Science.gov

Sample records for electron beam methods

  1. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  2. Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.

  3. A method of forming a high-quality electron beam for free electron masers

    SciTech Connect

    Samsonov, S.V.; Bratman, V.L.; Manuilov, V.N.

    1995-12-31

    A large number of electron microwave devices require initially rectilinear high-quality electron beams for effective operation. In FEMS such beams are pumped up to sufficiently high operating-oscillation velocity and small initial particle oscillations (cyclotron oscillations if the beam is focused by an axial magnetic field) can lead to a rather large transverse velocity spread and, correspondingly, axial velocity spread. Thus, an acute problem for these devices (essentially more important than for Cherenkov-type devices) is the formation of a beam in which electrons initially move along the axis with minimum oscillations. A new method to form such a beam by a two-electrode axially-symmetrical gun of simple configuration immersed in a uniform axial magnetic field is discussed in this paper. This method allows to improve the quality of an electron beam passing through a narrow anode outlet. It is well-known that the anode aperture acts as an electrostatic lens and disperses the electron beam. In the presence of an axial magnetic field this unwanted dispersing action can be compensated simultaneously for all electrons of the paraxial electron beam by means of a magnetic field generated by a small additional coil placed down-stream from the anode aperture. If the coil length is equal to half the electron Larmor step, then the action of the border cod fields comes to two kicks which, being correctly phased, compensate the spurious rotary electron velocities. Computer simulations using the EPOSR-code intended for the calculation of electron guns both for the temperature- and space-charge-limited regimes prove the effectiveness of this method. In particular, for a version of field-emission gun the correcting coil reduces about five times the maximum transverse velocity in the beam. Positive effect from applying this method was proved at a realization of a high-efficiency CARM-oscillator.

  4. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, L.E.

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.

  5. Beam Conditioning for Free Electron Lasers:Consequences and Methods

    SciTech Connect

    Wolski, A.; Penn, G.; Sessler, A.; Wurtele, J.; /LBL, Berkeley /UC, Berkeley, Astron. Dept.

    2010-12-14

    The consequences of beam conditioning in four example cases [VISA, a soft x-ray free-electron laser (FEL), LCLS, and a 'Greenfield' FEL] are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of 2 or more. The beam dynamics in a general conditioning system are studied, with 'matching conditions' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.

  6. Simultaneous determination of electron beam profile and material response using self-consistent iterative method

    NASA Astrophysics Data System (ADS)

    Kandel, Yudhishthir; Denbeaux, Gregory

    2016-08-01

    We develop a novel iterative method to accurately measure electron beam shape (current density distribution) and monotonic material response as a function of position. A common method is to scan an electron beam across a knife edge along many angles to give an approximate measure of the beam profile, however such scans are not easy to obtain in all systems. The present work uses only an electron beam and multiple exposed regions of a thin film of photoresist to measure the complete beam profile for any beam shape, where the material response is characterized externally. This simplifies the setup of new experimental tools. We solve for self-consistent photoresist thickness loss response to dose and the electron beam profile simultaneously by optimizing a novel functional iteratively. We also show the successful implementation of the method in a real world data set corrupted by noise and other experimental variabilities.

  7. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  8. Electron beam inspection methods for imprint lithography at 32 nm

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Sreenivasan, S. V.; Resnick, Douglas J.

    2009-01-01

    Step and Flash Imprint Lithography redefines nanoimprinting. This novel technique involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned solid on the substrate. Compatibility with existing CMOS processes requires a mask infrastructure in which resolution, inspection and repair are all addressed. The purpose of this paper is to understand the limitations of inspection at half pitches of 32 nm and below. A 32 nm programmed defect mask was fabricated. Patterns included in the mask consisted of an SRAM Metal 1 cell, dense lines, and dense arrays of pillars. Programmed defect sizes started at 4 nm and increased to 48 nm in increments of 4 nm. Defects in both the mask and imprinted wafers were characterized scanning electron microscopy and the measured defect areas were calculated. These defects were then inspected using a KLA-T eS35 electron beam wafer inspection system. Defect sizes as small as 12 nm were detected, and detection limits were found to be a function of defect type.

  9. Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Harriott, Lloyd R.

    1997-04-01

    Electron beams have played a significant role in semiconductor technology for more than twenty years. Early electron beam machines used a raster scanned beam spot to write patterns in electron-sensitive polymer resist materials. The main application of electron beam lithography has been in mask making. Despite the inherently high spatial resolution and wide process margins of electron beam lithography, the writing rate for semiconductor wafers has been too slow to be economically viable on a large scale. In the late 1970's, variable shape electron beam writing was developed, projecting a rectangular beam whose size can be varied for each "shot" exposure of a particular pattern, allowing some integrated circuits to be made economically where a variety of "customized" patterns are desired. In the cell or block projection electron beam exposure technique, a unit cell of a repetitive pattern is projected repeatedly to increase the level of parallelism. This can work well for highly repetitive patterns such as memory chips but is not well suited to complex varying patterns such as microprocessors. The rapid progress in the performance of integrated circuits has been largely driven by progress in optical lithography, through improvements in lens design and fabrication as well as the use of shorter wavelengths for the exposure radiation. Due to limitations from the opacity of lens and mask materials, it is unlikely that conventional optical printing methods can be used at wavelengths below 193 nm or feature sizes much below 180 nm. One candidate technology for a post-optical era is the Scattering with Angular Limitation Projection Electron-beam Lithography (SCALPEL) approach, which combines the high resolution and wide process latitude inherent in electron beam lithography with the throughput of a parallel projection system. A mask consisting of a low atomic number membrane and a high atomic number pattern layer is uniformly illuminated with high energy (100 ke

  10. Electron cooling of electron beams

    SciTech Connect

    Larson, D.J.

    1993-09-01

    Electron cooling of electron (and positron) sources may be important for future linear collider applications. In order to cool electrons with electrons, an intermediary positron beam must be employed, since it is impossible to merge two beams of identical particles into the cooling straight. By adjusting the beta functions of the electron and positron lattices appropriately, the final emittance of the stored electron beam can be made less than the emittance of the cooling electron beam. This paper will discuss accelerator physics issues relating to an electron-cooled electron beam source.

  11. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  12. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  13. Rapid Annealing of Cu-In-Ga-Se Precursors by Electron Beam Irradiation Method.

    PubMed

    Lim, Seonkyoung; Kim, Young-Man; Jeong, Chaehwan

    2016-05-01

    Cu-In-Ga-Se precursors were prepared by RF- and DC-sputtering methods and then irradiated with an in-situ electron beam irradiation unit. Ternary (In,Ga)Se2 and binary CuSe targets were simultaneously used for preparation of precursors. The electron dose and irradiation time were kept constant at 300 seconds and 200 W of RF power, respectively, while intensities of accelerated electrons were varied from 2.5 to 4.5 keV. The thickness of all e-beam irradiated CuInGaSe2 (CIGS) films decreased from 1,250 nm to 470 nm. The crystalline properties of e-beam irradiated CIGS films were clearly shown on all samples and the highest intensity of (112) peak at 3.5 keV. The compositional ratio of Cu/(In + Ga) in the e-beam sample irradiated at 3.5 keV was coincident with that of the precursors. The degree of Ga content on the depth of the e-beam sample irradiated at 3.5 keV was uniformly distributed between the TCO/CdS layer and Mo back contact. Electron beam irradiation onto Cu-In-Ga-Se precursors as a rapid annealing method could be an excellent candidate for crystallization to the Cu(In,Ga)Se2 films.

  14. Rapid Annealing of Cu-In-Ga-Se Precursors by Electron Beam Irradiation Method.

    PubMed

    Lim, Seonkyoung; Kim, Young-Man; Jeong, Chaehwan

    2016-05-01

    Cu-In-Ga-Se precursors were prepared by RF- and DC-sputtering methods and then irradiated with an in-situ electron beam irradiation unit. Ternary (In,Ga)Se2 and binary CuSe targets were simultaneously used for preparation of precursors. The electron dose and irradiation time were kept constant at 300 seconds and 200 W of RF power, respectively, while intensities of accelerated electrons were varied from 2.5 to 4.5 keV. The thickness of all e-beam irradiated CuInGaSe2 (CIGS) films decreased from 1,250 nm to 470 nm. The crystalline properties of e-beam irradiated CIGS films were clearly shown on all samples and the highest intensity of (112) peak at 3.5 keV. The compositional ratio of Cu/(In + Ga) in the e-beam sample irradiated at 3.5 keV was coincident with that of the precursors. The degree of Ga content on the depth of the e-beam sample irradiated at 3.5 keV was uniformly distributed between the TCO/CdS layer and Mo back contact. Electron beam irradiation onto Cu-In-Ga-Se precursors as a rapid annealing method could be an excellent candidate for crystallization to the Cu(In,Ga)Se2 films. PMID:27483884

  15. Method to eliminate the impact of magnetic fields on the position of the electron beam during EBW

    NASA Astrophysics Data System (ADS)

    Laptenok, V. D.; Druzhinina, A. A.; Murygin, A. V.; Seregin, Yu N.

    2016-04-01

    The paper presents the approximate formulas for calculating the deflection angle and the misalignment of the electron beam from the optical axis of the electron gun caused by the action of magnetic fields during the electron beam welding. Mathematical model of the effect of magnetic field induced by thermoelectric currents on the electron beam position in the process of electron beam welding of dissimilar materials is presented. The method of monitoring of the misalignment of the scanning electron beam and its mathematical model are proposed. Monitoring of the misalignment of the scanning electron beam is based on the processing of the signal of the collimated X-ray sensor directed to the optical axis of the electron gun by synchronous detection method. The method of compensation of the effect of magnetic fields by passing through the welded seam the currents which compensate thermoelectric currents is considered.

  16. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    SciTech Connect

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F.; Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T.; Ban, G.; Celona, L.; Lunney, D.; Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O.; Kalvas, T.; and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  17. Directional growth of single crystal Terfenol-D by the electron beam zoning method

    NASA Astrophysics Data System (ADS)

    Wu, Lei; Zhan, Wenshan; Chen, Xichen

    1996-12-01

    Rods of a highly magnetostrictive material, a Tb 0.27Dy 0.73Fe 2- x twin single crystal, were obtained by the electron beam float zone technique. This new electron beam zoning method has the advantages of small melting zone, low power consumption and high temperature gradient. Good <112> preferred orientation growth was confirmed by X-ray diffraction. The samples consist of parallel sheets divided by a small surplus rare-earth-rich phase. The presence of ductile rare-earth sheets would be expected to enhance the strength by retarding crack propagation throughout the brittle matrix. The saturated magnetostriction of the sample grown by electron beam zone-melting reached 1276 × 10 -6, and increased to 1840 × 10 -6 with an applied stress of 15 MPa.

  18. Method of automatic measurement and focus of an electron beam and apparatus therefor

    DOEpatents

    Giedt, Warren H.; Campiotti, Richard

    1996-01-01

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined.

  19. Method of automatic measurement and focus of an electron beam and apparatus therefore

    DOEpatents

    Giedt, W.H.; Campiotti, R.

    1996-01-09

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding is disclosed. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined. 12 figs.

  20. Electron Beam Freeform Fabrication

    NASA Video Gallery

    Electron Beam Freeform Fabrication (EBF3) is a process by which NASA hopes to build metal parts in zero gravity environments. It's a layer-additive process that uses an electron beam and a solid wi...

  1. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  2. Electron beam method and apparatus for obtaining uniform discharges in electrically pumped gas lasers

    DOEpatents

    Fenstermacher, Charles A.; Boyer, Keith

    1986-01-01

    A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.

  3. Comparison of methods to determine electron pencil beam spread in tissue-equivalent media

    SciTech Connect

    Sandison, G.A.; Huda, W.; Savoie, D. ); Battista, J.J. )

    1989-11-01

    This study has intercompared the predictions of Fermi--Eyges theory for the rms spatial spread ({sigma}) of an electron pencil beam scattering in muscle-, lung- and bone-equivalent media with those of; two range straggling modifications to the theory, Monte Carlo simulations, and an empirical method based on broad beam penumbra. Systematic differences among the results obtained by these methods for the values of {sigma} have been identified. Monte Carlo simulations are lower than the predictions of Fermi-Eyges theory for {sigma} at all depths whereas the broad beam penumbra method results are in reasonable agreement with Fermi--Eyges theory at depths less than {similar to}0.7 times the range of the incident electrons. All of the methods investigated have an increasing discrepancy from the predictions of Fermi--Eyges theory with depth, especially close to the end of the electron range. The two range-straggling modifications to Fermi--Eyges theory developed for soft tissue do not agree with either measured or Monte Carlo results for {sigma} in homogeneous scattering media of lung and bone.

  4. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  5. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, George R.

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  6. (Pulsed electron beam precharger)

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    This report discusses the following topics on electron beam guns: Precharger Modification; Installation of Charge vs. Radius Apparatus; High Concentration Aerosol Generation; and Data Acquisition and Analysis System.

  7. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  8. Device and method for creating Gaussian aberration-corrected electron beams

    DOEpatents

    McMorran, Benjamin; Linck, Martin

    2016-01-19

    Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.

  9. A fast high-order method to calculate wakefield forces in an electron beam

    SciTech Connect

    Qiang, Ji; Mitchell, Chad; Ryne, Robert D.

    2012-03-22

    In this paper we report on a high-order fast method to numerically calculate wakefield forces in an electron beam given a wake function model. This method is based on a Newton-Cotes quadrature rule for integral approximation and an FFT method for discrete summation that results in an O(Nlog(N)) computational cost, where N is the number of grid points. Using the Simpson quadrature rule with an accuracy of O(h4), where h is the grid size, we present numerical calculation of the wakefields from a resonator wake function model and from a one-dimensional coherent synchrotron radiation (CSR) wake model. Besides the fast speed and high numerical accuracy, the calculation using the direct line density instead of the first derivative of the line density avoids numerical filtering of the electron density function for computing the CSR wakefield force. I. INTRODUCTION

  10. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully performed under a range of experimental conditions during Quarter Six of the contract. The initial E-beam particle precharging experiments completed this term were designed to extend the efficiency of particle charging and collection using a fine, monodisperse aerosol at relatively large loadings in the FSU Electron Beam Precipitator wind tunnel. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high dust concentration. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will normally be held constant while the precharging parameters are varied to produce an optimum particle charge. The electron beam precharging investigation performed during the period covered by Quarter Six used virtually the same experimental apparatus and procedures as in previous contract work, and these are described for review in this report. This investigation was part of an experimental effort which ran nearly continuously for nine months, encompassing work on the electrostatic collecting section, electron beam precharger, and particle charge-to-radius measuring apparatus. A summary of the work on dc electron beam precipitation is presented here.

  11. Novel method for characterizing relativistic electron beams in a harsh laser-plasma environment

    SciTech Connect

    Hidding, B.; Pretzler, G.; Clever, M.; Brandl, F.; Zamponi, F.; Luebcke, A.; Kaempfer, T.; Uschmann, I.; Foerster, E.; Schramm, U.; Sauerbrey, R.; Kroupp, E.; Veisz, L.; Schmid, K.; Benavides, S.; Karsch, S.

    2007-08-15

    Particle pulses generated by laser-plasma interaction are characterized by ultrashort duration, high particle density, and sometimes a very strong accompanying electromagnetic pulse (EMP). Therefore, beam diagnostics different from those known from classical particle accelerators such as synchrotrons or linacs are required. Easy to use single-shot techniques are favored, which must be insensitive towards the EMP and associated stray light of all frequencies, taking into account the comparably low repetition rates and which, at the same time, allow for usage in very space-limited environments. Various measurement techniques are discussed here, and a space-saving method to determine several important properties of laser-generated electron bunches simultaneously is presented. The method is based on experimental results of electron-sensitive imaging plate stacks and combines these with Monte Carlo-type ray-tracing calculations, yielding a comprehensive picture of the properties of particle beams. The total charge, the energy spectrum, and the divergence can be derived simultaneously for a single bunch.

  12. Electron beam polarimetry

    NASA Astrophysics Data System (ADS)

    Sinclair, Charles K.

    1998-12-01

    Along with its well known charge and mass, the electron also carries an intrinsic angular momentum, or spin. The rules of quantum mechanics allow us to measure only the probability that the electron spin is in one of two allowed spin states. When a beam carries a net excess of electrons in one of these two allowed spin states, the beam is said to be polarized. The beam polarization may be measured by observing a sufficient number of electrons scattered by a spin-dependent interaction. For electrons, the useful scattering processes involve Coulomb scattering by heavy nuclei, or scattering from either polarized photons or other polarized electrons (known as Mott, Compton, and Mo/ller scattering, respectively). In this tutorial, we will briefly review how beam polarization is measured through a general scattering process, followed by a discussion of how the three scattering processes above are used to measure electron beam polarization. Descriptions of electron polarimeters based on the three scattering processes will be given.

  13. Novel in situ method for locating virtual source in high-rate electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Bhatia, M. S.

    1994-07-01

    The concept of virtual source simplifies calculation of thickness distribution on extended substrates in high rate vacuum coating employing electron-beam heating. The height of the point (virtual source), from which vapor can be assumed to emanate in accordance with Knudsen's cosine law, to yield the experimentally obtained thickness distribution, is calculated and this establishes the position of virtual source. Such as post facto determination is cumbersome as it is valid for the prescribed material evaporating at a certain rate in a specified geometry. A change in any of these entails a fresh measurement. Experimenters who use a large number of materials and deposit at different rates therefore have to carry out a number of trials before they can locate the virtual source at the desired deposition parameters. An in situ method for obtaining virtual source position can go a long way in reducing the labor of these experiments. A novel in situ method is described to locate the virtual source.

  14. A method of determining narrow energy spread electron beams from a laser plasma wakefield accelerator using undulator radiation

    SciTech Connect

    Gallacher, J. G.; Anania, M. P.; Brunetti, E.; Ersfeld, B.; Islam, M. R.; Reitsma, A. J. W.; Shanks, R. P.; Wiggins, S. M.; Jaroszynski, D. A.; Budde, F.; Debus, A.; Haupt, K.; Schwoerer, H.; Jaeckel, O.; Pfotenhauer, S.; Rohwer, E.; Schlenvoigt, H.-P.

    2009-09-15

    In this paper a new method of determining the energy spread of a relativistic electron beam from a laser-driven plasma wakefield accelerator by measuring radiation from an undulator is presented. This could be used to determine the beam characteristics of multi-GeV accelerators where conventional spectrometers are very large and cumbersome. Simultaneous measurement of the energy spectra of electrons from the wakefield accelerator in the 55-70 MeV range and the radiation spectra in the wavelength range of 700-900 nm of synchrotron radiation emitted from a 50 period undulator confirm a narrow energy spread for electrons accelerated over the dephasing distance where beam loading leads to energy compression. Measured energy spreads of less than 1% indicates the potential of using a wakefield accelerator as a driver of future compact and brilliant ultrashort pulse synchrotron sources and free-electron lasers that require high peak brightness beams.

  15. Two-Screen Method for Determining Electron Beam Energy and Deflection from Laser Wakefield Acceleration

    SciTech Connect

    Pollock, B B; Ross, J S; Tynan, G R; Divol, L; Glenzer, S H; Leurent, V; Palastro, J P; Ralph, J E; Froula, D H; Clayton, C E; Marsh, K A; Pak, A E; Wang, T L; Joshi, C

    2009-04-24

    Laser Wakefield Acceleration (LWFA) experiments have been performed at the Jupiter Laser Facility, Lawrence Livermore National Laboratory. In order to unambiguously determine the output electron beam energy and deflection angle at the plasma exit, we have implemented a two-screen electron spectrometer. This system is comprised of a dipole magnet followed by two image plates. By measuring the electron beam deviation from the laser axis on each plate, both the energy and deflection angle at the plasma exit are determined through the relativistic equation of motion.

  16. The effect of electron range on electron beam induced current collection and a simple method to extract an electron range for any generation function.

    PubMed

    Lahreche, A; Beggah, Y; Corkish, R

    2011-07-01

    The effect of electron range on electron beam induced current (EBIC) is demonstrated and the problem of the choice of the optimal electron ranges to use with simple uniform and point generation function models is resolved by proposing a method to extract an electron range-energy relationship (ERER). The results show that the use of these extracted electron ranges remove the previous disagreement between the EBIC curves computed with simple forms of generation model and those based on a more realistic generation model. The impact of these extracted electron ranges on the extraction of diffusion length, surface recombination velocity and EBIC contrast of defects is discussed. It is also demonstrated that, for the case of uniform generation, the computed EBIC current is independent of the assumed shape of the generation volume.

  17. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    Electrostatic collection of a high resistivity aerosol using the Electron Beam Precipitator (EBP) collecting section was demonstrated during this reporting period (Quarter Five). Collection efficiency experiments were designed to confirm and extend some of the work performed under the previous contract. The reason for doing this was to attempt to improve upon the collection efficiency of the precipitator alone when testing with a very high resistivity, moderate-to-high concentration dust load. From the collector shakedown runs, a set of suitable operational parameters were determined for the downstream electrostatic collecting sections of the Electron Beam Precipitator wind tunnel. These parameters, along with those for the MINACC electron beam, will generally be held constant while the numerous precharging parameters are varied to produce an optimum particle charge. The electrostatic collector experiments were part of a larger, comprehensive investigation on electron beam precharging of high resistivity aerosol particles performed during the period covered by Quarters Five, Six, and Seven. This body of work used the same experimental apparatus and procedures and the experimental run period lasted nearly continuously for six months. A summary of the Quarter Five work is presented in the following paragraphs. Section II-A of TPR 5 contains a report on the continuing effort which was expended on the modification and upgrade of the pulsed power supply and the monitoring systems prior to the initiation of the electron beam precharging experimental work.

  18. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully demonstrated during this reporting period (Quarters Five and Six). The initial E-beam particle precharging experiments completed this term were designed to confirm and extend some of the work performed under the previous contract. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high concentration dust load. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will generally be held constant while the precharging parameters are varied to produce an optimum particle charge.

  19. Study And Comparison Of Silver Mirrors Deposited On Different Substrates By Electron-Beam Gun Method

    SciTech Connect

    Asl, Jahanbakhsh Mashaiekhy; Shafieizadeh, Zahra; Sabbaghzadeh, Jamshid; Anaraki, Mahdi

    2010-12-23

    Choosing the right substrate is one of the important factors for improving quality parameters of thin films such as adhesion between layers and substrates. The selected substrate should have proper physical and chemical compatibility with deposited thin film. In this paper, we have been investigated four different types of high reflective laser mirrors that were produced in similar conditions on four different kinds of substrates including copper, stainless steel, brass, and nickel. We used electron-beam gun method for deposition of silver layers. At the end we compared theoretical results with practical results that were yielded by laser damage threshold test. It was shown that brass is the best choice for silver metal mirrors as a substrate.

  20. A dose optimization method for electron radiotherapy using randomized aperture beams.

    PubMed

    Engel, Konrad; Gauer, Tobias

    2009-09-01

    The present paper describes the entire optimization process of creating a radiotherapy treatment plan for advanced electron irradiation. Special emphasis is devoted to the selection of beam incidence angles and beam energies as well as to the choice of appropriate subfields generated by a refined version of intensity segmentation and a novel random aperture approach. The algorithms have been implemented in a stand-alone programme using dose calculations from a commercial treatment planning system. For this study, the treatment planning system Pinnacle from Philips has been used and connected to the optimization programme using an ASCII interface. Dose calculations in Pinnacle were performed by Monte Carlo simulations for a remote-controlled electron multileaf collimator (MLC) from Euromechanics. As a result, treatment plans for breast cancer patients could be significantly improved when using randomly generated aperture beams. The combination of beams generated through segmentation and randomization achieved the best results in terms of target coverage and sparing of critical organs. The treatment plans could be further improved by use of a field reduction treatment plans could be further improved by use of a field reduction algorithm. Without a relevant loss in dose distribution, the total number of MLC fields and monitor units could be reduced by up to 20%. In conclusion, using randomized aperture beams is a promising new approach in radiotherapy and exhibits potential for further improvements in dose optimization through a combination of randomized electron and photon aperture beams.

  1. A new method for designing dual foil electron beam forming systems. II. Feasibility of practical implementation of the method

    NASA Astrophysics Data System (ADS)

    Adrich, Przemysław

    2016-05-01

    In Part I of this work a new method for designing dual foil electron beam forming systems was introduced. In this method, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of system performance in function of its parameters. At each point of the scan, Monte Carlo method is used to calculate the off-axis dose profile in water taking into account detailed and complete geometry of the system. The new method, while being computationally intensive, minimizes the involvement of the designer. In this Part II paper, feasibility of practical implementation of the new method is demonstrated. For this, a prototype software tools were developed and applied to solve a real life design problem. It is demonstrated that system optimization can be completed within few hours time using rather moderate computing resources. It is also demonstrated that, perhaps for the first time, the designer can gain deep insight into system behavior, such that the construction can be simultaneously optimized in respect to a number of functional characteristics besides the flatness of the off-axis dose profile. In the presented example, the system is optimized in respect to both, flatness of the off-axis dose profile and the beam transmission. A number of practical issues related to application of the new method as well as its possible extensions are discussed.

  2. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    During the previous reporting period (Quarter Six), the charging and removal of a fine, high resistivity aerosol using the advanced technology of electron beam precipitation was successfully accomplished. Precharging a dust stream circulating through the EBP wind tunnel produced collection efficiency figures of up to 40 times greater than with corona charging and collection alone (Table 1). The increased system collection efficiency attributed to electron beam precharging was determined to be the result of increased particle charge. It was found that as precharger electric field was raised, collection efficiency became greater. In sequence, saturation particle charge varies with the precharger electric field strength, particle migration velocity varies with the precharger and collector electric field, and collection efficiency varies with the migration velocity. Maximizing the system collection efficiency requires both a high charging electric field (provided by the E-beam precharger), and a high collecting electric field (provided by the collector wires and plates). Because increased particle collection efficiency is directly attributable to higher particle charge, the focus of research during Quarter Seven was shifted to learning more about the actual charge magnitude on the aerosol particles. Charge determinations in precipitators have traditionally been made on bulk dust samples collected from the flue gas stream, which gives an overall charge vs. mass (Q/M) ratio measurement. More recently, techniques have been developed which allow the measurement of the charge on individual particles in a rapid and repeatable fashion. One such advanced technique has been developed at FSU for use in characterizing the electron beam precharger.

  3. Electron beam generation in Tevatron electron lenses

    SciTech Connect

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  4. Electron beam modeling on LTX

    NASA Astrophysics Data System (ADS)

    Szalkowski, Gregory; Majeski, Richard; Schmitt, John

    2014-10-01

    The lithium tokamak experiment (LTX) is a low aspect ratio tokamak with a steel clad copper shell that can be heated to 300-400 °C and coated with lithium. The lithium coating has been shown to decrease impurities in the plasma and decrease the recycling coefficient, improving plasma performance. The coating is applied to the walls by heating the shells, then using an electron beam to evaporate a pool of lithium located at the bottom of the shell. The beam is steered using the magnetic field generated by the field coils. This method allows for rapid evaporation of the lithium, producing a 50-100 nm coating in approximately 5 minutes. The current electron beam system can only coat half of the shell surface. A new electron beam system has been installed on LTX to coat the remaining shell surface. A model of this electron gun has been created using the AMaze program series (Field Precision LCC). The model will be used to find the magnetic fields needed to steer the electron beam produced by the gun to the lithium pool. The model will also show the electropotential produced both at the electron gun head and in the vessel. The model may also be used to find the dispersion of the beam and therefore the effective power density of the beam as it impacts the lithium pool. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344 and in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship.

  5. Landsat electron beam recorder

    NASA Astrophysics Data System (ADS)

    Grosso, P. F.; Whitley, J. P.

    A minicomputer-controlled electron beam recorder (EBR) presently in use at the Brazilian Government's Institute De Pesquisas Espaclais (INPE) satellite ground station is described. This 5-in.-film-size EBR is used to record both Landsat and SPOT satellite imagery in South America. A brief electron beam recorder technology review is presented. The EBR is capable of recording both vector and text data from computer-aided design, publishing, and line art systems and raster data from image scanners, raster image processors (RIPS), halftone/screen generators, and remote image sensors. A variety of image formats may be recorded on numerous film sizes (16 mm, 35 mm, 70 mm, 105 mm, 5-in, 5.5-in., and 9.5-in.). These recordings are used directly or optically enlarged depending on the final product.

  6. A new method for designing dual foil electron beam forming systems. I. Introduction, concept of the method

    NASA Astrophysics Data System (ADS)

    Adrich, Przemysław

    2016-05-01

    In Part I of this work existing methods and problems in dual foil electron beam forming system design are presented. On this basis, a new method of designing these systems is introduced. The motivation behind this work is to eliminate the shortcomings of the existing design methods and improve overall efficiency of the dual foil design process. The existing methods are based on approximate analytical models applied in an unrealistically simplified geometry. Designing a dual foil system with these methods is a rather labor intensive task as corrections to account for the effects not included in the analytical models have to be calculated separately and accounted for in an iterative procedure. To eliminate these drawbacks, the new design method is based entirely on Monte Carlo modeling in a realistic geometry and using physics models that include all relevant processes. In our approach, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of the system performance in function of parameters of the foils. The new method, while being computationally intensive, minimizes the involvement of the designer and considerably shortens the overall design time. The results are of high quality as all the relevant physics and geometry details are naturally accounted for. To demonstrate the feasibility of practical implementation of the new method, specialized software tools were developed and applied to solve a real life design problem, as described in Part II of this work.

  7. Measuring electron beam polarization

    NASA Astrophysics Data System (ADS)

    Napolitano, J.

    1992-12-01

    A two-hour discussion session was held on electron beam polarimetry including representatives from Halls A, B, and C. Presentations included a description of an existing Mo/ller polarimeter at the MIT-Bates laboratory, plans for Mo/ller polarimeters in Halls A and B, and a Compton (i.e., ``laser backscatter'') polarimeter planned for Hall A. This paper is a summary of those discussions.

  8. Improving the dimensional stability of natural fibers with the fiber polymer penetrant and electron beam method

    NASA Astrophysics Data System (ADS)

    Woods, Sean R.

    Cellulose-based material absorbs or releases moisture in relation to atmospheric conditions. This research looks to minimize dimensional change with the use of low molecular weight (LMW) monomers polymerized by electron beam (EB) ionizing radiation. Sisal, jute, coir, and hemp natural fibers with average natural swelling of 26.55%, 29.46%, 9.06%, and 32.69%, respectively, and glass fiber as control were used for analysis. Three LMW bulk monomers, hydroxyethyl acrylate (HEA), hydroxyethyl methacrylate (HEMA), and polyethylene glycol diacrylate (EGDA), as well as an encapsulating agent, isodecyl acrylate, and cross-linker, ethoxylated trimethylolpropane triacrylate, were evaluated for resin formulation. In total, 1015 specimens were measured for swelling. Moisture uptake characteristics of the specimens were analyzed. A new method of measuring specimen dimensional changes by a light microscope and image analysis software was used. Results indicate dimensional stability improvement of 39.34% - 91.46% for hemp with HEA and cross-linker, and sisal with HEMA and cross-linker respectively.

  9. Method and apparatus for secondary laser pumping by electron beam excitation

    DOEpatents

    George, E. Victor; Krupke, William F.; Murray, John R.; Powell, Howard T.; Swingle, James C.; Turner, Jr., Charles E.; Rhodes, Charles K.

    1978-01-01

    An electron beam of energy typically 100 keV excites a fluorescer gas which emits ultraviolet radiation. This radiation excites and drives an adjacent laser gas by optical pumping or photolytic dissociation to produce high efficiency pulses. The invention described herein was made in the course of, or under, United States Energy Research and Development Administration Contract No. W-7405-Eng-48 with the University of California.

  10. New method of optimizing writing parameters in electron beam lithography systems for throughput improvement considering patterning fidelity constraints

    NASA Astrophysics Data System (ADS)

    Ng, Hoi-Tou; Shen, Yu-Tian; Chen, Sheng-Yung; Liu, Chun-Hung; Ng, Philip C. W.; Tsai, Kuen-Yu

    2012-07-01

    Low-energy electron beam lithography is one of the promising next-generation lithography technology solutions for the 21-nm half-pitch node and beyond because of fewer proximity effects, higher resist sensitivity, and less substrate damage compared with high-energy electron beam lithography. To achieve high-throughput manufacturing, low-energy electron beam lithography systems with writing parameters of larger beam size, larger grid size, and lower dosage are preferred. However, electron shot noise can significantly increase critical dimension deviation and line edge roughness. Its influence on patterning prediction accuracy becomes nonnegligible. To effectively maximize throughput while meeting patterning fidelity requirements according to the International Technology Roadmap for Semiconductors, a new method is proposed in this work that utilizes a new patterning prediction algorithm to rigorously characterize the patterning variability caused by the shot noise and a mathematical optimization algorithm to determine optimal writing parameters. The new patterning prediction algorithm can achieve a proper trade-off between computational effort and patterning prediction accuracy. Effectiveness of the new method is demonstrated on a static random-access memory circuit. The corresponding electrical performance is analyzed by using a gate-slicing technique and publicly available transistor models. Numerical results show that a significant improvement in the static noise margin can be achieved.

  11. Electron and laser beam-induced current measurements of diamond-like carbon films modified by scanning probe method

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigehiro; Han, Younggun; Choi, Woon; Tomokage, Hajime

    2013-03-01

    A nitrogen-doped diamond-like carbon (DLC) film deposited on n-type silicon is modified by applying an electric field in a vacuum between a tungsten tip and the DLC film surface using a scanning probe field emission current method. The resistance decreases and a Schottky barrier is formed between the modified DLC and the silicon surface, while micro-Raman measurements show a slight nano-crystalline graphitization. The electron beam induced current from the modified area is measured without any metal contact deposition. An infrared laser beam with a wavelength of 1400 nm is scanned across the backside of the silicon, and the induced current from the DLC modified area is measured. It is shown that both infrared laser and electron beam induced current measurements were possible for the modified DLC film on silicon structures.

  12. Compact electron beam focusing column

    SciTech Connect

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  13. Focused electron beam in pyroelectric electron probe microanalyzer

    SciTech Connect

    Imashuku, Susumu; Imanishi, Akira; Kawai, Jun

    2013-07-15

    We report a method to focus the electron beam generated using a pyroelectric crystal. An electron beam with a spot size of 100 μm was achieved by applying an electrical field to an electroconductive needle tip set on a pyroelectric crystal. When the focused electron beam bombarded a sample, characteristic X-rays of the sample were only detected due to the production of an electric field between the needle tip and the sample.

  14. Electron Beams for Fast Ignition

    NASA Astrophysics Data System (ADS)

    Fonseca, R. A.; Davies, J. R.; Silva, L. O.

    2004-11-01

    In the fast ignitor scenario an intense relativistic electron beam is used to deposit energy inside the fuel target and trigger the thermonuclear reaction. This electron beam is produced on the outer plasma layer of the target by the interaction of an ultra-intense laser. The energy transfer from the laser to the electron beam, and the stability of the propagation of the electron beam are crucial for a successful fast ignitor scheme. We have used three-dimensional particle-in-cell simulations using the OSIRIS.framework [1] to explore the self-consistent generation of high current electron beams by ultra intense lasers. Novel laser pulse configurations are explored in order to generate electron beams transporting more energy, and capable of avoiding the deleterious effects of collisionless instabilities in the plasma corona. [1] R. A. Fonseca et al., LNCS 2331, 342-351, (Springer, Heidelberg, 2002);

  15. Electron Beam Materials Irradiators

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.

    2012-06-01

    Radiation processing is a well established method for enhancing the properties of materials and commercial products by treating them with ionizing energy in the form of high-energy electrons, X-rays, and gamma rays. Beneficial effects include polymerizing, cross-linking, grafting and degrading plastics, sterilizing single-use medical devices, disinfecting and disinfesting fresh foods, purifying drinking water, treating wastewater and other toxic waste materials that harm the environment, and many other applications that are still being evaluated. Industrial electron accelerators of several types have been developed and are being used for these applications. More than 1800 electron accelerators are presently installed in facilities worldwide for these purposes.

  16. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)

  17. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Quarter Eight of the Pulsed Electron Precharging project was principally devoted to the operation of the E-beam precharger in the pulsed anode mode. We shall first briefly review the motivation for carrying out this project and the experimental approach used. The combustion of low sulfur coal for the purpose of generating electric energy in power plants results in the production of a flue gas containing very high resistivity fly ash. This fly ash is not easily collected by conventional electrostatic precipitators due to the large electric potential difference which develops across the layer of fly ash on the collector plate. If this layer of collected material is allowed to reach a thickness as great as is normally desirable before rapping'' the plates, then the collected fly ash is subject to re-entrainment into the flue gas stream due to back-corona. The back-corona corona problem is described more fully in the next section of this report. This re-entrainment problem can be eliminated through reduction of the voltage applied across the high voltage wires and the grounded plates of the electrostatic precipitator. This is not a good solution to the problem since the charging capability and collection efficiency of the precipitator system are both greatly reduced at the low voltages required to avoid the back-corona problem. Another approach to solving the problems inherent in collecting high resistivity fly ash in an electrostatic precipitator is to decouple the charging and collecting functions. At FSU an electron beam precharger is employed directly before (upstream in the flue gas pathway) the precipitator. This precharger can be optimized for the charging function while the downstream collector can be optimized for collection of the high-resistivity fly ash.

  18. A method to restrain the charging effect on an insulating substrate in high energy electron beam lithography

    NASA Astrophysics Data System (ADS)

    Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen

    2014-12-01

    Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.

  19. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  20. Electron beam cutting

    DOEpatents

    Mochel, M.E.; Humphreys, C.J.

    1985-04-02

    A method for the cutting of holes 20 Angstroms in diameter, or lines 20 Angstroms wide in a material having positive ionic conduction by the use of a focused electron probe is described. The holes and lines are stable under ambient conditions. 2 figs.

  1. Electron beam cutting

    DOEpatents

    Mochel, Margaret E.; Humphreys, Colin J.

    1985-04-02

    A method for the cutting of holes 20 Angstroms in diameter, or lines 20 Angstroms wide in a material having positive ionic conduction by the use of a focused electron probe is described. The holes and lines are stable under ambient conditions.

  2. Focusing Electron Beams at SLAC.

    ERIC Educational Resources Information Center

    Taylor, Richard L.

    1993-01-01

    Describes the development of a set of magnets that focus high-energy electron and positron beams causing them to collide, annihilate each other, and generate new particles. Explains how dipoles bend the beam, how quadrupoles focus the beam, how the focal length is calculated, and the superconducting final focus. (MDH)

  3. Properties of Electron-Beam Irradiated CuInSe2 Layers by Multi-Step Sputtering Method.

    PubMed

    Kim, Chae-Woong; Kim, Jin Hyeok; Jeong, Chaehwan

    2015-10-01

    Typically, CuInSe2 (CIS) based thin films for photovoltaic devices are deposited by co-evaporation or by deposition of the metals, followed by treatment in a selenium environment. This article describes CIS films that are instead deposited by DC and RF magnetron sputtering from binary Cu2Se and In2Se3 targets without the supply of selenium. As a novel method, electron beam annealing was used for crystallization of Cu2Se/In2Se3 stacked precursors. The surface, cross-sectional morphology, and compositional ratio of CIS films were investigated to confirm the possibility in crystallization without any addition of selenium. Our work demonstrates that the e-beam annealing method can be a good candidate for the rapid crystallization of Cu-In-Se sputtered precursors.

  4. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Quarter Nine of the Pulsed Electron Precharging project was principally devoted to reviewing and interpreting the experimental results obtained during the past eight quarters of the project. We shall first briefly review the motivation for carrying out this project and the experimental approach used. The combustion of low sulfur coal for the purpose of generating electric energy in power plants results in the production of a flue gas containing very high resistivity fly ash. This fly ash is not easily collected by conventional electrostatic precipitators due to the large electric potential difference which develops across the layer of fly ash on the collector plate. If this layer of collected material is allowed to reach a thickness as great as is nominally desirable before rapping'' the plates, then the collected fly ash is subject to re-entrainment into the flue gas stream due to back-corona. The back-corona corona problem is described more fully in the next section of this report. This re-entrainment problem can be eliminated through reduction of the voltage applied across the high voltage wires and the grounded plates of the electrostatic precipitator. This is not a good solution to the problem since the charging capability and collection efficiency of the precipitator system are both greatly reduced at the low voltages and resultant small corona currents required to avoid the back-corona problem. Another approach to solving the problems inherent in collecting high resistivity fly ash in an electrostatic precipitator is to decouple the charging and collecting functions. At FSU an electron beam precharger is employed directly before (upstream in the flue gas pathway) the precipitator.

  5. A beam branching method for timing and spectral characterization of hard X-ray free-electron lasers

    PubMed Central

    Katayama, Tetsuo; Owada, Shigeki; Togashi, Tadashi; Ogawa, Kanade; Karvinen, Petri; Vartiainen, Ismo; Eronen, Anni; David, Christian; Sato, Takahiro; Nakajima, Kyo; Joti, Yasumasa; Yumoto, Hirokatsu; Ohashi, Haruhiko; Yabashi, Makina

    2016-01-01

    We report a method for achieving advanced photon diagnostics of x-ray free-electron lasers (XFELs) under a quasi-noninvasive condition by using a beam-splitting scheme. Here, we used a transmission grating to generate multiple branches of x-ray beams. One of the two primary diffracted branches (+1st-order) is utilized for spectral measurement in a dispersive scheme, while the other (−1st-order) is dedicated for arrival timing diagnostics between the XFEL and the optical laser pulses. The transmitted x-ray beam (0th-order) is guided to an experimental station. To confirm the validity of this timing-monitoring scheme, we measured the correlation between the arrival timings of the −1st and 0th branches. The observed error was as small as 7.0 fs in root-mean-square. Our result showed the applicability of the beam branching scheme to advanced photon diagnostics, which will further enhance experimental capabilities of XFEL. PMID:26958586

  6. A beam branching method for timing and spectral characterization of hard X-ray free-electron lasers.

    PubMed

    Katayama, Tetsuo; Owada, Shigeki; Togashi, Tadashi; Ogawa, Kanade; Karvinen, Petri; Vartiainen, Ismo; Eronen, Anni; David, Christian; Sato, Takahiro; Nakajima, Kyo; Joti, Yasumasa; Yumoto, Hirokatsu; Ohashi, Haruhiko; Yabashi, Makina

    2016-05-01

    We report a method for achieving advanced photon diagnostics of x-ray free-electron lasers (XFELs) under a quasi-noninvasive condition by using a beam-splitting scheme. Here, we used a transmission grating to generate multiple branches of x-ray beams. One of the two primary diffracted branches (+1st-order) is utilized for spectral measurement in a dispersive scheme, while the other (-1st-order) is dedicated for arrival timing diagnostics between the XFEL and the optical laser pulses. The transmitted x-ray beam (0th-order) is guided to an experimental station. To confirm the validity of this timing-monitoring scheme, we measured the correlation between the arrival timings of the -1st and 0th branches. The observed error was as small as 7.0 fs in root-mean-square. Our result showed the applicability of the beam branching scheme to advanced photon diagnostics, which will further enhance experimental capabilities of XFEL.

  7. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  8. Electron beams in solar flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Dennis, Brian R.; Benz, Arnold O.

    1994-01-01

    A list of publications resulting from this program includes 'The Timing of Electron Beam Signatures in Hard X-Ray and Radio: Solar Flare Observations by BATSE/Compton Gamma-Ray Observatory and PHOENIX'; 'Coherent-Phase or Random-Phase Acceleration of Electron Beams in Solar Flares'; 'Particle Acceleration in Flares'; 'Chromospheric Evaporation and Decimetric Radio Emission in Solar Flares'; 'Sequences of Correlated Hard X-Ray and Type 3 Bursts During Solar Flares'; and 'Solar Electron Beams Detected in Hard X-Rays and Radiowaves.' Abstracts and reprints of each are attached to this report.

  9. Application of filter method for detection of secondary electron emission in the auto-oscillating mode of beam plasma discharge

    NASA Astrophysics Data System (ADS)

    Balovnev, A. V.; Vizgalov, I. V.; Salahutdinov, G. H.

    2016-01-01

    In this paper we studied the non-self mode of the auto-oscillation secondary- emission discharge (ASED) in a longitudinal magnetic field with autonomous electron gun to ignite the primary beam-plasma discharge (PPD).

  10. Further remarks on electron beam pumping of laser materials.

    PubMed

    Klein, C A

    1966-12-01

    This article demonstrates that recently completed studies on the energy dissipation of kilovolt electron beams in solids provide readily applicable methods for assessing the situation in electron beam pumped lasers. PMID:20057662

  11. Dual-Cathode Electron-Beam Source

    NASA Technical Reports Server (NTRS)

    Bradley, James G.; Conley, Joseph M.; Wittry, David B.

    1988-01-01

    Beam from either cathode electromagnetically aligned with exit port. Electron beam from either of two cathodes deflected by magnetic and electric fields to central axis. Mechanical alignment of beam easy because cathode axes, anode apertures, and electron trajectories coplanar. Applications where uninterrupted service needed: scanning electron microscopes, transmission electron microscopes, electron-beam lithography equipment, Auger instruments, and microfocused x-ray sources.

  12. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  13. Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams

    NASA Technical Reports Server (NTRS)

    Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)

    2009-01-01

    An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

  14. Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams

    NASA Technical Reports Server (NTRS)

    Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)

    2011-01-01

    An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

  15. Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams

    DOEpatents

    Hershkowitz, Noah; Longmier, Benjamin; Baalrud, Scott

    2009-03-03

    An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

  16. Electron beam controller. [using magnetic field to refocus spent electron beam in microwave oscillator tube

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G. (Inventor)

    1973-01-01

    An electron beam device which extracts energy from an electron beam before the electrons of the beam are captured by a collector apparatus is described. The device produces refocusing of a spent electron beam by minimizing tranverse electron velocities in the beam where the electrons, having a multiplicity of axial velocities, are sorted at high efficiency by collector electrodes.

  17. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect

    Becker, Reinard; Kester, Oliver

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  18. Beam Studies with Electron Columns

    SciTech Connect

    Shiltsev, V.; Valishev, A.; Kuznetsov, G.; Kamerdzhiev, V.; Romanov, A.; /Novosibirsk, IYF

    2009-04-01

    We report preliminary results of experimental studies of 'electron columns' in the Tevatron and in a specialized test setup. In the Tevatron, a beam of 150 GeV protons ionizes residual gas and ionization electrons are stored in an electrostatic trap immersed into strong longitudinal magnetic field. Shifts of proton betatron frequencies are observed. In the test setup, we observe effects pointing to accumulation and escape of ionization electrons.

  19. Beam Characterizations at Femtosecond Electron Beam Facility

    SciTech Connect

    Rimjaem, S.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC

    2006-03-17

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond (fs) electron bunches. Theses short bunches are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet (a-magnet) serving as a magnetic bunch compressor, and a SLAC-type linear accelerator (linac). The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed in this paper.

  20. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  1. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  2. Cylindrical electron beam diode

    DOEpatents

    Bolduc, Paul E.

    1976-01-01

    A diode discharge device may include a tubular anode concentrically encircled by and spaced from a tubular cathode electrode with ends intermediate the ends of said anode electrode, and a metal conductive housing having a tubular wall disposed around the cathode electrode with end walls connected to the anode electrode. High energy electron current coupling is through an opening in the housing tubular wall to a portion of the cathode electrode intermediate its ends. Suitable utilization means may be within the anode electrode at positions to be irradiated by electrons emitted from the cathode electrode and transmitted through the anode walls.

  3. Shimmed electron beam welding process

    DOEpatents

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  4. Effect of accelerated electron beam on mechanical properties of human cortical bone: influence of different processing methods.

    PubMed

    Kaminski, Artur; Grazka, Ewelina; Jastrzebska, Anna; Marowska, Joanna; Gut, Grzegorz; Wojciechowski, Artur; Uhrynowska-Tyszkiewicz, Izabela

    2012-08-01

    Accelerated electron beam (EB) irradiation has been a sufficient method used for sterilisation of human tissue grafts for many years in a number of tissue banks. Accelerated EB, in contrast to more often used gamma photons, is a form of ionizing radiation that is characterized by lower penetration, however it is more effective in producing ionisation and to reach the same level of sterility, the exposition time of irradiated product is shorter. There are several factors, including dose and temperature of irradiation, processing conditions, as well as source of irradiation that may influence mechanical properties of a bone graft. The purpose of this study was to evaluate the effect e-beam irradiation with doses of 25 or 35 kGy, performed on dry ice or at ambient temperature, on mechanical properties of non-defatted or defatted compact bone grafts. Left and right femurs from six male cadaveric donors, aged from 46 to 54 years, were transversely cut into slices of 10 mm height, parallel to the longitudinal axis of the bone. Compact bone rings were assigned to the eight experimental groups according to the different processing method (defatted or non-defatted), as well as e-beam irradiation dose (25 or 35 kGy) and temperature conditions of irradiation (ambient temperature or dry ice). Axial compression testing was performed with a material testing machine. Results obtained for elastic and plastic regions of stress-strain curves examined by univariate analysis are described. Based on multivariate analysis, including all groups, it was found that temperature of e-beam irradiation and defatting had no consistent significant effect on evaluated mechanical parameters of compact bone rings. In contrast, irradiation with both doses significantly decreased the ultimate strain and its derivative toughness, while not affecting the ultimate stress (bone strength). As no deterioration of mechanical properties was observed in the elastic region, the reduction of the energy

  5. A novel raster-scanning method to fabricate ultra-fine cross-gratings for the generation of electron beam moiré fringe patterns

    NASA Astrophysics Data System (ADS)

    Lang, F. C.; Zhao, Y. R.; Xing, Y. M.; Liu, F.; Hou, X. H.; Zhu, J.; Li, J. J.; Yang, S. T.

    2016-11-01

    The resolution of the electron beam moiré method depends on the line frequency of the grating. Recently, more and more effort has been devoted to increase the frequency, and a novel method for producing high-resolution electron beam gratings is presented in this work. Cross-gratings with a frequency up to 14,832 lines/mm (67 nm pitch) were successfully fabricated using a common scanning electron microscope without a dedicated pattern generation system. The quality of the grating was high enough to produce high-quality moiré fringe patterns. In this method, the ultra-fine cross-grating can be fabricated only through one-directional scanning on the resist, which can improve the grating quality and significantly reduces the fabrication time. The number of control parameters for grating fabrication could be reduced to two compared to the six parameters required by conventional methods, which facilitates the use of the electron beam moiré method. The frequency of the fabricated grating is linearly proportional to the exposure magnification. Thus, the frequency of the grating can be accurately predetermined, and the null field can be easily obtained in the electron beam moiré method. The quality of the fabricated gratings was illustrated by the obtained micrographs and moiré fringe patterns. The full-field local strain near an induced crack was studied to verify the application potential of this method.

  6. Comparison of the fracture toughness and wear resistance of indirect composites cured by conventional post curing methods and electron beam irradiation

    PubMed Central

    Vaishnavi, C; Kavitha, S; Narayanan, L Lakshmi

    2010-01-01

    Aim: To compare the fracture toughness and wear resistance of indirect composites cured by conventional post curing methods and electron beam irradiation. Materials and Methods: Forty specimens were randomly assigned into four groups of ten each and were subjected to various post curing methods. Fracture toughness and wear resistance tests were performed and the results were tabulated and analyzed statistically using Kruskal Wallis and Mann-Whitney U test. Results: It was found that Inlay system showed higher values followed by electron beam irradiation. Conclusion: Electron beam irradiation of dental composites gives comparable mechanical properties to other post curing systems. It can be concluded that further studies with increased radiation dose should be performed to improve the mechanical properties of indirect composites. PMID:21116390

  7. Use of beam deflection to control an electron beam wire deposition process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  8. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  9. Electron beam treatment of stack gases

    NASA Astrophysics Data System (ADS)

    Frank, N.; Kawamura, K.; Miller, G.

    A method of simultaneously removing sulfur dioxide and nitrogen oxides from high sulfur, coal-fired utility boiler combustion gases is discussed. Process development history is briefly presented and salient details of a commercial demonstration unit currently under construction at an electric utility power plant in Indiana are given. Detailed discussion on the design details and performance requirements of a cable connected set of 80 kW electron beam sources precedes a discussion of the projected economics of the process. Requirements for future electron beam machine configurations and capacities as well as impact on the radiation machine manufacturing industry, assuming acceptance of the process by the electric utilities, are presented.

  10. APPARATUS FOR ELECTRON BEAM HEATING CONTROL

    DOEpatents

    Jones, W.H.; Reece, J.B.

    1962-09-18

    An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)

  11. Practical Teaching about Electron Beams

    ERIC Educational Resources Information Center

    Strawson, R. J.

    2009-01-01

    If you have seen tubes like the ones we describe here in the back of a cupboard but have been reluctant to use them, now is the time to get them out. The aim of this article is to record the history of teaching about electron beams, particularly with Teltron equipment, and in doing so encourage those schools that are equipped with these tubes to…

  12. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    NASA Astrophysics Data System (ADS)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  13. Collimation Studies with Hollow Electron Beams

    SciTech Connect

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  14. Beam/seam alignment control for electron beam welding

    DOEpatents

    Burkhardt, Jr., James H.; Henry, J. James; Davenport, Clyde M.

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  15. Low Emittance Electron Beam Studies

    SciTech Connect

    Tikhoplav, Rodion

    2006-01-01

    We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*01 mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

  16. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  17. Electron-Beam Recombination Lasers

    NASA Astrophysics Data System (ADS)

    Rhoades, Robert Lewis

    1992-01-01

    The first known instance of electron-beam pumping of the 546.1 nm mercury laser is reported. This has been achieved using high-energy electrons to create intense ionization in a coaxial diode chamber containing a mixture of noble gases with a small amount of mercury vapor. Also reported are the results of a study of the 585.3 nm neon laser in He:Ne:Ar mixtures under similar experimental conditions. Both of these lasers are believed to be predominantly pumped by recombination. For the mercury laser, kinetic processes in the partially ionized plasma following the excitation pulse of high-energy electrons should favor the production of atomic mercury ions and molecular ions containing mercury. Subsequent recombination with electrons heavily favors the production of the 7^3S and 6^3 D states of Hg, of which 7^3S is the upper level of the reported laser. For the neon laser, the dominant recombining ion has been previously shown to be Ne_2^{+}. One of the dominant roles of helium in recombination lasers is inferred from the data for the neon laser at low helium concentrations. Helium appears to be necessary for the rapid relaxation of the electron energy which then increases the reaction rates for all known recombination processes thus increasing the pump rate into the upper state.

  18. Adjusting an electron beam for drilling

    NASA Technical Reports Server (NTRS)

    Childress, C. L.

    1980-01-01

    Reticle contains two concentric circles: inner circle insures beam circularity and outer circle is guide to prevent beam from cutting workpiece clamp. Precise measurement of beam and clamp are required with old reticle. New reticle speeds up electron-beam drilling process by eliminating need to rotate eyepiece to make measurements against reticle scale.

  19. Electron beam facility for divertor target experiments

    SciTech Connect

    Anisimov, A.; Gagen-Torn, V.; Giniyatulin, R.N.

    1994-12-31

    To test different concepts of divertor targets and bumpers an electron beam facility was assembled in Efremov Institute. It consists of a vacuum chamber (3m{sup 3}), vacuum pump, electron beam gun, manipulator to place and remove the samples, water loop and liquid metal loop. The following diagnostics of mock-ups is stipulated: (1) temperature distribution on the mock-up working surface (scanning pyrometer and infra-red imager); (2) temperature distribution over mocked-up thickness in 3 typical cross-sections (thermo-couples); (3) cracking dynamics during thermal cycling (acoustic-emission method), (4) defects in the mock-up before and after tests (ultra-sonic diagnostics, electron and optical microscopes). Carbon-based and beryllium mock-ups are made for experimental feasibility study of water and liquid-metal-cooled divertor/bumper concepts.

  20. A range-based method to calibrate a magnetic spectrometer measuring the energy spectrum of the backward electron beam of a plasma focus.

    PubMed

    Ceccolini, E; Rocchi, F; Mostacci, D; Sumini, M; Tartari, A

    2011-08-01

    The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar® has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented. PMID:21895271

  1. A range-based method to calibrate a magnetic spectrometer measuring the energy spectrum of the backward electron beam of a plasma focus

    SciTech Connect

    Ceccolini, E.; Mostacci, D.; Sumini, M.; Rocchi, F.; Tartari, A.

    2011-08-15

    The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.

  2. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  3. Plasma and ion barrier for electron beam spot stability

    SciTech Connect

    Kwan, Thomas J. T.; Snell, Charles M.

    2000-03-01

    High-current electron beams of small spot size are used for high-resolution x-ray radiography of dense objects. Intense energy deposition in the bremsstrahlung target causes generation of ions which can propagate upstream and disrupt the electron beam. We have investigated the use of a thin beryllium foil placed 1-2 cm in front of the target, which serves as a barrier for the ions but is essentially transparent to the incoming electron beam. Analysis and computer simulations confirm that this confinement method will halt ion propagation and preserve the spot size stability of the electron beam. (c) 2000 American Institute of Physics.

  4. Beam rotation and shear in a large electron beam diode

    SciTech Connect

    Mansfield, C.R.; Oona, H.; Shurter, R.P.

    1990-01-01

    The time averaged electron beam current distribution of one of the electron guns of the Large Aperture Module (LAM) of the Aurora laser was measured as part of a larger set of experiments designed to study the electron beam transport to and energy deposition in the LAM laser chamber. The LAM laser chamber has a 1-m {times} 1-m aperture and is pumped from two sides along a 2-m length. A 10 ga. stainless steel sheet was placed inside the laser chamber and served multiple purposes. First, it was used to convert high energy electrons into X-rays in order to make radiograms of the electron beam. Second, the sheet was used as a Faraday cup to measure the total beam current. Third, individual Faraday cups were mounted on the plate to sample the time history of the electron beam at various positions. Each of the LAM electron gun diodes produces a beam of 750 kV electrons with a total current of about 500 kA which is relatively uniform over the cathode area of 1 m {times} 2 m. An applied magnetic field of about 1300 Gauss is used to prevent pinch of the beam during beam transport.

  5. Electron beam analysis of particulate cometary material

    NASA Technical Reports Server (NTRS)

    Bradley, John

    1989-01-01

    Electron microscopy will be useful for characterization of inorganic dust grains in returned comet nucleus samples. The choice of instrument(s) will depend primarily on the nature of the samples, but ultimately a variety of electron-beam methods could be employed. Scanning and analytical (transmission) electron microscopy are the logical choise for morphological, mineralogical, and bulk chemical analyses of dust grains removed from ices. It may also be possible to examine unmelted ice/dust mixtures using an environmental scanning electron microscope equipped with a cryo-transfer unit and a cold stage. Electron microscopic observations of comet nuclei might include: (1) porosities of dust grains; (2) morphologies and microstructures of individual mineral grains; (3) relative abundances of olivine, pyroxene, and glass; and (4) the presence of phases that might have resulted from aqueous alteration (layer silicates, carbonates, sulfates).

  6. Preventing Contamination In Electron-Beam Welds

    NASA Technical Reports Server (NTRS)

    Goodin, Wesley D.; Gulbrandsen, Kevin A.; Oleksiak, Carl

    1990-01-01

    Simple expedient eliminates time-consuming, expensive manual hand grinding. Use of groove and backup tube greatly reduces postweld cleanup in some electron-beam welding operations. Tube-backup method developed for titanium parts, configurations of which prevents use of solid-block backup. In new welding configuration, tube inserted in groove to prevent contact between alumina beads and molten weld root. When welding complete and beads and tube removed, only minor spatter remains and is ground away easily.

  7. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  8. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  9. Plasma lenses for focusing relativistic electron beams

    SciTech Connect

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-04-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n{sub p} much greater than electron beam density, n{sub b}) or underdense (n{sub p} less than 2 n{sub b}). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated.

  10. Electron beam effects in a UV FEL

    SciTech Connect

    Wong, R.K.; Blau, J.; Colson, W.B.

    1995-12-31

    At the Continuous Electron Beam Accelerator Facility (CEBAF), a free electron laser (FEL) is designed to produce ultraviolet (UV) light. A four-dimensional FEL simulation studies the effects of betatron oscillations, external focusing, and longitudinal pulse compression of the electron beam on the FEL performance.

  11. Towards demonstration of electron cooling with bunched electron beam

    SciTech Connect

    Fedotov, A.

    2012-01-11

    All electron cooling systems which were in operation so far employed electron beam generated with an electrostatic electron gun in DC operating mode, immersed in a longitudinal magnetic field. At low energies magnetic field is also being used to transport electron beam through the cooling section from the gun to the collector. At higher energies (few MeV), it was shown that one can have simpler electron beam transport without continuous magnetic field. Because of a rather weak magnetic field on the cathode and in the cooling section the latter approach was referred to as 'non-magnetized cooling', since there was no suppression of the transverse angular spread of the electron beam with the magnetic field in the cooling section. Such a cooler successfully operated at FNAL (2005-11) at electron beam energy of 4.3 MeV. Providing cooling at even higher energies would be easier with RF acceleration of electron beam, and thus using bunched electron beam for cooling. Significant efforts were devoted to explore various aspects of such bunched electron beam cooling as part of R and D of high-energy electron cooling for RHIC. However, experimental studies of such cooling are still lacking. Establishing this technique experimentally would be extremely useful for future high-energy applications. Presently there is an ongoing effort to build Proof-of-Principle (PoP) experiment of Coherent Electron Cooling (CEC) at RHIC, which promises to be superior to conventional electron cooling for high energies. Since the CEC experiment is based on bunched electron beam and it has sections where electron beam co-propagates with the ion beam at the same velocity, it also provides a unique opportunity to explore experimentally conventional electron cooling but for the first time with a bunched electron beam. As a result, it allows us to explore techniques needed for the high-energy electron cooling such as 'painting' with a short electron beam and control of ion beam distribution under

  12. Rippled-beam free-electron laser

    SciTech Connect

    Carlsten, B.E.

    1997-10-01

    The authors describe a new microwave generation mechanism involving a scalloping annular electron beam. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. Due to nonlinearities in the orbit equation, the interaction can be made autoresonant, where the phase and amplitude of the gain is independent of the beam energy.

  13. Quantitative experiments with electrons in a positively charged beam

    SciTech Connect

    Molvik, A W; Vay, J; Covo, M K; Cohen, R; Baca, D; Bieniosek, F; Friedman, A; Leister, C; Lund, S M; Seidl, P; Sharp, W

    2006-12-06

    Intense ion beams are difficult to maintain as non-neutral plasmas. Experiments and simulations are used to study the complex interactions between beam ions and (unwanted) electrons. Such ''electron clouds'' limit the performance of many accelerators. To characterize electron clouds, a number of parameters are measured including: total and local electron production and loss for each of three major sources, beam potential versus time, electron line-charge density, and gas pressure within the beam. Electron control methods include surface treatments to reduce electron and gas emission, and techniques to remove electrons from the beam, or block their capture by the beam. Detailed, self-consistent simulations include beam-transport fields, and electron and gas generation and transport; these compute unexpectedly rich behavior, much of which is confirmed experimentally. For example, in a quadrupole magnetic field, ion and dense electron plasmas interact to produce multi-kV oscillations in the electron plasma and distortions of the beam velocity space distribution, without the system becoming homogeneous or locally neutral.

  14. Susceptor heating device for electron beam brazing

    DOEpatents

    Antieau, Susan M.; Johnson, Robert G. R.

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  15. Coherent Radiation from Relativistic Electron Beams.

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Ren

    Two new laser concepts, the Ion-Ripple Laser (IRL) and the Ion-Channel Laser (ICL), are proposed. A unified theory for coherent radiation from relativistic electron beams devices is developed; the theory not only links the physics of Cyclotron Masers (CMs) and Free Electron Lasers (FELs) but covers the physics of the IRLs and the ICLs. We have also invented a new numerical method, the Neo-Finite -Difference (NFD) method, for electromagnetic plasma simulations and applied it to studies of these lasers. The unified amplification theory compares the growth mechanisms. Two bunching mechanisms (both axial and azimuthal) exist, not only for the noncollective single electron resonance regime, but also in the collective gain regime. Competition or reinforcement between the two bunching mechanisms is determined by the q value (a parameter that determines how the electron oscillation frequency depends on energy), the electron axial velocity, and the wave phase velocity. The unified theory concludes that, for wave amplification, the sign of the electron mismatch frequency is required to be the same as the sign of a bunching parameter that is determined by the total bunching. In an IRL, a relativistic electron beam propagates obliquely through an ion ripple in a plasma. The radiation frequency depends on the beam energy, the ripple wave number, and the angle: omega ~ 2gamma ^{2}k_{ir}ccos theta. By proper choice of device parameters, sources of microwaves, optical, and perhaps even X-rays can be made. The dispersion relation for wave coupling is derived and used to calculate the radiation frequency and linear growth rate. The nonlinear saturation mechanism is explored. Computer simulation is used to verify the ideas, scaling laws and nonlinear mechanisms. In an ICL, the ion focusing force causes the electrons to oscillate about the channel axis and plays a similar role to the magnetic field in a CM. This electron motion is nonlinear and is studied. Simulations were performed

  16. Method of fabricating conducting oxide-silicon solar cells utilizing electron beam sublimation and deposition of the oxide

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1979-01-01

    In preparing tin oxide and indium tin oxide-silicon heterojunction solar cells by electron beam sublimation of the oxide and subsequent deposition thereof on the silicon, the engineering efficiency of the resultant cell is enhanced by depositing the oxide at a predetermined favorable angle of incidence. Typically the angle of incidence is between 40.degree. and 70.degree. and preferably between 55.degree. and 65.degree. when the oxide is tin oxide and between 40.degree. and 70.degree. when the oxide deposited is indium tin oxide. gi The Government of the United States of America has rights in this invention pursuant to Department of Energy Contract No. EY-76-C-03-1283.

  17. Low energy electron magnetometer using a monoenergetic electron beam

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M.; Rayborn, G. H.; White, F. A. (Inventor)

    1983-01-01

    A low energy electron beam magnetometer utilizes near-monoenergetic electrons thereby reducing errors due to electron energy spread and electron nonuniform angular distribution. In a first embodiment, atoms in an atomic beam of an inert gas are excited to a Rydberg state and then electrons of near zero energy are detached from the Rydberg atoms. The near zero energy electrons are then accelerated by an electric field V(acc) to form the electron beam. In a second embodiment, a filament emits electrons into an electrostatic analyzer which selects electrons at a predetermined energy level within a very narrow range. These selected electrons make up the electron beam that is subjected to the magnetic field being measured.

  18. Optics of electron beam in the Recycler

    SciTech Connect

    Burov, Alexey V.; Kazakevich, G.; Kroc, T.; Lebedev, V.; Nagaitsev, S.; Prost, L.; Pruss, S.; Shemyakin, A.; Sutherland, M.; Tiunov, M.; Warner, A.; /Fermilab /Novosibirsk, IYF

    2005-11-01

    Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of {approx}0.2 A or higher DC electron beam have to be parallel in the cooling section, within {approx}0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as {approx}0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analyzed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved.

  19. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  20. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  1. Laser cooling of electron beams for linear colliders

    SciTech Connect

    Telnov, V.

    1996-10-01

    A novel method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. With reasonable laser parameters (laser flash energy about 10 J) one can decrease transverse beam emittances by a factor about 10 per one stage. The ultimate transverse emittances are much below that given by other methods. Depolarization of a beam during the cooling is about 5--15% for one stage. This method is especially useful for photon colliders and open new possibilities for e{sup +}e{sup {minus}} colliders and x-ray FEL based on high energy linacs.

  2. Feasibility study for mega-electron-volt electron beam tomography

    SciTech Connect

    Hampel, U.; Baertling, Y.; Hoppe, D.; Kuksanov, N.; Fadeev, S.; Salimov, R.

    2012-09-15

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  3. Feasibility study for mega-electron-volt electron beam tomography.

    PubMed

    Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R

    2012-09-01

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  4. Redesigned Electron-Beam Furnace Boosts Productivity

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    1995-01-01

    Redesigned electron-beam furnace features carousel of greater capacity so more experiments conducted per loading, and time spent on reloading and vacuum pump-down reduced. Common mounting plate for electron source and carousel simplifies installation and reduces vibration.

  5. Electron beam coupling to a metamaterial structure

    SciTech Connect

    French, David M.; Shiffler, Don; Cartwright, Keith

    2013-08-15

    Microwave metamaterials have shown promise in numerous applications, ranging from strip lines and antennas to metamaterial-based electron beam driven devices. In general, metamaterials allow microwave designers to obtain electromagnetic characteristics not typically available in nature. High Power Microwave (HPM) sources have in the past drawn inspiration from work done in the conventional microwave source community. In this article, the use of metamaterials in an HPM application is considered by using an effective medium model to determine the coupling of an electron beam to a metamaterial structure in a geometry similar to that of a dielectric Cerenkov maser. Use of the effective medium model allows for the analysis of a wide range of parameter space, including the “mu-negative,”“epsilon-negative,” and “double negative” regimes of the metamaterial. The physics of such a system are modeled analytically and by utilizing the particle-in-cell code ICEPIC. For this geometry and effective medium representation, optimum coupling of the electron beam to the metamaterial, and thus the optimum microwave or RF production, occurs in the epsilon negative regime of the metamaterial. Given that HPM tubes have been proposed that utilize a metamaterial, this model provides a rapid method of characterizing a source geometry that can be used to quickly understand the basic physics of such an HPM device.

  6. Calculation of the energy distribution of a fast electron in a helium beam plasma by numerical methods with substantiation of the multigroup approximation

    NASA Astrophysics Data System (ADS)

    Punkevich, B. S.; Stal, N. L.; Stepanov, B. M.; Khokhlov, V. D.

    The possibility of using the multigroup method to determine the physical properties of a beam plasma is substantiated, and the effectiveness of the application of this method is analyzed. The results obtained are compared with solutions of rigorous steady-state kinetic equations and approximate equations corresponding to a model of continuous slowdown and its variants. It is shown that, in the case of the complete slowdown of a fast electron and all the secondary electrons produced by it in He, 51 percent of the primary-electron energy is expended on the ionization of helium atoms, 16 percent is converted into atom thermal energy, and 33 percent is expended on atom excitation. Of this latter 33 percent, 21 percent is expended on the excitation of energy levels corresponding to optically allowed transitions.

  7. Electron Beam-Cure Polymer Matrix Composites: Processing and Properties

    NASA Technical Reports Server (NTRS)

    Wrenn, G.; Frame, B.; Jensen, B.; Nettles, A.

    2001-01-01

    Researchers from NASA and Oak Ridge National Laboratory are evaluating a series of electron beam curable composites for application in reusable launch vehicle airframe and propulsion systems. Objectives are to develop electron beam curable composites that are useful at cryogenic to elevated temperatures (-217 C to 200 C), validate key mechanical properties of these composites, and demonstrate cost-saving fabrication methods at the subcomponent level. Electron beam curing of polymer matrix composites is an enabling capability for production of aerospace structures in a non-autoclave process. Payoffs of this technology will be fabrication of composite structures at room temperature, reduced tooling cost and cure time, and improvements in component durability. This presentation covers the results of material property evaluations for electron beam-cured composites made with either unidirectional tape or woven fabric architectures. Resin systems have been evaluated for performance in ambient, cryogenic, and elevated temperature conditions. Results for electron beam composites and similar composites cured in conventional processes are reviewed for comparison. Fabrication demonstrations were also performed for electron beam-cured composite airframe and propulsion piping subcomponents. These parts have been built to validate manufacturing methods with electron beam composite materials, to evaluate electron beam curing processing parameters, and to demonstrate lightweight, low-cost tooling options.

  8. Quantitative Experiments With Electrons in a Positively Charged Beam

    SciTech Connect

    Molvik, A W; Vay, J; Covo, M K; Cohen, R; Baca, D; Bieniosek, F; Friedman, A; Leister, C; Lund, S M; Seidl, P; Sharp, W

    2006-10-27

    Intense ion beams are an extreme example of, and difficult to maintain as, a non-neutral plasma. Experiments and simulations are used to study the complex interactions between beam ions and (unwanted) electrons. Such ''electron clouds'' limit the performance of many accelerators. To characterize electron clouds, a number of parameters are measured including: total and local electron production and loss for each of three major sources, beam potential versus time, electron line-charge density, and gas pressure within the beam. Electron control methods include surface treatments to reduce electron and gas emission, and techniques to remove, or block, electrons from the beam. Detailed, self-consistent simulations include beam-transport fields, and electron and gas generation and consistent transport, to compute unexpectedly rich behavior, much of which is confirmed experimentally. For example, in a quadrupole magnetic field, ion and dense electron plasmas interact to produce multi-kV oscillations in the electron plasma and distortions of the beam velocity space distribution, without becoming homogenous or locally neutral.

  9. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  10. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  11. LHC particle collimation with hollow electron beams

    SciTech Connect

    Shiltsev, V.; Drozhdin, A.; Kamerdzhiev, V.; Kuznetsov, G.; Vorobiev, L.; /Fermilab

    2008-06-01

    Electron lenses built and installed in the Tevatron have proven themselves as safe and very reliable instruments which can be effectively used in hadron collider operation for a number of applications, including compensation of beam-beam effects [1], a DC beam removal from abort gaps [2], and as a versatile diagnostic tool. In this article, we--following the original proposal [3,4]--consider in more detail a possibility of using electron lenses with hollow electron beam for ion and proton collimation in LHC and the Tevatron.

  12. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  13. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  14. Electron beam selectively seals porous metal filters

    NASA Technical Reports Server (NTRS)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  15. Separating Isotopes With Laser And Electron Beams

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor

    1989-01-01

    Need for second laser eliminated. In scheme for separation of isotopes, electrons of suitable kinetic energy ionize specific isotope excited by laser beam in magnetic field. Ionization by electron beams cheap and efficient in comparison to ionization by laser beams, and requires no special technical developments. Feasibility of new scheme demonstrated in selective ionization of Ba138, making possible separation of isotope from Ba isotopes of atomic weight 130, 132, 134, 135, 136, and 137.

  16. Free Electron Lasers with Slowly Varying Beam and Undulator Parameters

    SciTech Connect

    Huang, Z; Stupakov, G.; /SLAC

    2005-05-25

    The performance of a free electron lasers (FEL) is affected when the electron beam energy varies alone the undulator as would be caused by vacuum pipe wakefields and/or when the undulator strength parameter is tapered in the small signal regime until FEL saturation. In this paper, we present a self-consistent theory of FELs with slowly-varying beam and undulator parameters. A general method is developed to apply the WKB approximation to the beam-radiation system by employing the adjoint eigenvector that is orthogonal to the eigenfunctions of the coupled Maxwell-Vlasov equations. This method may be useful for other slowly varying processes in beam dynamics.

  17. Electron beam curing of polymer matrix composites

    SciTech Connect

    Janke, C.J.; Wheeler, D.; Saunders, C.

    1998-01-08

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world`s largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide.

  18. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  19. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  20. Spin transport in tilted electron vortex beams

    NASA Astrophysics Data System (ADS)

    Basu, Banasri; Chowdhury, Debashree

    2014-12-01

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  1. Spin transport in tilted electron vortex beams

    SciTech Connect

    Basu, Banasri; Chowdhury, Debashree

    2014-12-10

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  2. Single electron beam rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  3. Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.

    2011-03-28

    Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.

  4. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    SciTech Connect

    Seletskiy, Sergei M.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  5. Decarburization of uranium via electron beam processing

    SciTech Connect

    McKoon, R H

    1998-10-23

    For many commercial and military applications, the successive Vacuum Induction Melting of uranium metal in graphite crucibles results in a product which is out of specification in carbon. The current recovery method involves dissolution of the metal in acid and chemical purification. This is both expensive and generates mixed waste. A study was undertaken at Lawrence Livermore National Laboratory to investigate the feasibility of reducing the carbon content of uranium metal using electron beam techniques. Results will be presented on the rate and extent of carbon removal as a function of various operating parameters.

  6. Electron Beam Scanning in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  7. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, Changbiao

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron`s relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  8. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron`s relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  9. Improved electron-beam welding technique

    NASA Technical Reports Server (NTRS)

    Schumacher, B.

    1970-01-01

    Electron-beam generator produces high quality welds without vaporization by relying on the mobility and hydrodynamic properties of the material in its liquid phase. The power density of the beam is relative to the speed of the workpiece, producing an inclined weld-front.

  10. Emittance growth from electron beam modulation

    SciTech Connect

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  11. Electron beam depolarization in a damping ring

    SciTech Connect

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms.

  12. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2016-07-12

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  13. The Electron Beam Ion Source (EBIS)

    SciTech Connect

    Brookhaven Lab

    2009-06-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  14. Technical Seminar: Electron Beam Forming Fabrication

    NASA Video Gallery

    EBF³ uses a focused electron beam in a vacuum environment to create a molten pool on a metallic substrate. This layer-additive process enables fabrication of parts directly from CAD drawings. The ...

  15. Stimulated electromagnetic interactions in spatiotemporally gyrating relativistic electron beams

    SciTech Connect

    Davies, J.A.; Chen, C.

    1999-07-01

    One possible method to significantly widen the band-widths of present gyroklystron amplifiers is to utilize extended interaction structures in the input sections, the buncher sections and the output sections, in conjunction with stagger tuning. Through extended interactions, however, electron beams can undergo stimulated electromagnetic interactions, causing multimode excitations. In this paper, the authors investigate stimulated electromagnetic interactions in relativistic electron beams gyrating in an externally applied uniform magnetic field. The electron gyrophases are assumed to have strong spatiotemporal correlations. By applying Vlassor-Maxwell equations together with Lorentz transformations, they obtain the general dispersion relation for electromagnetic and electrostatic wave perturbations on the electron beam for this system. The dispersion relation is used to analyze a variety of stimulated electromagnetic interactions on such electron beams. Results of these analyses are discussed.

  16. Electron beam, laser beam and plasma arc welding studies

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1974-01-01

    This program was undertaken as an initial step in establishing an evaluation framework which would permit a priori selection of advanced welding processes for specific applications. To this end, a direct comparison of laser beam, electron beam and arc welding of Ti-6Al-4V alloy was undertaken. Ti-6Al-4V was selected for use in view of its established welding characteristics and its importance in aerospace applications.

  17. Thermal imaging diagnostics of high-current electron beams.

    PubMed

    Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D

    2012-10-01

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time. PMID:23126757

  18. Thermal imaging diagnostics of high-current electron beams

    SciTech Connect

    Pushkarev, A.; Kholodnaya, G.; Sazonov, R.; Ponomarev, D.

    2012-10-15

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm{sup 2}, the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm{sup 2} (or with current density over 10 A/cm{sup 2}, pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

  19. Thermal imaging diagnostics of high-current electron beams.

    PubMed

    Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D

    2012-10-01

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

  20. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  1. Use of an Electron Beam for Stochastic Cooling

    SciTech Connect

    Yaroslave Derbenev

    2007-09-10

    Microwave instability of an electron beam can be used for a multiple increase in the collective response for the perturbation caused by a particle of a co-moving ion beam, i.e. for enhancement of friction force in electron cooling method. The low scale (hundreds GHz and higher frequency range) space charge or FEL type instabilities can be produced (depending on conditions) by introducing an alternating magnetic fields along the electron beam path. Beams’ optics and noise conditioning for obtaining a maximal cooling effect and related limitations will be discussed. The method promises to increase by a few orders of magnitude the cooling rate for heavy particle beams with a large emittance for a wide energy range with respect to either electron and conventional stochastic cooling.

  2. Electron-beam furnace with magnetic stabilization

    SciTech Connect

    Harker, H.R.; Knecht, J.A. II

    1986-10-07

    This patent describes an electron-beam comprising: a. An evacuable chamber having a port for coupling the chamber to vacuum pump means; b. a trough-shaped hearth within the chamber for holding material to be melted, the hearth having a spout for issuing a flow of molten material therefrom; c. a crucible positioned within the chamber for receiving molten material flowing from the hearth; d. one or more electron guns each for producing an energetic beam of electrons, each electron gun being positioned a relatively large distance away from the hearth and the crucible; e. magnetic beam deflection means forming an integral part of each electron gun for scanning and shaping the beam produced thereby across the hearth or the crucible; and f. magnetic means adjacent to the hearth and the crucible for producing a relatively weak magnetic field in the vicinity of the hearth and the crucible for preventing erratic deflections of the scanning electron beams without significantly altering the trajectories of such beams.

  3. Femtosecond time-resolved X-ray absorption spectroscopy of liquid using a hard X-ray free electron laser in a dual-beam dispersive detection method.

    PubMed

    Obara, Yuki; Katayama, Tetsuo; Ogi, Yoshihiro; Suzuki, Takayuki; Kurahashi, Naoya; Karashima, Shutaro; Chiba, Yuhei; Isokawa, Yusuke; Togashi, Tadashi; Inubushi, Yuichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko

    2014-01-13

    We present femtosecond time-resolved X-ray absorption spectroscopy of aqueous solution using a hard x-ray free electron laser (SACLA) and a synchronized Ti:sapphire laser. The instrumental response time is 200 fs, and the repetition rate of measurement is 10 Hz. A cylindrical liquid beam 100 μm in diameter of aqueous ammonium iron(III) oxalate solution is photoexcited at 400 nm, and the transient X-ray absorption spectra are measured in the K-edge region of iron, 7.10 - 7.26 keV, using a dual X-ray beam dispersive detection method. Each of the dual beams has the pulse energy of 1.4 μJ, and pump-induced absorbance change on the order of 10(-3) is successfully detected. The photoexcited iron complex exhibits a red shifted iron K-edge with the appearance time constant of 260 fs. The X-ray absorption difference spectra, with and without the pump pulses, are independent of time delay after 1.5 ps up to 100 ps, indicating that the photoexcited species is long-lived.

  4. A reflex electron beam discharge as a plasma source for electron beam generation

    SciTech Connect

    Murray, C.S.; Rocca, J.J.; Szapiro, B. )

    1988-10-01

    A reflex electron beam glow discharge has been used as a plasma source for the generation of broad-area electron beams. An electron current of 120 A (12 A/cm/sup 2/) was extracted from the plasma in 10 ..mu..s pulses and accelerated to energies greater than 1 keV in the gap between two grids. The scaling of the scheme for the generation of multikiloamp high-energy beams is discussed.

  5. Electron Beam Technology - Some Recent Developments

    NASA Astrophysics Data System (ADS)

    Iqbal, Munawar; Fazal-E-Aleem

    2011-06-01

    Electron beam technology has been in focus since long due to wide variety of applications in research and industry. One of the important modes of e-beam production is through thermionic emission. Improvements and advancement in enhancing the capabilities of electron beam sources compatible with the task to be accomplished at a reduced cost are therefore necessary. We give an update of the recently developed and reported e-guns which are easy to fabricate, assemble and more efficient. Besides being cost effective, these guns are user friendly.

  6. Control and Manipulation of Electron Beams

    SciTech Connect

    Piot, Philippe

    2009-01-22

    The concepts of the advanced accelerators and light source rely on the production of bright electron beams. The rms areas of the beam phase space often need to be tailored to the specific applications. Furthermore, a new class of the forefront research calls for detailed specific distribution such as the particle density in the time coordinate. Several groups are tackling these various challenges and in this report we attempt to give a review of the state-of-the-art of the control and manipulation of the electron beams.

  7. Short rise time intense electron beam generator

    DOEpatents

    Olson, Craig L.

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  8. Short rise time intense electron beam generator

    DOEpatents

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  9. A conceptual design for an electron beam

    SciTech Connect

    Garcia, M

    1999-02-15

    This report is a brief description of a model electron beam, which is meant to serve as a pulsed heat source that vaporizes a metal fleck into an ''under-dense'' cloud. See Reference 1. The envelope of the electron beam is calculated from the paraxial ray equation, as stated in Reference 2. The examples shown here are for 5 A, 200 keV beams that focus to waists of under 0.4 mm diameter, within a cylindrical volume of 10 cm radius and length. The magnetic fields assumed in the examples are moderate, 0.11 T and 0.35 T, and can probably be created by permanent magnets.

  10. Energy measurement of electron beams by Compton scattering

    NASA Technical Reports Server (NTRS)

    Keppel, Cynthia

    1995-01-01

    A method has been proposed to utilize the well-known Compton scattering process as a tool to measure the centroid energy of a high energy electron beam at the 0.01% level. It is suggested to use the Compton scattering of an infrared laser off the electron beam, and then to measure the energy of the scattered gamma-rays very precisely using solid-state detectors. The technique proposed is applicable for electron beams with energies from 200 MeV to 16 GeV using presently available lasers. This technique was judged to be the most viable of all those proposed for beam energy measurements at the nearby Continuous Electron Beam Accelerator Facility (CEBAF). Plans for a prototype test of the technique are underway, where the main issues are the possible photon backgrounds associated with an electron accelerator and the electron and laser beam stabilities and diagnostics. The bulk of my ASEE summer research has been spent utilizing the expertise of the staff at the Aerospace Electronics Systems Division at LaRC to assist in the design of the test. Investigations were made regarding window and mirror transmission and radiation damage issues, remote movement of elements in ultra-high vacuum conditions, etc. The prototype test of the proposed laser backscattering method is planned for this December.

  11. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, Changbiao.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  12. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  13. Nonlinear wave scattering and electron beam relaxation

    NASA Technical Reports Server (NTRS)

    Muschietti, L.; Dum, C. T.

    1991-01-01

    The role played by nonlinear scattering during the relaxation of a warm electron beam is investigated through a numerical code based on kinetic equations. The code encompasses the quasi-linear wave-electron interaction and wave-wave scattering off ion clouds. Ions with velocities 2 nu sub i (nu sub i being the ion thermal velocity) are found to be the most efficient for scattering the Langmuir waves off their polarization clouds. The transfer rate of the spectrum out of resonance with the beam is larger by a factor 3 compared to usual estimates. The changes produced in the dispersion relation by the presence of the beam electrons dramatically alter the characteristics of the secondary spectrum. In a late phase the classic condensate K of about 0 is depleted, with the formation of a new condensate in resonance with the flat-topped beam distribution, which follows from the fact that the mere presence of the beam electrons creates a minimum in the frequency-wave-number relation. For strong and slow beams, the predictions of the code are found to be in excellent agreement with the results of the particle simulation if a dispersion relation that includes the beam is used.

  14. Tokomak disruption runaway electron beam energy deposition

    NASA Astrophysics Data System (ADS)

    Lei, Yian

    2012-10-01

    Disruption is one of the major concerns in magnetic confinement fusion (MCF) research. People believe the energetic runaway electron beam can damage the first wall by depositing most of its energy to certain region as heat, melting the wall. However, as the energy of the beam electron is very high (up to 50 MeV), most of the beam energy should be converted as gamma radiation and escape, and the fraction of thermal energy deposition is relatively small. We will calculate the runaway electron energy deposition in typical first wall configurations in ITER disruption scenario, and give the temperature profile of the wall. We will also calculate the bremsstrahlung gamma ray spectra of the beam and discuss the consequences.

  15. Correlation in a coherent electron beam

    SciTech Connect

    Kodama, Tetsuji; Osakabe, Nobuyuki; Tonomura, Akira

    2011-06-15

    Correlations between successive detections in beams of free electrons are studied with a transmission electron microscope. For incoherent illumination of the detectors, a certain random coincidence probability is observed, indicative for uncorrelated arrival times of the electrons. When the illumination is changed from incoherent to coherent, a reduction of the random coincidence probability is observed, indicative for antibunching in the arrival times of the electrons. However, the amount of reduction is larger than the theoretically expected value calculated from the Pauli principle, forbidding more than one identical fermion to occupy the same quantum state. For a certain coherent illumination of the detectors, where we use magnetic lenses in electron microscopes for magnifications of the coherence length, we find an enhanced coincidence probability, indicative for bunching in the arrival times of the electrons. This originates from correlations in beams of free electrons due to Coulomb interactions.

  16. Curing Composite Materials Using Lower-Energy Electron Beams

    NASA Technical Reports Server (NTRS)

    Byrne, Catherine A.; Bykanov, Alexander

    2004-01-01

    In an improved method of fabricating composite-material structures by laying up prepreg tapes (tapes of fiber reinforcement impregnated by uncured matrix materials) and then curing them, one cures the layups by use of beams of electrons having kinetic energies in the range of 200 to 300 keV. In contrast, in a prior method, one used electron beams characterized by kinetic energies up to 20 MeV. The improved method was first suggested by an Italian group in 1993, but had not been demonstrated until recently. With respect to both the prior method and the present improved method, the impetus for the use of electron- beam curing is a desire to avoid the high costs of autoclaves large enough to effect thermal curing of large composite-material structures. Unfortunately, in the prior method, the advantages of electron-beam curing are offset by the need for special walls and ceilings on curing chambers to shield personnel from x rays generated by impacts of energetic electrons. These shields must be thick [typically 2 to 3 ft (about 0.6 to 0.9 m) if made of concrete] and are therefore expensive. They also make it difficult to bring large structures into and out of the curing chambers. Currently, all major companies that fabricate composite-material spacecraft and aircraft structures form their layups by use of automated tape placement (ATP) machines. In the present improved method, an electron-beam gun is attached to an ATP head and used to irradiate the tape as it is pressed onto the workpiece. The electron kinetic energy between 200 and 300 keV is sufficient for penetration of the ply being laid plus one or two of the plies underneath it. Provided that the electron-beam gun is properly positioned, it is possible to administer the required electron dose and, at the same time, to protect personnel with less shielding than is needed in the prior method. Adequate shielding can be provided by concrete walls 6 ft (approximately equal to 1.8 m) high and 16 in. (approximately

  17. WEBEXPIR: Windowless target electron beam experimental irradiation

    NASA Astrophysics Data System (ADS)

    Dierckx, Marc; Schuurmans, Paul; Heyse, Jan; Rosseel, Kris; Van Tichelen, Katrien; Nactergal, Benoit; Vandeplassche, Dirk; Aoust, Thierry; Abs, Michel; Guertin, Arnaud; Buhour, Jean-Michel; Cadiou, Arnaud; Abderrahim, Hamid Aït

    2008-06-01

    The windowless target electron beam experimental irradiation (WEBEXPIR) program was set-up as part of the MYRRHA/XT-ADS R&D effort on the spallation target design to investigate the interaction of a proton beam with a liquid lead-bismuth eutectic (LBE) free surface. In particular, possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation were assessed. An experiment was conceived at the IBA TT-1000 Rhodotron, where a 7 MeV electron beam was used to simulate the high power deposition at the MYRRHA/XT-ADS LBE free surface. The geometry and the LBE flow characteristics in the WEBEXPIR set-up were made as representative as possible of the actual situation in the MYRRHA/XT-ADS spallation target. Irradiation experiments were carried out at beam currents of up to 10 mA, corresponding to 40 times the nominal beam current necessary to reproduce the MYRRHA/XT-ADS conditions. Preliminary analyses show that the WEBEXPIR free surface flow was not disturbed by the interaction with the electron beam and that vacuum conditions stayed well within the design specifications.

  18. Electron beam damage in oxides: a review

    NASA Astrophysics Data System (ADS)

    Jiang, Nan

    2016-01-01

    This review summarizes a variety of beam damage phenomena relating to oxides in (scanning) transmission electron microscopes, and underlines the shortcomings of currently popular mechanisms. These phenomena include mass loss, valence state reduction, phase decomposition, precipitation, gas bubble formation, phase transformation, amorphization and crystallization. Moreover, beam damage is also dependent on specimen thickness, specimen orientation, beam voltage, beam current density and beam size. This article incorporates all of these damage phenomena and experimental dependences into a general description, interpreted by a unified mechanism of damage by induced electric field. The induced electric field is produced by positive charges, which are generated from excitation and ionization. The distribution of the induced electric fields inside a specimen is beam-illumination- and specimen-shape- dependent, and associated with the experimental dependence of beam damage. Broadly speaking, the mechanism operates differently in two types of material. In type I, damage increases the resistivity of the irradiated materials, and is thus divergent, resulting in phase separation. In type II, damage reduces the resistivity of the irradiated materials, and is thus convergent, resulting in phase transformation. Damage by this mechanism is dependent on electron-beam current density. The two experimental thresholds are current density and irradiation time. The mechanism comes into effect when these thresholds are exceeded, below which the conventional mechanisms of knock-on and radiolysis still dominate.

  19. Electron beam damage in oxides: a review.

    PubMed

    Jiang, Nan

    2016-01-01

    This review summarizes a variety of beam damage phenomena relating to oxides in (scanning) transmission electron microscopes, and underlines the shortcomings of currently popular mechanisms. These phenomena include mass loss, valence state reduction, phase decomposition, precipitation, gas bubble formation, phase transformation, amorphization and crystallization. Moreover, beam damage is also dependent on specimen thickness, specimen orientation, beam voltage, beam current density and beam size. This article incorporates all of these damage phenomena and experimental dependences into a general description, interpreted by a unified mechanism of damage by induced electric field. The induced electric field is produced by positive charges, which are generated from excitation and ionization. The distribution of the induced electric fields inside a specimen is beam-illumination- and specimen-shape- dependent, and associated with the experimental dependence of beam damage. Broadly speaking, the mechanism operates differently in two types of material. In type I, damage increases the resistivity of the irradiated materials, and is thus divergent, resulting in phase separation. In type II, damage reduces the resistivity of the irradiated materials, and is thus convergent, resulting in phase transformation. Damage by this mechanism is dependent on electron-beam current density. The two experimental thresholds are current density and irradiation time. The mechanism comes into effect when these thresholds are exceeded, below which the conventional mechanisms of knock-on and radiolysis still dominate.

  20. Acceleration of electrons by a tightly focused intense laser beam.

    PubMed

    Li, Jian-Xing; Zang, Wei-Ping; Li, Ya-Dong; Tian, Jian-Guo

    2009-07-01

    The recent proposal to use Weinger transformation field (WTF) [Opt. Express 17, 4959-4969 (2009)] for describing tightly focused laser beams is investigated here in detail. In order to validate the accuracy of WTF, we derive the numerical field (NF) from the plane wave spectrum method. WTF is compared with NF and Lax series field (LSF). Results show that LSF is accurate close to the beam axis and divergent far from the beam axis, and WTF is always accurate. Moreover, electron dynamics in a tightly focused intense laser beam are simulated by LSF, WTF and NF, respectively. The results obtained by WTF are shown to be accurate.

  1. Acceleration of electrons by a tightly focused intense laser beam.

    PubMed

    Li, Jian-Xing; Zang, Wei-Ping; Li, Ya-Dong; Tian, Jian-Guo

    2009-07-01

    The recent proposal to use Weinger transformation field (WTF) [Opt. Express 17, 4959-4969 (2009)] for describing tightly focused laser beams is investigated here in detail. In order to validate the accuracy of WTF, we derive the numerical field (NF) from the plane wave spectrum method. WTF is compared with NF and Lax series field (LSF). Results show that LSF is accurate close to the beam axis and divergent far from the beam axis, and WTF is always accurate. Moreover, electron dynamics in a tightly focused intense laser beam are simulated by LSF, WTF and NF, respectively. The results obtained by WTF are shown to be accurate. PMID:19582099

  2. Ultrafast Time-Resolved Electron Diffraction with Megavolt Electron Beams

    SciTech Connect

    Hastings, J.B.; Rudakov, F.M.; Dowell, D.H.; Schmerge, J.F.; Cardoza, J.D.; Castro, J.M.; Gierman, S.M.; Loos, H.; Weber, P.M.; /Brown U.

    2006-10-24

    An rf photocathode electron gun is used as an electron source for ultrafast time-resolved pump-probe electron diffraction. We observed single-shot diffraction patterns from a 160 nm Al foil using the 5.4 MeV electron beam from the Gun Test Facility at the Stanford Linear Accelerator. Excellent agreement with simulations suggests that single-shot diffraction experiments with a time resolution approaching 100 fs are possible.

  3. Virtual mask digital electron beam lithography

    DOEpatents

    Baylor, L.R.; Thomas, C.E.; Voelkl, E.; Moore, J.A.; Simpson, M.L.; Paulus, M.J.

    1999-04-06

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made. 5 figs.

  4. Virtual mask digital electron beam lithography

    DOEpatents

    Baylor, Larry R.; Thomas, Clarence E.; Voelkl, Edgar; Moore, James A.; Simpson, Michael L.; Paulus, Michael J.

    1999-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  5. Beam Charge Asymmetry Monitors for Low Intensity Continuous Electron Beam

    SciTech Connect

    Jean-Claude Denard; Arne P. Freyberger; Youri Sharabian

    2001-05-01

    Experimental Hall B at Jefferson Lab typically operates with CW electron beam currents in the range of 1 - 10 nA. This low beam current coupled with a 30 Hz flip rate of the beam helicity required the development of new devices to measure and monitor the beam charge asymmetry. We have developed four independent devices with sufficient bandwidth for readout at 30 Hz rate: a synchrotron light monitor (SLM), two backward optical transition radiation monitors (OTR) and a Faraday Cup. Photomultipliers operating in current mode provided the readout of the light from the SLM and the OTRs, while high bandwidth electronics provided the readout from the Faraday cup. Using {approximately}6 helicity pairs, we measured the beam charge asymmetry to a statistically accuracy which is better than 0.05%. We present the results from the successful operation of these devices during the fall 2000 physics program. The reliability and the bandwidth of the devices allowed us to control the gain on the source laser by means of a feedback loop.

  6. Characterization of electron contamination in megavoltage photon beams

    SciTech Connect

    Medina, Antonio Lopez; Teijeiro, Antonio; Garcia, Juan; Esperon, Jorge; Terron, J. Antonio; Ruiz, Diego P.; Carrion, Maria C.

    2005-05-01

    The purpose of the present study is to characterize electron contamination in photon beams in different clinical situations. Variations with field size, beam modifier (tray, shaping block) and source-surface distance (SSD) were studied. Percentage depth dose measurements with and without a purging magnet and replacing the air by helium were performed to identify the two electron sources that are clearly differentiated: air and treatment head. Previous analytical methods were used to fit the measured data, exploring the validity of these models. Electrons generated in the treatment head are more energetic and more important for larger field sizes, shorter SSD, and greater depths. This difference is much more noticeable for the 18 MV beam than for the 6 MV beam. If a tray is used as beam modifier, electron contamination increases, but the energy of these electrons is similar to that of electrons coming from the treatment head. Electron contamination could be fitted to a modified exponential curve. For machine modeling in a treatment planning system, setting SSD at 90 cm for input data could reduce errors for most isocentric treatments, because they will be delivered for SSD ranging from 80 to 100 cm. For very small field sizes, air-generated electrons must be considered independently, because of their different energetic spectrum and dosimetric influence.

  7. A study on the radiation resistance of CdWO4 thin-film scintillators deposited by using an electron-beam physical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Park, Seyong; Yoon, Young Soo

    2016-09-01

    In this paper, we report the first successful fabrication of CdWO4 thin film scintillators deposited on quartz glass substrates by using an electron-beam physical vapor deposition method. The films were dense, uniform, and crack-free. CdWO4 thin-film samples of varying thicknesses were investigated by using structural and optical characterization techniques. An optimized thickness for the CdWO4 thin-film scintillators was discovered. The scintillation and the optical properties were found to depend strongly on the annealing process. The annealing process resulted in thin films with a distinct crystal structure and with improved transparency and scintillation properties. For potential applications in gamma-ray energy storage systems, photoluminescence measurements were performed using gamma rays at a dose rate of 10 kGy h-1.

  8. Electronic speckle pattern interferometry using vortex beams.

    PubMed

    Restrepo, René; Uribe-Patarroyo, Néstor; Belenguer, Tomás

    2011-12-01

    We show that it is possible to perform electronic speckle pattern interferometry (ESPI) using, for the first time to our knowledge, vortex beams as the reference beam. The technique we propose is easy to implement, and the advantages obtained are, among others, environmental stability, lower processing time, and the possibility to switch between traditional ESPI and spiral ESPI. The experimental results clearly show the advantages of using the proposed technique for deformation studies of complex structures.

  9. Electron-beam welder circle generator

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1980-01-01

    Generator rotates electron beam and performs other convenient functions during welding process. Device eliminates time-consuming techniques relying heavily on operator's skill. Welding speed is varied with frequency selector, and amplitudes of x- and y-axes are varied by adjusting phase shift. Both high and low-range adjustments are available, and each axis can be separately controlled. Crosshair is provided for set-up and beam alinements.

  10. Interfacial Properties of Electron Beam Cured Composites

    SciTech Connect

    Eberle, C.C.

    1999-12-30

    The objectives of the CRADA are to: Confirm that fiber-resin adhesion is responsible for the observed poor shear properties; Determine the mechanism(s) responsible for poor adhesion between carbon fibers and epoxy resins after e-beam curing; Develop and evaluate resin systems and fiber treatments to improve the properties of e-beam cured, carbon-fiber-reinforced composites; and Develop refined methods for processing e-beam cured, carbon-fiber-reinforced composites.

  11. Linac Coherent Light Source Electron Beam Collimation

    SciTech Connect

    Wu, J.; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Schmerge, J.F.; /SLAC

    2007-04-27

    This paper describes the design and simulation of the electron beam collimation system in the Linac Coherent Light Source (LCLS). Dark current is expected from the gun and some of the accelerating cavities. Particle tracking of the expected dark current through the entire LCLS linac, from gun through FEL undulator, is used to estimate final particle extent in the undulator as well as expected beam loss at each collimator or aperture restriction. A table of collimators and aperture restrictions is listed along with halo particle loss results, which includes an estimate of average continuous beam power lost. In addition, the transverse wakefield alignment tolerances are calculated for each collimator.

  12. Pulsed electron beam emission in space

    NASA Technical Reports Server (NTRS)

    Neubert, T.; Hawkins, J. G.; Reeves, G. D; Banks, P. M.; Bush, R. I

    1988-01-01

    During the Spacelab-2 mission of July 1985, electron beams (1 keV, 50-150 mA) pulsed at ELF and VLF frequencies were emitted from the Space Shuttle Orbiter. The wave fields generated by the beam were monitored by a Plasma Diagnostics Package which was released as a free-flying subsatellite during a six hour period. Measurements of the Orbiter potential and the return current during beam emissions were obtained from a Charge and Current Probe mounted in the payload bay.

  13. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    SciTech Connect

    Adeyemi, Adeleke H.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  14. LOW EMITTANCE ELECTRON BEAMS FOR THE RHIC ELECTRON COOLER

    SciTech Connect

    KEWISCH,J.; CHANG, X.

    2007-06-25

    An electron cooler, based on an Energy Recovery Linac (ERL) is under development for the Relativistic Heavy Ion Collider (RMIC) at Brookhaven National Laboratory. This will be the first electron cooler operating at high energy with bunched beams. In order to achieve sufficient cooling of the ion beams the electron have to have a charge of 5 nC and a normalized emittance less than 4 {mu}. This paper presents the progress in optimizing the injector and the emittance improvements from shaping the charge distribution in the bunch.

  15. Prototype electron lens set-up for the Tevatron beam-beam compensation

    SciTech Connect

    Crawford, C.; Saewert, G.; Santucci, J.; Sery, A.; Shemyakin, A.; Shiltsev, V.; Wildman, D.; Aleksandrov, A.; Arapov, L.; Kuznetsov, G.; Logachov, P.; Sharapa, A.; Skarbo, B.; Sukhina, B.

    1999-05-17

    A prototype "electron lens" for the Tevatron beam-beam compensation project is commissioned at Fermilab. We de-scribe the set-up, report results of the first tests of the elec-tron beam, and discuss future plans.

  16. Method of achieving ultra-wideband true-time-delay beam steering for active electronically scanned arrays

    DOEpatents

    Loui, Hung; Brock, Billy C.

    2016-10-25

    The various embodiments presented herein relate to beam steering an array antenna by modifying intermediate frequency (IF) waveforms prior to conversion to RF signals. For each channel, a direct digital synthesis (DDS) component can be utilized to generate a waveform or modify amplitude, timing and phase of a waveform relative to another waveform, whereby the generation/modification can be performed prior to the IF input port of a mixer on each channel. A local oscillator (LO) signal can be utilized to commonly drive each of the mixers. After conversion at the RF output port of each of the mixers, each RF signal can be transmitted by a respective antenna element in the antenna array. Initiation of transmission of each RF signal can be performed simultaneously at each antenna. The process can be reversed during receive whereby timing, amplitude, and phase of the received can be modified digitally post ADC conversion.

  17. Electron beam induced growth of tin whiskers

    SciTech Connect

    Vasko, A. C.; Karpov, V. G.; Warrell, G. R.; Parsai, E. I.; Shvydka, Diana

    2015-09-28

    We have investigated the influence of electron irradiation on tin whisker growth. Sputtered tin samples exposed to electron beam of 6 MeV energy exhibited fast whisker growth, while control samples did not grow any whiskers. The statistics of e-beam induced whiskers was found to follow the log-normal distribution. The observed accelerated whisker growth is attributed to electrostatic effects due to charges trapped in an insulating substrate. These results offer promise for establishing whisker-related accelerated life testing protocols.

  18. Cryogenic electron beam induced chemical etching.

    PubMed

    Martin, Aiden A; Toth, Milos

    2014-11-12

    Cryogenic cooling is used to enable efficient, gas-mediated electron beam induced etching (EBIE) in cases where the etch rate is negligible at room and elevated substrate temperatures. The process is demonstrated using nitrogen trifluoride (NF3) as the etch precursor, and Si, SiO2, SiC, and Si3N4 as the materials volatilized by an electron beam. Cryogenic cooling broadens the range of precursors that can be used for EBIE, and enables high-resolution, deterministic etching of materials that are volatilized spontaneously by conventional etch precursors as demonstrated here by NF3 and XeF2 EBIE of silicon. PMID:25333843

  19. Effect of Crystal Defects on Minority Carrier Diffusion Length in 6H SiC Measured Using the Electron Beam Induced Current Method

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood

    1997-01-01

    We report values of minority carrier diffusion length in n-type 6H SiC measured using a planar Electron Beam Induced Current (EBIC) method. Values of hole diffusion length in defect free regions of n-type 6H SiC, with a doping concentration of 1.7El7 1/cu cm, ranged from 1.46 microns to 0.68 microns. We next introduce a novel variation of the planar method used above. This 'planar mapping' technique measured diffusion length along a linescan creating a map of diffusion length versus position. This map is then overlaid onto the EBIC image of the corresponding linescan, allowing direct visualization of the effect of defects on minority carrier diffusion length. Measurements of the above n-type 6H SiC resulted in values of hole diffusion length ranging from 1.2 micron in defect free regions to below 0.1 gm at the center of large defects. In addition, measurements on p-type 6H SiC resulted in electron diffusion lengths ranging from 1.42 micron to 0.8 micron.

  20. The electron-beam FGT process

    NASA Astrophysics Data System (ADS)

    Frank, Norman W.; Hirano, Shinichi

    The electron-beam process is one of the most effective methods of removing SO 2 and NO x from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO 2 and NO x to ammonium sulfate and ammonium-sulfate nitrate. These salts may then be collected from the flue gas by means of such conventional collectors as an elecrtostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: 1) The process simultaneously removes SO 2 and NO x from flue gas at high efficiency levels; 2) It is a dry process which is easily controlled and has excellent load-following capability; 3) Stock-gas reheat is not required; 4) The pollutants are converted into a salable agricultural fertilizer; 5) The process has low capital and operating cost requirements. Test results from the most recent pilot plant in Indianapolis, Indiana, will be discussed showing various characteristics of process control, temperature relationships, radiation dosage, pollution removals at various conditions, and by-product collection usage evaluations. The results will show what will be required in future commercial installations and what accelerator equipment will be required, including various configuration of irradiation zone process design. The economic evaluation will include studies of cost sensitivity and by-product pay back. Various designs for large scale plants indicate the process will have a place in the future clean-up of environmental pollutants.

  1. Electron beams in research and technology

    NASA Astrophysics Data System (ADS)

    Mehnert, R.

    1995-11-01

    Fast electrons lose their energy by inelastic collisions with electrons of target molecules forming secondary electrons and excited molecules. Coulomb interaction of secondary electrons with valence electrons of neighboring molecules leads to the formation of radical cations, thermalized electrons, excited molecular states and radicals. The primary reactive species initiate chemical reactions in the materials irradiated. Polymer modifications using accelerated electrons such as cross-linking of cable insulation, tubes, pipes and moldings, vulcanization of elastomers, grafting of polymer surfaces, processing of foamed plastics and heat shrinkable materials have gained wide industrial acceptance. A steadily growing electron beam technology is curing of paints, lacquers, printing inks and functional coatings. Electron beam processing offers high productivity, the possibility to treat the materials at normal temperature and pressure, excellent process control and clean production conditions. On an industrial scale the most important application of fast electrons is curing of 100% reactive monomer/prepolymer systems. Mainly acrylates and epoxides are used to formulate functional coatings on substrates such as paper, foil, wood, fibre board and high pressure laminates. A survey is given about the reaction mechanism of curing, the characterization of cured coatings, and of some industrial application.

  2. Electron beam melting of advanced materials and structures

    NASA Astrophysics Data System (ADS)

    Mahale, Tushar Ramkrishna

    Layered manufacturing has for long been used for the fabrication of non-functional parts using polymer-based processes. Developments in laser beam and electron beam welding technologies and their adoption to layered manufacturing has made it possible to fabricate high-density functional parts in metal irrespective of the level of complexity. The Electron Beam Melting (EBM) process by Arcam AB is one such layered manufacturing process that utilizes a focused electron beam to process metal powder, layer by layer, in a vacuum environment. Research conducted as part of this body of work looks into the development of both bulk materials in the form of metal alloys and ceramic metal-matrix composites as well as the development of tunable mechanical & thermal metamaterials. Simulation models to approximate electron beam melting were suggested using commercial finite element analysis packages. A framework was developed based on the finite difference method to simulate layered manufacturing using Arcam AB's electron beam melting process. The outputs from the simulation data could be used to better understand the local melting, grain evolution, composition and internal stresses within freeform-fabricated metal parts.

  3. Plasma and ion barrier for electron beam spot stability

    SciTech Connect

    Kwan, T.J.T.; Snell, C.M.

    1999-04-01

    The concept of a self-biased target to spatially confine the ions generated by the bombardment of intense electron beams on bremsstrahlung conversion targets has been predicted by computer simulation and further verified by experiments at the Integrated Test Stand for DARHT at Los Alamos National Laboratory. This technical article reports an alternative method of containing the plasmas and ions from the bremsstrahlung conversion target if the energy density of the electron beam is below a certain threshold. With the proposed changes of the electron beam parameters of the second axis of DARHT, the authors are able to show that a thin (0.5 mm) metallic barrier such as pure beryllium, or boron carbide with desirable thermal properties, is sufficiently transparent to the 20 MeV DARHT beam and at the same time able to confine the ions between the target and the barrier foil. The temperature rise in the foil due to energy deposited by the electron beam is expected to be below the melting point of the materials for the first three pulses. More important, they have shown in their time dependent particle-in-cell simulations that the deployment of a barrier situated 1 to 2 cm away from the converter target can achieve the ion confinement needed for the stability of the electron beam spot.

  4. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  5. Gamma Putty dosimetric studies in electron beam.

    PubMed

    Gloi, Aime M

    2016-01-01

    Traditionally, lead has been used for field shaping in megavoltage electron beams in radiation therapy. In this study, we analyze the dosimetric parameters of a nontoxic, high atomic number (Z = 83), bismuth-loaded material called Gamma Putty that is malleable and can be easily molded to any desired shape. First, we placed an ionization chamber at different depths in a solid water phantom under a Gamma Putty shield of thickness (t = 0, 3, 5, 10, 15, 20, and 25 mm, respectively) and measured the ionizing radiation on the central axis (CAX) for electron beam ranging in energies from 6 to 20 MeV. Next, we investigated the relationship between the relative ionization (RI) measured at a fixed depth for several Gamma Putty shield at different cutout diameters ranging from 2 to 5 cm for various beam energies and derived an exponential fitting equation for clinical purposes. The dose profiles along the CAX show that bremsstrahlung dominates for Gamma Putty thickness >15 mm. For high-energy beams (12-20 MeV) and all Gamma Putty thicknesses up to 25 mm, RI below 5% could not be achieved due to the strong bremsstrahlung component. However, Gamma Putty is a very suitable material for reducing the transmission factor below 5% and protecting underlying normal tissues for low-energy electron beams (6-9 MeV). PMID:27651563

  6. Gamma Putty dosimetric studies in electron beam

    PubMed Central

    Gloi, Aime M.

    2016-01-01

    Traditionally, lead has been used for field shaping in megavoltage electron beams in radiation therapy. In this study, we analyze the dosimetric parameters of a nontoxic, high atomic number (Z = 83), bismuth-loaded material called Gamma Putty that is malleable and can be easily molded to any desired shape. First, we placed an ionization chamber at different depths in a solid water phantom under a Gamma Putty shield of thickness (t = 0, 3, 5, 10, 15, 20, and 25 mm, respectively) and measured the ionizing radiation on the central axis (CAX) for electron beam ranging in energies from 6 to 20 MeV. Next, we investigated the relationship between the relative ionization (RI) measured at a fixed depth for several Gamma Putty shield at different cutout diameters ranging from 2 to 5 cm for various beam energies and derived an exponential fitting equation for clinical purposes. The dose profiles along the CAX show that bremsstrahlung dominates for Gamma Putty thickness >15 mm. For high-energy beams (12–20 MeV) and all Gamma Putty thicknesses up to 25 mm, RI below 5% could not be achieved due to the strong bremsstrahlung component. However, Gamma Putty is a very suitable material for reducing the transmission factor below 5% and protecting underlying normal tissues for low-energy electron beams (6–9 MeV).

  7. Gamma Putty dosimetric studies in electron beam

    PubMed Central

    Gloi, Aime M.

    2016-01-01

    Traditionally, lead has been used for field shaping in megavoltage electron beams in radiation therapy. In this study, we analyze the dosimetric parameters of a nontoxic, high atomic number (Z = 83), bismuth-loaded material called Gamma Putty that is malleable and can be easily molded to any desired shape. First, we placed an ionization chamber at different depths in a solid water phantom under a Gamma Putty shield of thickness (t = 0, 3, 5, 10, 15, 20, and 25 mm, respectively) and measured the ionizing radiation on the central axis (CAX) for electron beam ranging in energies from 6 to 20 MeV. Next, we investigated the relationship between the relative ionization (RI) measured at a fixed depth for several Gamma Putty shield at different cutout diameters ranging from 2 to 5 cm for various beam energies and derived an exponential fitting equation for clinical purposes. The dose profiles along the CAX show that bremsstrahlung dominates for Gamma Putty thickness >15 mm. For high-energy beams (12–20 MeV) and all Gamma Putty thicknesses up to 25 mm, RI below 5% could not be achieved due to the strong bremsstrahlung component. However, Gamma Putty is a very suitable material for reducing the transmission factor below 5% and protecting underlying normal tissues for low-energy electron beams (6–9 MeV). PMID:27651563

  8. Precision fast kickers for kiloampere electron beams

    SciTech Connect

    Caporaso, G.J.; Chen, Y.J.; Weir, J.T.

    1999-10-06

    These kickers will be used to make fast dipoles and quadrupoles which are driven by sharp risetime pulsers to provide precision beam manipulations for high current kA electron beams. This technology will be used on the 2nd axis of the DARHT linac at LANL. It will be used to provide 4 micropulses of pulse width 20 to 120 nsec. selected from a 2 {micro}sec., 2kA, 20MeV macropulse. The fast pulsers will have amplitude modulation capability to compensate for beam-induced steering effects and other slow beam centroid motion to within the bandwidth of the kicker system. Scaling laws derived from theory will be presented along with extensive experimental data obtained on the test bed ETA-II.

  9. Electron gun jitter effects on beam bunching

    SciTech Connect

    Liu, M. S.; Iqbal, M.

    2014-02-15

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  10. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  11. Auroral electron beams near the magnetic equator

    NASA Technical Reports Server (NTRS)

    Mcilwain, C. E.

    1975-01-01

    Intense beams of electrons traveling parallel to the local magnetic field have been observed at a magnetic latitude of 11 deg and a radial distance of 6.6 earth radii. The distribution function for electrons traveling within 8 deg of the field line direction is typically flat or slightly rising up to a break point beyond which it decreases as inversely as the 5-10th power of v. The energy corresponding to the break point velocity is usually between 0.1 and 10 keV. These beams are found to occur on closed field lines at the inner edge of the plasma sheet and thus at the root of the earth's magnetotail. Beams with break point energies greater than 2 keV seem to occur only within the first 10 minutes after the onset of hot plasma injection associated with a magnetospheric substorm.

  12. Toward a cold electron beam in the Fermilab's Electron Cooler

    SciTech Connect

    Vitali S. Tupikov et al.

    2004-05-12

    Fermilab is developing a high-energy electron cooling system to cool 8.9-GeV/c antiprotons in the Recycler ring [1]. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through 20-m long cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 0.1 mrad, the cooling section will be immersed into a solenoidal field of 50-150G. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of beam quality measurements in the cooler prototype.

  13. SLC polarized beam source electron optics design

    SciTech Connect

    Eppley, K.R.; Lavine, T.L.; Early, R.A.; Herrmannsfeldt, W.B.; Miller, R.H.; Schultz, D.C.; Spencer, C.M.; Yeremian, A.D.

    1991-05-01

    This paper describes the design of the beam-line from the polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10{sup {minus}11}-Torr-range pressure for adequate quantum efficiency and longevity. The photocathode is illuminated by 3-nsec-long laser pulses. The quality of the optics for the 160-kV beam is crucial since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line consists of a differential pumping region isolated by a pair of valves. Focusing is provided by a pair of Helmholtz coils and by several iron-encased solenoidal lenses. Our optics design is based on beam transport simulations using 2{1/2}-D particle-in-cell codes to model the gun and to solve the fully-relativistic time-dependent equations of motion in three dimensions for electrons in the presence of azimuthally symmetric electromagnetic fields. 6 refs., 6 figs.

  14. Electron Beam Applications in Chemical Processing

    NASA Astrophysics Data System (ADS)

    Martin, D.; Dragusin, M.; Radoiu, M.; Moraru, R.; Oproiu, C.; Cojocaru, G.; Margarit, C.

    1997-05-01

    Our recent results in the field of polymeric materials obtained by electron beam irradiation are presented. Two types of polymeric flocculants and three hydrogels are described. The effects of radiation absorbed dose and chemical composition of the irradiated solutions upon the polymeric materials characteristics are discussed. The required absorbed dose levels to produce the polymeric flocculants are in the range of 0.4 kGy to 1 kGy, and 4 kGy to 12 kGy for hydrogels. Experimental results obtained by testing polymeric flocculants with waste water from food industry are given. Plymeric materials processing was developed on a pilot small scale level with a 0.7 kW and 5.5 MeV linac built in Romania. A new facility for application of combined electron beam and microwave irradiation in the field of polymeric materials preparation is presently under investigation. Preliminary results have demonstrated that some polymeric flocculants characteristics, such as linearity, were improved by using combined electron beam and microwave irradiation. Also, the absorbed dose levels decreases in comparison with those required when only electron beam irradiation was used.

  15. The CMS Beam Halo Monitor electronics

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Dabrowski, A. E.; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D. P.; Stifter, K.

    2016-02-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data.

  16. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  17. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  18. A study of electron beam-induced conductivity in resists.

    PubMed

    Hwu, J J; Joy, D C

    1999-01-01

    The charging of polymeric resist materials during electron beam irradiation leads to significant problems during imaging and lithography processes. Charging occurs because of charge deposition in the polymer and charge generation/trapping due to formation of electron-hole pairs in the dielectric. The presence of such charge also results in the phenomena of electron beam-induced conductivity (EBIC). Electron beam-induced conductivity data have been obtained for three commercial e-beam resists under a variety of dose rate and temperature conditions. From the observed values of induced conductivity under varying conditions significant information about the generation of electron-hole pair and the transport of charge in the resist can be obtained. Three electron beam resists, EBR900, ZEP7000, and PBS are examined by an external bias method. The difference in resist chemistry is considered to play the role in the initial state EBIC behaviors among three resists even though the way that it affects the behaviors is not clear. A comparison of the power consumption comparison is proposed as a measure to give a preliminary estimate of the carrier concentration and carrier drift velocity differences among the resists. A simple single trap model with constant activation energy is proposed and provides good agreement with experiment.

  19. Liquid chromatography-particle beam electron ionization mass spectrometry method for analysis of botanical extracts: evaluation of ephedrine alkaloids in standard reference materials.

    PubMed

    Castro, Joaudimir; Krishna, M V Balarama; Marcus, R Kenneth

    2010-01-01

    The preliminary validation of a high-performance liquid chromatography particle beam mass spectrometry method (HPLC-PB/MS) with electron impact ionization source for analysis of botanical extracts is presented. The LC-PB/MS system was evaluated for the analysis of ephedrine alkaloids using ephedra-containing National Institute of Standards and Technology dietary supplement standard reference materials (SRMs) 3241 Ephedra Sinica Stapf Native Extract and 3242 Ephedra Sinica Stapf Commercial Extract. The ephedrine alkaloids were separated by reversed-phase chromatography using a phenyl column at room temperature. A linear gradient method with a mobile phase composition varying from 5:95 [MeOH:0.1% trifluoroacetic acid (TFA) in water] to 20:80 (MeOH:0.1% TFA in water) at a flow rate of 1.0 ml/min, with an analysis time of less than 20 min, was used. The source block temperature was evaluated to determine the optimal operating conditions by monitoring the intensities and fragmentation patterns of the ephedrine alkaloids. Ephedrine and N-methylephedrine were taken as a representative of the test alkaloids. The LODs on the sub-nanogram level were achieved, with ephedrine, pseudoephedrine, and methylephedrine in the SRMs quantified by a standard addition method with recoveries of > or = 86% and RSDs of < or = 14% (n = 3).

  20. Electron beam targets vapor-phase contaminants

    SciTech Connect

    1995-07-01

    Electron-beam bombardment has long been known to break down complex molecules. Zapit Technology, Inc. (Santa Clara, California) is in the process of commercializing a treatment system, tested in conjunction with the Lawrence Livermore National Laboratory, which uses electron beams to destroy vapor-phase toxic wastes. Drawing relatively low-power beams, the system is said to offer a low-cost way to oxidize chlorinated and non-chlorinated organic compounds. The unit has been developed to treat vapor-phase organic wastes at temperatures less than 400 F, and at ambient pressures. Candidates streams include process of gases, and organics collected during soil-vapor extraction or stripped from wastewater and groundwater streams. Inside the Zapit treatment unit, a continuous stream of ionizing electrons is generated by a cathode and is accelerated to nearly the speed of light through a metal grid. As the pollutant stream passes through the reaction chamber, it is bombarded by this electron beam. In the process, complex organic molecules are broken down into water, carbon dioxide, and, if chlorinated compounds are present, hydrochloric acid. During groundwater treatment, an air stripper converts dissolved organics in a vapor phase, which is passed through the electron-beam unit. The offgases from the Zapit unit are passed through an acid scrubber (using sodium hydroxide) to neutralize any byproduct HCl and through a carbon-adsorption unit for final polishing. Industrial offgases can be fed directly into the Zapit treatment unit, without the intermediate air stripper. Electrical power requirements are relatively low.

  1. Principle of Terahertz Radiation Using Electron Beams

    NASA Astrophysics Data System (ADS)

    Shin, Young-Min; Choi, Eun-Mi; Park, Gun-Sik

    This part introduces high power THz coherent radiation sources that take advantage of free electron beams. Following a description of characteristics on vacuum electron devices (VEDs), fundamental radiation principle of beam-wave interaction is explained with specifying their types and applications. Conventional high power microwave VEDs such as klystrons, TWTs, gyrotrons, and FELs are described in their technical perspectives with brief overview of device characteristics. Addressing technical challenges on up-conversion-to-THz of conventional approach, this part explores the state-of-the-art micro-VEDs considered for modern THz applications such as communication, imaging, sensing, spectroscopy, and so on, which are combined with modern microfabrication technologies. Novel MEMS techniques to microminiaturize RF components such as electron gun and RF interaction circuits are also presented.

  2. MULTIPLE ELECTRON BEAM ION PUMP AND SOURCE

    DOEpatents

    Ellis, R.E.

    1962-02-27

    A vacuum pump is designed which operates by ionizing incoming air and by withdrawing the ions from the system by means of electrical fields. The apparatus comprises a cylindrical housing communicable with the vessel to be evacuated and having a thin wall section in one end. Suitable coils provide a longitudinal magnetic field within the cylinder. A broad cathode and an anode structure is provided to establish a plurality of adjacent electron beams which are parallel to the cylinder axis. Electron reflector means are provided so that each of the beams constitutes a PIG or reflex discharge. Such structure provides a large region in which incoming gas molecules may be ionized by electron bombardment. A charged electrode assembly accelerates the ions through the thin window, thereby removing the gas from the system. The invention may also be utilized as a highly efficient ion source. (AEC)

  3. Probing the magnetsophere with artificial electron beams

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1981-01-01

    An analysis is conducted of the University of Minnesota Electron Echo experiments, which so far have included five sounding rocket experiments. The concept of the Echo experiment is to inject electron beam pulses from a rocket into the ionosphere at altitudes in the range from 100 to 300 km. The electrons move to the conjugate hemisphere following magnetic field lines and return on neighboring field lines to the neighborhood of the rocket where the pulses may be detected and analyzed. Attention is given to the detection and analysis of echoes, the structure of echoes, and the Echo V experiment. The Echo V experiment showed clearly that detection of remote echo beams by atmospheric fluorescence using low light level TV system is not a viable technique. A future experiment is to use throw-away detectors for direct remote echo detection.

  4. Beam injection improvement for electron cyclotron resonance charge breeders

    SciTech Connect

    Lamy, T.; Angot, J.; Sortais, P.; Thuillier, T.

    2012-02-15

    The injection of a 1+ beam into an electron cyclotron resonance (ECR) charge breeder is classically performed through a grounded tube placed on its axis at the injection side. This tube presents various disadvantages for the operation of an ECR charge breeder. First experiments without a grounded tube show a better use of the microwave power and a better charge breeding efficiency. The optical acceptance of the charge breeder without decelerating tube allows the injection of high intensity 1+ ion beams at high energy, allowing metals sputtering inside the ion source. The use of this method for refractory metallic ion beams production is evaluated.

  5. High energy electron beams for ceramic joining

    SciTech Connect

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E.; Clifford, J.R.

    1994-12-31

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si{sub 3}N{sub 4}-Si{sub 3}N{sub 4} with gold-nickel braze. The bonding mechanism appears to be a thin silicide layer.

  6. Electron Accelerators for Radioactive Ion Beams

    SciTech Connect

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  7. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    SciTech Connect

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  8. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring.

    PubMed

    Kumar, Pradeep; Ghodke, A D; Karnewar, A K; Holikatti, A C; Yadav, S; Puntambekar, T A; Singh, G; Singh, P

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  9. Investigation of electromagnetic interactions by means of electron--photon beams from proton accelerators

    SciTech Connect

    Govorkov, B.B.

    1980-09-01

    The methods for obtaining electron and photon beams from high-energy proton accelerators are considered. The results of investigations of the electromagnetic interactions of elementary particles obtained by means of these beams are discussed.

  10. Suppression of shot noise and spontaneous radiation in electron beams

    SciTech Connect

    Litvinenko,V.

    2009-08-23

    Shot noise in the electron beam distribution is the main source of noise in high-gain FEL amplifiers, which may affect applications ranging from single- and multi-stage HGHG FELs to an FEL amplifier for coherent electron cooling. This noise also imposes a fundamental limit of about 10{sup 6} on FEL gain, after which SASE FELs saturate. There are several advantages in strongly suppressing this shot noise in the electron beam, and the corresponding spontaneous radiation. For more than a half-century, a traditional passive method has been used successfully in practical low-energy microwave electronic devices to suppress shot noise. Recently, it was proposed for this purpose in FELs. However, being passive, the method has some significant limitations and is hardly suitable for the highly inhomogeneous beams of modern high-gain FELs. I present a novel active method of suppressing, by many orders-of-magnitude, the shot noise in relativistic electron beams. I give a theoretical description of the process, and detail its fundamental limitation.

  11. Intense Laser - Electron Beam Interactions

    SciTech Connect

    Cowan, T.; Ditmire, T.; LeSage, G.

    2000-02-25

    Applicants seeking a Certificate of Compliance for an Independent Spent Fuel Storage Installation (ISFSI) cask must evaluate the consequences of a handling accident resulting in a drop or tip-over of the cask onto a concrete storage pad. As a result, analytical modeling approaches that might be used to evaluate the impact of cylindrical containers onto concrete pads are needed. One such approach, described and benchmarked in NUREG/CR-6608,{sup 1} consists of a dynamic finite element analysis using a concrete material model available in DYNA3D{sup 2} and in LS-DYNA,{sup 3} together with a method for post-processing the analysis results to calculate the deceleration of a solid steel billet when subjected to a drop or tip-over onto a concrete storage pad. The analysis approach described in NUREG/CR-6608 gives a good correlation of analysis and test results. The material model used for the concrete in the analyses in NUREG/CR-6608 is, however, somewhat troublesome to use, requiring a number of material constants which are difficult to obtain. Because of this a simpler approach, which adequately evaluates the impact of cylindrical containers onto concrete pads, is sought. Since finite element modeling of metals, and in particular carbon and stainless steel, is routinely and accurately accomplished with a number of finite element codes, the current task involves a literature search for and a discussion of available concrete models used in finite element codes. The goal is to find a balance between a concrete material model with a limited number of required material parameters which are readily obtainable, and a more complex model which is capable of accurately representing the complex behavior of the concrete storage pad under impact conditions. The purpose of this effort is to find the simplest possible way to analytically represent the storage cask deceleration during a cask tip-over or a cask drop onto a concrete storage pad. This report is divided into three sections

  12. Progress with Tevatron Electron Lens Head-On Beam-Beam Compensation

    SciTech Connect

    Valishev, A.; Kuznetsov, G.; Shiltsev, V.; Stancari, G.; Zhang, X.

    2010-05-19

    Tevatron electron lenses have been successfully used to mitigate bunch-to-bunch differences caused by longrange beam-beam interactions. For this purpose, the electron beam with uniform transverse density distribution was used. Another planned application of the electron lens is the suppression of tune spread due to head-on beam-beam collisions. For this purpose, the transverse distribution of the E{sup -} beam must be matched to that of the antiproton beam. In 2009, the Gaussian profile electron gun was installed in one of the Tevatron electron lenses. We report on the first experiments with non-linear beam-beam compensation. Discussed topics include measurement and control of the betatron tune spread, importance of the beam alignment and stability, and effect of electron lens on the antiproton beam lifetime.

  13. Pulsed electron beams for flue-gas treatment

    NASA Astrophysics Data System (ADS)

    Mesyats, Gennady A.; Novoselov, Yuri N.; Kuznetsov, D. L.

    1995-03-01

    The development of industrial society creates serious threats to the safe existence of the biosphere, including man. Cleaning air from toxic exhausts becomes therefore one of the challenges. The global problem of air cleaning can be solved in a number of ways. We restrict our attention to one of the possible methods, the use of pulsed electron beams to clean sulfur oxides from the flue gases of power plants. Irradiation of flue gases by the increased density of pulsed electron beams permits a charges, excited particle concentration that is optical for the removal of specific toxic impurities. We present the most important results of these experiments.

  14. Electron motion of an annular beam in a low-magnetic-field drift tube

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Tan, Weibing; Sun, Jun; Ye, Hu; Hu, Chengbao

    2014-12-01

    Foil-less diodes and annular electron beams are widely adopted in high power microwave systems, and the electron beam is usually constrained by a guiding magnetic field to pass through the downstream drift tube and beam-wave interaction region. The electron beam, however, will present obvious radial motion when a low magnetic field is adopted, which will prominently influence the beam transmission and beam-wave interaction. This paper focuses on the radial motion of the electron beam in a low-magnetic-field drift tube. A spatial period is demonstrated with methods of theoretical analysis, single-particle calculations, particle-in-cell simulations, and experiments. The results obtained with different methods show good coherency, indicating that the real spatial period of the electron beam can be predicted by a simple formula which is based on single-particle motion regardless of space-charge effect.

  15. Electron motion of an annular beam in a low-magnetic-field drift tube

    SciTech Connect

    Wu, Ping; Ye, Hu; Tan, Weibing; Sun, Jun; Hu, Chengbao

    2014-12-15

    Foil-less diodes and annular electron beams are widely adopted in high power microwave systems, and the electron beam is usually constrained by a guiding magnetic field to pass through the downstream drift tube and beam-wave interaction region. The electron beam, however, will present obvious radial motion when a low magnetic field is adopted, which will prominently influence the beam transmission and beam-wave interaction. This paper focuses on the radial motion of the electron beam in a low-magnetic-field drift tube. A spatial period is demonstrated with methods of theoretical analysis, single-particle calculations, particle-in-cell simulations, and experiments. The results obtained with different methods show good coherency, indicating that the real spatial period of the electron beam can be predicted by a simple formula which is based on single-particle motion regardless of space-charge effect.

  16. Influence of Electron Beam Pulses on Hα Line Formation

    NASA Astrophysics Data System (ADS)

    Varady, M.; Kašparova, J.; Karlický, M.; Heinzel, P.; Moravec, Z.

    In this contribution we present results of our simulations focused on determination of spectroscopic signs of the presence of non--thermal electrons in the formation region of Hα using three mutually communicating codes. The originally autonomous and highly specialised codes model three simultaneously acting processes in flares: the precipitation and energy dissipation of the non-thermal power--law electron beams in the solar atmosphere, the hydrodynamic response of the atmosphere to the energy deposited by the beams, and the radiative transfer in chromosphere and photosphere which determines the hydrogen line profiles and their time evolution. The results show possible existence of a new diagnostic method on presence of electron beams in the formation region of the Hα line.

  17. Disabling CNT Electronic Devices by Use of Electron Beams

    NASA Technical Reports Server (NTRS)

    Petkov, Mihail

    2008-01-01

    Bombardment with tightly focused electron beams has been suggested as a means of electrically disabling selected individual carbon-nanotubes (CNTs) in electronic devices. Evidence in support of the suggestion was obtained in an experiment in which a CNT field-effect transistor was disabled (see figure) by focusing a 1-keV electron beam on a CNT that served as the active channel of a field-effect transistor (FET). Such bombardment could be useful in the manufacture of nonvolatile-memory circuits containing CNT FETs. Ultimately, in order to obtain the best electronic performances in CNT FETs and other electronic devices, it will be necessary to fabricate the devices such that each one contains only a single CNT as an active element. At present, this is difficult because there is no way to grow a single CNT at a specific location and with a specific orientation. Instead, the common practice is to build CNTs into electronic devices by relying on spatial distribution to bridge contacts. This practice results in some devices containing no CNTs and some devices containing more than one CNT. Thus, CNT FETs have statistically distributed electronic characteristics (including switching voltages, gains, and mixtures of metallic and semiconducting CNTs). According to the suggestion, by using a 1-keV electron beam (e.g., a beam from a scanning electron microscope), a particular nanotube could be rendered electrically dysfunctional. This procedure could be repeated as many times as necessary on different CNTs in a device until all of the excess CNTs in the device had been disabled, leaving only one CNT as an active element (e.g., as FET channel). The physical mechanism through which a CNT becomes electrically disabled is not yet understood. On one hand, data in the literature show that electron kinetic energy >86 keV is needed to cause displacement damage in a CNT. On the other hand, inasmuch as a 1-keV beam focused on a small spot (typically a few tens of nanometers wide

  18. Beam Dynamics Considerations in Electron Ion Colliders

    NASA Astrophysics Data System (ADS)

    Krafft, Geoffrey

    2015-04-01

    The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  19. Compact two-beam push-pull free electron laser

    DOEpatents

    Hutton, Andrew

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  20. Electron beam nanosculpting of Kirkendall oxide nanochannels.

    PubMed

    El Mel, Abdel-Aziz; Molina-Luna, Leopoldo; Buffière, Marie; Tessier, Pierre-Yves; Du, Ke; Choi, Chang-Hwan; Kleebe, Hans-Joachim; Konstantinidis, Stephanos; Bittencourt, Carla; Snyders, Rony

    2014-02-25

    The nanomanipulation of metal nanoparticles inside oxide nanotubes, synthesized by means of the Kirkendall effect, is demonstrated. In this strategy, a focused electron beam, extracted from a transmission electron microscope source, is used to site-selectively heat the oxide material in order to generate and steer a metal ion diffusion flux inside the nanochannels. The metal ion flux generated inside the tube is a consequence of the reduction of the oxide phase occurring upon exposure to the e-beam. We further show that the directional migration of the metal ions inside the nanotubes can be achieved by locally tuning the chemistry and the morphology of the channel at the nanoscale. This allows sculpting organized metal nanoparticles inside the nanotubes with various sizes, shapes, and periodicities. This nanomanipulation technique is very promising since it enables creating unique nanostructures that, at present, cannot be produced by an alternative classical synthesis route.

  1. Multiple Electron Stripping of Heavy Ion Beams

    SciTech Connect

    D. Mueller; L. Grisham; I. Kaganovich; R. L. Watson; V. Horvat; K. E. Zaharakis; Y. Peng

    2002-06-25

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters.

  2. Beam shuttering interferometer and method

    DOEpatents

    Deason, Vance A.; Lassahn, Gordon D.

    1993-01-01

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  3. Beam shuttering interferometer and method

    DOEpatents

    Deason, V.A.; Lassahn, G.D.

    1993-07-27

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  4. Effect of selenium doping on structural and optical properties of SnS:Se thin films by electron beam evaporation method

    NASA Astrophysics Data System (ADS)

    Henry, Johnson; Mohanraj, Kannusamy; Kannan, Selvaraj; Barathan, Seshathri; Sivakumar, Ganesan

    2013-01-01

    SnS nanoparticle has been synthesized initially using SnCl2 · 2H2O and Na2S · XH2O, in the presence of TEA by precipitation method and XRD and FTIR techniques have been used for characterization of the sample. Powder X-ray diffraction studies revealed the particle size to be 48 nm and the pattern represents polycrystalline herzenbergite orthorhombic crystal structure of SnS. The FTIR result also confirmed the SnS at 2354 cm-1. Secondly SnS:Se thin films have been deposited on glass substrates by electron beam evaporation technique and the films were annealed at 100 °C and 200 °C for 1 h. The unannealed films are amorphous in nature and the annealed film shows that a sharp crystalline peak is due to SnS. Also a peak is shown at 2θ = 14.39°, which is due to characteristic peak of SnSe2, established by their XRD patterns. The band gap energy (Eg) was determined from transmission spectra and an optical band gap of Eg varies from 1.6 eV to 1.79 eV.

  5. Electron-beam distillation of natural polymers

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Makarov, I. E.; Ershov, B. G.

    2014-01-01

    Pyrolysis of cellulose, lignin, and chitin may be upgraded by the use of an electron-beam irradiation. The radiation-thermal destruction mode does more probable production of liquid low-molecular-weight products instead of solid pyrolitic oligomers. Furans, methoxyphenols, and pyridines are dominant products of high-temperature radiolysis of cellulose, lignin, and chitin, respectively. The mechanism of chain destruction of natural polymers is considered.

  6. Electron Beam Welding of Gear Wheels by Splitted Beam

    NASA Astrophysics Data System (ADS)

    Dřímal, Daniel

    2014-06-01

    This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max.. In case of common welding procedure, cracks were formed in the weld, initiated by spiking in the weld root. Crack formation was prevented by the use of an interlocking joint with a rounded recess and suitable welding parameters, eliminating crack initiation by spiking in the weld root. Minimisation of the welding distortions was achieved by the application of tack welding with simultaneous splitting of one beam into two parts in the opposite sections of circumferential face weld attained on the principle of a new system of controlled deflection with digital scanning of the beam. This welding procedure assured that the weldment temperature after welding would not be higher than 400 °C. Thus, this procedure allowed achieving the final run-outs in the critical point of gearwheels within the maximum range up to 0.04 mm, which is acceptable for the given application. Accurate optical measurements did not reveal any changes in the teeth dimensions.

  7. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  8. Experimental Studies of Compensation of Beam-Beam Effects with Tevatron Electron Lenses

    SciTech Connect

    Shiltsev, V.; Alexahin, Yu.; Bishofberger, Kip; Kamerdzhiev, V.; Parkhomchuk, V.; Reva, V.; Solyak, N.; Wildman, D.; Zhang, X.-L.; Zimmermann, F.; /Fermilab /Los Alamos /Novosibirsk, IYF /CERN

    2008-02-01

    Applying the space-charge forces of a low-energy electron beam can lead to a significant improvement of the beam-particle lifetime limit arising from the beam-beam interaction in a high-energy collider [1]. In this article we present the results of various beam experiments with 'electron lenses', novel instruments developed for the beam-beam compensation at the Tevatron, which collides 980-GeV proton and antiproton beams. We study the dependencies of the particle betatron tunes on the electron beam current, energy and position; we explore the effects of electron-beam imperfections and noises; and we quantify the improvements of the high-energy beam intensity and the collider luminosity lifetime obtained by the action of the Tevatron Electron Lenses.

  9. Experimental studies of compensation of beam beam effects with Tevatron electron lenses

    NASA Astrophysics Data System (ADS)

    Shiltsev, V.; Alexahin, Y.; Bishofberger, K.; Kamerdzhiev, V.; Parkhomchuk, V.; Reva, V.; Solyak, N.; Wildman, D.; Zhang, X.-L.; Zimmermann, F.

    2008-04-01

    Applying the space-charge forces of a low-energy electron beam can lead to a significant improvement of the beam-particle lifetime limit arising from the beam-beam interaction in a high-energy collider [1]. In this paper, we present the results of various beam experiments with 'electron lenses', novel instruments developed for the beam-beam compensation at the Tevatron, which collides 980 GeV proton and antiproton beams. We study the dependencies of the particle betatron tunes on the electron beam current, energy and position; we explore the effects of electron-beam imperfections and noises; and we quantify the improvements of the high-energy beam intensity and the collider luminosity lifetime obtained by the action of the Tevatron electron lenses.

  10. High energy electron beam joining of ceramic components

    SciTech Connect

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.

    1997-07-01

    High strength, hermetic braze joints between ceramic components have been produced using high energy electron beams. With a penetration depth into a typical ceramic of {approximately}1 cm for a 10 MeV electron beam, this method provides the capability for rapid, transient brazing operations where temperature control of critical components is essential. The method deposits energy directly into a buried joint, allowing otherwise inaccessible interfaces to be brazed. Because of transient heating, higher thermal conductivity, lower heat capacity, and lower melting temperature of braze metals relative to the ceramic materials, a pulsed high power beam can melt a braze metal without producing excessive ceramic temperatures. We have demonstrated the feasibility of this process related to ceramic coupons as well as ceramic and glass tubes. The transient thermal response was predicted, using as input the energy absorption predicted from the coupled electron-photon transport analysis. The joining experiments were conducted with an RF Linac accelerator at 10-13 MV. The repetition rate of the pulsed beam was varied between 8 and 120 Hz, the average beam current was varied between 8 and 120 microamps, and the power was varied up to 1.5 kW. These beam parameters gave a beam power density between 0.2 to 2 kW/cm{sup 2}. The duration of the joining runs varied from 5 to 600 sec. Joining experiments have provided high strength between alumina - alumina and alumina - cermet joints in cylindrical geometry. These joints provided good hermetic seals. A series of tests was conducted to determine the minimum beam power and exposure time for producing, a hermetic seal.

  11. Transverse profile imager for ultrabright electron beams

    NASA Astrophysics Data System (ADS)

    Ischebeck, Rasmus; Prat, Eduard; Thominet, Vincent; Ozkan Loch, Cigdem

    2015-08-01

    A transverse profile imager for ultrabright electron beams is presented, which overcomes resolution issues in present designs by observing the Scheimpflug imaging condition as well as the Snell-Descartes law of refraction in the scintillating crystal. Coherent optical transition radiation emitted by highly compressed electron bunches on the surface of the crystal is directed away from the camera, allowing to use the monitor for profile measurements of electron bunches suitable for X-ray free electron lasers. The optical design has been verified by ray tracing simulations, and the angular dependency of the resolution has been verified experimentally. An instrument according to the presented design principles has been used in the SwissFEL Injector Test Facility, and different scintillator materials have been tested. Measurements in conjunction with a transverse deflecting radiofrequency structure and an array of quadrupole magnets demonstrate a normalized slice emittance of 25 nm in the core of a 30 fC electron beam at a pulse length of 10 ps and a particle energy of 230 MeV.

  12. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1985-01-01

    Electron beam experiments using rocketborne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes have been observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2-, 4-, or 8-keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher-energy electrons led the lower-energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. An alternative interpretation is briefly examined, and its relative merit in describing the observations is evaluated. The injection process is discussed in some detail as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection for both processes.

  13. Probe measurements of the electron distribution function in an electron-beam-produced ytterbium plasma

    SciTech Connect

    Bobrova, A. A.; Dubinov, A. E.; Esin, M. I.; Zolotov, S. V.; Maksimov, A. N.; Selemir, V. D.; Sidorov, I. I.; Shubin, A. Yu.

    2011-01-15

    A nonequilibrium anisotropic plasma produced by an electron beam in the residual air with a low content of ytterbium vapor was investigated by the probe method. It is found that a minor (at a level of a few ppm) admixture of ytterbium to low-pressure air substantially modifies the electron energy distribution function (EEDF): the main peak corresponding to thermal electrons broadens, and new peaks appear. It is shown that the observed change in the EEDF is caused by the low ionization energy of ytterbium, due to which one beam electron can ionize several ytterbium atoms. The new peaks in the EEDF correspond to the final energies of a beam electron after each subsequent ionizing collision with ytterbium atoms.

  14. Method for splitting low power laser beams

    SciTech Connect

    Pierscionek, B.K. )

    1990-04-01

    A new method for producing parallel rays from a laser beam using a cylindrical lens and pinholes is presented. This method can produce a greater number of emergent rays than using a {ital beam} {ital splitter}.

  15. RHIC electron lens beam transport system design considerations

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2010-10-01

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP10. Electron beam transport system is one of important subsystem, which is used to transport electron beam from electron gun side to collector side. This system should be able to change beam size inside superconducting magnet and control beam position with 5 mm in horizontal and vertical plane. Some other design considerations for this beam transport system are also reported in this paper. The head-on beam-beam effect is one of important nonlinear source in storage ring and linear colliders, which have limited the luminosity improvement of many colliders, such as SppS, Tevatron and RHIC. In order to enhance the performance of colliders, beam-beam effects can be compensated with direct space charge compensation, indirect space charge compensation or betatron phase cancellation scheme. Like other colliders, indirect space charge compensation scheme (Electron Lens) was also proposed for Relativistic Heavy Ion Collider (RHIC) beam-beam compensation at Brookhaven National Laboratory. The two similar electron lenses are located in IR10 between the DX magnets. One RHIC electron lens consists of one DC electron gun, one superconducting magnet, one electron collector and beam transport system.

  16. Optimizing the beam-beam alignment in an electron lens using bremsstrahlung

    SciTech Connect

    Montag, C.; Fischer, W.; Gassner, D.; Thieberger, P.; Haug, E.

    2010-05-23

    Installation of electron lenses for the purpose of head-on beam-beam compensation is foreseen at RHIC. To optimize the relative alignment of the electron lens beam with the circulating proton (or ion) beam, photon detectors will be installed to measure the bremsstrahlung generated by momentum transfer from protons to electrons. We present the detector layout and simulations of the bremsstrahlung signal as function of beam offset and crossing angle.

  17. Shaping single walled nanotubes with an electron beam

    SciTech Connect

    Zobelli, A.; Gloter, A.; Colliex, C.; Ewels, C. P.

    2008-01-15

    We show that electron irradiation in a dedicated scanning transmission microscope can be used as a nano-electron-lithography technique allowing the controlled reshaping of single walled carbon and boron nitride nanotubes. The required irradiation conditions have been optimized on the basis of total knock-on cross sections calculated within density functional based methods. It is then possible to induce morphological modifications, such as a local change of the tube chirality, by sequentially removing several tens of atoms with a nanometrical spatial resolution. We show that electron beam heating effects are limited. Thus, electron beam induced vacancy migration and nucleation might be excluded. These irradiation techniques could open new opportunities for nanoengineering a large variety of nanostructured materials.

  18. Experimental demonstration of colliding beam lifetime improvement by electron lenses

    SciTech Connect

    Shiltsev, Vladimir; Alexahin, Yuri; Kamerdzhiev, Vsevolod; Kuznetsov, Gennady; Zhang, Xiao-Long; Bishofberger, Kip; /Los Alamos

    2007-10-01

    We report successful application of space-charge forces of a low-energy electron beam for improvement of particle lifetime determined by beam-beam interaction in high-energy collider. In our experiments, an electron lens, a novel instrument developed for the beam-beam compensation, was set on a 980-GeV proton bunch in the Tevatron proton-antiproton collider. The proton bunch losses due to its interaction with antiproton beam were reduced by a factor of 2 when the electron lens was operating. We describe the principle of electron lens operation and present experimental results.

  19. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  20. Adaptive robust control of longitudinal and transverse electron beam profiles

    NASA Astrophysics Data System (ADS)

    Rezaeizadeh, Amin; Schilcher, Thomas; Smith, Roy S.

    2016-05-01

    Feedback control of the longitudinal and transverse electron beam profiles are considered to be critical for beam control in accelerators. In the feedback scheme, the longitudinal or transverse beam profile is measured and compared to a desired profile to give an error estimate. The error is then used to act on the appropriate actuators to correct the profile. The role of the transverse feedback is to steer the beam in a particular trajectory, known as the "orbit." The common approach for orbit correction is based on approximately inverting the response matrix, and in the best case, involves regulating or filtering the singular values. In the current contribution, a more systematic and structured way of handling orbit correction is introduced giving robustness against uncertainties in the response matrix. Moreover, the input bounds are treated to avoid violating the limits of the corrector currents. The concept of the robust orbit correction has been successfully tested at the SwissFEL injector test facility. In the SwissFEL machine, a photo-injector laser system extracts electrons from a cathode and a similar robust control method is developed for the longitudinal feedback control of the current profile of the electron bunch. The method manipulates the angles of the crystals in the laser system to produce a desired charge distribution over the electron bunch length. This approach paves the way towards automation of laser pulse stacking.

  1. Bunch length effects in the beam-beam compensation with an electron lens

    SciTech Connect

    Fischer, W.; Luo, Y.; Montag, C.

    2010-02-25

    Electron lenses for the head-on beam-beam compensation are under construction at the Relativistic Heavy Ion Collider. The bunch length is of the same order as the {beta}-function at the interaction point, and a proton passing through another proton bunch experiences a substantial phase shift which modifies the beam-beam interaction. We review the effect of the bunch length in the single pass beam-beam interaction, apply the same analysis to a proton passing through a long electron lens, and study the single pass beam-beam compensation with long bunches. We also discuss the beam-beam compensation of the electron beam in an electron-ion collider ring.

  2. Specimen Behavior in the Electron Beam.

    PubMed

    Glaeser, R M

    2016-01-01

    It has long been known that cryo-EM specimens are severely damaged by a level of electron exposure that is much lower than what is needed to obtain high-resolution images from single macromolecules. Perhaps less well appreciated in the cryo-EM literature, the vitreous ice in which samples are suspended is equally sensitivity to radiation damage. This chapter provides a review of several fundamental topics such as inelastic scattering of electrons, radiation chemistry, and radiation biology, which-together-can help one to understand why radiation damage occurs so "easily." This chapter also addresses the issue of beam-induced motion that occurs at even lower levels of electron exposure. While specimen charging may be a contributor to this motion, it is argued that both radiation-induced relief of preexisting stress and damage-induced generation of additional stress may be the dominant causes of radiation-induced movement. PMID:27572722

  3. Designing a beam transport system for RHIC's electron lens

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Raparia, D.

    2011-03-28

    We designed two electron lenses to apply head-on beam-beam compensation for RHIC; they will be installed near IP10. The electron-beam transport system is an important subsystem of the entire electron-lens system. Electrons are transported from the electron gun to the main solenoid and further to the collector. The system must allow for changes of the electron beam size inside the superconducting magnet, and for changes of the electron position by 5 mm in the horizontal- and vertical-planes.

  4. Miniature electron microscope beam column optics

    NASA Astrophysics Data System (ADS)

    Loyd, Jody Stuart

    This investigation is in the area of electrostatic lens design with the overarching goal of contributing to the creation of a miniaturized scanning electron microscope (SEM) for use in mineralogical analysis or detection of signs of life on the surface of Mars. Such an instrument could also have application in the exploration of Earth's moon, planetary moons, asteroids, or comets. Other embodiments could include tabletop or field portable SEMs for use on Earth. The scope of this research is in the design of a beam column that attains focusing, demagnification, and aberration control within the smallest achievable package. The goals of planetary exploration and of spaceflight in general impose severe constraints on the instrument's mass and electrical power consumption, while favoring a robust design of small size and high rigidity that is also simple to align. To meet these requirements a design using electrostatic lenses was favored because of the lower power requirement and mass of electrostatic versus magnetic lenses, their relatively simple construction, as well as inherently easier shielding from extraneous fields. In modeling the lens field, a hybrid of a Boundary Element Method (BEM) and a Fourier series solution was employed, whereby an initial solution from the BEM is used to derive the bounding potential of a cylindrical subdomain for the subsequent Fourier series solution. The approach is applicable to many problems in physics and combines the inherent precision of this series solution with the flexibility of BEM to describe practical, non-idealized electrode shapes. The resulting lens field in the Fourier series subdomain is of higher precision, thereby allowing smaller errors in subsequent calculations of electron ray paths. The effects of aberrations are thus easier to observe in tracing non-paraxial rays. A significant speed increase in tracing rays is also observed. The modeling technique has been validated by reproducing example ray-traces through

  5. Direct Measurement of Electron Beam Induced Currents in p-type Silicon

    SciTech Connect

    Han, M.G.; Zhu, Y.; Sasaki, K.; Kato, T.; Fisher, C.A.J.; Hirayama, T.

    2010-08-01

    A new method for measuring electron beam induced currents (EBICs) in p-type silicon using a transmission electron microscope (TEM) with a high-precision tungsten probe is presented. Current-voltage (I-V) curves obtained under various electron-beam illumination conditions are found to depend strongly on the current density of the incoming electron beam and the relative distance of the beam from the point of probe contact, consistent with a buildup of excess electrons around the contact. This setup provides a new experimental approach for studying minority carrier transport in semiconductors on the nanometer scale.

  6. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    SciTech Connect

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  7. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  8. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  9. Electron beam-switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

    1979-12-11

    A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  10. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    NASA Technical Reports Server (NTRS)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  11. Electron Beam Welding to Join Gamma Titanium Aluminide Articles

    NASA Technical Reports Server (NTRS)

    Kelly, Thomas Joseph (Inventor)

    2008-01-01

    A method is provided for welding two gamma titanium aluminide articles together. The method includes preheating the two articles to a welding temperature of from about 1700 F to about 2100 F, thereafter electron beam welding the two articles together at the welding temperature and in a welding vacuum to form a welded structure, and thereafter annealing the welded structure at an annealing temperature of from about 1800 F to about 2200 F, to form a joined structure.

  12. Purification of Niobium by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Sankar, M.; Mirji, K. V.; Prasad, V. V. Satya; Baligidad, R. G.; Gokhale, A. A.

    2016-06-01

    Pure niobium metal, produced by alumino-thermic reduction of niobium oxide, contains various impurities which need to be reduced to acceptable levels to obtain aerospace grade purity. In the present work, an attempt has been made to refine niobium metals by electron beam drip melting technique to achieve purity confirming to the ASTM standard. Input power to the electron gun and melt rate were varied to observe their combined effect on extend of refining and loss of niobium. Electron beam (EB) melting is shown to reduce alkali metals, trace elements and interstitial impurities well below the specified limits. The reduction in the impurities during EB melting is attributed to evaporation and degassing due to the combined effect of high vacuum and high melt surface temperature. The % removal of interstitial impurities is essentially a function of melt rate and input power. As the melt rate decreases or input power increases, the impurity levels in the solidified niobium ingot decrease. The EB refining process is also accompanied by considerable amount of niobium loss, which is attributed to evaporation of pure niobium and niobium sub-oxide. Like other impurities, Nb loss increases with decreasing melt rate or increase in input power.

  13. PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

  14. Electron beam ion source and electron beam ion trap (invited)a)

    NASA Astrophysics Data System (ADS)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  15. Characterization of electron-beam recorded microdomain patterns on the nonpolar surface of LiNbO{sub 3} crystal by nondestructive methods

    SciTech Connect

    Kokhanchik, L. S.; Gainutdinov, R. V.; Volk, T. R.; Mishina, E. D.; Lavrov, S. D.

    2014-10-06

    We report on characterization of the electron-beam fabricated planar domain gratings on the nonpolar (Y-) surface of LiNbO{sub 3} crystals performed with the use of AFM and confocal second harmonic generation (SHG) microscopy. The dependence of domain formation on the irradiation conditions was investigated. The relation of domain thicknesses to the electron penetration depth is experimentally proved. In particular, the possibility of controlling the thickness of planar domains by varying acceleration electron-beam voltages is demonstrated. The observed specificity of SHG is analyzed in the framework of the Kleinman-Boyd theory [G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968)] and Uesu approach [Kaneshiro et al., J. Appl. Phys. 104, 054112 (2008); Kaneshiro et al., J. Opt. Soc. Am. B 27, 888 (2010)] extended in our case to reflection geometry. The calculations performed predict the dependence of SHG conversion efficiency η on the domain thickness, which is in a qualitative agreement with the experiment. It is shown that planar domains on top of the nonpolar surface always enhance the value of η as compared with the bare surface.

  16. Radial Moment Calculations of Coupled Electron-Photon Beams

    SciTech Connect

    FRANKE,BRIAN C.; LARSEN,EDWARD W.

    2000-07-19

    The authors consider the steady-state transport of normally incident pencil beams of radiation in slabs of material. A method has been developed for determining the exact radial moments of 3-D beams of radiation as a function of depth into the slab, by solving systems of 1-D transport equations. They implement these radial moment equations in the ONEBFP discrete ordinates code and simulate energy-dependent, coupled electron-photon beams using CEPXS-generated cross sections. Modified P{sub N} synthetic acceleration is employed to speed up the iterative convergence of the 1-D charged particle calculations. For high-energy photon beams, a hybrid Monte Carlo/discrete ordinates method is examined. They demonstrate the efficiency of the calculations and make comparisons with 3-D Monte Carlo calculations. Thus, by solving 1-D transport equations, they obtain realistic multidimensional information concerning the broadening of electron-photon beams. This information is relevant to fields such as industrial radiography, medical imaging, radiation oncology, particle accelerators, and lasers.

  17. Electron-beam-based sources of ultrashort x-ray pulses

    SciTech Connect

    Zholents, A. )

    2010-01-01

    A review of various methods for generation of ultrashort X-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons are considered.

  18. Two-Beam Instability in Electron Cooling

    SciTech Connect

    Burov, Alexey V.; /Fermilab

    2006-04-01

    The drift motion of cooling electrons makes them able to respond to transverse perturbations of a cooled ion beam. This response may lead to dipole or quadrupole transverse instabilities at specific longitudinal wave numbers. While the dipole instabilities can be suppressed by a combination of the Landau damping, machine impedance, and the active damper, the quadrupole and higher order modes can lead to either emittance growth, or a lifetime degradation, or both. The growth rates of these instabilities are strongly determined by the machine x-y coupling. Thus, tuning out of the coupling resonance and/or reduction of the machine coupling can be an efficient remedy for these instabilities.

  19. Suprathermal electrons produced by beam-plasma-discharge

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.

    1982-01-01

    Experiments conducted with a low energy plasma lens, HARP, in the electron beam of the large vacuum chamber at Johnson Space Center indicate that an enhanced population of 50 to 300 volt electrons appear when the beam goes into the Beam-Plasma Discharge (BPD) mode. Below the BPD instability the electron distribution appears to be characterized as non-energized single particle scattering and energy loss. At 100 cm from the beam core in the BPD mode the fluxes parallel to the beam are reduced by a factor of 20 with respect to the fluxes at 25 cm. Some evidence for isotropy near the beam core is presented.

  20. Nanometer-scale placement in electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Ferrera, Juan

    2000-12-01

    Electron-beam lithography is capable of high-resolution lithographic pattern generation (down to 10 nm or below). However, for conventional e-beam lithography, pattern- placement accuracy is inferior to resolution. Despite significant efforts to improve pattern placement, a limit is being approached. The placement capability of conventional e-beam tools is insufficient to fabricate narrow-band optical filters and lasers, which require sub-micrometer-pitch gratings with a high degree of spatial coherence. Moreover, it is widely recognized that placement accuracy will not be sufficient for future semiconductor device generations, with minimum feature sizes below 100 nm. In electron-beam lithography, an electromagnetic deflection system is used in conjunction with a laser-interferometer-controlled stage to generate high-resolution patterns over large areas. Placement errors arise because the laser interferometer monitors the stage position, but the e-beam can independently drift relative to the stage. Moreover, the laser interferometer can itself drift during exposure. To overcome this fundamental limitation, the method of spatial phase-locked electron-beam lithography has been proposed. The beam position is referenced to a high- fidelity grid, exposed by interference lithography, on the substrate surface. In this method, pattern-placement performance depends upon the accuracy of the reference grid and the precision with which patterns can be locked to the grid. The grid must be well characterized to serve as a reliable fiducial. This document describes work done to characterize grids generated by interference lithography. A theoretical model was developed to describe the spatial-phase progression of interferometric gratings and grids. The accuracy of the interference lithography apparatus was found to be limited by substrate mounting errors and uncertainty in setting the geometrical parameters that determine the angle of interference. Experimental measurements were

  1. Experimental and simulation studies of beam-beam compensation with Tevatron electron lenses

    SciTech Connect

    Kamerdzhiev, V.; Alexahin, Y.; Shiltsev, V.; Valishev, A.; Zhang, X.L.; Shatilov, D.; /Novosibirsk, IYF

    2007-06-01

    Initially the Tevatron Electron Lenses (TELs) were intended for compensation of the beam-beam effect on the antiproton beam [1]. Owing to recent increase in the number of antiprotons and reduction in their emittance, it is the proton beam now that suffers most from the beam-beam effect [2]. We present results of beam studies, compare them with the results of computer simulations using LIFETRAC code and discuss possibilities of further improvements of the Beam-Beam Compensation efficiency in the Tevatron.

  2. Electron Beam Technology for Environmental Pollution Control.

    PubMed

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs.

  3. The Electron Beam Semiconductor (EBS) amplifier

    NASA Astrophysics Data System (ADS)

    True, R. M.; Baxendale, J. F.

    1980-07-01

    The Electron Beam Semiconductor (EBS) concept has existed for three decades; but only within the last decade has an active, well-defined program been underway to develop devices that can operate as high-power radio frequency(RF) amplifiers, fast risetime switches, and current and voltage pulse amplifiers. This report discusses the test procedures, data and results of reliability testing of RF and video pulse EBS amplifiers at Electronics Research and Development Command (ERADCOM), Fort Monmouth, New Jersey. Also, the experimental analysis of the series connected diode EBS device is described in detail. Finally, the report concludes with a discussion of the state-of-the-art of EBS and future trends of the technology.

  4. The electron beam instability and turbulence theories

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Extensions and practical applications of recent observations of electron beam-plasma interactions are investigated for the range of turbulence theories, extending from quasi-linear to strong turbulence theory, which have been developed on the basis of the Langmuir-wave excitation model. Electron foreshock observations have indicated that linear instability theory must encompass the excitation of waves whose frequencies are substantially different from those of the plasma frequency; the point of departure for such extensions should be a quantitative test of existing theories, and particle simulations conducive to such testing are presented. A step-by-step addition of physical considerations is used in such simulation studies to differentiate among nonlinear turbulence effects.

  5. Focused electron beam induced deposition: A perspective

    PubMed Central

    Porrati, Fabrizio; Schwalb, Christian; Winhold, Marcel; Sachser, Roland; Dukic, Maja; Adams, Jonathan; Fantner, Georg

    2012-01-01

    Summary Background: Focused electron beam induced deposition (FEBID) is a direct-writing technique with nanometer resolution, which has received strongly increasing attention within the last decade. In FEBID a precursor previously adsorbed on a substrate surface is dissociated in the focus of an electron beam. After 20 years of continuous development FEBID has reached a stage at which this technique is now particularly attractive for several areas in both, basic and applied research. The present topical review addresses selected examples that highlight this development in the areas of charge-transport regimes in nanogranular metals close to an insulator-to-metal transition, the use of these materials for strain- and magnetic-field sensing, and the prospect of extending FEBID to multicomponent systems, such as binary alloys and intermetallic compounds with cooperative ground states. Results: After a brief introduction to the technique, recent work concerning FEBID of Pt–Si alloys and (hard-magnetic) Co–Pt intermetallic compounds on the nanometer scale is reviewed. The growth process in the presence of two precursors, whose flux is independently controlled, is analyzed within a continuum model of FEBID that employs rate equations. Predictions are made for the tunability of the composition of the Co–Pt system by simply changing the dwell time of the electron beam during the writing process. The charge-transport regimes of nanogranular metals are reviewed next with a focus on recent theoretical advancements in the field. As a case study the transport properties of Pt–C nanogranular FEBID structures are discussed. It is shown that by means of a post-growth electron-irradiation treatment the electronic intergrain-coupling strength can be continuously tuned over a wide range. This provides unique access to the transport properties of this material close to the insulator-to-metal transition. In the last part of the review, recent developments in mechanical strain

  6. Electron Beam Technology for Environmental Pollution Control.

    PubMed

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs. PMID:27620188

  7. Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

    PubMed Central

    Szkudlarek, Aleksandra; Rodrigues Vaz, Alfredo; Zhang, Yucheng; Rudkowski, Andrzej; Kapusta, Czesław; Erni, Rolf; Moshkalev, Stanislav

    2015-01-01

    Summary In this paper we study in detail the post-growth annealing of a copper-containing material deposited with focused electron beam induced deposition (FEBID). The organometallic precursor Cu(II)(hfac)2 was used for deposition and the results were compared to that of compared to earlier experiments with (hfac)Cu(I)(VTMS) and (hfac)Cu(I)(DMB). Transmission electron microscopy revealed the deposition of amorphous material from Cu(II)(hfac)2. In contrast, as-deposited material from (hfac)Cu(I)(VTMS) and (hfac)Cu(I)(DMB) was nano-composite with Cu nanocrystals dispersed in a carbonaceous matrix. After annealing at around 150–200 °C all deposits showed the formation of pure Cu nanocrystals at the outer surface of the initial deposit due to the migration of Cu atoms from the carbonaceous matrix containing the elements carbon, oxygen, and fluorine. Post-irradiation of deposits with 200 keV electrons in a transmission electron microscope favored the formation of Cu nanocrystals within the carbonaceous matrix of freestanding rods and suppressed the formation on their surface. Electrical four-point measurements on FEBID lines from Cu(hfac)2 showed five orders of magnitude improvement in conductivity when being annealed conventionally and by laser-induced heating in the scanning electron microscope chamber. PMID:26425404

  8. Generation and application of bessel beams in electron microscopy.

    PubMed

    Grillo, Vincenzo; Harris, Jérémie; Gazzadi, Gian Carlo; Balboni, Roberto; Mafakheri, Erfan; Dennis, Mark R; Frabboni, Stefano; Boyd, Robert W; Karimi, Ebrahim

    2016-07-01

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. PMID:27203186

  9. The Physics and Applications of High Brightness Electron Beams

    NASA Astrophysics Data System (ADS)

    Palumbo, Luigi; Rosenzweig, J.; Serafini, Luca

    2007-09-01

    .]. -- Working Group 1. Summary of working group 1 on electron sources / M. Ferrario and G. Gatti. Design and RF measurements of an X-band accelerating structure for the SPARC project / D. Alesini ... [et al.]. Mitigation of RF gun breakdown by removal of tuning rods in high field regions / A.M. Cook... [et al.]. Measurements of quantum efficiency of Mg films produced by pulsed laser ablation deposition for application to bright electron sources / G. Gatti ... [et al.]. The S-band 1.6 cell RF gun correlated energy spread dependence on Pi and 0 mode relative amplitude / F. Schmerge ... [et al.]. RF gun photo-emission model for metal cathodes including time dependent emission / J.F. Schmerge ... [et al.]. Superconducting photocathodes / J. Smedley ... [et al.]. -- Working Group 2. Summary of Working Group 2: diagnostics and beam manipulation / G. Travish. Observation of coherent edge radiation emitted by a 100 Femtosecond compressed electron beam / G. Andonian, M, Dunning, E. Hemsing, J. B. Rosenzweig ... [et al.]. PARMELA simulations for PITZ: first machine studies and interpretation of measurements / M. Boscolo ... [et al.]. The LCLS single-shot relative bunch length monitor system / M.P. Dunning ... [et al.]. Beam shaping and permanent magnet quadrupole focusing with applications to the plasma wakefield accelerator / R.J. England ... [et al.]. Commissioning of the SPARC movable emittance meter and its first operation at PITZ / D. Filippetto... [et al.]. Experimental testing of dynamically optimized photoelectron beams / J.B. Rosenzweig ... [et al.]. Synchronization between the laser and electron beam in a photocathode RF gun / A. Sakumi ... [et al.]. Method of bunch radiation photochronography with 10 Femtosecond and less resolution / A. Tron and I. Merinov -- Working Group 3. New challenges in theory and modeling-summary for working group 3. L. Giannessi. Resonant modes in a 1.6 cells RF gun / M. Ferrario and C. Ronsivalle. Emittance degradation due to wake fields in a high

  10. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    NASA Astrophysics Data System (ADS)

    Teng, Chen; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  11. High power, electron-beam induced switching in diamond

    SciTech Connect

    Scarpetti, R.D.; Hofer, W.W.; Kania, D.R.; Schoenbach, K.H.; Joshi, R.P.; Molina, C.; Brinkmann, R.P.

    1993-07-01

    We are developing a high voltage, high average power, electron-beam controlled diamond switch that could significantly impact high power solid-state electronics in industrial and defense applications. An electron-beam controlled thin-film diamond could switch well over 100 kW average power at MHz frequencies, greater than 5 kV, and with high efficiency. This performance is due to the excellent thermal and electronic properties of diamond, the high efficiency achieved with electron beam control, and the demonstrated effectiveness of microchannel cooling. Our electron beam penetration depth measurements agree with our Monte-Carlo calculations. We have not observed electron beam damage in diamond for beam energies up to 150 keV. In this paper we describe our experimental and calculational results and research objectives.

  12. The tracking of interfaces in an electron-beam vaporizer

    SciTech Connect

    Westerberg, K.W.; McClelland, M.A.; Finlayson, B.A.

    1993-03-01

    A numerical analysis is made of the material and energy flow in an electron beam vaporizer. In this system the energy from an electron beam heats metal confined in a water-cooled crucible. Metal is vaporized from a liquid pool circulating in a shell of its own solid. A modified Galerkin finite element method is used to calculate the flow and temperature fields along with the interface locations. The mesh is parameterized with spines which stretch and pivot as the phase boundaries move. The discretized equations are arranged in an ``arrow`` matrix and solved using the Newton-Raphson method. Results are given for an experimental aluminum vaporizer. The effects of buoyancy and capillary driven flow are included along with the surface contributions of vapor thrust, latent heat, thermal radiation, and crucible contact resistance.

  13. Electron-beam diagnostic for space-charge measurement of an ion beam

    SciTech Connect

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2005-02-01

    A nonperturbing electron-beam diagnostic system for measuring the charge distribution of an ion beam is developed for heavy ion fusion beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron-beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the neutralized transport experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.

  14. Electron beam diagnostic for space charge measurement of an ion beam

    SciTech Connect

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2004-09-25

    A non-perturbing electron beam diagnostic system for measuring the charge distribution of an ion beam is developed for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the Neutralized Transport Experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.

  15. Propagation of electron and positron beams in long, dense plasmas

    NASA Astrophysics Data System (ADS)

    Muggli, Patric; Blue, Brent; Clayton, Chris; Decker, Franz-Joseph; Hogan, Mark; Hunag, Chengkun; Joshi, Chan; Katsouleas, Tom; Lu, Wei; Mori, Warren; O'Connell, Caollionn; Siemann, Robert; Walz, Dieter; Zhou, Miaomiao

    2008-04-01

    Electron beams with density larger than the plasma density can propagate through plasmas without significant emittance growth. The electron beam expels the plasma electrons from the bunch volume and propagate in a pure, uniform ion column. In contrast, positron beams attract plasma electrons that flow through the positron bunch. As a result the plasma focusing force is nonlinear, a charge halo forms around the bunch, and the bunch emittance grows. After some distance into the plasma, the bunch emittance reaches an approximately constant value, and the beam and the plasma focusing force reach a steady state. Experimental results obtained with electron and positron bunches, as well as numerical simulation results will be presented.

  16. Validity of closed periodic magnetic focusing for sheet electron beams

    SciTech Connect

    Zhao Ding

    2009-11-15

    Theoretical analyses and numerical calculations have demonstrated that a closed periodic cusped magnetic (PCM) field can effectively confine a sheet electron beam in two transverse directions (i.e., in the wide and narrow dimensions, simultaneously) for stable long distance transport in which the sizes of the beam cross section are set by referring to the present state of the art. Moreover, the method for matching the transverse magnetic focusing force and the inner space charge force in the wide dimension of the sheet electron beam is given, and the longitudinal periodic length and the cross sectional shape of the closed PCM focusing structure can be determined. Calculations also demonstrate that the optimum focusing state can be attained by adjusting the wide dimension on the transverse section of the closed PCM structure independently. The work presented in this paper indicates that the closed PCM structure is very promising for the confinement of the sheet electron beam, and it can be helpful for guiding practical engineering design.

  17. Electron Beam Diagnostics using Coherent Cherenkov Radiation in Aerogel

    SciTech Connect

    Tikhoplav, R.; Knyazik, A.; Rosenzweig, J. B.; Ruelas, M.

    2009-01-22

    The use of coherent Cherenkov radiation as a diagnostic tool for longitudinal distribution of an electron beam is studied in this paper. Coherent Cherenkov radiation is produced in an aerogel with an index of refraction close to unity. An aerogel spectral properties are experimentally studied and analyzed. This method will be employed for the helical IFEL bunching experiment at Neptune linear accelerator facility at UCLA.

  18. Electron beam spot size stabilization for radiographic application

    SciTech Connect

    Kwan, T.J.T.; Snell, C.M.

    1998-12-31

    The authors have demonstrated through computer simulations that self-biasing the target can effectively control the ion column which causes radial pinching of the electron beam, resulting in the growth of spot size on target. This method has the unique features in simplicity and non-intrusiveness in its implementation into radiographic systems. The concept is being actively explored experimentally at the Integrated Test Stand (ITS).

  19. Electron Beam Diagnostics using Coherent Cherenkov Radiation in Aerogel

    NASA Astrophysics Data System (ADS)

    Tikhoplav, R.; Knyazik, A.; Rosenzweig, J. B.; Ruelas, M.

    2009-01-01

    The use of coherent Cherenkov radiation as a diagnostic tool for longitudinal distribution of an electron beam is studied in this paper. Coherent Cherenkov radiation is produced in an aerogel with an index of refraction close to unity. An aerogel spectral properties are experimentally studied and analyzed. This method will be employed for the helical IFEL bunching experiment at Neptune linear accelerator facility at UCLA.

  20. Calculating electron beam properties in an ionized benzene channel

    SciTech Connect

    Goosman, D.R.

    1986-08-01

    We have derived formulas for the equilibrium-beam radius and other properties of an electron beam propagating in an ionized benzene channel. These formulas have been determined for two special cases. The first was for Gaussian spatial profiles for both the electron and laser beams. We obtained an analytical result for the equilibrium-beam radius, even though we included both KrF laser-induced and collisional sources of ionization of different sizes. The second case we considered was for laser and electron beams with flat radial profiles. These calculations were performed to determine if a laser-guided electron beam could reduce the focal size of an electron accelerator. We also developed a personal-computer spreadsheet program that receives 10 inputs and calculates 26 dependent quantities relating to the beam and ionization properties.

  1. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    SciTech Connect

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally, we report on the measured performance of this profile monitor.

  2. Infrared imaging diagnostics for intense pulsed electron beam

    SciTech Connect

    Yu, Xiao; Shen, Jie; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Zhang, Gaolong; Le, Xiaoyun; Qu, Miao; Yan, Sha

    2015-08-15

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-μm-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm{sup 2} and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung γ photons and the functional extensibility of the method were discussed in this work.

  3. Infrared imaging diagnostics for intense pulsed electron beam.

    PubMed

    Yu, Xiao; Shen, Jie; Qu, Miao; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Yan, Sha; Zhang, Gaolong; Le, Xiaoyun

    2015-08-01

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-μm-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm(2) and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung γ photons and the functional extensibility of the method were discussed in this work.

  4. Electron Beam Emission Characteristics from Plasma Focus Devices

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Patran, A.; Wong, D.; Hassan, S. M.; Springham, S. V.; Tan, T. L.; Lee, P.; Lee, S.; Rawat, R. S.

    2006-01-01

    In this paper we observed the characteristics of the electron beam emission from our plasma focus machine filling neon, argon, helium and hydrogen. Rogowski coil and CCD based magnetic spectrometer were used to obtain temporal and energy distribution of electron emission. And the preliminary results of deposited FeCo thin film using electron beam from our plasma focus device were presented.

  5. Kinetic description of electron beams in the solar chromosphere

    NASA Technical Reports Server (NTRS)

    Gomez, Daniel O.; Mauas, Pablo J.

    1992-01-01

    We formulate the relativistic Fokker-Plank equation for a beam of accelerated electrons interacting with a partially ionized plasma. In our derivation we conserved those terms contributing to velocity diffusion and found that this effect cannot be neglected a priori. We compute the terms accounting for elastic and inelastic collisions with neutral hydrogen and helium. Collisions with neutral hydrogen are found to be dominant throughout the chromosphere, except at the uppermost layers close to the transition region. As an application, we compute the loss of energy and momentum for a power-law beam impinging on the solar chromosphere, for a particular case in which the Fokker-Planck equation can be integrated analytically. We find that most of the beam energy is deposited in a relatively thin region of the chromosphere, a result which is largely insensitive to the theoretical method employed to compute the energy deposition rate.

  6. Excitation of Plasma Waves in Aurora by Electron Beams

    NASA Technical Reports Server (NTRS)

    daSilva, C. E.; Vinas, A. F.; deAssis, A. S.; deAzevedo, C. A.

    1996-01-01

    In this paper, we study numerically the excitation of plasma waves by electron beams, in the auroral region above 2000 km of altitude. We have solved the fully kinetic dispersion relation, using numerical method and found the real frequency and the growth rate of the plasma wave modes. We have examined the instability properties of low-frequency waves such as the Electromagnetic Ion Cyclotron (EMIC) wave as well as Lower-Hybrid (LH) wave in the range of high-frequency. In all cases, the source of free energy are electron beams propagating parallel to the geomagnetic field. We present some features of the growth rate modes, when the cold plasma parameters are changed, such as background electrons and ions species (H(+) and O(+)) temperature, density or the electron beam density and/or drift velocity. These results can be used in a test-particle simulation code, to investigate the ion acceleration and their implication in the auroral acceleration processes, by wave-particle interaction.

  7. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  8. DEMONSTRATION BULLETIN: HIGH VOLTAGE ELECTRON BEAM TECHNOLOGY - HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.

    EPA Science Inventory

    The high energy electron beam irradiation technology is a low temperature method for destroying complex mixtures of hazardous organic chemicals in solutions containing solids. The system consists of a computer-automated, portable electron beam accelerator and a delivery system. T...

  9. Effects of electron beam irradiation of cellulose acetate cigarette filters

    NASA Astrophysics Data System (ADS)

    Czayka, M.; Fisch, M.

    2012-07-01

    A method to reduce the molecular weight of cellulose acetate used in cigarette filters by using electron beam irradiation is demonstrated. Radiation levels easily obtained with commercially available electron accelerators result in a decrease in average molecular weight of about six-times with no embrittlement, or significant change in the elastic behavior of the filter. Since a first step in the biodegradation of cigarette filters is reduction in the filter material's molecular weight this invention has the potential to allow the production of significantly faster degrading filters.

  10. Electron beam/biological processing of anaerobic and aerobic sludge

    NASA Astrophysics Data System (ADS)

    Čuba, V.; Pospíšil, M.; Múčka, V.; Jeníček, P.; Dohányos, M.; Zábranská, J.

    2003-01-01

    Besides common chemical and biological methods, the radiation technology is a promising way of sludge treatment. The paper describes possibilities of combined accelerated electrons/biological processing of both anaerobic and aerobic sludge. Besides one-shot experiments, experimental reactors for the simulation of anaerobic processes have been used. Main effort has been aimed to decrease organic compounds concentration and overall volume of solids, to improve some physico-chemical parameters of sludge, to validate hygienisation effects of the ionising radiation, and in the case of anaerobic sludge, to increase the volume of the produced biogas. Positive effects of the electron beam processing have been observed on all previously named parameters.

  11. Electron-beam flow visualization - Applications in the definition of configuration aerothermal characteristics.

    NASA Technical Reports Server (NTRS)

    Woods, W. C.; Arrington, J. P.

    1972-01-01

    Comparisons between flow visualization systems using electron-beam fluorescence, schlieren, and shadowgraph techniques illustrate the advantages associated with the electron beam. Specific applications of this method as an aid in defining the origin of erosion on a heat-transfer model are cited. Results of combined electron-beam oil-flow studies on configurations illustrate that the simultaneous definition of the external flow field and its surface flow can be obtained. Comparisons between the electron-beam oil-flow visualization method and phase-change coating heat-transfer tests on a shuttle ascent configuration indicate the complementary nature of these two testing techniques. Potential methods for improving the electron-beam technique are included.

  12. Validation experiments for LBM simulations of electron beam melting

    NASA Astrophysics Data System (ADS)

    Ammer, Regina; Rüde, Ulrich; Markl, Matthias; Jüchter, Vera; Körner, Carolin

    2014-05-01

    This paper validates three-dimensional (3D) simulation results of electron beam melting (EBM) processes by comparing experimental and numerical data. The physical setup is presented which is discretized by a 3D thermal lattice Boltzmann method (LBM). An experimental process window is used for the validation depending on the line energy injected into the metal powder bed and the scan velocity of the electron beam. In the process window, the EBM products are classified into the categories, porous, good and swelling, depending on the quality of the surface. The same parameter sets are used to generate a numerical process window. A comparison of numerical and experimental process windows shows a good agreement. This validates the EBM model and justifies simulations for future improvements of the EBM processes. In particular, numerical simulations can be used to explain future process window scenarios and find the best parameter set for a good surface quality and dense products.

  13. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  14. Hollow Electron Beam Collimator: R and D Status Report

    SciTech Connect

    Stancari, G.; Drozhdin, A.; Kuznetsov, G.; Shiltsev, V.; Valishev, A.; Vorobiev, L.; Kabantsev, A.

    2010-11-04

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  15. Development of hollow electron beams for proton and ion collimation

    SciTech Connect

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.; /UC, San Diego

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  16. Effect of Electron Beam Irradiation on Tensile Strength of Polypropylene

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi; Ikeda, Masayuki; Shimbo, Minoru; Miyano, Yasushi

    In this paper, the effects of the intensity of electron beam and the variation with time after irradiation of electron beam on the tensile strength of the polypropylene (PP), which is widely used as medicine containers, were investigated. PP with and without colorants were used first and samples irradiated under various intensity of EB. A tensile test on the irradiated samples with elapsed time after the irradiation of the electron beam was carried out. The effects of those factors on the tensile strength were discussed. The following results were obtained (1) The tensile strength of PP decreased due to the influence of the electron beam irradiation, however the rate of the decrease in strength was small compared with the original one. Furthermore, the rate of the decrease in strength was very small owing to the variation with time after the EB irradiation. (2) The tensile rupture strength of PP increased and the rupture strain owing to the influence of the electron beam irradiation compared with the original one. In addition, these rupture strength increased and the rupture strain decreased along with time after the irradiation of the electron beam. (3) The tensile rupture strain energy of PP decreased owing to the influence of the electron beam irradiation compared with the original one. In addition, the strain energy decreases with time after the irradiation of the electron beam. Moreover, the strength characteristics of PP with colorants received greater influence of electron beam compared with the one without colorants.

  17. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  18. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  19. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  20. UV laser ionization and electron beam diagnostics for plasma lenses

    SciTech Connect

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated.

  1. Ultrashort Electron Beam Pulses and Diagnosis by Advanced Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Iijima, H.; Muroya, Y.; Watanabe, T.; Hosokai, T.

    2003-08-01

    240fs 18 MeV low emittance(6 pai mm.mrad) electron beam was generated and its pulse shape was diagnosed by the S-band laser photocathode RF gun and linac. The maximum charge per bunch was 7 nC. This electron pulse was synchronized with 100fs 0.3TW Ti:Sapphire laser with the timing jitter of 330fs(rms). Recently, the Cu cathode(QE10∧-4) was replaced by Mg cathode(QE10∧-3). This system is utilized for radiation chemistry analysis for supercritical water. We have adopted the four diagnostic methods(femtosecond streak camera, coherent transition radiation interferometer, far-infrared polychromator, fluctuation method) and checked their time-resolution precisely. Further, we are doing the experiment on laser plasma cathode by 12TW 50fs laser and He gas jet. Laser plasma wakefield acceleration and electron injection via wavebreaking are planned. We have developed a new theory of self-injection scheme to generate ˜10fs electron pulse. We have already succeeded in observing 40 MeV low emittance electron beam of 14 nC.

  2. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns.

    PubMed

    Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E

    2013-08-01

    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  3. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  4. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  5. Electron beam magnetic switch for a plurality of free electron lasers

    DOEpatents

    Schlitt, Leland G.

    1984-01-01

    Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.

  6. Measuring of plasma properties induced by non-vacuum electron beam welding

    SciTech Connect

    Reisgen, U.; Schleser, M.; Abdurakhmanov, A.; Gumenyuk, A.

    2012-01-15

    Electron beam plasma measurement was realised by means of DIABEAM system invented by ISF RWTH Aachen. The Langmuir probe method is used for measurement. The relative simplicity of the method and the possibility of dispersion of high power on the probe allow its application for the investigation of high-power electron beams. The key element of the method is a rotating thin tungsten wire, which intersects the beam transversely on its axis and collects part of the current by itself. The signals, which are registered in the DIABEAM as a voltage, were taken in the form of amplitude. The conversion of the probe current into the distribution along the beam radius was realised using the Abel's method. A voltage-current characteristic was built for the beam current. The local electron density as well as the electron temperature, the floating potential and the plasma potential were measured and calculated by means of this characteristic.

  7. Measuring of plasma properties induced by non-vacuum electron beam welding

    NASA Astrophysics Data System (ADS)

    Reisgen, U.; Schleser, M.; Abdurakhmanov, A.; Gumenyuk, A.

    2012-01-01

    Electron beam plasma measurement was realised by means of DIABEAM system invented by ISF RWTH Aachen. The Langmuir probe method is used for measurement. The relative simplicity of the method and the possibility of dispersion of high power on the probe allow its application for the investigation of high-power electron beams. The key element of the method is a rotating thin tungsten wire, which intersects the beam transversely on its axis and collects part of the current by itself. The signals, which are registered in the DIABEAM as a voltage, were taken in the form of amplitude. The conversion of the probe current into the distribution along the beam radius was realised using the Abel's method. A voltage-current characteristic was built for the beam current. The local electron density as well as the electron temperature, the floating potential and the plasma potential were measured and calculated by means of this characteristic.

  8. Fundamental Proximity Effects in Focused electron Beam Induced Deposition

    SciTech Connect

    Plank, Harald; Smith, Daryl; Haber, Thomas; Rack, Philip D; Hofer, Ferdinand

    2012-01-01

    Fundamental proximity effects for electron beam induced deposition processes on nonflat surfaces were studied experimentally and via simulation. Two specific effects were elucidated and exploited to considerably increase the volumetric growth rate of this nanoscale direct write method: (1) increasing the scanning electron pitch to the scale of the lateral electron straggle increased the volumetric growth rate by 250% by enhancing the effective forward scattered, backscattered, and secondary electron coefficients as well as by strong recollection effects of adjacent features; and (2) strategic patterning sequences are introduced to reduce precursor depletion effects which increase volumetric growth rates by more than 90%, demonstrating the strong influence of patterning parameters on the final performance of this powerful direct write technique.

  9. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    DOE PAGES

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally,more » we report on the measured performance of this profile monitor.« less

  10. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Sepulveda-Guzman, S.; Elizondo-Villarreal, N.; Ferrer, D.; Torres-Castro, A.; Gao, X.; Zhou, J. P.; Jose-Yacaman, M.

    2007-08-01

    In this work, bismuth nanoparticles were synthesized when a precursor, sodium bismuthate, was exposed to an electron beam at room temperature in a transmission electron microscope (TEM). The irradiation effects were investigated in situ using selected-area electron diffraction, high-resolution transmission electron microscopy and x-ray energy dispersive spectroscopy. After the electron irradiation, bismuth nanoparticles with a rhombohedral structure and diameter of 6 nm were observed. The average particle size increased with the irradiation time. The electron-induced reduction is attributed to the desorption of oxygen ions. This method offers a one-step route to synthesize bismuth nanoparticles using electron irradiation, and the particle size can be controlled by the irradiation time.

  11. Dots-on-the-fly electron beam lithography

    NASA Astrophysics Data System (ADS)

    Isotalo, Tero J.; Niemi, Tapio

    2016-03-01

    We demonstrate a novel approach for electron-beam lithography (EBL) of periodic nanostructures. This technique can rapidly produce arrays of various metallic and etched nanostructures with line and pitch dimensions approaching the beam spot size. Our approach is based on often neglected functionality which is inherent in most modern EBL systems. The raster/vector beam exposure system of the EBL software is exploited to produce arrays of pixel-like spots without the need to define coordinates for each spot in the array. Producing large arrays with traditional EBL techniques is cumbersome during pattern design, usually leads to large data files and easily results in system memory overload during patterning. In Dots-on-the-fly (DOTF) patterning, instead of specifying the locations of individual spots, a boundary for the array is given and the spacing between spots within the boundary is specified by the beam step size. A designed pattern element thus becomes a container object, with beam spacing acting as a parameterized location list for an array of spots confined by that container. With the DOTF method, a single pattern element, such as a square, rectangle or circle, can be used to produce a large array containing thousands of spots. In addition to simple arrays of nano-dots, we expand the technique to produce more complex, highly tunable arrays and structures on substrates of silicon, ITO/ FTO coated glass, as well as uncoated fused silica, quartz and sapphire.

  12. Current understanding and issues on electron beam injection in space

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.; Szuszczewicz, E. P.

    1988-01-01

    The status of the physics understanding involved in electron beam injection in space is reviewed. The paper examines our understanding of beam plasma interactions and their associated wave and energized particle spectra of the processes involved in the beam plasma discharge, and of the vehicle charge neutralization. 'Strawman' models are presented for comparison with experimental observations.

  13. Particle beam injector system and method

    DOEpatents

    Guethlein, Gary

    2013-06-18

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  14. Quantum effects in electron beam pumped GaAs

    SciTech Connect

    Yahia, M. E.; Azzouz, I. M.; Moslem, W. M.

    2013-08-19

    Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.

  15. Study of a non-intrusive electron beam radius diagnostic

    SciTech Connect

    Kwan, T.J.T.; DeVolder, B.G.; Goldstein, J.C.; Snell, C.M.

    1997-12-01

    The authors have evaluated the usefulness and limitation of a non-intrusive beam radius diagnostic which is based on the measurement of the magnetic moment of a high-current electron beam in an axisymmetric focusing magnetic field, and relates the beam root-mean-square (RMS) radius to the change in magnetic flux through a diamagnetic loop encircling the beam. An analytic formula that gives the RMS radius of the electron beam at a given axial position and a given time is derived and compared with results from a 2-D particle-in-cell code. The study has established criteria for its validity and optimal applications.

  16. Monoenergetic collimated nano-Coulomb electron beams driven by crossed laser beams

    SciTech Connect

    Wang Jingwei; Murakami, M.; Weng, S. M.; Ruhl, H.; Luan Shixia; Yu Wei

    2013-07-08

    Monoenergetic collimated electron acceleration by two crossed laser beams is investigated through an analytical model and particle-in-cell simulations. Electron bunches with a total charge of order nano-Coulombs are accelerated by the axial electric field formed by the crossed laser beams to nearly 760 MeV with an energy spread of 2.7%. The transverse components of both electric and magnetic fields vanish along the axis, making the electron beam highly collimated. This acceleration scheme appears promising in producing high quality electron beams.

  17. Electron Beam Welder Used to Braze Sapphire to Platinum

    NASA Technical Reports Server (NTRS)

    Forsgren, Roger C.; Vannuyen, Thomas

    1998-01-01

    A new use for electron beam brazing was recently developed by NASA Lewis Research Center's Manufacturing Engineering Division. This work was done to fabricate a fiberoptic probe (developed by Sentec Corporation) that could measure high temperatures less than 600 deg C of vibrating machinery, such as in jet engine combustion research. Under normal circumstances, a sapphire fiber would be attached to platinum by a ceramic epoxy. However, no epoxies can adhere ceramic fibers to platinum under such high temperatures and vibration. Also, since sapphire and platinum have different thermal properties, the epoxy bond is subjected to creep over time. Therefore, a new method had to be developed that would permanently and reliably attach a sapphire fiber to platinum. Brazing a sapphire fiber to a platinum shell. The fiber-optic probe assembly consists of a 0.015-in.-diameter sapphire fiber attached to a 0.25-in.-long, 0.059-in.-diameter platinum shell. Because of the small size of this assembly, electron beam brazing was chosen instead of conventional vacuum brazing. The advantage of the electron beam is that it can generate a localized heat source in a vacuum. Gold reactive braze was used to join the sapphire fiber and the platinum. Consequently, the sapphire fiber was not affected by the total heat needed to braze the components together.

  18. Electron-Beam Induced Transformations of Layered Tin Dichalcogenides.

    PubMed

    Sutter, E; Huang, Y; Komsa, H-P; Ghorbani-Asl, M; Krasheninnikov, A V; Sutter, P

    2016-07-13

    By combining high-resolution transmission electron microscopy and associated analytical methods with first-principles calculations, we study the behavior of layered tin dichalcogenides under electron beam irradiation. We demonstrate that the controllable removal of chalcogen atoms due to electron irradiation, at both room and elevated temperatures, gives rise to transformations in the atomic structure of Sn-S and Sn-Se systems so that new phases with different properties can be induced. In particular, rhombohedral layered SnS2 and SnSe2 can be transformed via electron beam induced loss of chalcogen atoms into highly anisotropic orthorhombic layered SnS and SnSe. A striking dependence of the layer orientation of the resulting SnS-parallel to the layers of ultrathin SnS2 starting material, but slanted for transformations of thicker few-layer SnS2-is rationalized by a transformation pathway in which vacancies group into ordered S-vacancy lines, which convert via a Sn2S3 intermediate to SnS. Absence of a stable Sn2Se3 intermediate precludes this pathway for the selenides, hence SnSe2 always transforms into basal plane oriented SnSe. Our results provide microscopic insights into the transformation mechanism and show how irradiation can be used to tune the properties of layered tin chalcogenides for applications in electronics, catalysis, or energy storage.

  19. Patient radiation doses for electron beam CT.

    PubMed

    Castellano, Isabel A; Dance, David R; Skinner, Claire L; Evans, Phil M

    2005-08-01

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDIvol) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDIvol to an effective dose. PMID:16193782

  20. Patient radiation doses for electron beam CT

    SciTech Connect

    Castellano, Isabel A.; Dance, David R.; Skinner, Claire L.; Evans, Phil M.

    2005-08-15

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDI{sub vol}) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDI{sub vol} to an effective dose.

  1. Focused Ion beam source method and Apparatus

    SciTech Connect

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    1998-08-17

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  2. Focused ion beam source method and apparatus

    DOEpatents

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  3. Annular-beam, 17 GHz free-electron maser experiment

    SciTech Connect

    Earley, L.M.; Carlsten, B.E.; Fazio, M.V.

    1997-06-01

    Experiments have been conducted on a 15-17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. The electron beam source was a 1 {mu}s, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacted with the TM{sub 02} and TM{sub 03} mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. This greatly reduced the kinetic energy loss caused by the beam potential depression associated with the space charge which was a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. The experiment was operated in a single shot mode with a large number of diagnostics to measure power, frequency and energy.

  4. Intense electron beam propagation across a magnetic field

    SciTech Connect

    Zhang, X.; Striffler, C.D.; Yao, R.L.; Destler, W.W.; Reiser, M.P.

    1989-01-01

    In this paper we consider the propagation of an intense electron-ion beam across an applied magnetic field. In the absence of the applied field, the beam system is in a Bennett equilibrium state that involves electrons with both large axial and thermal velocities and a cold stationary space-charge neutralizing ion species. Typical parameters under consideration are V{sub o} {approximately} 1 MV, I {approximately} 5 kA, T{sub e} {approximately} 100 keV, and beam radii {approximately} 1 cm. We find that in the intense beam regime, the propagation is limited due to space-charge depression caused by the deflection of the electron beam by the transverse field. This critical field is of the order of the peak self-magnetic field of the electron beam which is substantially higher than the single particle cut-off field. 8 refs., 3 figs.

  5. FEL gain calculation for imperfectly matched electron beams

    NASA Astrophysics Data System (ADS)

    Swent, R. L.; Berryman, K. W.

    1995-04-01

    We present here the details of an analytical small-signal gain calculation. The analysis builds on the basic one-dimensional analytical calculation by modeling the effects of finite electron beam size and imperfect matching of the electron beam to the wiggler. The calculation uses TRANSPORT [SLAC-91, Rev. 2 (1977)] parameters to describe the electron beam in order to easily take the output of beam transport calculations and use them as the input for FEL gain calculations. The model accepts an arbitrary TRANSPORT beam and includes the effects of energy spread, beam size, betatron oscillations, and focussing in the wiggle plane. The model has allowed us to calculate the range over which our FEL can be tuned by changing the electron energy alone (i.e., without changing any magnets).

  6. Electron-beam activated GaAs-switches

    SciTech Connect

    Kirkman, G.; Hur, J.; Jiang, B.; Reinhardt, N.; Allen, R.J.; Schoenbach, K.H.

    1994-12-31

    Electron-beam excitation allows the authors to modulate the conductance of wide-gap semi-insulating semiconductors over a wide range and to use them as variable resistors and as high power switches. The penetration depth of electrons, the electron range, was computed by means of a Monte-Carlo code. For electron energies of 30 keV, it is approximately 2 micrometers. In order to activate the switch material over a larger depth, the switch material, semi-insulating GaAs, was doped over a thickness corresponding to the electron range with zinc, which form shallow acceptors in GaAs. The Zn layers serves as an efficient source of cathodoluminescence, transforming the electron energy into photon energy and therefore converting the electron-beam activated switch into a photoconductive one. Experiments with 2 mm semi-insulating GaAs-switches with p-doped cathode layer have been performed where the electron beam was injected through one of the metal contacts which were placed on either face of the GaAs wafer. The 500 ns electron beam has electron energies of up to 30 keV and current densities of several A/cm{sup 2}. The results show that electron-beam controlled GaAs switches can be safely operated at switch voltages of several kV`s and current densities of 50 A/cm{sup 2} with low energy electron-beams as control elements.

  7. NOx reduction by electron beam-produced nitrogen atom injection

    DOEpatents

    Penetrante, Bernardino M.

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  8. T-3 electron-beam-excited laser system

    SciTech Connect

    Klein, R A

    1981-02-01

    A laser system specifically designed to study the kinetics of electron-beam driven systems is described. Details of the system are given along with measurements of the electron-beam uniformity and deposition in the laser medium. Some HF laser results obtained with this system are also given.

  9. Metastable atom probe for measuring electron beam density profiles

    NASA Technical Reports Server (NTRS)

    Lockhart, J. M.; Zorn, J. C.

    1972-01-01

    Metastable atom probe was developed for measuring current density in electron beam as function of two arbitrary coordinates, with spatial resolution better than 0.5 mm. Probe shows effects of space charge, magnetic fields, and other factors which influence electron current density, but operates with such low beam densities that introduced perturbation is very small.

  10. Asymmetric Hopf bifurcation for proton beams with electron cooling

    SciTech Connect

    Kang, X.; Ball, M.; Brabson, B.; Budnick, J.; East, G.; Ellison, M.; Hamilton, B.; Lee, S.Y.; Li, D.; Liu, J.Y.; Pei, A.; Riabko, A.; Wang, L.; Wang, Y.; Caussyn, D.D.; Colestock, P.; Ng, K.Y.; Hedblom, K.; Syphers, M.

    1995-12-31

    We observed maintained longitudinal limiting cycle oscillations, which grew rapidly once a critical threshold in the relative velocity between the proton beam and the cooling electrons was exceeded. The threshold for the bifurcation of a fixed point into a limit cycle, also known as a Hopf bifurcation, was found to be asymmetric with respect to the relative velocity. This asymmetry of Hopf bifurcation was found to be related to the electron beam alignment with respect to the stored proton beam.

  11. Electron Gun For Multiple Beam Klystron Using Magnetic Focusing

    DOEpatents

    Ives, R. Lawrence; Miram, George; Krasnykh, Anatoly

    2004-07-27

    An RF device comprising a plurality of drift tubes, each drift tube having a plurality of gaps defining resonant cavities, is immersed in an axial magnetic field. RF energy is introduced at an input RF port at one of these resonant cavities and collected at an output RF port at a different RF cavity. A plurality of electron beams passes through these drift tubes, and each electron beam has an individual magnetic shaping applied which enables confined beam transport through the drift tubes.

  12. Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator

    SciTech Connect

    Cha, H. J.; Choi, I. W.; Kim, H. T.; Kim, I J.; Nam, K. H.; Jeong, T. M.; Lee, J.

    2012-06-15

    The pointing instability of energetic electron beams generated from a laser-driven accelerator can cause a serious error in measuring the electron spectrum with a magnetic spectrometer. In order to determine a correct electron spectrum, the pointing angle of an electron beam incident on the spectrometer should be exactly defined. Here, we present a method for absolutely calibrating the electron spectrum by monitoring the pointing angle using a scintillating screen installed in front of a permanent dipole magnet. The ambiguous electron energy due to the pointing instability is corrected by the numerical and analytical calculations based on the relativistic equation of electron motion. It is also possible to estimate the energy spread of the electron beam and determine the energy resolution of the spectrometer using the beam divergence angle that is simultaneously measured on the screen. The calibration method with direct measurement of the spatial profile of an incident electron beam has a simple experimental layout and presents the full range of spatial and spectral information of the electron beams with energies of multi-hundred MeV level, despite the limited energy resolution of the simple electron spectrometer.

  13. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    SciTech Connect

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-15

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  14. Online beam energy measurement of Beijing electron positron collider II linear accelerator.

    PubMed

    Wang, S; Iqbal, M; Liu, R; Chi, Y

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  15. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  16. Conceptual Design of Electron-Beam Generated Plasma Tools

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; Dorf, Leonid; Collins, Ken; Boris, David; Walton, Scott

    2015-09-01

    Realization of the next generation of high-density nanostructured devices is predicated on etching features with atomic layer resolution, no damage and high selectivity. High energy electron beams generate plasmas with unique features that make them attractive for applications requiring monolayer precision. In these plasmas, high energy beam electrons ionize the background gas and the resultant daughter electrons cool to low temperatures via collisions with gas molecules and lack of any accelerating fields. For example, an electron temperature of <0.6 eV with densities comparable to conventional plasma sources can be obtained in molecular gases. The chemistry in such plasmas can significantly differ from RF plasmas as the ions/radicals are produced primarily by beam electrons rather than those in the tail of a low energy distribution. In this work, we will discuss the conceptual design of an electron beam based plasma processing system. Plasma properties will be discussed for Ar, Ar/N2, and O2 plasmas using a computational plasma model, and comparisons made to experiments. The fluid plasma model is coupled to a Monte Carlo kinetic model for beam electrons which considers gas phase collisions and the effect of electric and magnetic fields on electron motion. The impact of critical operating parameters such as magnetic field, beam energy, and gas pressure on plasma characteristics in electron-beam plasma processing systems will be discussed. Partially supported by the NRL base program.

  17. Electron lenses for compensation of beam-beam effects: Tevatron, RHIC, LHC

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2007-12-01

    Since previous BEAM'06 workshop a year ago, significant progress has been made in the field of beam-beam compensation (BBC)--it has been experimentally demonstrated that both Tevatron Electron Lenses (TEL) significantly improve proton and luminosity lifetimes in high-luminosity stores. This article summarizes these results and discusses prospects of the BBC in Tevatron, RHIC and LHC.

  18. Etching with electron beam generated plasmas

    SciTech Connect

    Leonhardt, D.; Walton, S.G.; Muratore, C.; Fernsler, R.F.; Meger, R.A.

    2004-11-01

    A modulated electron beam generated plasma has been used to dry etch standard photoresist materials and silicon. Oxygen-argon mixtures were used to etch organic resist material and sulfur hexafluoride mixed with argon or oxygen was used for the silicon etching. Etch rates and anisotropy were determined with respect to gas compositions, incident ion energy (from an applied rf bias) and plasma duty factor. For 1818 negative resist and i-line resists the removal rate increased nearly linearly with ion energy (up to 220 nm/min at 100 eV), with reasonable anisotropic pattern transfer above 50 eV. Little change in etch rate was seen as gas composition went from pure oxygen to 70% argon, implying the resist removal mechanism in this system required the additional energy supplied by the ions. With silicon substrates at room temperature, mixtures of argon and sulfur hexafluoride etched approximately seven times faster (1375 nm/min) than mixtures of oxygen and sulfur hexafluoride ({approx}200 nm/min) with 200 eV ions, the difference is attributed to the passivation of the silicon by involatile silicon oxyfluoride (SiO{sub x}F{sub y}) compounds. At low incident ion energies, the Ar-SF{sub 6} mixtures showed a strong chemical (lateral) etch component before an ion-assisted regime, which started at {approx}75 eV. Etch rates were independent of the 0.5%-50% duty factors studied in this work.

  19. Onorbit electron beam welding experiment definition

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The proposed experiment design calls for six panels to be welded, each having unique characteristics selected to yield specific results and information. The experiment is completely automated and the concept necessitated the design of a new, miniaturized, self-contained electron beam (EB) welding system, for which purpose a separate IR and D was funded by the contractor, Martin Marietta Corporation. Since future tasks beyond the proposed experiment might call for astronauts to perform hand-held EB gun repairs or for the gun to be interfaced with a dexterous robot such as the planned flight telerobotic servicer (FTS), the EB gun is designed to be dismountable from the automated system. In the experiment design, two separate, identical sets of weld panels will be welded, one on earth in a vacuum chamber and the other onorbit in the aft cargo bay of an orbiter. Since the main objective of the experiment is to demonstrate that high quality welds can be achieved under onorbit conditions, the welds produced will be subjected to a wide range of discriminating non-destructive Q.C. procedures and destructive physical tests. However, advantage will be taken of the availability of a fairly large quantity of welded material in the two series of welded specimens to widen the circle of investigative talent by providing material to academic and scientific institutions for examination.

  20. Electron beam cold hearth refining in Vallejo

    SciTech Connect

    Lowe, J.H.C.

    1994-12-31

    Electron Beam Cold Hearth Refining Furnace (EBCHR) in Vallejo, California is alive, well, and girding itself for developing new markets. A brief review of the twelve years experience with EBCHR in Vallejo. Acquisition of the Vallejo facility by Axel Johnson Metals, Inc. paves the way for the development of new products and markets. A discussion of some of the new opportunities for the advancement of EBCHR technology. Discussed are advantages to the EBCHR process which include: extended surface area of molten metal exposed to higher vacuum; liberation of insoluble oxide particles to the surface of the melt; higher temperatures that allowed coarse solid particles like carbides and carbonitrides to be suspended in the fluid metal as fine micro-segregates, and enhanced removal of volatile trace impurities like lead, bismuth and cadmium. Future work for the company includes the continued recycling of alloys and also fabricating stainless steel for the piping of chip assembly plants. This is to prevent `killer defects` that ruin a memory chip.

  1. Heat shrinkage of electron beam modified EVA

    NASA Astrophysics Data System (ADS)

    Datta, Sujit K.; Chaki, T. K.; Tikku, V. K.; Pradhan, N. K.; Bhowmick, A. K.

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%.

  2. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    NASA Astrophysics Data System (ADS)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-05-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  3. Impact on electron velocity of hollow electron beam in HIRFL-CSR e-cooler system

    NASA Astrophysics Data System (ADS)

    Xia, G. X.; Xia, J. W.; Yang, J. C.; Liu, W.; Wu, J. X.; Yin, X. J.; Zhao, H. W.; Wei, B. W.

    2003-08-01

    Cooling efficiency in electron cooling systems is closely related to the velocity of electron. The velocity of electron has offset due to the space charge of the intense electron beam in the drift tube of the cooling section and thus increases the temperature of electrons. In order to minimize this effect, a new type of electron gun is adopted to produce a hollow electron beam in HIRFL-CSR e-cooler project. The hot ion beam is cooled by Coulomb interaction with intense and cold hollow electron beams. Using typical parameters of the CSRm e-cooler, theoretical calculations comparing the impact of the space charge field on electron velocity for solid and hollow electron beam are carried out.

  4. Experimental observation of helical microbunching of a relativistic electron beam

    SciTech Connect

    Hemsing, E.; Knyazik, A.; O'Shea, F.; Marinelli, A.; Musumeci, P.; Williams, O.; Rosenzweig, J. B.; Tochitsky, S.

    2012-02-27

    Experimental observation of the microbunching of a relativistic electron beam at the second harmonic interaction frequency of a helical undulator is presented. The microbunching signal is observed from the coherent transition radiation of the electron beam and indicates experimental evidence of a dominantly helical electron beam density distribution. This result is in agreement with theoretical and numerical predictions and provides a proof-of-principle demonstration of proposed schemes designed to generate light with orbital angular momentum in high-gain free-electron lasers.

  5. A simple model of electron beam initiated dielectric breakdown

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Daniell, R. E.; Delmer, T. N.

    1985-01-01

    A steady state model that describes the internal charge distribution of a planar dielectric sample exposed to a uniform electron beam was developed. The model includes the effects of charge deposition and ionization of the beam, separate trap-modulated mobilities for electrons and holes, electron-hole recombination, and pair production by drifting thermal electrons. If the incident beam current is greater than a certain critical value (which depends on sample thickness as well as other sample properties), the steady state solution is non-physical.

  6. Pulsed electron beam propagation in argon and nitrogen gas mixture

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-01

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N2). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  7. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    SciTech Connect

    Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md. Zin Wan

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  8. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    NASA Astrophysics Data System (ADS)

    Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md. Zin Wan

    2014-02-01

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  9. Method for separating FEL output beams from long wavelength radiation

    DOEpatents

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  10. Aperture Effects and Mismatch Oscillations in an Intense Electron Beam

    SciTech Connect

    Harris, J R; O'Shea, P G

    2008-05-12

    When an electron beam is apertured, the transmitted beam current is the product of the incident beam current density and the aperture area. Space charge forces generally cause an increase in incident beam current to result in an increase in incident beam spot size. Under certain circumstances, the spot size will increase faster than the current, resulting in a decrease in current extracted from the aperture. When using a gridded electron gun, this can give rise to negative transconductance. In this paper, we explore this effect in the case of an intense beam propagating in a uniform focusing channel. We show that proper placement of the aperture can decouple the current extracted from the aperture from fluctuations in the source current, and that apertures can serve to alter longitudinal space charge wave propagation by changing the relative contribution of velocity and current modulation present in the beam.

  11. Electron beam energy QA - a note on measurement tolerances.

    PubMed

    Meyer, Juergen; Nyflot, Matthew J; Smith, Wade P; Wottoon, Landon S; Young, Lori; Yang, Fei; Kim, Minsun; Hendrickson, Kristi R G; Ford, Eric; Kalet, Alan M; Cao, Ning; Dempsey, Claire; Sandison, George A

    2016-01-01

    Monthly QA is recommended to verify the constancy of high-energy electron beams generated for clinical use by linear accelerators. The tolerances are defined as 2%/2 mm in beam penetration according to AAPM task group report 142. The practical implementation is typically achieved by measuring the ratio of readings at two different depths, preferably near the depth of maximum dose and at the depth corresponding to half the dose maximum. Based on beam commissioning data, we show that the relationship between the ranges of energy ratios for different electron energies is highly nonlinear. We provide a formalism that translates measurement deviations in the reference ratios into change in beam penetration for electron energies for six Elekta (6-18 MeV) and eight Varian (6-22 MeV) electron beams. Experimental checks were conducted for each Elekta energy to compare calculated values with measurements, and it was shown that they are in agreement. For example, for a 6 MeV beam a deviation in the measured ionization ratio of ± 15% might still be acceptable (i.e., be within ± 2 mm), whereas for an 18 MeV beam the corresponding tolerance might be ± 6%. These values strongly depend on the initial ratio chosen. In summary, the relationship between differences of the ionization ratio and the corresponding beam energy are derived. The findings can be translated into acceptable tolerance values for monthly QA of electron beam energies. PMID:27074488

  12. Progress report on beam-beam compensation with electron lenses in Tevatron

    SciTech Connect

    Vladimir Shiltsev et al.

    2003-07-09

    We discuss the original idea of beam-beam compensation (BBC) in Section I, sequence of events in 2001-2002 and use of the Tevatron Electron Beam (TEL) for DC beam removal in Section II, (anti)proton lifetime improvement in Section III, experimental data on the BBC attempts in Section IV and, conclusively, Section V is devoted to discussion on important phenomena, needed improvements and future plans.

  13. Exposure simulation of electron beam microcolumn lithography

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kon; Oh, Hye-Keun

    2004-05-01

    We propose an improved method to describe the electron-resist interaction based on Dill"s model for exposure simulation. For this purpose, Monte Carlo simulation was performed to obtain the energy intensity distribution in the chemically amplified resist. Tabulated Mott data for elastic scattering, Moller and Vriens cross sections for inelastic scattering, and Modified Bethe equation plus discrete energy loss for energy loss are used for the calculation of the energy intensity distribution. Through the electron-resist interaction, the energy intensity distribution changes resist components into the exposure production such as the photoacid concentration or the photoacid generator inside resists with various pattern shapes by using the modified Dill"s model. Our simulation profiles show a good agreement with experimental profiles.

  14. Limiting current of intense electron beams in a decelerating gap

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.

    2016-02-01

    For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.

  15. Precision shape modification of nanodevices with a low-energy electron beam

    DOEpatents

    Zettl, Alex; Yuzvinsky, Thomas David; Fennimore, Adam

    2010-03-09

    Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.

  16. Silicon nanowires prepared by electron beam evaporation in ultrahigh vacuum

    PubMed Central

    2012-01-01

    One-dimensional silicon nanowires (SiNWs) were prepared by electron beam evaporation in ultrahigh vacuum (UHV). The SiNWs can be grown through either vapor–liquid-solid (VLS) or oxide-assisted growth (OAG) mechanism. In VLS growth, SiNWs can be formed on Si surface, not on SiO2 surfaces. Moreover, low deposition rate is helpful for producing lateral SiNWs by VLS. But in OAG process, SiNWs can be grown on SiO2 surfaces, not on Si surfaces. This work reveals the methods of producing large-scale SiNWs in UHV. PMID:22559207

  17. Application of optical beams to electrons in graphene

    NASA Astrophysics Data System (ADS)

    Matulis, A.; Masir, M. Ramezani; Peeters, F. M.

    2011-03-01

    The technique of beam optics is applied to the description of the wave function of Dirac electrons. This approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist, while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous discussed.

  18. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    PubMed

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  19. Experimental investigation of a 1 kA/cm2 sheet beam plasma cathode electron gun

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Narayan Pal, Udit; Kumar Pal, Dharmendra; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ˜1 kA/cm2 from pseudospark based argon plasma for pulse length of ˜200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  20. EFFECT OF SOLENOID FIELD ERRORS ON ELECTRON BEAM TEMPERATURES IN THE RHIC ELECTRON COOLER.

    SciTech Connect

    MONTAG,C.KEWISCH,J.

    2003-05-12

    As part of a future upgrade to the Relativistic Heavy Ion Collider (RHIC), electron cooling is foreseen to decrease ion beam emittances. Within the electron cooling section, the ''hot'' ion beam is immersed in a ''cold'' electron beam. The cooling effect is further enhanced by a solenoid field in the cooling section, which forces the electrons to spiral around the field lines with a (Larmor) radius of 10 micrometers, reducing the effective transverse temperature by orders of magnitude. Studies of the effect of solenoid field errors on electron beam temperatures are reported.

  1. Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue

    SciTech Connect

    Konovalov, Sergey Alsaraeva, Krestina Gromov, Victor Semina, Olga; Ivanov, Yurii

    2015-10-27

    By methods of scanning and transmission electron diffraction microscopy the analysis of structure-phase states and defect substructure of silumin subjected to high-intensity electron beam irradiation in various regimes and subsequent fatigue loading up to failure was carried out. It is revealed that the sources of fatigue microcracks are silicon plates of micron and submicron size are not soluble in electron beam processing. The possible reasons of the silumin fatigue life increase under electron-beam treatment are discussed.

  2. Beam-induced electron modulations observed during TSS 1R

    NASA Astrophysics Data System (ADS)

    Rubin, A. G.; Burke, W. J.; Gough, M. P.; Machuzak, J. S.; Gentile, L. C.; Huang, C. Y.; Hardy, D. A.; Thompson, D. C.; Raitt, W. J.

    1999-08-01

    We report on modulations of electron fluxes at megahertz frequencies measured by the Shuttle Potential and Return Electron Experiment (SPREE) during fast pulsed electron gun (FPEG) beam experiments conducted after the tether break event of the Tethered Satellite System Reflight. Six intervals of sustained modulations were identified while FPEG emitted a 100 mA beam of 1 kev electrons. During five events the beam pitch angle αB was near 90° and the modulations were near even or odd half harmonics of the electron gyrofrequency fce. In the sixth event with 60°>=αB>=45°, electron modulations were near estimated values of the electron plasma frequency fpe and 2fpe. Whenever SPREE detected beam electrons modulated at a given frequency, secondary electrons were also modulated at the same frequency over a broad range of energies. Occasionally, some secondary electrons were modulated simultaneously at a second frequency. Multiple frequencies were related as ratios of low integers. In one case the beam electrons were simultaneously modulated at 0.8 MHz and 1.25 kHz. SPREE measurements suggest that the beam electrons propagate in cylindrical shells whose inner edge is marked by steep spatial gradients in fluxes at 1 keV [Hardy et al., 1995]. Inside the shell, electron distribution functions have positive slopes ∂f/∂v⊥>0 at velocities near that of the beam. Velocity space gradients act as free-energy sources to drive cavity modes that alter the instantaneous guiding centers of electrons causing SPREE to sample alternating parts of the beam cylinder's inner edge. Associated time-varying electric fields also modulated the fluxes of secondary electrons reaching SPREE. Other cavity modes may be excited through nonlinear processes [Calvert, 1982]. With αB far from 90°, electrons in the beam cylinder evolved toward bump-on-tail distributions to excite large-amplitude Langmuir modulations at fpe and its harmonics [Klimas, 1983]. Low-frequency modulations are attributed

  3. Experimental demonstration of beam-beam compensation by Tevatron electron lenses and prospects for the LHC

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kuznetsov, G.; Zhang, X.L.; Bishofberger, K.; /Los Alamos

    2007-06-01

    Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams are significant sources of beam loss and lifetime limitations in the Tevatron Collider Run II (2001-present). We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in high energy physics (HEP) operation, predict the performance for planned luminosity upgrades and discuss ways to improve it.

  4. Reduction of oxide microtrenching by electron beam assisted etching

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Shaw, D. M.; Collins, G. J.

    2000-10-01

    High density plasma etching of submicron wide oxide trenches often results in non-ideal etched features. For example, microtrenching is the result of higher etch rate near the side wall as compared to the center of the trench. Herein, we apply a previously reported[1] high energy (100 - 900 eV) electron beam directed at the etching wafer surface to reduce microtrenching during the etching of 0.5 micron wide silicon dioxide (SiO2) trench patterns in an inductively coupled fluorocarbon plasma. The directed electron beam neutralizes the positive charge buildup at the bottom of the trench and reduces the microtrench formation. Scanning Electron Microscopy (SEM) images of features etched with and without the electron beam show that the electron beam is effective in reducing microtrenching. [1] D. M. Shaw, M. Watanabe, G. J. Collins, and H. Sugai, Jpn. J. Appl. Phys. 38, 87 (1999).

  5. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    SciTech Connect

    Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.; Nakamura, K.; Robinson, K.E.; Schroeder, C.B.; Toth, C.

    2009-05-04

    to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision. The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.

  6. Separating the Spin States of a Free Electron Beam

    NASA Astrophysics Data System (ADS)

    Rifkin, Neil

    2008-10-01

    In 1922 Otto Stern and Walther Gerlach set out to test the spacial quantization of the electron by passing a beam of neutral silver atoms through a transverse magnetic field. The interaction of the two projections of the electron's magnetic moment with the magnetic field resulted in a splitting of the beam. However, for some sixty years it was generally accepted that the spin of free electrons, and thus their magnetic moment, could not be measured with an experiment similar to that of Stern and Gerlach. The reason being that the lorentz force on charged particles is far greater than the force due to the magnetic moment of the electron, thus blurring any desired results. To reduce the lorentz force, the electrons could be passed through a magnetic field whose gradient is in the direction of the electrons' momentum. This longitudinal Stern-Gerlach device, with a superconducting magnet, could polarize the tails of a low energy electron beam.

  7. Controlled Electron Acceleration in a Plane Laser Beam

    NASA Astrophysics Data System (ADS)

    Tataronis, J. A.; Petržílka, V.; Krlín, L.

    2002-11-01

    Through numerical modeling of the relativistic test particle motion of an ensemble of electrons in a plane laser beam, we show in the present contribution that a significant electron acceleration arises if an additional perpendicularly propagagating transverse laser beam with a randomized phase is present. We also demonstrate that the acceleration rate can be controlled by the power flux intensity of the additional laser beam. The power flux intensity of the additional beam can be typically much lower than the power flux intensity of the main laser beam. In the main laser beam, the electrons perform also a forward oscillating motion because of the effects of the magnetic field intensity of the beam. The acceleration results from the accumulation of the forward electron motion due to phase changes provided by the additional laser beam. For parameters of the PALS^1 device (Prague Asterix Laser System), the attainable electron energy is about 40 MeV in 10^4 wave periods. [2pt] Acknowledgments: This work has been supported by Czech grant GACR 202/00/1217 and USDOE Grant DE-FG02-97ER54398. [2pt] ^1K.Jungwirth et al., Phys. Plasmas 8 (2001) 2495.

  8. THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Yang, Shengpeng; Xu, Jin; Zhang, Wenchao; Tang, Changjian; Duan, Zhaoyun; Gong, Yubin

    2016-06-01

    The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of the beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.

  9. Electron Beam Freeform Fabrication in the Space Environment

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Taminger, Karen M. B.; Bird, R. Keith

    2007-01-01

    The influence of reduced gravitational forces (in space and on the lunar or Martian surfaces) on manufacturing processes must be understood for effective fabrication and repair of structures and replacement parts during long duration space missions. The electron beam freeform fabrication (EBF3) process uses an electron beam and wire to fabricate metallic structures. The process efficiencies of the electron beam and the solid wire feedstock make the EBF3 process attractive for use in-space. This paper will describe the suitability of the EBF3 process in the space environment and will highlight preliminary testing of the EBF3 process in a zero-gravity environment.

  10. Patterned electrochemical deposition of copper using an electron beam

    SciTech Connect

    Heijer, Mark den; Shao, Ingrid; Reuter, Mark C.; Ross, Frances M.; Radisic, Alex

    2014-02-01

    We describe a technique for patterning clusters of metal using electrochemical deposition. By operating an electrochemical cell in the transmission electron microscope, we deposit Cu on Au under potentiostatic conditions. For acidified copper sulphate electrolytes, nucleation occurs uniformly over the electrode. However, when chloride ions are added there is a range of applied potentials over which nucleation occurs only in areas irradiated by the electron beam. By scanning the beam we control nucleation to form patterns of deposited copper. We discuss the mechanism for this effect in terms of electron beam-induced reactions with copper chloride, and consider possible applications.

  11. Faraday cup characterization of electron beam welding parameters

    SciTech Connect

    Burgardt, P.; Knaus, S.E.; Kautz, D.D.

    1987-10-12

    The use of the electron beam welding process to produce precision welds on many materials has been well documented in the literature. Some joint configurations may need more parameter control than is typically afforded by the standard electron beam welding machine. The repeatability and transferability of the electron beam welding parameters must also be regarded during weld development on many designs. Types of instrumentation which enhance the parameter control should be developed to higher levels. This instrumentation is important to the accurate transfer of technology between welding machines and production cycles. 7 refs., 6 figs., 1 tab.

  12. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  13. Stability of charged beam propagation through a relativistic hollow electron beam. Final report

    SciTech Connect

    Uhm, H.S.

    1981-09-01

    Stability properties of charged beam propagation through a relativistic hollow electron beam are investigated, in connection with present experimental applications in the collective particle accelerator. The stability analysis is carried out for long axial wavelength and low-frequency perturbations. A closed algebraic dispersion relation for coupled transverse oscillations is obtained for the solid and hollow beams with sharp-boundary density profiles. One of the most important features in the analysis is that the typical growth rate of the transverse oscillation is order of the hollow beam diocotron frequency, thereby severely limiting the solid beam propagation through a relativistic hollow electron beam. However, for a solid beam with a small radius, the fundamental mode perturbation (i.e., the dipole oscillation) is the most unstable mode.

  14. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  15. The use of electron beams for pasteurization of meats

    SciTech Connect

    Prestwich, K.R.; Kaye, R.J.; Turman, B.N.; Neau, E.L.

    1994-12-01

    Electron beam accelerators can be used for electronic pasteurization of meat products by: (1) using the electrons directly impacting the products, or (2) optimizing the conversion of electron energy to x-rays and treating the product with these x-rays. The choice of process depends on the configuration of the product when it is treated. For electron treatment, ten million electron volt (MeV) kinetic energy is the maximum allowed by international agreement. The depth of penetration of electrons with that energy into a product with density of meat is about five centimeters (cm). Two-sided treatment can be done on products up to 10 cm thick with a two-to-one ratio between minimum and maximum dose. Ground beef patties are about 1.25 cm (0.5 inch thick). Beams with 2.5 MeV electron energy could be used to treat these products. Our calculations show that maximum to minimum dose ratios less than 1.2 can be achieved with this energy if the transverse beam energy is small. If the product thickness is greater than 10 cm, x-rays can provide the needed dose uniformity. Uniform doses can be supplied for pallets with dimensions greater than 1.2 m on each side using x-rays from a 5 MeV electron beam. The efficiency of converting the electron beam to x-rays and configurations to achieve dose uniformity are discussed.

  16. Visualization of Trajectories of Electron Beams Emitted by an IonSource with Closed Electron Drift

    SciTech Connect

    Institue of Physics, National Academy of Sciences of Ukraine; Brown, Ian G.; Bordenjuk, Ian V.; Panchenko, Oleg A.; Sologub, Sergei V.; Brown, Ian G.

    2007-10-01

    Trajectories of electron beams emitted by an ion source with an anode layer and Hall electron closed drift orbits were visualized using light emission from a working gas excited by electrons. Gas discharge of magnetron type, arising in the beam drift region under the influence of an electric field of a target bias potential, was visualized.

  17. Electron-beam induced current characterization of back-surface field solar cells using a chopped scanning electron microscope beam

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Cheng, L.-J.

    1984-01-01

    A chopped electron beam induced current (EBIC) technique for the chacterization of back-surface field (BSF) solar cells is presented. It is shown that the effective recombination velocity of the low-high junction forming the back-surface field of BSF cells, in addition to the diffusion length and the surface recombination velocity of the surface perpendicular to both the p-n and low-high junctions, can be determined from the data provided by a single EBIC scan. The method for doing so is described and illustrated. Certain experimental considerations taken to enhance the quality of the EBIC data are also discussed.

  18. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    DOEpatents

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  19. Development and characterization of advanced electron beam resists

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankur

    Over the past twenty years, the amount of research and development work for electron beam resists has seriously lagged that performed for optical resists. This has been due mainly to the relatively low volume use of electron beam lithography for production purposes. However, as electron beam lithography is now becoming the primary solution for achieving future critical dimension requirements in mask making and appears to be a promising NGL technology, interest in electron beam resist development has increased in recent years. The primary issue in electron beam resist design centers around finding a single resist system that combines the required sensitivity and etch resistance that is needed to enable high volume production. In this work, the primary goal was to explore the development of a novel two-component non-chemically amplified electron beam resist material for high keV (>10 keV) patterning for mask-making with: (1) high contrast, (2) high sensitivity, (3) high resolution, and, (4) high etch resistance. Poly (2-methyl-1-pentene co 2-ethoxyethyl-methallyl ether sulfone) was used as a polymeric e-beam sensitive material conjunction with a series of commercial novolac resins to formulate electron beam resists. These two-component resists have been termed sulfone-novolac system (SNS) resists. The approach used in this project is to develop a suite of experimental tools and simulation models that can be used to aid in the rational design, formulation, and characterization of new electron beam resists. The main tasks that have been addressed are: (1) development of the electron beam resist characterization tool set, (2) understanding the fundamental material behavior of a non-chemically amplified polysulfone-novolac (SNS) e-beam resist for next generation mask making, (3) lithographic process development and optimization for the SNS resists, (4) evaluation of the lithographic performance of the SNS resists using the optimized processing conditions, and (5) develop

  20. Characteristics of an electron-beam rocket pellet accelerator

    SciTech Connect

    Tsai, C.C.; Foster, C.A.; Milora, S.L.; Schechter, D.E.

    1991-01-01

    A proof-of-principle (POP) electron-beam pellet accelerator has been developed and used for accelerating hydrogen and deuterium pellets. An intact hydrogen pellet was accelerated to a speed of 460 m/s by an electron beam of 13.5 keV. 0.3 A, and 2 ms. The maximum speed is limited by the acceleration path length (0.4 m) and pellet integrity. Experimental data have been collected for several hundred hydrogen pellets, which were accelerated by electron beams with parameters of voltage up to 16 kV, current up to 0.4 A, and pulse length up to 10 ms. Preliminary results reveal that the measured burn velocity increases roughly with the square of the beam voltage, as the theoretical model predicts. The final pellet velocity is proportional to the exhaust velocity, which increases with the beam power. To reach the high exhaust velocity needed for accelerating pellets to >1000 m/s, a new electron gun, with its cathode indirectly heated by a graphite heater and an electron beam, is being developed to increase beam current and power. A rocket casing or shell around the pellet has been designed and developed to increase pellet strength and improve the electron-rocket coupling efficiency. We present the characteristics of this pellet accelerator, including new improvements. 13 refs., 6 figs.

  1. Effects of electron-beam irradiation on conducting polypyrrole nanowires

    SciTech Connect

    Hong, Young Ki; Park, Dong Hyuk; Park, Se Hee; Park, Soung Kyu; Joo, Jinsoo

    2009-02-02

    Conducting polypyrrole (PPy) nanowires (NWs) were irradiated by a relatively high energy (300 keV-2 MeV) electron-beam (e-beam) generated from a linear electron accelerator in an atmospheric environment. From the current-voltage characteristics of pristine and 2 MeV e-beam irradiated PPy NWs, we observed a dramatic variation in resistance from 8.0x10{sup 2} to 1.45x10{sup 8} {omega}, that is, we observed a transition from conducting states to nonconducting states through the e-beam irradiation. To discern conformational changes and the doping states of PPy NWs through the e-beam irradiation, we measured Raman and ultraviolet-visible absorption spectra for the PPy NWs. As the energy of the e-beam irradiation increased, we observed that the PPy NWs were changed from doping states to dedoping states with conformational modification including the variation in {pi}-conjugation length.

  2. Advanced Accelerating Structures and Their Interaction with Electron Beams

    SciTech Connect

    Gai Wei

    2009-01-22

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  3. Advanced accelerating structures and their interaction with electron beams.

    SciTech Connect

    Gai, W.; High Energy Physics

    2008-01-01

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  4. Electron acoustic solitary waves in a magnetized plasma with nonthermal electrons and an electron beam

    NASA Astrophysics Data System (ADS)

    Singh, S. V.; Devanandhan, S.; Lakhina, G. S.; Bharuthram, R.

    2016-08-01

    A theoretical investigation is carried out to study the obliquely propagating electron acoustic solitary waves having nonthermal hot electrons, cold and beam electrons, and ions in a magnetized plasma. We have employed reductive perturbation theory to derive the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing the nonlinear evolution of these waves. The two-dimensional plane wave solution of KdV-ZK equation is analyzed to study the effects of nonthermal and beam electrons on the characteristics of the solitons. Theoretical results predict negative potential solitary structures. We emphasize that the inclusion of finite temperature effects reduces the soliton amplitudes and the width of the solitons increases by an increase in the obliquity of the wave propagation. The numerical analysis is presented for the parameters corresponding to the observations of "burst a" event by Viking satellite on the auroral field lines.

  5. Feasibility study of patient positioning verification in electron beam radiotherapy with an electronic portal imaging device (EPID).

    PubMed

    Ramm, U; Köhn, J; Rodriguez Dominguez, R; Licher, J; Koch, N; Kara, E; Scherf, C; Rödel, C; Weiß, C

    2014-03-01

    The purpose of this study is to demonstrate the feasibility of verification and documentation in electron beam radiotherapy using the photon contamination detected with an electronic portal imaging device. For investigation of electron beam verification with an EPID, the portal images are acquired irradiating two different tissue equivalent phantoms at different electron energies. Measurements were performed on an Elekta SL 25 linear accelerator with an amorphous-Si electronic portal imaging device (EPID: iViewGT, Elekta Oncology Systems, Crawley, UK). As a measure of EPID image quality contrast (CR) and signal-to-noise ratio (SNR) are determined. For characterisation of the imaging of the EPID RW3 slabs and a Gammex 467 phantom with different material inserts are used. With increasing electron energy the intensity of photon contamination increases, yielding an increasing signal-to-noise ratio, but images are showing a decreasing contrast. As the signal-to-noise ratio saturates with increasing dose a minimum of 50 MUs is recommended. Even image quality depends on electron energy and diameter of the patient, the acquired results are mostly sufficient to assess the accuracy of beam positioning. In general, the online EPID acquisition has been demonstrated to be an effective electron beam verification and documentation method. The results are showing that this procedure can be recommended to be routinely and reliably done in patient treatment with electron beams.

  6. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

    2011-02-01

    Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below ˜10 μm account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

  7. The influence of beam energy and oxidation on quantitative carbide analysis in the scanning electron microscope

    SciTech Connect

    Rodenburg, C.; Rainforth, W. M.

    2006-12-01

    In this paper the origin of the carbide/matrix contrast in secondary electron images and its ramifications for spatial resolution are investigated. A profound influence of the backscattered electron yield and the oxidation of the steel matrix was found, which manifests itself in a contrast reversal at low primary electron beam energies. The authors established that low beam energies are necessary to obtain the required spatial resolution. Strategies for optimizing the contrast between carbide and matrix in secondary electron images without compromising the spatial resolution are presented. A simple method to estimate the thickness of thin oxide layers from low voltage secondary electron images is also described.

  8. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  9. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  10. Beam dynamics analysis in pulse compression using electron beam compact simulator for Heavy Ion Fusion

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi; Horioka, Kazuhiko; Sasaki, Toru; Harada, Nob.

    2013-11-01

    In a final stage of an accelerator system for heavy ion inertial fusion (HIF), pulse shaping and beam current increase by bunch compression are required for effective pellet implosion. A compact simulator with an electron beam was constructed to understand the beam dynamics. In this study, we investigate theoretically and numerically the beam dynamics for the extreme bunch compression in the final stage of HIF accelerator complex. The theoretical and numerical results implied that the compact experimental device simulates the beam dynamics around the stagnation point for initial low temperature condition.

  11. Isotope separation using tuned laser and electron beam

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor (Inventor)

    1987-01-01

    The apparatus comprises means for producing an atomic beam containing the isotope of interest and other isotopes. Means are provided for producing a magnetic field traversing the path of the atomic beam of an intensity sufficient to broaden the energy domain of the various individual magnetic sublevels of the isotope of interest and having the atomic beam passing therethrough. A laser beam is produced of a frequency and polarization selected to maximize the activation of only individual magnetic sublevels of the isotope of interest with the portion of its broadened energy domain most removed from other isotopes with the stream. The laser beam is directed so as to strike the atomic beam within the magnetic field and traverse the path of the atomic beam whereby only the isotope of interest is activated by the laser beam. The apparatus further includes means for producing a collimated and high intensity beam of electrons of narrow energy distribution within the magnetic field which is aimed so as to strike the atomic beam while the atomic beam is simultaneously struck by the laser beam and at an energy level selected to ionize the activated isotope of interest but not ground state species included therewith. Deflection means are disposed in the usual manner to collect the ions.

  12. Anomalous Hollow Electron Beams in a Storage Ring

    SciTech Connect

    Wu, Y.K.

    2005-04-12

    This paper reports the first observations of an anomalous hollow electron beam in the Duke storage ring. Created by exciting the single bunch beam in a lattice with a negative chromaticity, the hollow beam consists of a solid core inside and a large ring outside. We report the detailed measurements of the hollow beam phenomenon, including its distinct image pattern, spectrum signature, and its evolution with time. By capturing the post-instability bursting beam, the hollow beam is a unique model system for studying the transverse instabilities, in particular, the interplay of the wake field and the lattice nonlinearity. In addition, the hollow beam can be used as a powerful tool to study the linear and nonlinear particle dynamics in the storage ring.

  13. Transport of electron beams with initial transverse-longitudinal correlation

    NASA Astrophysics Data System (ADS)

    Harris, J. R.; Lewellen, J. W.; Poole, B. R.

    2013-08-01

    When an electron beam whose current varies in time is extracted from a DC gun, the competition between the time-dependent space charge force and the time-independent focusing force will cause a correlation between radius, divergence, current, and position along the beam. This correlation will determine the beam's configuration in trace space, and together with the design of the downstream transport system, will determine the quality of the transport solutions that can be obtained, including the amplitude of the mismatch oscillations occurring in each slice of the beam. Recent simulations of a simplified diode with Pierce-type focusing operating at nonrelativistic voltages indicated that the radius and divergence of beams extracted from such guns can be approximated to high accuracy as linear functions of current. Here, we consider the impact of this dependence on the beam configuration in trace space and investigate the implications for matching and transport of such correlated beams in uniform linear focusing channels.

  14. A Gridded Electron Gun for a Sheet Beam Klystron

    SciTech Connect

    Read, M.E.; Miram, G.; Ives, R.L.; Ivanov, V.; Krasnykh, A.; /SLAC

    2008-04-25

    This paper describes the development of an electron gun for a sheet beam klystron. Initially intended for accelerator applications, the gun can operate at a higher perveance than one with a cylindrically symmetric beam. Results of 2D and 3D simulations are discussed.

  15. RADLAC II high current electron beam propagation experiment

    SciTech Connect

    Frost, C.A.; Shope, S.L.; Mazarakis, M.G.; Poukey, J.W.; Wagner, J.S.; Turman, B.N.; Crist, C.E.; Welch, D.R.; Struve, K.W.

    1992-08-01

    This resistive hose instability of an electron beam was observed to be convective in recent RADLAC II experiments for higher current shots. The effects of air scattering for these shots were minimal. These experiments and theory suggest low-frequency hose motion which does not appear convective may be due to rapid expansion and subsequent drifting of the beam nose.

  16. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  17. Acceleration of electrons in strong beam-plasma interactions

    NASA Astrophysics Data System (ADS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-12-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  18. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  19. Electron beam irradiated silver nanowires for a highly transparent heater

    PubMed Central

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-01-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters. PMID:26639760

  20. Electron beam irradiated silver nanowires for a highly transparent heater

    NASA Astrophysics Data System (ADS)

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-12-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters.

  1. Brushless dc motor uses electron beam switching tube as commutator

    NASA Technical Reports Server (NTRS)

    Studer, P.

    1965-01-01

    Electron beam switching tube eliminates physical contact between rotor and stator in brushless dc motor. The tube and associated circuitry control the output of a dc source to sequentially energize the motor stator windings.

  2. Inductive voltage adder (IVA) for submillimeter radius electron beam

    SciTech Connect

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    1996-12-31

    The authors have already demonstrated the utility of inductive voltage adder accelerators for production of small-size electron beams. In this approach, the inductive voltage adder drives a magnetically immersed foilless diode to produce high-energy (10--20 MeV), high-brightness pencil electron beams. This concept was first demonstrated with the successful experiments which converted the linear induction accelerator RADLAC II into an IVA fitted with a small 1-cm radius cathode magnetically immersed foilless diode (RADLAC II/SMILE). They present here first validations of extending this idea to mm-scale electron beams using the SABRE and HERMES-III inductive voltage adders as test beds. The SABRE experiments are already completed and have produced 30-kA, 9-MeV electron beams with envelope diameter of 1.5-mm FWHM. The HERMES-III experiments are currently underway.

  3. Electron beam seals outer surfaces of porous bodies

    NASA Technical Reports Server (NTRS)

    Herz, W. H.; Kurtz, A. D.; Kurtz, R. A.

    1966-01-01

    Porous tungsten plugs provide even airflow for frictionless bearings used in air bearing supported gyros. The plugs have their outer cylindrical surface sealed by an electron beam process to ensure unidirectional airflow through their exit ends.

  4. Methods for measurement of electron emission yield under low energy electron-irradiation by collector method and Kelvin probe method

    SciTech Connect

    Tondu, Thomas; Belhaj, Mohamed; Inguimbert, Virginie

    2010-09-15

    Secondary electron emission yield of gold under electron impact at normal incidence below 50 eV was investigated by the classical collector method and by the Kelvin probe method. The authors show that biasing a collector to ensure secondary electron collection while keeping the target grounded can lead to primary electron beam perturbations. Thus reliable secondary electron emission yield at low primary electron energy cannot be obtained with a biased collector. The authors present two collector-free methods based on current measurement and on electron pulse surface potential buildup (Kelvin probe method). These methods are consistent, but at very low energy, measurements become sensitive to the earth magnetic field (below 10 eV). For gold, the authors can extrapolate total emission yield at 0 eV to 0.5, while a total electron emission yield of 1 is obtained at 40{+-}1 eV.

  5. Formation of metallic nanostructures on the surface of ion- exchange glass by focused electron beam

    NASA Astrophysics Data System (ADS)

    Komissarenko, F. E.; Zhukov, M. V.; Mukhin, I. S.; Golubok, A. O.; Sidorov, A. I.

    2015-11-01

    This paper presents a new method for formation of metallic nanostructures on the surface of ion-exchange glass. The method is based on the interaction of a focused electron beam with ions in ion-exchange glass. In experiments nanostructures with different shapes were obtained, depending on the electrons irradiation conditions.

  6. Matching extended-SSD electron beams to multileaf collimated photon beams in the treatment of head and neck cancer

    SciTech Connect

    Steel, Jared; Stewart, Allan; Satory, Philip

    2009-09-15

    Purpose: Matching the penumbra of a 6 MeV electron beam to the penumbra of a 6 MV photon beam is a dose optimization challenge, especially when the electron beam is applied from an extended source-to-surface distance (SSD), as in the case of some head and neck treatments. Traditionally low melting point alloy blocks have been used to define the photon beam shielding over the spinal cord region. However, these are inherently time consuming to construct and employ in the clinical situation. Multileaf collimators (MLCs) provide a fast and reproducible shielding option but generate geometrically nonconformal approximations to the desired beam edge definition. The effects of substituting Cerrobend for the MLC shielding mode in the context of beam matching with extended-SSD electron beams are the subject of this investigation. Methods: Relative dose beam data from a Varian EX 2100 linear accelerator were acquired in a water tank under the 6 MeV electron beam at both standard and extended-SSD and under the 6 MV photon beam defined by Cerrobend and a number of MLC stepping regimes. The effect of increasing the electron beam SSD on the beam penumbra was assessed. MLC stepping was also assessed in terms of the effects on both the mean photon beam penumbra and the intraleaf dose-profile nonuniformity relative to the MLC midleaf. Computational techniques were used to combine the beam data so as to simulate composite relative dosimetry in the water tank, allowing fine control of beam abutment gap variation. Idealized volumetric dosimetry was generated based on the percentage depth-dose data for the beam modes and the abutment geometries involved. Comparison was made between each composite dosimetry dataset and the relevant ideal dosimetry dataset by way of subtraction. Results: Weighted dose-difference volume histograms (DDVHs) were produced, and these, in turn, summed to provide an overall dosimetry score for each abutment and shielding type/angle combination. Increasing the

  7. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  8. Theory And Design Of Thermionic Electron Beam Guns

    SciTech Connect

    Iqbal, Munawar; Fazal-e-Aleem

    2005-03-17

    Electron beam technology has a long history and wide applications in various fields including high-energy physics. The unique properties, which one can develop by using different configurations, have been one of the strongest driving forces for this multi-dimensional technology. In this paper, we will take up the subject along with applications in various areas of physics. We will particularly focus on the developments of electron beam sources by our laboratory.

  9. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam

    NASA Astrophysics Data System (ADS)

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A.; Vick, Andrew J.

    2016-09-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices.

  10. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam.

    PubMed

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A; Vick, Andrew J

    2016-01-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices. PMID:27586090

  11. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam

    PubMed Central

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A.; Vick, Andrew J.

    2016-01-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices. PMID:27586090

  12. Electron-Cloud Effects on Heavy-Ion Beams

    SciTech Connect

    Azevedo, T; Friedman, A; Cohen, R; Vay, J

    2004-03-29

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We are developing a capability for self-consistent simulation of ion beams with the electron clouds they produce. We report on an ingredient in this capability, the effect of specified electron cloud distributions on the dynamics of a coasting ion beam. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also be effective. We identify a possible instability associated with resonance with the beam-envelope ''breathing'' mode. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations.

  13. Reinforcing multiwall carbon nanotubes by electron beam irradiation

    SciTech Connect

    Duchamp, Martial; Meunier, Richard; Smajda, Rita; Mionic, Marijana; Forro, Laszlo; Magrez, Arnaud; Seo, Jin Won; Song, Bo; Tomanek, David

    2010-10-15

    We study the effect of electron beam irradiation on the bending modulus of multiwall carbon nanotubes grown by chemical vapor deposition. Atomic force microscopy observations of the nanotube deflection in the suspended-beam geometry suggest an internal, reversible stick-slip motion prior to irradiation, indicating presence of extended defects. Upon electron beam irradiation, nanotubes with an initial bending modulus exceeding 10 GPa initially get stiffer, before softening at high doses. Highly defective nanotubes with smaller initial bending moduli do not exhibit the initial reinforcement. These data are explained by ab initio molecular dynamics calculations suggesting a spontaneous cross-linking of neighboring nanotube walls at extended vacancy defects created by the electron beam, in agreement with electron microscopy observations. At low defect concentration, depending on the edge morphology, the covalent bonds between neighboring nanotube walls cause reinforcement by resisting relative motion of neighboring walls. At high concentration of defects that are present initially or induced by high electron beam dose, the structural integrity of the entire system suffers from increasing electron beam damage.

  14. Submicron machining and biomolecule immobilization on porous silicon by electron beam.

    PubMed

    Imbraguglio, Dario; Giovannozzi, Andrea Mario; Nastro, Annalisa; Rossi, Andrea Mario

    2012-09-25

    Three-dimensional submicrometric structures and biomolecular patterns have been fabricated on a porous silicon film by an electron beam-based functionalization method. The immobilized proteins act as a passivation layer against material corrosion in aqueous solutions. The effects' dependence on the main parameters of the process (i.e., the electron beam dose, the biomolecule concentration, and the incubation time) has been demonstrated.

  15. Development of High Power Electron Beam Measuring and Analyzing System for Microwave Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Ruan, C. J.; Wu, X. L.; Li, Q. S.; Li, C. S.

    The measurement and analysis of high power electron beam during its formation and transmission are the basic scientific problems and key techniques for the development of high performance microwave vacuum electron devices, which are widely used in the fields of military weapon, microwave system and scientific instruments. In this paper, the dynamic parameters measurement and analysis system being built in Institute of Electronics, Chinese Academy of Sciences (IECAS) recently are introduced. The instrument are designed to determine the cross-section, the current density, and the energy resolution of the high power electron beam during its formation and transmission process, which are available both for the electron gun and the electron optics system respectively. Then the three dimension trajectory images of the electron beam can be rebuilt and display with computer controlled data acquisition and processing system easily. Thus, much more complicated structures are considered and solved completely to achieve its detection and analysis, such as big chamber with 10-6 Pa high vacuum system, the controlled detector movement system in axis direction with distance of 600 mm inside the vacuum chamber, the electron beam energy analysis system with high resolution of 0.5%, and the electron beam cross-section and density detector using the YAG: Ce crystal and CCD imaging system et al. At present, the key parts of the instrument have been finished, the cross-section experiment of the electron beam have been performed successfully. Hereafter, the instrument will be used to measure and analyze the electron beam with the electron gun and electron optics system for the single beam and multiple beam klystron, gyrotron, sheet beam device, and traveling wave tube etc. thoroughly.

  16. Inner Crack Detection Method for Cantilever Beams

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Zhang, Wei; Li, Yixuan; Su, Xianyue

    2008-02-01

    In this paper, continuous wavelet transform has been performed to extract the inner crack information from the guided waves in cantilever beams, and the location and size of crack can be detected exactly. Considering its best time-frequency property, Gabor continuous wavelet transform is employed to analyze the complicated flexible wave signals in cantilever beam, which is inspirited by an impact on the free end. Otherwise, in order to enhance the sensitivity of detection for some small cracks, an improved method is discussed. Here, both computational and experimental methods are carried out for comparing the influence of different crack location in beam. Therefore, the method proposed can be expected to expand to a powerful damage detection method in a broad engineering application.

  17. Electron beam driven lower hybrid waves in a dusty plasma

    SciTech Connect

    Prakash, Ved; Vijayshri; Sharma, Suresh C.; Gupta, Ruby

    2013-05-15

    An electron beam propagating through a magnetized dusty plasma drives electrostatic lower hybrid waves to instability via Cerenkov interaction. A dispersion relation and the growth rate of the instability for this process have been derived taking into account the dust charge fluctuations. The frequency and the growth rate of the unstable wave increase with the relative density of negatively charged dust grains. Moreover, the growth rate of the instability increases with beam density and scales as the one-third power of the beam density. In addition, the dependence of the growth rate on the beam velocity is also discussed.

  18. Electron Beam Lifetime in SPEAR3: Measurement and Simulation

    SciTech Connect

    Corbett, J.; Huang, X.; Lee, M.; Lui, P.; Sayyar-Rodsari, B.; /Pavilon Tech., Austin

    2007-12-19

    In this paper we report on electron beam lifetime measurements as a function of scraper position, RF voltage and bunch fill pattern in SPEAR3. We then outline development of an empirical, macroscopic model using the beam-loss rate equation. By identifying the dependence of loss coefficients on accelerator and beam parameters, a numerically-integrating simulator can be constructed to compute beam decay with time. In a companion paper, the simulator is used to train a parametric, non-linear dynamics model for the system [1].

  19. Accurate characterization of Monte Carlo calculated electron beams for radiotherapy.

    PubMed

    Ma, C M; Faddegon, B A; Rogers, D W; Mackie, T R

    1997-03-01

    Monte Carlo studies of dose distributions in patients treated with radiotherapy electron beams would benefit from generalized models of clinical beams if such models introduce little error into the dose calculations. Methodology is presented for the design of beam models, including their evaluation in terms of how well they preserve the character of the clinical beam, and the effect of the beam models on the accuracy of dose distributions calculated with Monte Carlo. This methodology has been used to design beam models for electron beams from two linear accelerators, with either a scanned beam or a scattered beam. Monte Carlo simulations of the accelerator heads are done in which a record is kept of the particle phase-space, including the charge, energy, direction, and position of every particle that emerges from the treatment head, along with a tag regarding the details of the particle history. The character of the simulated beams are studied in detail and used to design various beam models from a simple point source to a sophisticated multiple-source model which treats particles from different parts of a linear accelerator as from different sub-sources. Dose distributions calculated using both the phase-space data and the multiple-source model agree within 2%, demonstrating that the model is adequate for the purpose of Monte Carlo treatment planning for the beams studied. Benefits of the beam models over phase-space data for dose calculation are shown to include shorter computation time in the treatment head simulation and a smaller disk space requirement, both of which impact on the clinical utility of Monte Carlo treatment planning.

  20. Note: Characteristic beam parameter for the line electron gun.

    PubMed

    Iqbal, M; Islam, G U; Zhou, Z; Chi, Y

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm(2) at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm(2)), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful. PMID:24289448

  1. Neoclassical electron transport in tokamaks with neutral-beam injection

    SciTech Connect

    Helander, P.; Akers, R.J.

    2005-04-15

    The collisional interaction between neutral-beam ions and bulk plasma electrons leads to convective transport of particles and energy similar to the well-known Ware pinch. These transport fluxes are calculated, and it is found that the particle flux is outward when the neutral beams are in the same direction as the plasma current and inward otherwise, while the opposite holds for the electron heat transport. This effectively shifts the neutral-beam fueling profile approximately one fast-ion banana width outward during coinjection and inward during counterinjection, and could help to explain why very different plasma behavior is sometimes observed when the direction of the plasma current is reversed.

  2. Note: Characteristic beam parameter for the line electron gun

    SciTech Connect

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-15

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm{sup 2} at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm{sup 2}), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  3. Note: Characteristic beam parameter for the line electron gun.

    PubMed

    Iqbal, M; Islam, G U; Zhou, Z; Chi, Y

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm(2) at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm(2)), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  4. Note: Characteristic beam parameter for the line electron gun

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm2 at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm2), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  5. Angular-momentum-dominated electron beams and flat-beam generation

    SciTech Connect

    Sun, Yin-e

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  6. High speed focused ion and electron beam nanofabrication

    NASA Astrophysics Data System (ADS)

    Melngailis, John

    2009-03-01

    Both focused ion beams and electron beams can be used for direct, maskless, resistless nanofabrication as well as for lithography. So far the direct fabrication has been limited to applications such as photomask repair, circuit restructuring, failure analysis, and the creation of various highly specialized structures. Recent developments in maskless fabrication, so far aimed mainly at to resist exposure, suggest that this picture might change. For example, IMS in Vienna, Austria is developing an instrument that can be characterized as an ion beam or electron beam dot matrix printer. The total current on the sample available from this kind of instrument is at least three orders of magnitude larger than from a single beam instrument. This may lead to new applications of charged particle beam fabrication, as well as enable applications considered in the past but rejected because of very low throughput. An example of one such application is the direct writing of the identity in RFID tags using ion beam implantation. Recently we have also shown that electron beams can be used to deposit relatively pure platinum from an inorganic precursor gas, Pt(PF3)4. Such metal deposits can be used as contacts to carbon nanotubes, semiconductor nano wires, organic fibers, or other structures where conventional lithography is impractical.

  7. Whistler-mode radiation from the Spacelab 2 electron beam

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Steinberg, J. T.; Banks, P. M.; Bush, R. I.

    1986-01-01

    During the Spacelab 2 mission the Plasma Diagnostics Package (PDP) performed a fly-around of the Shuttle at distances of up to 300 meters while an electron beam was being ejected from the Shuttle. A magnetic conjunction of the Shuttle and the PDP while the electron gun was operating in a steady (DC) mode is discussed. During this conjunction, the PDP detected a clear funnel-shaped emission that is believed to be caused by whistler-mode emission from the beam. Ray-path calculations show that the shape of the funnel can be accounted for by whistler-mode waves propagating near the resonance cone. Because the beam and waves are propagating in the same direction, the radiation must be produced by a Landau interaction with the beam. Other types of waves generated by the beam are also described.

  8. Superconducting nanowires by electron-beam-induced deposition

    SciTech Connect

    Sengupta, Shamashis; Li, Chuan; Guéron, S.; Bouchiat, H.; Baumier, Cedric; Fortuna, F.; Kasumov, Alik

    2015-01-26

    Superconducting nanowires can be fabricated by decomposition of an organometallic gas using a focused beam of Ga ions. However, physical damage and unintentional doping often result from the exposure to the ion beam, motivating the search for a means to achieve similar structures with a beam of electrons instead of ions. This has so far remained an experimental challenge. We report the fabrication of superconducting tungsten nanowires by electron-beam-induced-deposition, with critical temperature of 2.0 K and critical magnetic field of 3.7 T, and compare them with superconducting wires made with ions. This work is an important development for the template-free realization of nanoscale superconducting devices, without the requirement of an ion beam column.

  9. Coherent Cerenkov radiation from the Spacelab 2 electron beam

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Gurnett, D. A.; Goertz, C. K.

    1989-01-01

    The plasma environment of the Spacelab 2 mission was investigated through the deployment of the Plasma Diagnostics Package (PDP) by the Space Shuttle Orbiter and the Orbiter's ejection of a continuous 1-keV/50-mA electron beam along a field line. As the PDP flew by the beam, its plasma-wave instrument detected intense whistler-mode radiation originating from the beam. A detailed model has been developed of the coherent Cerenkov emission process, using a one-dimensional computer simulation of the beam to model the expected phase space structure of the electrons. The power calculated for the modeled 200-m beam segment can easily account for the measured whistler mode wave power.

  10. Exact analytical solutions of continuity equation for electron beams precipitating in Coulomb collisions

    SciTech Connect

    Dobranskis, R. R.; Zharkova, V. V.

    2014-06-10

    The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained by using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.

  11. Electron-beam induced synthesis of nanostructures: a review.

    PubMed

    Gonzalez-Martinez, I G; Bachmatiuk, A; Bezugly, V; Kunstmann, J; Gemming, T; Liu, Z; Cuniberti, G; Rümmeli, M H

    2016-06-01

    As the success of nanostructures grows in modern society so does the importance of our ability to control their synthesis in precise manners, often with atomic precision as this can directly affect the final properties of the nanostructures. Hence it is crucial to have both deep insight, ideally with real-time temporal resolution, and precise control during the fabrication of nanomaterials. Transmission electron microscopy offers these attributes potentially providing atomic resolution with near real time temporal resolution. In addition, one can fabricate nanostructures in situ in a TEM. This can be achieved with the use of environmental electron microscopes and/or specialized specimen holders. A rather simpler and rapidly growing approach is to take advantage of the imaging electron beam as a tool for in situ reactions. This is possible because there is a wealth of electron specimen interactions, which, when implemented under controlled conditions, enable different approaches to fabricate nanostructures. Moreover, when using the electron beam to drive reactions no specialized specimen holders or peripheral equipment is required. This review is dedicated to explore the body of work available on electron-beam induced synthesis techniques with in situ capabilities. Particular emphasis is placed on the electron beam-induced synthesis of nanostructures conducted inside a TEM, viz. the e-beam is the sole (or primary) agent triggering and driving the synthesis process.

  12. Electron-beam induced synthesis of nanostructures: a review

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martinez, I. G.; Bachmatiuk, A.; Bezugly, V.; Kunstmann, J.; Gemming, T.; Liu, Z.; Cuniberti, G.; Rümmeli, M. H.

    2016-06-01

    As the success of nanostructures grows in modern society so does the importance of our ability to control their synthesis in precise manners, often with atomic precision as this can directly affect the final properties of the nanostructures. Hence it is crucial to have both deep insight, ideally with real-time temporal resolution, and precise control during the fabrication of nanomaterials. Transmission electron microscopy offers these attributes potentially providing atomic resolution with near real time temporal resolution. In addition, one can fabricate nanostructures in situ in a TEM. This can be achieved with the use of environmental electron microscopes and/or specialized specimen holders. A rather simpler and rapidly growing approach is to take advantage of the imaging electron beam as a tool for in situ reactions. This is possible because there is a wealth of electron specimen interactions, which, when implemented under controlled conditions, enable different approaches to fabricate nanostructures. Moreover, when using the electron beam to drive reactions no specialized specimen holders or peripheral equipment is required. This review is dedicated to explore the body of work available on electron-beam induced synthesis techniques with in situ capabilities. Particular emphasis is placed on the electron beam-induced synthesis of nanostructures conducted inside a TEM, viz. the e-beam is the sole (or primary) agent triggering and driving the synthesis process.

  13. Electron-beam induced synthesis of nanostructures: a review.

    PubMed

    Gonzalez-Martinez, I G; Bachmatiuk, A; Bezugly, V; Kunstmann, J; Gemming, T; Liu, Z; Cuniberti, G; Rümmeli, M H

    2016-06-01

    As the success of nanostructures grows in modern society so does the importance of our ability to control their synthesis in precise manners, often with atomic precision as this can directly affect the final properties of the nanostructures. Hence it is crucial to have both deep insight, ideally with real-time temporal resolution, and precise control during the fabrication of nanomaterials. Transmission electron microscopy offers these attributes potentially providing atomic resolution with near real time temporal resolution. In addition, one can fabricate nanostructures in situ in a TEM. This can be achieved with the use of environmental electron microscopes and/or specialized specimen holders. A rather simpler and rapidly growing approach is to take advantage of the imaging electron beam as a tool for in situ reactions. This is possible because there is a wealth of electron specimen interactions, which, when implemented under controlled conditions, enable different approaches to fabricate nanostructures. Moreover, when using the electron beam to drive reactions no specialized specimen holders or peripheral equipment is required. This review is dedicated to explore the body of work available on electron-beam induced synthesis techniques with in situ capabilities. Particular emphasis is placed on the electron beam-induced synthesis of nanostructures conducted inside a TEM, viz. the e-beam is the sole (or primary) agent triggering and driving the synthesis process. PMID:27211080

  14. An electron beam profile instrument based on FBGs.

    PubMed

    Sporea, Dan; Stăncălie, Andrei; Becherescu, Nicu; Becker, Martin; Rothhardt, Manfred

    2014-01-01

    Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs) was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application. PMID:25157554

  15. An electron beam profile instrument based on FBGs.

    PubMed

    Sporea, Dan; Stăncălie, Andrei; Becherescu, Nicu; Becker, Martin; Rothhardt, Manfred

    2014-08-25

    Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs) was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.

  16. An Electron Beam Profile Instrument Based on FBGs

    PubMed Central

    Sporea, Dan; Stăncălie, Andrei; Becherescu, Nicu; Becker, Martin; Rothhardt, Manfred

    2014-01-01

    Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs) was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application. PMID:25157554

  17. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    NASA Technical Reports Server (NTRS)

    Singh, N.; Conrad, J. R.; Schunk, R. W.

    1985-01-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves.

  18. Compact electron-beam source for formation of neutral beams of very low vapor pressure materials

    NASA Technical Reports Server (NTRS)

    Rutherford, J. A.; Vroom, D. A.

    1978-01-01

    In order to form metal vapors for neutral beam studies, an electron-beam heater and a power supply have been designed. The source, which measures about 30 x 50 x 70 mm, consists of a filament, accelerating plate (defined by pole pieces), and a supported target. The electrons from the filament are focused by the field penetration through a 2 mm slit in the high-voltage cage. They are then accelerated to about 5 kV to a ground plate. The electrons then follow a path in the magnetic field and strike the sample to be heated on its front surface. The assembly is attached to a water-cooled base plate. The electron beam source has produced beams of Ta and C particles with densities of about 10 to the 8th power/cu cm.

  19. Transverse profile of the electron beam for the RHIC electron lenses

    SciTech Connect

    Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; Montag, C.; Pikin, A. I.

    2015-07-10

    To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for both the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.

  20. Transverse profile of the electron beam for the RHIC electron lenses

    DOE PAGES

    Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; et al

    2015-07-10

    To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for bothmore » the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.« less

  1. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  2. Relativistic electron-positron beams in gamma-ray bursters

    NASA Technical Reports Server (NTRS)

    Smith, I. A.; Epstein, Richard I.

    1993-01-01

    Beams of relativistic electrons and/or positrons leaving the surface of a strongly magnetized neutron star may give rise to gamma-ray bursts. The beams could be accelerated by strong, magnetically aligned electric fields that are produced by oscillations of the stellar surface. Here we investigate the particle acceleration in these electric fields, the resulting electron-positron pair cascade, and the gamma-ray emission. We find that beams of electrons and positrons moving parallel to the magnetic field are generated, with a reported differential energy distribution. These beams produce the bulk of the gamma-ray burst radiation below about 1 MeV by the resonant Compton scattering of thermal photons emitted from the stellar surface. The escaping synchrotron radiation from the cascade dominates the radiation spectrum above about 1 MeV.

  3. Preparation of bead metal single crystals by electron beam heating

    SciTech Connect

    Voigtlaender, Bert; Linke, Udo; Stollwerk, H.; Brona, J.

    2005-11-15

    For the fabrication of small metal bead crystals a gas flame is used to melt a wire forming a liquid droplet which solidifies upon cooling into a single crystal metal bead. Due to oxidation under ambient conditions bead crystals can be formed only from noble metals using this method. Here we describe a method how to fabricate bead crystals from a wide variety of metals and metal alloys (Cu, Mo, Ru, Rh, Pd, Ag, Ta, W, Re, Ir, Pt, Au, PtPd, Pd{sub 80}Pt{sub 20}, PtRh, AuAg, and PtIr) by electron beam heating under vacuum conditions. Narrow x-ray diffraction peaks confirm a high crystal quality of the bead crystals.

  4. Anti-planetward auroral electron beams at Saturn.

    PubMed

    Saur, J; Mauk, B H; Mitchell, D G; Krupp, N; Khurana, K K; Livi, S; Krimigis, S M; Newell, P T; Williams, D J; Brandt, P C; Lagg, A; Roussos, E; Dougherty, M K

    2006-02-01

    Strong discrete aurorae on Earth are excited by electrons, which are accelerated along magnetic field lines towards the planet. Surprisingly, electrons accelerated in the opposite direction have been recently observed. The mechanisms and significance of this anti-earthward acceleration are highly uncertain because only earthward acceleration was traditionally considered, and observations remain limited. It is also unclear whether upward acceleration of the electrons is a necessary part of the auroral process or simply a special feature of Earth's complex space environment. Here we report anti-planetward acceleration of electron beams in Saturn's magnetosphere along field lines that statistically map into regions of aurora. The energy spectrum of these beams is qualitatively similar to the ones observed at Earth, and the energy fluxes in the observed beams are comparable with the energies required to excite Saturn's aurora. These beams, along with the observations at Earth and the barely understood electron beams in Jupiter's magnetosphere, demonstrate that anti-planetward acceleration is a universal feature of aurorae. The energy contained in the beams shows that upward acceleration is an essential part of the overall auroral process.

  5. Do Unpolarized Electrons Affect the Polarization of a Stored Beam?

    SciTech Connect

    Rathmann, Frank

    2009-08-04

    We present a short overview of the PAX physics case for polarized antiprotons. In order to progress towards a stored polarized antiproton beam, it is crucial to understand the interaction of polarized protons with unpolarized electrons. Therefore investigations that address in particular the contributions of electrons to the polarization buildup of a stored proton beam are presented here in more detail. The measurement of the depolarizing p-vectore cross section settled a long-standing controversy about the role of electrons in the polarization buildup of a stored beam by spin-filtering. Instead of studying the buildup of polarization in an initially unpolarized beam, here the inverse situation was investigated by observation of the depolarization of an initially polarized beam. For the first time, electrons in the electron cooler have been used as a target to study their depolarizing effect on a 49.3 MeV proton beam orbiting in COSY. The foreseen spin-filtering experiments at COSY-Juelich and at the AD of CERN are briefly discussed as well.

  6. Electron cyclotron beam measurement system in the Large Helical Device

    SciTech Connect

    Kamio, S. Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T.

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  7. Electron-Beam Instability in Left-Handed Media

    SciTech Connect

    Bliokh, Yury P. |; Savelev, Sergey; Nori, Franco

    2008-06-20

    We predict that two electron beams can develop an instability when passing through a slab of left-handed media (LHM). This instability, which is inherent only for LHM, originates from the backward Cherenkov radiation and results in a self-modulation of the beams and radiation of electromagnetic waves. These waves leave the sample via the rear surface of the slab (the beam injection plane) and form two shifted bright circles centered at the beams. A simulated spectrum of radiation has well-separated lines on top of a broad continuous spectrum, which indicates dynamical chaos in the system. The radiation intensity and its spectrum can be controlled either by the beams' current or by the distance between the two beams.

  8. Effects of Electron Beam Irradiation on the Electrospinning of Polyacrylonitrile.

    PubMed

    Jeun, Joon-Pyo; Kim, Hyun-Bin; Oh, Seung-Hwan; Park, Jung-Ki; Kang, Phil-Hyun

    2015-08-01

    Electron beam (e-beam) irradiation of polyacrylonitrile (PAN) was performed to investigate the effects of radiation on the electrospinning process. For this study, polyacrylonitrile powder was subjected to e-beam irradiation with different doses of up to 100 kGy under an N2 atmosphere. Polymer solutions were prepared by dissolving PAN in N,N-dimethyl-formamide (DMF) at a 1:9 ratio by weight. The prepared PAN/DMF solutions showed different colors with different e-beam doses. The resulting structures in solutions contained conjugated C=N bonds, which caused the observed color formation. In addition, the conductivity of the PAN/DMF solution increased with an increase in e-beam irradiation dose. In the DSC spectra of electrospun PAN fibers, the peak temperature of the exothermic reactions was observed to decrease with an increase in the e-beam irradiation strength. PMID:26369176

  9. Rippled beam free-electron laser amplifier using the axial free-electron laser interaction

    SciTech Connect

    Carlsten, B.E.

    1997-05-01

    A new microwave generation mechanism involving a scalloping annular electron beam is discussed. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. In this paper, we analyze the ripple motion of the electron beam and derive the dispersion relation describing the exponential growth of the rf mode. We calculate the gain for a nominal design and as a function of beam current and ripple amplitude, and show that power gain on the order of 30 dB/m of interaction is achievable. We additionally demonstrate that, under the right conditions, the interaction is autoresonant. {copyright} {ital 1997 American Institute of Physics.}

  10. Electron-beam induced nano-etching of suspended graphene

    PubMed Central

    Sommer, Benedikt; Sonntag, Jens; Ganczarczyk, Arkadius; Braam, Daniel; Prinz, Günther; Lorke, Axel; Geller, Martin

    2015-01-01

    Besides its interesting physical properties, graphene as a two-dimensional lattice of carbon atoms promises to realize devices with exceptional electronic properties, where freely suspended graphene without contact to any substrate is the ultimate, truly two-dimensional system. The practical realization of nano-devices from suspended graphene, however, relies heavily on finding a structuring method which is minimally invasive. Here, we report on the first electron beam-induced nano-etching of suspended graphene and demonstrate high-resolution etching down to ~7 nm for line-cuts into the monolayer graphene. We investigate the structural quality of the etched graphene layer using two-dimensional (2D) Raman maps and demonstrate its high electronic quality in a nano-device: A 25 nm-wide suspended graphene nanoribbon (GNR) that shows a transport gap with a corresponding energy of ~60 meV. This is an important step towards fast and reliable patterning of suspended graphene for future ballistic transport, nano-electronic and nano-mechanical devices. PMID:25586495

  11. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.

    2011-05-15

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches {approx}5 Multiplication-Sign 10{sup 10} are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU{sub m}, where U{sub m} is the maximum gap voltage, is relatively small.

  12. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  13. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect

    Pollock, Bradley Bolt

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  14. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, Jr., Joseph T.

    1991-01-01

    An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.

  15. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, J.T. Jr.

    1991-08-27

    An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.

  16. Atomic physics measurements in an electron Beam Ion Trap

    SciTech Connect

    Marrs, R.E.; Beiersdorfer, P.; Bennett, C.; Chen, M.H.; Cowan, T.; Dietrich, D.; Henderson, J.R.; Knapp, D.A.; Osterheld, A.; Schneider, M.B.

    1989-03-01

    An electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged ions (q less than or equal to 70/+/) for x-ray spectroscopy measurements. Recent measurements of transition energies and electron excitation cross sections for x-ray line emission are summarized. 13 refs., 10 figs.

  17. Upgrade of the electron beam ion trap in Shanghai

    SciTech Connect

    Lu, D.; Yang, Y.; Xiao, J.; Shen, Y.; Fu, Y.; Wei, B.; Yao, K.; Hutton, R.; Zou, Y.

    2014-09-15

    Over the last few years the Shanghai electron beam ion trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Applied Physics, first produced an electron beam in 2005. It could be tuned with electron energies between 1 and 130 keV and beam current up to 160 mA. After several years of operation, it was found that several modifications for improvements were necessary to reach the goals of better electron optics, higher photon detection, and ion injection efficiencies, and more economical running costs. The upgraded Shanghai-EBIT is made almost entirely from Ti instead of stainless steel and achieves a vacuum of less than 10{sup −10} Torr, which helps to minimize the loss of highly changed ions through charge exchange. Meanwhile, a more compact structure and efficient cryogenic system, and excellent optical alignment have been of satisfactory. The magnetic field in the central trap region can reach up till 4.8 T with a uniformity of 2.77 × 10{sup −4}. So far the upgraded Shanghai-EBIT has been operated up to an electron energy of 151 keV and a beam current of up to 218 mA, although promotion to even higher energy is still in progress. Radiation from ions as highly charged as Xe{sup 53+,} {sup 54+} has been produced and the characterization of current density is estimated from the measured electron beam width.

  18. Upgrade of the electron beam ion trap in Shanghai.

    PubMed

    Lu, D; Yang, Y; Xiao, J; Shen, Y; Fu, Y; Wei, B; Yao, K; Hutton, R; Zou, Y

    2014-09-01

    Over the last few years the Shanghai electron beam ion trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Applied Physics, first produced an electron beam in 2005. It could be tuned with electron energies between 1 and 130 keV and beam current up to 160 mA. After several years of operation, it was found that several modifications for improvements were necessary to reach the goals of better electron optics, higher photon detection, and ion injection efficiencies, and more economical running costs. The upgraded Shanghai-EBIT is made almost entirely from Ti instead of stainless steel and achieves a vacuum of less than 10(-10) Torr, which helps to minimize the loss of highly changed ions through charge exchange. Meanwhile, a more compact structure and efficient cryogenic system, and excellent optical alignment have been of satisfactory. The magnetic field in the central trap region can reach up till 4.8 T with a uniformity of 2.77 × 10(-4). So far the upgraded Shanghai-EBIT has been operated up to an electron energy of 151 keV and a beam current of up to 218 mA, although promotion to even higher energy is still in progress. Radiation from ions as highly charged as Xe(53+, 54+) has been produced and the characterization of current density is estimated from the measured electron beam width.

  19. Method and apparatus for efficient photodetachment and purification of negative ion beams

    DOEpatents

    Beene, James R [Oak Ridge, TN; Liu, Yuan [Knoxville, TN; Havener, Charles C [Knoxville, TN

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  20. Electron-ion recombination rates for merged-beams experiments

    SciTech Connect

    Pajek, M.

    1994-12-31

    Energy dependence of the electron-ion recombination rates are studied for different recombination processes (radiative recombination, three-body recombination, dissociative recombination) for Maxwellian relative velocity distribution of arbitrary asymmetry. The results are discussed in context of the electron-ion merged beams experiments in cooling ion storage rings. The question of indication of a possible contribution of the three-body recombination to the measured recombination rates versus relative energy is particularly addressed. Its influence on the electron beam temperature derived from the energy dependence of recombination rate is discussed.

  1. Electron Acceleration by a Tightly Focused Laser Beam

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.; Keitel, Christoph H.

    2002-03-01

    State-of-the-art petawatt laser beams may be focused down to few-micron spot sizes and can produce violent electron acceleration as a result of the extremely intense and asymmetric fields. Classical fifth-order calculations in the diffraction angle show that electrons, injected sideways into the tightly focused laser beam, get captured and gain energy in the GeV regime. We point out the most favorable points of injection away from the focus, along with an efficient means of extracting the energetic electron with a static magnetic field.

  2. Depolarization due to beam-beam interaction in electron-positron linear colliders

    SciTech Connect

    Yokoya, Kaoru; Chen, Pisin

    1988-09-01

    We investigate two major mechanisms which induce depolarization of electron beams during beam-beam interaction in linear colliders. These are the classical spin precession under the collective field of the oncoming beam, and the spin-flip effect from beamstrahlung. Analytic formulas are derived for estimating these depolarization effects. As examples, we estimate the depolarization in the Stanford Linear Collider (SLC) and a possible future TeV linear collider (TLC). The effects are found to be negligibly small for SLC and not very large for TLC. 7 refs., 1 fig.

  3. Electron Beam Diagnostics Of The JLAB UV FEL

    SciTech Connect

    Evtushenko, Pavel; Benson, Stephen; Biallas, George; Coleman, James; Dickover, Cody; Douglas, David; Marchlik, Matthew; Sexton, Daniel; Tennant, Christopher

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A system of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.

  4. Dynamics of a high-current relativistic electron beam

    SciTech Connect

    Strelkov, P. S.; Tarakanov, V. P.; Ivanov, I. E. Shumeiko, D. V.

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as the electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.

  5. Intense electron-beam ionization physics in air

    NASA Astrophysics Data System (ADS)

    Strasburg, S.; Hinshelwood, D. D.; Schumer, J. W.; Mosher, D.; Ottinger, P. F.; Fernsler, R. F.; Slinker, S. P.

    2003-09-01

    In this paper we study, experimentally and theoretically, the interactions of an intense electron beam with an initially-neutral background gas. The Naval Research Laboratory's Gamble II generator [J. D. Shipman, Jr., IEEE Trans. Nucl. Sci. NS-18, 243 (1971)] was used to drive an annular 900 kV, 800 kA beam, whose effects on background air in the pressure range ˜0.01 to 10 Torr were studied. Experimental diagnostics included a sophisticated two-color interferometer for time-resolved measurements of the background electron density, B-dot monitoring of the global net current, and x-ray pinhole images of the beam location. Data obtained were compared to extensive simulations using three numerical models that incorporated complex beam physics, atomic processes, and the capability for simulating strongly-disturbed gases. Good simulation agreement with net current and electron density as a function of pressure was obtained using a scaled pressure. Simulated and experimental net current fractions (at peak beam current) for the 1-10 Torr collision-dominated transport regime were on the order of 10%, while ionization fractions after the beam pulse were 20% for 10 Torr, rising to nearly 100% at the lower pressure of 0.5 Torr. More advanced model development is underway to better understand the important physics of beam-gas interactions.

  6. Pulsed electron beam propagation in argon and nitrogen gas mixture

    SciTech Connect

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-15

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N{sub 2}). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  7. An EBIC equation for solar cells. [Electron Beam Induced Current

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Von Roos, O.

    1983-01-01

    When an electron beam of a scanning electron microscope (SEM) impinges on an N-P junction, the generation of electron-hole pairs by impact ionization causes a characteristic short circuit current I(sc) to flow. The I(sc), i.e., EBIC (electron beam induced current) depends strongly on the configuration used to investigate the cell's response. In this paper the case where the plane of the junction is perpendicular to the surface is considered. An EBIC equation amenable to numerical computations is derived as a function of cell thickness, source depth, surface recombination velocity, diffusion length, and distance of the junction to the beam-cell interaction point for a cell with an ohmic contact at its back surface. It is shown that the EBIC equation presented here is more general and easier to use than those previously reported. The effects of source depth, ohmic contact, and diffusion length on the normalized EBIC characteristic are discussed.

  8. Disruption of Particle Detector Electronics by Beam Generated EMI

    SciTech Connect

    Bower, G.; Sugimoto, Y.; Sinev, N.; Arnold, R.; Woods, M.; /SLAC

    2007-06-27

    The possibility that radio frequency beam generated electromagnetic interference (EMI) could disrupt the operation of particle detector electronics has been of some concern since the inception of short pulse electron colliders more than 30 years ago [1]. Some instances have been reported where this may have occurred but convincing evidence has not been available. This possibility is of concern for the International Linear Collider (ILC). We have conducted test beam studies demonstrating that electronics disruption does occur using the vertex detector electronics (VXD) from the SLD detector which took data at the SLC at SLAC. We present the results of those tests, and we describe the need for EMI standards for beam and detector instrumentation in the IR region at the ILC.

  9. Spatial dose distribution in polymer pipes exposed to electron beam

    NASA Astrophysics Data System (ADS)

    Ponomarev, Alexander V.

    2016-01-01

    Non-uniform distribution of absorbed dose in cross-section of any polymeric pipe is caused by non-uniform thickness of polymer layer penetrated by unidirectional electron beam. The special computer program was created for a prompt estimation of dose non-uniformity in pipes subjected to an irradiation by 1-10 MeV electron beam. Irrespective of electron beam energy, the local doses absorbed in the bulk of a material can be calculated on the basis of the universal correlations offered in the work. Incomplete deceleration of electrons in shallow layers of a polymer was taken into account. Possibilities for wide variation of pipe sizes, polymer properties and irradiation modes were provided by the algorithm. Both the unilateral and multilateral irradiation can be simulated.

  10. Continuum models of focused electron beam induced processing

    PubMed Central

    Lobo, Charlene; Friedli, Vinzenz; Szkudlarek, Aleksandra; Utke, Ivo

    2015-01-01

    Summary Focused electron beam induced processing (FEBIP) is a suite of direct-write, high resolution techniques that enable fabrication and editing of nanostructured materials inside scanning electron microscopes and other focused electron beam (FEB) systems. Here we detail continuum techniques that are used to model FEBIP, and release software that can be used to simulate a wide range of processes reported in the FEBIP literature. These include: (i) etching and deposition performed using precursors that interact with a surface through physisorption and activated chemisorption, (ii) gas mixtures used to perform simultaneous focused electron beam induced etching and deposition (FEBIE and FEBID), and (iii) etch processes that proceed through multiple reaction pathways and generate a number of reaction products at the substrate surface. We also review and release software for Monte Carlo modeling of the precursor gas flux which is needed as an input parameter for continuum FEBIP models. PMID:26425405

  11. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    SciTech Connect

    Sydorenko, D.; Kaganovich, I. D.; Chen, L.; Ventzek, P. L. G.

    2015-12-15

    Generation of anomalously energetic suprathermal electrons was observed in simulation of a high-voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. The energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The waves with short wavelength near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons in similar discharges.

  12. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    SciTech Connect

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O.; Tamura, M.; Aihara, T.; Uchiyama, A.

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  13. Sculpting nanoelectrodes with a transmission electron beam for electrical and geometrical characterization of nanoparticles.

    PubMed

    Zandbergen, Henny W; van Duuren, Robert J H A; Alkemade, Paul F A; Lientschnig, Günther; Vasquez, Oscar; Dekker, Cees; Tichelaar, Frans D

    2005-03-01

    A method to produce metal electrodes with a gap of a few nanometers with a highly focused electron beam in a transmission electron microscope (TEM) is described. With this method the electrical and geometrical characterization of the same particle is possible. The I-V characteristics of a gold particle trapped between such electrodes showed the expected single-electron tunneling behavior, with a Coulomb gap corresponding to the geometry of the particle as observed with high-resolution TEM.

  14. Carbon-nanotube electron-beam (C-beam) crystallization technique for silicon TFTs

    NASA Astrophysics Data System (ADS)

    Lee, Su Woong; Kang, Jung Su; Park, Kyu Chang

    2016-02-01

    We introduced a carbon-nanotube (CNT) electron beam (C-beam) for thin film crystallization and thin film transistor (TFT) applications. As a source of electron emission, a CNT emitter which had been grown on a silicon wafer with a resist-assisted patterning (RAP) process was used. By using the C-beam exposure, we successfully crystallized a silicon thin film that had nano-sized crystalline grains. The distribution of crystalline grain size was about 10 ˜ 30 nm. This nanocrystalline silicon thin film definitely had three crystalline directions which are (111), (220) and (311), respectively. The silicon TFTs crystallized by using a C-beam exposure showed a field effect mobility of 20 cm2/Vs and an on/off ratio of more than 107. The C-beam exposure can modify the bonding network of amorphous silicon with its proper energy.

  15. Ignition of beam plasma discharge in the electron beam experiment in space

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Roberts, W. T.; Taylor, W. W. L.

    1985-01-01

    An ignition of beam plasma discharge (BPD) in space was observed in a neutral gas-electron beam interaction experiment by Space Shuttle/Spacelab-1 in 1983. An electron beam of 8 kV 100 mA was injected into a high dense nitrogen gas cloud of 10 to the 23rd molecules which was released during 100 msec from the Orbiter. The appearance of the beam and its surroundings observed by a low-light-level TV camera showed a local ignition of the beam plasma discharge in the gas cloud. The enhanced plasma production, generation of auroral emission, and associated wave emission were also detected by onboard diagnostic instruments.

  16. Electron Beam Alignment Strategy in the LCLS Undulators

    SciTech Connect

    Nuhn, H.-D.; Emma, P.J.; Gassner, G.L.; LeCocq, C.M.; Peters, E.; Ruland, R.E.; /SLAC

    2007-01-03

    The x-ray FEL process puts very tight tolerances on the straightness of the electron beam trajectory (2 {micro}m rms) through the LCLS undulator system. Tight but less stringent tolerances of 80 {micro}m rms vertical and 140 {micro}m rms horizontally are to be met for the placement of the individual undulator segments with respect to the beam axis. The tolerances for electron beam straightness can only be met through beam-based alignment (BBA) based on electron energy variations. Conventional alignment will set the start conditions for BBA. Precision-fiducialization of components mounted on remotely adjustable girders and the use of beam-finder wires (BFW) will satisfy placement tolerances. Girder movement due to ground motion and temperature changes will be monitored continuously by an alignment monitoring system (ADS) and remotely corrected. This stabilization of components as well as the monitoring and correction of the electron beam trajectory based on BPMs and correctors will increase the time between BBA applications. Undulator segments will be periodically removed from the undulator Hall and measured to monitor radiation damage and other effects that might degrade undulator tuning.

  17. Influence of static electron beam`s self-fields on the cyclotron-undulator resonance

    SciTech Connect

    Rozanov, N.E.; Golub, Yu.Ya. |

    1995-12-31

    When undulators with a leading magnetic field B are used, the regime of double resonance is possible in which an undulator period is equal to an electron cyclotron wavelength. In the vicinity of this resonance an amplitude of particle oscillations in the undulator strongly depends on a difference between B and a resonant value of the leading magnetic field. Consequently, it is important to investigate a role of self-fields of the electron beam, in particular, due to its influence on the electron cyclotron wavelength. At the paper analytically and by numerical simulation the influence of the static fields of the annular electron beam on its dynamics in the axisymmetrical magnetic undulator with the leading magnetic field in the vicinity of the cyclotron-undulator resonance is investigated. It is shown that the value of the resonant magnetic field is changed with the rise of beam`s current. A shift of the resonant magnetic field may be both to larger values of B and to smaller ones, when different values of beam and waveguide radii, beam energy and undulator period are considered. A width of the resonance (on B - scale) is increased with the beam current.

  18. Return Current Electron Beams and Their Generation of "Raman" Scattering

    NASA Astrophysics Data System (ADS)

    Simon, A.

    1998-11-01

    For some years, we(A. Simon and R. W. Short, Phys. Rev. Lett. 53), 1912 (1984). have proposed that the only reasonable explanation for many of the observations of "Raman" scattering is the presence of an electron beam in the plasma. (The beam creates a bump-on-tail instability.) Two major objections to this picture have been observation of Raman when no n_c/4 surface was present, with no likely source for the electron beam, and the necessity for the initially outward directed beam to bounce once to create the proper waves. Now new observations on LLE's OMEGA(R. Petrasso et al), this conference. and at LULI(C. Labaune et al)., Phys. Plasma 5, 234 (1998). have suggested a new origin for the electron beam. This new scenario answers the previous objections, maintains electron beams as the explanation of the older experiments, and may clear up puzzling observations that have remained unexplained. The new scenario is based on two assumptions: (1) High positive potentials develop in target plasmas during their creation. (2) A high-intensity laser beam initiates spark discharges from nearby surfaces to the target plasma. The resulting return current of electrons should be much more delta-like, is initially inwardly directed, and no longer requires the continued presence of a n_c/4 surface. Scattering of the interaction beam from the BOT waves yields the observed Raman signal. Experimental observations that support this picture will be cited. ``Pulsation'' of the scattering and broadband ``flashes'' are a natural part of this scenario. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  19. Facile electron-beam lithography technique for irregular and fragile substrates

    SciTech Connect

    Chang, Jiyoung; Zhou, Qin; Zettl, Alex

    2014-10-27

    A facile technique is presented which enables high-resolution electron beam lithography on irregularly-shaped, non-planar or fragile substrates such as the edges of a silicon chip, thin and narrow suspended beams and bridges, or small cylindrical wires. The method involves a spin-free dry-transfer of pre-formed uniform-thickness polymethyl methacrylate, followed by conventional electron beam writing, metal deposition, and lift-off. High-resolution patterning is demonstrated for challenging target substrates. The technique should find broad application in micro- and nano-technology research arenas.

  20. Facile electron-beam lithography technique for irregular and fragile substrates

    NASA Astrophysics Data System (ADS)

    Chang, Jiyoung; Zhou, Qin; Zettl, Alex

    2014-10-01

    A facile technique is presented which enables high-resolution electron beam lithography on irregularly-shaped, non-planar or fragile substrates such as the edges of a silicon chip, thin and narrow suspended beams and bridges, or small cylindrical wires. The method involves a spin-free dry-transfer of pre-formed uniform-thickness polymethyl methacrylate, followed by conventional electron beam writing, metal deposition, and lift-off. High-resolution patterning is demonstrated for challenging target substrates. The technique should find broad application in micro- and nano-technology research arenas.