Science.gov

Sample records for electron beam loss

  1. CEBAF beam loss accounting

    SciTech Connect

    Ursic, R.; Mahoney, K.; Hovater, C.; Hutton, A.; Sinclair, C.

    1995-12-31

    This paper describes the design and implementation of a beam loss accounting system for the CEBAF electron accelerator. This system samples the beam curent throughout the beam path and measures the beam current accurately. Personnel Safety and Machine Protection systems use this system to turn off the beam when hazardous beam losses occur.

  2. Parametric Modeling of Electron Beam Loss in Synchrotron Light Sources

    SciTech Connect

    Sayyar-Rodsari, B.; Schweiger, C.; Hartman, E.; Corbett, J.; Lee, M.; Lui, P.; Paterson, E.; /SLAC

    2007-11-28

    Synchrotron light is used for a wide variety of scientific disciplines ranging from physical chemistry to molecular biology and industrial applications. As the electron beam circulates, random single-particle collisional processes lead to decay of the beam current in time. We report a simulation study in which a combined neural network (NN) and first-principles (FP) model is used to capture the decay in beam current due to Touschek, Bremsstrahlung, and Coulomb effects. The FP block in the combined model is a parametric description of the beam current decay where model parameters vary as a function of beam operating conditions (e.g. vertical scraper position, RF voltage, number of the bunches, and total beam current). The NN block provides the parameters of the FP model and is trained (through constrained nonlinear optimization) to capture the variation in model parameters as operating condition of the beam changes. Simulation results will be presented to demonstrate that the proposed combined framework accurately models beam decay as well as variation to model parameters without direct access to parameter values in the model.

  3. Electron beam guiding by grooved SiO{sub 2} parallel plates without energy loss

    SciTech Connect

    Xue, Yingli; Yu, Deyang Liu, Junliang; Zhang, Mingwu; Yang, Bian; Zhang, Yuezhao; Cai, Xiaohong

    2015-12-21

    Using a pair of grooved SiO{sub 2} parallel plates, stably guided electron beams were obtained without energy loss at 800–2000 eV. This shows that the transmitted electrons are guided by a self-organized repulsive electric field, paving the way for a self-adaptive manipulation of electron beams.

  4. Beam loss

    NASA Astrophysics Data System (ADS)

    VanGinneken, A.; Edwards, D.; Harrison, M.

    1989-04-01

    This paper presents results from simulations of beam losses during the operation of a superconducting accelerator. The calculations use a combination of hadron/electromagnetic cascade plus elastic scattering codes with accelerator tracking routines. These calculations have been used in conjunction with the design of the Fermilab Tevatron. First accelerator geometry is described. The rest of the paper discusses a detailed attempt to simulate a fast extraction cycle, essentially in chronological order. Beginning with an unperturbed beam, the simulation generates proton phase-space distributions incident on the electrostatic septum. These interact either elastically or inelastically with the septum wires, and the products of these interactions are traced through the machine. Where these leave the accelerator, energy deposition levels in the magnets are calculated together with the projected response of the beam-loss monitors in this region. Finally, results of the calculation are compared with experimental data. (AIP)

  5. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    SciTech Connect

    Yedra, Ll.; Estradé, S.; Torruella, P.; Eljarrat, A.; Peiró, F.; Darbal, A. D.; Weiss, J. K.

    2014-08-04

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.

  6. The role of electronic energy loss in ion beam modification of materials

    DOE PAGES

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; Zhang, Yanwen

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while inmore » other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.« less

  7. The role of electronic energy loss in ion beam modification of materials

    SciTech Connect

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; Zhang, Yanwen

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while in other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.

  8. Enhanced relativistic-electron-beam energy loss in warm dense aluminum.

    PubMed

    Vaisseau, X; Debayle, A; Honrubia, J J; Hulin, S; Morace, A; Nicolaï, Ph; Sawada, H; Vauzour, B; Batani, D; Beg, F N; Davies, J R; Fedosejevs, R; Gray, R J; Kemp, G E; Kerr, S; Li, K; Link, A; McKenna, P; McLean, H S; Mo, M; Patel, P K; Park, J; Peebles, J; Rhee, Y J; Sorokovikova, A; Tikhonchuk, V T; Volpe, L; Wei, M; Santos, J J

    2015-03-01

    Energy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2×10^{11}  A/cm^{2} (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport. We measured a 19% increase in electron resistive energy loss in warm dense compared to cold solid samples of identical areal mass. PMID:25793822

  9. Enhanced relativistic-electron-beam energy loss in warm dense aluminum.

    PubMed

    Vaisseau, X; Debayle, A; Honrubia, J J; Hulin, S; Morace, A; Nicolaï, Ph; Sawada, H; Vauzour, B; Batani, D; Beg, F N; Davies, J R; Fedosejevs, R; Gray, R J; Kemp, G E; Kerr, S; Li, K; Link, A; McKenna, P; McLean, H S; Mo, M; Patel, P K; Park, J; Peebles, J; Rhee, Y J; Sorokovikova, A; Tikhonchuk, V T; Volpe, L; Wei, M; Santos, J J

    2015-03-01

    Energy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2×10^{11}  A/cm^{2} (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport. We measured a 19% increase in electron resistive energy loss in warm dense compared to cold solid samples of identical areal mass.

  10. Multiple-electron losses in uranium ion beams in heavy ion synchrotrons

    NASA Astrophysics Data System (ADS)

    Bozyk, L.; Chill, F.; Litsarev, M. S.; Tolstikhina, I. Yu.; Shevelko, V. P.

    2016-04-01

    Charge changing processes as the result of collisions with residual gas particles are the main cause of beam loss in high energy medium charge state heavy ion beams. To investigate the magnitude of this effect for heavy ion synchrotrons like the planned SIS100 at GSI, the multiple-electron and the total electron-loss cross sections are calculated for Uq+ ions, q = 10, 28, 40, 73, colliding with typical gas components H2, He, C, N2, O2, and Ar at ion energies E = 1 MeV/u-10 GeV/u. The total electron-capture cross sections for U28+ and U73+ ions interacting with these gases are also calculated. Most of these cross sections are new and presented for the first time. Calculated charge-changing cross sections are used to determine the ion-beam lifetimes τ for U28+ ions which agree well with the recently measured values at SIS18/GSI in the energy range E = 10-200 MeV/u. Using simulations made by the StrahlSim code with the reference ion U28+, it is found that in SIS100 the beam loss caused by single and multiple electron losses has only little impact on the residual gas density due to the high efficiency of the ion catcher system.

  11. Duration of memory loss due to electron beam exposure. Final report Jan-May 1983

    SciTech Connect

    Wheeler, T.G.; Tilton, B.M.

    1983-08-01

    Electron beam exposure has been shown to produce retrograde amnesia (RA). The objective of this study was to determine the duration of memory loss upon electron beam exposure. It is important to know if exposure produces a memory loss of the events which occurred in the preceding 1 sec or memory loss of the preceding minute's events. The task was a single-trial avoidance paradigm. The animal was placed in a small aversive chamber. After a 90-sec adaptation period, a door opened that provided access to a large, dark, preferred chamber. The time required for the animal to enter the preferred chamber was the measure of interest (T). Once inside the preferred chamber, a 1-sec footshock was delivered. Following the footshock by some preset delay (delta T), the animal was exposed to a 10-microsec, 10-rad electron beam (or X-ray). A second trial on the task was run 2 hr postexposure. The second trial consisted of placing the animal in the aversive chamber and monitoring the time (T') required to enter the preferred chamber. If the electron beam exposure interfered with the animal's ability to recall the shock, T' would be greatly reduced as compared with the sham controls. The exposure delay times used were delta T = 1, 3, 5, and 10 sec.

  12. Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides

    NASA Astrophysics Data System (ADS)

    Wood, Michael G.; Chen, Li; Burr, Justin R.; Reano, Ronald M.

    2014-01-01

    We carried out a multiparameter fabrication study designed to reduce the line edge roughness (LER) of electron beam (e-beam) patterned hydrogen silsesquioxane resist for the purpose of producing low-loss silicon strip waveguides. Reduced mask roughness was achieved for 50°C pre-exposure baking, 5000 μC/cm2 dose with a beam spot size more than twice as large as the electron beam step size, development in 25% tetramethylammonium hydroxide and postdevelopment baking with rapid thermal annealing in an O2 ambient at 1000°C. The LER caused by pattern fracturing and stage stitches was reduced with multipass writing and per-pass linear and rotational offsets. Si strip waveguides patterned with the optimized mask have root-mean-square sidewall roughness of 2.1 nm with a correlation length of 94 nm, as measured by three-dimensional atomic force microscopy. Measured optical propagation losses of these waveguides across the telecommunications C-band were 2.5 and 2.8 dB/cm for the transverse magnetic and transverse electric modes, respectively. These reduced loss waveguides enable the fabrication of advanced planar lightwave circuit topologies.

  13. Updated analytical solutions of continuity equation for electron beams precipitation - II. Mixed energy losses

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Dobranskis, R. R.

    2016-06-01

    In this paper we consider simultaneous analytical solutions of continuity equations for electron beam precipitation (a) in collisional losses and (b) in ohmic losses, or mixed energy losses (MEL) by applying the iterative method to calculate the resulting differential densities at given precipitation depth. The differential densities of precipitating electrons derived from the analytical solutions for MELs reveal increased flattening at energies below 10-30 keV compared to a pure collisional case. This flattening becomes stronger with an increasing precipitation depth turning into a positive slope at greater precipitation depths in the chromosphere resulting in a differential density distribution with maximum that shifts towards higher energies with increase in column depth, while the differential densities combining precipitating and returning electrons are higher at lower energies than those for a pure collisional case. The resulting hard X-ray (HXR) emission produced by the beams with different initial energy fluxes and spectral indices is calculated using the MEL approach for different ratios between the differential densities of precipitating and returning electrons. The number of returning electrons can be even further enhanced by a magnetic mirroring, not considered in the present model, while dominating at lower atmospheric depths where the magnetic convergence and magnitude are the highest. The proposed MEL approach provides an opportunity to account simultaneously for both collisional and ohmic losses in flaring events, which can be used for a quick spectral fitting of HXR spectra and evaluation of a fraction of returning electrons versus precipitating ones. The semi-analytical MEL approach is used for spectral fitting to Reuven High Energy Solar Spectroscopic Imager observations of nine C, M and X class flares revealing a close fit to the observations and good resemblance to numerical FP solutions.

  14. Study on the radiation problem caused by electron beam loss in accelerator tubes

    NASA Astrophysics Data System (ADS)

    Li, Quan-Feng; Guo, Bing-Qi; Zhang, Jie-Xi; Chen, Huai-Bi

    2008-07-01

    The beam dynamic code PARMELA was used to simulate the transportation process of accelerating electrons in S-band SW linacs with different energies of 2.5, 6 and 20 MeV. The results indicated that in the ideal condition, the percentage of electron beam loss was 50% in accelerator tubes. Also we calculated the spectrum, the location and angular distribution of the lost electrons. Calculation performed by Monte Carlo code MCNP demonstrated that the radiation distribution of lost electrons was nearly uniform along the tube axis, the angular distributions of the radiation dose rates of the three tubes were similar, and the highest leaking dose was at the angle of 160° with respect to the axis. The lower the energy of the accelerator, the higher the radiation relative leakage. For the 2.5 MeV accelerator, the maximum dose rate reached 5% of the main dose and the one on the head of the electron gun was 1%, both of which did not meet the eligible protection requirement for accelerators. We adopted different shielding designs for different accelerators. The simulated result showed that the shielded radiation leaking dose rates fulfilled the requirement. Supported by National Natural Science Foundation of China (10135040)

  15. Retrograde amnesia produced by electron beam exposure: causal parameters and duration of memory loss. [Rats

    SciTech Connect

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron beam exposure has been investigated. RA production was evaluated using a single-trial avoidance task across a 10/sup 4/ dose range for 10-, 1-, and 0.1-..mu..sec pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 10/sup 6/ rad/sec. By employing a 10 rad (10/sup 6/ rad/sec) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory activation which provided a novel stimulus that masked previous stimuli.

  16. Updated analytical solutions of continuity equation for electron beams precipitation - I. Pure collisional and pure ohmic energy losses

    NASA Astrophysics Data System (ADS)

    Dobranskis, R. R.; Zharkova, V. V.

    2015-10-01

    We present updated analytical solutions of continuity equations for power-law beam electrons precipitating in (a) purely collisional losses and (b) purely ohmic losses. The solutions of continuity equation (CE) normalized on electron density presented in Dobranskis & Zharkova are found by method of characteristics eliminating a mistake in the density characteristic pointed out by Emslie et al. The corrected electron beam differential densities (DD) for collisions are shown to have energy spectra with the index of -(γ + 1)/2, coinciding with the one derived from the inverse problem solution by Brown, while being lower by 1/2 than the index of -γ/2 obtained from CE for electron flux. This leads to a decrease of the index of mean electron spectra from -(γ - 2.5) (CE for flux) to -(γ - 2.0) (CE for electron density). The similar method is applied to CE for electrons precipitating in electric field induced by the beam itself. For the first time, the electron energy spectra are calculated for both constant and variable electric fields by using CE for electron density. We derive electron DD for precipitating electrons (moving towards the photosphere, μ = +1) and `returning' electrons (moving towards the corona, μ = -1). The indices of DD energy spectra are reduced from -γ - 1 (CE for flux) to -γ (CE for electron density). While the index of mean electron spectra is increased by 0.5, from -γ + 0.5 (CE for flux) to -γ + 1(CE for electron density). Hard X-ray intensities are also calculated for relativistic cross-section for the updated differential spectra revealing closer resemblance to numerical Fokker-Planck (FP) solutions.

  17. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    SciTech Connect

    Emfietzoglou, D.; Kyriakou, I.; Garcia-Molina, R.; Abril, I.; Kostarelos, K.

    2010-09-15

    We have determined ''effective'' Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  18. Simulation of multicomponent losses in electron beam melting and refining at varying scan frequencies

    SciTech Connect

    Powell, A.; Szekely, J.; Van Den Avyle, J.; Damkroger, B.

    1995-10-12

    A two-stage model is presented to describe alloy element evaporation rates from molten metal due to transient local heating by an electron beam. The first stage is a simulation of transient phenomena near the melt surface due to periodic heating by a scanning beam, the output of which is the relationship between operating parameters, surface temperature, and evaporation rate. At high scan rates, this can be done using a simple one-dimensional heat transfer model of the surface layer; at lower scan rates, a more complex three-dimensional model with fluid flow and periodic boundary conditions is necessary. The second stage couples this evaporation-surface temperature relationship with a larger steady state heat transfer and fluid flow model of an entire melting hearth or mold, in order to calculate local and total evaporation rates. Predictions are compared with experimental results from Sandia`s 310-kW electron beam melting furnace, in which evaporation rates and vapor compositions were studied in pure titanium and Ti-6%Al-4%V alloy. Evaporation rates were estimated from rate of condensation on a substrate held over the hearth, and were characterized as a function of beam power (150 and 225 kW), scan frequency (30, 115 and 450 Hz) and background pressure (10{sup {minus}3}, 10{sup {minus}4} and 10{sup {minus}5} torr).

  19. Simulation of multicomponent losses in electron beam melting and refining at varying scan frequencies

    SciTech Connect

    Powell, A.; Szekely, J.; Avyle, J.V.D.; Damkroger, B.

    1995-12-31

    A two-stage model is presented to describe alloy element evaporation rates from molten metal due to transient local heating by an electron beam. The first stage is a simulation of transient phenomena near the melt surface due to periodic heating by a scanning beam, the output of which is the relationship between operating parameters, surface temperature, and evaporation rate. At high scan rates, this can be done using a simple one-dimensional heat transfer model of the surface layer; at lower scan rates, a more complex three-dimensional model with fluid flow and periodic boundary conditions is necessary. The second stage couples this evaporation-surface temperature relationship with a larger steady state heat transfer and fluid flow model of an entire melting hearth or mold, in order to calculate local and total evaporation rates. Predictions are compared with experimental results from Sandia`s 310-kW electron beam melting furnace, in which evaporation rates and vapor compositions were studied in pure titanium and Ti-6%Al-4%V alloy. Evaporation rates were estimated from rate of condensation on a substrate held over the hearth, and were characterized as a function of beam power (10{sup {minus}3}, 10{sup {minus}4} and 10{sup {minus}5} torr).

  20. Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam

    NASA Astrophysics Data System (ADS)

    Thomé, Lionel; Debelle, Aurélien; Garrido, Frédérico; Trocellier, Patrick; Serruys, Yves; Velisa, Gihan; Miro, Sandrine

    2013-04-01

    Single and dual-beam irradiations of oxide (c-ZrO2, MgO, Gd2Ti2O7) and carbide (SiC) single crystals were performed to study combined effects of nuclear (Sn) and electronic (Se) energy losses. Rutherford backscattering experiments in channeling conditions show that the Sn/Se cooperation induces a strong decrease of the irradiation-induced damage in SiC and MgO and almost no effects in c-ZrO2 and Gd2Ti2O7. The healing process is ascribed to electronic excitations arising from the electronic energy loss of swift ions. These results present a strong interest for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where expected cooperative Sn/Se effects may lead to the preservation of the integrity of nuclear devices.

  1. Fullerene-assisted electron-beam lithography for pattern improvement and loss reduction in InP membrane waveguide devices.

    PubMed

    Jiao, Yuqing; Pello, Josselin; Mejia, Alonso Millan; Shen, Longfei; Smalbrugge, Barry; Geluk, Erik Jan; Smit, Meint; van der Tol, Jos

    2014-03-15

    In this Letter, we present a method to prepare a mixed electron-beam resist composed of a positive resist (ZEP520A) and C60 fullerene. The addition of C60 to the ZEP resist changes the material properties under electron beam exposure significantly. An improvement in the thermal resistance of the mixed material has been demonstrated by fabricating multimode interference couplers and coupling regions of microring resonators. The fabrication of distributed Bragg reflector structures has shown improvement in terms of pattern definition accuracy with respect to the same structures fabricated with normal ZEP resist. Straight InP membrane waveguides with different lengths have been fabricated using this mixed resist. A decrease of the propagation loss from 6.6 to 3.3  dB/cm has been demonstrated.

  2. Micro-nanopores fabricated by high-energy electron beam irradiation: suitable structure for controlling pesticide loss.

    PubMed

    Xiang, Yubin; Wang, Ning; Song, Jimei; Cai, Dongqing; Wu, Zhengyan

    2013-06-01

    Pesticide sprayed onto crop leaves tends to be washed off by rainwater and discharge into the environment through leaching and runoff, resulting in severe pollution to both soil and water. Here, to control pesticide loss, we developed a loss-control pesticide (LCP) by adding modified natural nanoclay (diatomite) through high-energy electron beam (HEEB) to traditional pesticide. After HEEB treatment, the originally clogged pores in diatomite opened, resulting in plenty of micro-nanopores in diatomite, which are beneficial for the pesticide molecules to access and be adsorbed. This pesticide-diatomite complex tended to be retained by the rough surface of crop leaves, displaying a high adhesion performance onto the leaves, so that the pesticide loss reduced, sufficient pesticide for crops was supplied, and the pollution risk of the pesticide could be substantially lowered.

  3. Electron cooling of electron beams

    SciTech Connect

    Larson, D.J.

    1993-09-01

    Electron cooling of electron (and positron) sources may be important for future linear collider applications. In order to cool electrons with electrons, an intermediary positron beam must be employed, since it is impossible to merge two beams of identical particles into the cooling straight. By adjusting the beta functions of the electron and positron lattices appropriately, the final emittance of the stored electron beam can be made less than the emittance of the cooling electron beam. This paper will discuss accelerator physics issues relating to an electron-cooled electron beam source.

  4. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    NASA Astrophysics Data System (ADS)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  5. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  6. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  7. Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam

    SciTech Connect

    Thome, Lionel; Debelle, Aurelien; Garrido, Frederico; Trocellier, Patrick; Serruys, Yves; Miro, Sandrine

    2013-04-08

    Single and dual-beam irradiations of oxide (c-ZrO{sub 2}, MgO, Gd{sub 2}Ti{sub 2}O{sub 7}) and carbide (SiC) single crystals were performed to study combined effects of nuclear (S{sub n}) and electronic (S{sub e}) energy losses. Rutherford backscattering experiments in channeling conditions show that the S{sub n}/S{sub e} cooperation induces a strong decrease of the irradiation-induced damage in SiC and MgO and almost no effects in c-ZrO{sub 2} and Gd{sub 2}Ti{sub 2}O{sub 7}. The healing process is ascribed to electronic excitations arising from the electronic energy loss of swift ions. These results present a strong interest for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where expected cooperative S{sub n}/S{sub e} effects may lead to the preservation of the integrity of nuclear devices.

  8. Assessing electron beam sensitivity for SrTiO3 and La0.7Sr0.3MnO3 using electron energy loss spectroscopy.

    PubMed

    Nord, Magnus; Vullum, Per Erik; Hallsteinsen, Ingrid; Tybell, Thomas; Holmestad, Randi

    2016-10-01

    Thresholds for beam damage have been assessed for La0.7Sr0.3MnO3 and SrTiO3 as a function of electron probe current and exposure time at 80 and 200kV acceleration voltage. The materials were exposed to an intense electron probe by aberration corrected scanning transmission electron microscopy (STEM) with simultaneous acquisition of electron energy loss spectroscopy (EELS) data. Electron beam damage was identified by changes of the core loss fine structure after quantification by a refined and improved model based approach. At 200kV acceleration voltage, damage in SrTiO3 was identified by changes both in the EEL fine structure and by contrast changes in the STEM images. However, the changes in the STEM image contrast as introduced by minor damage can be difficult to detect under several common experimental conditions. No damage was observed in SrTiO3 at 80kV acceleration voltage, independent of probe current and exposure time. In La0.7Sr0.3MnO3, beam damage was observed at both 80 and 200kV acceleration voltages. This damage was observed by large changes in the EEL fine structure, but not by any detectable changes in the STEM images. The typical method to validate if damage has been introduced during acquisitions is to compare STEM images prior to and after spectroscopy. Quantifications in this work show that this method possibly can result in misinterpretation of beam damage as changes of material properties. PMID:27454005

  9. Assessing electron beam sensitivity for SrTiO3 and La0.7Sr0.3MnO3 using electron energy loss spectroscopy.

    PubMed

    Nord, Magnus; Vullum, Per Erik; Hallsteinsen, Ingrid; Tybell, Thomas; Holmestad, Randi

    2016-10-01

    Thresholds for beam damage have been assessed for La0.7Sr0.3MnO3 and SrTiO3 as a function of electron probe current and exposure time at 80 and 200kV acceleration voltage. The materials were exposed to an intense electron probe by aberration corrected scanning transmission electron microscopy (STEM) with simultaneous acquisition of electron energy loss spectroscopy (EELS) data. Electron beam damage was identified by changes of the core loss fine structure after quantification by a refined and improved model based approach. At 200kV acceleration voltage, damage in SrTiO3 was identified by changes both in the EEL fine structure and by contrast changes in the STEM images. However, the changes in the STEM image contrast as introduced by minor damage can be difficult to detect under several common experimental conditions. No damage was observed in SrTiO3 at 80kV acceleration voltage, independent of probe current and exposure time. In La0.7Sr0.3MnO3, beam damage was observed at both 80 and 200kV acceleration voltages. This damage was observed by large changes in the EEL fine structure, but not by any detectable changes in the STEM images. The typical method to validate if damage has been introduced during acquisitions is to compare STEM images prior to and after spectroscopy. Quantifications in this work show that this method possibly can result in misinterpretation of beam damage as changes of material properties.

  10. Preliminary comments about beam loss

    SciTech Connect

    Groom, D.

    1985-10-01

    A variety of beam loss questions are being investigated. They affect several design issues, ranging from machine-associated background in the detectors to the radiation lifetime of the main-ring magnets: (1) Muons. Oppositely directed muon beams from prompt muon production, primary meson decay, and a variety of other processes radiate from each IR. If they were not fanned by the insertion dipoles, the beams would be sufficiently intense and energetic that they would present a radiation hazard even after penetrating 2 km of soil or rock. (2) Machine-associated background in the IR`s. About 30 mb of the total cross section is elastic or quasi-elastic, and most of the protons are in a Gaussian spot with sigma = 9 mr. These particles are well within the machine acceptance, but there is a grey area in the tail of the distributions in which the scattered particles `almost` remain in orbit - they continue for some distance but eventually hit a wall. (3) Cryogenic load. This problem has been addressed to some degree in the RDS, but considerably more detail is needed. It appears that a very large fraction of the inelastic particle energy will be deposited here. (4) Radiation damage in the ring. The lifetime of both magnets and electronics in the tunnel might be limited by radiation due to particle loss. Early results are not reassuring. Tevatron measurements, reported to the authors by John Elias, indicate that most of the tunnel background comes from particle loss due to beam-gas collisions.

  11. Retrograde amnesia produced by electron beam exposure: casual parameters and duration of memory loss. Final report for November 84

    SciTech Connect

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron-beam exposure was investigated. RA production was evaluated using a single-trial avoidance task for 10, 1, and 0.1 microsecond pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 1,000,000 rad/sec. By employing a 10 rad (1,000,000 rad/s) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory system activation which provided a novel stimulus that masked previous stimuli.

  12. Electron Beam Freeform Fabrication

    NASA Video Gallery

    Electron Beam Freeform Fabrication (EBF3) is a process by which NASA hopes to build metal parts in zero gravity environments. It's a layer-additive process that uses an electron beam and a solid wi...

  13. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Smith, Steven J.; Lozano, J.

    2002-01-01

    There is increasing emphasis during this decade on understanding energy balance and phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, the X-ray spectral return from the HETG on Chandra and the LETGS 011 XMM-Newton are just beginning. Line emissions are almost entirely from highly-charged ions (HCIs) of C, N, 0, Ne, Mg, S, Si, Ca, and Fe. The Constellation-X mission will provide X-ray spectroscopy up to photon energies of 0.12 nm (10 keV) where primary line emitters will be HCIs. A variety of atomic parameters are required to model the stellar and solar plasma. These include cross sections for excitation, ionization, charge-exchange, X-ray emission, direct and indirect recombination, lifetimes and branching ratios, and dependences on l, m mixing by external E and B fields. In almost all cases the atomic quantities are calculated, and few comparisons to experiment have been carried out. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma. The JPL electron energy-loss and merged beam approach has been used to measure absolute collision strengths in a number of ions, with critical comparison made to the best available theories.

  14. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  15. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Astrophysics Data System (ADS)

    Chutjian, A.; Smith, Steven J.; Lozano, J. A.

    2002-11-01

    There is increasing emphasis within this decade on understanding energy balance and new phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, and the X-ray spectral return from the HETG on Chandra and the LETGS on XMM-Newton are just beginning. The line emissions are almost entirely from highly-charged ions (HCIs) of C, N, O, Ne, Mg, S, Si, Ca, and Fe. In addition, the Constellation-X mission, currently in the planning stages, will provide high-throughput X-ray spectroscopy up to photon energies of 0.12 nm (10 keV), where the primary line emitters will again be the HCIs. This array of space instruments is providing an overwhelming return of HCI spectral data from a variety of astrophysical objects. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma [1]. The JPL electron energy-loss and merged-beams approach [2] has been used to measure absolute collision strengths in a number of ions, with critical comparisons to the best available theories. Experimental methods will be reviewed, and results presented on experimental comparisons to R-Matrix and Breit-Pauli theoretical results in C3+[3], O2+[4], O5+[5], S2+[6], and Fe9+ [7]. Work is planned for comparisons in Mgq+, and higher charge states Fe(10-15)+. J. Lozano thanks the National Research Council for a fellowship though the NASA- NRC program. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was supported under contract with the National Aeronautics and Space Administration.

  16. RHIC BEAM LOSS MONITOR SYSTEM INITIAL OPERATION.

    SciTech Connect

    WITKOVER,R.L.; MICHNOFF,R.J.; GELLER,J.M.

    1999-03-29

    The RHIC Beam Loss Monitor (BLM) System is designed to prevent beam loss quenching of the superconducting magnets, and acquire loss data. Four hundred ion chambers are located around the rings to detect losses. The required 8-decade range in signal current is compressed using an RC pre- integrator ahead of a low current amplifier. A beam abort may be triggered if fast or slow losses exceed programmable threshold levels. A micro-controller based VME module sets references and gains and reads trip status for up to 64 channels. Results obtained with the detectors in the RHIC Sextant Test and the prototype electronics in the AGS-to-RHIC (AtR) transfer line are presented along with the present status of the system.

  17. (Pulsed electron beam precharger)

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    This report discusses the following topics on electron beam guns: Precharger Modification; Installation of Charge vs. Radius Apparatus; High Concentration Aerosol Generation; and Data Acquisition and Analysis System.

  18. Design, development, and operation of a fiber-based Cherenkov beam loss monitor at the SPring-8 Angstrom Compact Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Maréchal, X.-M.; Asano, Y.; Itoga, T.

    2012-05-01

    A fiber-based Cherenkov beam loss monitor (CBLM) consisting of large core (400 μm), long (≥150 m) multimode fibers, has been developed as an online long-range detection tool with high sensitivity and good position resolution for the 8 GeV SPring-8 Angstrom Compact Free Electron Laser: primarily designed for radiation safety in order to limit the dose outside the shielding of the machine, this monitor also serves as an early warning tool to avoid radiation damages done by lost electrons to the undulator magnets. This paper presents the approach chosen to insure that the required sensitivity (≤1 pC) could be obtained over more than 100 m. A beam-based approach was used to characterize (attenuation and signal strength) different fibers (diameter, index profile, and numerical aperture) and to select the most appropriate one. The response of the detector has also been studied numerically for different geometries (vacuum pipe and in-vacuum type undulators), beam energies, and beam loss scenarios, to determine the optimum number of fibers and their position in order to achieve the required detection limit. The results of the first few months of operation show that the SPring-8 CBLM can detect beam losses of less than 0.5 pC over the full 150 m length of the fiber.

  19. Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Harriott, Lloyd R.

    1997-04-01

    Electron beams have played a significant role in semiconductor technology for more than twenty years. Early electron beam machines used a raster scanned beam spot to write patterns in electron-sensitive polymer resist materials. The main application of electron beam lithography has been in mask making. Despite the inherently high spatial resolution and wide process margins of electron beam lithography, the writing rate for semiconductor wafers has been too slow to be economically viable on a large scale. In the late 1970's, variable shape electron beam writing was developed, projecting a rectangular beam whose size can be varied for each "shot" exposure of a particular pattern, allowing some integrated circuits to be made economically where a variety of "customized" patterns are desired. In the cell or block projection electron beam exposure technique, a unit cell of a repetitive pattern is projected repeatedly to increase the level of parallelism. This can work well for highly repetitive patterns such as memory chips but is not well suited to complex varying patterns such as microprocessors. The rapid progress in the performance of integrated circuits has been largely driven by progress in optical lithography, through improvements in lens design and fabrication as well as the use of shorter wavelengths for the exposure radiation. Due to limitations from the opacity of lens and mask materials, it is unlikely that conventional optical printing methods can be used at wavelengths below 193 nm or feature sizes much below 180 nm. One candidate technology for a post-optical era is the Scattering with Angular Limitation Projection Electron-beam Lithography (SCALPEL) approach, which combines the high resolution and wide process latitude inherent in electron beam lithography with the throughput of a parallel projection system. A mask consisting of a low atomic number membrane and a high atomic number pattern layer is uniformly illuminated with high energy (100 ke

  20. PDX neutral beam reionization losses

    SciTech Connect

    Kugel, H.W.; Dylla, H.F.; Eubank, H.P.; Kozub, T.A.; Moore, R.; Schilling, G.; Stuart, L.D.; Von Halle, A.; Williams, M.D.

    1982-04-01

    Reionization losses for 1.5 MW H /sup 0/ and 2 MW D /sup 0/ neutral beams injected into the PDX tokamak were studied using pressure gauges, phototransistors, thermocouples, surface shielding, and surface sample analysis. Considerable outgassing of conventionally prepared 304 SS ducts occurred during initial injections and gradually decreased with the cumulative absorption of beam power. Reionization power losses are presently about 5% in the ducts and about 12% total for a beamline including the duct. Present duct pressures are attributed primarily to gas from the ion source and neutralizer with much smaller contributions from residual wall desorption. Physical mechanisms for the observed duct outgassing are discussed.

  1. Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam

    SciTech Connect

    Thomé, Lionel Debelle, Aurélien; Garrido, Frédérico; Sattonnay, Gaël; Mylonas, Stamatis; Velisa, Gihan; Miro, Sandrine; Trocellier, Patrick; Serruys, Yves

    2015-03-14

    Single and dual-beam ion irradiations of silicon carbide (SiC) were performed to study possible Synergetic effects between Nuclear (S{sub n}) and Electronic (S{sub e}) Energy Losses. Results obtained combining Rutherford backscattering in channeling conditions, Raman spectroscopy, and transmission electron microscopy techniques show that dual-beam irradiation of SiC induces a dramatic change in the final sample microstructure with a substantial decrease of radiation damage as compared to single-beam irradiation. Actually, a defective layer containing dislocations is formed upon dual-beam irradiation (S{sub n} and S{sub e}), whereas single low-energy irradiation (S{sub n} alone) or even sequential (S{sub n} + S{sub e}) irradiations lead to full amorphization. The healing process is ascribed to the electronic excitation arising from the electronic energy loss of swift ions. These results shed new light on the long-standing puzzling problem of the existence of a possible synergy between S{sub n} and S{sub e} in ion-irradiation experiments. This work is interesting for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where recovery S{sub n}/S{sub e} effects may preserve the integrity of nuclear devices.

  2. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully performed under a range of experimental conditions during Quarter Six of the contract. The initial E-beam particle precharging experiments completed this term were designed to extend the efficiency of particle charging and collection using a fine, monodisperse aerosol at relatively large loadings in the FSU Electron Beam Precipitator wind tunnel. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high dust concentration. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will normally be held constant while the precharging parameters are varied to produce an optimum particle charge. The electron beam precharging investigation performed during the period covered by Quarter Six used virtually the same experimental apparatus and procedures as in previous contract work, and these are described for review in this report. This investigation was part of an experimental effort which ran nearly continuously for nine months, encompassing work on the electrostatic collecting section, electron beam precharger, and particle charge-to-radius measuring apparatus. A summary of the work on dc electron beam precipitation is presented here.

  3. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  4. The behavior of beams of relativistic non-thermal electrons under the influence of collisions and synchrotron losses

    NASA Technical Reports Server (NTRS)

    Mctiernan, James M.; Petrosian, Vahe

    1989-01-01

    For many astrophysical situations, such as in solar flares or cosmic gamma-ray bursts, continuum gamma rays with energies up to hundreds of MeV were observed, and can be interpreted to be due to bremsstrahlung radiation by relativistic electrons. The region of acceleration for these particles is not necessarily the same as the region in which the radiation is produced, and the effects of the transport of the electrons must be included in the general problem. Hence it is necessary to solve the kinetic equation for relativistic electrons, including all the interactions and loss mechanisms relevant at such energies. The resulting kinetic equation for non-thermal electrons, including the effects of Coulomb collisions and losses due to synchrotron emission, was solved analytically in some simple limiting cases, and numerically for the general cases including constant and varying background plasma density and magnetic field. New approximate analytic solutions are presented for collision dominated cases, for small pitch angles and all energies, synchrotron dominated cases, both steady-state and time dependent, for all pitch angles and energies, and for cases when both synchrotron and collisional energy losses are important, but for relativistic electrons. These analytic solutions are compared to the full numerical results in the proper limits. These results will be useful for calculation of spectra and angular distribution of the radiation (x rays, gamma-rays, and microwaves) emitted via synchrotron or bremsstrahlung processes by the electrons. These properties and their relevance to observations will be observed in subsequent papers.

  5. Beam damage suppression of low-kappa porous Si-O-C films by cryo-electron-energy loss spectroscopy (EELS).

    PubMed

    Otsuka, Yuji; Shimizu, Yumiko; Tanaka, Isao

    2009-04-01

    Porous Si-O-C films with lower dielectric constant (kappa) relative to silicon dioxide have been widely studied as inter-layer dielectrics in new-generation microelectronic devices. On the analysis of the film by transmission electron microscopy (TEM), it is susceptible of beam damage during both sample preparation by a focused ion beam (FIB) technique and TEM observation. We use electron energy loss spectroscopy (EELS) to quantify the magnitude of the beam damage during these processes. The intensity of the 285-eV peak in C-K electron energy loss near edge structures (ELNES) is enhanced by the damage, which can be ascribed to the formation of the C=C double bonds as a result of the decomposition of the methyl groups by the beam. The use of cryo-holder for TEM at 100 K is found to be essential to reduce the damage of the low-kappa layers. The lowering of the acceleration voltage of FIB down to 5 keV does not change the spectra. Since the FIB damage is localized at the surface, the use of thick regions in the TEM foil such as 130 nm is preferred to reduce the superposition of EELS of the damaged region on those from the sample of interest.

  6. Electron beam polarimetry

    NASA Astrophysics Data System (ADS)

    Sinclair, Charles K.

    1998-12-01

    Along with its well known charge and mass, the electron also carries an intrinsic angular momentum, or spin. The rules of quantum mechanics allow us to measure only the probability that the electron spin is in one of two allowed spin states. When a beam carries a net excess of electrons in one of these two allowed spin states, the beam is said to be polarized. The beam polarization may be measured by observing a sufficient number of electrons scattered by a spin-dependent interaction. For electrons, the useful scattering processes involve Coulomb scattering by heavy nuclei, or scattering from either polarized photons or other polarized electrons (known as Mott, Compton, and Mo/ller scattering, respectively). In this tutorial, we will briefly review how beam polarization is measured through a general scattering process, followed by a discussion of how the three scattering processes above are used to measure electron beam polarization. Descriptions of electron polarimeters based on the three scattering processes will be given.

  7. RHIC beam loss monitor system design

    SciTech Connect

    Witkover, R.; Zitvogel, E.; Michnoff, R.

    1997-07-01

    The Beam Loss Monitor (BLM) System is designed to prevent the quenching of RHIC magnets due to beam loss, provide quantitative loss data, and the loss history in the event of a beam abort. The system uses 400 ion chambers of a modified Tevatron design. To satisfy fast (single turn) and slow (100 msec) loss beam criteria and provide sensitivity for studies measurements, a range of over 8 decades is needed. An RC pre-integrator reduces the dynamic range for a low current amplifier. This is digitized for data logging. The output is also applied to an analog multiplier which compensates the energy dependence, extending the range of the abort comparators. High and low pass filters separate the signal to dual comparators with independent programmable trip levels. Up to 64 channels, on 8 VME boards, are controlled by a micro-controller based VME module, decoupling it from the front-end computer (FEC) for real-time operation. Results with the detectors in the RHIC Sextant Test and the electronics in the AGS-to-RHIC (AtR) transfer line will be presented.

  8. The ATLAS Beam Condition and Beam Loss Monitors

    NASA Astrophysics Data System (ADS)

    Dolenc, I.

    2010-04-01

    The primary goal of ATLAS Beam Condition Monitor (BCM) and Beam Loss Monitor (BLM) is to protect the ATLAS Inner Detector against damaging LHC beam incidents by initiating beam abort in case of beam failures. Poly-crystalline Chemical Vapour Deposition (pCVD) diamond was chosen as the sensor material for both systems. ATLAS BCM will provide real-time monitoring of instantaneous particle rates close to the interaction point (IP) of ATLAS spectrometer. Using fast front-end and signal processing electronics the time-of-flight and pulse amplitude measurements will be performed to distinguish between normal collisions and background events due to natural or accidental beam losses. Additionally, BCM will also provide coarse relative luminosity information. A second system, the ATLAS BLM, is an independent system which was recently added to complement the BCM. It is a current measuring system and was partially adopted from the BLM system developed by the LHC beam instrumentation group with pCVD diamond pad sensors replacing the ionisation chambers. The design of both systems and results of operation in ATLAS framework during the commissioning with cosmic rays will be reported in this contribution.

  9. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    Electrostatic collection of a high resistivity aerosol using the Electron Beam Precipitator (EBP) collecting section was demonstrated during this reporting period (Quarter Five). Collection efficiency experiments were designed to confirm and extend some of the work performed under the previous contract. The reason for doing this was to attempt to improve upon the collection efficiency of the precipitator alone when testing with a very high resistivity, moderate-to-high concentration dust load. From the collector shakedown runs, a set of suitable operational parameters were determined for the downstream electrostatic collecting sections of the Electron Beam Precipitator wind tunnel. These parameters, along with those for the MINACC electron beam, will generally be held constant while the numerous precharging parameters are varied to produce an optimum particle charge. The electrostatic collector experiments were part of a larger, comprehensive investigation on electron beam precharging of high resistivity aerosol particles performed during the period covered by Quarters Five, Six, and Seven. This body of work used the same experimental apparatus and procedures and the experimental run period lasted nearly continuously for six months. A summary of the Quarter Five work is presented in the following paragraphs. Section II-A of TPR 5 contains a report on the continuing effort which was expended on the modification and upgrade of the pulsed power supply and the monitoring systems prior to the initiation of the electron beam precharging experimental work.

  10. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully demonstrated during this reporting period (Quarters Five and Six). The initial E-beam particle precharging experiments completed this term were designed to confirm and extend some of the work performed under the previous contract. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high concentration dust load. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will generally be held constant while the precharging parameters are varied to produce an optimum particle charge.

  11. The AGS Booster beam loss monitor system

    SciTech Connect

    Beadle, E.R.; Bennett, G.W.; Witkover, R.L.

    1991-01-01

    A beam loss monitor system has been developed for the Brookhaven National Laboratory Booster accelerator, and is designed for use with intensities of up to 1.5 {times} 10{sup 13} protons and carbon to gold ions at 50-3 {times} 10{sup 9} ions per pulse. This system is a significant advance over the present AGS system by improving the sensitivity, dynamic range, and data acquisition. In addition to the large dynamic range achievable, it is adaptively shifted when high losses are detected. The system uses up to 80 argon filled ion chambers as detectors, as well as newly designed electronics for processing and digitizing detector outputs. The hardware simultaneously integrates each detector output, interfaces to the beam interrupt systems, and digitizes all 80 channels to 21 bits at 170 KHz. This paper discuses the design, construction, and operation of the system. 4 refs., 2 figs.

  12. RHIC low energy beam loss projections

    SciTech Connect

    Satogata,T.

    2009-08-01

    For RHIC low-energy operations, we plan to collide Au beams with energies of E = 2:5-10 GeV/u in RHIC. Beams are injected into collision optics, and RHIC runs as a storage ring with no acceleration. At these low energies, observed beam lifetimes are minutes, with measured beam lifetimes of 3.5 min (fast) and 50 min (slow) at E=4.6 GeV/u in the March 2008 test run. With these lifetimes we can operate RHIC as a storage ring to produce reasonable integrated luminosity. This note estimates beam losses and collimator/dump energy deposition in normal injection modes of low energy operation. The main question is whether a normal injection run is feasible for an FY10 10-15 week operations run from a radiation safety perspective. A peripheral question is whether continuous injection operations is feasible from a radiation safety perspective. In continuous injection mode, we fill both rings, then continuously extract and reinject the oldest bunches that have suffered the most beam loss to increase the overall integrated luminosity. We expect to gain a factor of 2-3 in integrated luminosity from continuous injection at lowest energies if implemented[1]. Continuous injection is feasible by FY11 from an engineering perspective given enough effort, but the required extra safety controls and hardware dose risk make it unappealing for the projected luminosity improvement. Low-energy electron cooling will reduce beam losses by at least an order of magnitude vs normal low-energy operations, but low energy cooling is only feasible in the FY13 timescale and therefore beyond the scope of this note. For normal injection low energy estimates we assume the following: (1) RHIC beam total energies are E=2.5-10 GeV/u. (Continuous injection mode is probably unnecessary above total energies of E=7-8 GeV/u.); (2) RHIC operates only as a storage ring, with no acceleration; (3) 110 bunches of about 0.5-1.0 x 10{sup 9} initial bunch intensities (50-100% injection efficiency, likely conservative

  13. Beam Loss Monitors for NSLS-II Storage Ring

    SciTech Connect

    Kramer, S.L.; Cameron, P.

    2011-03-28

    The shielding for the NSLS-II storage ring will provide adequate protection for the full injected beam losses in two cells of the ring around the injection point, but the remainder of the ring is shielded for lower losses of <10% top-off injection beam current. This will require a system to insure that beam losses do not exceed levels for a period of time that could cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring system will have beam loss monitors that will measure where the beam charge is lost around the ring, to warn operators if losses approach the design limits. To measure the charge loss quantitatively, we propose measuring the electron component of the shower as beam electrons hit the vacuum chamber (VC) wall. This will be done using the Cerenkov light as electrons transit ultra-pure fused silica rods placed close to the inner edge of the VC. The entire length of the rod will collect light from the electrons of the spread out shower resulting from the small glancing angle of the lost beam particles to the VC wall. The design and measurements results of the prototype Cerenkov BLM will be presented.

  14. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    During the previous reporting period (Quarter Six), the charging and removal of a fine, high resistivity aerosol using the advanced technology of electron beam precipitation was successfully accomplished. Precharging a dust stream circulating through the EBP wind tunnel produced collection efficiency figures of up to 40 times greater than with corona charging and collection alone (Table 1). The increased system collection efficiency attributed to electron beam precharging was determined to be the result of increased particle charge. It was found that as precharger electric field was raised, collection efficiency became greater. In sequence, saturation particle charge varies with the precharger electric field strength, particle migration velocity varies with the precharger and collector electric field, and collection efficiency varies with the migration velocity. Maximizing the system collection efficiency requires both a high charging electric field (provided by the E-beam precharger), and a high collecting electric field (provided by the collector wires and plates). Because increased particle collection efficiency is directly attributable to higher particle charge, the focus of research during Quarter Seven was shifted to learning more about the actual charge magnitude on the aerosol particles. Charge determinations in precipitators have traditionally been made on bulk dust samples collected from the flue gas stream, which gives an overall charge vs. mass (Q/M) ratio measurement. More recently, techniques have been developed which allow the measurement of the charge on individual particles in a rapid and repeatable fashion. One such advanced technique has been developed at FSU for use in characterizing the electron beam precharger.

  15. Electron beam generation in Tevatron electron lenses

    SciTech Connect

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  16. Beam cooling with ionization losses

    NASA Astrophysics Data System (ADS)

    Rubbia, C.; Ferrari, A.; Kadi, Y.; Vlachoudis, V.

    2006-12-01

    This novel type of Ionization Cooling is an effective method in order to enhance the (strong) interaction probability of slow (few MeV/A) ions stored in a small ring. The many traversals through a thin target strongly improve the nuclear reaction rate with respect to a single-pass collision, in a steady configuration in which ionization losses of a target "foil" (typically few hundred μg/cm 2 thick) are continuously recovered by an RF-cavity. With a flat foil, betatron oscillations are "cooled", but the momentum spread diverges exponentially, since faster (slower) particles ionize less (more) than the average. In order to "cool" the beam also longitudinally, a chromaticity has to be introduced with a wedge-shaped "foil". Therefore, in equilibrium conditions, multiple scattering and straggling are both balanced by phase-space compression. Classic Ionization Cooling [A.A. Kolomensky, Atomnaya Energiya 19 (1965) 534; Yu.M. Ado, V.I. Balbekov, Atomnaya Energiya 31(1) (1971) 40-44; A.N. Skrinsky, V.V. Parkhomchuk, Sov. J. Nucl. Phys. 12 (1981) 3; E.A. Perevendentsev, A.N. Skrinsky, in: Proceedings of the 12th International Conference on High Energy Acceleration, 1983, p. 485] is designed to cool the direct beam until it has been compressed and extracted for further use. In practice, this limits its applicability to non-interacting muon beams. Instead, in this new method, applicable to strongly interacting collisions, the circulating beam is not extracted. Ionization cooling provides "in situ" storage of the beam until it is converted by a nuclear interaction with the target. Simple reactions—for instance 7Li+D→8Li+p—are more favourably produced in the "mirror" kinematical frame, namely with a heavier ion colliding against a gas-jet D 2 target. Kinematics is generally very favourable, with angles in a narrow angular cone (around ˜10° for the mentioned reaction) and with a relatively concentrated outgoing energy spectrum which allows an efficient collection of 8

  17. Landsat electron beam recorder

    NASA Astrophysics Data System (ADS)

    Grosso, P. F.; Whitley, J. P.

    A minicomputer-controlled electron beam recorder (EBR) presently in use at the Brazilian Government's Institute De Pesquisas Espaclais (INPE) satellite ground station is described. This 5-in.-film-size EBR is used to record both Landsat and SPOT satellite imagery in South America. A brief electron beam recorder technology review is presented. The EBR is capable of recording both vector and text data from computer-aided design, publishing, and line art systems and raster data from image scanners, raster image processors (RIPS), halftone/screen generators, and remote image sensors. A variety of image formats may be recorded on numerous film sizes (16 mm, 35 mm, 70 mm, 105 mm, 5-in, 5.5-in., and 9.5-in.). These recordings are used directly or optically enlarged depending on the final product.

  18. Measuring electron beam polarization

    NASA Astrophysics Data System (ADS)

    Napolitano, J.

    1992-12-01

    A two-hour discussion session was held on electron beam polarimetry including representatives from Halls A, B, and C. Presentations included a description of an existing Mo/ller polarimeter at the MIT-Bates laboratory, plans for Mo/ller polarimeters in Halls A and B, and a Compton (i.e., ``laser backscatter'') polarimeter planned for Hall A. This paper is a summary of those discussions.

  19. Optics of electron beam in the Recycler

    SciTech Connect

    Burov, Alexey V.; Kazakevich, G.; Kroc, T.; Lebedev, V.; Nagaitsev, S.; Prost, L.; Pruss, S.; Shemyakin, A.; Sutherland, M.; Tiunov, M.; Warner, A.; /Fermilab /Novosibirsk, IYF

    2005-11-01

    Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of {approx}0.2 A or higher DC electron beam have to be parallel in the cooling section, within {approx}0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as {approx}0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analyzed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved.

  20. Individual Beam Size And Length Measurements at the SLC Interaction Point Derived From the Beam Energy Loss During a Beam Beam Deflection Scan

    SciTech Connect

    Raimondi, P.; Field, R.Clive; Phinney, N.; Ross, M.C.; Slaton, T.; Traller, R.; /SLAC

    2011-08-26

    At the Interaction Point (IP) of the SLC Final Focus, beam-beam deflection scans routinely provide a measurement of the sum in quadrature of the electron and positron transverse beam sizes, but no information on the individual beam sizes. During the 1996 SLC run, an upgrade to the Final Focus beam position monitor system allowed a first measurement of the absolute beam energy loss of both beams on each step of the deflection scan. A fit to the energy loss distributions of the two beams provides a measurement not only of the individual transverse beam sizes at the IP but also of the individual bunch lengths.

  1. Compact electron beam focusing column

    SciTech Connect

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  2. Electron Beams for Fast Ignition

    NASA Astrophysics Data System (ADS)

    Fonseca, R. A.; Davies, J. R.; Silva, L. O.

    2004-11-01

    In the fast ignitor scenario an intense relativistic electron beam is used to deposit energy inside the fuel target and trigger the thermonuclear reaction. This electron beam is produced on the outer plasma layer of the target by the interaction of an ultra-intense laser. The energy transfer from the laser to the electron beam, and the stability of the propagation of the electron beam are crucial for a successful fast ignitor scheme. We have used three-dimensional particle-in-cell simulations using the OSIRIS.framework [1] to explore the self-consistent generation of high current electron beams by ultra intense lasers. Novel laser pulse configurations are explored in order to generate electron beams transporting more energy, and capable of avoiding the deleterious effects of collisionless instabilities in the plasma corona. [1] R. A. Fonseca et al., LNCS 2331, 342-351, (Springer, Heidelberg, 2002);

  3. BEAM LOSS MECHANISMS IN HIGH INTENSITY LINACS

    SciTech Connect

    Plum, Michael A

    2012-01-01

    In the present operation of the Oak Ridge Spallation Neutron Source, 60-Hz, 825-us H beam pulses are accelerated to 910 MeV, and then compressed to less than a microsecond in the storage ring, to deliver 1 MW of beam power to the spallation target. The beam loss in the superconducting portion of the linac is higher than expected, and it has shown a surprising counter-intuitive correlation with quadrupole magnetic fields, with a loss minimum occurring when the quadrupoles are set to approximately half their design values. This behavior can now be explained by a recent set of experiments that show the beam loss is primarily due to intra-beam stripping. Beam halo is another important beam loss contributor, and collimation in the 2.5 MeV Medium Energy Beam Transport has proven to be an effective mitigation strategy. In this presentation, we will summarize these and other beam loss mechanisms that are important for high intensity linacs.

  4. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)

  5. Linac Coherent Light Source Electron Beam Collimation

    SciTech Connect

    Wu, J.; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Schmerge, J.F.; /SLAC

    2007-04-27

    This paper describes the design and simulation of the electron beam collimation system in the Linac Coherent Light Source (LCLS). Dark current is expected from the gun and some of the accelerating cavities. Particle tracking of the expected dark current through the entire LCLS linac, from gun through FEL undulator, is used to estimate final particle extent in the undulator as well as expected beam loss at each collimator or aperture restriction. A table of collimators and aperture restrictions is listed along with halo particle loss results, which includes an estimate of average continuous beam power lost. In addition, the transverse wakefield alignment tolerances are calculated for each collimator.

  6. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Quarter Eight of the Pulsed Electron Precharging project was principally devoted to the operation of the E-beam precharger in the pulsed anode mode. We shall first briefly review the motivation for carrying out this project and the experimental approach used. The combustion of low sulfur coal for the purpose of generating electric energy in power plants results in the production of a flue gas containing very high resistivity fly ash. This fly ash is not easily collected by conventional electrostatic precipitators due to the large electric potential difference which develops across the layer of fly ash on the collector plate. If this layer of collected material is allowed to reach a thickness as great as is normally desirable before rapping'' the plates, then the collected fly ash is subject to re-entrainment into the flue gas stream due to back-corona. The back-corona corona problem is described more fully in the next section of this report. This re-entrainment problem can be eliminated through reduction of the voltage applied across the high voltage wires and the grounded plates of the electrostatic precipitator. This is not a good solution to the problem since the charging capability and collection efficiency of the precipitator system are both greatly reduced at the low voltages required to avoid the back-corona problem. Another approach to solving the problems inherent in collecting high resistivity fly ash in an electrostatic precipitator is to decouple the charging and collecting functions. At FSU an electron beam precharger is employed directly before (upstream in the flue gas pathway) the precipitator. This precharger can be optimized for the charging function while the downstream collector can be optimized for collection of the high-resistivity fly ash.

  7. Beam Loss Control for the NSLS-II Storage Ring

    SciTech Connect

    Kramer, S.L.; Choi, J.

    2011-03-28

    The shielding design for the NSLS-II storage ring is designed for the full injected beam losses in two periods of the ring around the injection point, but for the remainder of the ring its shielded for {le} 10% top-off injection beam. This will require a system to insure that beam losses do not exceed these levels for time sufficient to cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring (LCM) system will control the beam losses to the more heavily shielded injection region while monitoring the losses outside this region. To achieve this scrapers are installed in the injection region to intercept beam particles that might be lost outside this region. The scrapers will be thin (< 1Xrad) that will allow low energy electrons to penetrate and the subsequent dipole will separate them from the stored beam. These thin scrapers will reduce the radiation from the scraper compared to thicker scrapers. The dipole will provide significant local shielding for particles that hit inside the gap and a source for the loss monitor system that will measure the amount of beam lost in the injection region.

  8. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  9. Focusing Electron Beams at SLAC.

    ERIC Educational Resources Information Center

    Taylor, Richard L.

    1993-01-01

    Describes the development of a set of magnets that focus high-energy electron and positron beams causing them to collide, annihilate each other, and generate new particles. Explains how dipoles bend the beam, how quadrupoles focus the beam, how the focal length is calculated, and the superconducting final focus. (MDH)

  10. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    SciTech Connect

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  11. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring.

    PubMed

    Kumar, Pradeep; Ghodke, A D; Karnewar, A K; Holikatti, A C; Yadav, S; Puntambekar, T A; Singh, G; Singh, P

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  12. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Quarter Nine of the Pulsed Electron Precharging project was principally devoted to reviewing and interpreting the experimental results obtained during the past eight quarters of the project. We shall first briefly review the motivation for carrying out this project and the experimental approach used. The combustion of low sulfur coal for the purpose of generating electric energy in power plants results in the production of a flue gas containing very high resistivity fly ash. This fly ash is not easily collected by conventional electrostatic precipitators due to the large electric potential difference which develops across the layer of fly ash on the collector plate. If this layer of collected material is allowed to reach a thickness as great as is nominally desirable before rapping'' the plates, then the collected fly ash is subject to re-entrainment into the flue gas stream due to back-corona. The back-corona corona problem is described more fully in the next section of this report. This re-entrainment problem can be eliminated through reduction of the voltage applied across the high voltage wires and the grounded plates of the electrostatic precipitator. This is not a good solution to the problem since the charging capability and collection efficiency of the precipitator system are both greatly reduced at the low voltages and resultant small corona currents required to avoid the back-corona problem. Another approach to solving the problems inherent in collecting high resistivity fly ash in an electrostatic precipitator is to decouple the charging and collecting functions. At FSU an electron beam precharger is employed directly before (upstream in the flue gas pathway) the precipitator.

  13. Experimental demonstration of colliding beam lifetime improvement by electron lenses

    SciTech Connect

    Shiltsev, Vladimir; Alexahin, Yuri; Kamerdzhiev, Vsevolod; Kuznetsov, Gennady; Zhang, Xiao-Long; Bishofberger, Kip; /Los Alamos

    2007-10-01

    We report successful application of space-charge forces of a low-energy electron beam for improvement of particle lifetime determined by beam-beam interaction in high-energy collider. In our experiments, an electron lens, a novel instrument developed for the beam-beam compensation, was set on a 980-GeV proton bunch in the Tevatron proton-antiproton collider. The proton bunch losses due to its interaction with antiproton beam were reduced by a factor of 2 when the electron lens was operating. We describe the principle of electron lens operation and present experimental results.

  14. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  15. INCREASED UNDERSTANDING OF BEAM LOSSES FROM THE SNS LINAC PROTON EXPERIMENT

    SciTech Connect

    Aleksandrov, Alexander V; Shishlo, Andrei P; Plum, Michael A; Lebedev, Valerie; Laface, Emanuele; Galambos, John D

    2013-01-01

    Beam loss is a major concern for high power hadron accelerators such as the Spallation Neutron Source (SNS). An unexpected beam loss in the SNS superconducting linac (SCL) was observed during the power ramp up and early operation. Intra-beam-stripping (IBS) loss, in which interactions between H- particles within the accelerated bunch strip the outermost electron, was recently identified as a possible cause of the beam loss. A set of experiments using proton beam acceleration in the SNS linac was conducted, which supports IBS as the primary beam loss mechanism in the SNS SCL.

  16. Electron beams in solar flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Dennis, Brian R.; Benz, Arnold O.

    1994-01-01

    A list of publications resulting from this program includes 'The Timing of Electron Beam Signatures in Hard X-Ray and Radio: Solar Flare Observations by BATSE/Compton Gamma-Ray Observatory and PHOENIX'; 'Coherent-Phase or Random-Phase Acceleration of Electron Beams in Solar Flares'; 'Particle Acceleration in Flares'; 'Chromospheric Evaporation and Decimetric Radio Emission in Solar Flares'; 'Sequences of Correlated Hard X-Ray and Type 3 Bursts During Solar Flares'; and 'Solar Electron Beams Detected in Hard X-Rays and Radiowaves.' Abstracts and reprints of each are attached to this report.

  17. DATA ACQUISITION FOR SNS BEAM LOSS MONITOR SYSTEM

    SciTech Connect

    YENG,Y.GASSNER,D.HOFF,L.WITKOVER,R.

    2003-10-13

    The Spallation Neutron Source (SNS) beam loss monitor system uses VME based electronics to measure the radiation produced by lost beam. Beam loss signals from cylindrical argon-filled ion chambers and neutron detectors will be conditioned in analog front-end (AFE) circuitry. These signals will be digitized and further processed in a dedicated VME crate. Fast beam inhibit and low-level, long-term loss warnings will be generated to provide machine protection. The fast loss data will have a bandwidth of 35kHz. While the low level, long-term loss data will have much higher sensitivity. This is further complicated by the 3 decade range of intensity as the Ring accumulates beam. Therefore a bandwidth of 100kHz and dynamic range larger than 21 bits data acquisition system will be required for this purpose. Based on the evaluation of several commercial ADC modules in preliminary design phase, a 24 bits Sigma-Delta data acquisition VME bus card was chosen as the SNS BLM digitizer. An associated vxworks driver and EPICS device support module also have been developed at BNL. Simulating test results showed this system is fully qualified for both fast loss and low-level, long-term loss application. The first prototype including data acquisition hardware setup and EPICS software (running database and OPI clients) will be used in SNS Drift Tube Linac (DTL) system commissioning.

  18. Neutral Beam Ion Loss Modeling for NSTX

    SciTech Connect

    D. Mikkelsen; D.S. Darrow; L. Grisham; R. Akers; S. Kaye

    1999-06-01

    A numerical model, EIGOL, has been developed to calculate the loss rate of neutral beam ions from NSTX and the resultant power density on the plasma facing components. This model follows the full gyro-orbit of the beam ions, which can be a significant fraction of the minor radius. It also includes the three-dimensional structure of the plasma facing components inside NSTX. Beam ion losses from two plasma conditions have been compared: {beta} = 23%, q{sub 0} = 0.8, and {beta} = 40%, q{sub 0} = 2.6. Global losses are computed to be 4% and 19%, respectively, and the power density on the rf antenna is near the maximum tolerable levels in the latter case.

  19. Suprathermal electrons produced by beam-plasma-discharge

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.

    1982-01-01

    Experiments conducted with a low energy plasma lens, HARP, in the electron beam of the large vacuum chamber at Johnson Space Center indicate that an enhanced population of 50 to 300 volt electrons appear when the beam goes into the Beam-Plasma Discharge (BPD) mode. Below the BPD instability the electron distribution appears to be characterized as non-energized single particle scattering and energy loss. At 100 cm from the beam core in the BPD mode the fluxes parallel to the beam are reduced by a factor of 20 with respect to the fluxes at 25 cm. Some evidence for isotropy near the beam core is presented.

  20. PDX neutral-beam reionization losses

    SciTech Connect

    Kugel, H.W.; Dylla, H.F.; Eubank, H.P.; Kozub, T.A.; Moore, R.; Schilling, G.; Stewart, L.D.; von Halle, A.; Williams, M.D.

    1982-02-01

    Reionization losses for 1.5 MW H/sup 0/ and 2 MW D/sup 0/ neutral beams injected into the PDX tokamak were studied using pressure gauges, photo-transistors, thermocouples, surface shielding, and surface sample analysis. Considerable outgassing of conventionally prepared 304SS ducts occurred during initial injections and gradually decreased with the cumulative absorption of beam power. Reionization power losses are presently about 5% in the ducts and about 12% total for a beamline including the duct. Present duct pressures are attributed primarily to gas from the ion source and neutralizer with much smaller contributions from residual wall desorption. Physical mechanisms for the observed duct outgassing are discussed.

  1. Dual-Cathode Electron-Beam Source

    NASA Technical Reports Server (NTRS)

    Bradley, James G.; Conley, Joseph M.; Wittry, David B.

    1988-01-01

    Beam from either cathode electromagnetically aligned with exit port. Electron beam from either of two cathodes deflected by magnetic and electric fields to central axis. Mechanical alignment of beam easy because cathode axes, anode apertures, and electron trajectories coplanar. Applications where uninterrupted service needed: scanning electron microscopes, transmission electron microscopes, electron-beam lithography equipment, Auger instruments, and microfocused x-ray sources.

  2. Electron beam damage in oxides: a review

    NASA Astrophysics Data System (ADS)

    Jiang, Nan

    2016-01-01

    This review summarizes a variety of beam damage phenomena relating to oxides in (scanning) transmission electron microscopes, and underlines the shortcomings of currently popular mechanisms. These phenomena include mass loss, valence state reduction, phase decomposition, precipitation, gas bubble formation, phase transformation, amorphization and crystallization. Moreover, beam damage is also dependent on specimen thickness, specimen orientation, beam voltage, beam current density and beam size. This article incorporates all of these damage phenomena and experimental dependences into a general description, interpreted by a unified mechanism of damage by induced electric field. The induced electric field is produced by positive charges, which are generated from excitation and ionization. The distribution of the induced electric fields inside a specimen is beam-illumination- and specimen-shape- dependent, and associated with the experimental dependence of beam damage. Broadly speaking, the mechanism operates differently in two types of material. In type I, damage increases the resistivity of the irradiated materials, and is thus divergent, resulting in phase separation. In type II, damage reduces the resistivity of the irradiated materials, and is thus convergent, resulting in phase transformation. Damage by this mechanism is dependent on electron-beam current density. The two experimental thresholds are current density and irradiation time. The mechanism comes into effect when these thresholds are exceeded, below which the conventional mechanisms of knock-on and radiolysis still dominate.

  3. Electron beam damage in oxides: a review.

    PubMed

    Jiang, Nan

    2016-01-01

    This review summarizes a variety of beam damage phenomena relating to oxides in (scanning) transmission electron microscopes, and underlines the shortcomings of currently popular mechanisms. These phenomena include mass loss, valence state reduction, phase decomposition, precipitation, gas bubble formation, phase transformation, amorphization and crystallization. Moreover, beam damage is also dependent on specimen thickness, specimen orientation, beam voltage, beam current density and beam size. This article incorporates all of these damage phenomena and experimental dependences into a general description, interpreted by a unified mechanism of damage by induced electric field. The induced electric field is produced by positive charges, which are generated from excitation and ionization. The distribution of the induced electric fields inside a specimen is beam-illumination- and specimen-shape- dependent, and associated with the experimental dependence of beam damage. Broadly speaking, the mechanism operates differently in two types of material. In type I, damage increases the resistivity of the irradiated materials, and is thus divergent, resulting in phase separation. In type II, damage reduces the resistivity of the irradiated materials, and is thus convergent, resulting in phase transformation. Damage by this mechanism is dependent on electron-beam current density. The two experimental thresholds are current density and irradiation time. The mechanism comes into effect when these thresholds are exceeded, below which the conventional mechanisms of knock-on and radiolysis still dominate.

  4. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  5. Beam loss monitor system for the SSC

    SciTech Connect

    Johnson, R.G.; Mokhov, N.V.

    1993-10-01

    At full intensity the energy contained in each beam of the Superconducting Super Collider (SSC) is 400 MJ. The loss of a small fraction of that beam has the potential to cause magnet quenches or even severe damage to Collider components. To help protect the machine a sensitive and reliable beam loss monitor (BLM) system must be designed and built. In fact, BLM systems will be needed for all the accelerators of the SSC. The BLM system requirements for each of these accelerators will be discussed, but emphasis will be placed on the Collider. The discussion will include the preliminary design of BLM systems, the considerations that led to these designs, the calculations that were performed in development of the designs, and the problems that remain to be solved. A major tool in the design process has been a series of Monte Carlo calculations that were used to estimate beam loss distributions for the Collider arcs, the interaction regions, and the west utility region. These calculations were also used to study the fluence as a function of energy, the particle content, and the dose rate at selected positions. Detailed considerations such as detector spacing and sensitivity, loss fluctuations, reliability, and maintainability will be discussed. The proposed preliminary BLM system design for the Collider uses a radiation-hard, solid-state ionization detector and fast analog-to-digital conversion. Details of this design and relevant options will be discussed.

  6. Electron Beam Materials Irradiators

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.

    2012-06-01

    Radiation processing is a well established method for enhancing the properties of materials and commercial products by treating them with ionizing energy in the form of high-energy electrons, X-rays, and gamma rays. Beneficial effects include polymerizing, cross-linking, grafting and degrading plastics, sterilizing single-use medical devices, disinfecting and disinfesting fresh foods, purifying drinking water, treating wastewater and other toxic waste materials that harm the environment, and many other applications that are still being evaluated. Industrial electron accelerators of several types have been developed and are being used for these applications. More than 1800 electron accelerators are presently installed in facilities worldwide for these purposes.

  7. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    SciTech Connect

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  8. Electron beam controller. [using magnetic field to refocus spent electron beam in microwave oscillator tube

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G. (Inventor)

    1973-01-01

    An electron beam device which extracts energy from an electron beam before the electrons of the beam are captured by a collector apparatus is described. The device produces refocusing of a spent electron beam by minimizing tranverse electron velocities in the beam where the electrons, having a multiplicity of axial velocities, are sorted at high efficiency by collector electrodes.

  9. Electron beam modeling on LTX

    NASA Astrophysics Data System (ADS)

    Szalkowski, Gregory; Majeski, Richard; Schmitt, John

    2014-10-01

    The lithium tokamak experiment (LTX) is a low aspect ratio tokamak with a steel clad copper shell that can be heated to 300-400 °C and coated with lithium. The lithium coating has been shown to decrease impurities in the plasma and decrease the recycling coefficient, improving plasma performance. The coating is applied to the walls by heating the shells, then using an electron beam to evaporate a pool of lithium located at the bottom of the shell. The beam is steered using the magnetic field generated by the field coils. This method allows for rapid evaporation of the lithium, producing a 50-100 nm coating in approximately 5 minutes. The current electron beam system can only coat half of the shell surface. A new electron beam system has been installed on LTX to coat the remaining shell surface. A model of this electron gun has been created using the AMaze program series (Field Precision LCC). The model will be used to find the magnetic fields needed to steer the electron beam produced by the gun to the lithium pool. The model will also show the electropotential produced both at the electron gun head and in the vessel. The model may also be used to find the dispersion of the beam and therefore the effective power density of the beam as it impacts the lithium pool. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344 and in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship.

  10. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect

    Becker, Reinard; Kester, Oliver

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  11. Beam Studies with Electron Columns

    SciTech Connect

    Shiltsev, V.; Valishev, A.; Kuznetsov, G.; Kamerdzhiev, V.; Romanov, A.; /Novosibirsk, IYF

    2009-04-01

    We report preliminary results of experimental studies of 'electron columns' in the Tevatron and in a specialized test setup. In the Tevatron, a beam of 150 GeV protons ionizes residual gas and ionization electrons are stored in an electrostatic trap immersed into strong longitudinal magnetic field. Shifts of proton betatron frequencies are observed. In the test setup, we observe effects pointing to accumulation and escape of ionization electrons.

  12. Beam Characterizations at Femtosecond Electron Beam Facility

    SciTech Connect

    Rimjaem, S.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC

    2006-03-17

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond (fs) electron bunches. Theses short bunches are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet (a-magnet) serving as a magnetic bunch compressor, and a SLAC-type linear accelerator (linac). The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed in this paper.

  13. Cylindrical electron beam diode

    DOEpatents

    Bolduc, Paul E.

    1976-01-01

    A diode discharge device may include a tubular anode concentrically encircled by and spaced from a tubular cathode electrode with ends intermediate the ends of said anode electrode, and a metal conductive housing having a tubular wall disposed around the cathode electrode with end walls connected to the anode electrode. High energy electron current coupling is through an opening in the housing tubular wall to a portion of the cathode electrode intermediate its ends. Suitable utilization means may be within the anode electrode at positions to be irradiated by electrons emitted from the cathode electrode and transmitted through the anode walls.

  14. Electron beam cutting

    DOEpatents

    Mochel, M.E.; Humphreys, C.J.

    1985-04-02

    A method for the cutting of holes 20 Angstroms in diameter, or lines 20 Angstroms wide in a material having positive ionic conduction by the use of a focused electron probe is described. The holes and lines are stable under ambient conditions. 2 figs.

  15. Electron beam cutting

    DOEpatents

    Mochel, Margaret E.; Humphreys, Colin J.

    1985-04-02

    A method for the cutting of holes 20 Angstroms in diameter, or lines 20 Angstroms wide in a material having positive ionic conduction by the use of a focused electron probe is described. The holes and lines are stable under ambient conditions.

  16. Shimmed electron beam welding process

    DOEpatents

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  17. Determination of mean free path for energy loss and surface oxide film thickness using convergent beam electron diffraction and thickness mapping: a case study using Si and P91 steel.

    PubMed

    Mitchell, D R G

    2006-11-01

    Determining transmission electron microscope specimen thickness is an essential prerequisite for carrying out quantitative microscopy. The convergent beam electron diffraction method is highly accurate but provides information only on the small region being probed and is only applicable to crystalline phases. Thickness mapping with an energy filter is rapid, maps an entire field of view and can be applied to both crystalline and amorphous phases. However, the thickness map is defined in terms of the mean free path for energy loss (lambda), which must be known in order to determine the thickness. Convergent beam electron diffraction and thickness mapping methods were used to determine lambda for two materials, Si and P91 steel. These represent best- and worst-case scenario materials, respectively, for this type of investigation, owing to their radically different microstructures. The effects of collection angle and the importance of dynamical diffraction contrast are also examined. By minimizing diffraction contrast effects in thickness maps, reasonably accurate (+/-15%) values of lambda were obtained for P91 and accuracies of +/-5% were obtained for Si. The correlation between the convergent beam electron diffraction-derived thickness and the log intensity ratios from thickness maps also permits estimation of the thickness of amorphous layers on the upper and lower surfaces of transmission electron microscope specimens. These estimates were evaluated for both Si and P91 using cross-sectional transmission electron microscopy and were found to be quite accurate. PMID:17204066

  18. Hollow Electron Beam Collimator: R and D Status Report

    SciTech Connect

    Stancari, G.; Drozhdin, A.; Kuznetsov, G.; Shiltsev, V.; Valishev, A.; Vorobiev, L.; Kabantsev, A.

    2010-11-04

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  19. Development of hollow electron beams for proton and ion collimation

    SciTech Connect

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.; /UC, San Diego

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  20. SLC polarized beam source electron optics design

    SciTech Connect

    Eppley, K.R.; Lavine, T.L.; Early, R.A.; Herrmannsfeldt, W.B.; Miller, R.H.; Schultz, D.C.; Spencer, C.M.; Yeremian, A.D.

    1991-05-01

    This paper describes the design of the beam-line from the polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10{sup {minus}11}-Torr-range pressure for adequate quantum efficiency and longevity. The photocathode is illuminated by 3-nsec-long laser pulses. The quality of the optics for the 160-kV beam is crucial since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line consists of a differential pumping region isolated by a pair of valves. Focusing is provided by a pair of Helmholtz coils and by several iron-encased solenoidal lenses. Our optics design is based on beam transport simulations using 2{1/2}-D particle-in-cell codes to model the gun and to solve the fully-relativistic time-dependent equations of motion in three dimensions for electrons in the presence of azimuthally symmetric electromagnetic fields. 6 refs., 6 figs.

  1. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  2. Purification of Niobium by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Sankar, M.; Mirji, K. V.; Prasad, V. V. Satya; Baligidad, R. G.; Gokhale, A. A.

    2016-06-01

    Pure niobium metal, produced by alumino-thermic reduction of niobium oxide, contains various impurities which need to be reduced to acceptable levels to obtain aerospace grade purity. In the present work, an attempt has been made to refine niobium metals by electron beam drip melting technique to achieve purity confirming to the ASTM standard. Input power to the electron gun and melt rate were varied to observe their combined effect on extend of refining and loss of niobium. Electron beam (EB) melting is shown to reduce alkali metals, trace elements and interstitial impurities well below the specified limits. The reduction in the impurities during EB melting is attributed to evaporation and degassing due to the combined effect of high vacuum and high melt surface temperature. The % removal of interstitial impurities is essentially a function of melt rate and input power. As the melt rate decreases or input power increases, the impurity levels in the solidified niobium ingot decrease. The EB refining process is also accompanied by considerable amount of niobium loss, which is attributed to evaporation of pure niobium and niobium sub-oxide. Like other impurities, Nb loss increases with decreasing melt rate or increase in input power.

  3. APPARATUS FOR ELECTRON BEAM HEATING CONTROL

    DOEpatents

    Jones, W.H.; Reece, J.B.

    1962-09-18

    An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)

  4. Practical Teaching about Electron Beams

    ERIC Educational Resources Information Center

    Strawson, R. J.

    2009-01-01

    If you have seen tubes like the ones we describe here in the back of a cupboard but have been reluctant to use them, now is the time to get them out. The aim of this article is to record the history of teaching about electron beams, particularly with Teltron equipment, and in doing so encourage those schools that are equipped with these tubes to…

  5. Analysis of beam loss induced abort kicker instability

    SciTech Connect

    Zhang W.; Sandberg, J.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Pai, C.; Tan, Y.

    2012-05-20

    Through more than a decade of operation, we have noticed the phenomena of beam loss induced kicker instability in the RHIC beam abort systems. In this study, we analyze the short term beam loss before abort kicker pre-fire events and operation conditions before capacitor failures. Beam loss has caused capacitor failures and elevated radiation level concentrated at failed end of capacitor has been observed. We are interested in beam loss induced radiation and heat dissipation in large oil filled capacitors and beam triggered thyratron conduction. We hope the analysis result would lead to better protection of the abort systems and improved stability of the RHIC operation.

  6. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    SciTech Connect

    Wu, Juhao; Raubenheimer, T.O.; Chao, A.W.; Seryi, A.; Sramek, C.K.; /Rice U.

    2005-06-30

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ''banana effect''). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  7. Quantitative experiments with electrons in a positively charged beam

    SciTech Connect

    Molvik, A W; Vay, J; Covo, M K; Cohen, R; Baca, D; Bieniosek, F; Friedman, A; Leister, C; Lund, S M; Seidl, P; Sharp, W

    2006-12-06

    Intense ion beams are difficult to maintain as non-neutral plasmas. Experiments and simulations are used to study the complex interactions between beam ions and (unwanted) electrons. Such ''electron clouds'' limit the performance of many accelerators. To characterize electron clouds, a number of parameters are measured including: total and local electron production and loss for each of three major sources, beam potential versus time, electron line-charge density, and gas pressure within the beam. Electron control methods include surface treatments to reduce electron and gas emission, and techniques to remove electrons from the beam, or block their capture by the beam. Detailed, self-consistent simulations include beam-transport fields, and electron and gas generation and transport; these compute unexpectedly rich behavior, much of which is confirmed experimentally. For example, in a quadrupole magnetic field, ion and dense electron plasmas interact to produce multi-kV oscillations in the electron plasma and distortions of the beam velocity space distribution, without the system becoming homogeneous or locally neutral.

  8. BEAM LOSS MITIGATION IN THE OAK RIDGE SPALLATION NEUTRON SOURCE

    SciTech Connect

    Plum, Michael A

    2012-01-01

    The Oak Ridge Spallation Neutron Source (SNS) accelerator complex routinely delivers 1 MW of beam power to the spallation target. Due to this high beam power, understanding and minimizing the beam loss is an ongoing focus area of the accelerator physics program. In some areas of the accelerator facility the equipment parameters corresponding to the minimum loss are very different from the design parameters. In this presentation we will summarize the SNS beam loss measurements, the methods used to minimize the beam loss, and compare the design vs. the loss-minimized equipment parameters.

  9. Annular-beam, 17 GHz free-electron maser experiment

    SciTech Connect

    Earley, L.M.; Carlsten, B.E.; Fazio, M.V.

    1997-06-01

    Experiments have been conducted on a 15-17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. The electron beam source was a 1 {mu}s, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacted with the TM{sub 02} and TM{sub 03} mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. This greatly reduced the kinetic energy loss caused by the beam potential depression associated with the space charge which was a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. The experiment was operated in a single shot mode with a large number of diagnostics to measure power, frequency and energy.

  10. Electron Beam Lifetime in SPEAR3: Measurement and Simulation

    SciTech Connect

    Corbett, J.; Huang, X.; Lee, M.; Lui, P.; Sayyar-Rodsari, B.; /Pavilon Tech., Austin

    2007-12-19

    In this paper we report on electron beam lifetime measurements as a function of scraper position, RF voltage and bunch fill pattern in SPEAR3. We then outline development of an empirical, macroscopic model using the beam-loss rate equation. By identifying the dependence of loss coefficients on accelerator and beam parameters, a numerically-integrating simulator can be constructed to compute beam decay with time. In a companion paper, the simulator is used to train a parametric, non-linear dynamics model for the system [1].

  11. Collimation Studies with Hollow Electron Beams

    SciTech Connect

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  12. Beam/seam alignment control for electron beam welding

    DOEpatents

    Burkhardt, Jr., James H.; Henry, J. James; Davenport, Clyde M.

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  13. Quantitative Experiments With Electrons in a Positively Charged Beam

    SciTech Connect

    Molvik, A W; Vay, J; Covo, M K; Cohen, R; Baca, D; Bieniosek, F; Friedman, A; Leister, C; Lund, S M; Seidl, P; Sharp, W

    2006-10-27

    Intense ion beams are an extreme example of, and difficult to maintain as, a non-neutral plasma. Experiments and simulations are used to study the complex interactions between beam ions and (unwanted) electrons. Such ''electron clouds'' limit the performance of many accelerators. To characterize electron clouds, a number of parameters are measured including: total and local electron production and loss for each of three major sources, beam potential versus time, electron line-charge density, and gas pressure within the beam. Electron control methods include surface treatments to reduce electron and gas emission, and techniques to remove, or block, electrons from the beam. Detailed, self-consistent simulations include beam-transport fields, and electron and gas generation and consistent transport, to compute unexpectedly rich behavior, much of which is confirmed experimentally. For example, in a quadrupole magnetic field, ion and dense electron plasmas interact to produce multi-kV oscillations in the electron plasma and distortions of the beam velocity space distribution, without becoming homogenous or locally neutral.

  14. Low Emittance Electron Beam Studies

    SciTech Connect

    Tikhoplav, Rodion

    2006-01-01

    We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*01 mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

  15. Electron-Beam Recombination Lasers

    NASA Astrophysics Data System (ADS)

    Rhoades, Robert Lewis

    1992-01-01

    The first known instance of electron-beam pumping of the 546.1 nm mercury laser is reported. This has been achieved using high-energy electrons to create intense ionization in a coaxial diode chamber containing a mixture of noble gases with a small amount of mercury vapor. Also reported are the results of a study of the 585.3 nm neon laser in He:Ne:Ar mixtures under similar experimental conditions. Both of these lasers are believed to be predominantly pumped by recombination. For the mercury laser, kinetic processes in the partially ionized plasma following the excitation pulse of high-energy electrons should favor the production of atomic mercury ions and molecular ions containing mercury. Subsequent recombination with electrons heavily favors the production of the 7^3S and 6^3 D states of Hg, of which 7^3S is the upper level of the reported laser. For the neon laser, the dominant recombining ion has been previously shown to be Ne_2^{+}. One of the dominant roles of helium in recombination lasers is inferred from the data for the neon laser at low helium concentrations. Helium appears to be necessary for the rapid relaxation of the electron energy which then increases the reaction rates for all known recombination processes thus increasing the pump rate into the upper state.

  16. Adjusting an electron beam for drilling

    NASA Technical Reports Server (NTRS)

    Childress, C. L.

    1980-01-01

    Reticle contains two concentric circles: inner circle insures beam circularity and outer circle is guide to prevent beam from cutting workpiece clamp. Precise measurement of beam and clamp are required with old reticle. New reticle speeds up electron-beam drilling process by eliminating need to rotate eyepiece to make measurements against reticle scale.

  17. Electromagnetic interactions between a fast electron beam and metamaterial cloaks.

    PubMed

    Xu, Jinying; Dong, Yunxia; Zhang, Xiangdong

    2008-10-01

    Relativistic energy loss and photon emission in the interaction of ideal and nonideal metamaterial cloaks with an external electron beam are studied based on the classical electrodynamics. The effects of various imperfect parameters on the efficiency of the cloak are emphasized. The energy-loss spectra and the photon emission for such structures with the different combinations of electron velocity and impact parameter are calculated. It is shown that the efficiency of nonideal electromagnetic cloaks and the effect of various nonideal parameters on the cloak invisibility can be exhibited in the electron energy loss spectroscopy. This means that the properties of cloak can be explored by scanning transmission electron microscopy.

  18. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  19. Fermilab main injector: High intensity operation and beam loss control

    NASA Astrophysics Data System (ADS)

    Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-07-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  20. Beam rotation and shear in a large electron beam diode

    SciTech Connect

    Mansfield, C.R.; Oona, H.; Shurter, R.P.

    1990-01-01

    The time averaged electron beam current distribution of one of the electron guns of the Large Aperture Module (LAM) of the Aurora laser was measured as part of a larger set of experiments designed to study the electron beam transport to and energy deposition in the LAM laser chamber. The LAM laser chamber has a 1-m {times} 1-m aperture and is pumped from two sides along a 2-m length. A 10 ga. stainless steel sheet was placed inside the laser chamber and served multiple purposes. First, it was used to convert high energy electrons into X-rays in order to make radiograms of the electron beam. Second, the sheet was used as a Faraday cup to measure the total beam current. Third, individual Faraday cups were mounted on the plate to sample the time history of the electron beam at various positions. Each of the LAM electron gun diodes produces a beam of 750 kV electrons with a total current of about 500 kA which is relatively uniform over the cathode area of 1 m {times} 2 m. An applied magnetic field of about 1300 Gauss is used to prevent pinch of the beam during beam transport.

  1. Analysis of beam loss mechanism in the Project X linac

    SciTech Connect

    Carneiro, J.-P.; Lebedev, V.; Nagaitsev, S.; Ostiguy, J.-F.; Solyak, N.; /Fermilab

    2011-03-01

    Minimization of the beam losses in a multi-MW H{sup -} linac such as ProjectX to a level below 1 W/m is a challenging task. The impact of different mechanism of beam stripping, including stripping in electric and magnetic fields, residual gas, blackbody radiation and intra-beam stripping, is analyzed. Other sources of beam losses are misalignements of beamline elements and errors in RF fields and phases. We present in this paper requirements for dynamic errors and correction schemes to keep beam losses under control.

  2. Plasma lenses for focusing relativistic electron beams

    SciTech Connect

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-04-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n{sub p} much greater than electron beam density, n{sub b}) or underdense (n{sub p} less than 2 n{sub b}). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated.

  3. Electron beam effects in a UV FEL

    SciTech Connect

    Wong, R.K.; Blau, J.; Colson, W.B.

    1995-12-31

    At the Continuous Electron Beam Accelerator Facility (CEBAF), a free electron laser (FEL) is designed to produce ultraviolet (UV) light. A four-dimensional FEL simulation studies the effects of betatron oscillations, external focusing, and longitudinal pulse compression of the electron beam on the FEL performance.

  4. Characterizing and Controlling Beam Losses at the LANSCE Facility

    SciTech Connect

    Rybarcyk, Lawrence J.

    2012-09-12

    The Los Alamos Neutron Science Center (LANSCE) currently provides 100-MeV H{sup +} and 800-MeV H{sup -} beams to several user facilities that have distinct beam requirements, e.g. intensity, micropulse pattern, duty factor, etc. Minimizing beam loss is critical to achieving good performance and reliable operation, but can be challenging in the context of simultaneous multi-beam delivery. This presentation will discuss various aspects related to the observation, characterization and minimization of beam loss associated with normal production beam operations in the linac.

  5. Towards demonstration of electron cooling with bunched electron beam

    SciTech Connect

    Fedotov, A.

    2012-01-11

    All electron cooling systems which were in operation so far employed electron beam generated with an electrostatic electron gun in DC operating mode, immersed in a longitudinal magnetic field. At low energies magnetic field is also being used to transport electron beam through the cooling section from the gun to the collector. At higher energies (few MeV), it was shown that one can have simpler electron beam transport without continuous magnetic field. Because of a rather weak magnetic field on the cathode and in the cooling section the latter approach was referred to as 'non-magnetized cooling', since there was no suppression of the transverse angular spread of the electron beam with the magnetic field in the cooling section. Such a cooler successfully operated at FNAL (2005-11) at electron beam energy of 4.3 MeV. Providing cooling at even higher energies would be easier with RF acceleration of electron beam, and thus using bunched electron beam for cooling. Significant efforts were devoted to explore various aspects of such bunched electron beam cooling as part of R and D of high-energy electron cooling for RHIC. However, experimental studies of such cooling are still lacking. Establishing this technique experimentally would be extremely useful for future high-energy applications. Presently there is an ongoing effort to build Proof-of-Principle (PoP) experiment of Coherent Electron Cooling (CEC) at RHIC, which promises to be superior to conventional electron cooling for high energies. Since the CEC experiment is based on bunched electron beam and it has sections where electron beam co-propagates with the ion beam at the same velocity, it also provides a unique opportunity to explore experimentally conventional electron cooling but for the first time with a bunched electron beam. As a result, it allows us to explore techniques needed for the high-energy electron cooling such as 'painting' with a short electron beam and control of ion beam distribution under

  6. Rippled-beam free-electron laser

    SciTech Connect

    Carlsten, B.E.

    1997-10-01

    The authors describe a new microwave generation mechanism involving a scalloping annular electron beam. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. Due to nonlinearities in the orbit equation, the interaction can be made autoresonant, where the phase and amplitude of the gain is independent of the beam energy.

  7. Electron-electron interaction in projectile electron loss

    SciTech Connect

    Huelskoetter, H.; Meyerhof, W.E.; Dillard, E.A.; Guardala, N.; Spooner, D.W. ); Feinberg, B. ); Belkacem, A. Sciences Division, Building 71-259, Lawrence Berkeley Laboratory, One Cyclotron Road, Berkeley, CA ); Alonso, J.R.; Krebs, G.F.; McMahan, M.A.; Rude, B.S ); Blumenfeld, L.; Gould, H. ); Rhoades-Brown, M.E. ); Schweppe, J. (Chemical Sciences Division, Building 71-259, Lawrence Berkeley Laboratory, One Cyclotron Road, Berkeley, CA (

    1991-08-01

    In ion-atom collisions where the projectile is ionized, target electrons act not only coherently by screening the target nucleus but they may also act incoherently by directly ejecting a projectile electron. This electron-electron interaction should be relatively most important for targets that have a low nuclear charge, since the cross section for a neutral target is roughly proportional to {ital Z}{sub {ital t}}{sup 2}+{ital Z}{sub {ital t}}, where {ital Z}{sub {ital t}}{sup 2} is the contribution due to the target nucleus and {ital Z}{sub {ital t}} comes from the target electrons. In order to investigate the electron-electron interaction, we have measured and calculated cross sections for Li{sup 2+}, C{sup 5+}, and O{sup 7+} on H{sub 2} and He, Au{sup 52+} on H{sub 2}, He, C, and N{sub 2}, Au{sup 75+} on H{sub 2} and N{sub 2}, U{sup 86+} on H{sub 2} and He, and U{sup 90+} on H{sub 2}. The collision energies range from 0.75 to 405 MeV/nucleon. The calculations have been performed in the plane-wave Born approximation. We demonstrate that for energies where the target electrons have sufficient kinetic energy in the projectile frame to ionize the projectile, the electron-electron interaction can lead to a significant increase in the total electron-loss cross section.

  8. Low energy electron magnetometer using a monoenergetic electron beam

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M.; Rayborn, G. H.; White, F. A. (Inventor)

    1983-01-01

    A low energy electron beam magnetometer utilizes near-monoenergetic electrons thereby reducing errors due to electron energy spread and electron nonuniform angular distribution. In a first embodiment, atoms in an atomic beam of an inert gas are excited to a Rydberg state and then electrons of near zero energy are detached from the Rydberg atoms. The near zero energy electrons are then accelerated by an electric field V(acc) to form the electron beam. In a second embodiment, a filament emits electrons into an electrostatic analyzer which selects electrons at a predetermined energy level within a very narrow range. These selected electrons make up the electron beam that is subjected to the magnetic field being measured.

  9. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  10. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  11. Measurements of Beam Ion Loss from the Compact Helical System

    SciTech Connect

    D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan

    2010-02-03

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  12. PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

  13. Feasibility study for mega-electron-volt electron beam tomography

    SciTech Connect

    Hampel, U.; Baertling, Y.; Hoppe, D.; Kuksanov, N.; Fadeev, S.; Salimov, R.

    2012-09-15

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  14. Feasibility study for mega-electron-volt electron beam tomography.

    PubMed

    Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R

    2012-09-01

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  15. Redesigned Electron-Beam Furnace Boosts Productivity

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    1995-01-01

    Redesigned electron-beam furnace features carousel of greater capacity so more experiments conducted per loading, and time spent on reloading and vacuum pump-down reduced. Common mounting plate for electron source and carousel simplifies installation and reduces vibration.

  16. Theory of mode-induced beam particle loss in tokamaks

    NASA Astrophysics Data System (ADS)

    White, R. B.; Goldston, R. J.; McGuire, K.; Boozer, Allen H.; Monticello, D. A.; Park, W.

    1983-10-01

    Large-amplitude rotating magnetohydrodynamic modes are observed to induce significant high-energy beam particle loss during high-power perpendicular netural beam injection on the poloidal divertor experiment (PDX). A Hamiltonian formalism for drift orbit trajectories in the presence of such modes is used to study induced particle loss analytically and numerically. Results are in good agreement with experiment.

  17. Electron energy loss and diffraction of backscattered electrons from silicon

    NASA Astrophysics Data System (ADS)

    Winkelmann, Aimo; Aizel, Koceila; Vos, Maarten

    2010-05-01

    Electrons backscattered from crystals can show Kikuchi patterns: variations in intensity for different outgoing directions due to diffraction by the lattice. Here, we measure these effects as a function of their energy loss for 30 keV electrons backscattered from silicon. The change in diffraction contrast with energy loss depends strongly on the scattering geometry. At steep incidence on the sample, diffraction contrast in the observed Kikuchi bands decreases rapidly with energy loss. For an energy loss larger than about 150 eV the contrast is more than 5 times less than the contrast due to electrons near zero energy loss. However, for grazing incidence angles, maximum Kikuchi band contrast is observed for electrons with an energy loss near 60 eV, where the contrast is more than 2.5× larger than near zero energy loss. In addition, in this grazing incidence geometry, the Kikuchi diffraction effects stay significant even for electrons that have lost hundreds of electron volts. For the maximum measured energy loss of 440 eV, the electrons still show a contrast that is 1.5 × larger than that of the electrons near zero energy loss. These geometry-dependent observations of Kikuchi band diffraction contrast are interpreted based on the elastic and inelastic scattering properties of electrons and dynamical diffraction simulations.

  18. Focused electron beam in pyroelectric electron probe microanalyzer

    SciTech Connect

    Imashuku, Susumu; Imanishi, Akira; Kawai, Jun

    2013-07-15

    We report a method to focus the electron beam generated using a pyroelectric crystal. An electron beam with a spot size of 100 μm was achieved by applying an electrical field to an electroconductive needle tip set on a pyroelectric crystal. When the focused electron beam bombarded a sample, characteristic X-rays of the sample were only detected due to the production of an electric field between the needle tip and the sample.

  19. Beam Loss Studies for the 2-MW LBNE Proton Beam Line

    SciTech Connect

    Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

    2012-05-01

    Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

  20. Beam ion losses due to energetic particle geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Fisher, R. K.; Pace, D. C.; Kramer, G. J.; Van Zeeland, M. A.; Nazikian, R.; Heidbrink, W. W.; García-Muñoz, M.

    2012-12-01

    We report the first experimental observations of fast-ion loss in a tokamak due to energetic particle driven geodesic acoustic modes (EGAMs). A fast-ion loss detector installed on the DIII-D tokamak observes bursts of beam ion losses coherent with the EGAM frequency. The EGAM activity results in a significant loss of beam ions, comparable to the first orbit losses. The pitch angles and energies of the measured fast-ion losses agree with predictions from a full orbit simulation code SPIRAL, which includes scattering and slowing-down.

  1. LHC particle collimation with hollow electron beams

    SciTech Connect

    Shiltsev, V.; Drozhdin, A.; Kamerdzhiev, V.; Kuznetsov, G.; Vorobiev, L.; /Fermilab

    2008-06-01

    Electron lenses built and installed in the Tevatron have proven themselves as safe and very reliable instruments which can be effectively used in hadron collider operation for a number of applications, including compensation of beam-beam effects [1], a DC beam removal from abort gaps [2], and as a versatile diagnostic tool. In this article, we--following the original proposal [3,4]--consider in more detail a possibility of using electron lenses with hollow electron beam for ion and proton collimation in LHC and the Tevatron.

  2. BEAM LOSS ESTIMATES AND CONTROL FOR THE BNL NEUTRINO FACILITY.

    SciTech Connect

    WENG, W.-T.; LEE, Y.Y.; RAPARIA, D.; TSOUPAS, N.; BEEBE-WANG, J.; WEI, J.; ZHANG, S.Y.

    2005-05-16

    The requirement for low beam loss is very important both to protect the beam component, and to make the hands-on maintenance possible. In this report, the design considerations to achieving high intensity and low loss will be presented. We start by specifying the beam loss limit at every physical process followed by the proper design and parameters for realizing the required goals. The process considered in this paper include the emittance growth in the linac, the H{sup -} injection, the transition crossing, the coherent instabilities and the extraction losses.

  3. Electron beam selectively seals porous metal filters

    NASA Technical Reports Server (NTRS)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  4. Separating Isotopes With Laser And Electron Beams

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor

    1989-01-01

    Need for second laser eliminated. In scheme for separation of isotopes, electrons of suitable kinetic energy ionize specific isotope excited by laser beam in magnetic field. Ionization by electron beams cheap and efficient in comparison to ionization by laser beams, and requires no special technical developments. Feasibility of new scheme demonstrated in selective ionization of Ba138, making possible separation of isotope from Ba isotopes of atomic weight 130, 132, 134, 135, 136, and 137.

  5. Transmission of High-Power Electron Beams Through Small Apertures

    SciTech Connect

    Tschalaer, Christoph; Alarcon, Ricardo O.; Balascuta, S.; Benson, Stephen V.; Bertozzi, William; Boyce, James R.; Cowan, Ray Franklin; Douglas, David R.; Evtushenko, Pavel; Fisher, Peter H.; Ihloff, Ernest E.; Kalantarians, Narbe; Kelleher, Aidan Michael; Legg, Robert A.; Milner, Richard; Neil, George R.; Ou, Longwu; Schmookler, Barak Abraham; Tennant, Christopher D.; Williams, Gwyn P.; Zhang, Shukui

    2013-11-01

    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 hour continuous run.

  6. Electron beam curing of polymer matrix composites

    SciTech Connect

    Janke, C.J.; Wheeler, D.; Saunders, C.

    1998-01-08

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world`s largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide.

  7. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  8. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  9. Spin transport in tilted electron vortex beams

    NASA Astrophysics Data System (ADS)

    Basu, Banasri; Chowdhury, Debashree

    2014-12-01

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  10. Spin transport in tilted electron vortex beams

    SciTech Connect

    Basu, Banasri; Chowdhury, Debashree

    2014-12-10

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  11. H- AND PROTON BEAM LOSS COMPARISON AT SNS SUPERCONDUCTING LINAC

    SciTech Connect

    Aleksandrov, Alexander V; Galambos, John D; Plum, Michael A; Shishlo, Andrei P

    2012-01-01

    A comparison of beam loss in the superconducting part (SCL) of the Spallation Neutron Source (SNS) linac for H- and protons is presented. During the experiment the nominal beam of negative hydrogen ions in the SCL was replaced by a proton beam created by insertion of a thin stripping carbon foil placed in the low energy section of the linac. The observed significant reduction in the beam loss for protons is explained by a domination of the intra beam stripping mechanism of the beam loss for H-. The details of the experiment are discussed, and a preliminary estimation of the cross section of the reaction H- + H- -> H- + H0 + e is presented. Earlier, a short description of these studies was presented in [1].

  12. Single electron beam rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  13. Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.

    2011-03-28

    Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.

  14. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    SciTech Connect

    Seletskiy, Sergei M.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  15. Monitoring system experiments on beam loss at SSRF injector

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Xia, XiaoBin; Xu, XunJiang; Liu, Xin; Xu, JiaQiang; Wang, GuangHong; Zeng, Ming

    2011-12-01

    Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.

  16. Losses of runaway electrons during ergodization

    NASA Astrophysics Data System (ADS)

    Finken, K. H.; Abdullaev, S. S.; Jakubowski, M.; Jaspers, R.; Lehnen, M.; Zimmermann, O.

    2006-04-01

    The dynamic ergodic divertor (DED) of TEXTOR has been applied to runaway discharges. The runaway electrons (ɛ < 30 MeV) are developed as probes for investigating the internal magnetic field line structure in the plasma. Complementary diagnostics are used, namely neutron measurements for the loss of the runaways and synchrotron radiation for the detection inside the plasma. During the DED phase, three features of the runaway electrons are found: a sudden loss from the just formed ergodic layer, an enhanced diffusive transport and very sudden loss events which may be related to field line reconnection processes.

  17. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    NASA Astrophysics Data System (ADS)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-05-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  18. Efficient Injection of Electron Beams into Magnetic Guide Fields

    SciTech Connect

    Chorny, V.; Cooperstein, G.; Dubyna, V.; Frolov, O.; Harper-Slaboszewicz, V.; Hinshelwood, D.; Schneider, R.; Solovyov, V.; Tsepilov, H.; Vitkovitsky, I.; Ware, K,

    1999-06-08

    Preliminary experimental and modeling study of injection and transport of high current electron beams in current-neutralized background gas has been performed. Initial analysis of the results indicates that high current triaxial ring diode operates very reproducibly in the pinch mode. High current density beam can be injected efficiently into the drift region, using azimuthal guide field with reduced intensity near the injection region. This was shown to improve the effectiveness of capturing the beam for the transport. The transport length was insufficient to measure losses, such as would arise from scattering with the background gas.

  19. Electron Beam Scanning in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  20. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, Changbiao

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron`s relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  1. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron`s relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  2. Image simulation for electron energy loss spectroscopy

    SciTech Connect

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations. Finally, the affect of the channelling of the electron probe within the sample is also discussed.

  3. Image simulation for electron energy loss spectroscopy

    DOE PAGES

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations.more » Finally, the affect of the channelling of the electron probe within the sample is also discussed.« less

  4. CCD based beam loss monitor for ion accelerators

    NASA Astrophysics Data System (ADS)

    Belousov, A.; Mustafin, E.; Ensinger, W.

    2014-04-01

    Beam loss monitoring is an important aspect of proper accelerator functioning. There is a variety of existing solutions, but each has its own disadvantages, e.g. unsuitable dynamic range or time resolution, high cost, or short lifetime. Therefore, new options are looked for. This paper shows a method of application of a charge-coupled device (CCD) video camera as a beam loss monitor (BLM) for ion beam accelerators. The system was tested with a 500 MeV/u N+7 ion beam interacting with an aluminum target. The algorithms of camera signal processing with LabView based code and beam loss measurement are explained. Limits of applicability of this monitor system are discussed.

  5. Coherent parasitic energy loss of the recycler beam

    SciTech Connect

    K.Y. Ng

    2004-07-14

    Parasitic energy loss of the particle beam in the Recycler Ring is discussed. The long beam confined between two barrier waves has a spectrum that falls off rapidly with frequency. Discrete summation over the revolution harmonics must be made to obtain the correct energy loss per particle per turn, because only a few lower revolution harmonics of real part of the longitudinal impedance contribute to the parasitic energy loss. The longitudinal impedances of the broadband rf cavities, the broadband resistive-wall monitors, and the resistive wall of the vacuum chamber are discussed. They are the main sources of the parasitic energy loss.

  6. Beam loss studies in high-intensity heavy-ion linacs

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Aseev, V. N.; Mustapha, B.

    2004-09-01

    The proposed Rare Isotope Accelerator (RIA) Facility, an innovative exotic-beam facility for the production of high-quality beams of short-lived isotopes, consists of a fully superconducting 1.4GV driver linac and a 140MV postaccelerator. To produce sufficient intensities of secondary beams the driver linac will provide 400kW primary beams of any ion from hydrogen to uranium. Because of the high intensity of the primary beams the beam losses must be minimized to avoid radioactivation of the accelerator equipment. To keep the power deposited by the particles lost on the accelerator structures below 1 W/m, the relative beam losses per unit length should be less than 10-5, especially along the high-energy section of the linac. A new beam dynamics simulation code TRACK has been developed and used for beam loss studies in the RIA driver linac. In the TRACK code, ions are tracked through the three-dimensional electromagnetic fields of every element of the linac starting from the electron cyclotron resonance (ECR) ion source to the production target. The simulation starts with a multicomponent dc ion beam extracted from the ECR. The space charge forces are included in the simulations. They are especially important in the front end of the driver linac. Beam losses are studied by tracking a large number of particles (up to 106) through the whole linac considering all sources of error such us element misalignments, rf field errors, and stripper thickness fluctuations. For each configuration of the linac, multiple sets of error values have been randomly generated and used in the calculations. The results are then combined to calculate important beam parameters, estimate beam losses, and characterize the corresponding linac configuration. To track a large number of particles for a comprehensive number of error sets (up to 500), the code TRACK was parallelized and run on the Jazz computer cluster at ANL.

  7. Improved electron-beam welding technique

    NASA Technical Reports Server (NTRS)

    Schumacher, B.

    1970-01-01

    Electron-beam generator produces high quality welds without vaporization by relying on the mobility and hydrodynamic properties of the material in its liquid phase. The power density of the beam is relative to the speed of the workpiece, producing an inclined weld-front.

  8. Emittance growth from electron beam modulation

    SciTech Connect

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  9. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  10. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  11. Dependence of bunch energy loss in cavities on beam velocity

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey S.

    1999-03-01

    Beam energy loss in a cavity can be easily computed for a relativistic bunch using time-domain codes like MAFIA or ABCI. However, for nonrelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. We calculate the cavity loss factors for a bunch in frequency domain as a function of its velocity and compare results with the relativistic case.

  12. Electron beam depolarization in a damping ring

    SciTech Connect

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms.

  13. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2016-07-12

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  14. The Electron Beam Ion Source (EBIS)

    SciTech Connect

    Brookhaven Lab

    2009-06-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  15. Technical Seminar: Electron Beam Forming Fabrication

    NASA Video Gallery

    EBF³ uses a focused electron beam in a vacuum environment to create a molten pool on a metallic substrate. This layer-additive process enables fabrication of parts directly from CAD drawings. The ...

  16. Electron beam, laser beam and plasma arc welding studies

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1974-01-01

    This program was undertaken as an initial step in establishing an evaluation framework which would permit a priori selection of advanced welding processes for specific applications. To this end, a direct comparison of laser beam, electron beam and arc welding of Ti-6Al-4V alloy was undertaken. Ti-6Al-4V was selected for use in view of its established welding characteristics and its importance in aerospace applications.

  17. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  18. Parasitic mode losses versus signal sensitivity in beam position monitors

    NASA Astrophysics Data System (ADS)

    Denard, J. C.; Bane, K. L.; Bijleveld, J.; Hutton, A. M.; Pellegrin, J. I.; Rivkin, L.; Wang, P.; Weaver, J. N.

    1985-04-01

    A beam position monitor (BPM) for a storage or damping ring may be subject to heating problems due to the parasitic mode (PM) losses, beam interception and synchrotron radiation interception. In addition, high PM losses can cause beam instabilities under some conditions. Recessing and/or masking the BPM may increase the PM losses in the process of solving the latter two problems. Three complementary methods for estimating the PM losses and for improving the design of a stripline directional coupler type of BPM: bench measurements, computer modeling (TBCI), and an equivalent circuit representation are presented. These methods lead to a decrease in PM losses without significant reduction in output signal for the north Stanford Linear Collider (SLC) damping ring BPMs.

  19. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    SciTech Connect

    Lorut, F.; Imbert, G.; Roggero, A.

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  20. Electron-beam furnace with magnetic stabilization

    SciTech Connect

    Harker, H.R.; Knecht, J.A. II

    1986-10-07

    This patent describes an electron-beam comprising: a. An evacuable chamber having a port for coupling the chamber to vacuum pump means; b. a trough-shaped hearth within the chamber for holding material to be melted, the hearth having a spout for issuing a flow of molten material therefrom; c. a crucible positioned within the chamber for receiving molten material flowing from the hearth; d. one or more electron guns each for producing an energetic beam of electrons, each electron gun being positioned a relatively large distance away from the hearth and the crucible; e. magnetic beam deflection means forming an integral part of each electron gun for scanning and shaping the beam produced thereby across the hearth or the crucible; and f. magnetic means adjacent to the hearth and the crucible for producing a relatively weak magnetic field in the vicinity of the hearth and the crucible for preventing erratic deflections of the scanning electron beams without significantly altering the trajectories of such beams.

  1. PRELIMINARY DESIGN OF THE BEAM LOSS MONITORING SYSTEM FOR THE SNS.

    SciTech Connect

    WITKOVER,R.; GASSNER,D.

    2002-05-06

    The SNS to be built at Oak Ridge National Laboratory will provide a high average intensity 1 GeV beam to produce spallation neutrons. Loss of a even small percentage of this intense beam would result in high radiation. The Beam Loss Monitor (ELM) system must detect such small, long term losses yet be capable of measuring infrequent short high losses. The large dynamic range presents special problems for the system design. Ion chambers will be used as the detectors. A detector originally designed for the FNAL Tevatron, was considered but concerns about ion collection times and low collection efficiency at high loss rates favor a new design. The requirements and design concepts of the proposed approach will be presented. Discussion of the design and testing of the ion chambers and the analog j-Point end electronics will be presented. The overall system design will be described.

  2. Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams

    SciTech Connect

    Stancari, G.; Annala, G.; Shiltsev, V.; Still, D.; Valishev, A.; Vorobiev, L.; /Fermilab

    2011-03-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable losses. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first experimental tests of the hollow-beam collimation concept on 980-GeV antiproton bunches in the Tevatron.

  3. Integrated electronic platforms for weight loss

    PubMed Central

    McCrady-Spitzer, Shelly K; Levine, James A

    2010-01-01

    What can be done to build effective weight loss solutions for the 1.5 billion people with obesity? It is self-evident that no one good solution exists for people who are overweight or obese, otherwise it would have been applied across the people who need it worldwide. There is, therefore, an urgent need for approaches that will afford weight loss; what is more, such approaches need to be scalable. For that reason, it is attractive to consider electronic platforms as an avenue for scalable weight loss solutions. Such platforms often do not require substantial investments but rather the integration of pre-existing off-the-shelf components. In this article we explore the concepts and design challenges for electronic platforms that precipitate weight loss. PMID:20214426

  4. Passive and active plasma deceleration for the compact disposal of electron beams

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J.-L.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2015-08-15

    Plasma-based decelerating schemes are investigated as compact alternatives for the disposal of high-energy beams (beam dumps). Analytical solutions for the energy loss of electron beams propagating in passive and active (laser-driven) schemes are derived. These solutions, along with numerical modeling, are used to investigate the evolution of the electron distribution, including energy chirp and total beam energy. In the active beam dump scheme, a laser-driver allows a more homogeneous beam energy extraction and drastically reduces the energy chirp observed in the passive scheme. These concepts could benefit applications requiring overall compactness, such as transportable light sources, or facilities operating at high beam power.

  5. Upgrade of the electron beam ion trap in Shanghai

    SciTech Connect

    Lu, D.; Yang, Y.; Xiao, J.; Shen, Y.; Fu, Y.; Wei, B.; Yao, K.; Hutton, R.; Zou, Y.

    2014-09-15

    Over the last few years the Shanghai electron beam ion trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Applied Physics, first produced an electron beam in 2005. It could be tuned with electron energies between 1 and 130 keV and beam current up to 160 mA. After several years of operation, it was found that several modifications for improvements were necessary to reach the goals of better electron optics, higher photon detection, and ion injection efficiencies, and more economical running costs. The upgraded Shanghai-EBIT is made almost entirely from Ti instead of stainless steel and achieves a vacuum of less than 10{sup −10} Torr, which helps to minimize the loss of highly changed ions through charge exchange. Meanwhile, a more compact structure and efficient cryogenic system, and excellent optical alignment have been of satisfactory. The magnetic field in the central trap region can reach up till 4.8 T with a uniformity of 2.77 × 10{sup −4}. So far the upgraded Shanghai-EBIT has been operated up to an electron energy of 151 keV and a beam current of up to 218 mA, although promotion to even higher energy is still in progress. Radiation from ions as highly charged as Xe{sup 53+,} {sup 54+} has been produced and the characterization of current density is estimated from the measured electron beam width.

  6. Upgrade of the electron beam ion trap in Shanghai.

    PubMed

    Lu, D; Yang, Y; Xiao, J; Shen, Y; Fu, Y; Wei, B; Yao, K; Hutton, R; Zou, Y

    2014-09-01

    Over the last few years the Shanghai electron beam ion trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Applied Physics, first produced an electron beam in 2005. It could be tuned with electron energies between 1 and 130 keV and beam current up to 160 mA. After several years of operation, it was found that several modifications for improvements were necessary to reach the goals of better electron optics, higher photon detection, and ion injection efficiencies, and more economical running costs. The upgraded Shanghai-EBIT is made almost entirely from Ti instead of stainless steel and achieves a vacuum of less than 10(-10) Torr, which helps to minimize the loss of highly changed ions through charge exchange. Meanwhile, a more compact structure and efficient cryogenic system, and excellent optical alignment have been of satisfactory. The magnetic field in the central trap region can reach up till 4.8 T with a uniformity of 2.77 × 10(-4). So far the upgraded Shanghai-EBIT has been operated up to an electron energy of 151 keV and a beam current of up to 218 mA, although promotion to even higher energy is still in progress. Radiation from ions as highly charged as Xe(53+, 54+) has been produced and the characterization of current density is estimated from the measured electron beam width.

  7. A reflex electron beam discharge as a plasma source for electron beam generation

    SciTech Connect

    Murray, C.S.; Rocca, J.J.; Szapiro, B. )

    1988-10-01

    A reflex electron beam glow discharge has been used as a plasma source for the generation of broad-area electron beams. An electron current of 120 A (12 A/cm/sup 2/) was extracted from the plasma in 10 ..mu..s pulses and accelerated to energies greater than 1 keV in the gap between two grids. The scaling of the scheme for the generation of multikiloamp high-energy beams is discussed.

  8. Electron Beam Technology - Some Recent Developments

    NASA Astrophysics Data System (ADS)

    Iqbal, Munawar; Fazal-E-Aleem

    2011-06-01

    Electron beam technology has been in focus since long due to wide variety of applications in research and industry. One of the important modes of e-beam production is through thermionic emission. Improvements and advancement in enhancing the capabilities of electron beam sources compatible with the task to be accomplished at a reduced cost are therefore necessary. We give an update of the recently developed and reported e-guns which are easy to fabricate, assemble and more efficient. Besides being cost effective, these guns are user friendly.

  9. Control and Manipulation of Electron Beams

    SciTech Connect

    Piot, Philippe

    2009-01-22

    The concepts of the advanced accelerators and light source rely on the production of bright electron beams. The rms areas of the beam phase space often need to be tailored to the specific applications. Furthermore, a new class of the forefront research calls for detailed specific distribution such as the particle density in the time coordinate. Several groups are tackling these various challenges and in this report we attempt to give a review of the state-of-the-art of the control and manipulation of the electron beams.

  10. Short rise time intense electron beam generator

    DOEpatents

    Olson, Craig L.

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  11. Short rise time intense electron beam generator

    DOEpatents

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  12. A conceptual design for an electron beam

    SciTech Connect

    Garcia, M

    1999-02-15

    This report is a brief description of a model electron beam, which is meant to serve as a pulsed heat source that vaporizes a metal fleck into an ''under-dense'' cloud. See Reference 1. The envelope of the electron beam is calculated from the paraxial ray equation, as stated in Reference 2. The examples shown here are for 5 A, 200 keV beams that focus to waists of under 0.4 mm diameter, within a cylindrical volume of 10 cm radius and length. The magnetic fields assumed in the examples are moderate, 0.11 T and 0.35 T, and can probably be created by permanent magnets.

  13. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    PubMed Central

    Lewis, Brett B; Stanford, Michael G; Fowlkes, Jason D; Lester, Kevin; Plank, Harald

    2015-01-01

    Summary Platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IV)Me3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention. PMID:25977862

  14. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    SciTech Connect

    Lewis, Brett B.; Stanford, Michael G.; Fowlkes, Jason D.; Lester, Kevin; Plank, Harald; Rack, Philip D.

    2015-04-08

    In this paper, platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IV)Me3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. Finally, in addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  15. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    DOE PAGES

    Lewis, Brett B.; Stanford, Michael G.; Fowlkes, Jason D.; Lester, Kevin; Plank, Harald; Rack, Philip D.

    2015-04-08

    In this paper, platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IV)Me3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. Finally, in addition to purification, the post-deposition electron stimulated oxygen purification process enhancesmore » the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.« less

  16. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition.

    PubMed

    Lewis, Brett B; Stanford, Michael G; Fowlkes, Jason D; Lester, Kevin; Plank, Harald; Rack, Philip D

    2015-01-01

    Platinum-carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IV)Me3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top-down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  17. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, Changbiao.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  18. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  19. Nonlinear wave scattering and electron beam relaxation

    NASA Technical Reports Server (NTRS)

    Muschietti, L.; Dum, C. T.

    1991-01-01

    The role played by nonlinear scattering during the relaxation of a warm electron beam is investigated through a numerical code based on kinetic equations. The code encompasses the quasi-linear wave-electron interaction and wave-wave scattering off ion clouds. Ions with velocities 2 nu sub i (nu sub i being the ion thermal velocity) are found to be the most efficient for scattering the Langmuir waves off their polarization clouds. The transfer rate of the spectrum out of resonance with the beam is larger by a factor 3 compared to usual estimates. The changes produced in the dispersion relation by the presence of the beam electrons dramatically alter the characteristics of the secondary spectrum. In a late phase the classic condensate K of about 0 is depleted, with the formation of a new condensate in resonance with the flat-topped beam distribution, which follows from the fact that the mere presence of the beam electrons creates a minimum in the frequency-wave-number relation. For strong and slow beams, the predictions of the code are found to be in excellent agreement with the results of the particle simulation if a dispersion relation that includes the beam is used.

  20. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  1. Tokomak disruption runaway electron beam energy deposition

    NASA Astrophysics Data System (ADS)

    Lei, Yian

    2012-10-01

    Disruption is one of the major concerns in magnetic confinement fusion (MCF) research. People believe the energetic runaway electron beam can damage the first wall by depositing most of its energy to certain region as heat, melting the wall. However, as the energy of the beam electron is very high (up to 50 MeV), most of the beam energy should be converted as gamma radiation and escape, and the fraction of thermal energy deposition is relatively small. We will calculate the runaway electron energy deposition in typical first wall configurations in ITER disruption scenario, and give the temperature profile of the wall. We will also calculate the bremsstrahlung gamma ray spectra of the beam and discuss the consequences.

  2. Beam loss detection system in the arcs of the LHC

    NASA Astrophysics Data System (ADS)

    Arauzo, A.; Bovet, C.

    2000-11-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet.

  3. Correlation in a coherent electron beam

    SciTech Connect

    Kodama, Tetsuji; Osakabe, Nobuyuki; Tonomura, Akira

    2011-06-15

    Correlations between successive detections in beams of free electrons are studied with a transmission electron microscope. For incoherent illumination of the detectors, a certain random coincidence probability is observed, indicative for uncorrelated arrival times of the electrons. When the illumination is changed from incoherent to coherent, a reduction of the random coincidence probability is observed, indicative for antibunching in the arrival times of the electrons. However, the amount of reduction is larger than the theoretically expected value calculated from the Pauli principle, forbidding more than one identical fermion to occupy the same quantum state. For a certain coherent illumination of the detectors, where we use magnetic lenses in electron microscopes for magnifications of the coherence length, we find an enhanced coincidence probability, indicative for bunching in the arrival times of the electrons. This originates from correlations in beams of free electrons due to Coulomb interactions.

  4. Secondary electron current loss in electron cooling devices

    NASA Astrophysics Data System (ADS)

    Sharapa, A. N.; Shemyakin, A. V.

    1994-12-01

    The efficiency of secondary electron capture in a recuperator with a longitudinal magnetic field is evaluated. To characterize this efficiency, the value of the collector secondary emission coefficient is introduced, for the calculation of which a simple formula is proposed. The effects determining the difference between the current losses in straight systems and devices with bending magnets are analyzed. It is experimentally shown that there is no unambiguous relation between the efficiency of the secondary electron capture by the collector and the current loss. The mechanism which determines the current loss in straight systems is suggested.

  5. MHD Induced Neutral Beam Ion Loss from NSTX Plasmas

    SciTech Connect

    D.S. Darrow, E.D. Fredrickson, N.N. Gorelenkov, A.L. Roquemore, and K. Shinohara

    2007-12-13

    Bursts of ~60 kHz activity on Mirnov coils occur frequently in NSTX plasmas and these are accompanied by bursts of neutral beam ion loss over a range in pitch angles. These losses have been measured with a scintillator type loss probe imaged with a high speed (>10,000 frames/s) video camera, giving the evolution of the energy and pitch angle distributions of the lost neutral beam ions over the course of the events. The instability occurs below the TAE frequency in NSTX (~100 kHz) in high beta plasmas and may be a beta driven Alfvén acoustic (BAAE) mode.

  6. Analysis ob beam losses at PSR (Proton Storage Ring)

    SciTech Connect

    Macek, R.J.; Fitzgerald, D.H.; Hutson, R.L.; Plum, M.A.; Thiessen, H.A.

    1988-01-01

    Beam losses and the resulting component activation at the Los Alamos Proton Storage Ring (PSR) have limited operating currents to about 30..mu..A average at a repetition rate of 15 Hz. Loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. Calculations and simulations of the losses are in reasonable agreement with measurements.

  7. Comparison of the secondary electrons produced by proton and electron beams in water

    NASA Astrophysics Data System (ADS)

    Kia, Mohammad Reza; Noshad, Houshyar

    2016-05-01

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.

  8. WEBEXPIR: Windowless target electron beam experimental irradiation

    NASA Astrophysics Data System (ADS)

    Dierckx, Marc; Schuurmans, Paul; Heyse, Jan; Rosseel, Kris; Van Tichelen, Katrien; Nactergal, Benoit; Vandeplassche, Dirk; Aoust, Thierry; Abs, Michel; Guertin, Arnaud; Buhour, Jean-Michel; Cadiou, Arnaud; Abderrahim, Hamid Aït

    2008-06-01

    The windowless target electron beam experimental irradiation (WEBEXPIR) program was set-up as part of the MYRRHA/XT-ADS R&D effort on the spallation target design to investigate the interaction of a proton beam with a liquid lead-bismuth eutectic (LBE) free surface. In particular, possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation were assessed. An experiment was conceived at the IBA TT-1000 Rhodotron, where a 7 MeV electron beam was used to simulate the high power deposition at the MYRRHA/XT-ADS LBE free surface. The geometry and the LBE flow characteristics in the WEBEXPIR set-up were made as representative as possible of the actual situation in the MYRRHA/XT-ADS spallation target. Irradiation experiments were carried out at beam currents of up to 10 mA, corresponding to 40 times the nominal beam current necessary to reproduce the MYRRHA/XT-ADS conditions. Preliminary analyses show that the WEBEXPIR free surface flow was not disturbed by the interaction with the electron beam and that vacuum conditions stayed well within the design specifications.

  9. Ultrafast Time-Resolved Electron Diffraction with Megavolt Electron Beams

    SciTech Connect

    Hastings, J.B.; Rudakov, F.M.; Dowell, D.H.; Schmerge, J.F.; Cardoza, J.D.; Castro, J.M.; Gierman, S.M.; Loos, H.; Weber, P.M.; /Brown U.

    2006-10-24

    An rf photocathode electron gun is used as an electron source for ultrafast time-resolved pump-probe electron diffraction. We observed single-shot diffraction patterns from a 160 nm Al foil using the 5.4 MeV electron beam from the Gun Test Facility at the Stanford Linear Accelerator. Excellent agreement with simulations suggests that single-shot diffraction experiments with a time resolution approaching 100 fs are possible.

  10. Beam Loss Studies for Rare Isotope Driver Linacs Final Report

    SciTech Connect

    Wangler, T P; Kurennoy, S S; Billen, J H; Crandall, K R; Qiang, J; Ryne, R D; Mustapha, B; Ostroumov, P; Zhao, Q; York, and R. C.

    2008-03-26

    The Fortran 90 RIAPMTQ/IMPACT code package is a pair of linked beam-dynamics simulation codes that have been developed for end-to-end computer simulations of multiple-charge-state heavy-ion linacs for future exotic-beam facilities. These codes have multiple charge-state capability, and include space-charge forces. The simulations can extend from the low-energy beam-transport line after an ECR ion source to the end of the linac. The work has been performed by a collaboration including LANL, LBNL, ANL, and MSU. The code RIAPMTQ simulates the linac front-end beam dynamics including the LEBT, RFQ, and MEBT. The code IMPACT simulates the beam dynamics of the main superconducting linac. The codes have been benchmarked for rms beam properties against previously existing codes at ANL and MSU. The codes allow high-statistics runs on parallel supercomputing platforms, particularly at NERSC at LBNL, for studies of beam losses. The codes also run on desktop PC computers for low-statistics work. The code package is described in more detail in a recent publication [1] in the Proceedings of PAC07 (2007 US Particle Accelerator Conference). In this report we describe the main activities for the FY07 beam-loss studies project using this code package.

  11. Beam Charge Asymmetry Monitors for Low Intensity Continuous Electron Beam

    SciTech Connect

    Jean-Claude Denard; Arne P. Freyberger; Youri Sharabian

    2001-05-01

    Experimental Hall B at Jefferson Lab typically operates with CW electron beam currents in the range of 1 - 10 nA. This low beam current coupled with a 30 Hz flip rate of the beam helicity required the development of new devices to measure and monitor the beam charge asymmetry. We have developed four independent devices with sufficient bandwidth for readout at 30 Hz rate: a synchrotron light monitor (SLM), two backward optical transition radiation monitors (OTR) and a Faraday Cup. Photomultipliers operating in current mode provided the readout of the light from the SLM and the OTRs, while high bandwidth electronics provided the readout from the Faraday cup. Using {approximately}6 helicity pairs, we measured the beam charge asymmetry to a statistically accuracy which is better than 0.05%. We present the results from the successful operation of these devices during the fall 2000 physics program. The reliability and the bandwidth of the devices allowed us to control the gain on the source laser by means of a feedback loop.

  12. Electronic speckle pattern interferometry using vortex beams.

    PubMed

    Restrepo, René; Uribe-Patarroyo, Néstor; Belenguer, Tomás

    2011-12-01

    We show that it is possible to perform electronic speckle pattern interferometry (ESPI) using, for the first time to our knowledge, vortex beams as the reference beam. The technique we propose is easy to implement, and the advantages obtained are, among others, environmental stability, lower processing time, and the possibility to switch between traditional ESPI and spiral ESPI. The experimental results clearly show the advantages of using the proposed technique for deformation studies of complex structures.

  13. Electron-beam welder circle generator

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1980-01-01

    Generator rotates electron beam and performs other convenient functions during welding process. Device eliminates time-consuming techniques relying heavily on operator's skill. Welding speed is varied with frequency selector, and amplitudes of x- and y-axes are varied by adjusting phase shift. Both high and low-range adjustments are available, and each axis can be separately controlled. Crosshair is provided for set-up and beam alinements.

  14. Electron beam generated whistler emissions in a laboratory plasma

    SciTech Connect

    Van Compernolle, B. Pribyl, P.; Gekelman, W.; An, X.; Bortnik, J.; Thorne, R. M.

    2015-12-10

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  15. Electron beam generated whistler emissions in a laboratory plasma

    NASA Astrophysics Data System (ADS)

    Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.

    2015-12-01

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  16. Nondestructive Measurement of Orbital Angular Momentum for an Electron Beam

    NASA Astrophysics Data System (ADS)

    Larocque, Hugo; Bouchard, Frédéric; Grillo, Vincenzo; Sit, Alicia; Frabboni, Stefano; Dunin-Borkowski, Rafal E.; Padgett, Miles J.; Boyd, Robert W.; Karimi, Ebrahim

    2016-10-01

    Free electrons with a helical phase front, referred to as "twisted" electrons, possess an orbital angular momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction. This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have numerous potential applications in materials science. Measuring this quantity often relies on a series of projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we propose a nondestructive way of measuring an electron beam's OAM through the interaction of this associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electron's OAM value. Moreover, the electron experiences no OAM variations and only minimal energy losses upon the measurement, and, hence, the nondestructive nature of the proposed technique.

  17. Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cherqui, Charles; Thakkar, Niket; Li, Guoliang; Camden, Jon P.; Masiello, David J.

    2016-05-01

    Electron energy-loss spectroscopy (EELS) offers a window to view nanoscale properties and processes. When performed in a scanning transmission electron microscope, EELS can simultaneously render images of nanoscale objects with subnanometer spatial resolution and correlate them with spectroscopic information at a spectral resolution of ˜10-100 meV. Consequently, EELS is a near-perfect tool for understanding the optical and electronic properties of individual plasmonic metal nanoparticles and few-nanoparticle assemblies, which are significant in a wide range of fields. This review presents an overview of basic plasmonics and EELS theory and highlights several recent noteworthy experiments involving the interrogation of plasmonic metal nanoparticle systems using electron beams.

  18. Pulsed electron beam emission in space

    NASA Technical Reports Server (NTRS)

    Neubert, T.; Hawkins, J. G.; Reeves, G. D; Banks, P. M.; Bush, R. I

    1988-01-01

    During the Spacelab-2 mission of July 1985, electron beams (1 keV, 50-150 mA) pulsed at ELF and VLF frequencies were emitted from the Space Shuttle Orbiter. The wave fields generated by the beam were monitored by a Plasma Diagnostics Package which was released as a free-flying subsatellite during a six hour period. Measurements of the Orbiter potential and the return current during beam emissions were obtained from a Charge and Current Probe mounted in the payload bay.

  19. Investigation of electron beam transport in a helical undulator

    SciTech Connect

    Jeong, Y.U.; Lee, B.C.; Kim, S.K.

    1995-12-31

    Lossless transport of electrons through the undulator is essential for CW operation of the FELs driven by recirculating electrostatic accelerators. We calculate the transport ratio of an electron beam in a helical undulator by using a 3-D simulation code and compare the results with the experimental results. The energy and the current of the electron beam are 400 keV and 2 A, respectively. The 3-D distribution of the magnetic field of a practical permanent-magnet helical undulator is measured and is used in the calculations. The major parameters of the undutlator are : period = 32 mm, number of periods = 20, number of periods in adiabatic region = 3.5, magnetic field strength = 1.3 kG. The transport ratio is very sensitive to the injection condition of the electron beam such as the emittance, the diameter, the divergence, etc.. The injection motion is varied in the experiments by changing the e-gun voltage or the field strength of the focusing magnet located at the entrance of the undulator. It is confirmed experimentally and with simulations that most of the beam loss occurs at the adiabatic region of the undulator regardless of the length of the adiabatic region The effect of axial guiding magnetic field on the beam finish is investigated. According to the simulations, the increase of the strength of axial magnetic field from 0 to 1 kG results in the increase of the transport ratio from 15 % to 95%.

  20. LOW EMITTANCE ELECTRON BEAMS FOR THE RHIC ELECTRON COOLER

    SciTech Connect

    KEWISCH,J.; CHANG, X.

    2007-06-25

    An electron cooler, based on an Energy Recovery Linac (ERL) is under development for the Relativistic Heavy Ion Collider (RMIC) at Brookhaven National Laboratory. This will be the first electron cooler operating at high energy with bunched beams. In order to achieve sufficient cooling of the ion beams the electron have to have a charge of 5 nC and a normalized emittance less than 4 {mu}. This paper presents the progress in optimizing the injector and the emittance improvements from shaping the charge distribution in the bunch.

  1. Prototype electron lens set-up for the Tevatron beam-beam compensation

    SciTech Connect

    Crawford, C.; Saewert, G.; Santucci, J.; Sery, A.; Shemyakin, A.; Shiltsev, V.; Wildman, D.; Aleksandrov, A.; Arapov, L.; Kuznetsov, G.; Logachov, P.; Sharapa, A.; Skarbo, B.; Sukhina, B.

    1999-05-17

    A prototype "electron lens" for the Tevatron beam-beam compensation project is commissioned at Fermilab. We de-scribe the set-up, report results of the first tests of the elec-tron beam, and discuss future plans.

  2. Electron beam induced growth of tin whiskers

    SciTech Connect

    Vasko, A. C.; Karpov, V. G.; Warrell, G. R.; Parsai, E. I.; Shvydka, Diana

    2015-09-28

    We have investigated the influence of electron irradiation on tin whisker growth. Sputtered tin samples exposed to electron beam of 6 MeV energy exhibited fast whisker growth, while control samples did not grow any whiskers. The statistics of e-beam induced whiskers was found to follow the log-normal distribution. The observed accelerated whisker growth is attributed to electrostatic effects due to charges trapped in an insulating substrate. These results offer promise for establishing whisker-related accelerated life testing protocols.

  3. Electron beam treatment of stack gases

    NASA Astrophysics Data System (ADS)

    Frank, N.; Kawamura, K.; Miller, G.

    A method of simultaneously removing sulfur dioxide and nitrogen oxides from high sulfur, coal-fired utility boiler combustion gases is discussed. Process development history is briefly presented and salient details of a commercial demonstration unit currently under construction at an electric utility power plant in Indiana are given. Detailed discussion on the design details and performance requirements of a cable connected set of 80 kW electron beam sources precedes a discussion of the projected economics of the process. Requirements for future electron beam machine configurations and capacities as well as impact on the radiation machine manufacturing industry, assuming acceptance of the process by the electric utilities, are presented.

  4. Cryogenic electron beam induced chemical etching.

    PubMed

    Martin, Aiden A; Toth, Milos

    2014-11-12

    Cryogenic cooling is used to enable efficient, gas-mediated electron beam induced etching (EBIE) in cases where the etch rate is negligible at room and elevated substrate temperatures. The process is demonstrated using nitrogen trifluoride (NF3) as the etch precursor, and Si, SiO2, SiC, and Si3N4 as the materials volatilized by an electron beam. Cryogenic cooling broadens the range of precursors that can be used for EBIE, and enables high-resolution, deterministic etching of materials that are volatilized spontaneously by conventional etch precursors as demonstrated here by NF3 and XeF2 EBIE of silicon. PMID:25333843

  5. Development of a New Generation of Coolers with a Hollow Electron Beam and Electrostatic Bending

    SciTech Connect

    Parkhomchuk, V. V.

    2006-03-20

    The basic features and design of a new generation coolers made for CSRm,CSRe (Lanzhow, IMP) and for LEIR (Geneva, CERN) will discussed. The hollow profile electron beam help suppress recombination at the accumulation zone. The low electron beam density at the core of the intensive ion beam decrease the amplitude coherent electron-ion beam oscillations (so called electron heating effect). The electrostatic bending made the recuperation loss electron beam current less then 1 mkA for 1-2 Amp the main electron beam current. Decreasing out gassing by the electrons desorption the vacuum chamber cooler open perspective for obtain the high vacuum at cooler on level 1E-12 Torr (for LEIR cooler)

  6. Electron beams in research and technology

    NASA Astrophysics Data System (ADS)

    Mehnert, R.

    1995-11-01

    Fast electrons lose their energy by inelastic collisions with electrons of target molecules forming secondary electrons and excited molecules. Coulomb interaction of secondary electrons with valence electrons of neighboring molecules leads to the formation of radical cations, thermalized electrons, excited molecular states and radicals. The primary reactive species initiate chemical reactions in the materials irradiated. Polymer modifications using accelerated electrons such as cross-linking of cable insulation, tubes, pipes and moldings, vulcanization of elastomers, grafting of polymer surfaces, processing of foamed plastics and heat shrinkable materials have gained wide industrial acceptance. A steadily growing electron beam technology is curing of paints, lacquers, printing inks and functional coatings. Electron beam processing offers high productivity, the possibility to treat the materials at normal temperature and pressure, excellent process control and clean production conditions. On an industrial scale the most important application of fast electrons is curing of 100% reactive monomer/prepolymer systems. Mainly acrylates and epoxides are used to formulate functional coatings on substrates such as paper, foil, wood, fibre board and high pressure laminates. A survey is given about the reaction mechanism of curing, the characterization of cured coatings, and of some industrial application.

  7. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  8. Gamma Putty dosimetric studies in electron beam.

    PubMed

    Gloi, Aime M

    2016-01-01

    Traditionally, lead has been used for field shaping in megavoltage electron beams in radiation therapy. In this study, we analyze the dosimetric parameters of a nontoxic, high atomic number (Z = 83), bismuth-loaded material called Gamma Putty that is malleable and can be easily molded to any desired shape. First, we placed an ionization chamber at different depths in a solid water phantom under a Gamma Putty shield of thickness (t = 0, 3, 5, 10, 15, 20, and 25 mm, respectively) and measured the ionizing radiation on the central axis (CAX) for electron beam ranging in energies from 6 to 20 MeV. Next, we investigated the relationship between the relative ionization (RI) measured at a fixed depth for several Gamma Putty shield at different cutout diameters ranging from 2 to 5 cm for various beam energies and derived an exponential fitting equation for clinical purposes. The dose profiles along the CAX show that bremsstrahlung dominates for Gamma Putty thickness >15 mm. For high-energy beams (12-20 MeV) and all Gamma Putty thicknesses up to 25 mm, RI below 5% could not be achieved due to the strong bremsstrahlung component. However, Gamma Putty is a very suitable material for reducing the transmission factor below 5% and protecting underlying normal tissues for low-energy electron beams (6-9 MeV). PMID:27651563

  9. Gamma Putty dosimetric studies in electron beam

    PubMed Central

    Gloi, Aime M.

    2016-01-01

    Traditionally, lead has been used for field shaping in megavoltage electron beams in radiation therapy. In this study, we analyze the dosimetric parameters of a nontoxic, high atomic number (Z = 83), bismuth-loaded material called Gamma Putty that is malleable and can be easily molded to any desired shape. First, we placed an ionization chamber at different depths in a solid water phantom under a Gamma Putty shield of thickness (t = 0, 3, 5, 10, 15, 20, and 25 mm, respectively) and measured the ionizing radiation on the central axis (CAX) for electron beam ranging in energies from 6 to 20 MeV. Next, we investigated the relationship between the relative ionization (RI) measured at a fixed depth for several Gamma Putty shield at different cutout diameters ranging from 2 to 5 cm for various beam energies and derived an exponential fitting equation for clinical purposes. The dose profiles along the CAX show that bremsstrahlung dominates for Gamma Putty thickness >15 mm. For high-energy beams (12–20 MeV) and all Gamma Putty thicknesses up to 25 mm, RI below 5% could not be achieved due to the strong bremsstrahlung component. However, Gamma Putty is a very suitable material for reducing the transmission factor below 5% and protecting underlying normal tissues for low-energy electron beams (6–9 MeV).

  10. Gamma Putty dosimetric studies in electron beam

    PubMed Central

    Gloi, Aime M.

    2016-01-01

    Traditionally, lead has been used for field shaping in megavoltage electron beams in radiation therapy. In this study, we analyze the dosimetric parameters of a nontoxic, high atomic number (Z = 83), bismuth-loaded material called Gamma Putty that is malleable and can be easily molded to any desired shape. First, we placed an ionization chamber at different depths in a solid water phantom under a Gamma Putty shield of thickness (t = 0, 3, 5, 10, 15, 20, and 25 mm, respectively) and measured the ionizing radiation on the central axis (CAX) for electron beam ranging in energies from 6 to 20 MeV. Next, we investigated the relationship between the relative ionization (RI) measured at a fixed depth for several Gamma Putty shield at different cutout diameters ranging from 2 to 5 cm for various beam energies and derived an exponential fitting equation for clinical purposes. The dose profiles along the CAX show that bremsstrahlung dominates for Gamma Putty thickness >15 mm. For high-energy beams (12–20 MeV) and all Gamma Putty thicknesses up to 25 mm, RI below 5% could not be achieved due to the strong bremsstrahlung component. However, Gamma Putty is a very suitable material for reducing the transmission factor below 5% and protecting underlying normal tissues for low-energy electron beams (6–9 MeV). PMID:27651563

  11. Precision fast kickers for kiloampere electron beams

    SciTech Connect

    Caporaso, G.J.; Chen, Y.J.; Weir, J.T.

    1999-10-06

    These kickers will be used to make fast dipoles and quadrupoles which are driven by sharp risetime pulsers to provide precision beam manipulations for high current kA electron beams. This technology will be used on the 2nd axis of the DARHT linac at LANL. It will be used to provide 4 micropulses of pulse width 20 to 120 nsec. selected from a 2 {micro}sec., 2kA, 20MeV macropulse. The fast pulsers will have amplitude modulation capability to compensate for beam-induced steering effects and other slow beam centroid motion to within the bandwidth of the kicker system. Scaling laws derived from theory will be presented along with extensive experimental data obtained on the test bed ETA-II.

  12. Electron gun jitter effects on beam bunching

    SciTech Connect

    Liu, M. S.; Iqbal, M.

    2014-02-15

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  13. Diffraction and electron energy loss to plasmons in silicon slabs

    NASA Astrophysics Data System (ADS)

    Levine, Zachary H.

    2008-03-01

    Dynamical diffraction patterns were calculated for 25nm slabs of silicon with [001], [111], and [110] faces for a 120keV electron beam. The calculation used the mixed dynamical form factor in the dielectric formulation. Dielectric matrices with wave vector and frequency dependence were calculated within the local density approximation using the random phase approximation. The energy losses, 10-25eV , span the plasmon peak. Near the zone axes, the results show the preservation of elastic contrast and both excess and deficit Kikuchi lines.

  14. Auroral electron beams near the magnetic equator

    NASA Technical Reports Server (NTRS)

    Mcilwain, C. E.

    1975-01-01

    Intense beams of electrons traveling parallel to the local magnetic field have been observed at a magnetic latitude of 11 deg and a radial distance of 6.6 earth radii. The distribution function for electrons traveling within 8 deg of the field line direction is typically flat or slightly rising up to a break point beyond which it decreases as inversely as the 5-10th power of v. The energy corresponding to the break point velocity is usually between 0.1 and 10 keV. These beams are found to occur on closed field lines at the inner edge of the plasma sheet and thus at the root of the earth's magnetotail. Beams with break point energies greater than 2 keV seem to occur only within the first 10 minutes after the onset of hot plasma injection associated with a magnetospheric substorm.

  15. Toward a cold electron beam in the Fermilab's Electron Cooler

    SciTech Connect

    Vitali S. Tupikov et al.

    2004-05-12

    Fermilab is developing a high-energy electron cooling system to cool 8.9-GeV/c antiprotons in the Recycler ring [1]. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through 20-m long cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 0.1 mrad, the cooling section will be immersed into a solenoidal field of 50-150G. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of beam quality measurements in the cooler prototype.

  16. Electron Beam Applications in Chemical Processing

    NASA Astrophysics Data System (ADS)

    Martin, D.; Dragusin, M.; Radoiu, M.; Moraru, R.; Oproiu, C.; Cojocaru, G.; Margarit, C.

    1997-05-01

    Our recent results in the field of polymeric materials obtained by electron beam irradiation are presented. Two types of polymeric flocculants and three hydrogels are described. The effects of radiation absorbed dose and chemical composition of the irradiated solutions upon the polymeric materials characteristics are discussed. The required absorbed dose levels to produce the polymeric flocculants are in the range of 0.4 kGy to 1 kGy, and 4 kGy to 12 kGy for hydrogels. Experimental results obtained by testing polymeric flocculants with waste water from food industry are given. Plymeric materials processing was developed on a pilot small scale level with a 0.7 kW and 5.5 MeV linac built in Romania. A new facility for application of combined electron beam and microwave irradiation in the field of polymeric materials preparation is presently under investigation. Preliminary results have demonstrated that some polymeric flocculants characteristics, such as linearity, were improved by using combined electron beam and microwave irradiation. Also, the absorbed dose levels decreases in comparison with those required when only electron beam irradiation was used.

  17. The CMS Beam Halo Monitor electronics

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Dabrowski, A. E.; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D. P.; Stifter, K.

    2016-02-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data.

  18. The Electron Losses and Fields Investigation

    NASA Astrophysics Data System (ADS)

    Bingley, L.; Angelopoulos, V.; Caron, R.; Zarifian, A.; Miller, J.; Gildemeister, A.; Schoen, B.; Tsai, E.; Berger, S.; Zhang, F.; Subramanian, A.; Chung, M.; Runov, A.; Cruce, P. R.

    2015-12-01

    The Electron Losses and Fields Investigation (ELFIN), is a joint NASA/NSF funded project at the University of California, Los Angeles focusing on eliminating the current deficit in the understanding of the innate physical processes behind geomagnetic storms. Set to launch in 2017, the mission takes advantage of a 3U+ CubeSat design to reduce cost and complexity traditionally associated with a space weather mission of this kind. This mission seeks to quantify the precipitation of relativistic electrons from the radiation belts using a pair of energetic particle detectors (EPDs). The spacecraft will also fly a fluxgate magnetometer (FGM) for determining the pitch angle distribution of the particles, which in conjunction with the EPDs will provide insight to the mechanisms responsible for their loss. Electromagnetic Ion Cyclotron (EMIC) waves are thought to be a significant contributor to the precipitation of electrons trapped in the magnetosphere; however without direct measurement to verify the exact energy range of the particles with high angular resolution, the precise role of these waves is as yet undetermined. ELFIN is unique as it is the first spacecraft that will perform direct pitch angle measurements of the high-energy electrons at the region in the ionosphere where the particles are being lost. Together with correlative measurements from THEMIS, Van Allen Probes and the upcoming ERG mission, ELFIN will provide a unique dataset of magnetospheric wave-particle interactions that will be able to contribute to a marked increase in the fidelity of current space weather models.

  19. Development of Electron Energy Loss Spectroscopy in the Biological Sciences

    PubMed Central

    Aronova, M.A.; Leapman, R.D.

    2012-01-01

    The high sensitivity of electron energy loss spectroscopy (EELS) for detecting light elements at the nanoscale makes it a valuable technique for application to biological systems. In particular, EELS provides quantitative information about elemental distributions within subcellular compartments, specific atoms bound to individual macromolecular assemblies, and the composition of bionanoparticles. The EELS data can be acquired either in the fixed beam energy-filtered transmission electron microscope (EFTEM) or in the scanning transmission electron microscope (STEM), and recent progress in the development of both approaches has greatly expanded the range of applications for EELS analysis. Near single atom sensitivity is now achievable for certain elements bound to isolated macromolecules, and it becomes possible to obtain three-dimensional compositional distributions from sectioned cells through EFTEM tomography. PMID:23049161

  20. A reduced model for relativistic electron beam transport in solids and dense plasmas

    NASA Astrophysics Data System (ADS)

    Touati, M.; Feugeas, J.-L.; Nicolaï, Ph; Santos, J. J.; Gremillet, L.; Tikhonchuk, V. T.

    2014-07-01

    A hybrid reduced model for relativistic electron beam transport based on the angular moments of the relativistic kinetic equation with a special closure is presented. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the relativistic electrons by plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing their energy distribution evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a monodirectional and monoenergetic electron beam propagating through a warm and dense plasma and hybrid particle-in-cell simulation results in a realistic laser-generated electron beam transport case.

  1. New Beam Loss Monitor for 12 GeV Upgrade

    SciTech Connect

    Jianxun Yan, Kelly Mahoney

    2009-10-01

    This paper describes a new VME based machine protection Beam Loss Monitor (BLM) signal processing board designed at Jefferson Lab to replace the current CAMAC based BLM board. The new eight-channel BLM signal processor has linear, logarithmic, and integrating amplifiers that simultaneously provide the optimal signal processing for each application. Amplified signals are digitized and then further processed through a Field Programmable Gate Array (FPGA). Combining both the diagnostic and machine protection functions in each channel allows the operator to tune-up and monitor beam operations while the machine protection is integrating the same signal. Other features include extensive built-in-self-test, fast shutdown interface (FSD), and 16-Mbit buffers for beam loss transient play-back. The new VME BLM board features high sensitivity, high resolution, and low cost per channel.

  2. RF Cavity Induced Sensitivity Limitations on Beam Loss Monitors

    NASA Astrophysics Data System (ADS)

    Kastriotou, M.; Degiovanni, A.; Sousa, F. S. Domingues; Effinger, E.; Holzer, E. B.; Quirante, J. L. Navarro; del Busto, E. N.; Tecker, F.; Viganò, W.; Welsch, C. P.; Woolley, B. J.

    Due to the secondary showers generated when a particle hits the vacuum chamber, beam losses at an accelerator may be detected via radiation detectors located near the beam line. Several sources of background can limit the sensitivity and reduce the dynamic range of a Beam Loss Monitor (BLM). This document concentrates on potential sources of background generated near high gradient RF cavities due to dark current and voltage breakdowns. An optical fibre has been installed at an experiment of the Compact Linear Collider (CLIC) Test Facility (CTF3), where a dedicated study of the performance of a loaded and unloaded CLIC accelerating structure is undergoing. An analysis of the collected data and a benchmarking simulation are presented to estimate BLM sensitivity limitations. Moreover, the feasibility for the use of BLMs optimised for the diagnostics of RF cavities is discussed.

  3. beam loss scenarios for MuCool Test Area

    SciTech Connect

    Rakhno, Igor; Johnstone, Carol; /Fermilab

    2010-08-01

    The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets, gas-filled RF cavities, and other apparatus being developed to cool intense, large-emittance muon beams. In this study the results of Monte Carlo modeling of several beam loss scenarios are presented. The MTA facility was designed to test targets and other muon cooling apparatus using the intense Fermilab Linac beam. The requested intensity of the proton beam for the MTA is essentially full Linac capability, or 1.6 x 10{sup 13} protons per pulse and an energy of 400 MeV. Two modes of operation will be supported in the MuCOOL beamline: one mode for emittance measurements (and beamline studies) and a second mode for MTA experiments. Maximum beam intensity for these two modes is: 9.6 x 10{sup 15} protons/hr - 600 beam pulses/hour of full Linac beam pulse intensity (1.6 x 10{sup 13} protons/pulse) to the emittance beam absorber and 9.6 x 10{sup 14} protons/hour - 60 beam pulses/hour of full Linac beam pulse intensity to experiments in the MTA experimental hall. This extremely high intensity implies careful investigation into and application of proper shielding materials and configuration in order to satisfy the following two requirements: (i) to reduce the instantaneous dose rate outside of the experimental enclosure to prescribed levels appropriate for the area considered; (ii) to ensure the civil construction of the hall is capable of additional shielding and, further, that the weight of the shielding is commensurate with the loading specifications of the enclosure, notably the ceiling. A number of scenarios for beam loss at different locations were studied in order to determine the maximum beam intensity which is in compliance with the existing shielding. The modeling was performed with the MARS15 code.

  4. Electron beam targets vapor-phase contaminants

    SciTech Connect

    1995-07-01

    Electron-beam bombardment has long been known to break down complex molecules. Zapit Technology, Inc. (Santa Clara, California) is in the process of commercializing a treatment system, tested in conjunction with the Lawrence Livermore National Laboratory, which uses electron beams to destroy vapor-phase toxic wastes. Drawing relatively low-power beams, the system is said to offer a low-cost way to oxidize chlorinated and non-chlorinated organic compounds. The unit has been developed to treat vapor-phase organic wastes at temperatures less than 400 F, and at ambient pressures. Candidates streams include process of gases, and organics collected during soil-vapor extraction or stripped from wastewater and groundwater streams. Inside the Zapit treatment unit, a continuous stream of ionizing electrons is generated by a cathode and is accelerated to nearly the speed of light through a metal grid. As the pollutant stream passes through the reaction chamber, it is bombarded by this electron beam. In the process, complex organic molecules are broken down into water, carbon dioxide, and, if chlorinated compounds are present, hydrochloric acid. During groundwater treatment, an air stripper converts dissolved organics in a vapor phase, which is passed through the electron-beam unit. The offgases from the Zapit unit are passed through an acid scrubber (using sodium hydroxide) to neutralize any byproduct HCl and through a carbon-adsorption unit for final polishing. Industrial offgases can be fed directly into the Zapit treatment unit, without the intermediate air stripper. Electrical power requirements are relatively low.

  5. Principle of Terahertz Radiation Using Electron Beams

    NASA Astrophysics Data System (ADS)

    Shin, Young-Min; Choi, Eun-Mi; Park, Gun-Sik

    This part introduces high power THz coherent radiation sources that take advantage of free electron beams. Following a description of characteristics on vacuum electron devices (VEDs), fundamental radiation principle of beam-wave interaction is explained with specifying their types and applications. Conventional high power microwave VEDs such as klystrons, TWTs, gyrotrons, and FELs are described in their technical perspectives with brief overview of device characteristics. Addressing technical challenges on up-conversion-to-THz of conventional approach, this part explores the state-of-the-art micro-VEDs considered for modern THz applications such as communication, imaging, sensing, spectroscopy, and so on, which are combined with modern microfabrication technologies. Novel MEMS techniques to microminiaturize RF components such as electron gun and RF interaction circuits are also presented.

  6. MULTIPLE ELECTRON BEAM ION PUMP AND SOURCE

    DOEpatents

    Ellis, R.E.

    1962-02-27

    A vacuum pump is designed which operates by ionizing incoming air and by withdrawing the ions from the system by means of electrical fields. The apparatus comprises a cylindrical housing communicable with the vessel to be evacuated and having a thin wall section in one end. Suitable coils provide a longitudinal magnetic field within the cylinder. A broad cathode and an anode structure is provided to establish a plurality of adjacent electron beams which are parallel to the cylinder axis. Electron reflector means are provided so that each of the beams constitutes a PIG or reflex discharge. Such structure provides a large region in which incoming gas molecules may be ionized by electron bombardment. A charged electrode assembly accelerates the ions through the thin window, thereby removing the gas from the system. The invention may also be utilized as a highly efficient ion source. (AEC)

  7. Electron beam facility for divertor target experiments

    SciTech Connect

    Anisimov, A.; Gagen-Torn, V.; Giniyatulin, R.N.

    1994-12-31

    To test different concepts of divertor targets and bumpers an electron beam facility was assembled in Efremov Institute. It consists of a vacuum chamber (3m{sup 3}), vacuum pump, electron beam gun, manipulator to place and remove the samples, water loop and liquid metal loop. The following diagnostics of mock-ups is stipulated: (1) temperature distribution on the mock-up working surface (scanning pyrometer and infra-red imager); (2) temperature distribution over mocked-up thickness in 3 typical cross-sections (thermo-couples); (3) cracking dynamics during thermal cycling (acoustic-emission method), (4) defects in the mock-up before and after tests (ultra-sonic diagnostics, electron and optical microscopes). Carbon-based and beryllium mock-ups are made for experimental feasibility study of water and liquid-metal-cooled divertor/bumper concepts.

  8. Probing the magnetsophere with artificial electron beams

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1981-01-01

    An analysis is conducted of the University of Minnesota Electron Echo experiments, which so far have included five sounding rocket experiments. The concept of the Echo experiment is to inject electron beam pulses from a rocket into the ionosphere at altitudes in the range from 100 to 300 km. The electrons move to the conjugate hemisphere following magnetic field lines and return on neighboring field lines to the neighborhood of the rocket where the pulses may be detected and analyzed. Attention is given to the detection and analysis of echoes, the structure of echoes, and the Echo V experiment. The Echo V experiment showed clearly that detection of remote echo beams by atmospheric fluorescence using low light level TV system is not a viable technique. A future experiment is to use throw-away detectors for direct remote echo detection.

  9. In situ electron energy-loss spectroscopy in liquids.

    PubMed

    Holtz, Megan E; Yu, Yingchao; Gao, Jie; Abruña, Héctor D; Muller, David A

    2013-08-01

    In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS in the study of chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap, and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in an aqueous solution. The potential for the use of valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insights into the local electronic structure of nanoparticles and chemical reactions. PMID:23721691

  10. High energy electron beams for ceramic joining

    SciTech Connect

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E.; Clifford, J.R.

    1994-12-31

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si{sub 3}N{sub 4}-Si{sub 3}N{sub 4} with gold-nickel braze. The bonding mechanism appears to be a thin silicide layer.

  11. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental

  12. Electron Accelerators for Radioactive Ion Beams

    SciTech Connect

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  13. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  14. Beam Loss and Longitudinal Emittance Growth in SIS

    NASA Astrophysics Data System (ADS)

    Kirk, M.; Hofmann, I.; Boine-Frankenheim, O.; Spiller, P.; Hülsmann, P.; Franchetti, G.; Damerau, H.; König, H. Günter; Klingbeil, H.; Kumm, M.; Moritz, P.; Schütt, P.; Redelbach, A.

    2005-06-01

    Beam losses of several percent occur regularly in SIS. The onset occurs during the RF capture of the beam. Previous studies have revealed that the losses can come from the RF bucket at the start of acceleration being over filled due to the longitudinal bucket acceptance being too small, or due to the mismatch between the mean energy from the UNILAC and synchronous energy of the SIS. The beam losses as measured by a DC beam transformer however show in addition to the sharp initial drop, for the above reasons, a much slower decay in the beam intensity. The speculated cause comes from the incoherent transverse tune shift of the bunched beam, which forces particles into transverse resonant conditions. The longitudinal emittance growth is also another important issue for SIS. Past measurements from Schottky-noise pick-ups have shown a factor of 3-5 increase in the longitudinal emittance depending on the extraction energy; a large factor when compared against expectations from theory. These factors were calculated from the ratio between the normalized relative momentum spread of the DC beam before RF capture and after debunching. In this present work, tomographical techniques have been used to reconstruct the phasespace from a series of bunch profile measurements from a Beam Position Monitor (BPM). Therefore one can find the rate of growth in the longitudinal emittance from a series of high resolution BPM measurements along the RF ramp. Furthermore the initial phasespace density matrix from these reconstructions has been used to generate the initial population of macroparticles for the ESME longitudinal dynamics Particle-In-Cell code, thereby enabling a comparison between the longitudinal emittance growth of the beam under ideal conditions and that of the experiment. The longitudinal emittance growth (rms) during the acceleration (˜540ms) was approximately 20%, and that during the RF capture was estimated to have an upper limit of about 40%. Later measurements have also

  15. Simultaneous determination of electron beam profile and material response using self-consistent iterative method

    NASA Astrophysics Data System (ADS)

    Kandel, Yudhishthir; Denbeaux, Gregory

    2016-08-01

    We develop a novel iterative method to accurately measure electron beam shape (current density distribution) and monotonic material response as a function of position. A common method is to scan an electron beam across a knife edge along many angles to give an approximate measure of the beam profile, however such scans are not easy to obtain in all systems. The present work uses only an electron beam and multiple exposed regions of a thin film of photoresist to measure the complete beam profile for any beam shape, where the material response is characterized externally. This simplifies the setup of new experimental tools. We solve for self-consistent photoresist thickness loss response to dose and the electron beam profile simultaneously by optimizing a novel functional iteratively. We also show the successful implementation of the method in a real world data set corrupted by noise and other experimental variabilities.

  16. Radiative damping and electron beam dynamics in plasma-based accelerators.

    PubMed

    Michel, P; Schroeder, C B; Shadwick, B A; Esarey, E; Leemans, W P

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  17. Radiative damping and electron beam dynamics in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  18. Kinetic description of electron beams in the solar chromosphere

    NASA Technical Reports Server (NTRS)

    Gomez, Daniel O.; Mauas, Pablo J.

    1992-01-01

    We formulate the relativistic Fokker-Plank equation for a beam of accelerated electrons interacting with a partially ionized plasma. In our derivation we conserved those terms contributing to velocity diffusion and found that this effect cannot be neglected a priori. We compute the terms accounting for elastic and inelastic collisions with neutral hydrogen and helium. Collisions with neutral hydrogen are found to be dominant throughout the chromosphere, except at the uppermost layers close to the transition region. As an application, we compute the loss of energy and momentum for a power-law beam impinging on the solar chromosphere, for a particular case in which the Fokker-Planck equation can be integrated analytically. We find that most of the beam energy is deposited in a relatively thin region of the chromosphere, a result which is largely insensitive to the theoretical method employed to compute the energy deposition rate.

  19. Electron beam analysis of particulate cometary material

    NASA Technical Reports Server (NTRS)

    Bradley, John

    1989-01-01

    Electron microscopy will be useful for characterization of inorganic dust grains in returned comet nucleus samples. The choice of instrument(s) will depend primarily on the nature of the samples, but ultimately a variety of electron-beam methods could be employed. Scanning and analytical (transmission) electron microscopy are the logical choise for morphological, mineralogical, and bulk chemical analyses of dust grains removed from ices. It may also be possible to examine unmelted ice/dust mixtures using an environmental scanning electron microscope equipped with a cryo-transfer unit and a cold stage. Electron microscopic observations of comet nuclei might include: (1) porosities of dust grains; (2) morphologies and microstructures of individual mineral grains; (3) relative abundances of olivine, pyroxene, and glass; and (4) the presence of phases that might have resulted from aqueous alteration (layer silicates, carbonates, sulfates).

  20. Progress with Tevatron Electron Lens Head-On Beam-Beam Compensation

    SciTech Connect

    Valishev, A.; Kuznetsov, G.; Shiltsev, V.; Stancari, G.; Zhang, X.

    2010-05-19

    Tevatron electron lenses have been successfully used to mitigate bunch-to-bunch differences caused by longrange beam-beam interactions. For this purpose, the electron beam with uniform transverse density distribution was used. Another planned application of the electron lens is the suppression of tune spread due to head-on beam-beam collisions. For this purpose, the transverse distribution of the E{sup -} beam must be matched to that of the antiproton beam. In 2009, the Gaussian profile electron gun was installed in one of the Tevatron electron lenses. We report on the first experiments with non-linear beam-beam compensation. Discussed topics include measurement and control of the betatron tune spread, importance of the beam alignment and stability, and effect of electron lens on the antiproton beam lifetime.

  1. ELECTRON-BEAM-INDUCED RADIO EMISSION FROM ULTRACOOL DWARFS

    SciTech Connect

    Yu, S.; Doyle, J. G.; Kuznetsov, A.; Hallinan, G.; Antonova, A.; MacKinnon, A. L.; Golden, A.

    2012-06-10

    We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron-cyclotron maser (ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short timescale in an attempt to interpret the recent discovered intense radio emission from ultracool dwarfs. We find that a large amount of electromagnetic (EM) field energy can be effectively released from the beam-driven ECM, which rapidly heats the surrounding plasma. A rapidly developed high-energy tail of electrons in velocity space (resulting from the heating process of the ECM) may produce the radio continuum depending on the initial strength of the external magnetic field and the electron beam current. Both significant linear polarization and circular polarization of EM waves can be obtained from the simulations. The spectral energy distributions of the simulated radio waves show that harmonics may appear from 10 to 70{nu}{sub pe} ({nu}{sub pe} is the electron plasma frequency) in the non-relativistic case and from 10 to 600{nu}{sub pe} in the relativistic case, which makes it difficult to find the fundamental cyclotron frequency in the observed radio frequencies. A wide frequency band should therefore be covered by future radio observations.

  2. Disabling CNT Electronic Devices by Use of Electron Beams

    NASA Technical Reports Server (NTRS)

    Petkov, Mihail

    2008-01-01

    Bombardment with tightly focused electron beams has been suggested as a means of electrically disabling selected individual carbon-nanotubes (CNTs) in electronic devices. Evidence in support of the suggestion was obtained in an experiment in which a CNT field-effect transistor was disabled (see figure) by focusing a 1-keV electron beam on a CNT that served as the active channel of a field-effect transistor (FET). Such bombardment could be useful in the manufacture of nonvolatile-memory circuits containing CNT FETs. Ultimately, in order to obtain the best electronic performances in CNT FETs and other electronic devices, it will be necessary to fabricate the devices such that each one contains only a single CNT as an active element. At present, this is difficult because there is no way to grow a single CNT at a specific location and with a specific orientation. Instead, the common practice is to build CNTs into electronic devices by relying on spatial distribution to bridge contacts. This practice results in some devices containing no CNTs and some devices containing more than one CNT. Thus, CNT FETs have statistically distributed electronic characteristics (including switching voltages, gains, and mixtures of metallic and semiconducting CNTs). According to the suggestion, by using a 1-keV electron beam (e.g., a beam from a scanning electron microscope), a particular nanotube could be rendered electrically dysfunctional. This procedure could be repeated as many times as necessary on different CNTs in a device until all of the excess CNTs in the device had been disabled, leaving only one CNT as an active element (e.g., as FET channel). The physical mechanism through which a CNT becomes electrically disabled is not yet understood. On one hand, data in the literature show that electron kinetic energy >86 keV is needed to cause displacement damage in a CNT. On the other hand, inasmuch as a 1-keV beam focused on a small spot (typically a few tens of nanometers wide

  3. Beam Dynamics Considerations in Electron Ion Colliders

    NASA Astrophysics Data System (ADS)

    Krafft, Geoffrey

    2015-04-01

    The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  4. Compact two-beam push-pull free electron laser

    DOEpatents

    Hutton, Andrew

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  5. Electron beam nanosculpting of Kirkendall oxide nanochannels.

    PubMed

    El Mel, Abdel-Aziz; Molina-Luna, Leopoldo; Buffière, Marie; Tessier, Pierre-Yves; Du, Ke; Choi, Chang-Hwan; Kleebe, Hans-Joachim; Konstantinidis, Stephanos; Bittencourt, Carla; Snyders, Rony

    2014-02-25

    The nanomanipulation of metal nanoparticles inside oxide nanotubes, synthesized by means of the Kirkendall effect, is demonstrated. In this strategy, a focused electron beam, extracted from a transmission electron microscope source, is used to site-selectively heat the oxide material in order to generate and steer a metal ion diffusion flux inside the nanochannels. The metal ion flux generated inside the tube is a consequence of the reduction of the oxide phase occurring upon exposure to the e-beam. We further show that the directional migration of the metal ions inside the nanotubes can be achieved by locally tuning the chemistry and the morphology of the channel at the nanoscale. This allows sculpting organized metal nanoparticles inside the nanotubes with various sizes, shapes, and periodicities. This nanomanipulation technique is very promising since it enables creating unique nanostructures that, at present, cannot be produced by an alternative classical synthesis route.

  6. Further remarks on electron beam pumping of laser materials.

    PubMed

    Klein, C A

    1966-12-01

    This article demonstrates that recently completed studies on the energy dissipation of kilovolt electron beams in solids provide readily applicable methods for assessing the situation in electron beam pumped lasers. PMID:20057662

  7. Multiple Electron Stripping of Heavy Ion Beams

    SciTech Connect

    D. Mueller; L. Grisham; I. Kaganovich; R. L. Watson; V. Horvat; K. E. Zaharakis; Y. Peng

    2002-06-25

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters.

  8. Electron-beam distillation of natural polymers

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Makarov, I. E.; Ershov, B. G.

    2014-01-01

    Pyrolysis of cellulose, lignin, and chitin may be upgraded by the use of an electron-beam irradiation. The radiation-thermal destruction mode does more probable production of liquid low-molecular-weight products instead of solid pyrolitic oligomers. Furans, methoxyphenols, and pyridines are dominant products of high-temperature radiolysis of cellulose, lignin, and chitin, respectively. The mechanism of chain destruction of natural polymers is considered.

  9. Preventing Contamination In Electron-Beam Welds

    NASA Technical Reports Server (NTRS)

    Goodin, Wesley D.; Gulbrandsen, Kevin A.; Oleksiak, Carl

    1990-01-01

    Simple expedient eliminates time-consuming, expensive manual hand grinding. Use of groove and backup tube greatly reduces postweld cleanup in some electron-beam welding operations. Tube-backup method developed for titanium parts, configurations of which prevents use of solid-block backup. In new welding configuration, tube inserted in groove to prevent contact between alumina beads and molten weld root. When welding complete and beads and tube removed, only minor spatter remains and is ground away easily.

  10. Electron Beam Welding of Gear Wheels by Splitted Beam

    NASA Astrophysics Data System (ADS)

    Dřímal, Daniel

    2014-06-01

    This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max.. In case of common welding procedure, cracks were formed in the weld, initiated by spiking in the weld root. Crack formation was prevented by the use of an interlocking joint with a rounded recess and suitable welding parameters, eliminating crack initiation by spiking in the weld root. Minimisation of the welding distortions was achieved by the application of tack welding with simultaneous splitting of one beam into two parts in the opposite sections of circumferential face weld attained on the principle of a new system of controlled deflection with digital scanning of the beam. This welding procedure assured that the weldment temperature after welding would not be higher than 400 °C. Thus, this procedure allowed achieving the final run-outs in the critical point of gearwheels within the maximum range up to 0.04 mm, which is acceptable for the given application. Accurate optical measurements did not reveal any changes in the teeth dimensions.

  11. Susceptor heating device for electron beam brazing

    DOEpatents

    Antieau, Susan M.; Johnson, Robert G. R.

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  12. Experimental Studies of Compensation of Beam-Beam Effects with Tevatron Electron Lenses

    SciTech Connect

    Shiltsev, V.; Alexahin, Yu.; Bishofberger, Kip; Kamerdzhiev, V.; Parkhomchuk, V.; Reva, V.; Solyak, N.; Wildman, D.; Zhang, X.-L.; Zimmermann, F.; /Fermilab /Los Alamos /Novosibirsk, IYF /CERN

    2008-02-01

    Applying the space-charge forces of a low-energy electron beam can lead to a significant improvement of the beam-particle lifetime limit arising from the beam-beam interaction in a high-energy collider [1]. In this article we present the results of various beam experiments with 'electron lenses', novel instruments developed for the beam-beam compensation at the Tevatron, which collides 980-GeV proton and antiproton beams. We study the dependencies of the particle betatron tunes on the electron beam current, energy and position; we explore the effects of electron-beam imperfections and noises; and we quantify the improvements of the high-energy beam intensity and the collider luminosity lifetime obtained by the action of the Tevatron Electron Lenses.

  13. Experimental studies of compensation of beam beam effects with Tevatron electron lenses

    NASA Astrophysics Data System (ADS)

    Shiltsev, V.; Alexahin, Y.; Bishofberger, K.; Kamerdzhiev, V.; Parkhomchuk, V.; Reva, V.; Solyak, N.; Wildman, D.; Zhang, X.-L.; Zimmermann, F.

    2008-04-01

    Applying the space-charge forces of a low-energy electron beam can lead to a significant improvement of the beam-particle lifetime limit arising from the beam-beam interaction in a high-energy collider [1]. In this paper, we present the results of various beam experiments with 'electron lenses', novel instruments developed for the beam-beam compensation at the Tevatron, which collides 980 GeV proton and antiproton beams. We study the dependencies of the particle betatron tunes on the electron beam current, energy and position; we explore the effects of electron-beam imperfections and noises; and we quantify the improvements of the high-energy beam intensity and the collider luminosity lifetime obtained by the action of the Tevatron electron lenses.

  14. Electron beam coupling to a metamaterial structure

    SciTech Connect

    French, David M.; Shiffler, Don; Cartwright, Keith

    2013-08-15

    Microwave metamaterials have shown promise in numerous applications, ranging from strip lines and antennas to metamaterial-based electron beam driven devices. In general, metamaterials allow microwave designers to obtain electromagnetic characteristics not typically available in nature. High Power Microwave (HPM) sources have in the past drawn inspiration from work done in the conventional microwave source community. In this article, the use of metamaterials in an HPM application is considered by using an effective medium model to determine the coupling of an electron beam to a metamaterial structure in a geometry similar to that of a dielectric Cerenkov maser. Use of the effective medium model allows for the analysis of a wide range of parameter space, including the “mu-negative,”“epsilon-negative,” and “double negative” regimes of the metamaterial. The physics of such a system are modeled analytically and by utilizing the particle-in-cell code ICEPIC. For this geometry and effective medium representation, optimum coupling of the electron beam to the metamaterial, and thus the optimum microwave or RF production, occurs in the epsilon negative regime of the metamaterial. Given that HPM tubes have been proposed that utilize a metamaterial, this model provides a rapid method of characterizing a source geometry that can be used to quickly understand the basic physics of such an HPM device.

  15. Transverse profile imager for ultrabright electron beams

    NASA Astrophysics Data System (ADS)

    Ischebeck, Rasmus; Prat, Eduard; Thominet, Vincent; Ozkan Loch, Cigdem

    2015-08-01

    A transverse profile imager for ultrabright electron beams is presented, which overcomes resolution issues in present designs by observing the Scheimpflug imaging condition as well as the Snell-Descartes law of refraction in the scintillating crystal. Coherent optical transition radiation emitted by highly compressed electron bunches on the surface of the crystal is directed away from the camera, allowing to use the monitor for profile measurements of electron bunches suitable for X-ray free electron lasers. The optical design has been verified by ray tracing simulations, and the angular dependency of the resolution has been verified experimentally. An instrument according to the presented design principles has been used in the SwissFEL Injector Test Facility, and different scintillator materials have been tested. Measurements in conjunction with a transverse deflecting radiofrequency structure and an array of quadrupole magnets demonstrate a normalized slice emittance of 25 nm in the core of a 30 fC electron beam at a pulse length of 10 ps and a particle energy of 230 MeV.

  16. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1985-01-01

    Electron beam experiments using rocketborne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes have been observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2-, 4-, or 8-keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher-energy electrons led the lower-energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. An alternative interpretation is briefly examined, and its relative merit in describing the observations is evaluated. The injection process is discussed in some detail as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection for both processes.

  17. Beam loss and radiation effects in the SSC lattice elements

    SciTech Connect

    Baishev, I.S.; Drozhdin, A.I.; Mokhov, N.V. |

    1990-11-01

    The Superconducting Super Collider (SSC) is designed to be an advanced machine with relatively low beam loss-induced radiation levels. However, a fraction of the beam lost in the lattice due to pp-collisions at the interaction points, beam-gas scattering, bearn-halo scraping, various instabilities and errors will result in the irradiation of conventional and superconducting components of the accelerator and experimental apparatus. The level of the beam loss and its distribution along the machine structure has impact on all of the three crucial radiation effects at the SSC: quenching of the superconducting magnets, survivability of the accelerator and detectors components in the near-beam regions, and influence to the environment. This paper, based on the full-scale Monte Carlo simulation, will explore all major sources of beam loss in the Collider and measures to reduce the irradiation of the accelerator components. Basic parameters of the Super Collider accepted throughout this report are as follows: Proton energy E{sub 0} = 20 TeV, injection energy is 2 TeV, number of protons circulating in each of the collider rings is N = 1.3 {times} 10{sup 14}, circumference is 87.12 km, the transverse normalized emittance {var_epsilon}{sub N}({sigma}) = 1 {pi} mm-mrad, for the regular lattice ({beta} = 305 m) the beam R.M.S. sizes are {sigma} = 0.12 mm at 20 TEV and {sigma} = 0.38 mm at the injection energy. The dipole length is 15.815 m with the effective field length of 15.165 m. The magnetic field map for B{sub 0} = 6.5999 T has been calculated with the POISSON program by Greg Snitchler. The turn angle of each dipole is {alpha} = 1.50027 mrad. The dipole aperture is 50 mm. The two beam pipe diameters are studied 33 and 40 mm. The operating temperature is T{sub 0} = 4.35 K.

  18. Benchmarking of collimation tracking using RHIC beam loss data.

    SciTech Connect

    Robert-Demolaize,G.; Drees, A.

    2008-06-23

    State-of-the-art tracking tools were recently developed at CERN to study the cleaning efficiency of the Large Hadron Collider (LHC) collimation system. In order to estimate the prediction accuracy of these tools, benchmarking studies can be performed using actual beam loss measurements from a machine that already uses a similar multistage collimation system. This paper reviews the main results from benchmarking studies performed with specific data collected from operations at the Relativistic Heavy Ion Collider (RHIC).

  19. Surface excitations in the modelling of electron transport for electron-beam-induced deposition experiments

    PubMed Central

    Valentí, Roser; Werner, Wolfgang S

    2015-01-01

    Summary The aim of the present overview article is to raise awareness of an essential aspect that is usually not accounted for in the modelling of electron transport for focused-electron-beam-induced deposition (FEBID) of nanostructures: Surface excitations are on the one hand responsible for a sizeable fraction of the intensity in reflection-electron-energy-loss spectra for primary electron energies of up to a few kiloelectronvolts and, on the other hand, they play a key role in the emission of secondary electrons from solids, regardless of the primary energy. In this overview work we present a general perspective of recent works on the subject of surface excitations and on low-energy electron transport, highlighting the most relevant aspects for the modelling of electron transport in FEBID simulations. PMID:26171301

  20. Distributed beam loss monitor based on the Cherenkov effect in an optical fiber

    NASA Astrophysics Data System (ADS)

    Maltseva, Yu; Emanov, F. A.; Petrenko, A. V.; Prisekin, V. G.

    2015-05-01

    This review discusses a distributed beam loss monitor which is based on the Cherenkov effect in an optical fiber and which has been installed at the VEPP-5 Injection Complex at the Budker Institute of Nuclear Physics. The principle of the device operation consists in detecting the Cherenkov radiation generated in an optical fiber by relativistic charged particles that are produced in an electromagnetic shower when highly relativistic beam particles (electrons or positrons) hit the accelerator vacuum chamber wall. Our experiments used a photomultiplier tube (PMT) to detect the Cherenkov light. Knowing when the PMT signal arrives tells us where the beam loss occurs. Using a 20-m-long optical fiber allowed a detector spatial resolution of 3 m. The way to improve the resolution is to optimize the monitor working conditions and optical fiber and PMT parameters, potentially leading to a resolution of as fine as 0.5 m according to our estimates.

  1. Performance Studies of the Vibration Wire Monitor on the Test Stand with Low Energy Electron Beam

    NASA Astrophysics Data System (ADS)

    Okabe, Kota; Yoshimoto, Masahiro; Kinsho, Michikazu

    In the high intensity proton accelerator as the Japan Proton Accelerator Research Complex (J-PARC) accelerators, serious radiation and residual dose is induced by a small beam loss such a beam halo. Therefore, diagnostics of the beam halo formation is one of the most important issues to control the beam loss. For the beam halo monitor, the vibration wire monitor (VWM) has a potential for investigating the beam halo and weak beam scanning. The VWM has a wide dynamic range, high resolution and the VWM is not susceptible to secondary electrons and electric noises. We have studied the VWM features as a new beam-halo monitor on the test stand with low energy electron gun. The frequency shift of the irradiated vibration wire was confirmed about wire material and the electron beam profile measured by using the VWM was consistent with the results of the Faraday cup measurement. Also we calculated a temperature distribution on the vibration wire which is irradiated by the electron beam with the numerical simulation. The simulations have been fairly successful in reproducing the transient of the irradiated vibration wire frequency measured by test stand experiments. In this paper, we will report a result of performance evaluation for the VWM on the test stands and discuss the VWM for beam halo diagnostic

  2. Multiple species beam production on laser ion source for electron beam ion source in Brookhaven National Laboratory

    SciTech Connect

    Sekine, M.; Ikeda, S.; Hayashizaki, N.; Kanesue, T.; Okamura, M.

    2014-02-15

    Extracted ion beams from the test laser ion source (LIS) were transported through a test beam transport line which is almost identical to the actual primary beam transport in the current electron beam ion source apparatus. The tested species were C, Al, Si, Cr, Fe, Cu, Ag, Ta, and Au. The all measured beam currents fulfilled the requirements. However, in the case of light mass ions, the recorded emittance shapes have larger aberrations and the RMS values are higher than 0.06 π mm mrad, which is the design goal. Since we have margin to enhance the beam current, if we then allow some beam losses at the injection point, the number of the single charged ions within the acceptance can be supplied. For heaver ions like Ag, Ta, and Au, the LIS showed very good performance.

  3. Comptonization of thermal photons by relativistic electron beams

    NASA Technical Reports Server (NTRS)

    Daugherty, Joseph K.; Harding, Alice K.

    1989-01-01

    This paper presents a numerical calculation of gamma-ray emission produced by Compton scattering of relativistic electron beams on background thermal radiation, which includes spatial dependence of electron energy losses and cyclotron resonance scattering in a strong magnetic field. In the first version, the scattering is described by the fully relativistic Klein-Nishina cross section, but the magnetic field is neglected. In the second version, the scattering is described by the magnetic resonant cross section in the Thomson limit. It is found that when the magnetic field is not included, electron energy losses are important only at higher neutron star surface temperatures (T about 3,000,000 K). In the presence of a strong magnetic field, (10 to the 12th G), resonant scattering greatly increases electron energy losses, making scattering very efficient even at lower surface temperatures. Resulting photon and electron spectra for both cases ae discussed in relation to models for pulsar X-ray and gamma-ray emission.

  4. RHIC electron lens beam transport system design considerations

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2010-10-01

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP10. Electron beam transport system is one of important subsystem, which is used to transport electron beam from electron gun side to collector side. This system should be able to change beam size inside superconducting magnet and control beam position with 5 mm in horizontal and vertical plane. Some other design considerations for this beam transport system are also reported in this paper. The head-on beam-beam effect is one of important nonlinear source in storage ring and linear colliders, which have limited the luminosity improvement of many colliders, such as SppS, Tevatron and RHIC. In order to enhance the performance of colliders, beam-beam effects can be compensated with direct space charge compensation, indirect space charge compensation or betatron phase cancellation scheme. Like other colliders, indirect space charge compensation scheme (Electron Lens) was also proposed for Relativistic Heavy Ion Collider (RHIC) beam-beam compensation at Brookhaven National Laboratory. The two similar electron lenses are located in IR10 between the DX magnets. One RHIC electron lens consists of one DC electron gun, one superconducting magnet, one electron collector and beam transport system.

  5. Optimizing the beam-beam alignment in an electron lens using bremsstrahlung

    SciTech Connect

    Montag, C.; Fischer, W.; Gassner, D.; Thieberger, P.; Haug, E.

    2010-05-23

    Installation of electron lenses for the purpose of head-on beam-beam compensation is foreseen at RHIC. To optimize the relative alignment of the electron lens beam with the circulating proton (or ion) beam, photon detectors will be installed to measure the bremsstrahlung generated by momentum transfer from protons to electrons. We present the detector layout and simulations of the bremsstrahlung signal as function of beam offset and crossing angle.

  6. Beam losses and beam halos in accelerators for new energy sources

    SciTech Connect

    Jameson, R.A.

    1995-12-31

    Large particle accelerators are proposed as drivers for new ways to produce electricity from nuclear fusion and fission reactions. The accelerators must be designed to deliver large particle beam currents to a target facility with very little beam spill along the accelerator itself, in order that accelerator maintenance can be accomplished without remote manipulators. Typically, particle loss is preceded by the formation of a tenuous halo of particles around the central beam core, caused by beam dynamics effects, often coupled with the slight imperfections inevitable in a practical design. If the halo becomes large enough, particles may be scraped off along the accelerator. The tolerance for beam spill in different applications is discussed, halo mechanisms and recent work to explore and understand their dynamics are reviewed, and possible directions for future investigation are outlined. 17 refs., 10 figs.

  7. Coherent Radiation from Relativistic Electron Beams.

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Ren

    Two new laser concepts, the Ion-Ripple Laser (IRL) and the Ion-Channel Laser (ICL), are proposed. A unified theory for coherent radiation from relativistic electron beams devices is developed; the theory not only links the physics of Cyclotron Masers (CMs) and Free Electron Lasers (FELs) but covers the physics of the IRLs and the ICLs. We have also invented a new numerical method, the Neo-Finite -Difference (NFD) method, for electromagnetic plasma simulations and applied it to studies of these lasers. The unified amplification theory compares the growth mechanisms. Two bunching mechanisms (both axial and azimuthal) exist, not only for the noncollective single electron resonance regime, but also in the collective gain regime. Competition or reinforcement between the two bunching mechanisms is determined by the q value (a parameter that determines how the electron oscillation frequency depends on energy), the electron axial velocity, and the wave phase velocity. The unified theory concludes that, for wave amplification, the sign of the electron mismatch frequency is required to be the same as the sign of a bunching parameter that is determined by the total bunching. In an IRL, a relativistic electron beam propagates obliquely through an ion ripple in a plasma. The radiation frequency depends on the beam energy, the ripple wave number, and the angle: omega ~ 2gamma ^{2}k_{ir}ccos theta. By proper choice of device parameters, sources of microwaves, optical, and perhaps even X-rays can be made. The dispersion relation for wave coupling is derived and used to calculate the radiation frequency and linear growth rate. The nonlinear saturation mechanism is explored. Computer simulation is used to verify the ideas, scaling laws and nonlinear mechanisms. In an ICL, the ion focusing force causes the electrons to oscillate about the channel axis and plays a similar role to the magnetic field in a CM. This electron motion is nonlinear and is studied. Simulations were performed

  8. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  9. Bunch length effects in the beam-beam compensation with an electron lens

    SciTech Connect

    Fischer, W.; Luo, Y.; Montag, C.

    2010-02-25

    Electron lenses for the head-on beam-beam compensation are under construction at the Relativistic Heavy Ion Collider. The bunch length is of the same order as the {beta}-function at the interaction point, and a proton passing through another proton bunch experiences a substantial phase shift which modifies the beam-beam interaction. We review the effect of the bunch length in the single pass beam-beam interaction, apply the same analysis to a proton passing through a long electron lens, and study the single pass beam-beam compensation with long bunches. We also discuss the beam-beam compensation of the electron beam in an electron-ion collider ring.

  10. Side-effects of the space charge field introduced by a hollow electron beam in the electron cooler of CSRm

    NASA Astrophysics Data System (ADS)

    Tang, Mei-Tang; Yang, Xiao-Dong; Mao, Li-Jun; Li, Jie; Ma, Xiao-Ming; Yan, Tai-Lai; Zheng, Wen-Heng; Zhao, He; Wu, Bo; Wang, Geng; Ruan, Shuang; Sha, Xiao-Ping

    2015-12-01

    An electron cooler is used to improve the quality of the ion beam in a synchrotron; however it also introduces a nonlinear electromagnetic field to the accelerator, which causes tune shift, tune spread and may drive resonances leading to ion beam loss. In this paper the tune shift and the tune spread caused by the nonlinear electromagnetic field of a hollow electron beam is investigated, and the resonance driving terms of the nonlinear electromagnetic field are analysed. The differences are presented compared with a solid electron beam. Calculations are performed for 238U32+ ions of energy 1.272 MeV stored in the main Cooler Storage Ring (CSRm) at the Institute of Modern Physics, Lanzhou. It is found that in this situation the nonlinear field caused by the hollow electron beam does not lead to serious resonances. Supported by National Natural Science Foundation of China (11375245)

  11. Polarisation splitting of laser beams by large angles with minimal reflection losses

    SciTech Connect

    Davydov, B L

    2006-05-31

    New crystal anisotropic prisms for splitting orthogonally polarised components of laser radiation by large angles with minimal reflection losses caused by the Brewster refraction and total internal reflection of polarised waves from the crystal-air interface are considered and the method for their calculation is described. It is shown that, by assembling glue-free combinations of two or three prisms, thermally stable beamsplitters can be fabricated, which are free from the beam astigmatism and the wave dispersion of the output angles of the beams. The parameters and properties of new beamsplitters are presented in a convenient form in figures and tables. (laser applications and other topics in quantum electronics)

  12. Specimen Behavior in the Electron Beam.

    PubMed

    Glaeser, R M

    2016-01-01

    It has long been known that cryo-EM specimens are severely damaged by a level of electron exposure that is much lower than what is needed to obtain high-resolution images from single macromolecules. Perhaps less well appreciated in the cryo-EM literature, the vitreous ice in which samples are suspended is equally sensitivity to radiation damage. This chapter provides a review of several fundamental topics such as inelastic scattering of electrons, radiation chemistry, and radiation biology, which-together-can help one to understand why radiation damage occurs so "easily." This chapter also addresses the issue of beam-induced motion that occurs at even lower levels of electron exposure. While specimen charging may be a contributor to this motion, it is argued that both radiation-induced relief of preexisting stress and damage-induced generation of additional stress may be the dominant causes of radiation-induced movement. PMID:27572722

  13. Designing a beam transport system for RHIC's electron lens

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Raparia, D.

    2011-03-28

    We designed two electron lenses to apply head-on beam-beam compensation for RHIC; they will be installed near IP10. The electron-beam transport system is an important subsystem of the entire electron-lens system. Electrons are transported from the electron gun to the main solenoid and further to the collector. The system must allow for changes of the electron beam size inside the superconducting magnet, and for changes of the electron position by 5 mm in the horizontal- and vertical-planes.

  14. Use of beam deflection to control an electron beam wire deposition process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  15. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  16. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  17. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  18. Electron-Beam Induced Transformations of Layered Tin Dichalcogenides.

    PubMed

    Sutter, E; Huang, Y; Komsa, H-P; Ghorbani-Asl, M; Krasheninnikov, A V; Sutter, P

    2016-07-13

    By combining high-resolution transmission electron microscopy and associated analytical methods with first-principles calculations, we study the behavior of layered tin dichalcogenides under electron beam irradiation. We demonstrate that the controllable removal of chalcogen atoms due to electron irradiation, at both room and elevated temperatures, gives rise to transformations in the atomic structure of Sn-S and Sn-Se systems so that new phases with different properties can be induced. In particular, rhombohedral layered SnS2 and SnSe2 can be transformed via electron beam induced loss of chalcogen atoms into highly anisotropic orthorhombic layered SnS and SnSe. A striking dependence of the layer orientation of the resulting SnS-parallel to the layers of ultrathin SnS2 starting material, but slanted for transformations of thicker few-layer SnS2-is rationalized by a transformation pathway in which vacancies group into ordered S-vacancy lines, which convert via a Sn2S3 intermediate to SnS. Absence of a stable Sn2Se3 intermediate precludes this pathway for the selenides, hence SnSe2 always transforms into basal plane oriented SnSe. Our results provide microscopic insights into the transformation mechanism and show how irradiation can be used to tune the properties of layered tin chalcogenides for applications in electronics, catalysis, or energy storage.

  19. Electron-beam analysis of polymerized KC{sub 60}

    SciTech Connect

    Chopra, N.G.; Hone, J.; Zettl, A.

    1996-04-01

    We have conducted high-resolution transmission electron microscopy (HRTEM) and electron-energy-loss spectroscopy (EELS) studies on polymerized KC{sub 60}. The chainlike structure proposed for the polymerized material is confirmed. Lattice constants extracted from the HRTEM images are consistent with those determined earlier by x-ray diffraction. The fine structure in the EELS spectrum of KC{sub 60} shows the {ital sp}{sup 2} nature of the carbon bonds along with features which distinguish the bonding in this alkali fulleride from that of other fullerenes. Both the HRTEM and EELS studies show that polymerized KC{sub 60} is exceedingly resilient against damage induced by a 200-keV electron beam, in sharp contrast to the behavior of pristine C{sub 60}. {copyright} {ital 1996 The American Physical Society.}

  20. Exposure simulation of electron beam microcolumn lithography

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kon; Oh, Hye-Keun

    2004-05-01

    We propose an improved method to describe the electron-resist interaction based on Dill"s model for exposure simulation. For this purpose, Monte Carlo simulation was performed to obtain the energy intensity distribution in the chemically amplified resist. Tabulated Mott data for elastic scattering, Moller and Vriens cross sections for inelastic scattering, and Modified Bethe equation plus discrete energy loss for energy loss are used for the calculation of the energy intensity distribution. Through the electron-resist interaction, the energy intensity distribution changes resist components into the exposure production such as the photoacid concentration or the photoacid generator inside resists with various pattern shapes by using the modified Dill"s model. Our simulation profiles show a good agreement with experimental profiles.

  1. Simulating electron energy loss spectroscopy with the MNPBEM toolbox

    NASA Astrophysics Data System (ADS)

    Hohenester, Ulrich

    2014-03-01

    Within the MNPBEM toolbox, we show how to simulate electron energy loss spectroscopy (EELS) of plasmonic nanoparticles using a boundary element method approach. The methodology underlying our approach closely follows the concepts developed by García de Abajo and coworkers (Garcia de Abajo, 2010). We introduce two classes eelsret and eelsstat that allow in combination with our recently developed MNPBEM toolbox for a simple, robust, and efficient computation of EEL spectra and maps. The classes are accompanied by a number of demo programs for EELS simulation of metallic nanospheres, nanodisks, and nanotriangles, and for electron trajectories passing by or penetrating through the metallic nanoparticles. We also discuss how to compute electric fields induced by the electron beam and cathodoluminescence. Catalogue identifier: AEKJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKJ_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 38886 No. of bytes in distributed program, including test data, etc.: 1222650 Distribution format: tar.gz Programming language: Matlab 7.11.0 (R2010b). Computer: Any which supports Matlab 7.11.0 (R2010b). Operating system: Any which supports Matlab 7.11.0 (R2010b). RAM:≥1 GB Classification: 18. Catalogue identifier of previous version: AEKJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 370 External routines: MESH2D available at www.mathworks.com Does the new version supersede the previous version?: Yes Nature of problem: Simulation of electron energy loss spectroscopy (EELS) for plasmonic nanoparticles. Solution method: Boundary element method using electromagnetic potentials. Reasons for new version: The new version of the toolbox includes two additional classes for the simulation of electron energy

  2. Electron beam simulation from gun to collector: Towards a complete solution

    SciTech Connect

    Mertzig, R. Shornikov, A. Wenander, F.; Beebe, E.; Pikin, A.

    2015-01-09

    An electron-beam simulation technique for high-resolution complete EBIS/T modelling is presented. The technique was benchmarked on the high compression HEC{sup 2} test-stand with an electron beam current, current density and energy of 10 A, 10 kA/cm{sup 2} and 49.2 keV, and on the immersed electron beam at REXEBIS for electron beam characteristics of 0.4 A, 200 A/cm{sup 2} and 4.5 keV. In both Brillouin-like and immersed beams the electron-beam radius varies from several millimeters at the gun, through some hundreds of micrometers in the ionization region to a few centimeters at the collector over a total length of several meters. We report on our approach for finding optimal meshing parameters, based on the local beam properties such as magnetic field-strength, electron energy and beam radius. This approach combined with dividing the problem domain into sub-domains, and subsequent splicing of the local solutions allowed us to simulate the beam propagation in EBISes from the gun to the collector using a conventional PC in about 24–36 h. Brillouin-like electron beams propagated through the complete EBIS were used to analyze the beam behavior within the collector region. We checked whether elastically reflected paraxial electrons from a Brillouin-like beam will escape from the collector region and add to the loss current. We have also studied the power deposition profiles as function of applied potentials using two electrode geometries for a Brillouin-like beam including the effects of backscattered electrons.

  3. Electron beam ion source and electron beam ion trap (invited)a)

    NASA Astrophysics Data System (ADS)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  4. Two-Beam Instability in Electron Cooling

    SciTech Connect

    Burov, Alexey V.; /Fermilab

    2006-04-01

    The drift motion of cooling electrons makes them able to respond to transverse perturbations of a cooled ion beam. This response may lead to dipole or quadrupole transverse instabilities at specific longitudinal wave numbers. While the dipole instabilities can be suppressed by a combination of the Landau damping, machine impedance, and the active damper, the quadrupole and higher order modes can lead to either emittance growth, or a lifetime degradation, or both. The growth rates of these instabilities are strongly determined by the machine x-y coupling. Thus, tuning out of the coupling resonance and/or reduction of the machine coupling can be an efficient remedy for these instabilities.

  5. Decarburization of uranium via electron beam processing

    SciTech Connect

    McKoon, R H

    1998-10-23

    For many commercial and military applications, the successive Vacuum Induction Melting of uranium metal in graphite crucibles results in a product which is out of specification in carbon. The current recovery method involves dissolution of the metal in acid and chemical purification. This is both expensive and generates mixed waste. A study was undertaken at Lawrence Livermore National Laboratory to investigate the feasibility of reducing the carbon content of uranium metal using electron beam techniques. Results will be presented on the rate and extent of carbon removal as a function of various operating parameters.

  6. The LCLS Undulator Beam Loss Monitor Readout System

    SciTech Connect

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  7. Uranium trioxide behavior during electron energy loss spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Alekseev, Evgeny V.

    2015-03-01

    A sample of uranium trioxide (UO3) was produced by focused ion beam (~10 μm×~10 μm×<0.5 μm) for transmission electron and electron energy loss (EEL) spectroscopy examinations in a transmission electron microscope (TEM). The EEL spectra were recorded as a function of the thickness for the P and O edges in the low energy range 0-350 eV and were compared to spectra of UO3 small grains attached to a TEM grid. The EEL spectrum was studied through a range of thicknesses going from ~60 to ~260 nm. The EEL spectra recorded for UO3 are compared with those recorded for UO2. The reduction of UO3 into U4O9 and/or UO2 is readily observed apparently during the TEM investigations and as confirmed by electron diffraction (eD). This redox effect is similar to that known for other redox sensitive oxides. Recommendations are suggested to avoid sample decomposition.

  8. A Three Dimensional Calculation of Electron Energy Loss in a Variable Parameter Free-Electron Laser

    SciTech Connect

    Luccio, A.; Pellegrini, C.

    1980-03-01

    A single-pass free-electron laser (FEL) using a wiggler magnet with either the period, and/or the magnetic field, varying along the magnet axis has been proposed. The main advantage of this system over a conventional free-electron laser, having a constant period and magnetic field wiggler, is in the higher efficiency of the energy transfer from the electron beam to the laser radiation field. This efficiency, which is of the order of 1% in a conventional FEL, can be of the order of 30% in a variable wiggler FEL. The theory of the variable wiggler FEL is based on a one dimensional model, in which the electron motion transverse to the laser axis is assumed to be given and only the motion parallel to the axis is studied. In this paper, the effect on the laser efficiency of the electron transverse motion is studied and the electron energy loss is evaluated for a beam having a spread in angle and in the transverse position at the wiggler entrance. The complete three dimensional equations of motion for an electron interacting with the laser field and the wiggler field are integrated numerically. Only the case of a small gain regime, assuming that the laser field intensity remains constant, is considered. Also, this study is limited to the case of a helical wiggler. The results are compared with the one dimensional model. The effect of the initial position and angular spread can, to a good approximation, be considered equivalent to an increase in the energy spread. The limits for this increased energy spread that must not be exceeded in order to avoid a loss in efficiency are nearly the same as in the one dimensional model.

  9. Reflection electron energy-loss spectroscopy and imaging for surface studies in transmission electron microscopes.

    PubMed

    Wang, Z L; Bentley, J

    1992-02-15

    A review is given on the techniques and applications of high-energy reflection electron energy-loss spectroscopy (REELS) and reflection electron microscopy (REM) for surface studies in scanning transmission electron microscopes (STEM) and conventional transmission electron microscopes (TEM). A diffraction method is introduced to identify a surface orientation in the geometry of REM. The surface dielectric response theory is presented and applied for studying alpha-alumina surfaces. Domains of the alpha-alumina (012) surface initially terminated with oxygen can be reduced by an intense electron beam to produce Al metal; the resistance to beam damage of surface domains initially terminated with Al+3 ions is attributed to the screening effect of adsorbed oxygen. Surface energy-loss near-edge structure (ELNES), extended energy-loss fine structure (EXELFS), and microanalysis using REELS are illustrated based on the studies of TiO2 and MgO. Effects of surface resonances (or channeling) on the REELS signal-to-background ratio are described. The REELS detection of a monolayer of oxygen adsorption on diamond (111) surfaces is reported. It is shown that phase contrast REM image content can be significantly increased with the use of a field emission gun (FEG). Phase contrast effects close to the core of a screw dislocation are discussed and the associated Fresnel fringes around a surface step are observed. Finally, an in situ REM experiment is described for studying atomic desorption and diffusion processes on alpha-alumina surfaces at temperatures of 1,300-1,400 degrees C.

  10. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    SciTech Connect

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-15

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  11. Experimental and simulation studies of beam-beam compensation with Tevatron electron lenses

    SciTech Connect

    Kamerdzhiev, V.; Alexahin, Y.; Shiltsev, V.; Valishev, A.; Zhang, X.L.; Shatilov, D.; /Novosibirsk, IYF

    2007-06-01

    Initially the Tevatron Electron Lenses (TELs) were intended for compensation of the beam-beam effect on the antiproton beam [1]. Owing to recent increase in the number of antiprotons and reduction in their emittance, it is the proton beam now that suffers most from the beam-beam effect [2]. We present results of beam studies, compare them with the results of computer simulations using LIFETRAC code and discuss possibilities of further improvements of the Beam-Beam Compensation efficiency in the Tevatron.

  12. Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles' trajectories.

    PubMed

    Schley, Ran; Kaminer, Ido; Greenfield, Elad; Bekenstein, Rivka; Lumer, Yaakov; Segev, Mordechai

    2014-01-01

    Self-accelerating beams--shape-preserving bending beams--are attracting great interest, offering applications in many areas such as particle micromanipulation, microscopy, induction of plasma channels, surface plasmons, laser machining, nonlinear frequency conversion and electron beams. Most of these applications involve light-matter interactions, hence their propagation range is limited by absorption. We propose loss-proof accelerating beams that overcome linear and nonlinear losses. These beams, as analytic solutions of Maxwell's equations with losses, propagate in absorbing media while maintaining their peak intensity. While the power such beams carry decays during propagation, the peak intensity and the structure of their main lobe region are maintained over large distances. We use these beams for manipulation of particles in fluids, steering the particles to steeper angles than ever demonstrated. Such beams offer many additional applications, such as loss-proof self-bending plasmons. In transparent media these beams show exponential intensity growth, which facilitates other novel applications in micromanipulation and ignition of nonlinear processes. PMID:25355605

  13. Electron Beam Technology for Environmental Pollution Control.

    PubMed

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs.

  14. The Electron Beam Semiconductor (EBS) amplifier

    NASA Astrophysics Data System (ADS)

    True, R. M.; Baxendale, J. F.

    1980-07-01

    The Electron Beam Semiconductor (EBS) concept has existed for three decades; but only within the last decade has an active, well-defined program been underway to develop devices that can operate as high-power radio frequency(RF) amplifiers, fast risetime switches, and current and voltage pulse amplifiers. This report discusses the test procedures, data and results of reliability testing of RF and video pulse EBS amplifiers at Electronics Research and Development Command (ERADCOM), Fort Monmouth, New Jersey. Also, the experimental analysis of the series connected diode EBS device is described in detail. Finally, the report concludes with a discussion of the state-of-the-art of EBS and future trends of the technology.

  15. The electron beam instability and turbulence theories

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Extensions and practical applications of recent observations of electron beam-plasma interactions are investigated for the range of turbulence theories, extending from quasi-linear to strong turbulence theory, which have been developed on the basis of the Langmuir-wave excitation model. Electron foreshock observations have indicated that linear instability theory must encompass the excitation of waves whose frequencies are substantially different from those of the plasma frequency; the point of departure for such extensions should be a quantitative test of existing theories, and particle simulations conducive to such testing are presented. A step-by-step addition of physical considerations is used in such simulation studies to differentiate among nonlinear turbulence effects.

  16. Focused electron beam induced deposition: A perspective

    PubMed Central

    Porrati, Fabrizio; Schwalb, Christian; Winhold, Marcel; Sachser, Roland; Dukic, Maja; Adams, Jonathan; Fantner, Georg

    2012-01-01

    Summary Background: Focused electron beam induced deposition (FEBID) is a direct-writing technique with nanometer resolution, which has received strongly increasing attention within the last decade. In FEBID a precursor previously adsorbed on a substrate surface is dissociated in the focus of an electron beam. After 20 years of continuous development FEBID has reached a stage at which this technique is now particularly attractive for several areas in both, basic and applied research. The present topical review addresses selected examples that highlight this development in the areas of charge-transport regimes in nanogranular metals close to an insulator-to-metal transition, the use of these materials for strain- and magnetic-field sensing, and the prospect of extending FEBID to multicomponent systems, such as binary alloys and intermetallic compounds with cooperative ground states. Results: After a brief introduction to the technique, recent work concerning FEBID of Pt–Si alloys and (hard-magnetic) Co–Pt intermetallic compounds on the nanometer scale is reviewed. The growth process in the presence of two precursors, whose flux is independently controlled, is analyzed within a continuum model of FEBID that employs rate equations. Predictions are made for the tunability of the composition of the Co–Pt system by simply changing the dwell time of the electron beam during the writing process. The charge-transport regimes of nanogranular metals are reviewed next with a focus on recent theoretical advancements in the field. As a case study the transport properties of Pt–C nanogranular FEBID structures are discussed. It is shown that by means of a post-growth electron-irradiation treatment the electronic intergrain-coupling strength can be continuously tuned over a wide range. This provides unique access to the transport properties of this material close to the insulator-to-metal transition. In the last part of the review, recent developments in mechanical strain

  17. Electron Beam Technology for Environmental Pollution Control.

    PubMed

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs. PMID:27620188

  18. Electrical properties of irradiated PVA film by using ion/electron beam

    NASA Astrophysics Data System (ADS)

    Abdelrahman, M. M.; Osman, M.; Hashhash, A.

    2016-02-01

    Ion/electron beam bombardment has shown great potential for improving the surface properties of polymers. Low-energy charged (ion/electron) beam irradiation of polymers is a good technique to modify properties such as electrical conductivity, structural behavior, and their mechanical properties. This paper reports on the effect of nitrogen and electron beam irradiation on the electrical properties of polyvinyl alcohol (PVA) films. PVA films of 4 mm were exposed to a charged (ion/electron) beam for different treatment times (15, 30, and 60 minutes); the beam was produced from a dual beam source using nitrogen gas with the other ion/electron source parameters optimized. The dielectric loss tangent tan δ , electrical conductivity σ , and dielectric constant ɛ ^' } in the frequency range 100 Hz-100 kHz were measured at room temperature. The variation of dielectric constant and loss tangent as a function of frequency was also studied at room temperature. The dielectric constant was found to be strongly dependent on frequency for both ion and electron beam irradiation doses. The real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the dielectric constant decreased with frequency for all irradiated and non-irradiated samples. The AC conductivity showed an increase with frequency for all samples under the influence of both ion and electron irradiation for different times. Photoluminescence (PL) spectral changes were also studied. The formation of clusters and defects (which serve as non-radiative centers on the polymer surface) is confirmed by the decrease in the PL intensity.

  19. Generation and application of bessel beams in electron microscopy.

    PubMed

    Grillo, Vincenzo; Harris, Jérémie; Gazzadi, Gian Carlo; Balboni, Roberto; Mafakheri, Erfan; Dennis, Mark R; Frabboni, Stefano; Boyd, Robert W; Karimi, Ebrahim

    2016-07-01

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. PMID:27203186

  20. Location of Maximum Credible Beam Losses in LCLS Injector

    SciTech Connect

    Mao, Stan

    2010-12-13

    The memo describes the maximum credible beam the LCLS injector can produce and lose at various locations along the beamline. The estimation procedure is based upon three previous reports [1, 2, 3]. While specific numbers have been updated to accurately reflect the present design parameters, the conclusions are very similar to those given in Ref 1. The source of the maximum credible beam results from the explosive electron emission from the photocathode if the drive laser intensity exceeds the threshold for plasma production. In this event, the gun's RF field can extract a large number of electrons from this plasma which are accelerated out of the gun and into the beamline. This electron emission persists until it has depleted the gun of all its energy. Hence the number of electrons emitted per pulse is limited by the amount of stored RF energy in the gun. It needs to be emphasized that this type of emission is highly undesirable, as it causes permanent damage to the cathode.

  1. Structure of the runaway electron loss during induced disruptions in TEXTOR

    NASA Astrophysics Data System (ADS)

    Wongrach, K.; Finken, K. H.; Abdullaev, S. S.; Willi, O.; Zeng, L.; Xu, Y.

    2015-10-01

    The loss of runaway electrons during an induced disruption is recorded by a synchrotron imaging technique using a fast infrared CCD camera. The loss is predominantly diffuse. During the "spiky-loss phase", when the runaway beam moves close to the wall, a narrow channel between the runaway column and a scintillator probe is formed and lasts until the runaway beam is terminated. In some cases, the processed images show a stripe pattern at the plasma edge. A comparison between the MHD dominated disruptions and the MHD-free disruption is performed. A new mechanism of plasma disruptions with the runaway electron generation and a novel model which reproduces many characteristic features of the plasma beam evolution during a disruption is briefly described.

  2. High power, electron-beam induced switching in diamond

    SciTech Connect

    Scarpetti, R.D.; Hofer, W.W.; Kania, D.R.; Schoenbach, K.H.; Joshi, R.P.; Molina, C.; Brinkmann, R.P.

    1993-07-01

    We are developing a high voltage, high average power, electron-beam controlled diamond switch that could significantly impact high power solid-state electronics in industrial and defense applications. An electron-beam controlled thin-film diamond could switch well over 100 kW average power at MHz frequencies, greater than 5 kV, and with high efficiency. This performance is due to the excellent thermal and electronic properties of diamond, the high efficiency achieved with electron beam control, and the demonstrated effectiveness of microchannel cooling. Our electron beam penetration depth measurements agree with our Monte-Carlo calculations. We have not observed electron beam damage in diamond for beam energies up to 150 keV. In this paper we describe our experimental and calculational results and research objectives.

  3. 19 CFR 360.108 - Loss of electronic licensing privileges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Loss of electronic licensing privileges. 360.108... MONITORING AND ANALYSIS SYSTEM § 360.108 Loss of electronic licensing privileges. Should Commerce determine... system, Commerce may revoke its electronic licensing privileges without prior notice. The filer will...

  4. Electron-beam diagnostic for space-charge measurement of an ion beam

    SciTech Connect

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2005-02-01

    A nonperturbing electron-beam diagnostic system for measuring the charge distribution of an ion beam is developed for heavy ion fusion beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron-beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the neutralized transport experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.

  5. Electron beam diagnostic for space charge measurement of an ion beam

    SciTech Connect

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2004-09-25

    A non-perturbing electron beam diagnostic system for measuring the charge distribution of an ion beam is developed for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the Neutralized Transport Experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.

  6. Propagation of electron and positron beams in long, dense plasmas

    NASA Astrophysics Data System (ADS)

    Muggli, Patric; Blue, Brent; Clayton, Chris; Decker, Franz-Joseph; Hogan, Mark; Hunag, Chengkun; Joshi, Chan; Katsouleas, Tom; Lu, Wei; Mori, Warren; O'Connell, Caollionn; Siemann, Robert; Walz, Dieter; Zhou, Miaomiao

    2008-04-01

    Electron beams with density larger than the plasma density can propagate through plasmas without significant emittance growth. The electron beam expels the plasma electrons from the bunch volume and propagate in a pure, uniform ion column. In contrast, positron beams attract plasma electrons that flow through the positron bunch. As a result the plasma focusing force is nonlinear, a charge halo forms around the bunch, and the bunch emittance grows. After some distance into the plasma, the bunch emittance reaches an approximately constant value, and the beam and the plasma focusing force reach a steady state. Experimental results obtained with electron and positron bunches, as well as numerical simulation results will be presented.

  7. On the electron vortex beam wavefunction within a crystal.

    PubMed

    Mendis, B G

    2015-10-01

    Electron vortex beams are distorted by scattering within a crystal, so that the wavefunction can effectively be decomposed into many vortex components. Using a Bloch wave approach equations are derived for vortex beam decomposition at any given depth and with respect to any frame of reference. In the kinematic limit (small specimen thickness) scattering largely takes place at the neighbouring atom columns with a local phase change of π/2rad. When viewed along the beam propagation direction only one vortex component is present at the specimen entrance surface (i.e. the 'free space' vortex in vacuum), but at larger depths the probe is in a mixed state due to Bragg scattering. Simulations show that there is no direct correlation between vortex components and the 〈Lz〉 pendellösung, i.e. at a given depth probes with relatively constant 〈Lz〉 can be in a more mixed state compared to those with more rapidly varying 〈Lz〉. This suggests that minimising oscillations in the 〈Lz〉 pendellösung by probe channelling is not the only criterion for generating a strong electron energy loss magnetic circular dichroism (EMCD) signal.

  8. Experimental demonstration of beam-beam compensation by Tevatron electron lenses and prospects for the LHC

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kuznetsov, G.; Zhang, X.L.; Bishofberger, K.; /Los Alamos

    2007-06-01

    Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams are significant sources of beam loss and lifetime limitations in the Tevatron Collider Run II (2001-present). We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in high energy physics (HEP) operation, predict the performance for planned luminosity upgrades and discuss ways to improve it.

  9. Three-dimensional particle trajectories and waste beam losses in injection dump beam line of SNS accumulator ring

    SciTech Connect

    Wang, Jian-Guang; Plum, Michael A

    2008-01-01

    The SNS ring injection dump beam line has been suffering high beam losses since its commissioning. In order to understand the mechanisms of the beam losses, we have performed 3D simulation studies of the beam line. The 3D models consist of three injection chicane dipoles and one injection dump septum magnet. 3D particle trajectories in the models are computed. We then extend particle optics calculations to the injection dump. Our studies have clearly shown some design and operation problems, that cause beam losses in the injection dump beam line. These include incorrect chicane dipole settings, incorrect position of a chicane dipole, too small aperture of injection dump septum, and inadequate focusing downstream. This paper reports our findings and the remedies to the injection beam loss problems.

  10. Calculating electron beam properties in an ionized benzene channel

    SciTech Connect

    Goosman, D.R.

    1986-08-01

    We have derived formulas for the equilibrium-beam radius and other properties of an electron beam propagating in an ionized benzene channel. These formulas have been determined for two special cases. The first was for Gaussian spatial profiles for both the electron and laser beams. We obtained an analytical result for the equilibrium-beam radius, even though we included both KrF laser-induced and collisional sources of ionization of different sizes. The second case we considered was for laser and electron beams with flat radial profiles. These calculations were performed to determine if a laser-guided electron beam could reduce the focal size of an electron accelerator. We also developed a personal-computer spreadsheet program that receives 10 inputs and calculates 26 dependent quantities relating to the beam and ionization properties.

  11. Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy.

    PubMed

    Crozier, Peter A; Aoki, Toshihiro; Liu, Qianlang

    2016-10-01

    Understanding the role of water, hydrate and hydroxyl species on nanoparticle surfaces and interfaces is very important in both physical and life sciences. Detecting the presence of oxygen-hydrogen species with nanometer resolution is extremely challenging at present. Here we show that the recently developed vibrational electron energy-loss spectroscopy using subnanometer focused electron beams can be employed to spectroscopically identify the local presence and variation of OH species on nanoscale surfaces. The hydrogen-oxygen fingerprint can be correlated with highly localized structural and morphological information obtained from electron imaging. Moreover, the current approach exploits the aloof beam mode of spectral acquisition which does not require direct electron irradiation of the sample thus greatly reducing beam damage to the OH bond. These findings open the door for using electron microscopy to probe local hydroxyl and hydrate species on nanoscale organic and inorganic structures. PMID:27423795

  12. A Fast VME Data Acquisition System for Spill Analysis and Beam Loss Measurement

    NASA Astrophysics Data System (ADS)

    Hoffmann, T.; Liakin, D. A.; Forck, P.

    2002-12-01

    Particle counters perform the control of beam loss and slowly extracted currents at the heavy ion synchrotron (SIS) at GSI. For these devices a new data acquisition system has been developed with the main intention to combine the operating purposes beam loss measurement, spill analysis, spill structure measurement and matrix switching functionality in one single assembly. To provide a reasonable digital selection of counters at significant locations a modular VME setup based on the GSI data acquisition software MBS (Multi Branch System) was chosen. An overview of the design regarding the digital electronics and the infrastructure is given. Of main interest in addition to the high performance of the used hardware is the development of a user-friendly software interface for hardware controls, data evaluation and presentation to the operator.

  13. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    SciTech Connect

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally, we report on the measured performance of this profile monitor.

  14. Measuring correlations between beam loss and residual radiation in the Fermilab Main Injector

    SciTech Connect

    Brown, Bruce C.; Wu, Guan Hong; /Fermilab

    2010-09-01

    In order to control beam loss for high intensity operation of the Fermilab Main Injector, electronics has been implemented to provide detailed loss measurements using gas-filled ionization monitors. Software to enhance routine operation and studies has been developed and losses are logged for each acceleration cycle. A systematic study of residual radiation at selected locations in the accelerator tunnel have been carried out by logging residual radiation at each of 142 bar-coded locations. We report on fits of the residual radiation measurements to half-life weighted sums of the beam loss data using a few characteristic lifetimes. The data are now available over a multi-year period including residual radiation measurements repeated multiple times during three extended facility shutdown periods. Measurement intervals of a few weeks combined with variable delays between beam off time and the residual measurement permits sensitivity to lifetimes from hours to years. The results allow planning for work in radiation areas to be based on calibrated analytic models.

  15. Electron Beam Emission Characteristics from Plasma Focus Devices

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Patran, A.; Wong, D.; Hassan, S. M.; Springham, S. V.; Tan, T. L.; Lee, P.; Lee, S.; Rawat, R. S.

    2006-01-01

    In this paper we observed the characteristics of the electron beam emission from our plasma focus machine filling neon, argon, helium and hydrogen. Rogowski coil and CCD based magnetic spectrometer were used to obtain temporal and energy distribution of electron emission. And the preliminary results of deposited FeCo thin film using electron beam from our plasma focus device were presented.

  16. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  17. 19 CFR 360.108 - Loss of electronic licensing privileges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... MONITORING AND ANALYSIS SYSTEM § 360.108 Loss of electronic licensing privileges. Should Commerce determine... system, Commerce may revoke its electronic licensing privileges without prior notice. The filer will...

  18. The electron-beam FGT process

    NASA Astrophysics Data System (ADS)

    Frank, Norman W.; Hirano, Shinichi

    The electron-beam process is one of the most effective methods of removing SO 2 and NO x from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO 2 and NO x to ammonium sulfate and ammonium-sulfate nitrate. These salts may then be collected from the flue gas by means of such conventional collectors as an elecrtostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: 1) The process simultaneously removes SO 2 and NO x from flue gas at high efficiency levels; 2) It is a dry process which is easily controlled and has excellent load-following capability; 3) Stock-gas reheat is not required; 4) The pollutants are converted into a salable agricultural fertilizer; 5) The process has low capital and operating cost requirements. Test results from the most recent pilot plant in Indianapolis, Indiana, will be discussed showing various characteristics of process control, temperature relationships, radiation dosage, pollution removals at various conditions, and by-product collection usage evaluations. The results will show what will be required in future commercial installations and what accelerator equipment will be required, including various configuration of irradiation zone process design. The economic evaluation will include studies of cost sensitivity and by-product pay back. Various designs for large scale plants indicate the process will have a place in the future clean-up of environmental pollutants.

  19. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  20. Plasma and ion barrier for electron beam spot stability

    SciTech Connect

    Kwan, Thomas J. T.; Snell, Charles M.

    2000-03-01

    High-current electron beams of small spot size are used for high-resolution x-ray radiography of dense objects. Intense energy deposition in the bremsstrahlung target causes generation of ions which can propagate upstream and disrupt the electron beam. We have investigated the use of a thin beryllium foil placed 1-2 cm in front of the target, which serves as a barrier for the ions but is essentially transparent to the incoming electron beam. Analysis and computer simulations confirm that this confinement method will halt ion propagation and preserve the spot size stability of the electron beam. (c) 2000 American Institute of Physics.

  1. Effect of Electron Beam Irradiation on Tensile Strength of Polypropylene

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi; Ikeda, Masayuki; Shimbo, Minoru; Miyano, Yasushi

    In this paper, the effects of the intensity of electron beam and the variation with time after irradiation of electron beam on the tensile strength of the polypropylene (PP), which is widely used as medicine containers, were investigated. PP with and without colorants were used first and samples irradiated under various intensity of EB. A tensile test on the irradiated samples with elapsed time after the irradiation of the electron beam was carried out. The effects of those factors on the tensile strength were discussed. The following results were obtained (1) The tensile strength of PP decreased due to the influence of the electron beam irradiation, however the rate of the decrease in strength was small compared with the original one. Furthermore, the rate of the decrease in strength was very small owing to the variation with time after the EB irradiation. (2) The tensile rupture strength of PP increased and the rupture strain owing to the influence of the electron beam irradiation compared with the original one. In addition, these rupture strength increased and the rupture strain decreased along with time after the irradiation of the electron beam. (3) The tensile rupture strain energy of PP decreased owing to the influence of the electron beam irradiation compared with the original one. In addition, the strain energy decreases with time after the irradiation of the electron beam. Moreover, the strength characteristics of PP with colorants received greater influence of electron beam compared with the one without colorants.

  2. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  3. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  4. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  5. UV laser ionization and electron beam diagnostics for plasma lenses

    SciTech Connect

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated.

  6. A new beam loss detector for low-energy proton and heavy-ion accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  7. Capture from pair production as a beam loss mechanism for heavy ions at RHIC

    SciTech Connect

    Feinberg, B.; Belkacem, A.; Bossingham, R.; Gould, H.; Meyerhof, W.E.

    1993-05-01

    Electron capture from electron-positron pair production is predicted to be a major source of beam loss for the heaviest ions at RHIC. Achieving the highest luminosity thus requires an understanding of the capture process. We report the first observation and measurement of this process, in Bevalac experiments using 1 GeV/u U{sup 92+} projectiles on Au targets. Capture from pair production is a process in which the very high electromagnetic field involved in the collision of two relativistic heavy ions polarizes the vacuum, resulting in the production of an electron-positron pair and the capture of the electron by one of the ions. There are many theoretical papers published on capture from pair production with very large discrepancies between predicted cross sections. The experimental results are compared to theory, and the implications of extrapolations to RHIC energies are presented.

  8. Capture from pair production as a beam loss mechanism for heavy ions at RHIC

    SciTech Connect

    Feinberg, B.; Belkacem, A.; Claytor, N.; Dinneen, T.; Gould, H.

    1997-05-01

    Electron capture from electron-positron pair production is predicted to be a major source of beam loss for the heaviest ions at RHIC. Achieving the highest luminosity thus requires an understanding of the capture process. The authors report measurements of this process at Brookhaven National Laboratory`s AGS using 10.8 GeV/nucleon Au{sup 79+} projectiles on Au targets. Capture from pair production is a process in which the very high electromagnetic field involved in the collision of two relativistic heavy ions results in the production of an electron-positron pair with the capture of the electron by one of the ions. There are many theoretical papers published on capture from pair production with discrepancies between predicted cross sections. The experimental results are compared to theory and to previous experiments at 1 GeV/nucleon. The implications of extrapolations to RHIC energies are presented.

  9. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  10. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  11. Electron beam magnetic switch for a plurality of free electron lasers

    DOEpatents

    Schlitt, Leland G.

    1984-01-01

    Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.

  12. Loss of accuracy using smeared properties in composite beam modeling

    NASA Astrophysics Data System (ADS)

    Liu, Ning

    Advanced composite materials have broad, proven applications in many engineering systems ranging from sports equipment sectors to components on the space shuttle because of their lightweight characteristics and significantly high stiffness. Together with this merit of composite materials is the challenge of improving computational simulation process for composites analysis. Composite structures, particularly composite laminates, usually consist of many layers with different lay-up angles. The anisotropic and heterogeneous features render 3D finite element analysis (FEA) computationally expensive in terms of the computational time and the computing power. At the constituent level, composite materials are heterogeneous. But quite often one homogenizes each layer of composites, i.e. lamina, and uses the homogenized material properties as averaged (smeared) values of those constituent materials for analysis. This is an approach extensively used in design and analysis of composite laminates. Furthermore, many industries tempted to use smeared properties at the laminate level to further reduce the model of composite structures. At this scale, smeared properties are averaged material properties that are weighted by the layer thickness. Although this approach has the advantage of saving computational time and cost of modeling significantly, the prediction of the structural responses may not be accurate, particularly the pointwise stress distribution. Therefore, it is important to quantify the loss of accuracy when one uses smeared properties. In this paper, several different benchmark problems are carefully investigated in order to exemplify the effect of the smeared properties on the global behavior and pointwise stress distribution of the composite beam. In the classical beam theory, both Newtonian method and variational method include several ad hoc assumptions to construct the model, however, these assumptions are avoided if one uses variational asymptotic method. VABS

  13. Excitation of a cylindrical cavity by a helical current and an axial electron beam current

    NASA Astrophysics Data System (ADS)

    Davidovich, M. V.; Bushuev, N. A.

    2013-07-01

    The explicit expressions (in the Vainshtein and Markov forms) are derived for the excitation of a cylindrical cavity with perfectly conducting walls and with impedance end faces. Excitation of a cylindrical cavity and a cylindrical waveguide with a preset nonuniform axial electron-beam current and a helical current with a variable pitch, which is excited by a concentrated voltage source and is loaded by a preset pointlike matched load, is considered. For the helical current, the integro-differential equation is formulated. The traveling-wave tube (TWT) is simulated in the preset beam current approximation taking into account the nonuniform winding of the spiral coil, nonuniform electron beam, and losses.

  14. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    DOE PAGES

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally,more » we report on the measured performance of this profile monitor.« less

  15. Functional Materials characterizations by Scanning/Transmission Electron Microscopy and Electron Energy Loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    Along with the fast development of science and technology, the studied materials are becoming more complicated and smaller. All these achievements have advanced with the fast development of powerful tools currently, such as Scanning electron microscopy (SEM), Focused Ion Beam (FIB), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDX), Electron energy loss spectroscopy (EELS) and so on. SiTiO3 thin film, which is grown on Si (100) single crystals, attracts a lot of interest in its structural and electronic properties close to its interface. Valence EELS is used to investigate the Plasmon excitations of the ultrathin SrTiO3 thin film which is sandwiched between amorphous Si and crystalline Si layers. On the other hand, theoretical simulations based on dielectric functions have been done to interpret the experimental results. Our findings demonstrate the value of valence electron energy-loss spectroscopy in detecting a local change in the effective electron mass. Recently it is reported that ZnO-LiYbO2 hybrid phosphor is an efficient UV-infrared convertor for silicon solar cell but the mechanism is still not very clear. The microstructure of Li and Yb co-doped ZnO has been studied by SEM and EDX, and our results suggest that a reaction (or diffusion) zone is very likely to exist between LiYbO2 and ZnO. Such diffusion regions may be responsible for the enhanced infrared emission in the Yb and Li co-doped ZnO. Furthermore, to help us study the diffusion zone under TEM in future, the radiation damage on synthesized LiYbO2 has been studied at first, and then the electronic structure of the synthesized LiYbO2 is compared with Yb2O 3 experimentally and theoretically, by EELS and FEFF8 respectively.

  16. Current understanding and issues on electron beam injection in space

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.; Szuszczewicz, E. P.

    1988-01-01

    The status of the physics understanding involved in electron beam injection in space is reviewed. The paper examines our understanding of beam plasma interactions and their associated wave and energized particle spectra of the processes involved in the beam plasma discharge, and of the vehicle charge neutralization. 'Strawman' models are presented for comparison with experimental observations.

  17. Dissociation phenomena in electron-beam sustained carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.; Willetts, David V.

    1990-01-01

    A number of applications are emerging requiring efficient, long pulse, long-life sealed CO2 lasers. Examples include the proposed NASA and ESA wind lidars. Electron-beam sustained discharge devices are strong contenders. Unlike self-sustained discharges, e-beam sustenance readily provides efficient performance from large volume discharges and offers pulse lengths well in excess of the microsecond or so generally associated with self-sustained devices. In the case of the e-beam sustained laser, since the plasma is externally maintained and operated at electric field strengths less than that associated with the glow to arc transition, the discharges can be run even in the presence of strongly attacking species such as O2. Build up of large levels of attacking contaminants is nevertheless undesirable as their presence reduces the current drawn by the plasma and thus the pumping rate to the upper laser level. The impedance rise leads to a mismatch of the pulse forming network with a consequent loss of control over energy deposition, operating E/N, and gain. Clearly CO2 dissociation rates, the influence of dissociation products on the discharge and gain, and tolerance of the discharge to these products need to be determined. This information can then be used to assess co-oxidation catalyst requirements for sealed operation.

  18. Incoherent vertical ion losses during multiturn stacking cooling beam injection

    NASA Astrophysics Data System (ADS)

    Syresin, E. M.

    2014-07-01

    The efficiency of the multiturn ion injection with electron cooling depends on two parameters, namely, cooling efficiency and ion lifetime. The lifetime of freshly injected ions is usually shorter than the lifetime of strongly cooled stacked ions. Freshly injected ions are lost in the vertical direction because the vertical acceptance of the synchrotron is usually a few times smaller than the horizontal acceptance. Incoherent vertical losses of freshly injected ions arise from their multiple scattering by residual gas atoms and transverse diffusion caused by stack noise. Reduced ion lifetime limits the multiturn injection efficiency. Analytical estimations and BETACOOL-based numerical evaluations of the vertical ion losses during multiturn injection are presented in comparison with the experimental data obtained at the HIMAC synchrotron and the S-LSR storage ring.

  19. Quantum effects in electron beam pumped GaAs

    SciTech Connect

    Yahia, M. E.; Azzouz, I. M.; Moslem, W. M.

    2013-08-19

    Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.

  20. Beam loss by collimation in a neutralizer duct

    SciTech Connect

    Hamilton, G.W.; Willmann, P.A.

    1980-04-03

    Beam fractions lost by collimation in a neutralizer duct are computed in x-x' phase space by using three examples of slab beam distributions under a broad range of duct dimensions, beam half-widths, and beam divergences. The results can be used to design compact neutralizers and to specify beam requirements. The computer code ILOST can be used under a broad range of beam conditions to compute the fraction lost by collimation.

  1. Study of a non-intrusive electron beam radius diagnostic

    SciTech Connect

    Kwan, T.J.T.; DeVolder, B.G.; Goldstein, J.C.; Snell, C.M.

    1997-12-01

    The authors have evaluated the usefulness and limitation of a non-intrusive beam radius diagnostic which is based on the measurement of the magnetic moment of a high-current electron beam in an axisymmetric focusing magnetic field, and relates the beam root-mean-square (RMS) radius to the change in magnetic flux through a diamagnetic loop encircling the beam. An analytic formula that gives the RMS radius of the electron beam at a given axial position and a given time is derived and compared with results from a 2-D particle-in-cell code. The study has established criteria for its validity and optimal applications.

  2. Monoenergetic collimated nano-Coulomb electron beams driven by crossed laser beams

    SciTech Connect

    Wang Jingwei; Murakami, M.; Weng, S. M.; Ruhl, H.; Luan Shixia; Yu Wei

    2013-07-08

    Monoenergetic collimated electron acceleration by two crossed laser beams is investigated through an analytical model and particle-in-cell simulations. Electron bunches with a total charge of order nano-Coulombs are accelerated by the axial electric field formed by the crossed laser beams to nearly 760 MeV with an energy spread of 2.7%. The transverse components of both electric and magnetic fields vanish along the axis, making the electron beam highly collimated. This acceleration scheme appears promising in producing high quality electron beams.

  3. RELATIVISTIC ELECTRON LOSSES RELATED TO PROTON PRECIPITATION AND EMIC WAVES

    NASA Astrophysics Data System (ADS)

    Soraas, F.; Sandanger, M. I.; Aarsnes, K.; Oksavik, K.; Evans, D. S.

    2009-12-01

    Observations of loss of relativistic electrons to the atmosphere is presented and related to SW parameters. It is shown that the L-region of relativistic electron loss matched the anisotropic proton zone. In this zone the pitch angle distribution of the protons are unstable and can generate/amplify EMIC waves which in turn scatter the electrons into the atmosphere. In spatial limited regions, located close to the plasma pause, there can be enhanced losses of protons (sometime completely filling the loss cone). These regions of proton losses (spikes) are shown to give rise to EMIC waves leading to enhance scattering of the relativistic electrons. In the main phase of the storm the proton spikes are located in the midnight/evening sector, but in the storm recovery phase they are located at all MLTs. The anisotropic proton zone and proton spikes are observed in all storms, but not all storms contain an elevated flux of relativistic electrons.

  4. Patient radiation doses for electron beam CT.

    PubMed

    Castellano, Isabel A; Dance, David R; Skinner, Claire L; Evans, Phil M

    2005-08-01

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDIvol) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDIvol to an effective dose. PMID:16193782

  5. Patient radiation doses for electron beam CT

    SciTech Connect

    Castellano, Isabel A.; Dance, David R.; Skinner, Claire L.; Evans, Phil M.

    2005-08-15

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDI{sub vol}) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDI{sub vol} to an effective dose.

  6. High-current fast electron beam propagation in a dielectric target

    SciTech Connect

    Klimo, Ondrej; Tikhonchuk, V. T.; Debayle, A.

    2007-01-15

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10{sup 12} A cm{sup -2}. The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  7. High-current fast electron beam propagation in a dielectric target.

    PubMed

    Klimo, Ondrej; Tikhonchuk, V T; Debayle, A

    2007-01-01

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  8. Intense electron beam propagation across a magnetic field

    SciTech Connect

    Zhang, X.; Striffler, C.D.; Yao, R.L.; Destler, W.W.; Reiser, M.P.

    1989-01-01

    In this paper we consider the propagation of an intense electron-ion beam across an applied magnetic field. In the absence of the applied field, the beam system is in a Bennett equilibrium state that involves electrons with both large axial and thermal velocities and a cold stationary space-charge neutralizing ion species. Typical parameters under consideration are V{sub o} {approximately} 1 MV, I {approximately} 5 kA, T{sub e} {approximately} 100 keV, and beam radii {approximately} 1 cm. We find that in the intense beam regime, the propagation is limited due to space-charge depression caused by the deflection of the electron beam by the transverse field. This critical field is of the order of the peak self-magnetic field of the electron beam which is substantially higher than the single particle cut-off field. 8 refs., 3 figs.

  9. FEL gain calculation for imperfectly matched electron beams

    NASA Astrophysics Data System (ADS)

    Swent, R. L.; Berryman, K. W.

    1995-04-01

    We present here the details of an analytical small-signal gain calculation. The analysis builds on the basic one-dimensional analytical calculation by modeling the effects of finite electron beam size and imperfect matching of the electron beam to the wiggler. The calculation uses TRANSPORT [SLAC-91, Rev. 2 (1977)] parameters to describe the electron beam in order to easily take the output of beam transport calculations and use them as the input for FEL gain calculations. The model accepts an arbitrary TRANSPORT beam and includes the effects of energy spread, beam size, betatron oscillations, and focussing in the wiggle plane. The model has allowed us to calculate the range over which our FEL can be tuned by changing the electron energy alone (i.e., without changing any magnets).

  10. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  11. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  12. Electron-beam activated GaAs-switches

    SciTech Connect

    Kirkman, G.; Hur, J.; Jiang, B.; Reinhardt, N.; Allen, R.J.; Schoenbach, K.H.

    1994-12-31

    Electron-beam excitation allows the authors to modulate the conductance of wide-gap semi-insulating semiconductors over a wide range and to use them as variable resistors and as high power switches. The penetration depth of electrons, the electron range, was computed by means of a Monte-Carlo code. For electron energies of 30 keV, it is approximately 2 micrometers. In order to activate the switch material over a larger depth, the switch material, semi-insulating GaAs, was doped over a thickness corresponding to the electron range with zinc, which form shallow acceptors in GaAs. The Zn layers serves as an efficient source of cathodoluminescence, transforming the electron energy into photon energy and therefore converting the electron-beam activated switch into a photoconductive one. Experiments with 2 mm semi-insulating GaAs-switches with p-doped cathode layer have been performed where the electron beam was injected through one of the metal contacts which were placed on either face of the GaAs wafer. The 500 ns electron beam has electron energies of up to 30 keV and current densities of several A/cm{sup 2}. The results show that electron-beam controlled GaAs switches can be safely operated at switch voltages of several kV`s and current densities of 50 A/cm{sup 2} with low energy electron-beams as control elements.

  13. Exact analytical solutions of continuity equation for electron beams precipitating in Coulomb collisions

    SciTech Connect

    Dobranskis, R. R.; Zharkova, V. V.

    2014-06-10

    The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained by using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.

  14. Design of the injection beamline for the Californium Rare Isotope Breeder Upgrade electron beam ion source charge breedera)

    NASA Astrophysics Data System (ADS)

    Dickerson, C. A.; Mustapha, B.; Kondrashev, S.; Ostroumov, P. N.; Savard, G.; Levand, A.; Pikin, A.

    2012-02-01

    The design of the ion injection line connecting the electron beam ion source (EBIS) charge breeder and the Californium Rare Isotope Breeder Upgrade radio frequency quadrupole cooler-buncher at the Argonne Tandem Linear Accelerator System was investigated with particle tracking simulations. The injection line was configured to accommodate several differential pumping sections, individual optical components were optimized to minimize emittance growth, and the ion beam parameters were matched with the EBIS electron beam acceptance to minimize losses upon injection.

  15. Design of the injection beamline for the Californium Rare Isotope Breeder Upgrade electron beam ion source for charge breeder

    SciTech Connect

    Dickerson C. A.; Pikin A.; Mustapha, B.; Kondrashev, S.; Ostroumov, P.N.; Savard, S.; Levand, A.

    2012-02-07

    The design of the ion injection line connecting the electron beam ion source (EBIS) charge breeder and the Californium Rare Isotope Breeder Upgrade radio frequency quadrupole cooler-buncher at the Argonne Tandem Linear Accelerator System was investigated with particle tracking simulations. The injection line was configured to accommodate several differential pumping sections, individual optical components were optimized to minimize emittance growth, and the ion beam parameters were matched with the EBIS electron beam acceptance to minimize losses upon injection.

  16. Design of the injection beamline for the Californium Rare Isotope Breeder Upgrade electron beam ion source charge breeder

    SciTech Connect

    Dickerson, C. A.; Mustapha, B.; Kondrashev, S.; Ostroumov, P. N.; Savard, G.; Levand, A.; Pikin, A.

    2012-02-15

    The design of the ion injection line connecting the electron beam ion source (EBIS) charge breeder and the Californium Rare Isotope Breeder Upgrade radio frequency quadrupole cooler-buncher at the Argonne Tandem Linear Accelerator System was investigated with particle tracking simulations. The injection line was configured to accommodate several differential pumping sections, individual optical components were optimized to minimize emittance growth, and the ion beam parameters were matched with the EBIS electron beam acceptance to minimize losses upon injection.

  17. Design of the injection beamline for the Californium Rare Isotope Breeder Upgrade electron beam ion source charge breeder.

    PubMed

    Dickerson, C A; Mustapha, B; Kondrashev, S; Ostroumov, P N; Savard, G; Levand, A; Pikin, A

    2012-02-01

    The design of the ion injection line connecting the electron beam ion source (EBIS) charge breeder and the Californium Rare Isotope Breeder Upgrade radio frequency quadrupole cooler-buncher at the Argonne Tandem Linear Accelerator System was investigated with particle tracking simulations. The injection line was configured to accommodate several differential pumping sections, individual optical components were optimized to minimize emittance growth, and the ion beam parameters were matched with the EBIS electron beam acceptance to minimize losses upon injection.

  18. NOx reduction by electron beam-produced nitrogen atom injection

    DOEpatents

    Penetrante, Bernardino M.

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  19. Electron Beam-Cure Polymer Matrix Composites: Processing and Properties

    NASA Technical Reports Server (NTRS)

    Wrenn, G.; Frame, B.; Jensen, B.; Nettles, A.

    2001-01-01

    Researchers from NASA and Oak Ridge National Laboratory are evaluating a series of electron beam curable composites for application in reusable launch vehicle airframe and propulsion systems. Objectives are to develop electron beam curable composites that are useful at cryogenic to elevated temperatures (-217 C to 200 C), validate key mechanical properties of these composites, and demonstrate cost-saving fabrication methods at the subcomponent level. Electron beam curing of polymer matrix composites is an enabling capability for production of aerospace structures in a non-autoclave process. Payoffs of this technology will be fabrication of composite structures at room temperature, reduced tooling cost and cure time, and improvements in component durability. This presentation covers the results of material property evaluations for electron beam-cured composites made with either unidirectional tape or woven fabric architectures. Resin systems have been evaluated for performance in ambient, cryogenic, and elevated temperature conditions. Results for electron beam composites and similar composites cured in conventional processes are reviewed for comparison. Fabrication demonstrations were also performed for electron beam-cured composite airframe and propulsion piping subcomponents. These parts have been built to validate manufacturing methods with electron beam composite materials, to evaluate electron beam curing processing parameters, and to demonstrate lightweight, low-cost tooling options.

  20. T-3 electron-beam-excited laser system

    SciTech Connect

    Klein, R A

    1981-02-01

    A laser system specifically designed to study the kinetics of electron-beam driven systems is described. Details of the system are given along with measurements of the electron-beam uniformity and deposition in the laser medium. Some HF laser results obtained with this system are also given.

  1. Metastable atom probe for measuring electron beam density profiles

    NASA Technical Reports Server (NTRS)

    Lockhart, J. M.; Zorn, J. C.

    1972-01-01

    Metastable atom probe was developed for measuring current density in electron beam as function of two arbitrary coordinates, with spatial resolution better than 0.5 mm. Probe shows effects of space charge, magnetic fields, and other factors which influence electron current density, but operates with such low beam densities that introduced perturbation is very small.

  2. Asymmetric Hopf bifurcation for proton beams with electron cooling

    SciTech Connect

    Kang, X.; Ball, M.; Brabson, B.; Budnick, J.; East, G.; Ellison, M.; Hamilton, B.; Lee, S.Y.; Li, D.; Liu, J.Y.; Pei, A.; Riabko, A.; Wang, L.; Wang, Y.; Caussyn, D.D.; Colestock, P.; Ng, K.Y.; Hedblom, K.; Syphers, M.

    1995-12-31

    We observed maintained longitudinal limiting cycle oscillations, which grew rapidly once a critical threshold in the relative velocity between the proton beam and the cooling electrons was exceeded. The threshold for the bifurcation of a fixed point into a limit cycle, also known as a Hopf bifurcation, was found to be asymmetric with respect to the relative velocity. This asymmetry of Hopf bifurcation was found to be related to the electron beam alignment with respect to the stored proton beam.

  3. Electron Gun For Multiple Beam Klystron Using Magnetic Focusing

    DOEpatents

    Ives, R. Lawrence; Miram, George; Krasnykh, Anatoly

    2004-07-27

    An RF device comprising a plurality of drift tubes, each drift tube having a plurality of gaps defining resonant cavities, is immersed in an axial magnetic field. RF energy is introduced at an input RF port at one of these resonant cavities and collected at an output RF port at a different RF cavity. A plurality of electron beams passes through these drift tubes, and each electron beam has an individual magnetic shaping applied which enables confined beam transport through the drift tubes.

  4. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    SciTech Connect

    Sartori, E. Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P.; Sonato, P.

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  5. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Sonato, P.; Veltri, P.

    2014-02-01

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  6. REFLEX: An energy deposition code that models the effects of electron reflection during electron beam heating tests

    SciTech Connect

    Stone, C.A. IV; Croessmann, C.D.; Whitley, J.B.

    1988-01-01

    This report describes an energy coupling model that considers electron reflection losses during electron beam heating experiments. This model is embodied on the REFLEX computer code, written in standard FORTRAN 77. REFLEX currently models energy deposition phenomena in three different sample geometries. These configurations include flat, cylindrical shell, and hemispherical shell surfaces. Given the electron beam operating parameters, REFLEX calculates the heat flux profile over a sample's surface, the total amount of energy deposited into a sample, and the percentage of the electron beam energy that is transferred to a sample. This document describes the energy deposition equations used in the REFLEX code; the program is described and detailed instructions are given regarding the input. Results are given for each geometry and possible experimental applications are presented. 3 refs., 20 figs., 11 tabs.

  7. REFLEX: An energy deposition code that models the effects of electron reflection during electron beam heating tests

    NASA Astrophysics Data System (ADS)

    Stone, C. A., IV; Croessmann, C. D.; Whitley, J. B.

    1988-01-01

    This report describes an energy coupling model that considers electron reflection losses during electron beam heating experiments. This model is embodied on the REFLEX computer code, written in standard FORTRAN 77. REFLEX currently models energy deposition phenomena in three different sample geometries. These configurations include flat, cylindrical shell, and hemispherical shell surfaces. Given the electron beam operating parameters, REFLEX calculates the heat flux profile over a sample's surface, the total amount of energy deposited into a sample, and the percentage of the electron beam energy that is transferred to a sample. This document describes the energy deposition equations used in the REFLEX code; the program is described and detailed instructions are given regarding the input. Results are given for each geometry and possible experimental applications are presented.

  8. Conceptual Design of Electron-Beam Generated Plasma Tools

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; Dorf, Leonid; Collins, Ken; Boris, David; Walton, Scott

    2015-09-01

    Realization of the next generation of high-density nanostructured devices is predicated on etching features with atomic layer resolution, no damage and high selectivity. High energy electron beams generate plasmas with unique features that make them attractive for applications requiring monolayer precision. In these plasmas, high energy beam electrons ionize the background gas and the resultant daughter electrons cool to low temperatures via collisions with gas molecules and lack of any accelerating fields. For example, an electron temperature of <0.6 eV with densities comparable to conventional plasma sources can be obtained in molecular gases. The chemistry in such plasmas can significantly differ from RF plasmas as the ions/radicals are produced primarily by beam electrons rather than those in the tail of a low energy distribution. In this work, we will discuss the conceptual design of an electron beam based plasma processing system. Plasma properties will be discussed for Ar, Ar/N2, and O2 plasmas using a computational plasma model, and comparisons made to experiments. The fluid plasma model is coupled to a Monte Carlo kinetic model for beam electrons which considers gas phase collisions and the effect of electric and magnetic fields on electron motion. The impact of critical operating parameters such as magnetic field, beam energy, and gas pressure on plasma characteristics in electron-beam plasma processing systems will be discussed. Partially supported by the NRL base program.

  9. Effect of multipole excitations in electron energy-loss spectroscopy of surface plasmon modes in silver nanowires

    SciTech Connect

    Zhou, Xiuli; Norris, Theodore B.; Hörl, Anton; Trügler, Andreas; Hohenester, Ulrich; Herzing, Andrew A.

    2014-12-14

    We have characterized the surface plasmon resonance (SPR) in silver nanowires using spatially resolved electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope. Non-symmetric EELS spectra due to high-k SPR propagation along the nanowire and spectral shifts due to higher-order mode excitation are observed when the beam is positioned near the tip of the nanowire. When the beam is far from the tip region and on the side of nanowire, no spectral shifts are observed as the beam is scanned in the radial direction of the nanowire. The experimental spectra are compared with three different theoretical approaches: direct numerical calculation of the energy loss, analytical models for energy loss, and numerical simulations using an optical model. All three models reproduce the spectral shifts as the electron beam approaches the cap of the nanowire. The analytical model reveals the origin of the shifts in high-order plasmon mode excitation.

  10. Electron lenses for compensation of beam-beam effects: Tevatron, RHIC, LHC

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2007-12-01

    Since previous BEAM'06 workshop a year ago, significant progress has been made in the field of beam-beam compensation (BBC)--it has been experimentally demonstrated that both Tevatron Electron Lenses (TEL) significantly improve proton and luminosity lifetimes in high-luminosity stores. This article summarizes these results and discusses prospects of the BBC in Tevatron, RHIC and LHC.

  11. Etching with electron beam generated plasmas

    SciTech Connect

    Leonhardt, D.; Walton, S.G.; Muratore, C.; Fernsler, R.F.; Meger, R.A.

    2004-11-01

    A modulated electron beam generated plasma has been used to dry etch standard photoresist materials and silicon. Oxygen-argon mixtures were used to etch organic resist material and sulfur hexafluoride mixed with argon or oxygen was used for the silicon etching. Etch rates and anisotropy were determined with respect to gas compositions, incident ion energy (from an applied rf bias) and plasma duty factor. For 1818 negative resist and i-line resists the removal rate increased nearly linearly with ion energy (up to 220 nm/min at 100 eV), with reasonable anisotropic pattern transfer above 50 eV. Little change in etch rate was seen as gas composition went from pure oxygen to 70% argon, implying the resist removal mechanism in this system required the additional energy supplied by the ions. With silicon substrates at room temperature, mixtures of argon and sulfur hexafluoride etched approximately seven times faster (1375 nm/min) than mixtures of oxygen and sulfur hexafluoride ({approx}200 nm/min) with 200 eV ions, the difference is attributed to the passivation of the silicon by involatile silicon oxyfluoride (SiO{sub x}F{sub y}) compounds. At low incident ion energies, the Ar-SF{sub 6} mixtures showed a strong chemical (lateral) etch component before an ion-assisted regime, which started at {approx}75 eV. Etch rates were independent of the 0.5%-50% duty factors studied in this work.

  12. Onorbit electron beam welding experiment definition

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The proposed experiment design calls for six panels to be welded, each having unique characteristics selected to yield specific results and information. The experiment is completely automated and the concept necessitated the design of a new, miniaturized, self-contained electron beam (EB) welding system, for which purpose a separate IR and D was funded by the contractor, Martin Marietta Corporation. Since future tasks beyond the proposed experiment might call for astronauts to perform hand-held EB gun repairs or for the gun to be interfaced with a dexterous robot such as the planned flight telerobotic servicer (FTS), the EB gun is designed to be dismountable from the automated system. In the experiment design, two separate, identical sets of weld panels will be welded, one on earth in a vacuum chamber and the other onorbit in the aft cargo bay of an orbiter. Since the main objective of the experiment is to demonstrate that high quality welds can be achieved under onorbit conditions, the welds produced will be subjected to a wide range of discriminating non-destructive Q.C. procedures and destructive physical tests. However, advantage will be taken of the availability of a fairly large quantity of welded material in the two series of welded specimens to widen the circle of investigative talent by providing material to academic and scientific institutions for examination.

  13. Electron beam cold hearth refining in Vallejo

    SciTech Connect

    Lowe, J.H.C.

    1994-12-31

    Electron Beam Cold Hearth Refining Furnace (EBCHR) in Vallejo, California is alive, well, and girding itself for developing new markets. A brief review of the twelve years experience with EBCHR in Vallejo. Acquisition of the Vallejo facility by Axel Johnson Metals, Inc. paves the way for the development of new products and markets. A discussion of some of the new opportunities for the advancement of EBCHR technology. Discussed are advantages to the EBCHR process which include: extended surface area of molten metal exposed to higher vacuum; liberation of insoluble oxide particles to the surface of the melt; higher temperatures that allowed coarse solid particles like carbides and carbonitrides to be suspended in the fluid metal as fine micro-segregates, and enhanced removal of volatile trace impurities like lead, bismuth and cadmium. Future work for the company includes the continued recycling of alloys and also fabricating stainless steel for the piping of chip assembly plants. This is to prevent `killer defects` that ruin a memory chip.

  14. Heat shrinkage of electron beam modified EVA

    NASA Astrophysics Data System (ADS)

    Datta, Sujit K.; Chaki, T. K.; Tikku, V. K.; Pradhan, N. K.; Bhowmick, A. K.

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%.

  15. Impact on electron velocity of hollow electron beam in HIRFL-CSR e-cooler system

    NASA Astrophysics Data System (ADS)

    Xia, G. X.; Xia, J. W.; Yang, J. C.; Liu, W.; Wu, J. X.; Yin, X. J.; Zhao, H. W.; Wei, B. W.

    2003-08-01

    Cooling efficiency in electron cooling systems is closely related to the velocity of electron. The velocity of electron has offset due to the space charge of the intense electron beam in the drift tube of the cooling section and thus increases the temperature of electrons. In order to minimize this effect, a new type of electron gun is adopted to produce a hollow electron beam in HIRFL-CSR e-cooler project. The hot ion beam is cooled by Coulomb interaction with intense and cold hollow electron beams. Using typical parameters of the CSRm e-cooler, theoretical calculations comparing the impact of the space charge field on electron velocity for solid and hollow electron beam are carried out.

  16. Experimental observation of helical microbunching of a relativistic electron beam

    SciTech Connect

    Hemsing, E.; Knyazik, A.; O'Shea, F.; Marinelli, A.; Musumeci, P.; Williams, O.; Rosenzweig, J. B.; Tochitsky, S.

    2012-02-27

    Experimental observation of the microbunching of a relativistic electron beam at the second harmonic interaction frequency of a helical undulator is presented. The microbunching signal is observed from the coherent transition radiation of the electron beam and indicates experimental evidence of a dominantly helical electron beam density distribution. This result is in agreement with theoretical and numerical predictions and provides a proof-of-principle demonstration of proposed schemes designed to generate light with orbital angular momentum in high-gain free-electron lasers.

  17. A simple model of electron beam initiated dielectric breakdown

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Daniell, R. E.; Delmer, T. N.

    1985-01-01

    A steady state model that describes the internal charge distribution of a planar dielectric sample exposed to a uniform electron beam was developed. The model includes the effects of charge deposition and ionization of the beam, separate trap-modulated mobilities for electrons and holes, electron-hole recombination, and pair production by drifting thermal electrons. If the incident beam current is greater than a certain critical value (which depends on sample thickness as well as other sample properties), the steady state solution is non-physical.

  18. Pulsed electron beam propagation in argon and nitrogen gas mixture

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-01

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N2). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  19. Electron-Cloud Simulation and Theory for High-Current Heavy-Ion Beams

    SciTech Connect

    Cohen, R; Friedman, A; Lund, S; Molvik, A; Lee, E; Azevedo, T; Vay, J; Stoltz, P; Veitzer, S

    2004-07-26

    Stray electrons can arise in positive-ion accelerators for heavy ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary- electron emission. We summarize the distinguishing features of electron cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds. We also present results from several ingredients in this capability: (1) We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2) We simulate of the effect of specified electron cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope ''breathing'' mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration). One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3) We report first results from a long-timestep algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics.

  20. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    SciTech Connect

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; Lee, Jaekwang; Prange, Micah P.; Pennycook, Stephen J.; Idrobo Tapia, Juan Carlos; Pantelides, Sokrates T.

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with a theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.

  1. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    DOE PAGES

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; Lee, Jaekwang; Prange, Micah P.; Pennycook, Stephen J.; Idrobo Tapia, Juan Carlos; Pantelides, Sokrates T.

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with amore » theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.« less

  2. Energy loss and longitudinal wakefield of relativistic short proton bunches in electron clouds

    NASA Astrophysics Data System (ADS)

    Boine-Frankenheim, O.; Gjonaj, E.; Petrov, F.; Yaman, F.; Weiland, T.; Rumolo, G.

    2012-05-01

    The aim of our study is the numerical computation of the wakefield and energy loss per unit length for relativistic, short (<10ns) proton bunches interacting with an electron cloud inside the beam pipe. We present analytical expressions for the energy loss in the impulse kick approximation. For the simulation of the wakefields a 2D self-consistent, electrostatic particle-in-cell (PIC) code is employed. Results for the energy loss and for the wakefields are presented for the parameter scope of the CERN LHC and SPS. For selected parameters the results are compared to a three-dimensional (3D) electromagnetic PIC code.

  3. Aperture Effects and Mismatch Oscillations in an Intense Electron Beam

    SciTech Connect

    Harris, J R; O'Shea, P G

    2008-05-12

    When an electron beam is apertured, the transmitted beam current is the product of the incident beam current density and the aperture area. Space charge forces generally cause an increase in incident beam current to result in an increase in incident beam spot size. Under certain circumstances, the spot size will increase faster than the current, resulting in a decrease in current extracted from the aperture. When using a gridded electron gun, this can give rise to negative transconductance. In this paper, we explore this effect in the case of an intense beam propagating in a uniform focusing channel. We show that proper placement of the aperture can decouple the current extracted from the aperture from fluctuations in the source current, and that apertures can serve to alter longitudinal space charge wave propagation by changing the relative contribution of velocity and current modulation present in the beam.

  4. Virtual mask digital electron beam lithography

    DOEpatents

    Baylor, L.R.; Thomas, C.E.; Voelkl, E.; Moore, J.A.; Simpson, M.L.; Paulus, M.J.

    1999-04-06

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made. 5 figs.

  5. Virtual mask digital electron beam lithography

    DOEpatents

    Baylor, Larry R.; Thomas, Clarence E.; Voelkl, Edgar; Moore, James A.; Simpson, Michael L.; Paulus, Michael J.

    1999-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  6. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  7. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  8. Electron beam energy QA - a note on measurement tolerances.

    PubMed

    Meyer, Juergen; Nyflot, Matthew J; Smith, Wade P; Wottoon, Landon S; Young, Lori; Yang, Fei; Kim, Minsun; Hendrickson, Kristi R G; Ford, Eric; Kalet, Alan M; Cao, Ning; Dempsey, Claire; Sandison, George A

    2016-01-01

    Monthly QA is recommended to verify the constancy of high-energy electron beams generated for clinical use by linear accelerators. The tolerances are defined as 2%/2 mm in beam penetration according to AAPM task group report 142. The practical implementation is typically achieved by measuring the ratio of readings at two different depths, preferably near the depth of maximum dose and at the depth corresponding to half the dose maximum. Based on beam commissioning data, we show that the relationship between the ranges of energy ratios for different electron energies is highly nonlinear. We provide a formalism that translates measurement deviations in the reference ratios into change in beam penetration for electron energies for six Elekta (6-18 MeV) and eight Varian (6-22 MeV) electron beams. Experimental checks were conducted for each Elekta energy to compare calculated values with measurements, and it was shown that they are in agreement. For example, for a 6 MeV beam a deviation in the measured ionization ratio of ± 15% might still be acceptable (i.e., be within ± 2 mm), whereas for an 18 MeV beam the corresponding tolerance might be ± 6%. These values strongly depend on the initial ratio chosen. In summary, the relationship between differences of the ionization ratio and the corresponding beam energy are derived. The findings can be translated into acceptable tolerance values for monthly QA of electron beam energies. PMID:27074488

  9. Progress report on beam-beam compensation with electron lenses in Tevatron

    SciTech Connect

    Vladimir Shiltsev et al.

    2003-07-09

    We discuss the original idea of beam-beam compensation (BBC) in Section I, sequence of events in 2001-2002 and use of the Tevatron Electron Beam (TEL) for DC beam removal in Section II, (anti)proton lifetime improvement in Section III, experimental data on the BBC attempts in Section IV and, conclusively, Section V is devoted to discussion on important phenomena, needed improvements and future plans.

  10. Electron energy-loss spectra in molecular fluorine

    NASA Technical Reports Server (NTRS)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  11. Interfacial Properties of Electron Beam Cured Composites

    SciTech Connect

    Eberle, C.C.

    1999-12-30

    The objectives of the CRADA are to: Confirm that fiber-resin adhesion is responsible for the observed poor shear properties; Determine the mechanism(s) responsible for poor adhesion between carbon fibers and epoxy resins after e-beam curing; Develop and evaluate resin systems and fiber treatments to improve the properties of e-beam cured, carbon-fiber-reinforced composites; and Develop refined methods for processing e-beam cured, carbon-fiber-reinforced composites.

  12. The use of artificial electron beams as probes of the distant magnetosphere

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1982-01-01

    Experiments are reported in which electron beams were injected into the magnetosphere (with up to 40 kev energy and at current up to 0.8 A) to diagnose the plasma processes at great distance by measurements made in the ionosphere. In some of the experiments, the conjugate region atmosphere was used to detect the electron beam; in others, conjugate echoes were detected near the injection region. The echoes were found to respond to changes in the convection fields and to reflect auroral zone activity. Theoretical and experimental echo patterns are discussed. Evidence for beam pitch angle scattering and altered mirror heights is presented. The use of the atmospheric response to electron beams in the loss cone as a detector has been achieved using optical, X-ray, and radar techniques.

  13. Limiting current of intense electron beams in a decelerating gap

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.

    2016-02-01

    For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.

  14. Cyclization and crosslinking of polybutadiene in solution by electron beam irradiation

    SciTech Connect

    Hayashi, K.; Tachibana, M.; Okamura, S.

    1980-09-01

    Effects of electron beam irradiation on liquid polybutadiene in n-hexane solution were studied at -10/sup 0/C. With irradiation, crosslinking of the polymer and loss of double bond by cyclization took place at the same time. These reactions were retarded by the addition of DPPH or triethylamine which indicated that both radical and cationic mechanisms contributed to this system.

  15. Beam Energy Scaling on Ion-Induced Electron Yield from K+ Impacton Stainless Steel

    SciTech Connect

    Kireeff Covo, Michel; Molvik, Arthur; Friedman, Alex; Westenskow,Glen; Barnard, John J.; Cohen, Ronald; Grote, David; Lund, Steven M.; Seidl, Peter; Kwan, Joe W.; Logan, Grant; Baca, David; Bieniosek, Frank; Celata, Christine M.; Vay Jean-Luc; Vujic, Jasmina L.

    2006-01-01

    Electron clouds limit the performance of many major accelerators. Significant quantities of electrons result when halo ions are lost to beam tubes, generating gas which can be ionized and ion-induced electrons that can multiply and accumulate, causing degradation or loss of the ion beam. In order to understand the physical mechanisms of ion-induced electron production, experiments studied the impact of 50 to 400 keV K{sup +} ions on stainless steel surfaces near grazing incidence, using the 500 kilovolts Ion Source Test Stand (STS-500) at LLNL. The experimental electron yield scales with the electronic component (dE{sub e}/dx) of the stopping power. A theoretical model is developed, using TRIM code to evaluate dE{sub e}/dx at several depths in the target, to estimate the electron yield, which is compared with the experimental results.

  16. Laser cooling of electron beams for linear colliders

    SciTech Connect

    Telnov, V.

    1996-10-01

    A novel method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. With reasonable laser parameters (laser flash energy about 10 J) one can decrease transverse beam emittances by a factor about 10 per one stage. The ultimate transverse emittances are much below that given by other methods. Depolarization of a beam during the cooling is about 5--15% for one stage. This method is especially useful for photon colliders and open new possibilities for e{sup +}e{sup {minus}} colliders and x-ray FEL based on high energy linacs.

  17. Free Electron Lasers with Slowly Varying Beam and Undulator Parameters

    SciTech Connect

    Huang, Z; Stupakov, G.; /SLAC

    2005-05-25

    The performance of a free electron lasers (FEL) is affected when the electron beam energy varies alone the undulator as would be caused by vacuum pipe wakefields and/or when the undulator strength parameter is tapered in the small signal regime until FEL saturation. In this paper, we present a self-consistent theory of FELs with slowly-varying beam and undulator parameters. A general method is developed to apply the WKB approximation to the beam-radiation system by employing the adjoint eigenvector that is orthogonal to the eigenfunctions of the coupled Maxwell-Vlasov equations. This method may be useful for other slowly varying processes in beam dynamics.

  18. Application of optical beams to electrons in graphene

    NASA Astrophysics Data System (ADS)

    Matulis, A.; Masir, M. Ramezani; Peeters, F. M.

    2011-03-01

    The technique of beam optics is applied to the description of the wave function of Dirac electrons. This approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist, while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous discussed.

  19. Thermal imaging diagnostics of high-current electron beams.

    PubMed

    Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D

    2012-10-01

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time. PMID:23126757

  20. Thermal imaging diagnostics of high-current electron beams

    SciTech Connect

    Pushkarev, A.; Kholodnaya, G.; Sazonov, R.; Ponomarev, D.

    2012-10-15

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm{sup 2}, the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm{sup 2} (or with current density over 10 A/cm{sup 2}, pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

  1. Thermal imaging diagnostics of high-current electron beams.

    PubMed

    Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D

    2012-10-01

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

  2. EFFECT OF SOLENOID FIELD ERRORS ON ELECTRON BEAM TEMPERATURES IN THE RHIC ELECTRON COOLER.

    SciTech Connect

    MONTAG,C.KEWISCH,J.

    2003-05-12

    As part of a future upgrade to the Relativistic Heavy Ion Collider (RHIC), electron cooling is foreseen to decrease ion beam emittances. Within the electron cooling section, the ''hot'' ion beam is immersed in a ''cold'' electron beam. The cooling effect is further enhanced by a solenoid field in the cooling section, which forces the electrons to spiral around the field lines with a (Larmor) radius of 10 micrometers, reducing the effective transverse temperature by orders of magnitude. Studies of the effect of solenoid field errors on electron beam temperatures are reported.

  3. Beam-induced electron modulations observed during TSS 1R

    NASA Astrophysics Data System (ADS)

    Rubin, A. G.; Burke, W. J.; Gough, M. P.; Machuzak, J. S.; Gentile, L. C.; Huang, C. Y.; Hardy, D. A.; Thompson, D. C.; Raitt, W. J.

    1999-08-01

    We report on modulations of electron fluxes at megahertz frequencies measured by the Shuttle Potential and Return Electron Experiment (SPREE) during fast pulsed electron gun (FPEG) beam experiments conducted after the tether break event of the Tethered Satellite System Reflight. Six intervals of sustained modulations were identified while FPEG emitted a 100 mA beam of 1 kev electrons. During five events the beam pitch angle αB was near 90° and the modulations were near even or odd half harmonics of the electron gyrofrequency fce. In the sixth event with 60°>=αB>=45°, electron modulations were near estimated values of the electron plasma frequency fpe and 2fpe. Whenever SPREE detected beam electrons modulated at a given frequency, secondary electrons were also modulated at the same frequency over a broad range of energies. Occasionally, some secondary electrons were modulated simultaneously at a second frequency. Multiple frequencies were related as ratios of low integers. In one case the beam electrons were simultaneously modulated at 0.8 MHz and 1.25 kHz. SPREE measurements suggest that the beam electrons propagate in cylindrical shells whose inner edge is marked by steep spatial gradients in fluxes at 1 keV [Hardy et al., 1995]. Inside the shell, electron distribution functions have positive slopes ∂f/∂v⊥>0 at velocities near that of the beam. Velocity space gradients act as free-energy sources to drive cavity modes that alter the instantaneous guiding centers of electrons causing SPREE to sample alternating parts of the beam cylinder's inner edge. Associated time-varying electric fields also modulated the fluxes of secondary electrons reaching SPREE. Other cavity modes may be excited through nonlinear processes [Calvert, 1982]. With αB far from 90°, electrons in the beam cylinder evolved toward bump-on-tail distributions to excite large-amplitude Langmuir modulations at fpe and its harmonics [Klimas, 1983]. Low-frequency modulations are attributed

  4. Chemical and structural stability of lithium-ion battery electrode materials under electron beam.

    PubMed

    Lin, Feng; Markus, Isaac M; Doeff, Marca M; Xin, Huolin L

    2014-01-01

    The investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. However, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi(0.4)Mn(0.4)Co(0.18)Ti(0.02)O2 particles, repeated electron beam irradiation induced a phase transition from an layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results.

  5. Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam

    PubMed Central

    Lin, Feng; Markus, Isaac M.; Doeff, Marca M.; Xin, Huolin L.

    2014-01-01

    The investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. However, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi0.4Mn0.4Co0.18Ti0.02O2 particles, repeated electron beam irradiation induced a phase transition from an layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results. PMID:25027190

  6. Miniature electron microscope beam column optics

    NASA Astrophysics Data System (ADS)

    Loyd, Jody Stuart

    This investigation is in the area of electrostatic lens design with the overarching goal of contributing to the creation of a miniaturized scanning electron microscope (SEM) for use in mineralogical analysis or detection of signs of life on the surface of Mars. Such an instrument could also have application in the exploration of Earth's moon, planetary moons, asteroids, or comets. Other embodiments could include tabletop or field portable SEMs for use on Earth. The scope of this research is in the design of a beam column that attains focusing, demagnification, and aberration control within the smallest achievable package. The goals of planetary exploration and of spaceflight in general impose severe constraints on the instrument's mass and electrical power consumption, while favoring a robust design of small size and high rigidity that is also simple to align. To meet these requirements a design using electrostatic lenses was favored because of the lower power requirement and mass of electrostatic versus magnetic lenses, their relatively simple construction, as well as inherently easier shielding from extraneous fields. In modeling the lens field, a hybrid of a Boundary Element Method (BEM) and a Fourier series solution was employed, whereby an initial solution from the BEM is used to derive the bounding potential of a cylindrical subdomain for the subsequent Fourier series solution. The approach is applicable to many problems in physics and combines the inherent precision of this series solution with the flexibility of BEM to describe practical, non-idealized electrode shapes. The resulting lens field in the Fourier series subdomain is of higher precision, thereby allowing smaller errors in subsequent calculations of electron ray paths. The effects of aberrations are thus easier to observe in tracing non-paraxial rays. A significant speed increase in tracing rays is also observed. The modeling technique has been validated by reproducing example ray-traces through

  7. Stimulated electromagnetic interactions in spatiotemporally gyrating relativistic electron beams

    SciTech Connect

    Davies, J.A.; Chen, C.

    1999-07-01

    One possible method to significantly widen the band-widths of present gyroklystron amplifiers is to utilize extended interaction structures in the input sections, the buncher sections and the output sections, in conjunction with stagger tuning. Through extended interactions, however, electron beams can undergo stimulated electromagnetic interactions, causing multimode excitations. In this paper, the authors investigate stimulated electromagnetic interactions in relativistic electron beams gyrating in an externally applied uniform magnetic field. The electron gyrophases are assumed to have strong spatiotemporal correlations. By applying Vlassor-Maxwell equations together with Lorentz transformations, they obtain the general dispersion relation for electromagnetic and electrostatic wave perturbations on the electron beam for this system. The dispersion relation is used to analyze a variety of stimulated electromagnetic interactions on such electron beams. Results of these analyses are discussed.

  8. Reduction of oxide microtrenching by electron beam assisted etching

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Shaw, D. M.; Collins, G. J.

    2000-10-01

    High density plasma etching of submicron wide oxide trenches often results in non-ideal etched features. For example, microtrenching is the result of higher etch rate near the side wall as compared to the center of the trench. Herein, we apply a previously reported[1] high energy (100 - 900 eV) electron beam directed at the etching wafer surface to reduce microtrenching during the etching of 0.5 micron wide silicon dioxide (SiO2) trench patterns in an inductively coupled fluorocarbon plasma. The directed electron beam neutralizes the positive charge buildup at the bottom of the trench and reduces the microtrench formation. Scanning Electron Microscopy (SEM) images of features etched with and without the electron beam show that the electron beam is effective in reducing microtrenching. [1] D. M. Shaw, M. Watanabe, G. J. Collins, and H. Sugai, Jpn. J. Appl. Phys. 38, 87 (1999).

  9. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    SciTech Connect

    Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.; Nakamura, K.; Robinson, K.E.; Schroeder, C.B.; Toth, C.

    2009-05-04

    to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision. The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.

  10. Separating the Spin States of a Free Electron Beam

    NASA Astrophysics Data System (ADS)

    Rifkin, Neil

    2008-10-01

    In 1922 Otto Stern and Walther Gerlach set out to test the spacial quantization of the electron by passing a beam of neutral silver atoms through a transverse magnetic field. The interaction of the two projections of the electron's magnetic moment with the magnetic field resulted in a splitting of the beam. However, for some sixty years it was generally accepted that the spin of free electrons, and thus their magnetic moment, could not be measured with an experiment similar to that of Stern and Gerlach. The reason being that the lorentz force on charged particles is far greater than the force due to the magnetic moment of the electron, thus blurring any desired results. To reduce the lorentz force, the electrons could be passed through a magnetic field whose gradient is in the direction of the electrons' momentum. This longitudinal Stern-Gerlach device, with a superconducting magnet, could polarize the tails of a low energy electron beam.

  11. Controlled Electron Acceleration in a Plane Laser Beam

    NASA Astrophysics Data System (ADS)

    Tataronis, J. A.; Petržílka, V.; Krlín, L.

    2002-11-01

    Through numerical modeling of the relativistic test particle motion of an ensemble of electrons in a plane laser beam, we show in the present contribution that a significant electron acceleration arises if an additional perpendicularly propagagating transverse laser beam with a randomized phase is present. We also demonstrate that the acceleration rate can be controlled by the power flux intensity of the additional laser beam. The power flux intensity of the additional beam can be typically much lower than the power flux intensity of the main laser beam. In the main laser beam, the electrons perform also a forward oscillating motion because of the effects of the magnetic field intensity of the beam. The acceleration results from the accumulation of the forward electron motion due to phase changes provided by the additional laser beam. For parameters of the PALS^1 device (Prague Asterix Laser System), the attainable electron energy is about 40 MeV in 10^4 wave periods. [2pt] Acknowledgments: This work has been supported by Czech grant GACR 202/00/1217 and USDOE Grant DE-FG02-97ER54398. [2pt] ^1K.Jungwirth et al., Phys. Plasmas 8 (2001) 2495.

  12. Electron Beam Freeform Fabrication in the Space Environment

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Taminger, Karen M. B.; Bird, R. Keith

    2007-01-01

    The influence of reduced gravitational forces (in space and on the lunar or Martian surfaces) on manufacturing processes must be understood for effective fabrication and repair of structures and replacement parts during long duration space missions. The electron beam freeform fabrication (EBF3) process uses an electron beam and wire to fabricate metallic structures. The process efficiencies of the electron beam and the solid wire feedstock make the EBF3 process attractive for use in-space. This paper will describe the suitability of the EBF3 process in the space environment and will highlight preliminary testing of the EBF3 process in a zero-gravity environment.

  13. Patterned electrochemical deposition of copper using an electron beam

    SciTech Connect

    Heijer, Mark den; Shao, Ingrid; Reuter, Mark C.; Ross, Frances M.; Radisic, Alex

    2014-02-01

    We describe a technique for patterning clusters of metal using electrochemical deposition. By operating an electrochemical cell in the transmission electron microscope, we deposit Cu on Au under potentiostatic conditions. For acidified copper sulphate electrolytes, nucleation occurs uniformly over the electrode. However, when chloride ions are added there is a range of applied potentials over which nucleation occurs only in areas irradiated by the electron beam. By scanning the beam we control nucleation to form patterns of deposited copper. We discuss the mechanism for this effect in terms of electron beam-induced reactions with copper chloride, and consider possible applications.

  14. Faraday cup characterization of electron beam welding parameters

    SciTech Connect

    Burgardt, P.; Knaus, S.E.; Kautz, D.D.

    1987-10-12

    The use of the electron beam welding process to produce precision welds on many materials has been well documented in the literature. Some joint configurations may need more parameter control than is typically afforded by the standard electron beam welding machine. The repeatability and transferability of the electron beam welding parameters must also be regarded during weld development on many designs. Types of instrumentation which enhance the parameter control should be developed to higher levels. This instrumentation is important to the accurate transfer of technology between welding machines and production cycles. 7 refs., 6 figs., 1 tab.

  15. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  16. Stability of charged beam propagation through a relativistic hollow electron beam. Final report

    SciTech Connect

    Uhm, H.S.

    1981-09-01

    Stability properties of charged beam propagation through a relativistic hollow electron beam are investigated, in connection with present experimental applications in the collective particle accelerator. The stability analysis is carried out for long axial wavelength and low-frequency perturbations. A closed algebraic dispersion relation for coupled transverse oscillations is obtained for the solid and hollow beams with sharp-boundary density profiles. One of the most important features in the analysis is that the typical growth rate of the transverse oscillation is order of the hollow beam diocotron frequency, thereby severely limiting the solid beam propagation through a relativistic hollow electron beam. However, for a solid beam with a small radius, the fundamental mode perturbation (i.e., the dipole oscillation) is the most unstable mode.

  17. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  18. The use of electron beams for pasteurization of meats

    SciTech Connect

    Prestwich, K.R.; Kaye, R.J.; Turman, B.N.; Neau, E.L.

    1994-12-01

    Electron beam accelerators can be used for electronic pasteurization of meat products by: (1) using the electrons directly impacting the products, or (2) optimizing the conversion of electron energy to x-rays and treating the product with these x-rays. The choice of process depends on the configuration of the product when it is treated. For electron treatment, ten million electron volt (MeV) kinetic energy is the maximum allowed by international agreement. The depth of penetration of electrons with that energy into a product with density of meat is about five centimeters (cm). Two-sided treatment can be done on products up to 10 cm thick with a two-to-one ratio between minimum and maximum dose. Ground beef patties are about 1.25 cm (0.5 inch thick). Beams with 2.5 MeV electron energy could be used to treat these products. Our calculations show that maximum to minimum dose ratios less than 1.2 can be achieved with this energy if the transverse beam energy is small. If the product thickness is greater than 10 cm, x-rays can provide the needed dose uniformity. Uniform doses can be supplied for pallets with dimensions greater than 1.2 m on each side using x-rays from a 5 MeV electron beam. The efficiency of converting the electron beam to x-rays and configurations to achieve dose uniformity are discussed.

  19. Visualization of Trajectories of Electron Beams Emitted by an IonSource with Closed Electron Drift

    SciTech Connect

    Institue of Physics, National Academy of Sciences of Ukraine; Brown, Ian G.; Bordenjuk, Ian V.; Panchenko, Oleg A.; Sologub, Sergei V.; Brown, Ian G.

    2007-10-01

    Trajectories of electron beams emitted by an ion source with an anode layer and Hall electron closed drift orbits were visualized using light emission from a working gas excited by electrons. Gas discharge of magnetron type, arising in the beam drift region under the influence of an electric field of a target bias potential, was visualized.

  20. Theory of mode-induced beam-particle loss in tokamaks

    SciTech Connect

    White, R.B.; Goldston, R.J.; McGuire, K.; Boozer, A.H.; Monticello, D.A.; Park, W.

    1983-04-01

    Large-amplitude rotating magnetohydrodynamic modes have been observed to induce significant high-energy-beam particle loss during high-power perpendicular neutral-beam injection on PDX. A Hamiltonian formalism for drift-orbit trajectories in the presence of such modes is used to study induced particle loss analytically and numerically. Results are in good agreement with experiment.

  1. A fast beam loss monitor system for the KEK proton synchrotron complex

    NASA Astrophysics Data System (ADS)

    Holt, J. A.; Kishiro, J.; Arakawa, D.; Hiramatsu, S.

    1991-06-01

    Efforts to increase the intensity of the KEK proton synchrotron have led to the need for a new fast response beam loss monitor system. The design and some prelimitary test results of a new beam loss monitor system are presented.(AIP)

  2. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    DOEpatents

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  3. Development and characterization of advanced electron beam resists

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankur

    Over the past twenty years, the amount of research and development work for electron beam resists has seriously lagged that performed for optical resists. This has been due mainly to the relatively low volume use of electron beam lithography for production purposes. However, as electron beam lithography is now becoming the primary solution for achieving future critical dimension requirements in mask making and appears to be a promising NGL technology, interest in electron beam resist development has increased in recent years. The primary issue in electron beam resist design centers around finding a single resist system that combines the required sensitivity and etch resistance that is needed to enable high volume production. In this work, the primary goal was to explore the development of a novel two-component non-chemically amplified electron beam resist material for high keV (>10 keV) patterning for mask-making with: (1) high contrast, (2) high sensitivity, (3) high resolution, and, (4) high etch resistance. Poly (2-methyl-1-pentene co 2-ethoxyethyl-methallyl ether sulfone) was used as a polymeric e-beam sensitive material conjunction with a series of commercial novolac resins to formulate electron beam resists. These two-component resists have been termed sulfone-novolac system (SNS) resists. The approach used in this project is to develop a suite of experimental tools and simulation models that can be used to aid in the rational design, formulation, and characterization of new electron beam resists. The main tasks that have been addressed are: (1) development of the electron beam resist characterization tool set, (2) understanding the fundamental material behavior of a non-chemically amplified polysulfone-novolac (SNS) e-beam resist for next generation mask making, (3) lithographic process development and optimization for the SNS resists, (4) evaluation of the lithographic performance of the SNS resists using the optimized processing conditions, and (5) develop

  4. Axial Electron Heat Loss From Mirror Devices Revisited

    SciTech Connect

    Ryutov, D

    2004-08-16

    An issue of the axial electron heat loss is of a significant importance for mirror-based fusion devices. This problem has been considered in a number of publications but it is still shrouded in misconceptions. In this paper we revisit it once again. We discuss the following issues: (1) Formation of the electron distribution function in the end tank at large expansion ratios; (2) The secondary emission from the end plates and the ways of suppressing it (if needed); (3) Ionization and charge exchange in the presence of neutrals in the end tanks; (4) Instabilities caused by the peculiar shape of the electron distribution function and their possible impact on the electron heat losses; (5) Electron heat losses in the pulsed mode of operation of mirror devices.

  5. Axial Electron Heat Loss from Mirror Devices Revisited

    SciTech Connect

    Ryutov, D.D.

    2005-01-15

    An issue of the axial electron heat loss is of a significant importance for mirror-based fusion devices. This problem has been considered in a number of publications but it is still shrouded in misconceptions. In this paper we revisit it once again. We discuss the following issues: 1) Formation of the electron distribution function in the end tank at large expansion ratios; 2) The secondary emission from the end plates and the ways of suppressing it (if needed); 3) Ionization and charge exchange in the presence of neutrals in the end tanks; 4) Instabilities caused by the peculiar shape of the electron distribution function and their possible impact on the electron heat losses; 5) Electron heat losses in the pulsed mode of operation of mirror devices.

  6. Studies of Limits on Uncontrolled Heavy Ion Beam Losses for Allowing Hands-On Maintenance

    SciTech Connect

    Reginald M. Ronningen; Igor Remec

    2010-09-11

    Dose rates from accelerator components activated by 1 W/m beam losses are obtained semiempirically for a 1 GeV proton beam and by use of Monte Carlo transport codes for the proton beam and for 777 MeV/u 3He, 500 MeV/u 48Ca, 86Kr, 136Xe, and 400 MeV/u 238U ions. The dose rate obtained by the semi-empirical method, 0.99 mSv/h (99 mrem/h) at 30 cm, 4 h after 100 d irradiation by a 1-GeV proton beam, is consistent with studies at several accelerator facilities and with adopted hands-on maintenance dose rate limits. Monte Carlo simulations verify this result for protons and extend studies to heavy ion beam losses in drift-tube linac and superconducting linac accelerating structures. The studies indicate that the 1 W/m limit imposed on uncontrolled beam losses for high-energy proton beams might be relaxed for heavy ion beams. These studies further suggest that using the ratio of neutrons produced by a heavy ion beam to neutrons produced by a proton beam along with the dose rate from the proton beam (for thin-target scenarios) should allow an estimate of the dose rates expected from heavy ion beam losses.

  7. Characteristics of an electron-beam rocket pellet accelerator

    SciTech Connect

    Tsai, C.C.; Foster, C.A.; Milora, S.L.; Schechter, D.E.

    1991-01-01

    A proof-of-principle (POP) electron-beam pellet accelerator has been developed and used for accelerating hydrogen and deuterium pellets. An intact hydrogen pellet was accelerated to a speed of 460 m/s by an electron beam of 13.5 keV. 0.3 A, and 2 ms. The maximum speed is limited by the acceleration path length (0.4 m) and pellet integrity. Experimental data have been collected for several hundred hydrogen pellets, which were accelerated by electron beams with parameters of voltage up to 16 kV, current up to 0.4 A, and pulse length up to 10 ms. Preliminary results reveal that the measured burn velocity increases roughly with the square of the beam voltage, as the theoretical model predicts. The final pellet velocity is proportional to the exhaust velocity, which increases with the beam power. To reach the high exhaust velocity needed for accelerating pellets to >1000 m/s, a new electron gun, with its cathode indirectly heated by a graphite heater and an electron beam, is being developed to increase beam current and power. A rocket casing or shell around the pellet has been designed and developed to increase pellet strength and improve the electron-rocket coupling efficiency. We present the characteristics of this pellet accelerator, including new improvements. 13 refs., 6 figs.

  8. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials.

    PubMed

    Woehl, Taylor J; Jungjohann, Katherine L; Evans, James E; Arslan, Ilke; Ristenpart, William D; Browning, Nigel D

    2013-04-01

    Scanning transmission electron microscopy of various fluid and hydrated nanomaterial samples has revealed multiple imaging artifacts and electron beam-fluid interactions. These phenomena include growth of crystals on the fluid stage windows, repulsion of particles from the irradiated area, bubble formation, and the loss of atomic information during prolonged imaging of individual nanoparticles. Here we provide a comprehensive review of these fluid stage artifacts, and we present new experimental evidence that sheds light on their origins in terms of experimental apparatus issues and indirect electron beam sample interactions with the fluid layer. A key finding is that many artifacts are a result of indirect electron beam interactions, such as production of reactive radicals in the water by radiolysis, and the associated crystal growth. The results presented here will provide a methodology for minimizing fluid stage imaging artifacts and acquiring quantitative in situ observations of nanomaterial behavior in a liquid environment.

  9. Effects of electron-beam irradiation on conducting polypyrrole nanowires

    SciTech Connect

    Hong, Young Ki; Park, Dong Hyuk; Park, Se Hee; Park, Soung Kyu; Joo, Jinsoo

    2009-02-02

    Conducting polypyrrole (PPy) nanowires (NWs) were irradiated by a relatively high energy (300 keV-2 MeV) electron-beam (e-beam) generated from a linear electron accelerator in an atmospheric environment. From the current-voltage characteristics of pristine and 2 MeV e-beam irradiated PPy NWs, we observed a dramatic variation in resistance from 8.0x10{sup 2} to 1.45x10{sup 8} {omega}, that is, we observed a transition from conducting states to nonconducting states through the e-beam irradiation. To discern conformational changes and the doping states of PPy NWs through the e-beam irradiation, we measured Raman and ultraviolet-visible absorption spectra for the PPy NWs. As the energy of the e-beam irradiation increased, we observed that the PPy NWs were changed from doping states to dedoping states with conformational modification including the variation in {pi}-conjugation length.

  10. Size modulated transition in the fluid-structure interaction losses in nano mechanical beam resonators

    NASA Astrophysics Data System (ADS)

    Vishwakarma, S. D.; Pandey, A. K.; Parpia, J. M.; Verbridge, S. S.; Craighead, H. G.; Pratap, R.

    2016-05-01

    An understanding of the dominant dissipative mechanisms is crucial for the design of a high-Q doubly clamped nanobeam resonator to be operated in air. We focus on quantifying analytically the viscous losses—the squeeze film damping and drag force damping—that limit the net quality factor of a beam resonator, vibrating in its flexural fundamental mode with the surrounding fluid as air at atmospheric pressure. Specifically, drag force damping dominates at smaller beam widths and squeeze film losses dominate at larger beam widths, with no significant contribution from structural losses and acoustic radiation losses. The combined viscous losses agree well with the experimentally measured Q of the resonator over a large range of beam widths, within the limits of thin beam theory. We propose an empirical relation between the maximum quality factor and the ratio of maximum beam width to the squeeze film air gap thickness.

  11. Advanced Accelerating Structures and Their Interaction with Electron Beams

    SciTech Connect

    Gai Wei

    2009-01-22

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  12. Advanced accelerating structures and their interaction with electron beams.

    SciTech Connect

    Gai, W.; High Energy Physics

    2008-01-01

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  13. Electron acoustic solitary waves in a magnetized plasma with nonthermal electrons and an electron beam

    NASA Astrophysics Data System (ADS)

    Singh, S. V.; Devanandhan, S.; Lakhina, G. S.; Bharuthram, R.

    2016-08-01

    A theoretical investigation is carried out to study the obliquely propagating electron acoustic solitary waves having nonthermal hot electrons, cold and beam electrons, and ions in a magnetized plasma. We have employed reductive perturbation theory to derive the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing the nonlinear evolution of these waves. The two-dimensional plane wave solution of KdV-ZK equation is analyzed to study the effects of nonthermal and beam electrons on the characteristics of the solitons. Theoretical results predict negative potential solitary structures. We emphasize that the inclusion of finite temperature effects reduces the soliton amplitudes and the width of the solitons increases by an increase in the obliquity of the wave propagation. The numerical analysis is presented for the parameters corresponding to the observations of "burst a" event by Viking satellite on the auroral field lines.

  14. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  15. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  16. Energy measurement of electron beams by Compton scattering

    NASA Technical Reports Server (NTRS)

    Keppel, Cynthia

    1995-01-01

    A method has been proposed to utilize the well-known Compton scattering process as a tool to measure the centroid energy of a high energy electron beam at the 0.01% level. It is suggested to use the Compton scattering of an infrared laser off the electron beam, and then to measure the energy of the scattered gamma-rays very precisely using solid-state detectors. The technique proposed is applicable for electron beams with energies from 200 MeV to 16 GeV using presently available lasers. This technique was judged to be the most viable of all those proposed for beam energy measurements at the nearby Continuous Electron Beam Accelerator Facility (CEBAF). Plans for a prototype test of the technique are underway, where the main issues are the possible photon backgrounds associated with an electron accelerator and the electron and laser beam stabilities and diagnostics. The bulk of my ASEE summer research has been spent utilizing the expertise of the staff at the Aerospace Electronics Systems Division at LaRC to assist in the design of the test. Investigations were made regarding window and mirror transmission and radiation damage issues, remote movement of elements in ultra-high vacuum conditions, etc. The prototype test of the proposed laser backscattering method is planned for this December.

  17. Beam dynamics analysis in pulse compression using electron beam compact simulator for Heavy Ion Fusion

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi; Horioka, Kazuhiko; Sasaki, Toru; Harada, Nob.

    2013-11-01

    In a final stage of an accelerator system for heavy ion inertial fusion (HIF), pulse shaping and beam current increase by bunch compression are required for effective pellet implosion. A compact simulator with an electron beam was constructed to understand the beam dynamics. In this study, we investigate theoretically and numerically the beam dynamics for the extreme bunch compression in the final stage of HIF accelerator complex. The theoretical and numerical results implied that the compact experimental device simulates the beam dynamics around the stagnation point for initial low temperature condition.

  18. Isotope separation using tuned laser and electron beam

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor (Inventor)

    1987-01-01

    The apparatus comprises means for producing an atomic beam containing the isotope of interest and other isotopes. Means are provided for producing a magnetic field traversing the path of the atomic beam of an intensity sufficient to broaden the energy domain of the various individual magnetic sublevels of the isotope of interest and having the atomic beam passing therethrough. A laser beam is produced of a frequency and polarization selected to maximize the activation of only individual magnetic sublevels of the isotope of interest with the portion of its broadened energy domain most removed from other isotopes with the stream. The laser beam is directed so as to strike the atomic beam within the magnetic field and traverse the path of the atomic beam whereby only the isotope of interest is activated by the laser beam. The apparatus further includes means for producing a collimated and high intensity beam of electrons of narrow energy distribution within the magnetic field which is aimed so as to strike the atomic beam while the atomic beam is simultaneously struck by the laser beam and at an energy level selected to ionize the activated isotope of interest but not ground state species included therewith. Deflection means are disposed in the usual manner to collect the ions.

  19. Anomalous Hollow Electron Beams in a Storage Ring

    SciTech Connect

    Wu, Y.K.

    2005-04-12

    This paper reports the first observations of an anomalous hollow electron beam in the Duke storage ring. Created by exciting the single bunch beam in a lattice with a negative chromaticity, the hollow beam consists of a solid core inside and a large ring outside. We report the detailed measurements of the hollow beam phenomenon, including its distinct image pattern, spectrum signature, and its evolution with time. By capturing the post-instability bursting beam, the hollow beam is a unique model system for studying the transverse instabilities, in particular, the interplay of the wake field and the lattice nonlinearity. In addition, the hollow beam can be used as a powerful tool to study the linear and nonlinear particle dynamics in the storage ring.

  20. Transport of electron beams with initial transverse-longitudinal correlation

    NASA Astrophysics Data System (ADS)

    Harris, J. R.; Lewellen, J. W.; Poole, B. R.

    2013-08-01

    When an electron beam whose current varies in time is extracted from a DC gun, the competition between the time-dependent space charge force and the time-independent focusing force will cause a correlation between radius, divergence, current, and position along the beam. This correlation will determine the beam's configuration in trace space, and together with the design of the downstream transport system, will determine the quality of the transport solutions that can be obtained, including the amplitude of the mismatch oscillations occurring in each slice of the beam. Recent simulations of a simplified diode with Pierce-type focusing operating at nonrelativistic voltages indicated that the radius and divergence of beams extracted from such guns can be approximated to high accuracy as linear functions of current. Here, we consider the impact of this dependence on the beam configuration in trace space and investigate the implications for matching and transport of such correlated beams in uniform linear focusing channels.

  1. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.

    PubMed

    Bellido, Edson P; Rossouw, David; Botton, Gianluigi A

    2014-06-01

    Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson-Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson-Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum.

  2. A Gridded Electron Gun for a Sheet Beam Klystron

    SciTech Connect

    Read, M.E.; Miram, G.; Ives, R.L.; Ivanov, V.; Krasnykh, A.; /SLAC

    2008-04-25

    This paper describes the development of an electron gun for a sheet beam klystron. Initially intended for accelerator applications, the gun can operate at a higher perveance than one with a cylindrically symmetric beam. Results of 2D and 3D simulations are discussed.

  3. RADLAC II high current electron beam propagation experiment

    SciTech Connect

    Frost, C.A.; Shope, S.L.; Mazarakis, M.G.; Poukey, J.W.; Wagner, J.S.; Turman, B.N.; Crist, C.E.; Welch, D.R.; Struve, K.W.

    1992-08-01

    This resistive hose instability of an electron beam was observed to be convective in recent RADLAC II experiments for higher current shots. The effects of air scattering for these shots were minimal. These experiments and theory suggest low-frequency hose motion which does not appear convective may be due to rapid expansion and subsequent drifting of the beam nose.

  4. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  5. Acceleration of electrons in strong beam-plasma interactions

    NASA Astrophysics Data System (ADS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-12-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  6. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  7. Electron beam irradiated silver nanowires for a highly transparent heater

    PubMed Central

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-01-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters. PMID:26639760

  8. Electron beam irradiated silver nanowires for a highly transparent heater

    NASA Astrophysics Data System (ADS)

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-12-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters.

  9. Brushless dc motor uses electron beam switching tube as commutator

    NASA Technical Reports Server (NTRS)

    Studer, P.

    1965-01-01

    Electron beam switching tube eliminates physical contact between rotor and stator in brushless dc motor. The tube and associated circuitry control the output of a dc source to sequentially energize the motor stator windings.

  10. Inductive voltage adder (IVA) for submillimeter radius electron beam

    SciTech Connect

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    1996-12-31

    The authors have already demonstrated the utility of inductive voltage adder accelerators for production of small-size electron beams. In this approach, the inductive voltage adder drives a magnetically immersed foilless diode to produce high-energy (10--20 MeV), high-brightness pencil electron beams. This concept was first demonstrated with the successful experiments which converted the linear induction accelerator RADLAC II into an IVA fitted with a small 1-cm radius cathode magnetically immersed foilless diode (RADLAC II/SMILE). They present here first validations of extending this idea to mm-scale electron beams using the SABRE and HERMES-III inductive voltage adders as test beds. The SABRE experiments are already completed and have produced 30-kA, 9-MeV electron beams with envelope diameter of 1.5-mm FWHM. The HERMES-III experiments are currently underway.

  11. Use of an Electron Beam for Stochastic Cooling

    SciTech Connect

    Yaroslave Derbenev

    2007-09-10

    Microwave instability of an electron beam can be used for a multiple increase in the collective response for the perturbation caused by a particle of a co-moving ion beam, i.e. for enhancement of friction force in electron cooling method. The low scale (hundreds GHz and higher frequency range) space charge or FEL type instabilities can be produced (depending on conditions) by introducing an alternating magnetic fields along the electron beam path. Beams’ optics and noise conditioning for obtaining a maximal cooling effect and related limitations will be discussed. The method promises to increase by a few orders of magnitude the cooling rate for heavy particle beams with a large emittance for a wide energy range with respect to either electron and conventional stochastic cooling.

  12. Electron beam seals outer surfaces of porous bodies

    NASA Technical Reports Server (NTRS)

    Herz, W. H.; Kurtz, A. D.; Kurtz, R. A.

    1966-01-01

    Porous tungsten plugs provide even airflow for frictionless bearings used in air bearing supported gyros. The plugs have their outer cylindrical surface sealed by an electron beam process to ensure unidirectional airflow through their exit ends.

  13. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  14. Theory And Design Of Thermionic Electron Beam Guns

    SciTech Connect

    Iqbal, Munawar; Fazal-e-Aleem

    2005-03-17

    Electron beam technology has a long history and wide applications in various fields including high-energy physics. The unique properties, which one can develop by using different configurations, have been one of the strongest driving forces for this multi-dimensional technology. In this paper, we will take up the subject along with applications in various areas of physics. We will particularly focus on the developments of electron beam sources by our laboratory.

  15. Characterization of electron contamination in megavoltage photon beams

    SciTech Connect

    Medina, Antonio Lopez; Teijeiro, Antonio; Garcia, Juan; Esperon, Jorge; Terron, J. Antonio; Ruiz, Diego P.; Carrion, Maria C.

    2005-05-01

    The purpose of the present study is to characterize electron contamination in photon beams in different clinical situations. Variations with field size, beam modifier (tray, shaping block) and source-surface distance (SSD) were studied. Percentage depth dose measurements with and without a purging magnet and replacing the air by helium were performed to identify the two electron sources that are clearly differentiated: air and treatment head. Previous analytical methods were used to fit the measured data, exploring the validity of these models. Electrons generated in the treatment head are more energetic and more important for larger field sizes, shorter SSD, and greater depths. This difference is much more noticeable for the 18 MV beam than for the 6 MV beam. If a tray is used as beam modifier, electron contamination increases, but the energy of these electrons is similar to that of electrons coming from the treatment head. Electron contamination could be fitted to a modified exponential curve. For machine modeling in a treatment planning system, setting SSD at 90 cm for input data could reduce errors for most isocentric treatments, because they will be delivered for SSD ranging from 80 to 100 cm. For very small field sizes, air-generated electrons must be considered independently, because of their different energetic spectrum and dosimetric influence.

  16. Electron-beam modification of textile fabrics for hydrophilic finishing

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mervat S.; Salmawi, Kariman M. El; Ibrahim, Sayeda M.

    2005-03-01

    A study has been made to modify different textile fabrics such as cotton, cotton/polyester blend and nylon-6 fabrics by surface coating with a constant thickness layer of 25 μm of aqueous solution of polyvinyl alcohol (PVA) and acrylic acid (AAc). Radiation curing of surface coating was accomplished by electron beam irradiation with a constant dose of 50 kGy. Parameters affecting hydrophilicity of cured coated fabrics, namely, presence or absence of cross-linking agent and concentration of AAc in coating solution, were investigated. Properties affiliated with hydrophilicity, specifically water uptake and weight loss, before and after several washing cycles were followed up. Crease recovery angle was determined. Considerable enhancement, in water uptake as well as crease recovery angle, has been attained with increasing AAc content in solution in case of nylon-6, followed by blends and then cotton. Moreover, dyeing properties for coated fabrics, with solution containing 4 wt.% AAc, has been tested by color difference method, for basic and reactive dyes. Relative increase in color strength has been achieved. The presence of cross-linking agent in coating solution played a significant role, specifically in case of dyeing properties. Morphology of coated fabrics was examined by scanning electron microscope (SEM), which indicated fastness and compatibility between coating and fabrics. Correlation between structure and obtained results was given.

  17. Issues and experience with controlling beam loss at the Tevatron collider

    SciTech Connect

    Annala, Gerald; /Fermilab

    2007-07-01

    Controlling beam loss in the Tevatron collider is of great importance because of the delicate nature of the cryogenic magnet system and the collider detectors. Maximizing the physics potential requires optimized performance as well as protection of all equipment. The operating history of the Tevatron has significantly influenced the way losses are managed. The development of beam loss management in the Tevatron will be presented.

  18. Electron-Cloud Effects on Heavy-Ion Beams

    SciTech Connect

    Azevedo, T; Friedman, A; Cohen, R; Vay, J

    2004-03-29

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We are developing a capability for self-consistent simulation of ion beams with the electron clouds they produce. We report on an ingredient in this capability, the effect of specified electron cloud distributions on the dynamics of a coasting ion beam. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also be effective. We identify a possible instability associated with resonance with the beam-envelope ''breathing'' mode. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations.

  19. Reinforcing multiwall carbon nanotubes by electron beam irradiation

    SciTech Connect

    Duchamp, Martial; Meunier, Richard; Smajda, Rita; Mionic, Marijana; Forro, Laszlo; Magrez, Arnaud; Seo, Jin Won; Song, Bo; Tomanek, David

    2010-10-15

    We study the effect of electron beam irradiation on the bending modulus of multiwall carbon nanotubes grown by chemical vapor deposition. Atomic force microscopy observations of the nanotube deflection in the suspended-beam geometry suggest an internal, reversible stick-slip motion prior to irradiation, indicating presence of extended defects. Upon electron beam irradiation, nanotubes with an initial bending modulus exceeding 10 GPa initially get stiffer, before softening at high doses. Highly defective nanotubes with smaller initial bending moduli do not exhibit the initial reinforcement. These data are explained by ab initio molecular dynamics calculations suggesting a spontaneous cross-linking of neighboring nanotube walls at extended vacancy defects created by the electron beam, in agreement with electron microscopy observations. At low defect concentration, depending on the edge morphology, the covalent bonds between neighboring nanotube walls cause reinforcement by resisting relative motion of neighboring walls. At high concentration of defects that are present initially or induced by high electron beam dose, the structural integrity of the entire system suffers from increasing electron beam damage.

  20. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment

    SciTech Connect

    Dobbs, Adam James

    2011-10-01

    A study is presented of particle rates in the MICE Muon Beamline and their relationship to beam loss produced in ISIS. A brief overview of neutrino physics is presented, together with a discussion on the Neutrino Factory as a motivation for MICE. An overview of MICE itself is then presented, highlighting the need for a systematic understanding of the relationship between the MICE target parameters, ISIS beam loss, and MICE particle rate. The variation of beam loss with target depth is examined and observed to be non-linear. The variation of beam loss with respect to the target dip time in the ISIS cycle is examined and observed to be approximately linear for dip times between 11.1 ms and 12.6 ms after ISIS injection, before tailing at earlier dip times. The variation of beam loss with particle rate is also observed to follow an approximately linear relationship from 0.05 V.ms to 4.7 V.ms beam loss, with a further strong indication that this continues up to 7.1 V.ms. Particle identification using time-of-flight data is used to give an insight into the relative abundances of each particle species present in the MICE beam. Estimates of muon rate are then produced as a function of beam loss. At a level of 2 V.ms beam loss ~10.9 muons per spill for a 3.2 ms spill with negative π → μ optics, and ~31.1 muons per 1 ms spill with positive π → μ optics are observed. Simulations using the ORBIT particle tracking code of the beam loss distributions around the ISIS ring, caused by the MICE target, are also presented and the implications for MICE running discussed.

  1. Modeling the interaction of high power ion or electron beams with solid target materials

    SciTech Connect

    Hassanein, A.M.

    1983-11-01

    Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam.

  2. Development of High Power Electron Beam Measuring and Analyzing System for Microwave Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Ruan, C. J.; Wu, X. L.; Li, Q. S.; Li, C. S.

    The measurement and analysis of high power electron beam during its formation and transmission are the basic scientific problems and key techniques for the development of high performance microwave vacuum electron devices, which are widely used in the fields of military weapon, microwave system and scientific instruments. In this paper, the dynamic parameters measurement and analysis system being built in Institute of Electronics, Chinese Academy of Sciences (IECAS) recently are introduced. The instrument are designed to determine the cross-section, the current density, and the energy resolution of the high power electron beam during its formation and transmission process, which are available both for the electron gun and the electron optics system respectively. Then the three dimension trajectory images of the electron beam can be rebuilt and display with computer controlled data acquisition and processing system easily. Thus, much more complicated structures are considered and solved completely to achieve its detection and analysis, such as big chamber with 10-6 Pa high vacuum system, the controlled detector movement system in axis direction with distance of 600 mm inside the vacuum chamber, the electron beam energy analysis system with high resolution of 0.5%, and the electron beam cross-section and density detector using the YAG: Ce crystal and CCD imaging system et al. At present, the key parts of the instrument have been finished, the cross-section experiment of the electron beam have been performed successfully. Hereafter, the instrument will be used to measure and analyze the electron beam with the electron gun and electron optics system for the single beam and multiple beam klystron, gyrotron, sheet beam device, and traveling wave tube etc. thoroughly.

  3. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Küchler, D.

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  4. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  5. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work. PMID:26932095

  6. An electron energy loss spectrometer designed for studies of electronic energy losses and spin waves in the large momentum regime

    SciTech Connect

    Ibach, H.; Rajeswari, J.; Schneider, C. M.

    2011-12-15

    Based on 143 deg. electrostatic deflectors we have realized a new spectrometer for electron energy loss spectroscopy which is particularly suitable for studies on surface spin waves and other low energy electronic energy losses. Contrary to previous designs high resolution is maintained even for diffuse inelastic scattering due to a specific management of the angular aberrations in combination with an angle aperture. The performance of the instrument is demonstrated with high resolution energy loss spectra of surface spin waves on a cobalt film deposited on the Cu(100) surface.

  7. An electron energy loss spectrometer designed for studies of electronic energy losses and spin waves in the large momentum regime.

    PubMed

    Ibach, H; Rajeswari, J; Schneider, C M

    2011-12-01

    Based on 143° electrostatic deflectors we have realized a new spectrometer for electron energy loss spectroscopy which is particularly suitable for studies on surface spin waves and other low energy electronic energy losses. Contrary to previous designs high resolution is maintained even for diffuse inelastic scattering due to a specific management of the angular aberrations in combination with an angle aperture. The performance of the instrument is demonstrated with high resolution energy loss spectra of surface spin waves on a cobalt film deposited on the Cu(100) surface. PMID:22225228

  8. Electron beam driven lower hybrid waves in a dusty plasma

    SciTech Connect

    Prakash, Ved; Vijayshri; Sharma, Suresh C.; Gupta, Ruby

    2013-05-15

    An electron beam propagating through a magnetized dusty plasma drives electrostatic lower hybrid waves to instability via Cerenkov interaction. A dispersion relation and the growth rate of the instability for this process have been derived taking into account the dust charge fluctuations. The frequency and the growth rate of the unstable wave increase with the relative density of negatively charged dust grains. Moreover, the growth rate of the instability increases with beam density and scales as the one-third power of the beam density. In addition, the dependence of the growth rate on the beam velocity is also discussed.

  9. Acceleration of electrons by a tightly focused intense laser beam.

    PubMed

    Li, Jian-Xing; Zang, Wei-Ping; Li, Ya-Dong; Tian, Jian-Guo

    2009-07-01

    The recent proposal to use Weinger transformation field (WTF) [Opt. Express 17, 4959-4969 (2009)] for describing tightly focused laser beams is investigated here in detail. In order to validate the accuracy of WTF, we derive the numerical field (NF) from the plane wave spectrum method. WTF is compared with NF and Lax series field (LSF). Results show that LSF is accurate close to the beam axis and divergent far from the beam axis, and WTF is always accurate. Moreover, electron dynamics in a tightly focused intense laser beam are simulated by LSF, WTF and NF, respectively. The results obtained by WTF are shown to be accurate.

  10. Acceleration of electrons by a tightly focused intense laser beam.

    PubMed

    Li, Jian-Xing; Zang, Wei-Ping; Li, Ya-Dong; Tian, Jian-Guo

    2009-07-01

    The recent proposal to use Weinger transformation field (WTF) [Opt. Express 17, 4959-4969 (2009)] for describing tightly focused laser beams is investigated here in detail. In order to validate the accuracy of WTF, we derive the numerical field (NF) from the plane wave spectrum method. WTF is compared with NF and Lax series field (LSF). Results show that LSF is accurate close to the beam axis and divergent far from the beam axis, and WTF is always accurate. Moreover, electron dynamics in a tightly focused intense laser beam are simulated by LSF, WTF and NF, respectively. The results obtained by WTF are shown to be accurate. PMID:19582099

  11. Accurate characterization of Monte Carlo calculated electron beams for radiotherapy.

    PubMed

    Ma, C M; Faddegon, B A; Rogers, D W; Mackie, T R

    1997-03-01

    Monte Carlo studies of dose distributions in patients treated with radiotherapy electron beams would benefit from generalized models of clinical beams if such models introduce little error into the dose calculations. Methodology is presented for the design of beam models, including their evaluation in terms of how well they preserve the character of the clinical beam, and the effect of the beam models on the accuracy of dose distributions calculated with Monte Carlo. This methodology has been used to design beam models for electron beams from two linear accelerators, with either a scanned beam or a scattered beam. Monte Carlo simulations of the accelerator heads are done in which a record is kept of the particle phase-space, including the charge, energy, direction, and position of every particle that emerges from the treatment head, along with a tag regarding the details of the particle history. The character of the simulated beams are studied in detail and used to design various beam models from a simple point source to a sophisticated multiple-source model which treats particles from different parts of a linear accelerator as from different sub-sources. Dose distributions calculated using both the phase-space data and the multiple-source model agree within 2%, demonstrating that the model is adequate for the purpose of Monte Carlo treatment planning for the beams studied. Benefits of the beam models over phase-space data for dose calculation are shown to include shorter computation time in the treatment head simulation and a smaller disk space requirement, both of which impact on the clinical utility of Monte Carlo treatment planning.

  12. Note: Characteristic beam parameter for the line electron gun.

    PubMed

    Iqbal, M; Islam, G U; Zhou, Z; Chi, Y

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm(2) at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm(2)), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful. PMID:24289448

  13. Neoclassical electron transport in tokamaks with neutral-beam injection

    SciTech Connect

    Helander, P.; Akers, R.J.

    2005-04-15

    The collisional interaction between neutral-beam ions and bulk plasma electrons leads to convective transport of particles and energy similar to the well-known Ware pinch. These transport fluxes are calculated, and it is found that the particle flux is outward when the neutral beams are in the same direction as the plasma current and inward otherwise, while the opposite holds for the electron heat transport. This effectively shifts the neutral-beam fueling profile approximately one fast-ion banana width outward during coinjection and inward during counterinjection, and could help to explain why very different plasma behavior is sometimes observed when the direction of the plasma current is reversed.

  14. Note: Characteristic beam parameter for the line electron gun

    SciTech Connect

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-15

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm{sup 2} at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm{sup 2}), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  15. Note: Characteristic beam parameter for the line electron gun.

    PubMed

    Iqbal, M; Islam, G U; Zhou, Z; Chi, Y

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm(2) at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm(2)), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  16. Note: Characteristic beam parameter for the line electron gun

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm2 at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm2), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  17. Angular-momentum-dominated electron beams and flat-beam generation

    SciTech Connect

    Sun, Yin-e

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  18. High speed focused ion and electron beam nanofabrication

    NASA Astrophysics Data System (ADS)

    Melngailis, John

    2009-03-01

    Both focused ion beams and electron beams can be used for direct, maskless, resistless nanofabrication as well as for lithography. So far the direct fabrication has been limited to applications such as photomask repair, circuit restructuring, failure analysis, and the creation of various highly specialized structures. Recent developments in maskless fabrication, so far aimed mainly at to resist exposure, suggest that this picture might change. For example, IMS in Vienna, Austria is developing an instrument that can be characterized as an ion beam or electron beam dot matrix printer. The total current on the sample available from this kind of instrument is at least three orders of magnitude larger than from a single beam instrument. This may lead to new applications of charged particle beam fabrication, as well as enable applications considered in the past but rejected because of very low throughput. An example of one such application is the direct writing of the identity in RFID tags using ion beam implantation. Recently we have also shown that electron beams can be used to deposit relatively pure platinum from an inorganic precursor gas, Pt(PF3)4. Such metal deposits can be used as contacts to carbon nanotubes, semiconductor nano wires, organic fibers, or other structures where conventional lithography is impractical.

  19. Whistler-mode radiation from the Spacelab 2 electron beam

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Steinberg, J. T.; Banks, P. M.; Bush, R. I.

    1986-01-01

    During the Spacelab 2 mission the Plasma Diagnostics Package (PDP) performed a fly-around of the Shuttle at distances of up to 300 meters while an electron beam was being ejected from the Shuttle. A magnetic conjunction of the Shuttle and the PDP while the electron gun was operating in a steady (DC) mode is discussed. During this conjunction, the PDP detected a clear funnel-shaped emission that is believed to be caused by whistler-mode emission from the beam. Ray-path calculations show that the shape of the funnel can be accounted for by whistler-mode waves propagating near the resonance cone. Because the beam and waves are propagating in the same direction, the radiation must be produced by a Landau interaction with the beam. Other types of waves generated by the beam are also described.

  20. Superconducting nanowires by electron-beam-induced deposition

    SciTech Connect

    Sengupta, Shamashis; Li, Chuan; Guéron, S.; Bouchiat, H.; Baumier, Cedric; Fortuna, F.; Kasumov, Alik

    2015-01-26

    Superconducting nanowires can be fabricated by decomposition of an organometallic gas using a focused beam of Ga ions. However, physical damage and unintentional doping often result from the exposure to the ion beam, motivating the search for a means to achieve similar structures with a beam of electrons instead of ions. This has so far remained an experimental challenge. We report the fabrication of superconducting tungsten nanowires by electron-beam-induced-deposition, with critical temperature of 2.0 K and critical magnetic field of 3.7 T, and compare them with superconducting wires made with ions. This work is an important development for the template-free realization of nanoscale superconducting devices, without the requirement of an ion beam column.