratio of electrons to H(-) ion beam in the ISTS beam transport line.
Rf feedback free electron laser
Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.
1979-11-02
A free electron laser system and electron beam system for a free electron laser are provided which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.
Operation of large RF sources for H-: Lessons learned at ELISE
NASA Astrophysics Data System (ADS)
Fantz, U.; Wünderlich, D.; Heinemann, B.; Kraus, W.; Riedl, R.
2017-08-01
The goal of the ELISE test facility is to demonstrate that large RF-driven negative ion sources (1 × 1 m2 source area with 360 kW installed RF power) can achieve the parameters required for the ITER beam sources in terms of current densities and beam homogeneity at a filling pressure of 0.3 Pa for pulse lengths of up to one hour. With the experience in operation of the test facility, the beam source inspection and maintenance as well as with the results of the achieved source performance so far, conclusions are drawn for commissioning and operation of the ITER beam sources. Addressed are critical technical RF issues, extrapolations to the required RF power, Cs consumption and Cs ovens, the need of adjusting the magnetic filter field strength as well as the temporal dynamic and spatial asymmetry of the co-extracted electron current. It is proposed to relax the low pressure limit to 0.4 Pa and to replace the fixed electron-to-ion ratio by a power density limit for the extraction grid. This would be highly beneficial for controlling the co-extracted electrons.
Measurement and interpretation of electron angle at MABE beam stop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.
1985-01-01
This analysis shows that radiation measurements combined with a sophisticated simulation provides a simple but powerful tool for estimating beam temperature in intense pulsed annular electron-beam accelerators. Specifically, the mean angle of incidence of a 60 kA, 7 MeV annular electron-beam at the beam stop of the MABE accelerator and the transverse beam temperature are determined. The angle is extracted by comparing dose profiles measured downstream of the stop with that expected from a simulation of the electron/photon transport in the stop. By calculating and removing the effect on the trajectories due to the change in electric field near themore » stop, the beam temperature is determined. Such measurements help give insight to beam generation and propagation within the accelerator. 9 refs., 6 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaedtke, P.; Lang, R.; Maeder, J.
2012-02-15
Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally foundmore » structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.« less
Mass spectrometer with electron source for reducing space charge effects in sample beam
Houk, Robert S.; Praphairaksit, Narong
2003-10-14
A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.
Collimated electron beam accelerated at 12 kV from a Penning discharge.
Toader, D; Oane, M; Ticoş, C M
2015-01-01
A pulsed electron beam accelerated at 12 kV with a duration of 40 μs per pulse is obtained from a Penning discharge with a hollow anode and two cathodes. The electrons are extracted through a hole in one of the cathodes and focused by a pair of coils. The electron beam has a diameter of a few mm in the cross section, while the beam current reaches peak values of 400 mA, depending on the magnetic field inside the focussing coils. This relatively inexpensive and compact device is suitable for the irradiation of small material samples placed in high vacuum.
An electron beam ion trap and source for re-acceleration of rare-isotope ion beams at TRIUMF
NASA Astrophysics Data System (ADS)
Blessenohl, M. A.; Dobrodey, S.; Warnecke, C.; Rosner, M. K.; Graham, L.; Paul, S.; Baumann, T. M.; Hockenbery, Z.; Hubele, R.; Pfeifer, T.; Ames, F.; Dilling, J.; Crespo López-Urrutia, J. R.
2018-05-01
Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.
Alves, M J; Fernandes, Â; Barreira, J C M; Lourenço, I; Fernandes, D; Moura, A; Ribeiro, A R; Salgado, J; Antonio, A; Ferreira, I C F R
2015-03-01
The effects of irradiation (gamma-rays and electron-beams), up to 10 kGy, in the antimicrobial activity of mushroom species (Boletus edulis, Hydnum repandum, Macrolepiota procera and Russula delica) differently processed (fresh, dried, freeze) were evaluated. Clinical isolates with different resistance profiles from hospitalized patients in Local Health Unit of Mirandela, Northeast of Portugal, were used as target micro-organisms. The mushrooms antimicrobial activity did not suffer significant changes that might compromise applying irradiation as a possible mushroom conservation technology. Two kGy dose (independently of using gamma-rays or electron-beams) seemed to be the most suitable choice to irradiate mushrooms. This study provides important results in antimicrobial activity of extracts prepared from irradiated mushroom species. © 2014 The Society for Applied Microbiology.
Radial electron-beam-breakup transit-time oscillator
Kwan, Thomas J. T.; Mostrom, Michael A.
1998-01-01
A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.
Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H
2015-11-01
A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.
First results from negative ion beam extraction in ROBIN in surface mode
NASA Astrophysics Data System (ADS)
Pandya, Kaushal; Gahlaut, Agrajit; Yadav, Ratnakar K.; Bhuyan, Manas; Bandyopadhyay, Mainak; Das, B. K.; Bharathi, P.; Vupugalla, Mahesh; Parmar, K. G.; Tyagi, Himanshu; Patel, Kartik; Bhagora, Jignesh; Mistri, Hiren; Prajapati, Bhavesh; Pandey, Ravi; Chakraborty, Arun. K.
2017-08-01
ROBIN, the first step in the Indian R&D program on negative ion beams has reached an important milestone, with the production of negative ions in the surface conversion mode through Cesium (Cs) vapor injection into the source. In the present set-up, negative hydrogen ion beam extraction is effected through an extraction area of ˜73.38 cm2 (146 apertures of 8mm diameter). The three grid electrostatic accelerator system of ROBIN is fed by high voltage DC power supplies (Extraction Power Supply System: 11kV, 35A and Acceleration Power Supply System: 35kV, 15A). Though, a considerable reduction of co-extracted electron current is usually observed during surface mode operation, in order to increase the negative ion current, various other parameters such as plasma grid temperature, plasma grid bias, extraction to acceleration voltage ratio, impurity control and Cs recycling need to be optimized. In the present experiments, to control and to understand the impurity behavior, a Cryopump (14,000 l/s for Hydrogen) is installed along with a Residual Gas Analyzer (RGA). To characterize the source plasma, two sets of Langmuir probes are inserted through the diagnostic flange ports available at the extraction plane. To characterize the beam properties, thermal differential calorimeter, Doppler Shift Spectroscopy and electrical current measurements are implemented in ROBIN. In the present set up, all the negative ion beam extraction experiments have been performed by varying different experimental parameters e.g. RF power (30-70 kW), source operational pressure (0.3 - 0.6Pa), plasma grid bias voltage, extraction & acceleration voltage combination etc. The experiments in surface mode operation is resulted a reduction of co-extracted electron current having electron to ion ratio (e/i) ˜2 whereas the extracted negative ion current density was increased. However, further increase in negative ion current density is expected to be improved after a systematic optimization of the operational parameters and Cs conditioning of the source. It was also found out that a better performance of ROBIN is achieved in the pressure range: 0.5-0.6 Pa. In this paper, the preliminary results on parametric study of ROBIN operation and beam optimization in surface mode are discussed.
The extraction of the spin structure function, g2 (and g1) at low Bjorken x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ndukum, Luwani Z.
2015-08-01
The Spin Asymmetries of the Nucleon Experiment (SANE) used the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA to investigate the spin structure of the proton. The experiment measured inclusive double polarization electron asymmetries using a polarized electron beam, scattered off a solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were used. The scattered electrons were detected by a novel, non-magnetic arraymore » of detectors observing a four-momentum transfer range of 2.5 to 6.5 GeV*V. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function, g2 (and g1) at low Bjorken x. The spin structure functions were measured as a function of x and W in four Q square bins. A full understanding of the low x region is necessary to get clean results for SANE and extend our understanding of the kinematic region at low x.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draganic, I. N., E-mail: draganic@lanl.gov
Basic vacuum calculations were performed for various operating conditions of the Los Alamos National Neutron Science H{sup −} Cockcroft-Walton (CW) injector and the Ion Source Test Stand (ISTS). The vacuum pressure was estimated for both the CW and ISTS at five different points: (1) inside the H{sup −} ion source, (2) in front of the Pierce electrode, (3) at the extraction electrode, (4) at the column electrode, and (5) at the ground electrode. A static vacuum analysis of residual gases and the working hydrogen gas was completed for the normal ion source working regime. Gas density and partial pressure weremore » estimated for the injected hydrogen gas. The attenuation of H{sup −} beam current and generation of electron current in the high voltage acceleration columns and low energy beam transport lines were calculated. The interaction of H{sup −} ions on molecular hydrogen (H{sub 2}) is discussed as a dominant collision process in describing electron stripping rates. These results are used to estimate the observed increase in the ratio of electrons to H{sup −} ion beam in the ISTS beam transport line.« less
Antipov, S.; Baryshev, S. V.; Kostin, R.; ...
2016-10-03
Here, we have measured an intense THz radiation produced by a sub-picosecond, relativistic electron bunch in a dielectric loaded waveguide. For efficient THz pulse extraction, the dielectric loaded waveguide end was cut at an angle. For an appropriate choice of angle cut, such antenna converts the TM 01 mode excited in the waveguide into a free-space fundamental Gauss-Hermite mode propagating at an angle with respect to the electron beam trajectory. Simulations show that more than 95% of energy can be extracted using such a simple approach. More than 40 oscillations of about 170 ps long 0.48 THz signal were explicitlymore » measured with an interferometer and 10 μJ of energy per pulse, as determined with a calorimetric energy meter, were delivered outside the electron beamline to an area suitable for THz experiments.« less
Detectors for low energy electron cooling in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlier, F. S.
Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions betweenmore » the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.« less
Performance of an electron gun for a high-brightness X-ray generator.
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-05-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm x 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm x 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached approximately 60 mA with some thermal problems.
Study of negative hydrogen ion beam optics using the 3D3V PIC model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp; Nishioka, S.; Goto, I.
The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beammore » halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.« less
High Performance Perovskite Hybrid Solar Cells with E-beam-Processed TiOx Electron Extraction Layer.
Meng, Tianyu; Liu, Chang; Wang, Kai; He, Tianda; Zhu, Yu; Al-Enizi, Abdullah; Elzatahry, Ahmed; Gong, Xiong
2016-01-27
Perovskite hybrid solar cells (pero-HSCs) have drawn great attention in the last 5 years. The efficiencies of pero-HSCs have been boosted from 3.8% to over 20%. However, one of the bottlenecks for commercialization of pero-HSCs is to make a high electrical conductive TiOx electron extraction layer (EEL). In this study, we report high performance pero-HSCs with TiOx EEL, where the TiOx EEL is fabricated by electron beam (e-beam) evaporation, which has been proved to be a well-developed manufacturing process. The resistance of the e-beam evaporated TiOx EEL is smaller than that of sol-gel processed TiOx EEL. Moreover, the dark current densities and interfacial charge carrier recombination of pero-HSCs incorporated with e-beam processed TiOx EEL is also smaller than that of pero-HSCs incorporated with sol-gel processed TiOx EEL. All these result in efficient pero-HSCs with high reproducibility. These results demonstrate that our method provides a simple and facile way to approach high performance pero-HSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897; Kiyama, S.
2015-11-15
A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current densitymore » can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwahara, Makoto, E-mail: kuwahara@esi.nagoya-u.ac.jp; Saitoh, Koh; Tanaka, Nobuo
2014-11-10
The brightness and interference fringes of a spin-polarized electron beam extracted from a semiconductor photocathode excited by laser irradiation are directly measured via its use in a transmission electron microscope. The brightness was 3.8 × 10{sup 7 }A cm{sup −2 }sr{sup −1} for a 30-keV beam energy with the polarization of 82%, which corresponds to 3.1 × 10{sup 8 }A cm{sup −2 }sr{sup −1} for a 200-keV beam energy. The resulting electron beam exhibited a long coherence length at the specimen position due to the high parallelism of (1.7 ± 0.3) × 10{sup −5 }rad, which generated interference fringes representative of a first-order correlation using an electron biprism. The beam also had amore » high degeneracy of electron wavepacket of 4 × 10{sup −6}. Due to the high polarization, the high degeneracy and the long coherence length, the spin-polarized electron beam can enhance the antibunching effect.« less
Ion thruster performance model
NASA Technical Reports Server (NTRS)
Brophy, J. R.
1984-01-01
A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.
Design and performance of a high resolution, low latency stripline beam position monitor system
NASA Astrophysics Data System (ADS)
Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.
2015-03-01
A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.
Electron cloud generation and trapping in a quadrupole magnet at the Los Alamos proton storage ring
NASA Astrophysics Data System (ADS)
Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T. F.
2008-01-01
Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the “prompt” electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the “swept” electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100μs. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.
NASA Astrophysics Data System (ADS)
Bryzgunov, M. I.; Kamerdzhiev, V.; Li, J.; Mao, L. J.; Parkhomchuk, V. V.; Reva, V. B.; Yang, X. D.; Zhao, H.
2017-07-01
Electron cooling is used for damping both transverse and longitudinal oscillations of heavy particle. The cooling of bunch ion beam (with RF voltage on) is important part of experiments with inner target, ion collision system, stacking and RF manipulation. The short length of an ion bunch increases the peak luminosity, gives a start-time point for using of the time-of-flight methods and obtains a short extraction beam pulse. This article describes the review of last experiments with electron cooling carried out on the CSRm, CSRe (China) and COSY (Germany) storage rings. The accumulated experience may be used for the project of electron cooler on 2.5 MeV (NICA) and 0.5 MeV HIAF for obtaining high luminosity, depressing beam-beam effects and RF manipulation.
Numerical simulation of ion charge breeding in electron beam ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L., E-mail: zhao@far-tech.com; Kim, Jin-Soo
2014-02-15
The Electron Beam Ion Source particle-in-cell code (EBIS-PIC) tracks ions in an EBIS electron beam while updating electric potential self-consistently and atomic processes by the Monte Carlo method. Recent improvements to the code are reported in this paper. The ionization module has been improved by using experimental ionization energies and shell effects. The acceptance of injected ions and the emittance of extracted ion beam are calculated by extending EBIS-PIC to the beam line transport region. An EBIS-PIC simulation is performed for a Cs charge-breeding experiment at BNL. The charge state distribution agrees well with experiments, and additional simulation results ofmore » radial profiles and velocity space distributions of the trapped ions are presented.« less
Shinto, K; Senée, F; Ayala, J-M; Bolzon, B; Chauvin, N; Gobin, R; Ichimiya, R; Ihara, A; Ikeda, Y; Kasugai, A; Kitano, T; Kondo, K; Marqueta, A; Okumura, Y; Takahashi, H; Valette, M
2016-02-01
Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H(+)) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D(+)) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H(+) ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H(+)/D(+) ratio estimated by the emittance monitor was more than 90% at those extraction currents.
Optimization of a charge-state analyzer for electron cyclotron resonance ion source beams.
Saminathan, S; Beijers, J P M; Kremers, H R; Mironov, V; Mulder, J; Brandenburg, S
2012-07-01
A detailed experimental and simulation study of the extraction of a 24 keV He(+) beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 π mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations have been studied using the calculated second-order transfer map of the analyzing magnet, with which we can reproduce the phase-space distributions of the ion beam behind the analyzing magnet. Using the transfer map and trajectory calculations we have worked out an aberration compensation scheme based on the addition of compensating hexapole components to the main dipole field by modifying the shape of the poles. The simulations predict that by compensating the kinematic and geometric aberrations in this way and enlarging the pole gap the overall beam transport efficiency can be increased from 16% to 45%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, F.I.; Biedermann, C.; Radtke, R.
2006-03-15
Highly charged ions are extracted from the Berlin Electron Beam Ion Trap for investigations of charge exchange with a gas target. The classical over-the-barrier model for slow highly charged ions describes this process, whereby one or more electrons are captured from the target into Rydberg states of the ion. The excited state relaxes via a radiative cascade of the electron to ground energy. The cascade spectra are characteristic of the capture state. We investigate x-ray photons emitted as a result of interactions between Ar{sup 17+} ions at energies {<=}5q keV with Ar atoms. Of particular interest is the velocity dependencemore » of the angular momentum capture state l{sub c}.« less
Performance of an electron gun for a high-brightness X-ray generator
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-01-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm−2. The beam sizes at the rotating anticathode must therefore be within 1.0 mm × 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm × 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm × 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached ∼60 mA with some thermal problems. PMID:18421153
Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance
NASA Astrophysics Data System (ADS)
Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald
2008-11-01
As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.
Electron cloud simulations for the main ring of J-PARC
NASA Astrophysics Data System (ADS)
Yee-Rendon, Bruce; Muto, Ryotaro; Ohmi, Kazuhito; Satou, Kenichirou; Tomizawa, Masahito; Toyama, Takeshi
2017-07-01
The simulation of beam instabilities is a helpful tool to evaluate potential threats against the machine protection of the high intensity beams. At Main Ring (MR) of J-PARC, signals related to the electron cloud have been observed during the slow beam extraction mode. Hence, several studies were conducted to investigate the mechanism that produces it, the results confirmed a strong dependence on the beam intensity and the bunch structure in the formation of the electron cloud, however, the precise explanation of its trigger conditions remains incomplete. To shed light on the problem, electron cloud simulations were done using an updated version of the computational model developed from previous works at KEK. The code employed the signals of the measurements to reproduce the events seen during the surveys.
Deuterium results at the negative ion source test facility ELISE
NASA Astrophysics Data System (ADS)
Kraus, W.; Wünderlich, D.; Fantz, U.; Heinemann, B.; Bonomo, F.; Riedl, R.
2018-05-01
The ITER neutral beam system will be equipped with large radio frequency (RF) driven negative ion sources, with a cross section of 0.9 m × 1.9 m, which have to deliver extracted D- ion beams of 57 A at 1 MeV for 1 h. On the extraction from a large ion source experiment test facility, a source of half of this size is being operational since 2013. The goal of this experiment is to demonstrate a high operational reliability and to achieve the extracted current densities and beam properties required for ITER. Technical improvements of the source design and the RF system were necessary to provide reliable operation in steady state with an RF power of up to 300 kW. While in short pulses the required D- current density has almost been reached, the performance in long pulses is determined in particular in Deuterium by inhomogeneous and unstable currents of co-extracted electrons. By application of refined caesium evaporation and distribution procedures, and reduction and symmetrization of the electron currents, considerable progress has been made and up to 190 A/m2 D-, corresponding to 66% of the value required for ITER, have been extracted for 45 min.
NASA Technical Reports Server (NTRS)
Hubbard, S. M.; Tabib-Azar, M.; Balley, S.; Rybickid, G.; Neudeck, P.; Raffaelle, R.
2004-01-01
Minority-Carrier diffusion lengths of n-type 6H-SiC were measured using the electron-beam induced current (EBIC) technique. Experimental values of primary beam current, EBIC, and beam voltage were obtained for a variety of SIC samples. This data was used to calculate experimental diode efficiency vs. beam voltage curves. These curves were fit to theoretically calculated efficiency curves, and the diffusion length and metal layer thickness were extracted. The hole diffusion length in n-6H SiC ranged from 0.93 +/- 0.15 microns.
Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Gingras, Luc; Beaulieu, Luc
2011-10-01
This work presents the experimental extraction of the perturbation factor in megavoltage electron beams for three models of silicon diodes (IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded) using a plastic scintillation detector (PSD). The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6-, 12-, and 18-MeV clinical electron beams. They also measured depth-dose curves using the IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded diodes. The authors used the depth-dose curves measured with the PSD as a perturbation-free reference to extract the perturbation factors of the diodes. The authors found that the perturbation factors for the diodes increased substantially with depth, especially for low-energy electron beams. The experimental results show the same trend as published Monte Carlo simulation results for the EFD diode; however, the perturbations measured experimentally were greater. They found that using an effective point of measurement (EPOM) placed slightly away from the source reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. The manufacturer recommended EPOM appears to be incorrect at low electron energy (6 MeV). In addition, the perturbation factors for diodes may be greater than predicted by Monte Carlo simulations.
Calculation of the transverse kicks generated by the bends of a hollow electron lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio
2014-03-25
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam in high-energy accelerators. They were used in the Fermilab Tevatron collider for abort-gap clearing, beam-beam compensation, and halo scraping. A beam-beam compensation scheme based upon electron lenses is currently being implemented in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. This work is in support of a conceptual design of hollow electron beam scraper for the Large Hadron Collider. It also applies to the implementation of nonlinear integrable optics with electron lenses in the Integrable Optics Testmore » Accelerator at Fermilab. We consider the axial asymmetries of the electron beam caused by the bends that are used to inject electrons into the interaction region and to extract them. A distribution of electron macroparticles is deposited on a discrete grid enclosed in a conducting pipe. The electrostatic potential and electric fields are calculated using numerical Poisson solvers. The kicks experienced by the circulating beam are estimated by integrating the electric fields over straight trajectories. These kicks are also provided in the form of interpolated analytical symplectic maps for numerical tracking simulations, which are needed to estimate the effects of the electron lens imperfections on proton lifetimes, emittance growth, and dynamic aperture. We outline a general procedure to calculate the magnitude of the transverse proton kicks, which can then be generalized, if needed, to include further refinements such as the space-charge evolution of the electron beam, magnetic fields generated by the electron current, and longitudinal proton dynamics.« less
Design of an EBIS charge breeder system for rare-isotope beams
NASA Astrophysics Data System (ADS)
Park, Young-Ho; Son, Hyock-Jun; Kim, Jongwon
2016-09-01
Rare-isotope beams will be produced by using the isotope separation on-line (ISOL) system at the Rare Isotope Science Project (RISP). A proton cyclotron is the driver accelerator for ISOL targets, and uranium carbide (UCx) will be a major target material. An isotope beam of interest extracted from the target will be ionized and selected by using a mass separator. The beam emittance will then be reduced by using a radio-frequency quadrupole (RFQ) cooler before the beam is injected into the electron-beam ion-source (EBIS) charge breeder (CB). The maximum electron beam current of the EBIS is 3 A from a cathode made of IrCe in an applied magnetic field of 0.2 T. The size of the electron beam is compressed by magnetic fields of up to 6 T caused in the charge-breeding region by a superconducting solenoid. The design of EBIS-CB was performed by using mechanics as well as beam optics. A test stand for the electron gun and its collector, which can take an electron-beam power of 20 kW, are under construction. The gun assembly was first tested by using a high-voltage pulse so as to measure its perveance. The design of the EBIS, along with its test stand, is described.
Trirotron: triode rotating beam radio frequency amplifier
Lebacqz, Jean V.
1980-01-01
High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.
NASA Astrophysics Data System (ADS)
Donets, D. E.; Donets, E. D.; Donets, E. E.; Salnikov, V. V.; Shutov, V. B.
2010-09-01
Electron String Ion Source (ESIS) Krion-2 (JINR, Dubna) was used for basic and applied research in various aspects of multiply charged heavy ions production. Energy recuperation mode in ESIS has been proofed first and used for production of highly charged ions 84Kr28+÷84Kr32+, 124Xe40÷124Xe44 and Au51+÷ Au54+. Krion-2 ESIS was mounted on high voltage (HV) platform of LU-20 Linac and used as an injector of highly charged ions during Nuclotron run N° 41. Krion-2 ESIS has produced 3.0.107 124Xe42+ ions per pulse of 7 μs duration. This ion beam was injected into LU-20 and Nuclotron, accelerated up to energy of 186 GeV and the extracted Xe beam was used for physics experiments. Electron String Ion Source Krion-2 demonstrated the high reliability and stability running during 30 days on HV platform. We believe that it is due to an extremely low electron beam power, provided by using the electron string mode of operation: 50 W pulse power and about 10 W average power. Other possible application of ESIS could be its use in injection complexes of synchrotrons and cyclotrons for cancer therapy. Slow and fast extraction of C4+ and C6+ beams from Krion-2 ESIS were preliminary studied towards ESIS optimization for medical accelerators requirements.
Progress on development of SPIDER diagnostics
NASA Astrophysics Data System (ADS)
Pasqualotto, R.; Agostini, M.; Barbisan, M.; Bernardi, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Palma, M. Dalla; Delogu, R. S.; Gorini, G.; Lotto, L.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rizzolo, A.; Serianni, G.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.
2017-08-01
SPIDER experiment, the full size prototype of the beam source for the ITER heating neutral beam injector, has to demonstrate extraction and acceleration to 100 kV of a large negative ion hydrogen or deuterium beam with co-extracted electron fraction e-/D- <1 and beam uniformity within 10%, for up to one hour beam pulses. Main RF source plasma and beam parameters are measured with different complementary techniques to exploit the combination of their specific features. While SPIDER plant systems are being installed, the different diagnostic systems are in the procurement phase. Their final design is described here with a focus on some key solutions and most original and cost effective implementations. Thermocouples used to measure the power load distribution in the source and over the beam dump front surface will be efficiently fixed with proven technique and acquired through commercial and custom electronics. Spectroscopy needs to use well collimated lines of sight and will employ novel design spectrometers with higher efficiency and resolution and filtered detectors with custom built amplifiers. The electrostatic probes will be operated through electronics specifically developed to cope with the challenging environment of the RF source. The instrumented calorimeter STRIKE will use new CFC tiles, still under development. Two linear cameras, one built in house, have been tested as suitable for optical beam tomography. Some diagnostic components are off the shelf, others are custom developed: some of these are being prototyped or are under test before final production and installation, which will be completed before start of SPIDER operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yousuke
2012-02-15
We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n{sub e} in the pulse mode is higher and the electron temperature T{sub e} is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecularmore » or cluster ions.« less
RF extraction issues in the relativistic klystron amplifiers
NASA Astrophysics Data System (ADS)
Serlin, Victor; Friedman, Moshe; Lampe, Martin; Hubbard, Richard F.
1994-05-01
Relativistic klystron amplifiers (RKAs) were successfully operated at NRL in several frequency regimes and power levels. In particular, an L-band RKA was optimized for high- power rf extraction into the atmosphere and an S-band RKA was operated, both in a two-beam and a single-beam configuration. At L-band the rf extraction at maximum power levels (>= 15 GW) was hindered by pulse shortening and poor repeatability. Preliminary investigation showed electron emission in the radiating horn, due to very high voltages associated with the multi-gigawatt rf power levels. This electron current constituted an electric load in parallel with the radiating antenna, and precipitated the rf pulse collapse. At S-band the peak extracted power reached 1.7 GW with power efficiency approximately 50%. However, pulse shortening limited the duration to approximately 50 nanoseconds. The new triaxial RKA promises to solve many of the existing problems.
Pikin, A; Beebe, E N; Raparia, D
2013-03-01
Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 ÷ 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 ÷ 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, A.; Beebe, E. N.; Raparia, D.
Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current upmore » to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 Division-Sign 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 Division-Sign 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.« less
Improving enzymatic hydrolysis of industrial hemp ( Cannabis sativa L.) by electron beam irradiation
NASA Astrophysics Data System (ADS)
Shin, Soo-Jeong; Sung, Yong Joo
2008-09-01
The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose.
Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation
NASA Astrophysics Data System (ADS)
Alton, G. D.; Bilheux, H.
2004-05-01
Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.
Low-energy plasma-cathode electron gun with a perforated emission electrode
NASA Astrophysics Data System (ADS)
Burdovitsin, Victor; Kazakov, Andrey; Medovnik, Alexander; Oks, Efim; Tyunkov, Andrey
2017-11-01
We describe research of influence of the geometric parameters of perforated electrode on emission parameters of a plasma cathode electron gun generating continuous electron beams at gas pressure 5-6 Pa. It is shown, that the emission current increases with increasing the hole diameters and decreasing the thickness of the perforated emission electrode. Plasma-cathode gun with perforated electron can provide electron extraction with an efficiency of up to 72 %. It is shown, that the current-voltage characteristic of the electron gun with a perforated emission electrode differs from that of similar guns with fine mesh grid electrode. The plasma-cathode electron gun with perforated emission electrode is used for electron beam welding and sintering.
NASA Astrophysics Data System (ADS)
Ong, Vincent K. S.
1998-04-01
The extraction of diffusion length and surface recombination velocity in a semiconductor with the use of an electron beam induced current line scan has traditionally been done by fitting the line scan into complicated theoretical equations. It was recently shown that a much simpler equation is sufficient for the extraction of diffusion length. The linearization coefficient is the only variable that is needed to be adjusted in the curve fitting process. However, complicated equations are still necessary for the extraction of surface recombination velocity. It is shown in this article that it is indeed possible to extract surface recombination velocity with a simple equation, using only one variable, the linearization coefficient. An intuitive feel for the reason behind the method was discussed. The accuracy of the method was verified with the use of three-dimensional computer simulation, and was found to be even slightly better than that of the best existing method.
Electron beam induced current in the high injection regime.
Haney, Paul M; Yoon, Heayoung P; Koirala, Prakash; Collins, Robert W; Zhitenev, Nikolai B
2015-07-24
Electron beam induced current (EBIC) is a powerful technique which measures the charge collection efficiency of photovoltaics with sub-micron spatial resolution. The exciting electron beam results in a high generation rate density of electron-hole pairs, which may drive the system into nonlinear regimes. An analytic model is presented which describes the EBIC response when the total electron-hole pair generation rate exceeds the rate at which carriers are extracted by the photovoltaic cell, and charge accumulation and screening occur. The model provides a simple estimate of the onset of the high injection regime in terms of the material resistivity and thickness, and provides a straightforward way to predict the EBIC lineshape in the high injection regime. The model is verified by comparing its predictions to numerical simulations in one- and two-dimensions. Features of the experimental data, such as the magnitude and position of maximum collection efficiency versus electron beam current, are consistent with the three-dimensional model.
Studies on the Extraction Region of the Type VI RF Driven H- Ion Source
NASA Astrophysics Data System (ADS)
McNeely, P.; Bandyopadhyay, M.; Franzen, P.; Heinemann, B.; Hu, C.; Kraus, W.; Riedl, R.; Speth, E.; Wilhelm, R.
2002-11-01
IPP Garching has spent several years developing a RF driven H- ion source intended to be an alternative to the current ITER (International Thermonuclear Experimental Reactor) reference design ion source. A RF driven source offers a number of advantages to ITER in terms of reduced costs and maintenance requirements. Although the RF driven ion source has shown itself to be competitive with a standard arc filament ion source for positive ions many questions still remain on the physics behind the production of the H- ion beam extracted from the source. With the improvements that have been implemented to the BATMAN (Bavarian Test Machine for Negative Ions) facility over the last two years it is now possible to study both the extracted ion beam and the plasma in the vicinity of the extraction grid in greater detail. This paper will show the effect of changing the extraction and acceleration voltage on both the current and shape of the beam as measured on the calorimeter some 1.5 m downstream from the source. The extraction voltage required to operate in the plasma limit is 3 kV. The perveance optimum for the extraction system was determined to be 2.2 x 10-6 A/V3/2 and occurs at 2.7 kV extraction voltage. The horizontal and vertical beam half widths vary as a function of the extracted ion current and the horizontal half width is generally smaller than the vertical. The effect of reducing the co-extracted electron current via plasma grid biasing on the H- current extractable and the beam profile from the source is shown. It is possible in the case of a silver contaminated plasma to reduce the co-extracted electron current to 20% of the initial value by applying a bias of 12 V. In the case where argon is present in the plasma, biasing is observed to have minimal effect on the beam half width but in a pure hydrogen plasma the beam half width increases as the bias voltage increases. New Langmuir probe studies that have been carried out parallel to the plasma grid (in the vicinity of the peak of the external magnetic filter field) and changes to source parameters as a function of power, and argon addition are reported. The behaviour of the electron density is different when the plasma is argon seeded showing a strong increase with RF power. The plasma potential is decreased by 2 V when argon is added to the plasma. The effect of the presence of unwanted silver sputtered from the Faraday screen by Ar+ ions on both the source performance and the plasma parameters is also presented. The silver dramatically downgraded source performance in terms of current density and produced an early saturation of current with applied RF power. Recently, collaboration was begun with the Technical University of Augsburg to perform spectroscopic measurements on the Type VI ion source. The final results of this analysis are not yet ready but some interesting initial observations on the gas temperature, disassociation degree and impurity ions will be presented.
Design of a Prototype Positive Ion Source with Slit Aperture Type Extraction System
NASA Astrophysics Data System (ADS)
Sharma, Sanjeev K.; Vattilli, Prahlad; Choksi, Bhargav; Punyapu, Bharathi; Sidibomma, Rambabu; Bonagiri, Sridhar; Aggrawal, Deepak; Baruah, Ujjwal K.
2017-04-01
The neutral beam injector group at IPR aims at developing an experimental positive ion source capable of delivering H+ ion beam having energy of 30 - 40 keV and carrying an ion beam current of 5 A. The slit aperture based extraction system is chosen for extracting and accelerating the ions so as to achieve low divergence of the ion beam (< 0.5°). For producing H+ ions a magnetic multi-pole bucket type plasma chamber is selected. We calculated the magnetic field due to cusp magnets and trajectories (orbits) of the primary electrons to investigate the two magnetic configurations i.e. line cusp and checker board. Numerical simulation is also carried out by using OPERA-3D to study the characteristic performance of the slit aperture type extraction-acceleration system. We report here the results of the studies carried out on various aspects of the design of the slit aperture type positive ion source.
NASA Astrophysics Data System (ADS)
Kaganovich, Igor D.
2015-11-01
In this paper we study the effects of the two-stream instability on the propagation of intense nonrelativistic ion and electron beams in background plasma. Development of the two-stream instability between the beam ions and plasma electrons leads to beam breakup, a slowing down of the beam particles, acceleration of the plasma particles, and transfer of the beam energy to the plasma particles and wave excitations. Making use of the particle-in-cell codes EDIPIC and LSP, and analytic theory we have simulated the effects of the two-stream instability on beam propagation over a wide range of beam and plasma parameters. Because of the two-stream instability the plasma electrons can be accelerated to velocities as high as twice the beam velocity. The resulting return current of the accelerated electrons may completely change the structure of the beam self - magnetic field, thereby changing its effect on the beam from focusing to defocusing. Therefore, previous theories of beam self-electromagnetic fields that did not take into account the effects of the two-stream instability must be significantly modified. This effect can be observed on the National Drift Compression Experiment-II (NDCX-II) facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma. Particle-in-cell, fluid simulations, and analytical theory also reveal the rich complexity of beam- plasma interaction phenomena: intermittency and multiple regimes of the two-stream instability in dc discharges; band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma and repeated acceleration of electrons in a finite system. In collaboration with E. Tokluoglu, D. Sydorenko, E. A. Startsev, J. Carlsson, and R. C. Davidson. Research supported by the U.S. Department of Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Denisov, G. G.; Vilkov, M. N.
2016-05-15
A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only themore » level of steady-state generation but also, in the optimal case, the power of the driving electron beam.« less
High efficiency tapered free-electron lasers with a prebunched electron beam
Emma, C.; Sudar, N.; Musumeci, P.; ...
2017-11-17
In this study we analyze the high gain, high efficiency tapered free-electron laser amplifier with a prebunched electron beam. Simple scaling laws are derived for the peak output power and extraction efficiency and verified using 1D simulations. These studies provide useful analytical expressions which highlight the benefits resulting from fine control of the initial conditions of the system, namely the initial electron beam bunching and input seed radiation. When time-dependent effects are included, the sideband instability is known to limit the radiation amplification due to particle detrapping. We discuss two different approaches to mitigate the sideband growth via 1-D timemore » dependent simulations. We find that a more aggressive taper enabled by strong prebunching and a modulation of the resonance condition are both effective methods for suppressing the sideband instability growth rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, A. V.; Agustsson, R.; Berg, W. J.
We report observations of an intense sub-THz radiation extracted from a ~3 MeV electron beam with a flat transverse profile propagating between two parallel oversized copper gratings with side openings. Low-loss radiation outcoupling is accomplished using a horn antenna and a miniature permanent magnet separating sub-THz and electron beams. A tabletop experiment utilizes a radio frequency thermionic electron gun delivering a thousand momentum-chirped microbunches per macropulse and an alpha-magnet with a movable beam scraper producing sub-mm microbunches. The radiated energy of tens of micro-Joules per radio frequency macropulse is demonstrated. The frequency of the radiation peak was generated and tunedmore » across two frequency ranges: (476–584) GHz with 7% instantaneous spectrum bandwidth, and (311–334) GHz with 38% instantaneous bandwidth. In this study, the prototype setup features a robust compact source of variable frequency, narrow bandwidth sub-THz pulses.« less
Smirnov, A. V.; Agustsson, R.; Berg, W. J.; ...
2015-09-29
We report observations of an intense sub-THz radiation extracted from a ~3 MeV electron beam with a flat transverse profile propagating between two parallel oversized copper gratings with side openings. Low-loss radiation outcoupling is accomplished using a horn antenna and a miniature permanent magnet separating sub-THz and electron beams. A tabletop experiment utilizes a radio frequency thermionic electron gun delivering a thousand momentum-chirped microbunches per macropulse and an alpha-magnet with a movable beam scraper producing sub-mm microbunches. The radiated energy of tens of micro-Joules per radio frequency macropulse is demonstrated. The frequency of the radiation peak was generated and tunedmore » across two frequency ranges: (476–584) GHz with 7% instantaneous spectrum bandwidth, and (311–334) GHz with 38% instantaneous bandwidth. In this study, the prototype setup features a robust compact source of variable frequency, narrow bandwidth sub-THz pulses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafalskyi, Dmytro, E-mail: dmytro.rafalskyi@lpp.polytechnique.fr; Popelier, Lara; Aanesland, Ane
The PEGASES (Plasma Propulsion with Electronegative Gases) thruster is a gridded ion thruster, where both positive and negative ions are accelerated to generate thrust. In this way, additional downstream neutralization by electrons is redundant. To achieve this, the thruster accelerates alternately positive and negative ions from an ion-ion plasma where the electron density is three orders of magnitude lower than the ion densities. This paper presents a first experimental study of the alternate acceleration in PEGASES, where SF{sub 6} is used as the working gas. Various electrostatic probes are used to investigate the source plasma potential and the energy, composition,more » and current of the extracted beams. We show here that the plasma potential control in such system is key parameter defining success of ion extraction and is sensitive to both parasitic electron current paths in the source region and deposition of sulphur containing dielectric films on the grids. In addition, large oscillations in the ion-ion plasma potential are found in the negative ion extraction phase. The oscillation occurs when the primary plasma approaches the grounded parts of the main core via sub-millimetres technological inputs. By controlling and suppressing the various undesired effects, we achieve perfect ion-ion plasma potential control with stable oscillation-free operation in the range of the available acceleration voltages (±350 V). The measured positive and negative ion currents in the beam are about 10 mA for each component at RF power of 100 W and non-optimized extraction system. Two different energy analyzers with and without magnetic electron suppression system are used to measure and compare the negative and positive ion and electron fluxes formed by the thruster. It is found that at alternate ion-ion extraction the positive and negative ion energy peaks are similar in areas and symmetrical in position with +/− ion energy corresponding to the amplitude of the applied acceleration voltage.« less
NASA Astrophysics Data System (ADS)
Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Fröschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Stäbler, A.; Wünderlich, D.
2011-07-01
The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( {\\sim}\\frac{1}{8} of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.
Xu, Yuan; Peng, Shixiang; Ren, Haitao; Zhao, Jie; Chen, Jia; Zhang, Ailin; Zhang, Tao; Guo, Zhiyu; Chen, Jia'er
2014-02-01
The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H2(+) and H3(+)) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H3(+) ions with fraction 43.2% and 40 mA H2(+) ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.
SANE's Measurement of the Proton's Virtual Photon Spin Asymmetry, A p 1, at Large Bjorken x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulholland, Jonathan
2012-05-01
The experiment SANE (Spin Asymmetries of the Nucleon Experiment) measured inclusive double polarization electron asymmetries on a proton target at the Continuous Electron Beam Accelerator Facility at the Thomas Jefferson National Laboratory in Newport News Virgina. Polarized electrons were scattered from a solid 14NH 3 polarized target provided by the University of Virginia target group. Measurements were taken with the target polarization oriented at 80 degrees and 180 degrees relative to the beam direction, and beam energies of 4.7 and 5.9 GeV were used. Scattered electrons were detected by a multi-component novel non-magnetic detector package constructed for this experiment. Asymmetriesmore » measured at the two target orientations allow for the extraction of the virtual Compton asymmetries A 1 p and A 2 p as well as the spin structure functions g 1 p and g 2 p. This work addresses the extraction of the virtual Compton asymmetry A 1 p in the deep inelastic regime. The analysis uses data in the kinematic range from Bjorken x of 0.30 to 0.55, separated into four Q 2 bins from 1.9 to 4.7 GeV 2.« less
Using polarized positrons to probe physics beyond the standard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furletova, Yulia; Mantry, Sonny
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less
Using polarized positrons to probe physics beyond the standard model
Furletova, Yulia; Mantry, Sonny
2018-05-25
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less
Using polarized positrons to probe physics beyond the standard model
NASA Astrophysics Data System (ADS)
Furletova, Yulia; Mantry, Sonny
2018-05-01
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.
Maimone, F; Tinschert, K; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P
2012-02-01
The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.
High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golge, S., E-mail: serkan.golge@nasa.gov; Vlahovic, B.; Wojtsekhowski, B.
We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10 }e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +}more » beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less
New scheme for image edge detection using the switching mechanism of nonlinear optical material
NASA Astrophysics Data System (ADS)
Pahari, Nirmalya; Mukhopadhyay, Sourangshu
2006-03-01
The limitations of electronics in conducting parallel arithmetic, algebraic, and logic processing are well known. Very high-speed (terahertz) performance cannot be expected in conventional electronic mechanisms. To achieve such performance we can introduce optics instead of electronics for information processing, computing, and data handling. Nonlinear optical material (NOM) is a successful candidate in this regard to play a major role in the domain of optically controlled switching systems. The character of some NOMs is such as to reflect the probe beam in the presence of two read beams (or pump beams) exciting the material from opposite directions, using the principle of four-wave mixing. In image processing, edge extraction from an image is an important and essential task. Several optical methods of digital image processing are used for properly evaluating the image edges. We propose here a new method of image edge detection, extraction, and enhancement by use of AND-based switching operations with NOM. In this process we have used the optically inverted image of a supplied image. This can be obtained by the EXOR switching operation of the NOM.
High-intensity positron microprobe at Jefferson Lab
Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.
2014-06-19
We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 10 10 e +/s. Reaching this intensity in our design relies on the transport of positrons (T + below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system,more » transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less
Measurements of charge state breeding efficiency at BNL test EBIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondrashev, S.; Alessi, J.; Beebe, E.N.
Charge breeding of singly charged ions is required to efficiently accelerate rare isotope ion beams for nuclear and astrophysics experiments, and to enhance the accuracy of low-energy Penning trap-assisted spectroscopy. An efficient charge breeder for the Californium Rare Isotope Breeder Upgrade (CARIBU) to the ANL Tandem Linear Accelerator System (ATLAS) facility is being developed using the BNL Test Electron Beam Ion Source (Test EBIS) as a prototype. Parameters of the CARIBU EBIS charge breeder are similar to those of the BNL Test EBIS except the electron beam current will be adjustable in the range from 1 to 2 {angstrom}. Themore » electron beam current density in the CARIBU EBIS trap will be significantly higher than in existing operational charge state breeders based on the EBIS concept. The charge state breeding efficiency is expected to be about 25% for the isotope ions extracted from the CARIBU. For the success of our EBIS project, it is essential to demonstrate high breeding efficiency at the BNL Test EBIS tuned to the regime close to the parameters of the CARIBU EBIS at ANL. The breeding efficiency optimization and measurements have been successfully carried out using a Cs{sup +} surface ionization ion source for externally pulsed injection into the BNL Test EBIS. A Cs{sup +} ion beam with a total number of ions of 5 x 10{sup 8} and optimized pulse length of 70 {mu}s has been injected into the Test EBIS and charge-bred for 5.3 ms for two different electron beam currents 1 and 1.5 {angstrom}. In these experiments we have achieved 70% injection/extraction efficiency and breeding efficiency into the most abundant charge state 17%.« less
Monolithic millimeter-wave diode array beam controllers: Theory and experiment
NASA Technical Reports Server (NTRS)
Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.
1992-01-01
In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Joo; Jung, Samooel; Yong, Hae In; Bae, Young Sik; Kang, Suk Nam; Kim, Il Suk; Jo, Cheorun
2014-05-01
The combined effects of electron-beam (EB) irradiation and addition of onion peel (OP) extract and barbecue flavor (BF) on inactivation of foodborne pathogens and the quality of pork jerky was investigated. Prepared pork jerky samples were irradiated (0, 1, 2, and 4 kGy) and stored for 2 month at 25 °C. The D10 values of Listeria monocytogenes, Escherichia coli, and Salmonella typhimurium observed in the OP treated samples were 0.19, 0.18, and 0.19 kGy, whereas those in control were 0.25, 0.23, and 0.20 kGy, respectively. Irradiated samples with OP extract and BF had substantially lower total aerobic bacterial counts than the control had. Samples with added OP extract and BF had lower peroxide values than the control had. Sensory evaluation indicated that overall acceptability of treated samples was not changed up to 2 kGy. Therefore, EB irradiation, combined with OP extract and BF, has improved the microbiological safety with no negative effects on the quality of pork jerky.
Dissociative Excitation of Thymine by Electron Impact
NASA Astrophysics Data System (ADS)
McConkey, William; Tiessen, Collin; Hein, Jeffrey; Trocchi, Joshuah; Kedzierski, Wladek
2014-05-01
A crossed electron-gas beam system coupled to a VUV spectrometer has been used to investigate the dissociation of thymine (C5H6N2O2) into excited atomic fragments in the electron-impact energy range from threshold to 375 eV. A special stainless steel oven is used to vaporize the thymine and form it into a beam where it is intersected by a magnetically collimated electron beam, typical current 50 μA. The main features in the spectrum are the H Lyman series lines. The probability of extracting excited C or N atoms from the ring is shown to be very small. In addition to spectral data, excitation probability curves as a function of electron energy will be presented for the main emission features. Possible dissociation channels and excitation mechanisms in the parent molecule will be discussed. The authors thank NSERC (Canada) for financial support.
The Heidelberg compact electron beam ion traps
NASA Astrophysics Data System (ADS)
Micke, P.; Kühn, S.; Buchauer, L.; Harries, J. R.; Bücking, T. M.; Blaum, K.; Cieluch, A.; Egl, A.; Hollain, D.; Kraemer, S.; Pfeifer, T.; Schmidt, P. O.; Schüssler, R. X.; Schweiger, Ch.; Stöhlker, T.; Sturm, S.; Wolf, R. N.; Bernitt, S.; Crespo López-Urrutia, J. R.
2018-06-01
Electron beam ion traps (EBITs) are ideal tools for both production and study of highly charged ions (HCIs). In order to reduce their construction, maintenance, and operation costs, we have developed a novel, compact, room-temperature design, the Heidelberg Compact EBIT (HC-EBIT). Four already commissioned devices operate at the strongest fields (up to 0.86 T) reported for such EBITs using permanent magnets, run electron beam currents up to 80 mA, and energies up to 10 keV. They demonstrate HCI production, trapping, and extraction of pulsed Ar16+ bunches and continuous 100 pA ion beams of highly charged Xe up to charge state 29+, already with a 4 mA, 2 keV electron beam. Moreover, HC-EBITs offer large solid-angle ports and thus high photon count rates, e.g., in x-ray spectroscopy of dielectronic recombination in HCIs up to Fe24+, achieving an electron-energy resolving power of E/ΔE > 1500 at 5 keV. Besides traditional on-axis electron guns, we have also implemented a novel off-axis gun for laser, synchrotron, and free-electron laser applications, offering clear optical access along the trap axis. We report on its first operation at a synchrotron radiation facility demonstrating the resonant photoexcitation of highly charged oxygen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smit, C; Plessis, F du
Purpose: To extract the electron contamination energy spectra for an Elekta Precise Linac, based on pure photon and measured clinical beam percentage depth dose data. And to include this as an additional source in isource 4 in DOSXYZnrc. Methods: A pure photon beam was simulated for the Linac using isource 4 in the DOSXYZnrc Monte Carlo (MC) code. Percentage depth dose (PDD) data were extracted afterwards for a range of field sizes (FS). These simulated dose data were compared to actual measured dose PDD data, with the data normalized at 10 cm depth. The resulting PDD data resembled the electronmore » contamination depth dose. Since the dose fall-off is a strictly decreasing function, a method was adopted to derive the contamination electron spectrum. Afterwards this spectrum was used in a DOSXYZnrc MC simulation run to verify that the original electron depth dose could be replicated. Results: Various square aperture FS’s for 6, 8 and 15 megavolt (MV) photon beams were modeled, simulated and compared to their respective actual measured PDD data. As FS increased, simulated pure photon depth-dose profiles shifted deeper, thus requiring electron contamination to increase the surface dose. The percentage of electron weight increased with increase in FS. For a FS of 15×15 cm{sup 2}, the percentage electron weight is 0.1%, 0.2% and 0.4% for 6, 8 and 15 MV beams respectively. Conclusion: From the PDD results obtained, an additional electron contamination source was added to the photon source model so that simulation and measured PDD data could match within 2 % / 2 mm gamma-index criteria. The improved source model could assure more accurate simulations of surface doses. This research project was funded by the South African Medical Research Council (MRC) with funds from National Treasury under its Economic Competitiveness and Support package.« less
Research progress on ionic plasmas generated in an intense hydrogen negative ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeiri, Y., E-mail: takeiri@nifs.ac.jp; Tsumori, K.; Nagaoka, K.
2015-04-08
Characteristics of ionic plasmas, observed in a high-density hydrogen negative ion source, are investigated with a multi-diagnostics system. The ionic plasma, which consists of hydrogen positive- and negative-ions with a significantly low-density of electrons, is generated in the ion extraction region, from which the negative ions are extracted through the plasma grid. The negative ion density, i.e., the ionic plasma density, as high as the order of 1×10{sup 17}m{sup −3}, is measured with cavity ring-down spectroscopy, while the electron density is lower than 1×10{sup 16}m{sup −3}, which is confirmed with millimeter-wave interferometer. Reduction of the negative ion density is observedmore » at the negative ion extraction, and at that time the electron flow into the ionic plasma region is observed to conserve the charge neutrality. Distribution of the plasma potential is measured in the extraction region in the direction normal to the plasma grid surface with a Langmuir probe, and the results suggest that the sheath is formed at the plasma boundary to the plasma grid to which the bias voltage is applied. The beam extraction should drive the negative ion transport in the ionic plasma across the sheath formed on the extraction surface. Larger reduction of the negative ions at the beam extraction is observed in a region above the extraction aperture on the plasma grid, which is confirmed with 2D image measurement of the Hα emission and cavity ring-down spectroscopy. The electron distribution is also measured near the plasma grid surface. These various properties observed in the ionic plasma are discussed.« less
Demonstrating H- beam focusing using an elliptical einzel lens
NASA Astrophysics Data System (ADS)
Lawrie, S. R.; Faircloth, D. C.; Letchford, A. P.; Whitehead, M. O.; Wood, T.
2017-08-01
H- ion source research is being performed at the ISIS spallation neutron and muon facility on a dedicated Vessel for Extraction and Source Plasma Analyses (VESPA). The ion extraction and optics system presently being used on ISIS is centered on a combined-function sector dipole magnet. This traps cesium vapor escaping the ion source; mass-separates co-extracted electrons and stripped neutrals, and weak-focusses the highly asymmetric slit-shaped ion beam. Unfortunately the added drift length through the magnet under strong space-charge forces means up to 50% of the beam is collimated on the magnet. The VESPA has shown that the ISIS ion source actually produces 80 mA of beam current at standard settings, but because of magnet collimation only 55 mA is injected into the solenoid Low Energy Beam Transport (LEBT). A new purely electrostatic post-extraction system incorporating an einzel lens with an elliptical aperture is currently under test. This allows much greater flexibility of perveance and phase space matching for injection into the LEBT and Radio Frequency Quadrupole (RFQ). This paper discusses high voltage breakdown mitigation strategies and presents the first results of the novel elliptical transport system. So far, 70 mA of beam has been transported through the new system with a normalized transverse RMS emittance of 0.2 π mm mrad.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astrelin, V. T., E-mail: V.T.Astrelin@inp.nsk.su; Kotelnikov, I. A.
Emission of positively charged ions from a plasma emitter irradiated by a counterpropagating electron beam is studied theoretically. A bipolar diode with a plasma emitter in which the ion temperature is lower than the electron temperature and the counter electron flow is extracted from the ion collector is calculated in the one-dimensional model. An analog of Bohm’s criterion for ion emission in the presence of a counterpropagating electron beam is derived. The limiting density of the counterpropagating beam in a bipolar diode operating in the space-charge-limited-emission regime is calculated. The full set of boundary conditions on the plasma emitter surfacemore » that are required for operation of the high-current optics module in numerical codes used to simulate charged particle sources is formulated.« less
The design of the Spectrometer Ring at the HIAF
NASA Astrophysics Data System (ADS)
Wu, B.; Yang, J. C.; Xia, J. W.; Yan, X. L.; Hu, X. J.; Mao, L. J.; Sheng, L. N.; Wu, J. X.; Yin, D. Y.; Chai, W. P.; Shen, G. D.; Ge, W. W.; Wang, G.; Zhao, H.; Ruan, S.; Ma, X. W.; Wang, M.; Litvinov, S.; Wen, W. Q.; Chen, X. C.; Chen, R. J.; Tang, M. T.; Wu, W.; Luo, C.; Zhao, T. C.; Shi, C. F.; Fu, X.; Liu, J.; Liang, L.
2018-02-01
The Spectrometer Ring (SRing) is an essential part of the High Intensity heavy-ion Accelerator Facility project (HIAF) in China. It is designed as a multi-functional experimental storage ring, which will be able to operate in three ion optical operation modes. The SRing will be used as a time-of-flight mass spectrometer for short-lived, especially neutron-rich nuclei. It will also be used to collect and cool Rare Isotope Beams (RIBs) or highly-charged stable ion beams for nuclear and atomic physics experiments. The design magnetic rigidity is in the range 1.5 to 15 Tm. The beam cooling system consists of stochastic cooling and electron cooling devices. With a help of an electron cooler, stored ions will be decelerated to a minimum energy of 30 MeV/u by RF cavities. The extraction system of the SRing will allow cooled ion beams to be extracted to an external target for further ion manipulations or reaction experiments. The general ion optics design and technical requirements of SRing subsystems are presented and discussed in this paper.
Compression of pulsed electron beams for material tests
NASA Astrophysics Data System (ADS)
Metel, Alexander S.
2018-03-01
In order to strengthen the surface of machine parts and investigate behavior of their materials exposed to highly dense energy fluxes an electron gun has been developed, which produces the pulsed beams of electrons with the energy up to 300 keV and the current up to 250 A at the pulse width of 100-200 µs. Electrons are extracted into the accelerating gap from the hollow cathode glow discharge plasma through a flat or a spherical grid. The flat grid produces 16-cm-diameter beams with the density of transported per one pulse energy not exceeding 15 J·cm-2, which is not enough even for the surface hardening. The spherical grid enables compression of the beams and regulation of the energy density from 15 J·cm-2 up to 15 kJ·cm-2, thus allowing hardening, pulsed melting of the machine part surface with the further high-speed recrystallization as well as an explosive ablation of the surface layer.
Direct nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation.
El Mel, Abdel-Aziz; Stephant, Nicolas; Gautier, Romain
2016-10-06
In this communication, we report on the growth, direct writing and nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation using a scanning electron microscope. The nanoblocks are produced by placing a droplet of an ethylene glycol solution containing silver nitrate and polyvinylpyrrolidone diluted in ethanol directly on a hot substrate heated up to 150 °C. Upon complete evaporation of the droplet, nanospheres, nano- and micro-triangles and nanoblocks made of silver-containing polymers, form over the substrate surface. Considering the nanoblocks as a model system, we demonstrate that such nanostructures are extremely sensitive to the e-beam extracted from the source of a scanning electron microscope operating at low acceleration voltages (between 5 and 7 kV). This sensitivity allows us to efficiently create various nanopatterns (e.g. arrays of holes, oblique slits and nanotrenches) in the material under e-beam irradiation. In addition to the possibility of writing, the nanoblocks revealed a self-healing ability allowing them to recover a relatively smooth surface after etching. Thanks to these properties, such nanomaterials can be used as a support for data writing and erasing on the nanoscale under low energy electron beam irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro
2012-02-15
In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them inmore » detail.« less
Recent charge-breeding developments with EBIS/T devices (invited).
Schwarz, S; Lapierre, A
2016-02-01
Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10(3) or even 10(4) A/cm(2). These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities. Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL's ReA EBIS/T charge breeder.
Recent charge-breeding developments with EBIS/T devices (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, S., E-mail: schwarz@nscl.msu.edu; Lapierre, A.
Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10{sup 3} or even 10{sup 4} A/cm{sup 2}. These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities.more » Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL’s ReA EBIS/T charge breeder.« less
NASA Astrophysics Data System (ADS)
Kim, J.-S.; Tyryshkin, A. M.; Lyon, S. A.
2017-03-01
Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities.
High current proton beams production at Simple Mirror Ion Source 37.
Skalyga, V; Izotov, I; Razin, S; Sidorov, A; Golubev, S; Kalvas, T; Koivisto, H; Tarvainen, O
2014-02-01
This paper presents the latest results of high current proton beam production at Simple Mirror Ion Source (SMIS) 37 facility at the Institute of Applied Physics (IAP RAS). In this experimental setup, the plasma is created and the electrons are heated by 37.5 GHz gyrotron radiation with power up to 100 kW in a simple mirror trap fulfilling the ECR condition. Latest experiments at SMIS 37 were performed using a single-aperture two-electrode extraction system. Proton beams with currents up to 450 mA at high voltages below 45 kV were obtained. The maximum beam current density was measured to be 600 mA/cm(2). A possibility of further improvement through the development of an advanced extraction system is discussed.
Tahmasebibirgani, Mohammad Javad; Maskani, Reza; Behrooz, Mohammad Ali; Zabihzadeh, Mansour; Shahbazian, Hojatollah; Fatahiasl, Jafar; Chegeni, Nahid
2017-01-01
Introduction In radiotherapy, megaelectron volt (MeV) electrons are employed for treatment of superficial cancers. Magnetic fields can be used for deflection and deformation of the electron flow. A magnetic field is composed of non-uniform permanent magnets. The primary electrons are not mono-energetic and completely parallel. Calculation of electron beam deflection requires using complex mathematical methods. In this study, a device was made to apply a magnetic field to an electron beam and the path of electrons was simulated in the magnetic field using finite element method. Methods A mini-applicator equipped with two neodymium permanent magnets was designed that enables tuning the distance between magnets. This device was placed in a standard applicator of Varian 2100 CD linear accelerator. The mini-applicator was simulated in CST Studio finite element software. Deflection angle and displacement of the electron beam was calculated after passing through the magnetic field. By determining a 2 to 5cm distance between two poles, various intensities of transverse magnetic field was created. The accelerator head was turned so that the deflected electrons became vertical to the water surface. To measure the displacement of the electron beam, EBT2 GafChromic films were employed. After being exposed, the films were scanned using HP G3010 reflection scanner and their optical density was extracted using programming in MATLAB environment. Displacement of the electron beam was compared with results of simulation after applying the magnetic field. Results Simulation results of the magnetic field showed good agreement with measured values. Maximum deflection angle for a 12 MeV beam was 32.9° and minimum deflection for 15 MeV was 12.1°. Measurement with the film showed precision of simulation in predicting the amount of displacement in the electron beam. Conclusion A magnetic mini-applicator was made and simulated using finite element method. Deflection angle and displacement of electron beam were calculated. With the method used in this study, a good prediction of the path of high-energy electrons was made before they entered the body. PMID:28607652
NASA Astrophysics Data System (ADS)
Henry, William; Jefferson Lab Hall A Collaboration
2017-09-01
Jefferson Lab's cutting-edge parity-violating electron scattering program has increasingly stringent requirements for systematic errors. Beam polarimetry is often one of the dominant systematic errors in these experiments. A new Møller Polarimeter in Hall A of Jefferson Lab (JLab) was installed in 2015 and has taken first measurements for a polarized scattering experiment. Upcoming parity violation experiments in Hall A include CREX, PREX-II, MOLLER and SOLID with the latter two requiring <0.5% precision on beam polarization measurements. The polarimeter measures the Møller scattering rates of the polarized electron beam incident upon an iron target placed in a saturating magnetic field. The spectrometer consists of four focusing quadrapoles and one momentum selection dipole. The detector is designed to measure the scattered and knock out target electrons in coincidence. Beam polarization is extracted by constructing an asymmetry from the scattering rates when the incident electron spin is parallel and anti-parallel to the target electron spin. Initial data will be presented. Sources of systematic errors include target magnetization, spectrometer acceptance, the Levchuk effect, and radiative corrections which will be discussed. National Science Foundation.
Development of 50kV air-core transformer for electron gun static power source of 3MeV DC accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewangan, S.; Bakhtsingh, R.I.; Rajan, R.N.
A 3 MeV, 10 mA DC Electron Beam Accelerator based on the capacitively coupled parallel-fed voltage multiplier in 6 kg/cm{sup 2} SF{sub 6} gas environment is under commissioning at Electron Beam Centre, Kharghar, Navi Mumbai. Electron Gun is situated at -3 MV terminal which requires a constant power for its anode and filament. Gun power source has been derived by suitably coupling the ac components present in the HV Multiplier column. An aircore step down transformer rated for 50kV/600V/120kHz floating at 3 MV to extract the required power for electron gun from high voltage column has been developed. The transformermore » has been operated for 7 kW, 1 MeV of electron beam in 6 kg/cm{sup 2} nitrogen gas environment. The paper describes briefly about the design aspects and test results. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, W.; Quinn, B.; Crnkovic, J. D.
Beam dynamics plays an important role in achieving the unprecedented precision on measurement of the muon anomalous magnetic moment in the Fermilab Muon g-2 Experiment. It needs to find the muon momentum distribution in the storage ring in order to evaluate the electric field correction to muon anomalous precession frequency. We will show how to use time evolution of the beam bunch structure to extract the muon momentum distribution by applying a fast rotation analysis on the decay electron signals.
NASA Astrophysics Data System (ADS)
Chen, Lee; Chen, Zhiying; Funk, Merritt
2013-12-01
The end-boundary floating-surface sheath potential, electron and ion energy distribution functions (EEDf, IEDf) in the low-pressure non-ambipolar electron plasma (NEP) are investigated. The NEP is heated by an electron beam extracted from an inductively coupled electron-source plasma (ICP) through a dielectric injector by an accelerator located inside the NEP. This plasma's EEDf has a Maxwellian bulk followed by a broad energy continuum connecting to the most energetic group with energies around the beam energy. The NEP pressure is 1-3 mTorr of N2 and the ICP pressure is 5-15 mTorr of Ar. The accelerator is biased positively from 80 to 600 V and the ICP power range is 200-300 W. The NEP EEDf and IEDf are determined using a retarding field energy analyser. The EEDf and IEDf are measured at various NEP pressures, ICP pressures and powers as a function of accelerator voltage. The accelerator current and sheath potential are also measured. The IEDf reveals mono-energetic ions with adjustable energy and it is proportionally controlled by the sheath potential. The NEP end-boundary floating surface is bombarded by a mono-energetic, space-charge-neutral plasma beam. When the injected energetic electron beam is adequately damped by the NEP, the sheath potential is linearly controlled at almost a 1 : 1 ratio by the accelerator voltage. If the NEP parameters cannot damp the electron beam sufficiently, leaving an excess amount of electron-beam power deposited on the floating surface, the sheath potential will collapse and become unresponsive to the accelerator voltage.
Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering
Wang, D.; Pan, K.; Subedi, R.; ...
2015-04-01
The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were publishedmore » earlier, but are presented here in more detail.« less
Use of the CEBAF Accelerator for IR and UV Free Electron Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunn, Byung; Sinclair, Charles; Leemann, Christoph
1992-08-01
The CEBAF superconducting linac is capable of accelerating electron beams suitable for driving high-power free-electron lasers. The 45 MeV injector linac with a 6 cm period wiggler can produce kilowatt output powers of infrared light (3.6-17 micrometer), while the 400 MeV north linac can produce ultraviolet light (~200 nm) at similar powers. The FELs require the addition of a high-peak intensity electron source (~ 60 A peak current) and extraction beam lines to wigglers with appropriate electron and photon optics. FEL operation is compatible with simultaneous baseline CEBAF nuclear physics operation. A design for a CEBAF-based FEL facility has beenmore » developed. The current status of the FEL project is reported.« less
NASA Astrophysics Data System (ADS)
Kaganskiy, Arsenty; Fischbach, Sarah; Strittmatter, André; Rodt, Sven; Heindel, Tobias; Reitzenstein, Stephan
2018-04-01
We report on the realization of scalable single-photon sources (SPSs) based on single site-controlled quantum dots (SCQDs) and deterministically fabricated microlenses. The fabrication process comprises the buried-stressor growth technique complemented with low-temperature in-situ electron-beam lithography for the integration of SCQDs into microlens structures with high yield and high alignment accuracy. The microlens-approach leads to a broadband enhancement of the photon-extraction efficiency of up to (21 ± 2)% and a high suppression of multi-photon events with g (2)(τ = 0) < 0.06 without background subtraction. The demonstrated combination of site-controlled growth of QDs and in-situ electron-beam lithography is relevant for arrays of efficient SPSs which, can be applied in photonic quantum circuits and advanced quantum computation schemes.
Schwarz, S; Bollen, G; Johnson, M; Kester, O; Kostin, M; Ottarson, J; Portillo, M; Wilson, C; López-Urrutia, J R Crespo; Dilling, J
2010-02-01
NSCL is currently constructing the ReA3 reaccelerator, which will accelerate rare isotopes obtained from gas stopping of fast-fragment beams to energies of up to 3 MeV/u for uranium and higher for lighter ions. A high-current charge breeder, based on an electron beam ion trap (EBIT), has been chosen as the first step in the acceleration process, as it has the potential to efficiently produce highly charged ions in a single charge state. These ions are fed into a compact linear accelerator consisting of a radio frequency quadrupole structure and superconducting cavities. The NSCL EBIT has been fully designed with most of the parts constructed. The design concept of the EBIT and results from initial commissioning tests of the electron gun and collector with a temporary 0.4 T magnet are presented.
A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications
NASA Astrophysics Data System (ADS)
Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.
2017-10-01
A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.
Simulated Beam Extraction Performance Characterization of a 50-cm Ion Thruster Discharge
NASA Technical Reports Server (NTRS)
Foster, John E.; Hubble, Aimee; Nowak-Gucker, Sarah; Davis, Chris; Peterson, Peter; Viges, Eric; Chen, Dave
2013-01-01
A 50 cm ion thruster is being developed to operate at >65 percent total efficiency at 11 kW, 2700 s Isp and over 25 kW, 4500 s Isp at a total efficiency of >75 percent. The engine is being developed to address the need for a multimode system that can provide a range of thrust-to- power to service national and commercial near-earth onboard propulsion needs such as station-keeping and orbit transfer. Operating characteristics of the 50 cm ion thruster were measured under simulated beam extraction. The discharge current distribution at the various magnet rings was measured over a range of operating conditions. The relationship between the anode current distribution and the resulting plasma uniformity and ion flux measured at the thruster exit plane is discussed. The thermal envelope will also be investigated through the monitoring of magnet temperatures over the range of discharge powers investigated. Discharge losses as a function of propellant utilization was also characterized at multiple simulated beam currents. Bulk plasma conditions such as electron temperature and electron density near engine centerline was measured over a range of operating conditions using an internal Langmuir probe. Sensitivity of discharge performance to chamber length is also discussed. This data acquired from this discharge study will be used in the refinement of a throttle table in anticipation for eventual beam extraction testing.
Hershkowitz, Noah [Madison, WI; Longmier, Benjamin [Madison, WI; Baalrud, Scott [Madison, WI
2009-03-03
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
NASA Technical Reports Server (NTRS)
Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)
2011-01-01
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
NASA Technical Reports Server (NTRS)
Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)
2009-01-01
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
Review on high current 2.45 GHz electron cyclotron resonance sources (invited).
Gammino, S; Celona, L; Ciavola, G; Maimone, F; Mascali, D
2010-02-01
The suitable source for the production of intense beams for high power accelerators must obey to the request of high brightness, stability, and reliability. The 2.45 GHz off-resonance microwave discharge sources are the ideal device to generate the requested beams, as they produce multimilliampere beams of protons, deuterons, and monocharged ions, remaining stable for several weeks without maintenance. A description of different technical designs will be given, analyzing their strength, and weakness, with regard to the extraction system and low energy beam transport line, as the presence of beam halo is detrimental for the accelerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larour, Jean; Aranchuk, Leonid E.; Danisman, Yusuf
2016-03-15
Principal component analysis is applied and compared with the line ratios of special Ne-like transitions for investigating the electron beam effects on the L-shell Cu synthetic spectra. The database for the principal component extraction is created over a non Local Thermodynamic Equilibrium (non-LTE) collisional radiative L-shell Copper model. The extracted principal components are used as a database for Artificial Neural Network in order to estimate the plasma electron temperature, density, and beam fractions from a representative time-integrated spatially resolved L-shell Cu X-pinch plasma spectrum. The spectrum is produced by the explosion of 25-μm Cu wires on a compact LC (40more » kV, 200 kA, and 200 ns) generator. The modeled plasma electron temperatures are about T{sub e} ∼ 150 eV and N{sub e} = 5 × 10{sup 19} cm{sup −3} in the presence of the fraction of the beams with f ∼ 0.05 and a centered energy of ∼10 keV.« less
NASA Astrophysics Data System (ADS)
Wu, Xiao-Bing; Huang, Tao; Ouyang, Hua-Fu; Zhang, Hua-Shun; Gong, Ke-Yun
2010-12-01
The permanent magnets of the discharge chamber in a multi-cusp proton source are studied and designed. The three electrode extraction system is adopted and simulated. A method to extract different amounts of current while keeping the beam emittance unchanged is proposed.
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; ...
2016-08-01
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less
Study on an azimuthal line cusp ion source for the KSTAR neutral beam injector.
Jeong, Seung Ho; Chang, Doo-Hee; In, Sang Ryul; Lee, Kwang Won; Oh, Byung-Hoon; Yoon, Byung-Joo; Song, Woo Sob; Kim, Jinchoon; Kim, Tae Seong
2008-02-01
In this study it is found that the cusp magnetic field configuration of an anode bucket influences the primary electron behavior. An electron orbit code (ELEORBIT code) showed that an azimuthal line cusp (cusp lines run azimuthally with respect to the beam extraction direction) provides a longer primary electron confinement time than an axial line cusp configuration. Experimentally higher plasma densities were obtained under the same arc power when the azimuthal cusp chamber was used. The newly designed azimuthal cusp bucket has been investigated in an effort to increase the plasma density in its plasma generator per arc power.
Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotukhin, D. B.; Tyunkov, A. V.; Yushkov, Yu. G., E-mail: yuyushkov@gmail.com
2015-12-15
The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.
NASA Astrophysics Data System (ADS)
Kim, Jongwon; Son, Hyock-Jun; Park, Young-Ho
2017-11-01
The post-accelerator of isotope separation on-line (ISOL) system for rare isotope science project (RISP) is a superconducting linear accelerator (SC-linac) with a DC equivalent voltage of around 160 MV. An isotope beam extracted from the ISOL is in a charge state of 1+ and its charge state is increased to n+ by charge breeding with an electron beam ion source (EBIS). The charge breeding takes tens of ms and the pulse width of extracted beam from the EBIS is tens of μs, which operates at up to 30 Hz. Consequently a large portion of radio frequency (rf) time of the post SC-linac is unused. The post-linac is equipped also with an electron cyclotron resonance (ECR) ion source for stable ion acceleration. Thanks to the large phase acceptance of SC-linac, it is possible to accelerate simultaneously both stable and radioisotope ions with a similar charge to mass ratio by sharing rf time. This operation scheme is implemented for RISP with the addition of an electric chopper and magnetic kickers. The facility will be capable of providing the users of the ISOL and in-flight fragmentation (IF) systems with different beams simultaneously, which would help nuclear science users in obtaining a beam time as high-precision measurements often need long hours.
The Proton Synchrotron (PS): At the Core of the CERN Accelerators
NASA Astrophysics Data System (ADS)
Cundy, Donald; Gilardoni, Simone
The following sections are included: * Introduction * Extraction: Getting the Beam to Leave the Accelerator * Acceleration and Bunch Gymnastics * Boosting PS Beam Intensity * Capacitive Energy Storage Replaces Flywheel * Taking the Neutrinos by the Horns * OMEGA: Towards the Electronic Bubble Chamber * ISOLDE: Targeting a New Era in Nuclear Physics * The CERN n_TOF Facility: Catching Neutrons on the Fly * References
Development of a compact electron-cyclotron-resonance ion source for high-energy carbon-ion therapy
NASA Astrophysics Data System (ADS)
Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.
2005-11-01
Ion sources for medical facilities should have characteristics of easy maintenance, low electric power consumption, good stability, and long operation time without problems (one year or longer). For this, a 10GHz compact electron-cyclotron-resonance ion source with all-permanent magnets (Kei2 source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59T at the extraction side and 0.87T at the gas-injection side, while the minimum B strength is 0.25T. These parameters have been optimized for the production of C4+ based on the experience at the 10GHz NIRS-ECR ion source and a previous prototype compact source (Kei source). The Kei2 source has a diameter of 320mm and a length of 295mm. The beam intensity of C4+ was obtained to be 530μA under an extraction voltage of 40kV. The beam stability was better than 6% at C4+ of 280μA during 90h with no adjustment of the operation parameters. The details of the design and beam tests of the source are described in this paper.
NASA Astrophysics Data System (ADS)
Shimizu, Erina; Ali, Safdar; Tsuda, Takashi; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Hara, Hirohisa; Watanabe, Tetsuya; Nakamura, Nobuyuki
2017-05-01
We report high-resolution density dependent intensity ratio measurements for middle charge states of iron in the extreme ultraviolet (EUV) spectral wavelength range of 160-200 Å. The measurements were performed at the Tokyo EBIT laboratory by employing a flat-field grazing incidence spectrometer installed on a low energy compact electron beam ion trap. The intensity ratios for several line pairs stemming from Fe X, Fe XI and Fe XII were extracted from spectra collected at the electron beam energies of 340 and 400 eV by varying the beam current between 7.5 and 12 mA at each energy. In addition, the effective electron densities were obtained experimentally by imaging the electron beam profile and ion cloud size with a pinhole camera and visible spectrometer, respectively. In this paper, the experimental results are compared with previous data from the literature and with the present calculations performed using a collisional-radiative model. Our experimental results show a rather good agreement with the calculations and previous reported results.
NASA Astrophysics Data System (ADS)
Maimone, F.; Celona, L.; Lang, R.; Mäder, J.; Roßbach, J.; Spädtke, P.; Tinschert, K.
2011-12-01
The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.
Maimone, F; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Tinschert, K
2011-12-01
The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.
Update on developments at SNIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacks, J., E-mail: jamie.zacks@ccfe.ac.uk; Turner, I.; Day, I.
The Small Negative Ion Facility (SNIF) at CCFE has been undergoing continuous development and enhancement to both improve operational reliability and increase diagnostic capability. SNIF uses a CW 13.56MHz, 5kW RF driven volume source with a 30kV triode accelerator. Improvement and characterisation work includes: Installation of a new “L” type RF matching unit, used to calculate the load on the RF generator. Use of the electron suppressing biased insert as a Langmuir probe under different beam extraction conditions. Measurement of the hydrogen Fulcher molecular spectrum, used to calculate gas temperature in the source. Beam optimisation through parameter scans, using coppermore » target plate and visible cameras, with results compared with AXCEL-INP to provide beam current estimate. Modelling of the beam power density profile on the target plate using ANSYS to estimate beam power and provide another estimate of beam current. This work is described, and has allowed an estimation of the extracted beam current of approximately 6mA (4mA/cm2) at 3.5kW RF power and a source pressure of 0.6Pa.« less
X-ray diagnostic development for measurement of electron deposition to the SABRE anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lash, J.S.; Derzon, M.S.; Cuneo, M.E.
Extraction applied-B ion diodes are under development on the SABRE (6 MV, 250 kA) accelerator at Sandia. The authors are assessing this technology for the production of high brightness lithium ion beams for inertial confinement fusion. Electron loss physics is a focus of effort since electron sheath physics affects ion beam divergence, ion beam purity, and diode impedance. An x-ray slit-imaging diagnostic is under development for detection of x-rays produced during electron deposition to the anode. This diagnostic will aid in the correlation of electron deposition to ion production to better understand the ion diode physics. The x-ray detector consistsmore » of a filter pack, scintillator and optical fiber array that is streaked onto a CCD camera. Current orientation of the diagnostic provides spatial information across the anode radius at three different azimuths or at three different x-ray energy cuts. The observed x-ray emission spectrum can then be compared to current modeling efforts examining electron deposition to the anode.« less
High Power Particle Beams and Pulsed Power for Industrial Applications
NASA Astrophysics Data System (ADS)
Bluhm, Hansjoachim; An, Wladimir; Engelko, Wladimir; Giese, Harald; Frey, Wolfgang; Heinzel, Annette; Hoppé, Peter; Mueller, Georg; Schultheiss, Christoph; Singer, Josef; Strässner, Ralf; Strauß, Dirk; Weisenburger, Alfons; Zimmermann, Fritz
2002-12-01
Several industrial scale projects with economic and ecologic potential are presently emanating from research and development in the fields of high power particle beams and pulsed power in Europe. Material surface modifications with large area pulsed electron beams are used to protect high temperature gas turbine blades and steel structures in Pb/Bi cooled accelerator driven nuclear reactor systems against oxidation and corrosion respectively. Channel spark electron beams are applied to deposit bio-compatible or bio-active layers on medical implants. Cell membranes are perforated with strong pulsed electric fields to extract nutritive substances or raw materials from the cells and to kill bacteria for sterilization of liquids. Eletrodynamic fragmentation devices are developed to reutilize concrete aggregates for the production of high quality secondary concrete. All activities have a large potential to contribute to a more sustainable economy.
Improved Ion Resistance for III-V Photocathodes in High Current Guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulhollan, Gregory, A.
2012-11-16
The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studiesmore » was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.« less
Performance of a high resolution cavity beam position monitor system
NASA Astrophysics Data System (ADS)
Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen
2007-07-01
It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.
Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster
NASA Astrophysics Data System (ADS)
Chenchen, WU; Xinfeng, SUN; Zuo, GU; Yanhui, JIA
2018-04-01
Since the high efficiency discharge is critical to the radio-frequency ion thruster (RIT), a 2D axial symmetry hybrid model has been developed to study the plasma evolution of RIT. The fluid method and the drift energy correction of the electron energy distribution function (EEDF) are applied to the analysis of the RIT discharge. In the meantime, the PIC-MCC method is used to investigate the ion beam current extraction character for the plasma plume region. The beam current simulation results, with the hybrid model, agree well with the experimental results, and the error is lower than 11%, which shows the validity of the model. The further study shows there is an optimal ratio for the radio-frequency (RF) power and the beam current extraction power under the fixed RIT configuration. And the beam extraction efficiency will decrease when the discharge efficiency beyond a certain threshold (about 87 W). As the input parameters of the hybrid model are all the design values, it can be directly used to the optimum design for other kinds of RITs and radio-frequency ion sources.
Artificial Intelligence Assists Ultrasonic Inspection
NASA Technical Reports Server (NTRS)
Schaefer, Lloyd A.; Willenberg, James D.
1992-01-01
Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.
Progress Toward a Gigawatt-Class Annular Beam Klystron with a Thermionic Electron Gun
NASA Astrophysics Data System (ADS)
Fazio, M.; Carlsten, B.; Farnham, J.; Habiger, K.; Haynes, W.; Myers, J.; Nelson, E.; Smith, J.; Arfin, B.; Haase, A.
2002-08-01
In an effort to reach the gigawatt power level in the microsecond pulse length regime Los Alamos, in collaboration with SLAC, is developing an annular beam klystron (ABK) with a thermionic electron gun. We hope to address the causes of pulse shortening in very high peak power tubes by building a "hard-vacuum" tube in the 10-10 Torr range with a thermionic electron gun producing a constant impedance electron-beam. The ABK has been designed to operate at 5 Hz pulse repetition frequency to allow for RF conditioning. The electron gun has a magnetron injection gun configuration and uses a dispenser cathode running at 1100 degC to produce a 4 kA electron beam at 800 kV. The cathode is designed to run in the temperature-limited mode to help maintain beam stability in the gun. The beam-stick consisting of the electron gun, an input cavity, an idler cavity, and drift tube, and the collector has been designed collaboratively, fabricated at SLAC, then shipped to Los Alamos for testing. On the test stand at Los Alamos a low voltage emission test was performed, but unfortunately as we prepared for high voltage testing a problem with the cathode heater was encountered that prevented the cathode from reaching a high enough temperature for electron emission. A post-mortem examination will be done shortly to determine the exact cause of the heater failure. The RF design has been proceeding and is almost complete. The output cavity presents a challenging design problem in trying to efficiently extract energy from the low impedance beam while maintaining a gap voltage low enough to avoid breakdown and a Q high enough to maintain mode purity. In the next iteration, the ABK will have a new cathode assembly installed along with the remainder of the RF circuit. This paper will discuss the electron gun and the design of the RF circuit along with a report on the status of the work.
NASA Astrophysics Data System (ADS)
Mochalskyy, Serhiy; Fantz, Ursel; Wünderlich, Dirk; Minea, Tiberiu
2016-10-01
The development of negative ion (NI) sources for the ITER neutral beam injector is strongly accompanied by modelling activities. The ONIX (Orsay Negative Ion eXtraction) code simulates the formation and extraction of negative hydrogen ions and co-extracted electrons produced in caesiated sources. In this paper the 3D geometry of the BATMAN extraction system, and the source characteristics such as the extraction and bias potential, and the 3D magnetic field were integrated in the model. Calculations were performed using plasma parameters experimentally obtained on BATMAN. The comparison of the ONIX calculated extracted NI density with the experimental results suggests that predictive calculations of the extraction of NIs are possible. The results show that for an ideal status of the Cs conditioning the extracted hydrogen NI current density could reach ~30 mA cm-2 at 10 kV and ~20 mA cm-2 at 5 kV extraction potential, with an electron/NI current density ratio of about 1, as measured in the experiments under the same plasma and source conditions. The dependency of the extracted NI current on the NI density in the bulk plasma region from both the modeling and the experiment was investigated. The separate distributions composing the NI beam originating from the plasma bulk region and the PG surface are presented for different NI plasma volume densities and NI emission rates from the plasma grid (PG) wall, respectively. The extracted current from the NIs produced at the Cs covered PG surface, initially moving towards the bulk plasma and then being bent towards the extraction surfaces, is lower compared to the extracted NI current from directly extracted surface produced ions.
NASA Astrophysics Data System (ADS)
Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.
2011-01-01
This numerical study focuses on the physical mechanisms involved in the extraction of volume-produced H- ions from a steady state laboratory negative hydrogen ion source with one opening in the plasma electrode (PE) on which a dc-bias voltage is applied. A weak magnetic field is applied in the source plasma transversely to the extracted beam. The goal is to highlight the combined effects of the weak magnetic field and the PE bias voltage (upon the extraction process of H- ions and electrons). To do so, we focus on the behavior of electrons and volume-produced negative ions within a two-dimensional model using the particle-in-cell method. No collision processes are taken into account, except for electron diffusion across the magnetic field using a simple random-walk model at each time step of the simulation. The results show first that applying the magnetic field (without PE bias) enhances H- ion extraction, while it drastically decreases the extracted electron current. Secondly, the extracted H- ion current has a maximum when the PE bias is equal to the plasma potential, while the extracted electron current is significantly reduced by applying the PE bias. The underlying mechanism leading to the above results is the gradual opening by the PE bias of the equipotential lines towards the parts of the extraction region facing the PE. The shape of these lines is due originally to the electron trapping by the magnetic field.
Direct current H- source for the medicine accelerator (invited)
NASA Astrophysics Data System (ADS)
Belchenko, Yu.; Savkin, V.
2004-05-01
A compact cw hydrogen negative ion source having reliable operation and a simplified maintenance is developed at Budker Institute of Nuclear Physics for a tandem accelerator of boron capture neutron therapy installation. The source uses a Penning discharge with a hydrogen and cesium feed through the hollows in the cathodes. Discharge voltage is about 60-80 V, current 9 A, hydrogen pressure 4-5 Pa, magnetic field 0.05-0.1 T, and cesium seed <1 mg/h. Negative ions are mainly produced on the cesiated anode surface due to conversion of hydrogen atoms. An optimal anode temperature is 250-350 °C. Negative ion beam current is directly proportional to the discharge current and to the emission hole area. A triode system for the beam extraction and acceleration system is used. The flux of accompanying extracted electrons was decreased by filtering in the transverse magnetic field. This electron flux was intercepted to the special electrode, biased at 4 kV potential with respect to the anode. Source stable cw operation for several hour runs was multiply tested. A H- ion beam with current up to 8 mA, beam energy 23 keV was produced regularly. Negative ion current of heavy impurities had a value of about 3% of the total beam current. Beam normalized emittance is about 0.3 π mm mrad and emission current density -0.1 A/cm2. A built-in cathode heater provides the operation quick start.
NASA Astrophysics Data System (ADS)
Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.
2016-01-01
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.
NASA Astrophysics Data System (ADS)
Tsumori, K.; Takeiri, Y.; Ikeda, K.; Nakano, H.; Geng, S.; Kisaki, M.; Nagaoka, K.; Tokuzawa, T.; Wada, M.; Sasaki, K.; Nishiyama, S.; Goto, M.; Osakabe, M.
2017-08-01
Total power of 16 MW has been successfully delivered to the plasma confined in the Large Helical Device (LHD) from three Neutral Beam Injectors (NBIs) equipped with negative hydrogen (H-) ion sources. However, the detailed mechanisms from production through extraction of H- ions are still yet to be clarified and a similar size ion source on an independent acceleration test bench called Research and development Negative Ion Source (RNIS) serves as the facility to study physics related to H- production and transport for further improvement of NBI. The production of negative-ion-rich plasma and the H- ions behavior in the beam extraction region in RNIS is being investigated by employing an integrated diagnostic system. Flow patterns of electrons, positive ions and H- ions in the extraction region are described in a two-dimensional map. The measured flow patterns indicate the existence a stagnation region, where the H- flow changes the direction at a distance about 20 mm from the plasma grid. The pattern also suggested the H- flow originated from plasma grid (PG) surface that turned back toward extraction apertures. The turning region seems formed by a layer of combined magnetic field produced by the magnetic filter field and the Electron-Deflection Magnetic (EDM) field created by magnets installed in the extraction electrode.
Beam diagnostics at high-intensity storage rings
NASA Astrophysics Data System (ADS)
Plum, Mike
1994-10-01
Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).
NASA Astrophysics Data System (ADS)
Schächter, L.; Stiebing, K. E.; Dobrescu, S.; Badescu-Singureanu, Al. I.; Schmidt, L.; Hohn, O.; Runkel, S.
1999-02-01
A new approach of the possibility to significantly increase the high charge state ion beams delivered by electron cyclotron resonance (ECR) ion sources by using metal-dielectric (MD) structures characterized by high secondary electron emission properties is presented. The intensities of argon ion beams extracted from the 14 GHz electron cyclotron resonance ion source of the Institut für Kernphysik (IKF) der Johann Wolfgang Goethe-Universität in Frankfurt/Main were measured when a 26 mm diam disk of a specially treated MD structure (Al-Al2O3) was introduced axially close to the ECR plasma. The Ar beam intensities and charge-state distributions obtained with this disk are compared to measurements with disks of iron and pure aluminum at the same position relative to the plasma. All measurements were performed with the disk at the plasma chamber potential. The results with the MD structure show a net shift of the beam intensity towards higher charge states as compared with the other disk materials. Enhancement factors of the beam current of up to 10 (for Ar12+) when using a MD disk compared to the output when using an aluminum disk and up to 40 (for Ar11+) when using an iron disk were measured.
Improvements of the versatile multiaperture negative ion source NIO1
NASA Astrophysics Data System (ADS)
Cavenago, M.; Serianni, G.; De Muri, M.; Veltri, P.; Antoni, V.; Baltador, C.; Barbisan, M.; Brombin, M.; Galatá, A.; Ippolito, N.; Kulevoy, T.; Pasqualotto, R.; Petrenko, S.; Pimazzoni, A.; Recchia, M.; Sartori, E.; Taccogna, F.; Variale, V.; Zaniol, B.; Barbato, P.; Baseggio, L.; Cervaro, V.; Fasolo, D.; Franchin, L.; Ghiraldelli, R.; Laterza, B.; Maniero, M.; Martini, D.; Migliorato, L.; Minarello, A.; Molon, F.; Moro, G.; Patton, T.; Ravarotto, D.; Rizzieri, R.; Rizzolo, A.; Sattin, M.; Stivanello, F.; Zucchetti, S.
2017-08-01
The ion source NIO1 (Negative Ion Optimization 1) was developed and installed as a reduced-size model of multi-aperture sources used in neutral beam injectors. NIO1 beam optics is optimized for a 135 mA H- current (subdivided in 9 beamlets) at a Vs = 60 kV extraction voltage, with an electron-to-ion current ratio Rj up to 2. Depending on gas pressure used, NIO1 was up to now operated with Vs < 25 kV for beam extraction and Vs = 60 kV for insulation tests. The distinction between capacitively coupled plasma (E-mode, consistent with a low electron density plasma ne) and inductively coupled plasma (H-mode, requiring larger ne) was clearly related to several experimental signatures, and was confirmed for several gases, when applied radiofrequency power exceeds a given threshold Pt (with hysteresis). For hydrogen Pt was reduced below 1 kW, with a clean rf window and molybdenum liners on other walls; for oxygen Pt ≤ 400 W. Beams of H- and O- were separately extracted; since no caesium is yet introduced into the source, the expected ion currents are lower than 5 mA; this requires a lower acceleration voltage Vs (to keep the same perveance). NIO1 caesium oven was separately tested and Cs dispensers are in development. Increasing the current in the magnetic filter circuit, modifying its shape, and increasing the bias voltage were helpful to reduce Rj (still very large up to now, about 150 for oxygen, and 40 for hydrogen), in qualitative agreement with theoretical and numerical models. A second bias voltage was tested for hydrogen. Beam footprints and a spectral emission sample are shown.
Electron gun using carbon-nanofiber field emitter.
Sakai, Y; Haga, A; Sugita, S; Kita, S; Tanaka, S-I; Okuyama, F; Kobayashi, N
2007-01-01
An electron gun constructed using carbon-nanofiber (CNF) emitters and an electrostatic Einzel lens system has been characterized for the development of a high-resolution x-ray source. The CNFs used were grown on tungsten and palladium tips by plasma-enhanced chemical-vapor deposition. Electron beams with the energies of 10
Negative ion-driven associated particle neutron generator
Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...
2015-10-09
We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 10 6 D-D n/s (equivalent to similar to 10 8 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less
Sawkey, D L; Faddegon, B A
2009-03-01
Monte Carlo simulations of x-ray beams typically take parameters of the electron beam in the accelerating waveguide to be free parameters. In this paper, a methodology is proposed and implemented to determine the energy, spectral width, and beam divergence of the electron source. All treatment head components were removed from the beam path, leaving only the exit window. With the x-ray target and flattener out of the beam, uncertainties in physical characteristics and relative position of the target and flattening filter, and in spot size, did not contribute to uncertainty in the energy. Beam current was lowered to reduce recombination effects. The measured dose distributions were compared with Monte Carlo simulation of the electron beam through the treatment head to extract the electron source characteristics. For the nominal 6 and 18 MV x-ray beams, the energies were 6.51 +/- 0.15 and 13.9 +/- 0.2 MeV, respectively, with the uncertainties resulting from uncertainties in the detector position in the measurement and in the stopping power in the simulations. Gaussian spectral distributions were used, with full widths at half maximum ranging from 20 +/- 4% at 6 MV to 13 +/- 4% at 18 MV required to match the fall-off portion of the percent-depth ionization curve. Profiles at the depth of maximum dose from simulations that used the manufacturer-specified exit window geometry and no beam divergence were 2-3 cm narrower than measured profiles. Two simulation configurations yielding the measured profile width were the manufacturer-specified exit window thickness with electron source divergences of 3.3 degrees at 6 MV and 1.8 degrees at 18 MV and an exit window 40% thicker than the manufacturer's specification with no beam divergence. With the x-ray target in place (and no flattener), comparison of measured to simulated profiles sets upper limits on the electron source divergences of 0.2 degrees at 6 MV and 0.1 degrees at 18 MV. A method of determining source characteristics without mechanical modification of the treatment head, and therefore feasible in clinics, is presented. The energies and spectral widths determined using this method agree with those determined with only the exit window in the beam path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Won-Hwi; Dang, Jeong-Jeung; Kim, June Young
2016-02-15
Transverse magnetic filter field as well as operating pressure is considered to be an important control knob to enhance negative hydrogen ion production via plasma parameter optimization in volume-produced negative hydrogen ion sources. Stronger filter field to reduce electron temperature sufficiently in the extraction region is favorable, but generally known to be limited by electron density drop near the extraction region. In this study, unexpected electron density increase instead of density drop is observed in front of the extraction region when the applied transverse filter field increases monotonically toward the extraction aperture. Measurements of plasma parameters with a movable Langmuirmore » probe indicate that the increased electron density may be caused by low energy electron accumulation in the filter region decreasing perpendicular diffusion coefficients across the increasing filter field. Negative hydrogen ion populations are estimated from the measured profiles of electron temperatures and densities and confirmed to be consistent with laser photo-detachment measurements of the H{sup −} populations for various filter field strengths and pressures. Enhanced H{sup −} population near the extraction region due to the increased low energy electrons in the filter region may be utilized to increase negative hydrogen beam currents by moving the extraction position accordingly. This new finding can be used to design efficient H{sup −} sources with an optimal filtering system by maximizing high energy electron filtering while keeping low energy electrons available in the extraction region.« less
Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook
2016-02-01
The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.
First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong
The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted intomore » the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.« less
An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.
Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia
2014-02-01
A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierret, C.; Maunoury, L.; Biri, S.
The goal of this article is to present simulations on the extraction from an electron cyclotron resonance ion source (ECRIS). The aim of this work is to find out an extraction system, which allows one to reduce the emittances and to increase the current of the extracted ion beam at the focal point of the analyzing dipole. But first, we should locate the correct software which is able to reproduce the specific physics of an ion beam. To perform the simulations, the following softwares have been tested: SIMION 3D, AXCEL, CPO 3D, and especially, for the magnetic field calculation, MATHEMATICAmore » coupled with the RADIA module. Emittance calculations have been done with two types of ECRIS: one with a hexapole and one without a hexapole, and the difference will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, M.E.; Menge, P.R.; Hanson, D.L.
Application of ion beams to Inertial Confinement Fusion requires efficient production, transport and focusing of an intense, low microdivergence beam of an appropriate range ion. At Sandia, the authors are studying the production of lithium ion beams in extraction applied-B ion diodes on the SABRE accelerator (5 MV, 250 kA). Evidence on both SABRE (1 TW) and PBFA-II (20 TW) indicates that the lithium beam turns off and is replaced by a beam of mostly protons and carbon, possibly due to electron thermal and stimulated desorption of hydrocarbon surface contamination with subsequent avalanche ionization. Turn-off of the lithium beam ismore » accompanied by rapid impedance collapse. Surface cleaning techniques are being developed to reduce beam contamination, increase the total lithium energy and reduce the rate of diode impedance collapse. Application of surface cleaning techniques has increased the production of lithium from passive LiF sources by a factor of 2. Improved diode electric and magnetic field profiles have increased the diode efficiency and production of lithium by a factor of 5, without surface cleaning. Work is ongoing to combine these two advances which are discussed here.« less
Momentum-imaging apparatus for the study of dissociative electron attachment dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradmand, A.; Williams, J. B.; Landers, A. L.
An ion-momentum spectrometer is used to study the dissociative dynamics of electron attachment to molecules. A skimmed, supersonic gas jet is crossed with a pulsed beam of low-energy electrons, and the resulting negative ions are extracted toward a time- and position-sensitive detector. Calculations of the momentum in three dimensions may be used to determine the angular dependence of dissociative attachment as well as the energetics of the reaction.
FEL amplifier performance in the Compton regime
NASA Astrophysics Data System (ADS)
Cover, R. A.; Bhowmik, A.
1984-01-01
The Kroll-Morton-Rosenbluth equations of motion for electrons in a linearly polarized, tapered wiggler are utilized to describe gain in free-electron laser amplifiers. The three-dimensional amplifier model includes the effects of density variation in the electron beam, off-axis variations in the wiggler magnetic field, and betatron oscillations. The input electromagnetic field is injected and subsequently propagated within the wiggler by computing the Fresnel-Kirchhoff diffraction integral using the Gardner-Fresnel-Kirchhoff algorithm. The injected optical beam used in evaluating amplifier performance is initially a Gaussian which in general may be astigmatic. The importance of the above effects on extraction efficiency is computed both with rigorous three-dimensional electromagnetic wave propagation and a Gaussian treatment of the field.
Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeda, N., E-mail: umeda.naotaka@jaea.go.jp; Kojima, A.; Kashiwagi, M.
2015-04-08
R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mmmore » to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.« less
Development and testing of a double length pets for the CLIC experimental area
NASA Astrophysics Data System (ADS)
Sánchez, L.; Carrillo, D.; Gavela, D.; Lara, A.; Rodríguez, E.; Gutiérrez, J. L.; Calero, J.; Toral, F.; Samoshkin, A.; Gudkov, D.; Riddone, G.
2014-05-01
CLIC (compact linear collider) is a future e+e- collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS first prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wakefields, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing, electron beam and arc welding were used to complete the assembly. Finally, several tests such as dimensional control and leak testing were carried out to validate design and fabrication methods. In addition, RF measurements at low power were made to study frequency tuning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattawy, M.; Baltzell, N. A.; Dupré, R.
We report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment uses the 6 GeV electron beam from the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator at Jefferson Lab incident on a pressurized He-4 gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron is detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles. To ensure the exclusivity of the process, a specially designed radial time projection chamber is used to detect the recoiling He-4 nuclei.more » We measure beam-spin asymmetries larger than those observed on the free proton in the same kinematic domain. From these, we are able to extract, in a model-independent way, the real and imaginary parts of the only He-4 Compton form factor, HA. This first measurement of coherent deeply virtual Compton scattering on the He-4 nucleus, with a fully exclusive final state via nuclear recoil tagging, leads the way toward 3D imaging of the partonic structure of nuclei.« less
Electron energy recovery system for negative ion sources
Dagenhart, W.K.; Stirling, W.L.
1979-10-25
An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.
NASA Astrophysics Data System (ADS)
Rajabi, A.; Jazini, J.; Fathi, M.; Sharifian, M.; Shokri, B.
2018-03-01
The beam produced by a thermionic RF gun has wide energy spread that makes it unsuitable for direct usage in photon sources. Here in the present work, we optimize the extracted beam from a thermionic RF gun by a compact economical bunch compressor. A compact magnetic bunch compressor (Alpha magnet) is designed and constructed. A comparison between simulation results and experimental measurements shows acceptable conformity. The beam dynamics simulation results show a reduction of the energy spread as well as a compression of length less than 1 ps with 2.3 mm-mrad emittance.
Physics and engineering design of the accelerator and electron dump for SPIDER
NASA Astrophysics Data System (ADS)
Agostinetti, P.; Antoni, V.; Cavenago, M.; Chitarin, G.; Marconato, N.; Marcuzzi, D.; Pilan, N.; Serianni, G.; Sonato, P.; Veltri, P.; Zaccaria, P.
2011-06-01
The ITER Neutral Beam Test Facility (PRIMA) is planned to be built at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: a full size ion source with low voltage extraction called SPIDER and a full size neutral beam injector at full beam power called MITICA. SPIDER is the first experimental device to be built and operated, aiming at testing the extraction of a negative ion beam (made of H- and in a later stage D- ions) from an ITER size ion source. The main requirements of this experiment are a H-/D- extracted current density larger than 355/285 A m-2, an energy of 100 keV and a pulse duration of up to 3600 s. Several analytical and numerical codes have been used for the design optimization process, some of which are commercial codes, while some others were developed ad hoc. The codes are used to simulate the electrical fields (SLACCAD, BYPO, OPERA), the magnetic fields (OPERA, ANSYS, COMSOL, PERMAG), the beam aiming (OPERA, IRES), the pressure inside the accelerator (CONDUCT, STRIP), the stripping reactions and transmitted/dumped power (EAMCC), the operating temperature, stress and deformations (ALIGN, ANSYS) and the heat loads on the electron dump (ED) (EDAC, BACKSCAT). An integrated approach, taking into consideration at the same time physics and engineering aspects, has been adopted all along the design process. Particular care has been taken in investigating the many interactions between physics and engineering aspects of the experiment. According to the 'robust design' philosophy, a comprehensive set of sensitivity analyses was performed, in order to investigate the influence of the design choices on the most relevant operating parameters. The design of the SPIDER accelerator, here described, has been developed in order to satisfy with reasonable margin all the requirements given by ITER, from the physics and engineering points of view. In particular, a new approach to the compensation of unwanted beam deflections inside the accelerator and a new concept for the ED have been introduced.
Extracting Wair from the electron beam measurements of Domen and Lamperti.
Tessier, Frédéric; Cojocaru, Claudiu D; Ross, Carl K
2018-01-01
The average energy expended by an energetic electron to create an ion pair in dry air, W air , is a key quantity in radiation dosimetry. Although W air is well established for electron energies up to about 3 MeV, there is limited data for higher energies. The measurements by Domen and Lamperti [Med. Phys. 3, 294-301 (1976)] using electron beams in the energy range from 15 to 50 MeV can, in principle, be used to deduce values for W air , if the electron stopping power of graphite and air are known. A previous analysis of these data revealed an anomalous variation of 2% in W air as a function of the electron energy. We use Monte Carlo simulation techniques to reanalyze the original data and obtain new estimates for W air , and to investigate the source of the reported anomaly. Domen and Lamperti (DL) reported the ratio of the response of a graphite calorimeter to that of a graphite ionization chamber for broad beams of electrons with energies between 15 and 50 MeV and at different depths in graphite (including depths well beyond the range of the primary electrons, i.e., in the bremsstrahlung photon regime). Using a detailed EGSnrc model of the DL apparatus, as well as up-to-date stopping powers, we compute the dose ratio between the ionization chamber cavity and the calorimeter core, for plane-parallel electron beams. This dose ratio, multiplied by the DL measured ratio, provides a direct estimate for W air . Despite an improved analysis of the original work, the extracted values of W air still exhibit an increase as the mean electron energy at the point of measurement decreases below about 15 MeV. This anomalous trend is dubious physically, and inconsistent with extensive data for W air obtained at lower energies. A thorough sensitivity analysis indicates that this trend is unlikely to stem from errors in extrapolation and correction procedures, uncertainties in electron stopping powers, or bias in calorimetry or ionization chamber measurements. However, we find that results are quite sensitive to the intrinsic graphite mass thickness of the detectors and to the incident beam energy. The DL experiment provides data in an energy regime where the electron stopping power is insensitive to the mean excitation energy of graphite - an issue plaguing W air experiments at lower energies. Unfortunately, state-of-the-art scrutiny of the original data cannot explain the anomalous trend in terms of perturbation effects or extrapolation bias. It can only be understood in terms of speculative offsets in graphite mass thickness or beam energy. Therefore higher accuracy measurements for electron energies above 15 MeV are recommended to further resolve the value of W air . © Her Majesty the Queen in Right of Canada 2017. Reproduced with the permission of the Minister of Science.
A combined source of electron bunches and microwave power
NASA Astrophysics Data System (ADS)
Xie, J. L.; Wang, F. Y.; Yang, X. P.; Shen, B.; Gu, W.; Zhang, L. W.
2003-12-01
In this article, the possibility of using a high power klystron amplifier simultaneously as a microwave power source as usual and an electron bunches source by extracting the spent beam with a magnet and also as an oscillator by feedback is investigated. The purpose of this study is to demonstrate the feasibility of constructing a very compact electron linear accelerator or for other applications of electron bunches. The feasibility of the idea was first examined by computer simulation of the electron motion in a 5 MW klystron and the characteristics of the klystron spent beam. Experimental study was then carried out by installing a radio frequency cavity and a Faraday cage in sequence at the exit end of a bending magnet located at the top of the klystron collector. The energy and current of the chopped spent electron beam can then be measured. By properly choosing the feedback circuit elements, the frequency stability of the klystron in oscillator mode was proved to be good enough for linac operation. According to the results presented in this article, it is evident that an extremely compact linac for research and education with better affordability can be constructed to promote the applications of linacs.
Advanced electric propulsion research
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.
1988-01-01
Results are presented which show that hollow cathodes can be operated on ammonia but that sustained operation in the high pressures where arcjet thrusters operate (of the order of 1000 Torr) is difficult to achieve. The concept of using contoured, fine wire meshes attached across the screen grid apertures in an ion thruster to effect control of the ion beam divergence is introduced. The concept is compared to conventional (free sheath) ion extraction and is shown to be potentially attractive. The performance related effects of changing the anode and cathode locations and of interchanging hollow cathode and refractory filament electron sources within an 8-cm diameter, argon, ring cusp ion thruster discharge chamber are examined. The effects induced in discharge chamber performance by changes in magnetic field strength and configuration and in propellant flow distribution are also measured. Results are presented in terms of changes in the parameters that describe the effectiveness of primary electron utilization and ion extraction into the beam. The apparatus and instrumentation used to study hollow cathode operation at high electron emission levels (of the order of 100 A) is described.
Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.
Waldmann, Ole; Ludewigt, Bernhard
2011-11-01
A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics
Extraction and Propagation of an Intense Rotating Electron Beam,
1982-10-01
radiochromic foils positioned at z = 25 cm. The equal transmission density contours are ranked in linear order of increasing exposure (increasing current...flux encircled by the cathode e = %rc2Bc. Linearizing the equation of motion around the equilibrium, we can find the wavelength of small radial...the beam rotation. The mask which precedes the scint- illator is a linear array of dots while the projection is made up of two disjoint linear arrays
Numerical simulation of electrons dynamics in a microtron on 6 - 10 MeV
NASA Astrophysics Data System (ADS)
Bashmakov, Y. A.; Dyubkov, V. S.; Lozeev, Y. Y.
2017-12-01
Electron dynamics in 6.5 MeV classic microtron of the Lebedev Physics Institute (LPI) is investigated by means of numerical methods. Particular emphasis is placed on the formation mechanism of electron bunches at the first circular orbits. An effect of microtron main parameters such as accelerating RF field amplitude, DC magnetic field, as well as a geometry and a position of a thermal emitter on characteristics of electron beam extracted from the microtron are studied. In the space of mentioned parameters a region corresponding an optimal microtron operation mode is found. It is noted that the unique geometric and energy characteristics of accelerated beam makes use of microtron attractive not only as injector into a synchrotron, but also as a driver in experiments on generation of coherent terahertz electromagnetic radiation.
Status of the 1 MeV Accelerator Design for ITER NBI
NASA Astrophysics Data System (ADS)
Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.
2011-09-01
The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.
Michael, Joseph R.; Goehner, Raymond P.; Schlienger, Max E.
2001-01-01
A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.
Laser photodetachment of radioactive 128 I -
Rothe, Sebastian; Sundberg, Julia; Welander, Jakob; ...
2017-08-31
The first experimental investigation of the electron affinity (EA) of a radioactive isotope has been conducted at the CERN-ISOLDE radioactive ion beam facility. The EA of the radioactive iodine isotope 128I ($t$ 1/2 = 25 min) was determined to be 3.059 052(38) eV. The experiment was conducted using the newly developed Gothenburg ANion Detector for Affinity measurements by Laser PHotodetachment (GANDALPH) apparatus, connected to a CERN-ISOLDE experimental beamline. 128I was produced in fission induced by 1.4 GeV protons striking a thorium/tantalum foil target and then extracted as singly charged negative ions at a beam energy of 20 keV. Laser photodetachmentmore » of the fast ion beam was performed in a collinear geometry inside the GANDALPH chamber. Neutral atoms produced in the photodetachment process were detected by allowing them to impinge on a glass surface, creating secondary electrons which were then detected using a channel electron multiplier. The photon energy of the laser was tuned across the threshold of the photodetachment process and the detachment threshold data were fitted to a Wigner law function in order to extract the EA. In conclusion, this first successful demonstration of photodetachment at an isotope separator on line facility opens up the opportunity for future studies of the fundamental properties of negatively charged radioactive isotopes such as the EA of astatine and polonium.« less
Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS.
Nagaya, Tomoki; Nishiokada, Takuya; Hagino, Shogo; Uchida, Takashi; Muramatsu, Masayuki; Otsuka, Takuro; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi; Yoshida, Yoshikazu
2016-02-01
We have been constructing the tandem-type electron cyclotron resonance ion source (ECRIS). Two ion sources of the tandem-type ECRIS are possible to generate plasma individually, and they also confined individual ion species by each different plasma parameter. Hence, it is considered to be suitable for new materials production. As the first step, we try to produce and extract multicharged C60 ions by supplying pure C60 vapor in the second stage plasma because our main target is producing the endohedral fullerenes. We developed a new evaporator to supply fullerene vapor, and we succeeded in observation about multicharged C60 ion beam in tandem-type ECRIS for the first time.
Rapid electron beam accelerator (REBA-tron)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapetanakos, C.A.; Sprangle, P.A.; Dialetis, D.
1986-03-05
This invention comprises a particle accelerator with a toroidal vacuum chamber, an injector for injecting a charged-paticle beam into the chamber and an exit port to extract the accelerated particle beam. A toroidal magnetic field to confine the beam in the chamber is generated by a set of coils with their axis along the minor axis of the chamber and by two twisted wires that carry current in the same direction wrapped around the chamber. The two twisted wires also generate a torsatron magnetic field that controls the minor radius of the beam. A time-varying magnetic field is generated bymore » two concentric cylindrical plates surrounding the chamber. A convoluted transmission line generates a localized electric field in the chamber to accelerate the beam.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, J.; Nguyen, D.C.; Sheffield, R.L.
1996-10-01
We present the results of theoretical and simulation studies of the design and performance of a new F type of FEL oscillator. This device, known by the acronym RAFEL for Regenerative Amplifier Free-Electron Laser, will be constructed in the space presently occupied by the AFEL (Advanced FEL) at Los Alamos, and will be driven by an upgraded (to higher average power) version of the present AFEL linac. In order to achieve a long-time-averaged optical output power of {approximately} 1 kW using an electron beam with an average power of {approximately} 20 kW, a rather high extraction efficiency {eta} {approximately} 5%more » is required. We have designed a 2-m-long undulator to attain this goal: the first meter is untapered and provides high gain while the second meter is linearly-tapered in magnetic field amplitude to provide high extraction efficiency in the standard K-M-R manner. Two-plane focusing and linear polarization of the undulator are assumed. Electron-beam properties from PARMEIA simulations of the AFEL accelerator were used in the design. A large saturated gain, {approximately} 500, requires a very small optical feedback to keep the device operating at steady-state. However, the large gain leads to distorted optical modes which require two- and three-dimensional simulations to adequately treat diffraction effects. This FEL will be driven by 17 MeV electrons and will operate in the 16 {mu}m spectral region.« less
All-magnetic extraction for cyclotron beam reacceleration
Hudson, E.D.; Mallory, M.L.
1975-07-22
An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)
Reverse Current in Solar Flares
NASA Technical Reports Server (NTRS)
Knight, J. W.; Sturrock, P. A.
1976-01-01
The theory that impulsive X ray bursts are produced by high energy electrons streaming from the corona to the chromosphere is investigated. Currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model indicates that the primary electron stream leads to the development of an electric field in the ambient corona which decelerates the primary beam and produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences.
Development of electron beam ion source for nanoprocess using highly charged ions
NASA Astrophysics Data System (ADS)
Sakurai, Makoto; Nakajima, Fumiharu; Fukumoto, Takunori; Nakamura, Nobuyuki; Ohtani, Shunsuke; Mashiko, Shinro; Sakaue, Hiroyuki
2005-07-01
Highly charged ion is useful to produce nanostructure on various materials, and is key tool to realize single ion implantation technique. On such demands for the application to nanotechnology, we have designed an electron bean ion source. The design stresses on the volume of drift tubes where highly charged ions are confined and the efficiency of ion extraction from the drift tube through collector electrode in order to obtain intense ion beam as much as possible. The ion source uses a discrete superconducting magnet cooled by a closed-cycle refrigerator in order to reduce the running costs and to simplify the operating procedures. The electrodes of electron gun, drift tubes, and collector are enclosed in ultrahigh vacuum tube that is inserted into the bore of the magnet system.
SABRE, a 10-MV linear induction accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corely, J.P.; Alexander, J.A.; Pankuch, P.J.
SABRE (Sandia Accelerator and Beam Research Experiment) is a 10-MV, 250-kA, 40-ns linear induction accelerator. It was designed to be used in positive polarity output. Positive polarity accelerators are important for application to Sandia's ICF (Inertial Confinement Fusion) and LMF (Laboratory Microfusion Facility) program efforts. SABRE was built to allow a more detailed study of pulsed power issues associated with positive polarity output machines. MITL (Magnetically Insulated Transmission Line) voltage adder efficiency, extraction ion diode development, and ion beam transport and focusing. The SABRE design allows the system to operate in either positive polarity output for ion extraction applications ormore » negative polarity output for more conventional electron beam loads. Details of the design of SABRE and the results of initial machine performance in negative polarity operation are presented in this paper. 13 refs., 12 figs., 1 tab.« less
Self-seeded injection-locked FEL amplifer
Sheffield, Richard L.
1999-01-01
A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X. P.; Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024; Zhang, Z. C.
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, takingmore » into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.« less
Preliminary results from the Small Negative Ion Facility (SNIF) at CCFE
NASA Astrophysics Data System (ADS)
Zacks, J.; McAdams, R.; Booth, J.; Flinders, K.; Holmes, A. J. T.; Simmonds, M.; Stevens, B.; Stevenson, P.; Surrey, E.; Warder, S.; Whitehead, A.; Young, D.
2013-02-01
At Culham Centre for Fusion Energy, a new beam extraction test facility has been built with the purpose of studying and enhancing negative ion beam production and transport. The multipole hydrogen ion source is based on a RF generated plasma using a continuous 5kW power supply operating at the industrial standard frequency of 13.56MHz. The cylindrical source has a diameter of 30cm and a depth of 20cm, with a flat spiral antenna driving the source through a quartz window. The magnet configuration is arranged to produce a dipole filter field across the ion source close to the plasma grid. The plasma load is matched to the RF generator using a Pi matching network. The accelerator uses a single extraction aperture of 14mm diameter, with a biased insert for electron suppression. The accelerator is a triode design with a beam energy of up to 30kV. The beamline consists of a turbomolecular pumped vacuum tank with an instrumented beam dump and ports for additional diagnostics. The ITER Neutral Beam source operates with the enhancement of caesium, which, when scaled up to a reactor, will be heavily consumed. The small size of SNIF allows for fast turn around of modifications and alternative materials to caesium can be tested. A full description of the facility and planned diagnostics is given. Initial results are presented, including measurements and calculations of the plasma load on the RF generator, and beam extraction measurements.
Secondary emission electron gun using external primaries
Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY
2009-10-13
An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.
Secondary emission electron gun using external primaries
Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY; Kewisch, Jorg [Wading River, NY; Chang, Xiangyun [Middle Island, NY
2007-06-05
An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.
Rababah, T; Hettiarachchy, N S; Horax, R; Cho, M J; Davis, B; Dickson, J
2006-06-01
The effect of irradiation on thiobarbituric acid reactive substances (TBARS) and volatile compounds in raw and cooked nonirradiated and irradiated chicken breast meat infused with green tea and grape seed extracts was investigated. Chicken breast meat was vacuum infused with green tea extract (3,000 ppm), grape seed extract (3,000 ppm), or their combination (at a total of 6,000 ppm), irradiated with an electron beam, and stored at 5 degrees C for 12 d. The targeted irradiation dosage was 3.0 kGy and the average absorbed dosage was 3.12 kGy. Values of TBARS and volatile compound contents of raw and cooked chicken meat were determined during the 12-d storage period. Thiobarbituric acid reactive substances values ranged from 15.5 to 71.4 mg of malondialdehyde/kg for nonirradiated raw chicken and 17.3 to 80.1 mg of malondialdehyde/kg for irradiated raw chicken. Values for cooked chicken ranged from 31.4 to 386.2 and 38.4 to 504.1 mg of malondialdehyde/kg for nonirradiated and irradiated chicken, respectively. Irradiation increased TBARS and hexanal values of controls and meat infused with plant extracts. Hexanal had the highest intensity of volatiles followed by pentanal and other volatiles. Cooking the samples significantly (P < 0.05) increased the amounts of TBARS and volatiles. Addition of plant extracts decreased the amount of TBARS as well as hexanal and pentanal values. Although irradiation increases lipid oxidation, infusion of chicken meat with plant extracts could reduce lipid oxidation caused by irradiation.
Modified M20 Beam Position Monitor Testing
NASA Astrophysics Data System (ADS)
Koros, Jessica; Musson, John
2017-09-01
Beam position monitors (BPMs) are used to measure lateral beam position. Two pairs of modified wire BPMs are being evaluated for installation into the injector at Jefferson Lab (JLab). The BPMs were coated with a Non-Evaporable Getter (NEG) to aid in pumping at the electron gun, as an ultra-high vacuum is required to protect the gun and to avoid scattering the beam. Beam in the injector has a large diameter, allowing extraction of second moments to give information about beam profile and emittance. The purpose of this project is to determine the effects of NEG coating on the BPMs and to calculate second moments from beam models on the Goubau Line (G-Line). Using the G-Line, scans of the BPMs were taken before and after NEG coating. Each scan produced an electrical field map, which characterizes properties of the BPM, including scale factors and coupling. Second moments were calculated using superposition of previous scan data, and verification of this method was attempted using several beam models. Results show the BPMs responded well to NEG and that measurement of second moments is possible. Once the BPMs are installed, they will enhance gun vacuum and enable monitoring of shape and trajectory of the beam as it exits the electron gun to ensure quality beam for experiments. This work is made possible through support from NSF award 1659177 to Old Dominion University.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, M.E.; Hanson, D.L.; Menge, P.R.
SABRE (Sandia Accelerator and Beam Research Experiment) is a ten-cavity linear induction magnetically insulated voltage adder (6 MV, 300 kA) operated in positive polarity to investigate issues relevant to ion beam production and propagation for inertial confinement fusion. The voltage adder section is coupled to an applied-B extraction ion diode via a long coaxial output transmission line. Observations indicate that the power propagates in a vacuum wave prior to electron emission. After the electron emission threshold is reached, power propagates in a magnetically insulated wave. The precursor is observed to have a dominant impact on he turn-on, impedance history, andmore » beam characteristics of applied-B ion diodes since the precursor voltage is large enough to cause electron emission at the diode from both the cathode feed and cathode tips. The amplitude of the precursor at the load (3--4.5 MV) is a significant fraction of the maximum load voltage (5--6 MV) because (1) the transmission line gaps ( {approx} 9 cm at output) and therefore impedances are relatively large, and hence the electric field threshold for electron emission (200 to 300 kV/cm) is not reached until well into the power pulse rise time; and (2) the rapidly falling forward wave and diode impedance reduces the ratio of main pulse voltage to precursor voltage. Experimental voltage and current data from the transmission line and the ion diode will be presented and compared with TWOQUICK (2-D electromagnetic PIC code) simulations and analytic models.« less
An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting
2014-02-15
A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gasmore » was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.« less
Increasing the intensity of an induction accelerator and reduction of the beam breakup instability
NASA Astrophysics Data System (ADS)
Coleman, J. E.; Moir, D. C.; Ekdahl, C. A.; Johnson, J. B.; McCuistian, B. T.; Sullivan, G. W.; Crawford, M. T.
2014-03-01
A 7 cm cathode has been deployed for use on a 3.8 MV, 80 ns (FWHM) Blumlein, to increase the extracted electron current from the nominal 1.7 to 2.9 kA. The intense relativistic electron bunch is accelerated and transported through a nested solenoid and ferrite induction core lattice consisting of 64 elements, exiting the accelerator with a nominal energy of 19.8 MeV. The principal objective of these experiments is to quantify the space-charge limitations on the beam quality, its coupling with the beam breakup (BBU) instability, and provide an independent validation of the BBU theory in a higher current regime, I >2 kA. Time resolved centroid measurements indicate a reduction in BBU >10× with simply a 50% increase in the average B-field used to transport the beam through the accelerator. A qualitative comparison of experimental and calculated results are presented, which include time resolved current density distributions, radial BBU amplitude relative to the calculated beam envelope, and frequency analyzed BBU amplitude with different accelerator lattice tunes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W., E-mail: woochanglee@unist.ac.kr; Lee, D. J.; Park, H. K.
The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm{sup −1}.more » The upper limit corresponds to the normalized wavenumber k{sub θ}ρ{sub e} of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.« less
Annealing shallow traps in electron beam irradiated high mobility metal-oxide-silicon transistors
NASA Astrophysics Data System (ADS)
Kim, Jin-Sung; Tyryshkin, Alexei; Lyon, Stephen
In metal-oxide-silicon (MOS) quantum devices, electron beam lithography (EBL) is known to create defects at the Si/SiO2 interface which can be catastrophic for single electron control. Shallow traps ( meV), which only manifest themselves at low temperature ( 4 K), are especially detrimental to quantum devices but little is known about annealing them. In this work, we use electron spin resonance (ESR) to measure the density of shallow traps in two sets of high mobility (μ) MOS transistors. One set (μ=14,000 cm2/Vs) was irradiated with an EBL dose (10 kV, 40 μC/cm2) and was subsequently annealed in forming gas while the other remained unexposed (μ=23,000 cm2/Vs). Our ESR data show that the forming gas anneal is sufficient to remove shallow traps generated by the EBL dose over the measured shallow trap energy range (0.3-4 meV). We additionally fit these devices' conductivity data to a percolation transition model and extract a zero temperature percolation threshold density, n0 ( 9 ×1010 cm-2 for both devices). We find that the extracted n0 agrees within 15 % with our lowest temperature (360 mK) ESR measurements, demonstrating agreement between two independent methods of evaluating the interface.
NASA Astrophysics Data System (ADS)
Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.
2008-02-01
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.
Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J
2008-02-01
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, David L.
2015-01-23
Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams ofmore » electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring, and that an instability associated with residual gas in the beam pipe would limit the intensity of the electron ring. It was also not clear whether the required very small beam size could be achieved. The results of this study are important contributions to the design of both the electron and positron damping rings in which all of those challenges are addressed and overcome. Our findings are documented in the ILC Technical Design Report, a document that represents the work of an international collaboration of scientists. Our contributions include design of the beam magnetic optics for the 3 km circumference damping rings, the vacuum system and surface treatments for electron cloud mitigation, the design of the guide field magnets, design of the superconducting damping wigglers, and new detectors for precision measurement of beam properties. Our study informed the specification of the basic design parameters for the damping rings, including alignment tolerances, magnetic field errors, and instrumentation. We developed electron cloud modelling tools and simulations to aid in the interpretation of the measurements that we carried out in the Cornell Electron-positron Storage Ring (CESR). The simulations provide a means for systematic extrapolation of our measurements at CESR to the proposed ILC damping rings, and ultimately to specify how the beam pipes should be fabricated in order to minimize the effects of the electron cloud. With the conclusion of this study, the design of the essential components of the damping rings is complete, including the development and characterization (with computer simulations) of the beam optics, specification of techniques for minimizing beam size, design of damping ring instrumentation, R&D into electron cloud suppression methods, tests of long term durability of electron cloud coatings, and design of damping ring vacuum system components.« less
Design of a compact all-permanent magnet ECR ion source injector for ReA at the MSU NSCL
NASA Astrophysics Data System (ADS)
Pham, Alfonse N.; Leitner, Daniela; Glennon, Patrick; Ottarson, Jack; Lawton, Don; Portillo, Mauricio; Machicoane, Guillaume; Wenstrom, John; Lajoie, Andrew
2016-06-01
The design of a compact all-permanent magnet electron cyclotron resonance (ECR) ion source injector for the ReAccelerator Facility (ReA) at the Michigan State University (MSU) National Superconducting Cyclotron Laboratory (NSCL) is currently being carried out. The ECR ion source injector will complement the electron beam ion trap (EBIT) charge breeder as an off-line stable ion beam injector for the ReA linac. The objective of the ECR ion source injector is to provide continuous-wave beams of heavy ions from hydrogen to masses up to 136Xe within the ReA charge-to-mass ratio (Q / A) operational range from 0.2 to 0.5. The ECR ion source will be mounted on a high-voltage platform that can be adjusted to obtain the required 12 keV/u injection energy into a room temperature radio-frequency quadrupole (RFQ) for further acceleration. The beam line consists of a 30 kV tetrode extraction system, mass analyzing section, and optical matching section for injection into the existing ReA low energy beam transport (LEBT) line. The design of the ECR ion source and the associated beam line are discussed.
Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.
Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P
2012-02-01
The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.
Superconducting resonator used as a beam phase detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharamentov, S. I.; Pardo, R. C.; Ostroumov, P. N.
2003-05-01
Beam-bunch arrival time has been measured for the first time by operating superconducting cavities, normally part of the linac accelerator array, in a bunch-detecting mode. The very high Q of the superconducting cavities provides high sensitivity and allows for phase-detecting low-current beams. In detecting mode, the resonator is operated at a very low field level comparable to the field induced by the bunched beam. Because of this, the rf field in the cavity is a superposition of a 'pure' (or reference) rf and the beam-induced signal. A new method of circular phase rotation (CPR), allowing extraction of the beam phasemore » information from the composite rf field was developed. Arrival time phase determination with CPR is better than 1{sup o} (at 48 MHz) for a beam current of 100 nA. The electronics design is described and experimental data are presented.« less
Kinetic modeling of particle dynamics in H- negative ion sources (invited)
NASA Astrophysics Data System (ADS)
Hatayama, A.; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T.; Miyamoto, K.; Fukano, A.; Mizuno, T.
2014-02-01
Progress in the kinetic modeling of particle dynamics in H- negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H- ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H- production, and (ii) extraction physics of H- ions and beam optics.
An electrostatic deceleration lens for highly charged ions.
Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P
2010-04-01
The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.
Magnetogasdynamic Power Extraction and Flow Conditioning for a Gas Turbine
NASA Technical Reports Server (NTRS)
Adamovich, Igor V.; Rich, J. William; Schneider, Steven; Blankson, Isaiah
2003-01-01
An extension of the Russian AJAX concept to a turbojet is being explored. This magnetohydrodynamic (MHD) energy bypass engine cycle incorporating conventional gas turbine technology has MHD flow conditioning at the inlet to electromagnetically extract part of the inlet air kinetic energy. The electrical power generated can be used for various on-board vehicle requirements including plasma flow control around the vehicle or it may be used for augmenting the expanding flow in the high speed nozzle by MHD forces to generate more thrust. In order to achieve this interaction, the air needs to be ionized by an external means even up to fairly high flight speeds, and the leading candidates may be classified as electrical discharge devices. The present kinetic modeling calculations suggest that the use of electron beams with characteristics close to the commercially available e-beam systems (electron energy approx. 60 keV, beam current approx. 0.2 mA/sq cm) to sustain ionization in intermediate pressure, low-temperature (P = 0.1 atm, T = 300 K) supersonic air flows allows considerable reduction of the flow kinetic energy (up to 10 to 20 percent in M = 3 flows). The calculations also suggest that this can be achieved at a reasonable electron beam efficiency (eta approx. 5), even if the e-beam window losses are taken into account. At these conditions, the exit NO and O atom concentrations due to e-beam initiated chemical reactions do not exceed 30 ppm. Increasing the beam current up to approx. 2 mA/sq cm, which corresponds to a maximum electrical conductivity of sigma(sub max) approx. 0.8 mho/m at the loading parameter of K = 0.5, would result in a much greater reduction of the flow kinetic energy (up to 30 to 40 percent). The MHD channel efficiency at these conditions would be greatly reduced (to eta approx. 1) due to increased electron recombination losses in the channel. At these conditions, partial energy conversion from kinetic energy to heat would result in a significant total pressure loss (P(sub 0)/P(sub 0i) approx. 0.3). The total pressure loss can be reduced operating at the loading parameter closer to unity, at the expense of the reduced electrical power output. Raising the beam current would also result in the increase of the exit O atom concentrations (up to 600 ppm) and NO (up to 150 ppm).
Jia, Xianlu; Zhang, Tianjue; Luo, Shan; Wang, Chuan; Zheng, Xia; Yin, Zhiguo; Zhong, Junqing; Wu, Longcheng; Qin, Jiuchang
2010-02-01
A 2.45 GHz microwave ion source was developed at China Institute of Atomic Energy (CIAE) for proton beam production of over 60 mA [B.-Q. Cui, Y.-W. Bao, L.-Q. Li, W.-S. Jiang, and R.-W. Wang, Proceedings of the High Current Electron Cyclotron Resonance (ECR) Ion Source for Proton Accelerator, APAC-2001, 2001 (unpublished)]. For various proton beam applications, another 2.45 GHz microwave ion source with a compact structure is designed and will be built at CIAE as well for high current proton beam production. It is also considered to be used for the test of H(2)(+) beam, which could be injected into the central region model cyclotron at CIAE, and accelerated to 5 MeV before extraction by stripping. The required ECR magnetic field is supplied by all the permanent magnets rather than electrical solenoids and six poles. The magnetic field distribution provided by this permanent magnets configuration is a large and uniformly volume of ECR zone, with central magnetic field of a magnitude of approximately 875 Gs [T. Taylor and J. S. C. Wills, Nucl. Instrum. Methods Phys. Res. A 309, 37 (1991)]. The field adjustment at the extraction end can be implemented by moving the position of the magnet blocks. The results of plasma, coupling with 2.45 GHz microwave in the ECR zone inside the ion source are simulated by particle-in-cell code to optimize the density by adjusting the magnetic field distribution. The design configuration of the ion source will be summarized in the paper.
A Permanent-Magnet Microwave Ion Source For A Compact High-Yield Neutron Generator
NASA Astrophysics Data System (ADS)
Waldmann, O.; Ludewigt, B.
2011-06-01
We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5×1011 n/s for D-T and ˜1×1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60×6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.
Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagaya, Tomoki, E-mail: nagaya@nf.eie.eng.osaka-u.ac.jp; Nishiokada, Takuya; Hagino, Shogo
2016-02-15
We have been constructing the tandem-type electron cyclotron resonance ion source (ECRIS). Two ion sources of the tandem-type ECRIS are possible to generate plasma individually, and they also confined individual ion species by each different plasma parameter. Hence, it is considered to be suitable for new materials production. As the first step, we try to produce and extract multicharged C{sub 60} ions by supplying pure C{sub 60} vapor in the second stage plasma because our main target is producing the endohedral fullerenes. We developed a new evaporator to supply fullerene vapor, and we succeeded in observation about multicharged C{sub 60}more » ion beam in tandem-type ECRIS for the first time.« less
Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D
2008-02-01
The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (<4 s). In the long pulse experiment, equipped with an extraction area of 0.02 m(2), the pulse length has been extended to 3600 s. A large rf source, with the width and half the height of the ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.
Demonstration of a novel technique to measure two-photon exchange effects in elastic e±p scattering
Moteabbed, Maryam; Niroula, Megh; Raue, Brian A.; ...
2013-08-30
The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. The TPE contributions depend on the sign of the lepton charge in e±p scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct e±p comparisons, which has themore » potential to make precise measurements over a broad range in Q 2 and scattering angles. We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q 2 and scattering angle. Nonetheless, this measurement yields a data sample for e±p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable to study the difference between the incoming electron and positron beams. This systematic effect leads to the largest uncertainty in the final ratio of positron to electron scattering: R=1.027±0.005±0.05 for < Q 2 >=0.206 GeV 2 and 0.830 ≤ ε ≤ 0.943. We have demonstrated that the tertiary e ± beam generated using this technique provides the opportunity for dramatically improved comparisons of e±p scattering, covering a significant range in both Q 2 and scattering angle. Combining data with different chicane polarities will allow for detailed studies of the difference between the incoming e + and e - beams.« less
Demonstration of a novel technique to measure two-photon exchange effects in elastic e±p scattering
NASA Astrophysics Data System (ADS)
Moteabbed, M.; Niroula, M.; Raue, B. A.; Weinstein, L. B.; Adikaram, D.; Arrington, J.; Brooks, W. K.; Lachniet, J.; Rimal, Dipak; Ungaro, M.; Afanasev, A.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lewis, S.; Lu, H. Y.; MacCormick, M.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Strauch, S.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.
2013-08-01
Background: The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections.Purpose: The TPE contributions depend on the sign of the lepton charge in e±p scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct e±p comparisons, which has the potential to make precise measurements over a broad range in Q2 and scattering angles.Methods: We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton.Results: The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2 and scattering angle. Nonetheless, this measurement yields a data sample for e±p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable to study the difference between the incoming electron and positron beams. This systematic effect leads to the largest uncertainty in the final ratio of positron to electron scattering: R=1.027±0.005±0.05 for
Reverse current in solar flares
NASA Technical Reports Server (NTRS)
Knight, J. W.; Sturrock, P. A.
1977-01-01
We examine the proposal that impulsive X-ray bursts are produced by high-energy electrons streaming from the corona to the chromosphere. It is known that the currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model in which the reverse current is stable indicates that the primary electron stream leads to the development of an electric field in the ambient corona which (a) decelerates the primary beam and (b) produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences.
Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishioka, S.; Goto, I.; Hatayama, A.
2015-04-08
In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep intomore » the source plasma region when the effective confinement time is short.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strohmeier, M.; University of Applied Sciences Karlsruhe, Moltkestr. 30, 76133 Karlsruhe; Benitez, J. Y.
2010-02-15
This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data usingmore » ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed.« less
Miniature low voltage beam systems producable by combined lithographies
NASA Astrophysics Data System (ADS)
Koops, Hans W. P.; Munro, Eric; Rouse, John; Kretz, Johannes; Rudolph, Michael; Weber, Markus; Dahm, Gerold
The project of a miniaturized vacuum microelectronic 100 GHz switch is described. It implies the development of a field emission electron gun as well as the investigation of miniaturized lenses and deflectors. Electrostatic elements are designed and developed for this application. Connector pads and wiring pattern are created by conventional electron beam lithography and a lift-off or etching process. Wire and other 3-dimensional structures are grown using electron beam induced deposition. This additive lithography allows to form electrodes and resistors of a preset conductivity. The scanning electron microscope features positioning the structures with nm precision. An unconventional lithography system is used that is capable of controlling the pixel dwell time within a shape with different time functions. With this special function 3-dimensional structures can be generated like free standing square shaped electrodes. The switch is built by computer controlled additive lithography avoiding assembly from parts. Lenses of micrometer dimensions were investigated with numerical electron optics programs computing the 3-dimensional potential and field distribution. From the extracted axial field distribution the electron optic characteristic parameters, like focal length, chromatic and spherical aberration, were calculated for various lens excitations. The analysis reveals that miniaturized optics for low energy electrons, as low as 30 eV, are diffraction limited. For a lens with 2 μm focal length, a chromatic aberration disc of 1 nm contributes to 12 nm diffraction disc. The spherical aberration blurs the probe by 0.02 nm, assuming an aperture of 0.01 rad. Employing hydrogen ions at 100 V, a probe diameter of 0.3 nm generated by chromatic aberration is possible. Miniaturized electron optical probe forming systems and imaging systems can be constructed with those lenses. Its application as lithography systems with massive parallel beams can be forseen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi
2016-02-15
An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and themore » beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.« less
Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald
2016-01-01
In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861
Tilka, J. A.; Park, J.; Ahn, Y.; ...
2016-07-06
Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less
Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan
2016-02-01
A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.
Status and outlook of the CRYRING@ESR project
NASA Astrophysics Data System (ADS)
Geithner, W.; Andelkovic, Z.; Beck, D.; Bräuning, H.; Bräuning-Demian, A.; Danared, H.; Dimopoulou, C.; Engström, M.; Fedotova, S.; Gorda, O.; Herfurth, F.; Hess, R.; Källberg, A.; Kleffner, C.; Kotovskiy, N.; Kraus, I.; Lestinsky, M.; Litvinov, S.; Nolden, F.; Reiter, A.; Sieber, T.; Steck, M.; Vorobyev, G.
2017-11-01
Once operational, CRYRING@ESR will store and decelerate ions delivered by the experimental storage ring ESR at energies well below those of ESR. In addition to that, CRYRING@ESR has an electron cooler operating with an ultracold electron beam, allowing to provide cooled ion beams for precision experiments. These ions will be delivered to a broad range of experiments presently in preparation; either in-ring or extracted to a dedicated beamline for experiments. An overview and status report of the installation and commissioning of the CRYRING-@ESR storage ring for highly charged ions at the GSI Helmholtzzentrum für Schwerionenforschung is presented. The installation of this storage ring started in 2014 and was completing end of 2016, when this publication was written.
Electronics for fast ion extraction from EBIS devices
NASA Astrophysics Data System (ADS)
Höltermann, H.; Becker, R.; Kleinod, M.; Müller, I.
2004-05-01
Future synchrotrons for cancer therapy could profit from single turn injection in terms of size, costs, and ease of operation [O. Kester, R. Becker, and M. Kleinod, Rev. Sci. Instrum. 67 (1996)]. Short (˜1.5 μs) and intense (˜1.3 mA) pulses of highly charged light ions (C6+, N7+, O8+) are a requirement for these future therapy facilities which can be provided by an EBIS ion source. Such a medically dedicated EBIS has an electron beam of 400 mA at 5 keV and needs an electron current density of 100 A/cm2 for a repetition rate of 10 Hz. To obtain a 1.5 μs ion pulse it is necessary to switch the drift tube potentials up to 1.6 kV (for a ratio of beam to drift tube of 1/20) in some 100 ns. To avoid spreading out of the pulse due to the restoration of the full space charge depression at locations where ions have already been extracted, the potentials applied to the drift tubes are changed with time. They will be adjusted for each drift tube according to the transit time of the ion pulse. Furthermore, the drift tubes are fully interpenetrating each other with tapered fingers in order to locally distribute the action of the applied potentials. This provides a potential wall, which is following the extracted ion pulse and results in a compressed short ion pulse for single turn injection into a synchrotron.
Intense beams from gases generated by a permanent magnet ECR ion source at PKU.
Ren, H T; Peng, S X; Lu, P N; Yan, S; Zhou, Q F; Zhao, J; Yuan, Z X; Guo, Z Y; Chen, J E
2012-02-01
An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π mm mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam.
Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A
2012-02-01
A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.
A Novel Low Energy Electron Microscope for DNA Sequencing and Surface Analysis
Mankos, M.; Shadman, K.; Persson, H.H.J.; N’Diaye, A.T.; Schmid, A.K.; Davis, R.W.
2014-01-01
Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of individual DNA bases in a sequence. PMID:24524867
A novel low energy electron microscope for DNA sequencing and surface analysis.
Mankos, M; Shadman, K; Persson, H H J; N'Diaye, A T; Schmid, A K; Davis, R W
2014-10-01
Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of individual DNA bases in a sequence. Copyright © 2014 Elsevier B.V. All rights reserved.
A novel low energy electron microscope for DNA sequencing and surface analysis
Mankos, M.; Shadman, K.; Persson, H. H. J.; ...
2014-01-31
Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts.more » The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Finally, experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of individual DNA bases in a sequence.« less
Broad-beam high-current dc ion source based on a two-stage glow discharge plasma.
Vizir, A V; Oks, E M; Yushkov, G Yu
2010-02-01
We have designed, made, and demonstrated a broad-beam, dc, ion source based on a two-stage, hollow-cathode, and glow discharges plasma. The first-stage discharge (auxiliary discharge) produces electrons that are injected into the cathode cavity of a second-stage discharge (main discharge). The electron injection causes a decrease in the required operating pressure of the main discharge down to 0.05 mTorr and a decrease in required operating voltage down to about 50 V. The decrease in operating voltage of the main discharge leads to a decrease in the fraction of impurity ions in the ion beam extracted from the main gas discharge plasma to less than 0.2%. Another feature of the source is a single-grid accelerating system in which the ion accelerating voltage is applied between the plasma itself and the grid electrode. The source has produced steady-state Ar, O, and N ion beams of about 14 cm diameter and current of more than 2 A at an accelerating voltage of up to 2 kV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarvainen, O., E-mail: olli.tarvainen@jyu.fi; Orpana, J.; Kronholm, R.
2016-09-15
The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system andmore » the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O{sup 3+}–O{sup 7+} were recorded at various tuner positions and frequencies in the range of 14.00–14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited “mode-hopping” between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.« less
NASA Astrophysics Data System (ADS)
Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su
2012-08-01
The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.
Radiation reaction studies in an all-optical set-up: experimental limitations
NASA Astrophysics Data System (ADS)
Samarin, G. M.; Zepf, M.; Sarri, G.
2018-06-01
The recent development of ultra-high intensity laser facilities is finally opening up the possibility of studying high-field quantum electrodynamics in the laboratory. Arguably, one of the central phenomena in this area is that of quantum radiation reaction experienced by an ultra-relativistic electron beam as it propagates through the tight focus of a laser beam. In this paper, we discuss the major experimental challenges that are to be faced in order to extract meaningful and quantitative information from this class of experiments using existing and near-term laser facilities.
Studies of dished accelerator grids for 30-cm ion thrusters
NASA Technical Reports Server (NTRS)
Rawlin, V. K.
1973-01-01
Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.
Full Geant4 and FLUKA simulations of an e-LINAC for its use in particle detectors performance tests
NASA Astrophysics Data System (ADS)
Alpat, B.; Pilicer, E.; Servoli, L.; Menichelli, M.; Tucceri, P.; Italiani, M.; Buono, E.; Di Capua, F.
2012-03-01
In this work we present the results of full Geant4 and FLUKA simulations and comparison with dosimetry data of an electron LINAC of St. Maria Hospital located in Terni, Italy. The facility is being used primarily for radiotherapy and the goal of the present study is the detailed investigation of electron beam parameters to evaluate the possibility to use the e-LINAC (during time slots when it is not used for radiotherapy) to test the performance of detector systems, in particular those designed to operate in space. The critical beam parameters are electron energy, profile and flux available at the surface of device to be tested. The present work aims to extract these parameters from dosimetry calibration data available at the e-LINAC. The electron energy ranges from 4 MeV to 20 MeV. The dose measurements have been performed by using an Advanced Markus Chamber which has a small sensitive volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsubara, Y.; Tahara, H.; Nogawa, S.
A new type of electron source for ion sources, which serves as a cathode has been developed. In this cathode, a high-density microwave plasma is produced under the electron-cyclotron-resonance (ECR) condition, and a high electron current of several amperes can be extracted from it. The structure of this microwave plasma (MP) cathode is very simple and compact. A rod antenna connected to a coaxial line for introducing the microwave power (2.45 GHz) and a rare-earth metal permanent magnet for producing the ECR condition are major components. Since there is no filament in this MP cathode, it has a longer lifetimemore » than the equivalent thermionic filament electron emitter. It offers a great advantage to the operation with reactive as well as inert gases. This MP cathode has been adapted in Kaufman-type ion source and have successfully obtained an argon ion-beam current of 110 mA and an oxygen ion-beam current of 43 mA in 25 mm diameter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chudakov, Eugene A.
Hall D is a new experimental hall at Jefferson Lab, designed for experiments with a photon beam. The primary motivation for Hall D is the GlueX experiment [1,2], dedicated to meson spectroscopy. The Hall D complex consists of: An electron beam line used to extract the 5.5-pass electrons from the accelerator into the Tagger Hall. The designed beam energy is E e = 12 GeV;The Tagger Hall, where the electron beam passes through a thin radiator (~0.01% R.L.) and is deflected into the beam dump. The electrons that lost >30% of their energy in the radiator are detected with scintillatormore » hodoscopes providing a ~0.1% energy resolution for the tagged photons. Aligned diamond radiators allow to produce linearly polarized photons via the Coherent Bremsstrahlung. The beam dump is limited to 60 kW (5 µA at 12 GeV); The Collimator Cave contains a collimator for the photon beam and dipole magnets downstream in order to remove charged particles. The 3.4 mm diameter collimator, located about 75 m downstream of the radiator, selects the central cone of the photon beam increasing its average linear polarization, up to ~40%in the coherent peak at 9 GeV; Hall D contains several elements of the photon beam line, and themain spectrometer. A Pair Spectrometer consists of a thin converter, a dipole magnet, and a two-arm detector used to measure the energy spectrum of the photon beam. The main spectrometer is based on a 2-T superconducting solenoid, 4 m long and 1.85 m bore diameter. The liquid hydrogen target is located in the front part the solenoid. The charged tracks are detected with a set of drift chambers; photons are detected with two electromagnetic calorimeters. There are also scintillator hodoscopes for triggering and time-of-flight measurements. The spectrometer is nearly hermetic in an angular range of 1° < θ < 120 •. The momentum resolution is σ p /p ~ 1 ₋ ₋3% depending on the polar angle θ. The energy resolution of the electromagnetic calorimeters is about 7% at 1 GeV.« less
Towards a realistic 3D simulation of the extraction region in ITER NBI relevant ion source
NASA Astrophysics Data System (ADS)
Mochalskyy, S.; Wünderlich, D.; Fantz, U.; Franzen, P.; Minea, T.
2015-03-01
The development of negative ion (NI) sources for ITER is strongly accompanied by modelling activities. The ONIX code addresses the physics of formation and extraction of negative hydrogen ions at caesiated sources as well as the amount of co-extracted electrons. In order to be closer to the experimental conditions the code has been improved. It includes now the bias potential applied to first grid (plasma grid) of the extraction system, and the presence of Cs+ ions in the plasma. The simulation results show that such aspects play an important role for the formation of an ion-ion plasma in the boundary region by reducing the depth of the negative potential well in vicinity to the plasma grid that limits the extraction of the NIs produced at the Cs covered plasma grid surface. The influence of the initial temperature of the surface produced NI and its emission rate on the NI density in the bulk plasma that in turn affects the beam formation region was analysed. The formation of the plasma meniscus, the boundary between the plasma and the beam, was investigated for the extraction potentials of 5 and 10 kV. At the smaller extraction potential the meniscus moves closer to the plasma grid but as in the case of 10 kV the deepest meniscus bend point is still outside of the aperture. Finally, a plasma containing the same amount of NI and electrons (nH- =ne =1017 m-3) , representing good source conditioning, was simulated. It is shown that at such conditions the extracted NI current can reach values of ˜32 mA cm-2 using ITER-relevant extraction potential of 10 kV and ˜19 mA cm-2 at 5 kV. These results are in good agreement with experimental measurements performed at the small scale ITER prototype source at the test facility BATMAN.
Precision spectroscopy of the 2S-4P transition in atomic hydrogen
NASA Astrophysics Data System (ADS)
Maisenbacher, Lothar; Beyer, Axel; Matveev, Arthur; Grinin, Alexey; Pohl, Randolf; Khabarova, Ksenia; Kolachevsky, Nikolai; Hänsch, Theodor W.; Udem, Thomas
2017-04-01
Precision measurements of atomic hydrogen have long been successfully used to extract fundamental constants and to test bound-state QED. However, both these applications are limited by measurements of hydrogen lines other than the very precisely known 1S-2S transition. Moreover, the proton r.m.s.charge radius rp extracted from electronic hydrogen measurements currently disagrees by 4 σ with the much more precise value extracted from muonic hydrogen spectroscopy. We have measured the 2S-4P transition in atomic hydrogen using a cryogenic beam of hydrogen atoms optically excited to the initial 2S state. The first order Doppler shift of the one-photon 2S-4P transition is suppressed by actively stabilized counter-propagating laser beams and time-of-flight resolved detection. Quantum interference between excitation paths can lead to significant line distortions in our system. We use an experimentally verified, simple line shape model to take these distortions into account. With this, we can extract a new value for rp and the Rydberg constant R∞ with comparable accuracy as the combined previous H world data.
Design of the ILC RTML Extraction Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Tenenbaum, P.; Walz, D.
2011-10-17
The ILC [1] Damping Ring to the Main Linac beamline (RTML) contains three extraction lines (EL). Each EL can be used both for an emergency abort dumping of the beam and tune-up continual train-by-train extraction. Two of the extraction lines are located downstream of the first and second stages of the RTML bunch compressor, and must accept both compressed and uncompressed beam with energy spreads of 2.5% and 0.15%, respectively. In this paper we report on an optics design that allowed minimizing the length of the extraction lines while offsetting the beam dumps from the main line by the distancemore » required for acceptable radiation levels in the service tunnel. The proposed extraction lines can accommodate beams with different energy spreads while at the same time providing the beam size acceptable for the aluminum dump window. The RTML incorporates three extraction lines, which can be used for either an emergency beam abort or for a train-by-train extraction. The first EL is located downstream of the Damping Ring extraction arc. The other two extraction lines are located downstream of each stage of the two-stage bunch compressor. The first extraction line (EL1) receives 5GeV beam with an 0.15% energy spread. The extraction line located downstream of the first stage of bunch compressor (ELBC1) receives both compressed and uncompressed beam, and therefore must accept beam with both 5 and 4.88GeV energy, and 0.15% and 2.5% energy spread, respectively. The extraction line located after the second stage of the bunch compressor (ELBC2) receives 15GeV beam with either 0.15 or 1.8% energy spread. Each of the three extraction lines is equipped with the 220kW aluminum ball dump, which corresponds to the power of the continuously dumped beam with 5GeV energy, i.e., the beam trains must be delivered to the ELBC2 dump at reduced repetition rate.« less
NASA Astrophysics Data System (ADS)
Watanabe, Noboru; Hirayama, Tsukasa; Yamada, So; Takahashi, Masahiko
2018-04-01
We report details of an electron-ion coincidence apparatus, which has been developed for molecular-frame electron energy loss spectroscopy studies. The apparatus is mainly composed of a pulsed electron gun, an energy-dispersive electron spectrometer, and an ion momentum imaging spectrometer. Molecular-orientation dependence of the high-energy electron scattering cross section can be examined by conducting measurements of vector correlation between the momenta of the scattered electron and fragment ion. Background due to false coincidences is significantly reduced by introducing a pulsed electron beam and pulsing scheme of ion extraction. The experimental setup has been tested by measuring the inner-shell excitation of N2 at an incident electron energy of 1.5 keV and a scattering angle of 10.2°.
Electron beam diagnostic system using computed tomography and an annular sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmer, John W.; Teruya, Alan T.
2015-08-11
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less
Electron beam diagnostic system using computed tomography and an annular sensor
Elmer, John W.; Teruya, Alan T.
2014-07-29
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
Performance of a Nanometer Resolution BPM System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, V; Hayano, H; Honda, Y
2005-10-14
International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. it is important to the ongoing ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that an RF cavity BPM with modern waveform processing could provide a position measurement resolution of less than one nanometer. Such a system could form the basis of the desired beam-based stability measurement, as well as be used for other specialized purposes. They have developed a high resolution RF cavity BPM and associated electronics.more » A triplet comprised of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on six variable-length struts which can be used to move the BPMs in position and angle. they have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, they have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of {+-} 20 {micro}m. They report on the progress of these ongoing tests.« less
NASA Astrophysics Data System (ADS)
Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II
1995-05-01
Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These displays give the operator valuable feedback pertaining to the contiguity of the extracted surfaces. As with M-Mode echocardiography, the velocity of moving structures can be easily visualized and measured. However, many views inaccessible to standard transthoracic echocardiography are easily generated. These features have augmented the interpretability of cine electron beam computed tomography and have prompted the recent cloning of this system into an 'omni-directional M-Mode display' system for use in digital post-processing of echocardiographic parasternal short axis tomograms. This enhances the functional assessment in orthogonal views of the left ventricle, accounting for shape changes particularly in the asymmetric post-infarction ventricle. Conclusions: A new tool has been developed for analysis and visualization of cine electron beam computed tomography. It has been found to be very useful in verifying the consistency of myocardial surface definition with a semi-automated segmentation tool. By drawing on M-Mode echocardiography experience, electron beam tomography's interpretability has been enhanced. Use of this feature, in conjunction with the existing image processing tools, will enhance the presentations of data on regional systolic and diastolic functions to clinicians in a format that is familiar to most cardiologists. Additionally, this tool reinforces the advantages of electron beam tomography as a single imaging modality for the assessment of left and right ventricular size, shape, and regional functions.
Production of multicharged metal ion beams on the first stage of tandem-type ECRIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagino, Shogo, E-mail: hagino@nf.eie.eng.osaka-u.ac.jp; Nagaya, Tomoki; Nishiokada, Takuya
2016-02-15
Multicharged metal ion beams are required to be applied in a wide range of fields. We aim at synthesizing iron-endohedral fullerene by transporting iron ion beams from the first stage into the fullerene plasma in the second stage of the tandem-type electron cyclotron resonance ion source (ECRIS). We developed new evaporators by using a direct ohmic heating method and a radiation heating method from solid state pure metal materials. We investigate their properties in the test chamber and produce iron ions on the first stage of the tandem-type ECRIS. As a result, we were successful in extracting Fe{sup +} ionmore » beams from the first stage and introducing Fe{sup +} ion beams to the second stage. We will try synthesizing iron-endohedral fullerene on the tandem-type ECRIS by using these evaporators.« less
High-energy accelerator for beams of heavy ions
Martin, Ronald L.; Arnold, Richard C.
1978-01-01
An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.
Development of gas pulsing system for electron cyclotron resonance ion source.
Hojo, S; Honma, T; Muramatsu, M; Sakamoto, Y; Sugiura, A
2008-02-01
A gas-pulsing system for an electron cyclotron resonance ion source with all permanent magnets (Kei2 source) at NIRS has been developed and tested. The system consists of a small vessel (30 ml) to reserve CH(4) gas and two fast solenoid valves that are installed at both sides of the vessel. They are connected to each other and to the Kei2 source by using a stainless-steel pipe (4 mm inner diameter), where the length of the pipe from the valve to the source is 60 cm and the conductance is 1.2 l/s. From the results of the test, almost 300 e microA for a pulsed (12)C(4+) beam was obtained at a Faraday cup in an extraction-beam channel with a pressure range of 4000 Pa in the vessel. At this time, the valve has an open time of 10 ms and the delay time between the valve open time and the application of microwave power is 100 ms. In experiments, the conversion efficiency for input CH(4) molecules to the quantity of extracted (12)C(4+) ions in one beam pulse was found to be around 3% and the ratio of the total amount of the gas requirement was only 10% compared with the case of continuous gas provided in 3.3 s of repetition in HIMAC.
METHOD AND APPARATUS FOR INJECTING AND TRAPPING ELECTRONS IN A MAGNETIC FIELD
Christofilos, N.C.
1962-05-29
An apparatus is designed for the manipulation of electrons in an exially symmetric magnetic field region and may be employed to trap electrons in such a field by directing an electron beam into a gradientially intensified field region therein to form an annular electron moving axially in the field and along a decreasing field gradient. Dissipative loop circuits such as resistive loops are disposed along at least the decreasing field gradient so as to be inductively coupled to the electron bunch so as to extract energy of the electron bunch and provide a braking force effective to reduce the velocity of the bunch. Accordingly, the electron bunch upon entering a lower intensity magnetic field region is retained therein since the electrons no longer possess sufficient energy to escape. (AEC)
MINERvA neutrino detector response measured with test beam data
Aliaga, L.; Altinok, O.; Araujo Del Castillo, C.; ...
2015-04-11
The MINERvA collaboration operated a scaled-down replica of thesolid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This paper reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons is obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions withmore » agreements better than 4% for the calorimetric response, though some features of the data are not precisely modeled. Furthermore, these measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross-section measurement program.« less
Plasma research in electric propulsion at Colorado State University
NASA Technical Reports Server (NTRS)
Wilbur, P. J.; Kaufman, H. R.
1976-01-01
The effect of electron bombardment ion thruster magnetic field configurations on the uniformity of the plasma density and the ion beam current density are discussed. The optimum configuration is a right circular cylinder which has significant fields at its outer radii and one end but is nearly field free within the cylinder and at the extraction grid end. The production and loss of the doubly charged ions which effect sputtering damage within thrusters are modeled and the model is verified for the mercury propellant case. Electron bombardment of singly charged ions is found to be the dominant double ion production mechanism. The low density plasma (approx. one million elec/cubic centimeter which exists in the region outside of the beam of thrust producing ions which are drawn from the discharge chamber is discussed. This plasma is modeled by assuming the ions contained in it are generated by a charge exchange process in the ion beam itself. The theoretical predictions of this model are shown to agree with experimental measurements.
Power Transmission From The ITER Model Negative Ion Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boilson, D.; Esch, H. P. L. de; Grand, C.
2007-08-10
In Cadarache development on negative ion sources is being carried out on the KAMABOKO III ion source on the MANTIS test bed. This is a model of the ion source designed for the neutral beam injectors of ITER. This ion source has been developed in collaboration with JAERI, Japan, who also designed and supplied the ion source. Its target performance is to accelerate a D- beam, with a current density of 200 A/m2 and <1 electron extracted per accelerated D- ion, at a source filling pressure of 0.3 Pa. For ITER a continuous ion beam must be assured for pulsemore » lengths of 1000 s, but beams of up to 3,600 s are also envisaged. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter. During long pulse operation ({<=}1000 s) it was found that the current density of both D- and H- beams, measured at the calorimeter was lower than expected and that a large discrepancy existed between the accelerated currents measured electrically and those transmitted to the calorimeter. The possibility that this discrepancy arose because the accelerated current included electrons (which would not be able to reach the calorimeter) was investigated and subsequently eliminated. Further studies have shown that the fraction of the electrical current reaching the calorimeter varies with the pulse length, which led to the suggestion that one or more of the accelerator grids were distorting due to the incident power during operation, leading to a progressive deterioration in the beam quality.. New extraction and acceleration grids have been designed and installed, which should have a better tolerance to thermal loads than those previously used. This paper describes the measurements of the power transmission and distribution using these grids.« less
NASA Astrophysics Data System (ADS)
Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.
2014-02-01
The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.
Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A
2014-02-01
The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.
Design and numerical characterization of a crossover EBIS
NASA Astrophysics Data System (ADS)
Geyer, Sabrina; Langbein, A.; Meusel, Oliver; Kester, Oliver
2015-01-01
For the investigation of highly charged ions, a crossover EBIS (XEBIS) was developed at the University of Frankfurt. In contrast to conventional EBIS/T devices the compression of the electron beam is achieved by electrostatic focusing to a crossover point in the interaction region. This concept allows a compact and simple design. Simulations performed with EGUN show a perveance of 2.1×10-7 A/V3/2 for the realized gun system. In the interaction region the electron beam has a density of around 10 A/cm2 and a minimum radius of 0.15 mm. The XEBIS has a total length of 112 mm with a trap length of 26 mm. It is designed for electron beam energies of up to 6 keV/q. The storage capacity of the trap region is in the order of 1×108 charges. Charge state breeding studies with CBSIM indicate for the noble gases as maximal achievable charge state Ar16+, Kr30+ and Xe35+. Thus ion beam currents of around 2.04 nA assuming 50 Hz repetition rate can be expected. The emittance of the extracted beam is approximated to 8 mm mrad. After completion of the construction phase, the XEBIS will be installed for first performance investigations at a dedicated test bench, equipped with a fast Faraday Cup (FC), a retarding field spectrometer, a luminescence screen and optical diagnostics. Subsequently the XEBIS will serve as source for highly charged ions at different experimental setups.
Leung, K.N.; Ehlers, K.W.
1982-05-04
A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,
Leung, Ka-Ngo; Ehlers, Kenneth W.
1984-01-01
A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.
Ultrasonic Micro-Blades for the Rapid Extraction of Impact Tracks from Aerogel
NASA Technical Reports Server (NTRS)
Ishii, H. A.; Graham, G. A.; Kearsley, A. T.; Grant, P. G.; Snead, C. J.; Bradley, J. P.
2005-01-01
The science return of NASA's Stardust Mission with its valuable cargo of cometary debris hinges on the ability to efficiently extract particles from silica aerogel collectors. The current method for extracting cosmic dust impact tracks is a mature procedure involving sequential perforation of the aerogel with glass needles on computer controlled micromanipulators. This method is highly successful at removing well-defined aerogel fragments of reasonable optical clarity while causing minimal damage to the surrounding aerogel collector tile. Such a system will be adopted by the JSC Astromaterials Curation Facility in anticipation of Stardust s arrival in early 2006. In addition to Stardust, aerogel is a possible collector for future sample return missions and is used for capture of hypervelocity ejecta in high power laser experiments of interest to LLNL. Researchers will be eager to obtain Stardust samples for study as quickly as possible, and rapid extraction tools requiring little construction, training, or investment would be an attractive asset. To this end, we have experimented with micro-blades for the Stardust impact track extraction process. Our ultimate goal is a rapid extraction system in a clean electron beam environment, such as an SEM or dual-beam FIB, for in situ sample preparation, mounting and analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sardashti, Kasra; Haight, Richard; Anderson, Ryan
2016-06-22
Cryogenic focused ion beam (Cryo-FIB) milling at near-grazing angles is employed to fabricate cross-sections on thin Cu(In,Ga)Se2 with >8x expansion in thickness. Kelvin probe force microscopy (KPFM) on sloped cross sections showed reduction in grain boundaries potential deeper into the film. Cryo Fib-KPFM enabled the first determination of the electronic structure of the Mo/CIGSe back contact, where a sub 100 nm thick MoSey assists hole extraction due to 45 meV higher work function. This demonstrates that CryoFIB-KPFM combination can reveal new targets of opportunity for improvement in thin-films photovoltaics such as high-work-function contacts to facilitate hole extraction through the backmore » interface of CIGS.« less
Difference between BPM reading one bunch and the average of multi-bunch in Booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi Yang
2004-08-18
Differences caused by BPM reading one bunch and multi-bunch average need to be well understood before the beam parameters, such as the synchrotron tune, betatron tune, and chromaticity, are extracted from those BPM data. It is easy to perform such a study using numerical simulation other than modifying the BPM electronics.
[A Generator of Mono-energetic Electrons for Response Test of Charged Particle Detectors.].
Matsubayashi, Fumiyasu; Yoshida, Katsuhide; Maruyama, Koichi
2005-01-01
We designed and fabricated a generator of mono-energetic electrons for the response test of charged particle detectors, which is used to measure fragmented particles of the carbon beam for cancer therapy. Mono-energetic electrons are extracted from (90)Sr by analyzing the energy of beta rays in the generator with a magnetic field. We evaluated performance parameters of the generator such as the absolute energy, the energy resolution and the counting rates of extracted electrons. The generator supplies mono-energetic electrons from 0.5MeV to 1.7MeV with the energy resolution of 20% in FWHM at higher energies than 1.0MeV. The counting rate of electrons is 400cpm at the maximum when the activity of (90)Sr is 298kBq. The generator was used to measure responses of fragmented-particle detectors and to determine the threshold energy of the detectors. We evaluated the dependence of pulse height variation on the detector position and the threshold energy by using the generator. We concluded this generator is useful for the response test of general charged particle detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maenchen, J.E.
1983-01-01
The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source.more » A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm/sup 2/ dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current af« less
Development and characterization of a high-reliability, extended-lifetime H- ion source
NASA Astrophysics Data System (ADS)
Becerra, Gabriel; Barrows, Preston; Sherman, Joseph
2015-11-01
Phoenix Nuclear Labs (PNL) has designed and constructed a long-lifetime, negative hydrogen (H-) ion source, in partnership with Fermilab for an ion beam injector servicing future Intensity Frontier particle accelerators. The specifications for the low-energy beam transport (LEBT) section are 5-10 mA of continuous H- ion current at 30 keV with <0.2 π-mm-mrad emittance. Existing ion sources at Fermilab rely on plasma-facing electrodes, limiting their lifetime to a few hundred hours, while requiring relatively high gas loads on downstream components. PNL's design features an electron cyclotron resonance (ECR) microwave plasma driver which has been extensively developed in positive ion source systems, having demonstrated 1000+ hours of operation and >99% continuous uptime at PNL. Positive ions and hyperthermal neutrals drift toward a low-work-function surface, where a fraction is converted into H- hydrogen ions, which are subsequently extracted into a low-energy beam using electrostatic lenses. A magnetic filter preferentially removes high-energy electrons emitted by the source plasma, in order to mitigate H- ion destruction via electron-impact detachment. The design of the source subsystems and preliminary diagnostic results will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, D.L.; Cuneo, M.E.; McKay, P.F.
We present results from initial experiments with a high impedance applied-B extraction diode on the SABRE ten stage linear induction accelerator (6.7 MV, 300 kA). We have demonstrated efficient coupling of power from the accelerator through an extended MITL (Magnetically Insulated Transmission Line) into a high intensity ion beam. Both MITL electron flow in the diode region and ion diode behavior, including ion source turn-on, virtual cathode formation and evolution, enhancement delay, and ion coupling efficiency, are strongly influenced by the geometry of the diode insulating magnetic field. For our present diode electrode geometry, electrons from the diode feed stronglymore » influence the evolution of the virtual cathode. Both experimental data and particle-in-cell numerical simulations show that uniform insulation of these feed electrons is required for uniform ion emission and efficient diode operation.« less
Metrology and Transport of Multiply Charged Ions
NASA Astrophysics Data System (ADS)
Kulkarni, Dhruva
The transport and interaction of singly- and multiply-charged ions with matter has been studied. The experiments were performed in an ultra-high vacuum environment. The low- and hyperthermal-energy ion beamline was used as a source of singly charged ions, while the CUEBIT facility was used as a source of multiply charged ions. The kinetic energy of the ion beam obtained from the CUEBIT is offset from the nominal value expected from the applied electrostatic potentials. These offsets were studied by measuring the kinetic energy of the beam using a retarding field analyzer (RFA). The offset was attributed to the space charge of the electron beam that is used to create the multiply charged ions. The charge density of the electron beam was varied by changing operational parameters of the electron beam, namely the electron beam current and the energy of the electron beam. Ion beams of Ar4+ and Ar8+ were extracted from the source and the offsets observed in the kinetic energy were related to the variation in the space charge potential of the electron beam. Measurements of these offsets, ranging from 100 eV/Q to 300 eV/Q, are significant and important for experiments that aim to utilize the potential energy of slow multiply charged ions. The transport of ions using capillaries has been studied to investigate the viability of ion-guiding as a means for a novel ion delivery mechanism. Results on transport through large bore capillaries (macrocapillaries) that probe both the geometric and ionguided mechanisms are presented. The angle- and position-dependent transport properties were found to depend on the material of the capillary (specifically, whether metal or insulator) and the geometry of the capillary. Rb+ ions at a kinetic energy of 1 keV were transmitted through metal and glass capillaries that were a few centimeters in length and a few millimeters in diameter. Oscillations were observed in the capillaries made of glass which were absent in the metal capillaries. Calculations based on the geometry of the experimental setup and kinematics of the ions showed that these oscillations could be attributed to the charge patches formed on the capillary walls. Electronic excitations in solids due to energetic ions at low kinetic energy were measured by using Schottky diodes. Hot electron currents measured at the backside of an Ag/n-Si Schottky diode due to ion bombardment on the frontside were found to depend on the kinetic energy (500 eV to 1500 eV) and angle of incidence (+/-30°) of the ion (Rb+) beam. A sharp upturn in the energy dependent yield is consistent with a kinetic emission model for electronic excitations utilizing the device Schottky barrier as determined from current-voltage characteristics. Backside currents measured for ion incident angle are strongly peaked about normal incidence. Accounting for the increased transport distance for excited charges at non-normal incidence, the mean free path for electrons in silver was found to be 5.2 +/- 1.4 nm, which is consistent with values reported in the literature.
Simulation study on ion extraction from electron cyclotron resonance ion sources
NASA Astrophysics Data System (ADS)
Fu, S.; Kitagawa, A.; Yamada, S.
1994-04-01
In order to study beam optics of NIRS-ECR ion source used in the HIMAC project, the EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1D and 2D sheath theories are used, respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source are presented in this paper, exhibiting an agreement with the experiment results.
Millimeter-Wave Generation via Plasma Three-Wave Mixing
1990-03-01
weakly turbulent. 2.1.2 Coupling of the EPWs to the Radiation Field The oscillating field of the EPW contains the power that we wish to extract from...5 plasma-waveguide parameters: (3 - 2/Wp2) 1 /2v vb ( b2 21 c In this equation, vbl is the speed of the slow beam from the low-voltage gun and vb2 is...cathode. This latter grid also serves as the anode for the electron gun. A fraction of the ions produced in this plasma are extracted through the anode
Kishii, Y; Kawasaki, S; Kitagawa, A; Muramatsu, M; Uchida, T
2014-02-01
A compact ECR ion source has utilized for carbon radiotherapy. In order to increase beam intensity with higher electric field at the extraction electrode and be better ion supply stability for long periods, electric geometry and surface conditions of an extraction electrode have been studied. Focusing attention on black deposited substances on the extraction electrode, which were observed around the extraction electrode after long-term use, the relation between black deposited substances and the electrical insulation property is investigated. The black deposited substances were inspected for the thickness of deposit, surface roughness, structural arrangement examined using Raman spectroscopy, and characteristics of electric discharge in a test bench, which was set up to simulate the ECR ion source.
Overview of the design of the ITER heating neutral beam injectors
NASA Astrophysics Data System (ADS)
Hemsworth, R. S.; Boilson, D.; Blatchford, P.; Dalla Palma, M.; Chitarin, G.; de Esch, H. P. L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D.; Serianni, G.; Shah, D.; Singh, M.; Urbani, M.; Zaccaria, P.
2017-02-01
The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H- and D- remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: • negative ions are harder to create so that they can be extracted and accelerated from the ion source; • electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; • negative ions are easily lost by collisions with the background gas in the accelerator; • electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; • positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; • electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be activated and all maintenance will have to be performed remotely. This paper describes the design of the HNB injectors, but not the associated power supplies, cooling system, cryogenic system etc, or the high voltage bushing which separates the vacuum of the beamline from the high pressure SF6 of the high voltage (1 MV) transmission line, through which the power, gas and cooling water are supplied to the beam source. Also the magnetic field reduction system is not described.
Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation
NASA Astrophysics Data System (ADS)
Vali, Indudhar Panduranga; Shetty, Pramoda Kumara; Mahesha, M. G.; Petwal, V. C.; Dwivedi, Jishnu; Choudhary, R. J.
2017-06-01
The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I-V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (ΦB), ideality factor (n) and series resistance (Rs). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of ΦB was observed as a function of EBI dose. The improved n with increased ΦB is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune Schottky contact parameters by metal deposition on the electron beam irradiated n-Si wafers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W., E-mail: luwang@impcas.ac.cn; Sun, L. T.; Qian, C.
2015-04-15
LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector projectmore » SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months’ commissioning, some outstanding results have been achieved, such as 1.97 emA of O{sup 6+}, 1.7 emA of Ar{sup 8+}, 1.07 emA of Ar{sup 9+}, and 118 euA of Bi{sup 28+}. The source has also successfully delivered O{sup 5+} and Ar{sup 8+} ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.« less
NASA Astrophysics Data System (ADS)
Backe, H.; Lauth, W.; Tran Thi, T. N.
2018-04-01
Line structures were observed for (110) planar channeling of electrons in a diamond single crystal even at a beam energy of 180 MeV . This observation motivated us to initiate dechanneling length measurements as function of the beam energy since the occupation of quantum states in the channeling potential is expected to enhance the dechanneling length. High energy loss signals, generated as a result of emission of a bremsstrahlung photon with about half the beam energy at channeling of 450 and 855 MeV electrons, were measured as function of the crystal thickness. The analysis required additional assumptions which were extracted from the numerical solution of the Fokker-Planck equation. Preliminary results for diamond are presented. In addition, we reanalyzed dechanneling length measurements at silicon single crystals performed previously at the Mainz Microtron MAMI at beam energies between 195 and 855 MeV from which we conclude that the quality of our experimental data set is not sufficient to derive definite conclusions on the dechanneling length. Our experimental results are below the predictions of the Fokker-Planck equation and somewhat above the results of simulation calculations of A. V. Korol and A. V. Solov'yov et al. on the basis of the MBN Explorer simulation package. We somehow conservatively conclude that the prediction of the asymptotic dechanneling length on the basis of the Fokker-Planck equation represents an upper limit.
Reversal electron attachment ionizer for detection of trace species
NASA Technical Reports Server (NTRS)
Bernius, Mark T. (Inventor); Chutjian, Ara (Inventor)
1990-01-01
An in-line reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region and executing a reversal of said electrons, such that the electrons possess zero kinetic energy at the point of reversal, may be used to produce both negative and positive ions. A sample gas is introduced at the point of electron reversal for low energy electron-(sample gas) molecule attachment with high efficiency. The attachment process produces negative ions from the sample gas, which includes species present in trace (minute) amounts. These ions are extracted efficiently and directed to a mass analyzer where they may be detected and identified. The generation and detection of positive ions is accomplished in a similar fashion with minimal adjustment to potentials applied to the apparatus.
Reversal electron attachment ionizer for detection of trace species
NASA Technical Reports Server (NTRS)
Bernius, Mark T. (Inventor); Chutjian, Ara (Inventor)
1989-01-01
An in-line reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region and executing a reversal of the electrons, such that the electrons possess zero kinetic energy at the point of reversal, may be used to produce both negative and positive ions. A sample gas is introduced at the point of electron reversal for low energy electron-(sample gas) molecule attachment with high efficiency. The attachment process produces negative ions from the sample gas, which includes species present in trace (minute) amounts. These ions are extracted efficiently and directed to a mass analyzer where they may be detected and identified. The generation and detection of positive ions is accomplished in a similar fashion with minimal adjustment to potentials applied to the apparatus.
Lu, W; Li, J Y; Kang, L; Liu, H P; Li, H; Li, J D; Sun, L T; Ma, X W
2014-02-01
The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36,000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H(+), (40)Ar(8+), (129)Xe(30+), (209)Bi(33+), etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.
Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.
2012-11-15
The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficienciesmore » of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.« less
Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondrasek, R.; Delahaye, P.; Kutsaev, Sergey
2012-11-01
The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a 252Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies ofmore » both gaseous and solid species including 14.7% for the radioactive species 143Ba27+. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for 23Na7+ and 17.9% for 39K10+ were obtained injecting stable Na+ and K+ beams from a surface ionization source.« less
NASA Astrophysics Data System (ADS)
Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.
2014-10-01
The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions and electrons, agree rather well with the experiment.
Generation of magneto-immersed electron beams
NASA Astrophysics Data System (ADS)
Pikin, A.; Raparia, D.
2018-05-01
There are many applications of electron beams in accelerator facilities: for electron coolers, electron lenses, and electron beam ion sources (EBIS) to mention a few. Most of these applications require magnetic compression of the electron beam to reduce the beam radius with the goal of either matching the circulating ion beam (electron lenses and electron coolers) or increasing the ionization capability for the production of highly charged ions (EBIS). The magnetic compression of the electron beam comes at a cost of increasing share of the transverse component of energy and therefore increased angles of the electron trajectories to the longitudinal axis. Considering the effect of the magnetic mirror, it is highly desirable to produce a laminar electron beam in the electron gun. The analysis of electron guns with different configurations is given in this paper with emphasis on generating laminar electron beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Masafumi, E-mail: yoshida.masafumi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi
2014-02-15
Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beammore » intensity was reduced from 14% of the PG filter to ∼10% without a reduction of the negative ion production.« less
RF Guns for Generation of Polarized Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, J.E.; Brachmann, A.; Dowell, D.H.
2005-11-09
Several accelerators, including the SLC, JLAB, Mainz, Bates/MIT, and Bonn have successfully operated for medium and high energy physics experiments using polarized electron beams generated by dc-biased guns employing GaAs photocathodes. Since these guns have all used a bias on the order of 100 kV, the longitudinal emittance of the extracted bunch is rather poor. Downstream rf bunching systems increase the transverse emittance. An rf gun with a GaAs photocathode would eliminate the need for separate rf bunchers, resulting in a simpler injection system. In addition, the thermal emittance of GaAs-type cathodes is significantly lower than for other photocathode materials.more » The environmental requirements for operating activated GaAs photocathodes cannot be met by rf guns as currently designed and operated. These requirements, including limits on vacuum and electron back bombardment, are discussed in some detail. Modifications to actual and proposed rf gun designs that would allow these requirements to be met are presented.« less
Slow positron beam production by a 14 MeV C.W. electron accelerator
NASA Astrophysics Data System (ADS)
Begemann, M.; Gräff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.
1982-10-01
A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface ofsurface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two NaI-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 × 10 5 slow positrons per second reaching thedetector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons.
Atomic Resolution Cryo-EM Structure of β-Galactosidase.
Bartesaghi, Alberto; Aguerrebere, Cecilia; Falconieri, Veronica; Banerjee, Soojay; Earl, Lesley A; Zhu, Xing; Grigorieff, Nikolaus; Milne, Jacqueline L S; Sapiro, Guillermo; Wu, Xiongwu; Subramaniam, Sriram
2018-05-10
The advent of direct electron detectors has enabled the routine use of single-particle cryo-electron microscopy (EM) approaches to determine structures of a variety of protein complexes at near-atomic resolution. Here, we report the development of methods to account for local variations in defocus and beam-induced drift, and the implementation of a data-driven dose compensation scheme that significantly improves the extraction of high-resolution information recorded during exposure of the specimen to the electron beam. These advances enable determination of a cryo-EM density map for β-galactosidase bound to the inhibitor phenylethyl β-D-thiogalactopyranoside where the ordered regions are resolved at a level of detail seen in X-ray maps at ∼ 1.5 Å resolution. Using this density map in conjunction with constrained molecular dynamics simulations provides a measure of the local flexibility of the non-covalently bound inhibitor and offers further opportunities for structure-guided inhibitor design. Published by Elsevier Ltd.
SU-D-BRCD-06: Measurement of Elekta Electron Energy Spectra Using a Small Magnetic Spectrometer.
Hogstrom, K; McLaughlin, D; Gibbons, J; Shikhaliev, P; Clarke, T; Henderson, A; Taylor, D; Shagin, P; Liang, E
2012-06-01
To demonstrate how a small magnetic spectrometer can measure the energy spectra of seven electron beams on an Elekta Infinity tuned to match beams on a previously commissioned machine. Energyspectra were determined from measurements of intensity profiles on 6″-long computed radiographic (CR) strips after deflecting a narrow incident beam using a small (28 lbs.), permanent magnetic spectrometer. CR plateexposures (<1cGy) required special beam reduction techniques and bremsstrahlung shielding. Curves of CR intensity (corrected for non- linearity and background) versus position were transformed into energy spectra using the transformation from position (x) on the CR plate to energy (E) based on the Lorentz force law. The effective magnetic field and its effective edge, parameters in the transformation, were obtained by fitting a plot of most probable incident energy (determined from practical range) to the peak position. The calibration curve (E vs. x) fit gave 0.423 Tesla for the effective magnetic field. Most resulting energy spectra were characterized by a single, asymmetric peak with peak position and FWHM increasing monotonically with beam energy. Only the 9-MeV spectrum was atypical, possibly indicating suboptimal beam tuning. These results compared well with energy spectra independently determined by adjusting each spectrum until the EGSnrc Monte Carlo calculated percent depth-dose curve agreed well with the corresponding measured curve. Results indicate that this spectrometer and methodology could be useful for measuring energy spectra of clinical electron beams at isocenter. Future work will (1) remove the small effect of the detector response function (due to pinhole size and incident angular spread) from the energy spectra, (2) extract the energy spectra exiting the accelerator from current results, (3) use the spectrometer to compare energy spectra of matched beams among our clinical sites, and (4) modify the spectrometer to utilize radiochromic film. © 2012 American Association of Physicists in Medicine.
RF pulse shape control in the compact linear collider test facility
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Corsini, Roberto
2018-07-01
The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.
NASA Astrophysics Data System (ADS)
Rimal, Dipak
The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric (GE) and the magnetic ( GM) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton [R = sigma(e +p)/sigma(e+p)]. The ratio R was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (epsilon). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH2) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the Q2 dependence of R at high epsilon(epsilon > 0.8) and the $epsilon dependence of R at approx 0.85 GeV2. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely reconciles the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors.
Nam, Sangchul; Namkoong, Wan
2012-01-15
Fly ash from a municipal solid waste incinerator (MSWI) is commonly classified as hazardous waste. High-energy electron beam irradiation systems have gained popularity recently as a clean and promising technology to remove environmental pollutants. Irradiation effects on leaching behavior and form of heavy metals in MSWI fly ash have not been investigated in any significant detail. An electron beam accelerator was used in this research. Electron beam irradiation on fly ash significantly increased the leaching potential of heavy metals from fly ash. The amount of absorbed dose and the metal species affected leaching behavior. When electron beam irradiation intensity increased gradually up to 210 kGy, concentration of Pb and Zn in the leachate increased linearly as absorbed dose increased, while that of Cu underwent no significant change. Concentration of Pb and Zn in the leachate increased up to 15.5% (10.7 mg/kg), and 35.6% (9.6 mg/kg) respectively. However, only 4.8% (0.3mg/kg) increase was observed in the case of Cu. The results imply that irradiation has significant effect on the leaching behavior of heavy metals in fly ash, and the effect is quite different among the metal species tested in this study. A commonly used sequential extraction analysis which can classify a metal species into five forms was conducted to examine any change in metal form in the irradiated fly ash. Notable change in metal form in fly ash was observed when fly ash was irradiated. Change in Pb form was much greater than that of Cu form. Change in metal form was related to leaching potential of the metals. Concentration of heavy metal in leachate was positively related to the exchangeable form which is the most mobile. It may be feasible to treat fly ash by electron beam irradiation for selective recovery of valuable metals or for pretreatment prior to conventional processes. Copyright © 2011 Elsevier B.V. All rights reserved.
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
NASA Astrophysics Data System (ADS)
Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R. P.; Arrington, J.; Brooks, W. K.; Adhikari, K. P.; Afanasev, A. V.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peña, C.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, I.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-02-01
There is a significant discrepancy between the values of the proton electric form factor, GEp, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEp from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ɛ ) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ɛ at Q2=1.45 GeV2 . This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2 - 3 GeV2 .
Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Saeedi-Moghadam, M; Jalli, R; Sina, S
2018-01-01
MRI-only treatment planning (TP) can be advantageous in paediatric radiotherapy. However, electron density extraction is necessary for dose calculation. Normally, after bone segmentation, a bulk density is assigned. However, the variation of bone bulk density in patients makes the creation of pseudo CTs challenging. This study aims to assess the effects of bone density variations in children on radiation attenuation and dose calculation for MRI-only TP. Bone contents of <15-year-old children were calculated, and substituted in the Oak Ridge National Laboratory paediatric phantoms. The percentage depth dose and beam profile of 150 kVp and 6 MV photon and 6 MeV electron beams were then calculated using Xcom, MCNPX (Monte Carlo N-particle version X) and ORLN phantoms. Using 150 kVp X-rays, the difference in attenuation coefficient was almost 5% between an 11-year-old child and a newborn, and ~8% between an adult and a newborn. With megavoltage radiation, the differences were smaller but still important. For an 18 MV photon beam, the difference of radiation attenuation between an 11-year-old child and a newborn was 4% and ~7.4% between an adult and a newborn. For 6 MeV electrons, dose differences were observed up to the 2 cm depth. The percentage depth dose difference between 1 and 10-year-olds was 18.5%, and between 10 and 15-year-olds was 24%. The results suggest that for MRI-only TP of photon- or electron-beam radiotherapy, the bone densities of each age group should be defined separately for accurate dose calculation. Advances in knowledge: This study highlights the need for more age-specific determination of bone electron density for accurate dose calculations in paediatric MRI-only radiotherapy TP.
NASA Astrophysics Data System (ADS)
Guler, N.; Fersch, R. G.; Kuhn, S. E.; Bosted, P.; Griffioen, K. A.; Keith, C.; Minehart, R.; Prok, Y.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Alaoui, A. El; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Garillon, B.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Livingston, K.; Lu, H. Y.; Mayer, M.; MacGregor, I. J. D.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Simonyan, A.; Skorodumina, Iu.; Sokhan, D.; Sparveris, N.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Voutier, E.; Walford, N. K.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-11-01
We present the final results for the deuteron spin structure functions obtained from the full data set collected in 2000-2001 with Jefferson Lab's continuous electron beam accelerator facility (CEBAF) using the CEBAF large acceptance spectrometer (CLAS). Polarized electrons with energies of 1.6, 2.5, 4.2, and 5.8 GeV were scattered from deuteron (15ND3 ) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double-spin asymmetry, the virtual photon absorption asymmetry A1d and the polarized structure function g1d were extracted over a wide kinematic range (0.05 GeV2
The Bonn Electron Stretcher Accelerator ELSA: Past and future
NASA Astrophysics Data System (ADS)
Hillert, W.
2006-05-01
In 1953, it was decided to build a 500MeV electron synchrotron in Bonn. It came into operation 1958, being the first alternating gradient synchrotron in Europe. After five years of performing photoproduction experiments at this accelerator, a larger 2.5GeV electron synchrotron was built and set into operation in 1967. Both synchrotrons were running for particle physics experiments, until from 1982 to 1987 a third accelerator, the electron stretcher ring ELSA, was constructed and set up in a separate ring tunnel below the physics institute. ELSA came into operation in 1987, using the pulsed 2.5GeV synchrotron as pre-accelerator. ELSA serves either as storage ring producing synchrotron radiation, or as post-accelerator and pulse stretcher. Applying a slow extraction close to a third integer resonance, external electron beams with energies up to 3.5GeV and high duty factors are delivered to hadron physics experiments. Various photo- and electroproduction experiments, utilising the experimental set-ups PHOENICS, ELAN, SAPHIR, GDH and Crystal Barrel have been carried out. During the late 90's, a pulsed GaAs source of polarised electrons was constructed and set up at the accelerator. ELSA was upgraded in order to accelerate polarised electrons, compensating for depolarising resonances by applying the methods of fast tune jumping and harmonic closed orbit correction. With the experimental investigation of the GDH sum rule, the first experiment requiring a polarised beam and a polarised target was successfully performed at the accelerator. In the near future, the stretcher ring will be further upgraded to increase polarisation and current of the external electron beams. In addition, the aspects of an increase of the maximum energy to 5GeV using superconducting resonators will be investigated.
NASA Astrophysics Data System (ADS)
Bae, Jai Kwan; Cultrera, Luca; DiGiacomo, Philip; Bazarov, Ivan
2018-04-01
Photocathodes capable of providing high intensity and highly spin-polarized electron beams with long operational lifetimes are of great interest for the next generation nuclear physics facilities like Electron Ion Colliders. We report on GaAs photocathodes activated by Cs2Te, a material well known for its robustness. GaAs activated by Cs2Te forms Negative Electron Affinity, and the lifetime for extracted charge is improved by a factor of 5 compared to that of GaAs activated by Cs and O2. The spin polarization of photoelectrons was measured using a Mott polarimeter and found to be independent from the activation method, thereby shifting the paradigm on spin-polarized electron sources employing photocathodes with robust coatings.
Controlling Electron Backstreaming Phenomena Through the Use of a Transverse Magnetic Field
NASA Technical Reports Server (NTRS)
Foster, John E.; Patterson, Michael J.
2002-01-01
DEEP-SPACE mission propulsion requirements can be satisfied by the use of high specific impulse systems such as ion thrusters. For such missions. however. the ion thruster will be required to provide thrust for long periods of time. To meet the long operation time and high-propellant throughput requirements, thruster lifetime must be increased. In general, potential ion thruster failure mechanisms associated with long-duration thrusting can be grouped into four areas: (1) ion optics failure; (2) discharge cathode failure; (3) neutralizer failure; and (4) electron backstreaming caused by accelerator grid aperture enlargement brought on by accelerator grid erosion. The work presented here focuses on electron backstreaming. which occurs when the potential at the center of an accelerator grid aperture is insufficient to prevent the backflow of electrons into the ion thruster. The likelihood of this occurring depends on ion source operation time. plasma density, and grid voltages, as accelerator grid apertures enlarge as a result of erosion. Electrons that enter the gap between the high-voltage screen and accelerator grids are accelerated to the energies approximately equal to the beam voltage. This energetic electron beam (typically higher than 1 kV) can damage not only the ion source discharge cathode assembly. but also any of the discharge surfaces upstream of the ion acceleration optics that the electrons happen to impact. Indeed. past backstreaming studies have shown that near the backstreaming limit, which corresponds to the absolute value of the accelerator grid voltage below which electrons can backflow into the thruster, there is a rather sharp rise in temperature at structures such as the cathode keeper electrode. In this respect operation at accelerator grid voltages near the backstreaming limit is avoided. Generally speaking, electron backstreaming is prevented by operating the accelerator grid at a sufficiently negative voltage to ensure a sufficiently negative aperture center potential. This approach can provide the necessary margin assuming an expected aperture enlargement. Operation at very negative accelerator grid voltages, however, enhances ion charge-exchange and direct impingement erosion of the accelerator grid. The focus of the work presented here is the mitigation of electron backstreaming by the use of a magnetic field. The presence of a magnetic field oriented perpendicular to the thruster axis can significantly decrease the magnitude of the backflowing electron current by significantly reducing the electron diffusion coefficient. Negative ion sources utilize this principle to reduce the fraction of electrons in the negative ion beam. The focus of these efforts has been on the attenuation of electron current diffusing from the discharge plasma into the negative ion extraction optics by placing the transverse magnetic field upstream of the extraction electrodes. In contrast. in the case of positive ion sources such as ion thrusters, the approach taken in the work presented here is to apply the transverse field downstream of the ion extraction system so as to prevent electrons from flowing back into the source. It was found in the work presented here that the magnetic field also reduces the absolute value of the electron backstreaming limit voltage. In this respect. the applied transverse magnetic field provides two mechanisms for electron backstreaming mitigation: (1) electron current attenuation and (2) backstreaming limit voltage shift. Such a shift to less negative voltages can lead to reduced accelerator grid erosion rates.
NASA Astrophysics Data System (ADS)
Schwob, Lucas; Lalande, Mathieu; Chesnel, Jean-Yves; Domaracka, Alicja; Huber, Bernd A.; Maclot, Sylvain; Poully, Jean-Christophe; Rangama, Jimmy; Rousseau, Patrick; Vizcaino, Violaine; Adoui, Lamri; Méry, Alain
2018-04-01
In the present paper, we describe a new home-built crossed-beam apparatus devoted to ion-induced ionization and fragmentation of isolated biologically relevant molecular systems. The biomolecular ions are produced by an electrospray ionization source, mass-over-charge selected, accumulated in a 3D ion trap, and then guided to the extraction region of an orthogonal time-of-flight mass spectrometer. Here, the target molecular ions interact with a keV atomic ion beam produced by an electron cyclotron resonance ion source. Cationic products from the collision are detected on a position sensitive detector and analyzed by time-of-flight mass spectrometry. A detailed description of the operation of the setup is given, and early results from irradiation of a protonated pentapeptide (leucine-enkephalin) by a 7 keV He+ ion beam are presented as a proof-of-principle.
Gomes, Carmen; Moreira, Rosana G; Castell-Perez, Elena
2011-08-01
Recent outbreaks associated to the consumption of raw or minimally processed vegetable products that have resulted in several illnesses and a few deaths call for urgent actions aimed at improving the safety of those products. Electron beam irradiation can extend shelf-life and assure safety of fresh produce. However, undesirable effects on the organoleptic quality at doses required to achieve pathogen inactivation limit irradiation. Ways to increase pathogen radiation sensitivity could reduce the dose required for a certain level of microbial kill. The objective of this study was to evaluate the effectiveness of using natural antimicrobials when irradiating fresh produce. The minimum inhibitory concentration of 5 natural compounds and extracts (trans-cinnamaldehyde, eugenol, garlic extract, propolis extract, and lysozyme with ethylenediaminetetraacetate acid (disodium salt dihydrate) was determined against Salmonella spp. and Listeria spp. In order to mask odor and off-flavor inherent of several compounds, and to increase their solubility, complexes of these compounds and extracts with β-cyclodextrin were prepared by the freeze-drying method. All compounds showed bacteriostatic effect at different levels for both bacteria. The effectiveness of the microencapsulated compounds was tested by spraying them on the surface of baby spinach inoculated with Salmonella spp. The dose (D₁₀ value) required to reduce the bacterial population by 1 log was 0.190 kGy without antimicrobial addition. The increase in radiation sensitivity (up to 40%) varied with the antimicrobial compound. These results confirm that the combination of spraying microencapsulated antimicrobials with electron beam irradiation was effective in increasing the killing effect of irradiation. Foodborne illness outbreaks attributed to fresh produce consumption have increased and present new challenges to food safety. Current technologies (water washing or treating with 200 ppm chlorine) cannot eliminate internalized pathogens. Ionizing radiation is a viable alternative for eliminating pathogens; however, the dose required to inactivate these pathogens is often too high to be tolerated by the fresh produce without undesirable quality changes. This study uses natural antimicrobial ingredients as radiosensitizers. These ingredients were encapsulated and applied to fresh produce that was subsequently irradiated. The process results in high level of microorganism inactivation using lower doses than the conventional irradiation treatments. © 2011 Institute of Food Technologists®
Manipulation of the micro and macro-structure of beams extracted from cyclotrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laxdal, R.E.
1995-09-01
It is standard practice in cyclotrons to alter the extracted micro-pulse width by using center-region slits and/or by chopping the beam before injection. The macro-structure can also be varied by means of pulsed or sinusoidal deflection devices before injection and/or after extraction. All above methods, however, involve cutting away the unwanted beam, thus reducing the time-averaged intensity. This paper will focus on some methods used to alter the time structure of extracted beams without significant beam loss. For example radial gradients in the accelerating fields from rf cavities can be utilized to compress, expand or even split longitudinally the circulatingmore » particle bunches. The macro-structure of the extracted beam can be altered by employing resonant extraction methods and replacing the static magnetic bump with either a pulsed or a sinusoidal transverse perturbation. The methods are most suitable for H cyclotrons but may also be considered in a limited scope for cyclotrons using direct extraction. Results of computer simulations and beam tests on the TRIUMF 500 MeV H{sup {minus}} cyclotron will be presented.« less
A future, intense source of negative hydrogen ions
NASA Technical Reports Server (NTRS)
Siefken, Hugh; Stein, Charles
1994-01-01
By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.
Beam conditioner for free electron lasers and synchrotrons
Liu, H.; Neil, G.R.
1998-09-08
A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.
Beam conditioner for free electron lasers and synchrotrons
Liu, Hongxiu; Neil, George R.
1998-01-01
A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.
NASA Astrophysics Data System (ADS)
Danehkar, A.
2018-06-01
Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.
Transverse profile of the electron beam for the RHIC electron lenses
NASA Astrophysics Data System (ADS)
Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; Montag, C.; Pikin, A. I.
2015-10-01
The transverse profile of the electron beam plays a very important role in assuring the success of the electron lens beam-beam compensation, as well as its application in space charge compensation. To compensate for the beam-beam effect in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, we recently installed and commissioned two electron lenses. In this paper, we describe, via theory and simulations using the code Parmela, the evolution of the density of the electron beam with space charge within an electron lens from the gun to the main solenoid. Our theoretical analysis shows that the change in the beam transverse density is dominated by the effects of the space charge induced longitudinal velocity reduction, not by those of transverse Coulomb collisions. We detail the transverse profile of RHIC electron-lens beam, measured via the YAG screen and pinhole detector, and also describe its profile that we assessed from the signal of the electron-backscatter detector (eBSD) via scanning the electron beam with respect to the RHIC beam. We verified, in simulations and experiments, that the distribution of the transverse electron beam is Gaussian throughout its propagation in the RHIC electron lens.
Effect of axial magnetic field on a 2.45 GHz permanent magnet ECR ion source.
Nakamura, T; Wada, H; Asaji, T; Furuse, M
2016-02-01
Herein, we conduct a fundamental study to improve the generation efficiency of a multi-charged ion source using argon. A magnetic field of our electron cyclotron resonance ion source is composed of a permanent magnet and a solenoid coil. Thereby, the axial magnetic field in the chamber can be tuned. Using the solenoid coil, we varied the magnetic field strength in the plasma chamber and measured the ion beam current extracted at the electrode. We observed an approximately three times increase in the Ar(4+) ion beam current when the magnetic field on the extractor-electrode side of the chamber was weakened. From our results, we can confirm that the multi-charged ion beam current changes depending on magnetic field intensity in the plasma chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattawy, M.; Baltzell, N. A.; Dupré, R.
Here, we report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment used the 6 GeV electron beam from the CEBAF accelerator at Jefferson Lab incident on a pressurizedmore » $^4$He gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron was detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles. To ensure the exclusivity of the process, a specially designed radial time projection chamber was used to detect the recoiling $^4$He nuclei. We measured beam-spin asymmetries larger than those observed on the free proton in the same kinematic domain. From these, we were able to extract, in a model-independent way, the real and imaginary parts of the only $^4$He Compton form factor, $$\\cal H_A$$. This first measurement of coherent deeply virtual Compton scattering on the $^4$He nucleus, with a fully exclusive final state via nuclear recoil tagging, leads the way toward 3D imaging of the partonic structure of nuclei.« less
NASA Astrophysics Data System (ADS)
Careccia, Sharon L.
The single and double spin asymmetries At and Aet have been measured in pi- electro-production off the deuteron using a longitudinally polarized electron beam and a polarized ND3 target. The electron beam was polarized using a strained GaAs cathode and the target was polarized using Dynamic Nuclear Polarization. The data were collected at beam energies of 1.6, 1.7, 2.5 and 4.2 GeV in Hall B at Jefferson Lab in the spring of 2001. The final state particles were detected in the CEBAF Large Acceptance Spectrometer (CLAS). The d(e,e'pi-p)p exclusive channel was identified using the missing mass technique and the asymmetries were extracted as a function of the momentum transfer Q2, invariant mass W, and center of mass pion angles cos(theta*) and φ*. The results are generally in agreement with the phenomenological model MAID at low energies, but there are discrepancies in the 2nd and 3rd resonance regions, as well as at forward angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complementmore » the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.« less
Electron lenses for head-on beam-beam compensation in RHIC
Gu, X.; Fischer, W.; Altinbas, Z.; ...
2017-02-17
Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less
Electron lenses for head-on beam-beam compensation in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, X.; Fischer, W.; Altinbas, Z.
Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less
Simulation of radial expansion of an electron beam injected into a background plasma
NASA Technical Reports Server (NTRS)
Koga, J.; Lin, C. S.
1989-01-01
A 2-D electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.
Teruya, Alan T [Livermore, CA; Elmer,; John, W [Danville, CA; Palmer, Todd A [State College, PA
2011-03-08
A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.
Recirculating planar magnetrons: simulations and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzi, Matthew; Gilgenbach, Ronald; French, David
2011-07-01
The Recirculating Planar Magnetron (RPM) is a novel crossed-field device whose geometry is expected to reduce thermal load, enhance current yield as well as ease the geometric limitations in scaling to high RF frequencies as compared to the conventional cylindrical magnetrons. The RPM has two different adaptations: A. Axial B field and radial E field; B. Radial B field and axial E field. The preliminary configuration (A) to be used in experiments at the University of Michigan consists of two parallel planar sections which join on either end by cylindrical regions to form a concentric extruded ellipse. Similar to conventionalmore » magnetrons, a voltage across the AK gap in conjunction with an axial magnetic field provides the electrons with an ExB drift. The device is named RPM because the drifting electrons recirculate from one planar region to the other. The drifting electrons interact with the resonantly tuned slow wave structure on the anode causing spoke formation. These electron spokes drive a RF electric field in the cavities from which RF power may be extracted to Waveguides. The RPM may be designed in either a conventional configuration with the anode on the outside, for simplified extraction, or as an inverted magnetron with the anode at the inner conductor, for fast start-up. Currently, experiments at the Pulsed Power and Microwave Laboratory at the University of Michigan are in the setup and design phase. A conventional RPM with planar cavities is to be installed on the Michigan Electron Long Beam Accelerator (MELBA) and is anticipated to operate at -200kV, 0.2T with a beam current of 1-10 kA at 1GHz. The conventional RPM consists of 12 identical planar cavities, 6 on each planar side, with simulated quality factor of 20.« less
A neutron diagnostic for high current deuterium beams.
Rebai, M; Cavenago, M; Croci, G; Dalla Palma, M; Gervasini, G; Ghezzi, F; Grosso, G; Murtas, F; Pasqualotto, R; Cippo, E Perelli; Tardocchi, M; Tollin, M; Gorini, G
2012-02-01
A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45°. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.
A neutron diagnostic for high current deuterium beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebai, M.; Perelli Cippo, E.; Cavenago, M.
2012-02-15
A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thinmore » polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.« less
Note: A pulsed laser ion source for linear induction accelerators
NASA Astrophysics Data System (ADS)
Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.
2015-01-01
We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.
Parallel plate radiofrequency ion thruster
NASA Technical Reports Server (NTRS)
Nakanishi, S.
1982-01-01
An 8-cm-diam. argon ion thruster is described. It is operated by applying 100 to 160 Mhz rf power across a thin plasma volume in a strongly divergent static magnetic field. No cathode or electron emitter is required to sustain a continuous wave plasma discharge over a broad range of propellant gas flow. Preliminary results indicate that a large fraction of the incident power is being reflected by impedance mismatching in the coupling structure. Resonance effects due to plasma thickness, magnetic field strength, and distribution are presented. Typical discharge losses obtained to date are 500 to 600 W per beam ampere at extracted beam currents up to 60 mA.
Design of extraction system in BRing at HIAF
NASA Astrophysics Data System (ADS)
Ruan, Shuang; Yang, Jiancheng; Zhang, Jinquan; Shen, Guodong; Ren, Hang; Liu, Jie; Shangguan, Jingbing; Zhang, Xiaoying; Zhang, Jingjing; Mao, Lijun; Sheng, Lina; Yin, Dayu; Wang, Geng; Wu, Bo; Yao, Liping; Tang, Meitang; Cai, Fucheng; Chen, Xiaoqiang
2018-06-01
The Booster Ring (BRing), which is the key part of HIAF (High Intensity heavy ion Accelerator Facility) complex at IMP (Institute of Modern Physics, Chinese Academy of Sciences), can provide uranium (A / q = 7) beam with a wide extraction energy range of 200-800 MeV/u. To fulfill a flexible beam extraction for multi-purpose experiments, both fast and slow extraction systems will be accommodated in the BRing. The fast extraction system is used for extracting short bunched beam horizontally in single-turn. The slow extraction system is used to provide quasi-continuous beam by the third order resonance and RF-knockout scheme. To achieve a compact structure, the two extraction systems are designed to share the same extraction channel. The general design of the fast and slow extraction systems and simulation results are discussed in this paper.
Stable operating regime for traveling wave devices
Carlsten, Bruce E.
2000-01-01
Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.
Free electron laser with masked chicane
Nguyen, Dinh C.; Carlsten, Bruce E.
1999-01-01
A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.
High brightness--multiple beamlets source for patterned X-ray production
Leung, Ka-Ngo [Hercules, CA; Ji, Qing [Albany, CA; Barletta, William A [Oakland, CA; Jiang, Ximan [El Cerrito, CA; Ji, Lili [Albany, CA
2009-10-27
Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 .mu.m, with inter-aperture spacings of 12 .mu.m. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.
Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack
2017-12-01
To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.
NASA Astrophysics Data System (ADS)
Dang, Fangchao; Zhang, Xiaoping; Zhang, Jun; Ju, Jinchuan; Zhong, Huihuang
2017-03-01
We report on a radial-line relativistic klystron oscillator (RL-RKO), which is physically designed to generate gigawatt-level high power microwaves (HPMs) at Ku-band. The 3π/4 mode of a four-gap buncher is selected to highly modulate the radially propagating intense relativistic electron beam (IREB). A three-gap extractor operating at the π mode is employed to extract the radio-frequency energy efficiently. The Ku-band RL-RKO is investigated experimentally on an intense-current electron beam accelerator. The radially propagating IREB is well focused with an axial-width of 2 mm by a radial magnetic field of 0.4 T. Microwaves with a frequency of 14.86 GHz and a power of 1.5 GW are generated, corresponding to an efficiency of 24%, which indicates a significant advance for the research of radial-line HPM sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Judy; Dong, Lei; Howe, Jane Y
2011-01-01
The microstructure of the secondary deformation zone (SDZ) near the cutting surface in metal chips of Ti-6Al-4V formed during machining was investigated using focused ion beam (FIB) specimen preparation and transmission electron microscopy (TEM) imaging. Use of the FIB allowed precise extraction of the specimen across this region to reveal its inhomogeneous microstructure resulting from the non-uniform distribution of strain, strain rate, and temperature generated during the cutting process. Initial imaging from conventional TEM foil preparation revealed microstructures ranging from heavily textured to regions of fine grains. Using FIB preparation, the transverse microstructure could be interpreted as fine grains nearmore » the cutting surface which transitioned to coarse grains toward the free surface. At the cutting surface a 10 nm thick recrystallized layer was observed capping a 20 nm thick amorphous layer.« less
Use of beam deflection to control an electron beam wire deposition process
NASA Technical Reports Server (NTRS)
Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)
2013-01-01
A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
., Nuruzzaman
2014-12-01
The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppbmore » correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system has also proven valuable for tracking changes in the beamline optics, such as dispersion at the target.« less
A simulation study of radial expansion of an electron beam injected into an ionospheric plasma
NASA Technical Reports Server (NTRS)
Koga, J.; Lin, C. S.
1994-01-01
Injections of nonrelativistic electron beams from a finite equipotential conductor into an ionospheric plasma have been simulated using a two-dimensional electrostatic particle code. The purpose of the study is to survey the simulation parameters for understanding the dependence of beam radius on physical variables. The conductor is charged to a high potential when the background plasma density is less than the beam density. Beam electrons attracted by the charged conductor are decelerated to zero velocity near the stagnation point, which is at a few Debye lengths from the conductor. The simulations suggest that the beam electrons at the stagnation point receive a large transverse kick and the beam expands radially thereafter. The buildup of beam electrons at the stagnation point produces a large electrostatic force responsible for the transverse kick. However, for the weak charging cases where the background plasma density is larger than the beam density, the radial expansion mechanism is different; the beam plasma instability is found to be responsible for the radial expansion. The simulations show that the electron beam radius for high spacecraft charging cases is of the order of the beam gyroradius, defined as the beam velocity divided by the gyrofrequency. In the weak charging cases, the beam radius is only a fraction of the beam gyroradius. The parameter survey indicates that the beam radius increases with beam density and decreases with magnetic field and beam velocity. The beam radius normalized by the beam gyroradius is found to scale according to the ratio of the beam electron Debye length to the ambient electron Debye length. The parameter dependence deduced would be useful for interpreting the beam radius and beam density of electron beam injection experiments conducted from rockets and the space shuttle.
Microwave signal processing with photorefractive dynamic holography
NASA Astrophysics Data System (ADS)
Fotheringham, Edeline B.
Have you ever found yourself listening to the music playing from the closest stereo rather than to the bromidic (uninspiring) person speaking to you? Your ears receive information from two sources but your brain listens to only one. What if your cell phone could distinguish among signals sharing the same bandwidth too? There would be no "full" channels to stop you from placing or receiving a call. This thesis presents a nonlinear optical circuit capable of distinguishing uncorrelated signals that have overlapping temporal bandwidths. This so called autotuning filter is the size of a U.S. quarter dollar and requires less than 3 mW of optical power to operate. It is basically an oscillator in which the losses are compensated with dynamic holographic gain. The combination of two photorefractive crystals in the resonator governs the filter's winner-take-all dynamics through signal-competition for gain. This physical circuit extracts what is mathematically referred to as the largest principal component of its spatio-temporal input space. The circuit's practicality is demonstrated by its incorporation in an RF-photonic system. An unknown mixture of unknown microwave signals, received by an antenna array, constitutes the input to the system. The output electronically returns one of the original microwave signals. The front-end of the system down converts the 10 GHz microwave signals and amplifies them before the signals phase modulate optical beams. The optical carrier is suppressed from these beams so that it may not be considered as a signal itself to the autotuning filter. The suppression is achieved with two-beam coupling in a single photorefractive crystal. The filter extracts the more intense of the signals present on the carrier-suppressed input beams. The detection of the extracted signal restores the microwave signal to an electronic form. The system, without the receiving antenna array, is packaged in a 13 x 18 x 6″ briefcase. Its power consumption equals that of a regular 50 W household light bulb. The system was shipped to different parts of the country for real-time demonstrations of signal separation thus also validating its claim to robustness.
Device and method for electron beam heating of a high density plasma
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.
NASA Technical Reports Server (NTRS)
Aston, Graeme (Inventor)
1984-01-01
A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.
Transverse profile of the electron beam for the RHIC electron lenses
Gu, X.; Altinbas, Z.; Costanzo, M.; ...
2015-07-10
To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for bothmore » the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W., E-mail: luwang@impcas.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Li, J. Y.
2014-02-15
The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36 000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No.more » 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H{sup +}, {sup 40}Ar{sup 8+}, {sup 129}Xe{sup 30+}, {sup 209}Bi{sup 33+}, etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.« less
Compact two-beam push-pull free electron laser
Hutton, Andrew [Yorktown, VA
2009-03-03
An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.
NASA Astrophysics Data System (ADS)
Carlsten, B. E.; Earley, L. M.; Krawczyk, F. L.; Russell, S. J.; Potter, J. M.; Ferguson, P.; Humphries, S.
2005-06-01
A sheet-beam traveling-wave amplifier has been proposed as a high-power generator of rf from 95 to 300 GHz, using a microfabricated rf slow-wave structure [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005), ITPSBD, 0093-3813, 10.1109/TPS.2004.841172], for emerging radar and communications applications. The planar geometry of microfabrication technologies matches well with the nearly planar geometry of a sheet beam, and the greater allowable beam current leads to high-peak power, high-average power, and wide bandwidths. Simulations of nominal designs using a vane-loaded waveguide as the slow-wave structure have indicated gains in excess of 1 dB/mm, with extraction efficiencies greater than 20% at 95 GHz with a 120-kV, 20-A electron beam. We have identified stable sheet-beam formation and transport as the key enabling technology for this type of device. In this paper, we describe sheet-beam transport, for both wiggler and periodic permanent magnet (PPM) magnetic field configurations, with natural (or single-plane) focusing. For emittance-dominated transport, the transverse equation of motion reduces to a Mathieu equation, and to a modified Mathieu equation for a space-charge dominated beam. The space-charge dominated beam has less beam envelope ripple than an emittance-dominated beam, but they have similar stability thresholds (defined by where the beam ripple continues to grow without bound along the transport line), consistent with the threshold predicted by the Mathieu equation. Design limits are derived for an emittance-dominated beam based on the Mathieu stability threshold. The increased beam envelope ripple for emittance-dominated transport may impact these design limits, for some transport requirements. The stability of transport in a wiggler field is additionally compromised by the beam’s increased transverse motion. Stable sheet-beam transport with natural focusing is shown to be achievable for a 120-kV, 20-A, elliptical beam with a cross section of 1 cm by 0.5 mm, with both a PPM and a wiggler field, with magnetic field amplitude of about 2.5 kG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.
1997-09-01
The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.
NASA Astrophysics Data System (ADS)
Swanson, C.; Jandovitz, P.; Cohen, S. A.
2017-10-01
Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.
Absolute empirical rate coefficient for the excitation of the 117.6 nm line in C III
NASA Astrophysics Data System (ADS)
Gardner, L. D.; Daw, A. N.; Janzen, P. H.; Atkins, N.; Kohl, J. L.
2005-05-01
We have measured the absolute cross sections for electron impact excitation (EIE) of C2+ (2s2p 3P° - 2p2 3P) for energies from below threshold to 17 eV above and derived EIE rate coefficients required for astrophysical applications. The uncertainty in the rate coefficient at a typical solar temperature of formation of C2+ is less than ± 6 %. Ions are produced in a 5 GHz Electron Cyclotron Resonance (ECR) ion source, extracted, formed into a beam, and transported to a collision chamber where they collide with electrons from an electron beam inclined at 45 degrees. The beams are modulated and the radiation from the decay of the excited ions at λ 117.6 nm is detected synchronously using an absolutely calibrated optical system that subtends slightly over π steradians. The fractional population of the C2+ metastable state in the incident ion beam has been determined experimentally to be 0.42 ± 0.03 (1.65 σ). At the reported ± 15 % total experimental uncertainty level (1.65 σ), the measured structure and absolute scale of the cross section are in fairly good agreement with 6-term close-coupling R-matrix calculations and 90-term R-matrix with pseudo-states calculations, although some minor differences are seen just above threshold. As density-sensitive line intensity ratios vary by only about a factor of 5 as the density changes by nearly a factor of 100, even a 30 % uncertainty in the excitation rate can lead to a factor of 3 error in density. This work is supported by NASA Supporting Research and Technology grants NAG5- 9516 and NAG5-12863 in Solar and Heliospheric Physics and by the Smithsonian Astrophysical Observatory.
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.
In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medicalmore » physics.« less
Bio-organic compounds and glassy microparticles in lunar fines and other materials.
Fox, S W; Harada, K; Hare, P E; Hinsch, G; Mueller, G
1970-01-30
Acid hydrolyzates of aqueous extracts indicated: glycine, alanine, glutamic acid, serine, aspartic acid, threonine, and I-diaminopropionic acid. The sources of these amino acids may be terrestrial contaminants, fuel exhaust products, or indigenous lunar material. The lunar particles found in the sample include: (i) spherules, rotational ellipsoids, dumbbells, tear-drops, rings, and crescents which have (ii) diameters of 0.1 to 500 microns; (iii) budlike features on the particles; and (iv) chemical inhomogeneity (electron probe). Some of the processes and results inferred for the moon have been simulated by the electron beam and low pressure of the electron microscope. Basalt (Kilauea-lki) and chondrite (Orgueil) have been found to behave similarly.
Device and method for electron beam heating of a high density plasma
Thode, L.E.
A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.
Method and system for modulation of gain suppression in high average power laser systems
Bayramian, Andrew James [Manteca, CA
2012-07-31
A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.
High intensity proton injector for facility of antiproton and ion research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.
The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBTmore » is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.« less
Compact Storage Ring for an X-Ray Source
NASA Astrophysics Data System (ADS)
Ovchinnikova, L.; Shvedunov, V.; Ivanov, K.
2017-12-01
We propose a new design of a compact storage ring for a source of X-ray radiation on the basis of reverse Thomson scattering of laser radiation by electrons with the energy of 35-50 MeV, which has small number of optical elements and a significant clear space for the placement of a beam injection-extraction system and a RF cavity. The original laser cavity layout has been considered. The ring dynamic aperture after correction of chromaticity and a second-order dispersion function is sufficient for the injection and stable circulation of an electron bunch in the ring.
The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun
NASA Astrophysics Data System (ADS)
Cornish, S.; Khachan, J.
2016-02-01
A new and simple type of electron gun is presented. Unlike conventional electron guns, which require a heated filament or extractor, accelerator and focusing electrodes, this gun uses the collimated electron microchannels of an inertial electrostatic confinement (IEC) discharge to achieve the same outcome. A cylindrical cathode is placed coaxially within a cylindrical anode to create the discharge. Collimated beams of electrons and fast neutrals emerge along the axis of the cylindrical cathode. This geometry isolates one of the microchannels that emerge in a negatively biased IEC grid. The internal operating pressure range of the gun is 35-190 mTorr. A small aperture separates the gun from the main vacuum chamber in order to achieve a pressure differential. The chamber was operated at pressures of 4-12 mTorr. The measured current produced by the gun was 0.1-3 mA (0.2-14 mA corrected measurement) for discharge currents of 1-45 mA and discharge voltages of 0.5-12 kV. The collimated electron beam emerges from the aperture into the vacuum chamber. The performance of the gun is unaffected by the pressure differential between the vacuum chamber and the gun. This allows the aperture to be removed and the chamber pressure to be equal to the gun pressure if required.
Electron Lenses for the Large Hadron Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio; Valishev, Alexander; Bruce, Roderik
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as anmore » option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.« less
In vitro biocompatibility of EPM and EPDM rubbers.
Mast, F; Hoschtitzky, J A; Van Blitterswijk, C A; Huysmans, H A
1997-01-01
The in vitro toxicity of two EPDM rubbers (K 778 and K 4802) and one EPM rubber (K 740) was tested using human fibroblasts. The modulus of elasticity of each rubber was varied by exposure to different amounts of electron-beam radiation (0, 5 and 10 Mrad). The short-term in vitro toxicity was tested by culturing cells on polymer films. The long-term effect of ageing was simulated by growing fibroblasts in nutrient media prepared from extracts of heat-exposed materials. Cell cultures were studied both quantitatively and (ultra) structurally. Growth curves obtained in the toxicity test did not differ significantly from control values at any day of observation, and also showed that electron-beam radiation did not alter the biocompatibility. The same results were found for all but one material in the artificial ageing test. The number of cells in the K4802/10 Mrad extraction medium was decreased. Ultrastructurally no gross deviations from normal morphology were observed, either in the direct contact test or in the artificial ageing test. The most characteristic feature was a somewhat dilated endoplasmic reticulum. In summary, the in vitro biocompatibility of EPDM-rubbers as observed in this study is satisfactory and motivates further investigation of their biocompatibility in animal experiments.
Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio; Moens, Vince; Redaelli, Stefano
2014-07-01
Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The designmore » of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.« less
NASA Astrophysics Data System (ADS)
Lacombe, Lionel; Dinh, P. Huong Mai; Reinhard, Paul-Gerhard; Suraud, Eric; Sanche, Leon
2015-08-01
We present an extension of standard time-dependent density functional theory (TDDFT) to include the evaluation of rare reaction channels, taking as an example of application the theoretical modelling of electron attachment to molecules. The latter process is of great importance in radiation-induced damage of biological tissue for which dissociative electron attachment plays a decisive role. As the attachment probability is very low, it cannot be extracted from the TDDFT propagation whose mean field provides an average over various reaction channels. To extract rare events, we augment TDDFT by a perturbative treatment to account for the occasional jumps, namely electron capture in our test case. We apply the modelling to electron attachment to H2O, H3O+, and (H2O)2. Dynamical calculations have been done at low energy (3-16 eV). We explore, in particular, how core-excited states of the targets show up as resonances in the attachment probability. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adikaram, D.; Rimal, D.; Weinstein, L. B.
There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentummore » transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.« less
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
Adikaram, D.; Rimal, D.; Weinstein, L. B.; ...
2015-02-10
There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentummore » transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.« less
Towards a resolution of the proton form factor problem: new electron and positron scattering data.
Adikaram, D; Rimal, D; Weinstein, L B; Raue, B; Khetarpal, P; Bennett, R P; Arrington, J; Brooks, W K; Adhikari, K P; Afanasev, A V; Amaryan, M J; Anderson, M D; Anefalos Pereira, S; Avakian, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Bono, J; Boiarinov, S; Briscoe, W J; Burkert, V D; Carman, D S; Careccia, S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Fradi, A; Garillon, B; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Holtrop, M; Hughes, S M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jenkins, D; Jiang, H; Jo, H S; Joo, K; Joosten, S; Kalantarians, N; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, V; Kuhn, S E; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P; Mayer, M; McKinnon, B; Mestayer, M D; Meyer, C A; Mirazita, M; Mokeev, V; Montgomery, R A; Moody, C I; Moutarde, H; Movsisyan, A; Camacho, C Munoz; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Peña, C; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Sharabian, Y G; Simonyan, A; Skorodumina, I; Smith, E S; Smith, G D; Sober, D I; Sokhan, D; Sparveris, N; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tian, Ye; Trivedi, A; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I
2015-02-13
There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ϵ) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ϵ at Q(2)=1.45 GeV(2). This measurement is consistent with the size of the form factor discrepancy at Q(2)≈1.75 GeV(2) and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV(2).
NASA Technical Reports Server (NTRS)
Aston, G. (Inventor)
1981-01-01
A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.
Current-limited electron beam injection
NASA Technical Reports Server (NTRS)
Stenzel, R. L.
1977-01-01
The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.
Rippled beam free electron laser amplifier
Carlsten, Bruce E.
1999-01-01
A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.
Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.
1982-07-01
of my research to the mainstream of technology. The techniques used for beam processing are distinguished by their * ~.* beam source and method by...raster scanned CW lasers (CWL), pulsed ion beams (PI), area pulsed electron beams (PEE), raster scanned (RSEB) or multi - scanned electron beams (MSEB...where high quality or tailored profiles are required. Continuous wave lasers and multi -scanned or swept-line electron beams are the most likely candidates
Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions.
Gutsche, Christoph; Niepelt, Raphael; Gnauck, Martin; Lysov, Andrey; Prost, Werner; Ronning, Carsten; Tegude, Franz-Josef
2012-03-14
Axial GaAs nanowire p-n diodes, possibly one of the core elements of future nanowire solar cells and light emitters, were grown via the Au-assisted vapor-liquid-solid mode, contacted by electron beam lithography, and investigated using electron beam induced current measurements. The minority carrier diffusion lengths and dynamics of both, electrons and holes, were determined directly at the vicinity of the p-n junction. The generated photocurrent shows an exponential decay on both sides of the junction and the extracted diffusion lengths are about 1 order of magnitude lower compared to bulk material due to surface recombination. Moreover, the observed strong diameter-dependence is well in line with the surface-to-volume ratio of semiconductor nanowires. Estimating the surface recombination velocities clearly indicates a nonabrupt p-n junction, which is in essential agreement with the model of delayed dopant incorporation in the Au-assisted vapor-liquid-solid mechanism. Surface passivation using ammonium sulfide effectively reduces the surface recombination and thus leads to higher minority carrier diffusion lengths. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Zhang, Lige; Fan, Kuanjun; Hu, Shengwei; Li, Xiaofei; Mei, Zhiyuan; Zeng, Zhijie; Chen, Wei; Qin, Bin; Rao, Yinong
2018-07-01
A SCC-250 MeV cyclotron, producing a 250 MeV proton beam, is under development in Huazhong University of Science and Technology (HUST) for proton therapy. The magnetic flux density, as a function of radius, decreases rapidly in the beam extraction region, which increases the radial beam size continuously along the extraction orbit. In this paper, an extraction channel inside the SCC-250 MeV is designed to control the beam size using passive magnetic channels. An equivalent lumped parameter method is used to establish the model of the extraction channel in the complex fringe magnetic field of the main magnet. Then, the extraction channel is designed using the lattice design software MADX. The beam envelopes are verified using particle tracing method. The maximum radial size of 6.8 mm and axial size of 4.3 mm meet the requirements of the extraction from the SCC-250 MeV.
Electron beam magnetic switch for a plurality of free electron lasers
Schlitt, Leland G.
1984-01-01
Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.
Fast Ion extraction from the MedEBIS
NASA Astrophysics Data System (ADS)
Höltermann, H.; Becker, R.; Kleinod, M.; Müller, I.
2004-01-01
Cancer therapy synchrotrons profit from single turn injection in terms of size, costs and easy operation. The MEdically Dedicated EBIS (MEDEBIS), built in Frankfurt, will deliver short (~1.5 µs) and intense (~1.3 mA) pulses of highly charged light ions (C, N, O) to meet the requirements for therapy facilities. The MEDEBIS operates with an electron beam of 400 mA at 5 keV and a ratio of beam to drift tube of 1/20. Drift tube potentials up to 1.6 kV are switched in some 100 ns to deliver a 1.5 µs ion pulse at an axial field gradient of 6.5 kV/m. On extraction, all potentials applied to the drift tubes are set to a given primary potential to define the extraction gradient. During extraction the drift tubes are not held at constant voltage to avoid spreading out of the pulse due to the restoration of the full space charge depression at locations where ions have already been extracted. To locally distribute the action of the applied potentials the drift tubes are fully interpenetrating each other with tapered fingers. Combining these features result in a potential wall, which follows the extracted ion pulse and produces a compressed short ion pulse for single turn injection. In the future similar constructions could be considered for the RHIS EBIS device or proposed for LHC to provide the advantage with respect to lowest emittance and highest luminosity to the accelerators at BNL and CERN.
Definition of Beam Diameter for Electron Beam Welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgardt, Paul; Pierce, Stanley W.; Dvornak, Matthew John
It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machinemore » (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.« less
Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies
NASA Astrophysics Data System (ADS)
Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J.-F.; Opper, A.; Poelker, M.; Réal, J.-S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.; PEPPo Collaboration
2016-05-01
The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19 MeV /c , limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.
Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies
Abbott, D.; Adderley, P.; Adeyemi, A.; ...
2016-05-27
The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.
Operating characteristics of a new ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul
2014-02-01
A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.
Study of spatial resolution of coordinate detectors based on Gas Electron Multipliers
NASA Astrophysics Data System (ADS)
Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.
2017-02-01
Spatial resolution of GEM-based tracking detectors is determined in the simulation and measured in the experiments. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting of atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing with accounting of diffusion, gas amplification fluctuations, distribution of signals on readout electrodes, electronics noise and particular algorithm of final coordinate calculation (center of gravity). The simulation demonstrates that the minimum of spatial resolution of about 10 μm can be achieved with a gas mixture of Ar -CO2 (75-25 %) at a strips pitch from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 80-100 μm at a pitch of 460-500 μm. Spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4 M collider. One-coordinate resolution of the DEUTERON detector is measured with electron beam of 500 MeV, 1 GeV and 3.5 GeV energies. The determined value of spatial resolution varies in the range from approximately 35 μm to 50 μm for orthogonal tracks in the experiments.
The radiated electromagnetic field from collimated gamma rays and electron beams in air
NASA Astrophysics Data System (ADS)
Tumolillo, T. A.; Wondra, J. P.; Hobbs, W. E.; Smith, K.
1980-12-01
Nuclear weapons effects computer codes are used to study the electromagnetic field produced by gamma rays or by highly relativistic electron beams moving through the air. Consideration is given to large-area electron and gamma beams, small-area electron beams, variation of total beam current, variation of pressure in the beam channel, variation of the beam rise time, variation of beam radius, far-field radiated signals, and induced current on a system from a charged-particle beam. The work has application to system EMP coupling from nuclear weapons or charged-particle-beam weapons.
Srinivasan-Rao, Triveni
2002-01-01
A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.
Use of electronic portal imaging devices for electron treatment verification.
Kairn, T; Aland, T; Crowe, S B; Trapp, J V
2016-03-01
This study aims to help broaden the use of electronic portal imaging devices (EPIDs) for pre-treatment patient positioning verification, from photon-beam radiotherapy to photon- and electron-beam radiotherapy, by proposing and testing a method for acquiring clinically-useful EPID images of patient anatomy using electron beams, with a view to enabling and encouraging further research in this area. EPID images used in this study were acquired using all available beams from a linac configured to deliver electron beams with nominal energies of 6, 9, 12, 16 and 20 MeV, as well as photon beams with nominal energies of 6 and 10 MV. A widely-available heterogeneous, approximately-humanoid, thorax phantom was used, to provide an indication of the contrast and noise produced when imaging different types of tissue with comparatively realistic thicknesses. The acquired images were automatically calibrated, corrected for the effects of variations in the sensitivity of individual photodiodes, using a flood field image. For electron beam imaging, flood field EPID calibration images were acquired with and without the placement of blocks of water-equivalent plastic (with thicknesses approximately equal to the practical range of electrons in the plastic) placed upstream of the EPID, to filter out the primary electron beam, leaving only the bremsstrahlung photon signal. While the electron beam images acquired using a standard (unfiltered) flood field calibration were observed to be noisy and difficult to interpret, the electron beam images acquired using the filtered flood field calibration showed tissues and bony anatomy with levels of contrast and noise that were similar to the contrast and noise levels seen in the clinically acceptable photon beam EPID images. The best electron beam imaging results (highest contrast, signal-to-noise and contrast-to-noise ratios) were achieved when the images were acquired using the higher energy electron beams (16 and 20 MeV) when the EPID was calibrated using an intermediate (12 MeV) electron beam energy. These results demonstrate the feasibility of acquiring clinically-useful EPID images of patient anatomy using electron beams and suggest important avenues for future investigation, thus enabling and encouraging further research in this area. There is manifest potential for the EPID imaging method proposed in this work to lead to the clinical use of electron beam imaging for geometric verification of electron treatments in the future.
Electron beam directed energy device and methods of using same
Retsky, Michael W.
2007-10-16
A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.
Energy-Recovery Linacs for Commercial Radioisotope Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Rolland Paul
Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL)more » is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities. We developed a plan for the Phase II project that started with a Conceptual Design Report (CDR) based on the results of the Phase I studies and concluded with a Technical Design Report (TDR) for a facility to make isotopes that are most attractive based on market analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muto, Hideshi, E-mail: guatemalacocoa@gmail.com; Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Riken Campus, Wako, Saitama 351-0198; Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+}more » beam intensity from the RIKEN Azimuthal Varying Field cyclotron.« less
Random anisotropy model approach on ion beam sputtered Co 20Cu 80 granular alloy
NASA Astrophysics Data System (ADS)
Errahmani, H.; Hassanaı̈n, N.; Berrada, A.; Abid, M.; Lassri, H.; Schmerber, G.; Dinia, A.
2002-03-01
The Co 20Cu 80 granular film has been elaborated using ion beam sputtering technique. The magnetic properties of the sample were studied in the temperature range 5-300 K at H⩽50 kOe. From the thermomagnetisation curve, which is found to obey to the Bloch law, we have extracted the spin wave stiffness constant D and the exchange constant A. The magnetic experimental results have been interpreted in the framework of random anisotropy model. We have determined the local anisotropy constant KL and the local correlation length of anisotropy axis Ra, which is compared to the experimental grains size obtained by transmission electronic microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, T.; Diamond, J.; Liu, N.
The readout electronics for the resonant beam position monitors (BPMs) in the Fermilab Switchyard (SY) have been upgraded, utilizing a low noise amplifier transition board and Fermilab designed digitizer boards. The stripline BPMs are estimated to have an average signal output of between -110 dBm and -80 dBm, with an estimated peak output of -70 dBm. The external resonant circuit is tuned to the SY machine frequency of 53.10348 MHz. Both the digitizer and transition boards have variable gain in order to accommodate the large dynamic range and irregularity of the resonant extraction spill. These BPMs will aid in auto-tuningmore » of the SY beamline as well as enabling operators to monitor beam position through the spill.« less
Note: A pulsed laser ion source for linear induction accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H., E-mail: bamboobbu@hotmail.com; School of Physics, Peking University, Beijing 100871; Zhang, K.
2015-01-15
We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.
Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.
1984-01-01
A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.
Mixed Pierce-two-stream instability development in an extraction system of a negative ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barminova, H. Y., E-mail: barminova@mephi.ru; Chikhachev, A. S.
2016-02-15
Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions.
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1989-01-01
A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1989-08-08
A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.
NASA Astrophysics Data System (ADS)
Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Franzen, P.; Fantz, U.; Minea, T.
2014-02-01
Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed.
Lin, Zhili; Chen, Xudong; Ding, Panfeng; Qiu, Weibin; Pu, Jixiong
2017-04-03
The ponderomotive interaction of high-power laser beams with collisional plasma is modeled in the nonrelativistic regime and is simulated using the powerful finite-difference time-domain (FDTD) method for the first time in literature. The nonlinear and dissipative dielectric constant function of the collisional plasma is deduced that takes the ponderomotive effect into account and is implemented in the discrete framework of FDTD algorithms. Maclaurin series expansion approach is applied for implementing the obtained physical model and the time average of the square of light field is extracted by numerically evaluating an integral identity based on the composite trapezoidal rule for numerical integration. Two numerical examples corresponding to two different types of laser beams, Gaussian beam and vortex Laguerre-Gaussian beam, propagating in collisional plasma, are presented for specified laser and plasma parameters to verify the validity of the proposed FDTD-based approach. Simulation results show the anticipated self-focusing and attenuation phenomena of laser beams and the deformation of the spatial density distributions of electron plasma along the beam propagation path. Due to the flexibility of FDTD method in light beam excitation and accurate complex material modeling, the proposed approach has a wide application prospect in the study of the complex laser-plasma interactions in a small scale.
Electron beam simulation from gun to collector: Towards a complete solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertzig, R., E-mail: robert.mertzig@cern.ch; Shornikov, A., E-mail: robert.mertzig@cern.ch; Wenander, F.
An electron-beam simulation technique for high-resolution complete EBIS/T modelling is presented. The technique was benchmarked on the high compression HEC{sup 2} test-stand with an electron beam current, current density and energy of 10 A, 10 kA/cm{sup 2} and 49.2 keV, and on the immersed electron beam at REXEBIS for electron beam characteristics of 0.4 A, 200 A/cm{sup 2} and 4.5 keV. In both Brillouin-like and immersed beams the electron-beam radius varies from several millimeters at the gun, through some hundreds of micrometers in the ionization region to a few centimeters at the collector over a total length of several meters.more » We report on our approach for finding optimal meshing parameters, based on the local beam properties such as magnetic field-strength, electron energy and beam radius. This approach combined with dividing the problem domain into sub-domains, and subsequent splicing of the local solutions allowed us to simulate the beam propagation in EBISes from the gun to the collector using a conventional PC in about 24–36 h. Brillouin-like electron beams propagated through the complete EBIS were used to analyze the beam behavior within the collector region. We checked whether elastically reflected paraxial electrons from a Brillouin-like beam will escape from the collector region and add to the loss current. We have also studied the power deposition profiles as function of applied potentials using two electrode geometries for a Brillouin-like beam including the effects of backscattered electrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Naoki; Kato, Yushi; Kiriyama, Ryutaro
2011-01-07
A new concept on magnetic field of plasma production and confinement by using permanent magnets, i.e. cylindrically comb-shaped magnets, has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure and also the low microwave power. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequency are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds.more » It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequency microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.« less
Wang, Wei-Guo; Xu, Yong; Yang, Xue-Feng; Wang, Wen-Chun; Zhu, Ai-Min
2005-01-01
Atomic hydrogen plays important roles in chemical vapor deposition of functional materials, plasma etching and new approaches to chemical synthesis of hydrogen-containing compounds. The present work reports experimental determinations of atomic hydrogen near the grounded electrode in medium-pressure dielectric barrier discharge hydrogen plasmas by means of molecular beam threshold ionization mass spectrometry (MB-TIMS). At certain discharge conditions (a.c. frequency of 24 kHz, 28 kV of peak-to-peak voltage), the measured hydrogen dissociation fraction is decreased from approximately 0.83% to approximately 0.14% as the hydrogen pressure increases from 2.0 to 14.0 Torr. A simulation method for extraction of the approximate electron beam energy distribution function in the mass spectrometer ionizer and a semi-quantitative approach to calibrate the mass discrimination effect caused by the supersonic beam formation and the mass spectrometer measurement are reported. Copyright 2005 John Wiley & Sons, Ltd.
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.
SEPAC data analysis in support of the environmental interaction program
NASA Technical Reports Server (NTRS)
Lin, Chin S.
1990-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a two dimensional electrostatic particle code. The ionization effects of spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged space craft produced an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the space craft charging potential measured during the SEPAC experiments from Spacelab 1. A second paper is presented in which a two dimensional electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.
Electron-Beam-Induced Current | Materials Science | NREL
Electron-Beam-Induced Current Electron-Beam-Induced Current Photo of a GaAsP-on-Si solar cell. EBIC measure electron-beam-induced current (EBIC). In presence of an electrostatic field (p-n junction
High-resolution scanning precession electron diffraction: Alignment and spatial resolution.
Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A
2017-03-01
Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.
Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. As a result, the use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO 3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less
Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.; ...
2016-10-17
Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. The use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less
Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-01-01
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276
Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-12-14
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.
Four cavity efficiency enhanced magnetically insulated line oscillator
Lemke, Raymond W.; Clark, Miles C.; Calico, Steve E.
1998-04-21
A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity (C4) portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor.
Four cavity efficiency enhanced magnetically insulated line oscillator
Lemke, R.W.; Clark, M.C.; Calico, S.E.
1998-04-21
A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode is disclosed. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor. 34 figs.
Hydrodynamic pumping of a quantum Fermi liquid in a semiconductor heterostructure
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Kantha, D.; Chen, H.; Govorov, A. O.
2003-03-01
We present experimental results for a pumping mechanism observed in mesoscopic structures patterned on two-dimensional electron systems in GaAs/AlGaAs heterostructures. The experiments are performed at low temperatures, in the ballistic regime. The effect is observed as a voltage or current signal corresponding to carrier extraction from sub-micron sized apertures, when these apertures are swept by a beam of ballistic electrons. The carrier extraction, phenomenologically reminiscent of the Bernoulli pumping effect in classical fluids, has been observed in various geometries. We ascertained linearity between measured voltage and injected current in all experiments, thereby excluding rectification effects. The linear response, however, points to a fundamental difference from the Bernoulli effect in classical liquids, where the response is nonlinear and quadratic in terms of the velocity. The temperature dependence of the effect will also be presented. We thank M. Shayegan (Princeton University) for the heterostructure growth, and acknowledge support from NSF DMR-0094055.
Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier.
Zhang, Zehai; Zhang, Jun; Shu, Ting; Qi, Zumin
2012-09-01
A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.
Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier
NASA Astrophysics Data System (ADS)
Zhang, Zehai; Zhang, Jun; Shu, Ting; Qi, Zumin
2012-09-01
A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.
Conceptual designs of E × B multistage depressed collectors for gyrotrons
NASA Astrophysics Data System (ADS)
Wu, Chuanren; Pagonakis, Ioannis Gr.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John
2017-04-01
Multistage depressed collectors are challenges for high-power, high-frequency fusion gyrotrons. Two concepts exist in the literature: (1) unwinding the spent electron beam cyclotron motion utilizing non-adiabatic transitions of magnetic fields and (2) sorting and collecting the electrons using the E × B drift. To facilitate the collection by the drift, the hollow electron beam can be transformed to one or more thin beams before applying the sorting. There are many approaches, which can transform the hollow electron beam to thin beams; among them, two approaches similar to the tilted electric field collectors of traveling wave tubes are conceptually studied in this paper: the first one transforms the hollow circular electron beam to an elongated elliptic beam, and then the thin elliptic beam is collected by the E × B drift; the second one splits an elliptic or a circular electron beam into two arc-shaped sheet beams; these two parts are collected individually. The functionality of these concepts is proven by CST simulations. A model of a three-stage collector for a 170 GHz, 1 MW gyrotron using the latter approach shows 76% collector efficiency while taking secondary electrons and realistic electron beam characteristics into account.
Beam characterisation of the KIRAMS electron microbeam system.
Sun, G M; Kim, E H; Song, K B; Jang, M
2006-01-01
An electron microbeam system has been installed at the Korea Institute of Radiological and Medical Sciences (KIRAMS) for use in radiation biology studies. The electron beam is produced from a commercial electron gun, and the beam size is defined by a 5 microm diameter pinhole. Beam energy can be varied in the range of 1-100 keV, covering a range of linear energy transfer from 0.4 to 12.1 keV microm-1. The micrometer-sized electron beam selectively irradiates cells cultured in a Mylar-bottomed dish. The positioning of target cells one by one onto the beam exit is automated, as is beam shooting. The electron beam entering the target cells has been calibrated using a Passivated Implanted Planar Silicon (PIPS) detector. This paper describes the KIRAMS microbeam cell irradiation system and its beam characteristics.
Prototype electron lens set-up for the Tevatron beam-beam compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Saewert, G.; Santucci, J.
1999-05-17
A prototype "electron lens" for the Tevatron beam-beam compensation project is commissioned at Fermilab. We de-scribe the set-up, report results of the first tests of the elec-tron beam, and discuss future plans.
NASA Astrophysics Data System (ADS)
Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin
2014-01-01
One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.
Experimental Testing of a Metamaterial Slow Wave Structure for High-Power Microwave Generation
NASA Astrophysics Data System (ADS)
Shipman, K.; Prasad, S.; Andreev, D.; Fisher, D. M.; Reass, D. B.; Schamiloglu, E.; Gilmore, M.
2017-10-01
A high-power L band source has been developed using a metamaterial (MTM) to produce a double negative slow wave structure (SWS) for interaction with an electron beam. The beam is generated by a 700 kV, 6 kA short pulse (10 ns) accelerator. The design of the SWS consists of a cylindrical waveguide, loaded with alternating split-rings that are arrayed axially down the waveguide. The beam is guided down the center of the rings, where electrons interact with the MTM-SWS producing radiation. Power is extracted axially via a circular waveguide, and radiated by a horn antenna. Microwaves are characterized by an external detector placed in a waveguide. Mode characterization is performed using a neon bulb array. The bulbs are lit by the electric field, resulting in an excitation pattern that resembles the field pattern. This is imaged using an SLR camera. The MTM structure has electrically small features so breakdown is a concern. In addition to high speed cameras, a fiber-optic-fed, sub-ns photomultiplier tube array diagnostic has been developed and used to characterize breakdown light. Work supported by the Air Force Office of Scientific Research, MURI Grant FA9550-12-1-0489.
Hattawy, M.; Baltzell, N. A.; Dupré, R.; ...
2017-11-15
Here, we report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment used the 6 GeV electron beam from the CEBAF accelerator at Jefferson Lab incident on a pressurizedmore » $^4$He gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron was detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles. To ensure the exclusivity of the process, a specially designed radial time projection chamber was used to detect the recoiling $^4$He nuclei. We measured beam-spin asymmetries larger than those observed on the free proton in the same kinematic domain. From these, we were able to extract, in a model-independent way, the real and imaginary parts of the only $^4$He Compton form factor, $$\\cal H_A$$. This first measurement of coherent deeply virtual Compton scattering on the $^4$He nucleus, with a fully exclusive final state via nuclear recoil tagging, leads the way toward 3D imaging of the partonic structure of nuclei.« less
Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.
Adonin, A A; Hollinger, R
2014-02-01
In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.
Generation of forerunner electron beam during interaction of ion beam pulse with plasma
NASA Astrophysics Data System (ADS)
Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.
2018-01-01
The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is set up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. The beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.
Electrostatic ion thruster optics calculations
NASA Technical Reports Server (NTRS)
Whealton, John H.; Kirkman, David A.; Raridon, R. J.
1992-01-01
Calculations have been performed which encompass both a self-consistent ion source extraction plasma sheath and the primary ion optics including sheath and electrode-induced aberrations. Particular attention is given to the effects of beam space charge, accelerator geometry, and properties of the downstream plasma sheath on the position of the electrostatic potential saddle point near the extractor electrode. The electron blocking potential blocking is described as a function of electrode thickness and secondary plasma processes.
Light modulated electron beam driven radiofrequency emitter
Wilson, M.T.; Tallerico, P.J.
1979-10-10
The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.
Beam transport and monitoring for laser plasma accelerators
NASA Astrophysics Data System (ADS)
Nakamura, K.; Sokollik, T.; van Tilborg, J.; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W.
2012-12-01
The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.
Spatial phase-shift dual-beam speckle interferometry.
Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin
2018-01-20
The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.
Increasing the Extracted Beam Current Density in Ion Thrusters
NASA Astrophysics Data System (ADS)
Arthur, Neil Anderson
Ion thrusters have seen application on space science missions and numerous satellite missions. Ion engines offer higher electrical efficiency and specific impulse capability coupled with longer demonstrated lifetime as compared to other space propulsion technologies. However, ion engines are considered to have low thrust. This work aims to address the low thrust conception; whereby improving ion thruster performance and thrust density will lead to expanded mission capabilities for ion thruster technology. This goal poses a challenge because the mechanism for accelerating ions, the ion optics, is space charge limited according to the Child-Langmuir law-there is a finite number of ions that can be extracted through the grids for a given voltage. Currently, ion thrusters operate at only 40% of this limit, suggesting there is another limit artificially constraining beam current. Experimental evidence suggests the beam current can become source limited-the ion density within the plasma is not large enough to sustain high beam currents. Increasing the discharge current will increase ion density, but ring cusp ion engines become anode area limited at high discharge currents. The ring cusp magnetic field increases ionization efficiency but limits the anode area available for electron collection. Above a threshold current, the plasma becomes unstable. Increasing the engine size is one approach to increasing the operational discharge current, ion density, and thus the beam current, but this presents engineering challenges. The ion optics are a pair of closely spaced grids. As the engine diameter increases, it becomes difficult to maintain a constant grid gap. Span-to-gap considerations for high perveance optics limit ion engines to 50 cm in diameter. NASA designed the annular ion engine to address the anode area limit and scale-up problems by changing the discharge chamber geometry. The annular engine provides a central mounting structure for the optics, allowing the beam area to increase while maintaining a fixed span-to-gap. The central stalk also provides additional surface area for electron collection. Circumventing the anode area limitation, the annular ion engine can operate closer to the Child-Langmuir limit as compared to a conventional cylindrical ion thruster. Preliminary discharge characterization of a 65 cm annular ion engine shows >90% uniformity and validates the scalability of the technology. Operating beyond the Child-Langmuir limit would allow for even larger performance gains. This classic law does not consider the ion injection velocity into the grid sheath. The Child-Langmuir limit shifts towards higher current as the ion velocity increases. Ion drift velocity can be created by enhancing the axially-directed electric field. One method for creating this field is to modify the plasma potential distribution. This can be accomplished by biasing individual magnetic cusps, through isolated, conformal electrodes placed on each magnet ring. Experiments on a 15 cm ion thruster have shown that plasma potential in the bulk can be modified by as much as 5 V and establish ion drift towards the grid plane. Increases in ion current density at the grid by up to 20% are demonstrated. Performance implications are also considered, and increases in simulated beam current of 15% and decreases in discharge losses of 5% are observed. Electron density measurements within the magnetic cusps revealed, surprisingly, as cusp current draw increases, the leak width does not change. This suggests that instead of increasing the electron collection area, cusp bias enhances electron mobility along field lines.
Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltador, C., E-mail: carlo.baltador@igi.cnr.it; Veltri, P.; Agostinetti, P.
2016-02-15
SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. Themore » study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.« less
Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets
NASA Astrophysics Data System (ADS)
Baltador, C.; Veltri, P.; Agostinetti, P.; Chitarin, G.; Serianni, G.
2016-02-01
SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. The study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.
NASA Astrophysics Data System (ADS)
Gauzshtein, V. V.; Zevakov, S. A.; Levchuk, M. I.; Loginov, A. Yu.; Nikolenko, D. M.; Rachek, I. A.; Sadykov, R. Sh.; Toporkov, D. K.; Shestakov, Yu. V.
2018-05-01
The first results of a double polarization experiment to extract the asymmetry of the reaction of photoproduction of a π- meson by a linearly polarized photon on a tensor-polarized deuteron in the energy range of the virtual photon (300-700 MeV) are presented. The measurements were performed on an internal tensor-polarized deuterium target in the VEPP-3 electron-positron storage ring for the electron beam energy equal to 2 GeV. The experiment employed the method of recording two protons and the scattered electron in coincidence. The obtained measurement results are compared with the theoretical predictions obtained in the momentum approximation with allowance for πN and NN rescattering in the final state.
Beckner, E.H.; Clauser, M.J.
1975-08-12
This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)
High current DC negative ion source for cyclotron.
Etoh, H; Onai, M; Aoki, Y; Mitsubori, H; Arakawa, Y; Sakuraba, J; Kato, T; Mitsumoto, T; Hiasa, T; Yajima, S; Shibata, T; Hatayama, A; Okumura, Y
2016-02-01
A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H(-) beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H(-) current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H(-) production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H(-) current dependence on the arc power.
Polarized deuterium internal target at AmPS (NIKHEF)
NASA Astrophysics Data System (ADS)
Ferro-Luzzi, M.; Zhou, Z.-L.; van den Brand, J. F. J.; Bulten, H. J.; Alarcon, R.; van Bakel, N.; Botto, T.; Bouwhuis, M.; van Buuren, L.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Geurts, D.; Heimberg, P.; Higinbotham, D. W.; de Jager, C. W.; Lang, J.; de Lange, D. J.; Norum, B.; Passchier, I.; Poolman, H. R.; Six, E.; Steijger, J.; Szczerba, D.; Unal, O.; de Vries, H.
1998-01-01
We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the 3H(d,n)α reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of the target gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.
Polarized deuterium internal target at AmPS (NIKHEF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norum, Blaine; De Jager, Cornelis; Geurts, D.
1997-08-01
We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the 3H(d,n)sigma reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of the targetmore » gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.« less
Polarized deuterium internal target at AmPS (NIKHEF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferro-Luzzi, M.; NIKHEF, P.O. Box 41882, 1009 DB Amsterdam; Zhou, Z.-L.
1998-01-20
We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the {sup 3}H(d,n){alpha} reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of themore » target gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.« less
NASA Astrophysics Data System (ADS)
Almeida, Diogo Alexandre Fialho de
Radiation-induced damage to biological systems, both direct and indirect processes, has increasingly come under scrutiny by the international scientific community due to recent findings that electrons are a very effective agent in damaging DNA/RNA. Indeed, much remains to be discovered regarding the exact physico-chemical processes that occur in the nascent stages of DNA/RNA damage by incident radiation. However, it is also known that electrons do not exist freely in the physiological medium, but rather solvated and/or pre-solvated states. This leads to the need for new techniques that can better explore the damaging role of "bound" electrons to DNA/RNA. The work presented in this thesis consists on the study of electron transfer in collisions of atomic species with molecules of biological relevance. In order to study these processes, two experimental setups were used. One setup consists of a crossed beam experiment where a neutral potassium beam is created and made to collide with an effusive molecular target beam. The anionic products that stem from electron transfer in potassium atom to the molecular target collisions are then extracted and time-of-flight (TOF) mass analysed. In the second setup a beam of anionic species is formed and made to collide with a molecular target. Collisions with three different anionic beams were performed (H-, O- and OH-), as well as with different simple organic molecules, by measuring the positive and negative ion fragmentation patterns with a quadrupole mass spectrometer (QMS). A comparison between these two collisional systems can greatly help to understand the underlying mechanisms of the electron transfer processes. Finally, studies of potassium collisions with sugar surrogates D-Ribose and THF were performed. These studies show very different fragmentation patterns from DEA, although in the case of THF, it is suggested that the initially accessed states are the same as in DEA. With these studies was also possible to show for the first time collision induced site and bond selectivity breaking, where the electron is transferred into a given state of the acceptor molecule and the resulting fragmentation pathways are exclusive to the initial anionic state. Furthermore, the role of the potassium cation post collisionwas explored and indeed its presence is suggested to induce at least partial suppression of auto-detachment. The implications that ensue from this degradation are analysed in the light of the obtained fragmentation patterns.
Storage-ring Electron Cooler for Relativistic Ion Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.
Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less
Apparatus and method for compensating for electron beam emittance in synchronizing light sources
Neil, George R.
1996-01-01
A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.
Apparatus and method for compensating for electron beam emittance in synchronizing light sources
Neil, G.R.
1996-07-30
A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.
Barnes, M P; Ebert, M A
2008-03-01
The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.
Relativistic electron beam generator
Mooney, L.J.; Hyatt, H.M.
1975-11-11
A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.
Electron Beam Pattern Rotation as a Method of Tunable Bunch Train Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
Transversely modulated electron beams can be formed in photo injectors via microlens array (MLA) UV laser shap- ing technique. Microlenses can be arranged in polygonal lattices, with resulting transverse electron beam modula- tion mimicking the lenses pattern. Conventionally, square MLAs are used for UV laser beam shaping, and generated electron beam patterns form square beamlet arrays. The MLA setup can be placed on a rotational mount, thereby rotating electron beam distribution. In combination with transverse-to-longitudinal emittance exchange (EEX) beam line, it allows to vary beamlets horizontal projection and tune electron bunch train. In this paper, we extend the technique tomore » the case of different MLA lattice arrangements and explore the benefits of its rotational symmetries.« less
Low-energy plasma focus device as an electron beam source.
Khan, Muhammad Zubair; Ling, Yap Seong; Yaqoob, Ibrar; Kumar, Nitturi Naresh; Kuang, Lim Lian; San, Wong Chiow
2014-01-01
A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 10(16)/m(3), respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.
Final Technical Report: "New Tools for Physics with Low-energy Antimatter"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surko, Clifford M.
2013-10-02
The objective of this research is to develop new tools to manipulate antimatter plasmas and to tailor them for specific scientific and technical uses. The work has two specific objectives. One is establishing the limits for positron accumulation and confinement in the form of single-component plasmas in Penning-Malmberg traps. This technique underpins a wealth of antimatter applications. A second objective is to develop an understanding of the limits for formation of cold, bright positron beams. The research done in this grant focused on particular facets of these goals. One focus was extracting tailored beams from a high-field Penning-Malmberg trap frommore » the magnetic field to form new kinds of high-quality electrostatic beams. A second goal was to develop the technology for colder trap-based beams using a cryogenically cooled buffer gas. A third objective was to conduct the basic plasma research to develop a new high-capacity multicell trap (MCT) for research with antimatter. Progress is reported here in all three areas. While the goal of this research is to develop new tools for manipulating positrons (i.e., the antiparticles of electrons), much of the work was done with test electron plasmas for increased data rate. Some of the techniques developed in the course of this work are also relevant to the manipulation and use of antiprotons.« less
Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram
2016-03-01
In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.
Design study of low-energy beam transport for multi-charge beams at RAON
NASA Astrophysics Data System (ADS)
Bahng, Jungbae; Qiang, Ji; Kim, Eun-San
2015-12-01
The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.
Beam transport and monitoring for laser plasma accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K.; Sokollik, T.; Tilborg, J. van
The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system,more » XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Valerie M.
The Q weak experiment has tested the Standard Model through making a precise measurement of the weak charge of the proton (more » $$Q^p_W$$). This was done through measuring the parity-violating asymmetry for polarized electrons scattering off of unpolarized protons. The parity-violating asymmetry measured is directly proportional to the four-momentum transfer ($Q^2$) from the electron to the proton. The extraction of $$Q^p_W$$ from the measured asymmetry requires a precise $Q^2$ determination. The Q weak experiment had a $Q^2$ = 24.8 ± 0.1 m(GeV 2) which achieved the goal of an uncertainty of <= 0.5%. From the measured asymmetry and $Q^2$, $$Q^p_W$$ was determined to be 0.0719 ± 0.0045, which is in good agreement with the Standard Model prediction. This puts a 7.5 TeV lower limit on possible "new physics". This dissertation describes the analysis of Q^2 for the Q weak experiment. Future parity-violating electron scattering experiments similar to the Q weak experiment will measure asymmetries to high precision in order to test the Standard Model. These measurements will require the beam polarization to be measured to sub-0.5% precision. Presently the electron beam polarization is measured through Moller scattering off of a ferromagnetic foil or through using Compton scattering, both of which can have issues reaching this precision. A novel Atomic Hydrogen Moller Polarimeter has been proposed as a non-invasive way to measure the polarization of an electron beam via Moller scattering off of polarized monatomic hydrogen gas. This dissertation describes the development and initial analysis of a Monte Carlo simulation of an Atomic Hydrogen Moller Polarimeter.« less
Development of the beam extraction synchronization system at the Fermilab Booster
NASA Astrophysics Data System (ADS)
Seiya, K.; Chaurize, S.; Drennan, C. C.; Pellico, W.; Sullivan, T.; Triplett, A. K.; Waller, A. M.
2015-11-01
The new beam extraction synchronization control system called "Magnetic Cogging" was developed at the Fermilab Booster and it replaces a system called "RF Cogging" as part of the Proton Improvement Plan (PIP).[1] The flux throughput goal for the PIP is 2.2×1017 protons per hour, which is double the present flux. The flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done. The Booster accelerates beam from 400 MeV to 8 GeV and extracts it to the Main Injector (MI) or Recycler Ring (RR). Cogging controls the beam extraction gap position which is created early in the Booster cycle and synchronizes the gap to the rising edge of the Booster extraction kicker and the MI/RR injection kicker. The RF Cogging system controls the gap position by changing only the radial position of the beam thus limiting the beam aperture and creating beam loss due to beam scraping. The Magnetic Cogging system controls the gap position with the magnetic field of the dipole correctors while the radial position feedback keeps the beam on a central orbit. Also with Magnetic Cogging the gap creation can occur earlier in the Booster cycle when the removed particles are at a lower energy. Thus Magnetic Cogging reduces the deposited energy of the lost particles (beam energy loss) and results in less beam loss activation. Energy loss was reduced by 40% by moving the gap creation energy from 700 MeV to 400 MeV when the Booster Cogging system was switched from RF Cogging to Magnetic Cogging in March 2015.
Charge form factor of the neutron at low momentum transfer from the 2H-->(e-->,e'n)1H reaction.
Geis, E; Kohl, M; Ziskin, V; Akdogan, T; Arenhövel, H; Alarcon, R; Bertozzi, W; Booth, E; Botto, T; Calarco, J; Clasie, B; Crawford, C B; DeGrush, A; Donnelly, T W; Dow, K; Farkhondeh, M; Fatemi, R; Filoti, O; Franklin, W; Gao, H; Gilad, S; Hasell, D; Karpius, P; Kolster, H; Lee, T; Maschinot, A; Matthews, J; McIlhany, K; Meitanis, N; Milner, R G; Rapaport, J; Redwine, R P; Seely, J; Shinozaki, A; Sirca, S; Sindile, A; Six, E; Smith, T; Steadman, M; Tonguc, B; Tschalaer, C; Tsentalovich, E; Turchinetz, W; Xiao, Y; Xu, W; Zhang, C; Zhou, Z; Zwart, T
2008-07-25
We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio GEn/GMn was extracted from the beam-target vector asymmetry AedV at four-momentum transfers Q2=0.14, 0.20, 0.29, and 0.42 (GeV/c)2.
Generation of low-emittance electron beams in electrostatic accelerators for FEL applications
NASA Astrophysics Data System (ADS)
Chen, Teng; Elias, Luis R.
1995-02-01
This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.
Laser wakefield accelerated electron beam monitoring and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koga, J. K.; Mori, M.; Kotaki, H.
2016-03-25
We will discuss our participation in the ImPACT project, which has as one of its goals the development of an ultra-compact electron accelerator using lasers (< 1 GeV, < 10 m) and the generation of an x-ray beam from the accelerated electrons. Within this context we will discuss our investigation into electron beam monitoring and control. Since laser accelerated electrons will be used for x-ray beam generation combined with an undulator, we will present investigation into the possibilities of the improvement of electron beam emittance through cooling.
Profiling of back-scattered electrons in opposed magnetic field of a Twin Electron Beam Gun
NASA Astrophysics Data System (ADS)
Sethi, S.; Gupta, Anchal; Dileep Kumar, V.; Mukherjee, Jaya; Gantayet, L. M.
2012-11-01
Electron gun is extensively used in material processing, physical vapour deposition and atomic vapour based laser processes. In these processes where the electron beam is incident on the substrate, a significant fraction of electron beam gets back-scattered from the target surface. The trajectory of this back scattered electron beam depends on the magnetic field in the vicinity. The fraction of back-scattered depends on the atomic number of the target metal and can be as high as ~40% of the incident beam current. These back-scattered electrons can cause undesired hot spots and also affect the overall process. Hence, the study of the trajectory of these back-scattered electrons is important. This paper provides the details of experimentally mapped back-scattered electrons of a 2×20kW Twin Electron Beam Gun (TEBG) in opposed magnetic field i.e. with these guns placed at 180° to each other.
Influence of the electrode gap separation on the pseudospark-sourced electron beam generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland
Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less
Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitterer, M.; Stancari, G.; Valishev, A.
2017-06-13
Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.
Characterizing the Performance of the Princeton Advanced Test Stand Ion Source
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.
2012-10-01
The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a multicusp RF ion source mounted on a 2 m-long vacuum chamber with numerous ports for diagnostic access. Ar+ beams are extracted from the source plasma with three-electrode (accel-decel) extraction optics. The RF power and extraction voltage (30 - 100 kV) are pulsed to produce 100 μsec duration beams at 0.5 Hz with excellent shot-to-shot repeatability. Diagnostics include Faraday cups, a double-slit emittance scanner, and scintillator imaging. This work reports measurements of beam parameters for a range of beam energies (30 - 50 keV) and currents to characterize the behavior of the ion source and extraction optics. Emittance scanner data is used to calculate the beam trace-space distribution and corresponding transverse emittance. If the plasma density is changing during a beam pulse, time-resolved emittance scanner data has been taken to study the corresponding evolution of the beam trace-space distribution.
Device and method for imploding a microsphere with a fast liner
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner to drive the fast liner to implode a microsphere.
NASA Technical Reports Server (NTRS)
Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.;
2014-01-01
Postflight surveys of the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope have located hundreds of features on the 2.2 by 0.8 m curved plate, evidence of hypervelocity impact by small particles during 16 years of exposure to space in low Earth orbit (LEO). The radiator has a 100 - 200 micron surface layer of white paint, overlying 4 mm thick Al alloy, which was not fully penetrated by any impact. Over 460 WFPC2 samples were extracted by coring at JSC. About half were sent to NHM in a collaborative program with NASA, ESA and IBC. The structural and compositional heterogeneity at micrometer scale required microanalysis by electron and ion beam microscopes to determine the nature of the impactors (artificial orbital debris, or natural micrometeoroids, MM). Examples of MM impacts are described elsewhere. Here we describe the development of novel electron beam analysis protocols, required to recognize the subtle traces of MM residues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuno, H.; Hershcovitch, A.; Fukunishi, N.
2011-04-23
The RIKEN accelerator complex started feeding the next-generation exotic beam facility radioisotope beam factory (RIBF) with heavy-ion beams from 2007 after the successful commissioning of RIBF at the end of 2006. Many improvements made from 2007 to 2010 were instrumental in increasing the intensity of various heavy-ion beams. However, the available beam intensity of very heavy ion beams, especially uranium beams, is far below our goal of 1 p{mu}A (6 x 10{sup 12} particles/s). In order to achieve this goal, upgrade programs are already in progress; the programs include the construction of a new 28-GHz superconducting electron cyclotron resonance ionmore » source and a new injector linac. However, the most serious problem, that of a charge stripper for high-power uranium beams, still remains unsolved, despite extensive research and development work using large foils mounted on a rotating cylinder and a N{sup 2} gas stripper. A gas stripper is free from problems related to lifetime, though the equilibrium charge state in this stripper is considerably lower than that in a carbon foil, owing to the absence of the density effect. Nevertheless, the merits of gas strippers motivated us to develop a low-Z gas stripper to achieve a higher equilibrium charge state even in gases. We measured the electron-loss and electron-capture cross sections of uranium ions in He gas as a function of their charge state at 11, 14, and 15 MeV/nucleon. The equilibrium charge states extracted from the intersection of the lines of the two cross sections were promisingly higher than those in N{sub 2} gas by more than 10. Simple simulations of charge development along the stripper thickness were performed by assuming the measured cross sections. The simulation results show that about 1 mg/cm{sup 2} of He gas should be accumulated to achieve a charge state higher than that of N{sub 2} gas, notwithstanding the difficulty in accumulation of this helium amount owing to its fast dispersion. However, we now believe that the following two solutions can overcome this difficulty: a gas cell with a very large differential pumping system and a gas cell with a plasma window. Their merits and demerits are discussed in the paper.« less
Electron-beam-inactivated vaccine against Salmonella enteritidis colonization in molting hens
USDA-ARS?s Scientific Manuscript database
Electron Beam (eBeam) ionization technology has a variety of applications in modern society. The underlying hypothesis was that electron beam (eBeam) inactivated Salmonella enterica serovar Enteritidis (SE) cells can serve as a vaccine to control Salmonella colonization and Salmonella shedding in c...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, Jose V.; Paul, Samit; Bhattacharjee, Sudeep
2010-05-15
An earlier study of the axial ion energy distribution in the extraction region (plasma meniscus) of a compact microwave plasma ion source showed that the axial ion energy spread near the meniscus is small ({approx}5 eV) and comparable to that of a liquid metal ion source, making it a promising candidate for focused ion beam (FIB) applications [J. V. Mathew and S. Bhattacharjee, J. Appl. Phys. 105, 96101 (2009)]. In the present work we have investigated the radial ion energy distribution (IED) under the influence of beam extraction. Initially a single Einzel lens system has been used for beam extractionmore » with potentials up to -6 kV for obtaining parallel beams. In situ measurements of IED with extraction voltages upto -5 kV indicates that beam extraction has a weak influence on the energy spread ({+-}0.5 eV) which is of significance from the point of view of FIB applications. It is found that by reducing the geometrical acceptance angle at the ion energy analyzer probe, close to unidirectional distribution can be obtained with a spread that is smaller by at least 1 eV.« less
Microsecond Electron Beam Source with Electron Energy Up to 400 Kev and Plasma Anode
NASA Astrophysics Data System (ADS)
Abdullin, É. N.; Basov, G. F.; Shershnev, S.
2017-12-01
A new high-power source of electrons with plasma anode for producing high-current microsecond electron beams with electron energy up to 400 keV has been developed, manufactured, and put in operation. To increase the cross section and pulse current duration of the beam, a multipoint explosive emission cathode is used in the electron beam source, and the beam is formed in an applied external guiding magnetic field. The Marx generator with vacuum insulation is used as a high-voltage source. Electron beams with electron energy up to 300-400 keV, current of 5-15 kA, duration of 1.5-3 μs, energy up to 4 kJ, and cross section up to 150 cm2 have been produced. The operating modes of the electron beam source are realized in which the applied voltage is influenced weakly on the current. The possibility of source application for melting of metal surfaces is demonstrated.
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Fontes, E.; Heltsley, B. K.; Hopkins, W.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Savino, J.; Seeley, R.; Shanks, J.; Flanagan, J. W.
2014-06-01
We describe the construction and operation of an X-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of 10-100μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of ~2GeV. At such beam energies the xBSM images X-rays of ɛ≈1-10keV (λ≈0.1-1nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50μm pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1 mA (2.5×109 particles) per bunch and inter-bunch spacing of as little as 4 ns. At Eb=2.1GeV, systematic precision of ~1μm is achieved for a beam size of ~12μm; this is expected to scale as ∝1/σb and ∝1/Eb. Achieving this precision requires comprehensive alignment and calibration of the detector, optical elements, and X-ray beam. Data from the xBSM have been used to extract characteristics of beam oscillations on long and short timescales, and to make detailed studies of low-emittance tuning, intra-beam scattering, electron cloud effects, and multi-bunch instabilities.
Fast electron microscopy via compressive sensing
Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W
2014-12-09
Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.
de Jonge, Niels [Oak Ridge, TN
2010-08-17
A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.
Generation of forerunner electron beam during interaction of ion beam pulse with plasma
Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.
2018-01-01
The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less
Generation of forerunner electron beam during interaction of ion beam pulse with plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.
The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less
Beam spot diameter of the near-field scanning electron microscopy.
Kyritsakis, A; Xanthakis, J P
2013-02-01
We have examined the beam spot diameter at the anode of the scanning electron microscopy (SEM) in the near-field mode as a function of the anode-tip distance d. The detector lateral resolution of this type of microscopy is approximately equal to this spot diameter. For our calculations we have simulated the apex region of the tip with an ellipsoid of revolution of radii R₁ and R₂ with R₁>R₂ as suggested by TEM images of the realistic tips. We have then solved the Laplace equation to obtain the electrostatic potential and to this we have added a spherical image potential. The calculated electrostatic field is highly asymmetric, being strong along the tip-axis and weakening quickly towards the sides. When a 3-dimensional WKB approximation is used to calculate the electron paths corresponding to such a potential, the latter are shown to bend significantly towards the vertical (tip-axis) direction producing a beam narrowing effect very similar to the beam narrowing effect we discovered for the traditional SEM case. When the values of R₁, R₂ are chosen from fittings to the TEM images of the tips used in the experiments, the beam spot diameter W at the anode (d=25 nm) varies from 12.5 nm to 9 nm depending on the fitted R₁, R₂. These values of W are considerably smaller than previously predicted by calculating solid angles of emission from spherical surfaces (41 nm) but also much closer to the detector lateral resolution (6-7 nm) obtained from differentiating the experimental current step. This trend continued at all other d examined. Furthermore the beam width W was found to decrease quickly with increasing sharpness S=R₁/R₂ of the tip and then saturate. W is also decreasing with decreasing R₁, R₂ with S kept constant. We deduce that the sharpness of the tip is important not only for creating high extraction fields but also for guaranteeing a very small beam spot diameter. Copyright © 2012 Elsevier B.V. All rights reserved.
Simulation study of interactions of Space Shuttle-generated electron beams with ambient plasmas
NASA Technical Reports Server (NTRS)
Lin, Chin S.
1992-01-01
This report summarizes results obtained through the support of NASA Grant NAGW-1936. The objective of this report is to conduct large scale simulations of electron beams injected into space. The topics covered include the following: (1) simulation of radial expansion of an injected electron beam; (2) simulations of the active injections of electron beams; (3) parameter study of electron beam injection into an ionospheric plasma; and (4) magnetosheath-ionospheric plasma interactions in the cusp.
An Investigation of Nonuniform Dose Deposition From an Electron Beam
1994-08-01
to electron - beam pulse. Ceramic package HIPEC Lid Electron beam Die Bond wires TLD TLD Silver epoxy 6 package cavity die TLD’s 21 3 4 5 Figure 2...these apertures was documented in a previous experiment relating to HIFX electron -beam dosimetry .2 The hardware required for this setup was a 60-cm...impurity serves 2Gregory K. Ovrebo, Steven M. Blomquist, and Steven R. Murrill, A HIFX Electron -Beam Dosimetry System, Army Research Laboratory, ARL-TR
Beam-beam interaction study of medium energy eRHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao,Y.; Litvinenko, V. N.; Ptitsyn, V.
Medium Energy eRHIC (MeRHIC), the first stage design of eRHIC, includes a multi-pass ERL that provides 4GeV high quality electron beam to collide with the ion beam of RHIC. It delivers a minimum luminosity of 10{sup 32} cm{sup -2}s{sup -1}. Beam-beam effects present one of major factors limiting the luminosity of colliders. In this paper, both beam-beam effects on the electron beam and the proton beam in MeRHIC are investigated. The beam-beam interaction can induce a head-tail type instability of the proton beam referred to as the kink instability. Thus, beam stability conditions should be established to avoid proton beammore » loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure that the beam quality is good enough for the energy recovery pass. The relation of proton beam stability, electron disruption and consequential luminosity are carried out after thorough discussion.« less
Low-Energy Plasma Focus Device as an Electron Beam Source
Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong
2014-01-01
A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952
Finite elements numerical codes as primary tool to improve beam optics in NIO1
NASA Astrophysics Data System (ADS)
Baltador, C.; Cavenago, M.; Veltri, P.; Serianni, G.
2017-08-01
The RF negative ion source NIO1, built at Consorzio RFX in Padua (Italy), is aimed to investigate general issues on ion source physics in view of the full-size ITER injector MITICA as well as DEMO relevant solutions, like energy recovery and alternative neutralization systems, crucial for neutral beam injectors in future fusion experiments. NIO1 has been designed to produce 9 H-beamlets (in a 3x3 pattern) of 15mA each and 60keV, using a three electrodes system downstream the plasma source. At the moment the source is at its early operational stage and only operation at low power and low beam energy is possible. In particular, NIO1 presents a too strong set of SmCo co-extraction electron suppression magnets (CESM) in the extraction grid (EG) that will be replaced by a weaker set of Ferrite magnets. A completely new set of magnets will be also designed and mounted on the new EG that will be installed next year, replacing the present one. In this paper, the finite element code OPERA 3D is used to investigate the effects of the three sets of magnets on beamlet optics. A comparison of numerical results with measurements will be provided where possible.
Monte Carlo Study of the abBA Experiment: Detector Response and Physics Analysis.
Frlež, E
2005-01-01
The abBA collaboration proposes to conduct a comprehensive program of precise measurements of neutron β-decay coefficients a (the correlation between the neutrino momentum and the decay electron momentum), b (the electron energy spectral distortion term), A (the correlation between the neutron spin and the decay electron momentum), and B (the correlation between the neutron spin and the decay neutrino momentum) at a cold neutron beam facility. We have used a GEANT4-based code to simulate the propagation of decay electrons and protons in the electromagnetic spectrometer and study the energy and timing response of a pair of Silicon detectors. We used these results to examine systematic effects and find the uncertainties with which the physics parameters a, b, A, and B can be extracted from an over-determined experimental data set.
Mascali, D; Celona, L; Maimone, F; Maeder, J; Castro, G; Romano, F P; Musumarra, A; Altana, C; Caliri, C; Torrisi, G; Neri, L; Gammino, S; Tinschert, K; Spaedtke, K P; Rossbach, J; Lang, R; Ciavola, G
2014-02-01
An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source - operating at GSI, Darmstadt - has been carried out. Two different detectors (a SDD - Silicon Drift Detector and a HpGe - hyper-pure Germanium detector) have been used to characterize the warm (2-30 keV) and hot (30-500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.
Characterization of Deuteron-Deuteron Neutron Generators
NASA Astrophysics Data System (ADS)
Waltz, Cory Scott
A facility based on a next-generation, high-flux D-D neutron generator (HFNG) was commissioned at the University of California Berkeley. The characterization of the HFNG is presented in the following study. The current generator design produces near mono-energetic 2.45 MeV neutrons at outputs of 108 n/s. Calculations provided show that future conditioning at higher currents and voltages will allow for a production rate over 1010 n/s. Characteristics that effect the operational stability include the suppression of the target-emitted back streaming electrons, target sputtering and cooling, and ion beam optics. Suppression of secondary electrons resulting from the deuterium beam striking the target was achieved via the implementation of an electrostatic shroud with a voltage offset of greater than -400 V relative to the target. Ion beam optics analysis resulted in the creation of a defocussing extraction nozzle, allowing for cooler target temperatures and a more compact design. To calculate the target temperatures, a finite difference method (FDM) solver incorporating the additional heat removal effects of subcooled boiling was developed. Validation of the energy balance results from the finite difference method calculations showed the iterative solver converged to heat removal results within about 3% of the expected value. Testing of the extraction nozzle at 1.43 mA and 100 kV determined that overheating of the target did not occur as the measured neutron flux of the generator was near predicted values. Many factors, including the target stopping power, deuterium atomic species, and target loading ratio, affect the flux distribution of the HFNG neutron generator. A detailed analysis to understand these factors effects is presented. Comparison of the calculated flux of the neutron generator using deuteron depth implantation data, neutron flux distribution data, and deuterium atomic species data matched the experimentally calculated flux determined from indium foil irradiations. An overview of experiments using the HFNG, including medical isotope cross section measurements, geochronology, delayed gamma measurements from uranium fission, and single event upset of cpu's is discussed. Future work should focus on the reduction of beam induced arcing between the shroud and the vacuum chamber. Investigation of insulator charge build-up, as well as electrical ash-over of insulators should be explored. The reduction of beam induced arcing will allow for larger beam currents and acceleration voltages, therefore increasing the neutron flux.
Stable generation of GeV-class electron beams from self-guided laser-plasma channels
NASA Astrophysics Data System (ADS)
Hafz, Nasr A. M.; Jeong, Tae Moon; Choi, Il Woo; Lee, Seong Ku; Pae, Ki Hong; Kulagin, Victor V.; Sung, Jae Hee; Yu, Tae Jun; Hong, Kyung-Han; Hosokai, Tomonao; Cary, John R.; Ko, Do-Kyeong; Lee, Jongmin
2008-09-01
Table-top laser-driven plasma accelerators are gaining attention for their potential use in miniaturizing future high-energy accelerators. By irradiating gas jet targets with ultrashort intense laser pulses, the generation of quasimonoenergetic electron beams was recently observed. Currently, the stability of beam generation and the ability to scale to higher electron beam energies are critical issues for practical laser acceleration. Here, we demonstrate the first generation of stable GeV-class electron beams from stable few-millimetre-long plasma channels in a self-guided wakefield acceleration process. As primary evidence of the laser wakefield acceleration in a bubble regime, we observed a boost of both the electron beam energy and quality by reducing the plasma density and increasing the plasma length in a 1-cm-long gas jet. Subsequent three-dimensional simulations show the possibility of achieving even higher electron beam energies by minimizing plasma bubble elongation, and we anticipate dramatic increases in beam energy and quality in the near future. This will pave the way towards ultracompact, all-optical electron beam accelerators and their applications in science, technology and medicine.
Beam-induced electron modulations observed during TSS 1R
NASA Astrophysics Data System (ADS)
Rubin, A. G.; Burke, W. J.; Gough, M. P.; Machuzak, J. S.; Gentile, L. C.; Huang, C. Y.; Hardy, D. A.; Thompson, D. C.; Raitt, W. J.
1999-08-01
We report on modulations of electron fluxes at megahertz frequencies measured by the Shuttle Potential and Return Electron Experiment (SPREE) during fast pulsed electron gun (FPEG) beam experiments conducted after the tether break event of the Tethered Satellite System Reflight. Six intervals of sustained modulations were identified while FPEG emitted a 100 mA beam of 1 kev electrons. During five events the beam pitch angle αB was near 90° and the modulations were near even or odd half harmonics of the electron gyrofrequency fce. In the sixth event with 60°>=αB>=45°, electron modulations were near estimated values of the electron plasma frequency fpe and 2fpe. Whenever SPREE detected beam electrons modulated at a given frequency, secondary electrons were also modulated at the same frequency over a broad range of energies. Occasionally, some secondary electrons were modulated simultaneously at a second frequency. Multiple frequencies were related as ratios of low integers. In one case the beam electrons were simultaneously modulated at 0.8 MHz and 1.25 kHz. SPREE measurements suggest that the beam electrons propagate in cylindrical shells whose inner edge is marked by steep spatial gradients in fluxes at 1 keV [Hardy et al., 1995]. Inside the shell, electron distribution functions have positive slopes ∂f/∂v⊥>0 at velocities near that of the beam. Velocity space gradients act as free-energy sources to drive cavity modes that alter the instantaneous guiding centers of electrons causing SPREE to sample alternating parts of the beam cylinder's inner edge. Associated time-varying electric fields also modulated the fluxes of secondary electrons reaching SPREE. Other cavity modes may be excited through nonlinear processes [Calvert, 1982]. With αB far from 90°, electrons in the beam cylinder evolved toward bump-on-tail distributions to excite large-amplitude Langmuir modulations at fpe and its harmonics [Klimas, 1983]. Low-frequency modulations are attributed to electron interactions with ion acoustic-like waves generated as the beam moved across magnetic field lines in the ionosphere at supersonic speeds.
Schwarz, S; Baumann, T M; Kittimanapun, K; Lapierre, A; Snyder, A
2014-02-01
The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm(2) has been reached when the EBIT magnet was operated at 4 T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, S., E-mail: schwarz@nscl.msu.edu; Baumann, T. M.; Kittimanapun, K.
The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assessmore » the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.« less
Compact electron beam focusing column
NASA Astrophysics Data System (ADS)
Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani
2001-12-01
A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.
Fast and precise processing of material by means of an intensive electron beam
NASA Astrophysics Data System (ADS)
Beisswenger, S.
1984-07-01
For engraving a picture carrying screen of cells into the copper-surface of gravure cylinders, an electron beam system was developed. Numerical computations of the power density in the image planes of the electron beam determined the design of the electron optical assembly. A highly stable electron beam of high power density is generated by a ribbon-like cathode. A system of magnetic lenses is used for fast control of the engraving processes and for dynamic changing of the electron optical demagnification. The electron beam engraving system is capable of engraving up to 150,000 gravure cells per sec.
NASA Astrophysics Data System (ADS)
Lee, Chang Yeol; Kim, Woo Chul; Kim, Hun Jeong; Huh, Hyun Do; Park, Seungwoo; Choi, Sang Hyoun; Kim, Kum Bae; Min, Chul Kee; Kim, Seong Hoon; Shin, Dong Oh
2017-02-01
The purpose of this study is to perform a comparison and on analysis of measured dose factor values by using various commercially available high-energy electron beam detectors to measure dose profiles and energy property data. By analyzing the high-energy electron beam data from each detector, we determined the optimal detector for measuring electron beams in clinical applications. The dose linearity, dose-rate dependence, percentage depth dose, and dose profile of each detector were measured to evaluate the dosimetry characteristics of high-energy electron beams. The dose profile and the energy characteristics of high-energy electron beams were found to be different when measured by different detectors. Through comparison with other detectors based on the analyzed data, the microdiamond detector was found to have outstanding dose linearity, a low dose-rate dependency, and a small effective volume. Thus, this detector has outstanding spatial resolution and is the optimal detector for measuring electron beams. Radiation therapy results can be improved and related medical accidents can be prevented by using the procedure developed in this research in clinical practice for all beam detectors when measuring the electron beam dose.
Free electron laser using Rf coupled accelerating and decelerating structures
Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.
1984-01-01
A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.
Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns
NASA Astrophysics Data System (ADS)
Ozur, G. E.; Proskurovsky, D. I.
2018-01-01
This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.
Development of medicine-intended isotope production technologies at Yerevan Physics Institute
NASA Astrophysics Data System (ADS)
Avetisyan, Albert; Avagyan, Robert; Kerobyan, Ivetta; Dallakyan, Ruben; Harutyunyan, Gevorg; Melkonyan, Aleksandr
2015-05-01
Accelerator-based 99mTc and 123I isotopes production technologies were created and developed at A.Alikhanyan National Science Laboratory (former Yerevan Physics Institute - YerPhI). The method involves the irradiation of natural molybdenum (for 99mTc production) and natural xenon (for 123I production) using high-intensity bremsstrahlung photons from the electron beam of the LUE50 linear electron accelerator located at the YerPhI. We have developed and tested the extraction of 99mTc and 123I from the irradiated natural MoO3 and natural Xe, respectively. The production method has been developed and shown to be successful. The current activity is devoted to creation and development of the technology of direct production 99mTc on the 100Mo as target materials using the proton beam from an IBA C18/18 cyclotron. The proton cyclotron C18/18 (producer - IBA, Belgium) was purchased and will be installed nearby AANL (YerPhI) till end 2014. The 18 MeV protons will be used to investigate accelerator-based schemes for the direct production of 99mTc. Main topics of studies will include experimental measurement of 99mTc production yield for different energies of protons, irradiation times, intensities, development of new methods of 99mTc extraction from irradiated materials, development of target preparation technology, development of target material recovery methods for multiple use and others.
Multi-megawatt millimeter-wave source for plasma heating and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, J.L.; Wang, C.; Ganguly, A.K.
1995-12-31
Results of a feasibility study are summarized for multi-megawatt mm-wavelength gyroharmonic converters for plasma heating applications. Output power in these devices is extracted at a high harmonic of the modulation frequency of a spatiotemporally gyrating electron beam prepared using cyclotron autoresonance acceleration. An example is described in which an output of 2.2 MW at 148.5 GHz is predicted at the 13th harmonic of an 8 MW 11.424 GHz CARA, after including waveguide ohmic wall losses. Achievement of this performance requires a high quality 200 kV, 16 A luminar pencil beam injected into CARA, and effective suppression of competing output modes;more » means to realize these requirements are discussed.« less
Edge roughness evaluation method for quantifying at-size beam blur in electron-beam lithography
NASA Astrophysics Data System (ADS)
Yoshizawa, Masaki; Moriya, Shigeru
2000-07-01
At-size beam blur at any given pattern size of an electron beam (EB) direct writer, HL800D, was quantified using the new edge roughness evaluation (ERE) method to optimize the electron-optical system. We characterized the two-dimensional beam-blur dependence on the electron deflection length of the EB direct writer. The results indicate that the beam blur ranged from 45 nm to 56 nm in a deflection field 2520 micrometer square. The new ERE method is based on the experimental finding that line edge roughness of a resist pattern is inversely proportional to the slope of the Gaussian-distributed quasi-beam-profile (QBP) proposed in this paper. The QBP includes effects of the beam blur, electron forward scattering, acid diffusion in chemically amplified resist (CAR), the development process, and aperture mask quality. The application the ERE method to investigating the beam-blur fluctuation demonstrates the validity of the ERE method in characterizing the electron-optical column conditions of EB projections such as SCALPEL and PREVAIL.
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki
2018-07-01
An electron beam is detected by a 1D floating potential probe array in a relatively high density (1012–1013 cm‑3) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.
Detection of an electron beam in a high density plasma via an electrostatic probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
Detection of an electron beam in a high density plasma via an electrostatic probe
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; ...
2018-05-08
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten
1994-01-01
We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.
Electron Beam-Cure Polymer Matrix Composites: Processing and Properties
NASA Technical Reports Server (NTRS)
Wrenn, G.; Frame, B.; Jensen, B.; Nettles, A.
2001-01-01
Researchers from NASA and Oak Ridge National Laboratory are evaluating a series of electron beam curable composites for application in reusable launch vehicle airframe and propulsion systems. Objectives are to develop electron beam curable composites that are useful at cryogenic to elevated temperatures (-217 C to 200 C), validate key mechanical properties of these composites, and demonstrate cost-saving fabrication methods at the subcomponent level. Electron beam curing of polymer matrix composites is an enabling capability for production of aerospace structures in a non-autoclave process. Payoffs of this technology will be fabrication of composite structures at room temperature, reduced tooling cost and cure time, and improvements in component durability. This presentation covers the results of material property evaluations for electron beam-cured composites made with either unidirectional tape or woven fabric architectures. Resin systems have been evaluated for performance in ambient, cryogenic, and elevated temperature conditions. Results for electron beam composites and similar composites cured in conventional processes are reviewed for comparison. Fabrication demonstrations were also performed for electron beam-cured composite airframe and propulsion piping subcomponents. These parts have been built to validate manufacturing methods with electron beam composite materials, to evaluate electron beam curing processing parameters, and to demonstrate lightweight, low-cost tooling options.
Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V
2012-06-01
To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram
In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electronmore » beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.« less