Sample records for electron beam parameter

  1. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  2. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  3. Electron lenses for head-on beam-beam compensation in RHIC

    DOE PAGES

    Gu, X.; Fischer, W.; Altinbas, Z.; ...

    2017-02-17

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  4. Electron lenses for head-on beam-beam compensation in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Fischer, W.; Altinbas, Z.

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  5. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, F.; Bohler, D.; Ding, Y.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Lightmore » Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.« less

  6. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, V. V., E-mail: temple18@mail.ru; Novitsky, A. A.; Vinnichenko, L. A.

    2016-03-15

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  7. Critical analysis of industrial electron accelerators

    NASA Astrophysics Data System (ADS)

    Korenev, S.

    2004-09-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterlization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  8. A simulation study of radial expansion of an electron beam injected into an ionospheric plasma

    NASA Technical Reports Server (NTRS)

    Koga, J.; Lin, C. S.

    1994-01-01

    Injections of nonrelativistic electron beams from a finite equipotential conductor into an ionospheric plasma have been simulated using a two-dimensional electrostatic particle code. The purpose of the study is to survey the simulation parameters for understanding the dependence of beam radius on physical variables. The conductor is charged to a high potential when the background plasma density is less than the beam density. Beam electrons attracted by the charged conductor are decelerated to zero velocity near the stagnation point, which is at a few Debye lengths from the conductor. The simulations suggest that the beam electrons at the stagnation point receive a large transverse kick and the beam expands radially thereafter. The buildup of beam electrons at the stagnation point produces a large electrostatic force responsible for the transverse kick. However, for the weak charging cases where the background plasma density is larger than the beam density, the radial expansion mechanism is different; the beam plasma instability is found to be responsible for the radial expansion. The simulations show that the electron beam radius for high spacecraft charging cases is of the order of the beam gyroradius, defined as the beam velocity divided by the gyrofrequency. In the weak charging cases, the beam radius is only a fraction of the beam gyroradius. The parameter survey indicates that the beam radius increases with beam density and decreases with magnetic field and beam velocity. The beam radius normalized by the beam gyroradius is found to scale according to the ratio of the beam electron Debye length to the ambient electron Debye length. The parameter dependence deduced would be useful for interpreting the beam radius and beam density of electron beam injection experiments conducted from rockets and the space shuttle.

  9. Scaling relations for a needle-like electron beam plasma from the self-similar behavior in beam propagation

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyan; Chen, Chen; Li, Hong; Liu, Wandong; Chen, Wei

    2017-10-01

    Scaling relations of the main parameters of a needle-like electron beam plasma (EBP) to the initial beam energy, beam current, and discharge pressures are presented. The relations characterize the main features of the plasma in three parameter space and can provide great convenience in plasma design with electron beams. First, starting from the self-similar behavior of electron beam propagation, energy and charge depositions in beam propagation were expressed analytically as functions of the three parameters. Second, according to the complete coupled theoretical model of an EBP and appropriate assumptions, independent equations controlling the density and space charges were derived. Analytical expressions for the density and charges versus functions of energy and charge depositions were obtained. Finally, with the combination of the expressions derived in the above two steps, scaling relations of the density and potential to the three parameters were constructed. Meanwhile, numerical simulations were used to test part of the scaling relations.

  10. Improved Design of Beam Tunnel for 42 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, A. K.

    2011-04-01

    In gyrotron, there is the chance of generation and excitation of unwanted RF modes (parasite oscillations). These modes may interact with electron beam and consequently degrade the beam quality. This paper presents the improved design of the beam tunnel to reduce the parasite oscillations and the effect of beam tunnel geometry on the electron beam parameters. The design optimization of the beam tunnel has been done with the help of 3-D simulation software CST-Microwave Studio and the effect of beam tunnel geometry on the electron beam parameters has been analyzed by EGUN code.

  11. Simulation of a Radio-Frequency Photogun for the Generation of Ultrashort Beams

    NASA Astrophysics Data System (ADS)

    Nikiforov, D. A.; Levichev, A. E.; Barnyakov, A. M.; Andrianov, A. V.; Samoilov, S. L.

    2018-04-01

    A radio-frequency photogun for the generation of ultrashort electron beams to be used in fast electron diffractoscopy, wakefield acceleration experiments, and the design of accelerating structures of the millimeter range is modeled. The beam parameters at the photogun output needed for each type of experiment are determined. The general outline of the photogun is given, its electrodynamic parameters are calculated, and the accelerating field distribution is obtained. The particle dynamics is analyzed in the context of the required output beam parameters. The optimal initial beam characteristics and field amplitudes are chosen. A conclusion is made regarding the obtained beam parameters.

  12. Dynamics of a high-current relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru; Tarakanov, V. P., E-mail: karat@gmail.ru; Ivanov, I. E., E-mail: iei@fpl.gpi.ru

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as themore » electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.« less

  13. Study on the parameters of the scanning system for the 300 keV electron accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leo, K. W.; Chulan, R. M., E-mail: leo@nm.gov.my; Hashim, S. A.

    2016-01-22

    This paper describes the method to identify the magnetic coil parameters of the scanning system. This locally designed low energy electron accelerator with the present energy of 140 keV will be upgraded to 300 keV. In this accelerator, scanning system is required to deflect the energetic electron beam across a titanium foil in vertical and horizontal direction. The excitation current of the magnetic coil is determined by the energy of the electron beam. Therefore, the magnetic coil parameters must be identified to ensure the matching of the beam energy and excitation coil current. As the result, the essential parameters ofmore » the effective lengths for X-axis and Y-axis have been found as 0.1198 m and 0.1134 m and the required excitation coil currents which is dependenton the electron beam energies have be identified.« less

  14. Storage-ring Electron Cooler for Relativistic Ion Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less

  15. Reference dosimetry study for 3 MEV electron beam accelerator in malaysia

    NASA Astrophysics Data System (ADS)

    Ali, Noriah Mod; Sunaga, Hiromi; Tanaka, Ryuichi

    1995-09-01

    An effective quality assurance programme is initiated for the use of the electron beam with energies up to 3 MeV. The key element of the programme is the establishment of a relationship between the standardised beam to the routine technique which is employed to verify the beam parameter. A total absorbing calorimeter was adopted as a suitable reference system and when used in combination with the electron current densitymeter (ECD) will enable to determine the mean energy for electron with energies between 1 to 3 MeV. An appropriate method of transfering the standard parameter is studied and the work that is expected to optimise the accuracy attainable with routine check-up of the irradiation parameter are presented.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kant, Deepender, E-mail: dkc@ceeri.ernet.in; Joshi, L. M.; Janyani, Vijay

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The presentmore » paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in; Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology; Jain, P. K.

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typicalmore » PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.« less

  18. Experiments investigating the generation and transport of 10--12 MeV, 30-kA, mm-size electron beams with linear inductive voltage adders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    The authors present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: 8--12 MeV, 35--50 kA, 30--60 ns FWHM, and 0.5-mm rms beam radius. The accelerators utilized are SABRE and HERMES III. Both are linear inductive voltage adders modified to higher impedance and fitted with magnetically immersed foil less electron diodes. In the strong 20--50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrodemore » and is contained in a similar size envelop by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30-kA, 1.5-mm FWHM electron beams, while the HERMES-III experiments are on-going.« less

  19. a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.

    2007-09-01

    A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.

  20. a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.

    A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.

  1. Numerical simulation of electron beam welding with beam oscillations

    NASA Astrophysics Data System (ADS)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  2. Parameter Optimization of PAL-XFEL Injector

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Ko, In Soo; Han, Jang-Hui; Hong, Juho; Yang, Haeryong; Min, Chang Ki; Kang, Heung-Sik

    2018-05-01

    A photoinjector is used as the electron source to generate a high peak current and low emittance beam for an X-ray free electron laser (FEL). The beam emittance is one of the critical parameters to determine the FEL performance together with the slice energy spread and the peak current. The Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) was constructed in 2015, and the beam commissioning was carried out in spring 2016. The injector is running routinely for PAL-XFEL user operation. The operational parameters of the injector have been optimized experimentally, and these are somewhat different from the originally designed ones. Therefore, we study numerically the injector parameters based on the empirically optimized parameters and review the present operating condition.

  3. Simulation study of interactions of Space Shuttle-generated electron beams with ambient plasmas

    NASA Technical Reports Server (NTRS)

    Lin, Chin S.

    1992-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-1936. The objective of this report is to conduct large scale simulations of electron beams injected into space. The topics covered include the following: (1) simulation of radial expansion of an injected electron beam; (2) simulations of the active injections of electron beams; (3) parameter study of electron beam injection into an ionospheric plasma; and (4) magnetosheath-ionospheric plasma interactions in the cusp.

  4. Sci-Thur PM: YIS - 07: Monte Carlo simulations to obtain several parameters required for electron beam dosimetry.

    PubMed

    Muir, B; Rogers, D; McEwen, M

    2012-07-01

    When current dosimetry protocols were written, electron beam data were limited and had uncertainties that were unacceptable for reference dosimetry. Protocols for high-energy reference dosimetry are currently being updated leading to considerable interest in accurate electron beam data. To this end, Monte Carlo simulations using the EGSnrc user-code egs_chamber are performed to extract relevant data for reference beam dosimetry. Calculations of the absorbed dose to water and the absorbed dose to the gas in realistic ion chamber models are performed as a function of depth in water for cobalt-60 and high-energy electron beams between 4 and 22 MeV. These calculations are used to extract several of the parameters required for electron beam dosimetry - the beam quality specifier, R 50 , beam quality conversion factors, k Q and k R50 , the electron quality conversion factor, k' R50 , the photon-electron conversion factor, k ecal , and ion chamber perturbation factors, P Q . The method used has the advantage that many important parameters can be extracted as a function of depth instead of determination at only the reference depth as has typically been done. Results obtained here are in good agreement with measured and other calculated results. The photon-electron conversion factors obtained for a Farmer-type NE2571 and plane-parallel PTW Roos, IBA NACP-02 and Exradin A11 chambers are 0.903, 0.896, 0.894 and 0.906, respectively. These typically differ by less than 0.7% from the contentious TG-51 values but have much smaller systematic uncertainties. These results are valuable for reference dosimetry of high-energy electron beams. © 2012 American Association of Physicists in Medicine.

  5. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, A.; Schroeder, C.; Fawley, W.

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Amongmore » the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.« less

  6. Correction to the Alfven-Lawson criterion for relativistic electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodin, I. Y.; Fisch, N. J.

    2006-10-15

    The Alfven-Lawson criterion for relativistic electron beams is revised. The parameter range is found, in which a stationary beam can carry arbitrarily large current, regardless of its transverse structure.

  7. Electron cyclotron resonance plasma production by using pulse mode microwaves and dependences of ion beam current and plasma parameters on the pulse condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yousuke

    2012-02-15

    We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n{sub e} in the pulse mode is higher and the electron temperature T{sub e} is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecularmore » or cluster ions.« less

  8. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  9. Dependence of electron beam instability growth rates on the beam-plasma system parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strangeway, R.J.

    1982-02-01

    Electron beam instabilites are studied by using a simple model for an electron beam streaming through a cold plasma, the beam being of finite width perpendicular to the ambient magnetic field. Through considerations of finite geometry and the coldness of the beam and background plasma, an instability similar to the two stream instability is assumed to be the means for wave growth in the system. Having found the maximum growth rate for one set of beam-plasma system parameters, this maximum growth rate is traced as these parameters are varied. The parameters that describe the system are the beam velocity (v/submore » b/), electron gyrofrequency to ambient electron plasma frequency ratio (..cap omega../sub e//..omega../sub p/e), the beam to background number density ratio (n/sub b//n/sub a/), and the beam width (a). When ..cap omega../sub e//..omega../sub p/e>1, a mode with ..cap omega../sub e/<..omega..<..omega../sub u/hr is found to be unstable, where ..cap omega.. is the wave frequency and ..omega../sub u/hr is the upper hybrid resonance frequency. For low values of n/sub b//n/sub a/ and ..cap omega../sub e/<..omega../sub p/e, this mode is still present with ..omega../sub p/e<..omega..<..omega../sub u/hr. If the beam density is large, n/sub b//n/sub a/approx. =1, the instability occures for frequencies just above the electron gyrofrequency. This mode may well be that observed in laboratory plasma before the system undergoes the beam-plasma discharge. There is another instability present, which occurs for ..omega..approx. =..omega../sub p/e. The growth rates for this mode, which are generally larger than those found for the ..omega..approx. =..omega..uhr mode, are only weakly dependent on ..cap omega../sub d//..omega../sub p/e. That this mode is not always observed in the laboratory implies that some factors not considered in the present theory suppress this mode, specifically, finite beam length.« less

  10. Note: Characteristic beam parameter for the line electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, M.; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049; Islam, G. U.

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm{sup 2} at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm{sup 2}), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  11. Note: Characteristic beam parameter for the line electron gun.

    PubMed

    Iqbal, M; Islam, G U; Zhou, Z; Chi, Y

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm(2) at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm(2)), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  12. Note: Characteristic beam parameter for the line electron gun

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm2 at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm2), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  13. Analysis of microscopic parameters of surface charging in polymer caused by defocused electron beam irradiation.

    PubMed

    Liu, Jing; Zhang, Hai-Bo

    2014-12-01

    The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Experiments Investigating the Generation and Transport of 10--12 MeV, 30-kA, mm-size Electron Beams with Linear Inductive Voltage Adders.

    NASA Astrophysics Data System (ADS)

    Mazarakis, M. G.; Poukey, J. W.; Maenchen, J. E.; Rovang, D. C.; Menge, P. R.; Lash, J. S.; Smith, D. L.; Halbleib, J. A.; Cordova, S. R.; Mikkelson, K.; Gustwiller, J.; Stygar, W. A.; Welch, D. R.; Smith, I.; Corcoran, P.

    1997-05-01

    We present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 8-12 MeV, current 35-50 kA, rms radius 0.5 mm, and pulse duration 30-60 ns FWHM. The accelerators utilized are SABRE and Hermes-III. Both are linear inductive voltage adders (IVA) modified to higher impedance and fitted with magnetically immersed foilless electron diodes. In the strong 20-50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrode and is contained in a similar size envelope by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30 kA, 1.5-2.5 FWHM electron beams, while the Hermes-III experiments are currently under way. Results and analysis of the SABRE experimentation and a progress report on Hermes-III experiments will be presented.

  15. Generation of terahertz radiation by intense hollow Gaussian laser beam in magnetised plasma under relativistic-ponderomotive regime

    NASA Astrophysics Data System (ADS)

    Rawat, Priyanka; Rawat, Vinod; Gaur, Bineet; Purohit, Gunjan

    2017-07-01

    This paper explores the self-focusing of hollow Gaussian laser beam (HGLB) in collisionless magnetized plasma and its effect on the generation of THz radiation in the presence of relativistic-ponderomotive nonlinearity. The relativistic change of electron mass and electron density perturbation due to the ponderomotive force leads to self-focusing of the laser beam in plasma. Nonlinear coupling between the intense HGLB and electron plasma wave leads to generation of THz radiation in plasma. Resonant excitation of THz radiation at different frequencies of laser and electron plasma wave satisfies proper phase matching conditions. Appropriate expressions for the beam width parameter of the laser beam and the electric vector of the THz wave have been evaluated under the paraxial-ray and Wentzel-Kramers Brillouin approximations. It is found that the yield of THz amplitude depends on the focusing behaviour of laser beam, magnetic field, and background electron density. Numerical simulations have been carried out to investigate the effect of laser and plasma parameters on self-focusing of the laser beam and further its effect on the efficiency of the generated THz radiation.

  16. Quasi-monoenergetic multi-GeV electron acceleration by optimizing the spatial and spectral phases of PW laser pulses

    NASA Astrophysics Data System (ADS)

    Shin, Junghun; Kim, Hyung Taek; Pathak, V. B.; Hojbota, Calin; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Yoon, Jin Woo; Jeon, Cheonha; Nakajima, Kazuhisa; Sylla, F.; Lifschitz, A.; Guillaume, E.; Thaury, C.; Malka, V.; Nam, Chang Hee

    2018-06-01

    Generation of high-quality electron beams from laser wakefield acceleration requires optimization of initial experimental parameters. We present here the dependence of accelerated electron beams on the temporal profile of a driving PW laser, the density, and length of an interacting medium. We have optimized the initial parameters to obtain 2.8 GeV quasi-monoenergetic electrons which can be applied further to the development of compact electron accelerators and radiations sources.

  17. Modelling of electron beam induced nanowire attraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitzer, Lucas A.; Benson, Niels, E-mail: niels.benson@uni-due.de; Schmechel, Roland

    2016-04-14

    Scanning electron microscope (SEM) induced nanowire (NW) attraction or bundling is a well known effect, which is mainly ascribed to structural or material dependent properties. However, there have also been recent reports of electron beam induced nanowire bending by SEM imaging, which is not fully explained by the current models, especially when considering the electro-dynamic interaction between NWs. In this article, we contribute to the understanding of this phenomenon, by introducing an electro-dynamic model based on capacitor and Lorentz force interaction, where the active NW bending is stimulated by an electromagnetic force between individual wires. The model includes geometrical, electrical,more » and mechanical NW parameters, as well as the influence of the electron beam source parameters and is validated using in-situ observations of electron beam induced GaAs nanowire (NW) bending by SEM imaging.« less

  18. Accurate determination of electronic transport properties of silicon wafers by nonlinear photocarrier radiometry with multiple pump beam sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@uestc.ac.cn

    2015-12-07

    In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtainedmore » by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.« less

  19. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, K.; Okuda, S.; Nishioka, S.

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beammore » halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.« less

  20. Kinetic energy offsets for multicharged ions from an electron beam ion source.

    PubMed

    Kulkarni, D D; Ahl, C D; Shore, A M; Miller, A J; Harriss, J E; Sosolik, C E; Marler, J P

    2017-08-01

    Using a retarding field analyzer, we have measured offsets between the nominal and measured kinetic energy of multicharged ions extracted from an electron beam ion source (EBIS). By varying source parameters, a shift in ion kinetic energy was attributed to the trapping potential produced by the space charge of the electron beam within the EBIS. The space charge of the electron beam depends on its charge density, which in turn depends on the amount of negative charge (electron beam current) and its velocity (electron beam energy). The electron beam current and electron beam energy were both varied to obtain electron beams of varying space charge and these were related to the observed kinetic energy offsets for Ar 4+ and Ar 8+ ion beams. Knowledge of these offsets is important for studies that seek to utilize slow, i.e., low kinetic energy, multicharged ions to exploit their high potential energies for processes such as surface modification. In addition, we show that these offsets can be utilized to estimate the effective radius of the electron beam inside the trap.

  1. Gradient changes in structural condition of the B2 phase of NiTi surface layers after electron-beam treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Ludmila L., E-mail: llm@ispms.tsc.ru, E-mail: egu@ispms.tsc.ru; Gudimova, Ekaterina Yu., E-mail: llm@ispms.tsc.ru, E-mail: egu@ispms.tsc.ru; Ostapenko, Marina G., E-mail: artifact@ispms.tsc.ru

    2014-11-14

    Structural conditions of the B2 phase of the Ti{sub 49.5}Ni{sub 50.5} alloy surface layers before and after electron-beam treatments (pulse duration τ = 150 μs, number of pulses n = 5, beam energy density E ≤ 20 J/cm{sup 2}) were studied by X-ray diffraction analysis. Analysis of the X-ray patterns demonstrates that surface layers modified by electron beam treatment contain phase with B2{sup surf} structure. It is revealed that the lattice parameter of the B2{sup surf} phase in the surface (modified) layer is also higher than the lattice parameter of the B2 phase in the underlying layer (a{sub B2} = 3.0159±0.0005). Themore » values of lattice parameter of phase B2{sup surf} amounted a{sub B2}{sup surf} = 3.0316±0.0005 Å and a{sub B2}{sup surf} = 3.0252±0.0005 Å, for the specimens after electron-beam treatment at E{sub 1} = 15 J/cm{sup 2} and E{sub 2} = 20 J/cm{sup 2}, respectively. Inflated lattice parameters a{sub B2}{sup surf} are associated with changes in the chemical composition and the presence of residual stresses in the surface region of the samples after electron-beam treatments.« less

  2. Electron beam extraction on plasma cathode electron sources system

    NASA Astrophysics Data System (ADS)

    Purwadi, Agus; Taufik, M., Lely Susita R.; Suprapto, Saefurrochman, H., Anjar A.; Wibowo, Kurnia; Aziz, Ihwanul; Siswanto, Bambang

    2017-03-01

    ELECTRON BEAM EXTRACTION ON PLASMA CATHODE ELECTRON SOURCES SYSTEM. The electron beam extraction through window of Plasma Generator Chamber (PGC) for Pulsed Electron Irradiator (PEI) device and simulation of plasma potential has been studied. Plasma electron beam is extracted to acceleration region for enlarging their power by the external accelerating high voltage (Vext) and then it is passed foil window of the PEI for being irradiated to any target (atmospheric pressure). Electron beam extraction from plasma surface must be able to overcome potential barrier at the extraction window region which is shown by estimate simulation (Opera program) based on data of plasma surface potential of 150 V with Ueks values are varied by 150 kV, 175 kV and 200 kV respectively. PGC is made of 304 stainless steel with cylindrical shape in 30 cm of diameter, 90 cm length, electrons extraction window as many as 975 holes on the area of (15 × 65) cm2 with extraction hole cell in 0.3 mm of radius each other, an cylindrical shape IEP chamber is made of 304 stainless steel in 70 cm diameter and 30 cm length. The research result shown that the acquisition of electron beam extraction current depends on plasma parameters (electron density ne, temperature Te), accelerating high voltage Vext, the value of discharge parameter G, anode area Sa, electron extraction window area Se and extraction efficiency value α.

  3. Collective effects in the Thomson back-scattering between a laser pulse and a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Bacci, A.; Maroli, C.; Petrillo, V.; Serafini, L.

    2006-08-01

    Collective effects in the radiation emission via Thomson back-scattering of an intense optical laser pulse by high brightness electron beams are analyzed. The micro-bunching of the electron beam on the scale of the wavelength of the emitted radiation and the consequent free-electron-laser instability may significantly enhance the number of photons emitted. Scaling-laws of the radiation properties, both in the collective and incoherent spontaneous regimes versus laser and electron beam parameters are discussed in the framework of the one-dimensional model.

  4. Improved performance of laser wakefield acceleration by tailored self-truncated ionization injection

    NASA Astrophysics Data System (ADS)

    Irman, A.; Couperus, J. P.; Debus, A.; Köhler, A.; Krämer, J. M.; Pausch, R.; Zarini, O.; Schramm, U.

    2018-04-01

    We report on tailoring ionization-induced injection in laser wakefield acceleration so that the electron injection process is self-truncating following the evolution of the plasma bubble. Robust generation of high-quality electron beams with shot-to-shot fluctuations of the beam parameters better than 10% is presented in detail. As a novelty, the scheme was found to enable well-controlled yet simple tuning of the injected charge while preserving acceleration conditions and beam quality. Quasi-monoenergetic electron beams at several 100 MeV energy and 15% relative energy spread were routinely demonstrated with a total charge of the monoenergetic feature reaching 0.5 nC. Finally these unique beam parameters, suggesting unprecedented peak currents of several 10 kA, are systematically related to published data on alternative injection schemes.

  5. Filamentation instability of a fast electron beam in a dielectric target.

    PubMed

    Debayle, A; Tikhonchuk, V T

    2008-12-01

    High-intensity laser-matter interaction is an efficient method for high-current relativistic electron beam production. At current densities exceeding a several kA microm{-2} , the beam propagation is maintained by an almost complete current neutralization by the target electrons. In such a geometry of two oppositely directed flows, beam instabilities can develop, depending on the target and the beam parameters. The present paper proposes an analytical description of the filamentation instability of an electron beam propagating through an insulator target. It is shown that the collisionless and resistive instabilities enter into competition with the ionization instability. This latter process is dominant in insulator targets where the field ionization by the fast beam provides free electrons for the neutralization current.

  6. On the Asymmetric Focusing of Low-Emittance Electron Bunches via Active Lensing by Using Capillary Discharges

    NASA Astrophysics Data System (ADS)

    Bulanov, Stepan; Bagdasarov, Gennadiy; Bobrova, Nadezhda; Boldarev, Alexey; Olkhovskaya, Olga; Sasorov, Pavel; Gasilov, Vladimir; Barber, Samuel; Gonsalves, Anthony; Schroeder, Carl; van Tilborg, Jeroen; Esarey, Eric; Leemans, Wim; Levato, Tadzio; Margarone, Daniele; Korn, Georg; Kando, Masaki; Bulanov, Sergei

    2017-10-01

    A novel method for asymmetric focusing of electron beams is proposed. The scheme is based on the active lensing technique, which takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside a capillary discharge are described theoretically and modeled with dissipative MHD simulations to enable analysis of capillaries of oblong rectangle cross-sections implying that large aspect ratio rectangular capillaries can be used to form flat electron bunches. The effect of the capillary cross-section on the electron beam focusing properties were studied using the analytical methods and simulation- derived magnetic field map showing the range of the capillary discharge parameters required for producing the high quality flat electron beams.

  7. Nonlinear electron-acoustic rogue waves in electron-beam plasma system with non-thermal hot electrons

    NASA Astrophysics Data System (ADS)

    Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.

    2014-11-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  8. Empirical modeling of high-intensity electron beam interaction with materials

    NASA Astrophysics Data System (ADS)

    Koleva, E.; Tsonevska, Ts; Mladenov, G.

    2018-03-01

    The paper proposes an empirical modeling approach to the prediction followed by optimization of the exact shape of the cross-section of a welded seam, as obtained by electron beam welding. The approach takes into account the electron beam welding process parameters, namely, electron beam power, welding speed, and distances from the magnetic lens of the electron gun to the focus position of the beam and to the surface of the samples treated. The results are verified by comparison with experimental results for type 1H18NT stainless steel samples. The ranges considered of the beam power and the welding speed are 4.2 – 8.4 kW and 3.333 – 13.333 mm/s, respectively.

  9. Electron beam energy chirp control with a rectangular corrugated structure at the Linac Coherent Light Source

    DOE PAGES

    Zhang, Zhen; Bane, Karl; Ding, Yuantao; ...

    2015-01-30

    In this study, electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (~100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugationmore » size similar to the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a field matching program to obtain the wakes. Based on the numerical calculations, we fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.« less

  10. Landau quantization effects on hole-acoustic instability in semiconductor plasmas

    NASA Astrophysics Data System (ADS)

    Sumera, P.; Rasheed, A.; Jamil, M.; Siddique, M.; Areeb, F.

    2017-12-01

    The growth rate of the hole acoustic waves (HAWs) exciting in magnetized semiconductor quantum plasma pumped by the electron beam has been investigated. The instability of the waves contains quantum effects including the exchange and correlation potential, Bohm potential, Fermi-degenerate pressure, and the magnetic quantization of semiconductor plasma species. The effects of various plasma parameters, which include relative concentration of plasma particles, beam electron temperature, beam speed, plasma temperature (temperature of electrons/holes), and Landau electron orbital magnetic quantization parameter η, on the growth rate of HAWs, have been discussed. The numerical study of our model of acoustic waves has been applied, as an example, to the GaAs semiconductor exposed to electron beam in the magnetic field environment. An increment in either the concentration of the semiconductor electrons or the speed of beam electrons, in the presence of magnetic quantization of fermion orbital motion, enhances remarkably the growth rate of the HAWs. Although the growth rate of the waves reduces with a rise in the thermal temperature of plasma species, at a particular temperature, we receive a higher instability due to the contribution of magnetic quantization of fermions to it.

  11. Strain localization parameters of AlCu4MgSi processed by high-energy electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunev, A. G., E-mail: agl@ispms.ru; Nadezhkin, M. V., E-mail: mvn@ispms.ru; National Research Tomsk Polytechnic University, Tomsk, 634050

    2015-10-27

    The influence of the electron beam surface treatment of AlCu4MgSi on the strain localization parameters and on the critical strain value of the Portevin–Le Chatelier effect has been considered. The strain localization parameters were measured using speckle imaging of the specimens subjected to the constant strain rate uniaxial tension at a room temperature. Impact of the surface treatment on the Portevin–Le Chatelier effect has been investigated.

  12. Dosimetric characteristics of electron beams produced by a mobile accelerator for IORT.

    PubMed

    Pimpinella, M; Mihailescu, D; Guerra, A S; Laitano, R F

    2007-10-21

    Energy and angular distributions of electron beams with different energies were simulated by Monte Carlo calculations. These beams were generated by the NOVAC7 system (Hitesys, Italy), a mobile electron accelerator specifically dedicated to intra-operative radiation therapy (IORT). The electron beam simulations were verified by comparing the measured dose distributions with the corresponding calculated distributions. As expected, a considerable difference was observed in the energy and angular distributions between the IORT beams studied in the present work and the electron beams produced by conventional accelerators for non-IORT applications. It was also found that significant differences exist between the IORT beams used in this work and other IORT beams with different collimation systems. For example, the contribution from the scattered electrons to the total dose was found to be up to 15% higher in the NOVAC7 beams. The water-to-air stopping power ratios of the IORT beams used in this work were calculated on the basis of the beam energy distributions obtained by the Monte Carlo simulations. These calculated stopping power ratios, s(w,air), were compared with the corresponding s(w,air) values recommended by the TRS-381 and TRS-398 IAEA dosimetry protocols in order to estimate the deviations between a dosimetry based on generic parameters and a dosimetry based on parameters specifically obtained for the actual IORT beams. The deviations in the s(w,air) values were found to be as large as up to about 1%. Therefore, we recommend that a preliminary analysis should always be made when dealing with IORT beams in order to assess to what extent the possible differences in the s(w,air) values have to be accounted for or may be neglected on the basis of the specific accuracy needed in clinical dosimetry.

  13. 1 MeV, 10 kW DC electron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Nayak, B.; Acharya, S.; Bhattacharjee, D.; Bakhtsingh, R. I.; Rajan, R.; Sharma, D. K.; Dewangan, S.; Sharma, V.; Patel, R.; Tiwari, R.; Benarjee, S.; Srivastava, S. K.

    2016-03-01

    Several modern applications of radiation processing like medical sterilization, rubber vulcanization, polymerization, cross-linking and pollution control from thermal power stations etc. require D.C. electron accelerators of energy ranging from a few hundred keVs to few MeVs and power from a few kilowatts to hundreds of kilowatts. To match these requirements, a 3 MeV, 30 kW DC electron linac has been developed at BARC, Mumbai and current operational experience of 1 MeV, 10 kW beam power will be described in this paper. The LINAC composed mainly of Electron Gun, Accelerating Tubes, Magnets, High Voltage source and provides 10 kW beam power at the Ti beam window stably after the scanning section. The control of the LINAC is fully automated. Here Beam Optics study is carried out to reach the preferential parameters of Accelerating as well as optical elements. Beam trials have been conducted to find out the suitable operation parameters of the system.

  14. Finite element analyses of a linear-accelerator electron gun

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  15. Finite element analyses of a linear-accelerator electron gun.

    PubMed

    Iqbal, M; Wasy, A; Islam, G U; Zhou, Z

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  16. RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W J; Hartemann, F V; Tremaine, A M

    2002-10-16

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.

  17. Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, Aliaksei; Edstrom, Dean; Gai, Wei

    2016-06-01

    In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.

  18. Investigation of viability of plant tissue in the environmental scanning electron microscopy.

    PubMed

    Zheng, Tao; Waldron, K W; Donald, Athene M

    2009-11-01

    The advantages of environmental scanning electron microscopy (ESEM) make it a suitable technique for studying plant tissue in its native state. There have been few studies on the effects of ESEM environment and beam damage on the viability of plant tissue. A simple plant tissue, Allium cepa (onion) upper epidermal tissue was taken as the model for study. The change of moisture content of samples was studied at different relative humidities. Working with the electron beam on, viability tests were conducted for samples after exposure in the ESEM under different operating conditions to investigate the effect of electron beam dose on the viability of samples. The results suggested that without the electron beam, the ESEM chamber itself can prevent the loss of initial moisture if its relative humidity is maintained above 90%. With the electron beam on, the viability of Allium cepa (onion) cells depends both on the beam accelerating voltage and the electron dose/unit area hitting the sample. The dose can be controlled by several of the ESEM instrumental parameters. The detailed process of beam damage on cuticle-down and cuticle-up samples was investigated and compared. The results indicate that cuticular adhesion to the cell wall is relatively weak, but highly resistant to electron beam damage. Systematic study on the effect of ESEM operation parameters has been done. Results qualitatively support the intuitive expectations, but demonstrate quantitatively that Allium cepa epidermal cells are able to be kept in a hydrated and viable state under relevant operation condition inside ESEM, providing a basis for further in situ experiments on plant tissues.

  19. Low-energy plasma-cathode electron gun with a perforated emission electrode

    NASA Astrophysics Data System (ADS)

    Burdovitsin, Victor; Kazakov, Andrey; Medovnik, Alexander; Oks, Efim; Tyunkov, Andrey

    2017-11-01

    We describe research of influence of the geometric parameters of perforated electrode on emission parameters of a plasma cathode electron gun generating continuous electron beams at gas pressure 5-6 Pa. It is shown, that the emission current increases with increasing the hole diameters and decreasing the thickness of the perforated emission electrode. Plasma-cathode gun with perforated electron can provide electron extraction with an efficiency of up to 72 %. It is shown, that the current-voltage characteristic of the electron gun with a perforated emission electrode differs from that of similar guns with fine mesh grid electrode. The plasma-cathode electron gun with perforated emission electrode is used for electron beam welding and sintering.

  20. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE PAGES

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang; ...

    2017-05-25

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  1. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  2. Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre-Gaussian laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; College of Science, National University of Defense Technology, Changsha 410073; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-15

    We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radiusmore » on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.« less

  3. High current polarized electron source for future eRHIC

    NASA Astrophysics Data System (ADS)

    Wang, Erdong

    2018-05-01

    The high current and high bunch charge polarized electron source is essential for cost reduction of Linac-Ring (L-R) eRHIC. In the baseline design, electron beam from multiple guns (probably 4-8) will be combined using deflection plates or accumulate ring. Each gun aims to deliver electron beam with 10 mA average current and 5.3 nC bunch charge. With total 50 mA and 5.3 nC electron beam, this beam combining design could use for generating positron too. The gun has been designed, fabricated and expected to start commissioning by the mid of this year. In this paper, we will present the DC gun design parameters and beam combine schemes. Also, we will describe the details of gun design and the strategies to demonstrate high current high charge polarized electron beam from this source.

  4. A new method to calculate the beam charge for an integrating current transformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Yuchi; Han Dan; Zhu Bin

    2012-09-15

    The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated bymore » an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy.« less

  5. Studies of high-current relativistic electron beam interaction with gas and plasma in Novosibirsk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsky, S. L., E-mail: s.l.sinitsky@inp.nsk.su; Arzhannikov, A. V.; Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090

    2016-03-25

    This paper presents an overview of the studies on the interaction of a high-power relativistic electron beam (REB) with dense plasma confined in a long open magnetic trap. The main goal of this research is to achieve plasma parameters close to those required for thermonuclear fusion burning. The experimental studies were carried over the course of four decades on various devices: INAR, GOL, INAR-2, GOL-M, and GOL-3 (Budker Institute of Nuclear Physics) for a wide range of beam and plasma parameters.

  6. Beam-Beam Interaction Simulations with Guinea Pig (LCC-0125)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sramek, C

    2003-11-20

    At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effectsmore » as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. A study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam cross-sections ({sigma}{sub x}, {sigma}{sub y}, {sigma}{sub z}) and number of particles per bunch (N). Finally, this same study revealed luminosity maxima at large N and small {sigma}{sub y} which may merit further investigation.« less

  7. Room temperature mechanical properties of electron beam welded zircaloy-4 sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parga, C. J.; Rooyen, I. J.; Coryell, B. D.

    Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less

  8. Room temperature mechanical properties of electron beam welded zircaloy-4 sheet

    DOE PAGES

    Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...

    2017-11-04

    Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less

  9. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    NASA Astrophysics Data System (ADS)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A.

    2015-08-01

    Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed.

  10. Electron beams scanning: A novel method

    NASA Astrophysics Data System (ADS)

    Askarbioki, M.; Zarandi, M. B.; Khakshournia, S.; Shirmardi, S. P.; Sharifian, M.

    2018-06-01

    In this research, a spatial electron beam scanning is reported. There are various methods for ion and electron beam scanning. The best known of these methods is the wire scanning wherein the parameters of beam are measured by one or more conductive wires. This article suggests a novel method for e-beam scanning without the previous errors of old wire scanning. In this method, the techniques of atomic physics are applied so that a knife edge has a scanner role and the wires have detector roles. It will determine the 2D e-beam profile readily when the positions of the scanner and detectors are specified.

  11. Optical frequency shot-noise suppression in electron beams: Three-dimensional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nause, A.; Dyunin, E.; Gover, A.

    2010-05-15

    A predicted effect of current shot-noise suppression at optical-frequencies in a drifting charged-particle-beam and the corresponding process of particles self-ordering are analyzed in a one-dimensional (1D) model and verified by three-dimensional numerical simulations. The analysis confirms the prediction of a 1D single mode Langmuir plasma wave model of longitudinal plasma oscillation in the beam, and it defines the regime of beam parameters in which this effect takes place. The suppression of relativistic beam shot noise can be utilized to enhance the coherence of free electron lasers and of any coherent radiation device using an electron beam.

  12. Optimisation of 12 MeV electron beam simulation using variance reduction technique

    NASA Astrophysics Data System (ADS)

    Jayamani, J.; Termizi, N. A. S. Mohd; Kamarulzaman, F. N. Mohd; Aziz, M. Z. Abdul

    2017-05-01

    Monte Carlo (MC) simulation for electron beam radiotherapy consumes a long computation time. An algorithm called variance reduction technique (VRT) in MC was implemented to speed up this duration. This work focused on optimisation of VRT parameter which refers to electron range rejection and particle history. EGSnrc MC source code was used to simulate (BEAMnrc code) and validate (DOSXYZnrc code) the Siemens Primus linear accelerator model with the non-VRT parameter. The validated MC model simulation was repeated by applying VRT parameter (electron range rejection) that controlled by global electron cut-off energy 1,2 and 5 MeV using 20 × 107 particle history. 5 MeV range rejection generated the fastest MC simulation with 50% reduction in computation time compared to non-VRT simulation. Thus, 5 MeV electron range rejection utilized in particle history analysis ranged from 7.5 × 107 to 20 × 107. In this study, 5 MeV electron cut-off with 10 × 107 particle history, the simulation was four times faster than non-VRT calculation with 1% deviation. Proper understanding and use of VRT can significantly reduce MC electron beam calculation duration at the same time preserving its accuracy.

  13. Modeling electron beam parameters and plasma interface position in an anode plasma electron gun with hydrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Krauze, A.; Virbulis, J.; Kravtsov, A.

    2018-05-01

    A beam glow discharge based electron gun can be applied as heater for silicon crystal growth systems in which silicon rods are pulled from melt. Impacts of high-energy charged particles cause wear and tear of the gun and generate an additional source of silicon contamination. A steady-state model for electron beam formation has been developed to model the electron gun and optimize its design. Description of the model and first simulation results are presented. It has been shown that the model can simulate dimensions of particle impact areas on the cathode and anode, but further improvements of the model are needed to correctly simulate electron trajectory distribution in the beam and the beam current dependence on the applied gas pressure.

  14. Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; /Beijing, Inst. High Energy Phys.; Cai, Y.

    2006-02-10

    It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account. The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.

  15. Ion beams extraction and measurements of plasma parameters on a multi-frequencies microwaves large bore ECRIS with permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozaki, Dai; Kiriyama, Ryutaro; Takenaka, Tomoya

    2012-11-06

    We have developed an all-permanent magnet large bore electron cyclotron resonance ion source (ECRIS) for broad ion beam processing. The cylindrically comb-shaped magnetic field configuration is adopted for efficient plasma production and good magnetic confinement. To compensate for disadvantages of fixed magnetic configuration, a traveling wave tube amplifier (TWTA) is used. In the comb-shaped ECRIS, it is difficult to achieve controlling ion beam profiles in the whole inside the chamber by using even single frequency-controllable TWTA (11-13GHz), because of large bore size with all-magnets. We have tried controlling profiles of plasma parameters and then those of extracted ion beams bymore » launching two largely different frequencies simultaneously, i.e., multi-frequencies microwaves. Here we report ion beam profiles and corresponding plasma parameters under various experimental conditions, dependence of ion beams against extraction voltages, and influence of different electrode positions on the electron density profile.« less

  16. Simulations of Gaussian electron guns for RHIC electron lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, A.

    Simulations of two versions of the electron gun for RHIC electron lens are presented. The electron guns have to generate an electron beam with Gaussian radial profile of the electron beam density. To achieve the Gaussian electron emission profile on the cathode we used a combination of the gun electrodes and shaping of the cathode surface. Dependence of electron gun performance parameters on the geometry of electrodes and the margins for electrodes positioning are presented.

  17. Finite element analyses of a linear-accelerator electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049; Wasy, A.

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gunmore » is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.« less

  18. Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM).

    PubMed

    Wu, Ryan J; Mittal, Anudha; Odlyzko, Michael L; Mkhoyan, K Andre

    2017-08-01

    Sub-angstrom scanning transmission electron microscopy (STEM) allows quantitative column-by-column analysis of crystalline specimens via annular dark-field images. The intensity of electrons scattered from a particular location in an atomic column depends on the intensity of the electron probe at that location. Electron beam channeling causes oscillations in the STEM probe intensity during specimen propagation, which leads to differences in the beam intensity incident at different depths. Understanding the parameters that control this complex behavior is critical for interpreting experimental STEM results. In this work, theoretical analysis of the STEM probe intensity reveals that intensity oscillations during specimen propagation are regulated by changes in the beam's angular distribution. Three distinct regimes of channeling behavior are observed: the high-atomic-number (Z) regime, in which atomic scattering leads to significant angular redistribution of the beam; the low-Z regime, in which the probe's initial angular distribution controls intensity oscillations; and the intermediate-Z regime, in which the behavior is mixed. These contrasting regimes are shown to exist for a wide range of probe parameters. These results provide a new understanding of the occurrence and consequences of channeling phenomena and conditions under which their influence is strengthened or weakened by characteristics of the electron probe and sample.

  19. Landau Damping of Beam Instabilities by Electron Lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, V.; Alexahin, Yuri; Burov, A.

    2017-06-26

    Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core,more » thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.« less

  20. Landau Damping of Beam Instabilities by Electron Lenses

    DOE PAGES

    Shiltsev, V.; Alexahin, Yuri; Burov, A.; ...

    2017-09-27

    Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers, and use of chromatic effects, become less effective and insufficient. Here, we show that, in contrast, Lorentz forces of a low-energy, magnetically stabilized electron beam, or “electron lens,” easily introduce transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important to note that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at themore » beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.« less

  1. Brightness analysis of an electron beam with a complex profile

    NASA Astrophysics Data System (ADS)

    Maesaka, Hirokazu; Hara, Toru; Togawa, Kazuaki; Inagaki, Takahiro; Tanaka, Hitoshi

    2018-05-01

    We propose a novel analysis method to obtain the core bright part of an electron beam with a complex phase-space profile. This method is beneficial to evaluate the performance of simulation data of a linear accelerator (linac), such as an x-ray free electron laser (XFEL) machine, since the phase-space distribution of a linac electron beam is not simple, compared to a Gaussian beam in a synchrotron. In this analysis, the brightness of undulator radiation is calculated and the core of an electron beam is determined by maximizing the brightness. We successfully extracted core electrons from a complex beam profile of XFEL simulation data, which was not expressed by a set of slice parameters. FEL simulations showed that the FEL intensity was well remained even after extracting the core part. Consequently, the FEL performance can be estimated by this analysis without time-consuming FEL simulations.

  2. WEIBEL, TWO-STREAM, FILAMENTATION, OBLIQUE, BELL, BUNEMAN...WHICH ONE GROWS FASTER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.

    2009-07-10

    Many competing linear instabilities are likely to occur in astrophysical settings, and it is important to assess which one grows faster for a given situation. An analytical model including the main beam plasma instabilities is developed. The full three-dimensional dielectric tensor is thus explained for a cold relativistic electron beam passing through a cold plasma, accounting for a guiding magnetic field, a return electronic current, and moving protons. Considering any orientations of the wave vector allows to retrieve the most unstable mode for any parameters set. An unified description of the filamentation (Weibel), two-stream, Buneman, Bell instabilities (and more) ismore » thus provided, allowing for the exact determination of their hierarchy in terms of the system parameters. For relevance to both real situations and PIC simulations, the electron-to-proton mass ratio is treated as a parameter, and numerical calculations are conducted with two different values, namely 1/1836 and 1/100. In the system parameter phase space, the shape of the domains governed by each kind of instability is far from being trivial. For low-density beams, the ultra-magnetized regime tends to be governed by either the two-stream or the Buneman instabilities. For beam densities equaling the plasma one, up to four kinds of modes are likely to play a role, depending of the beam Lorentz factor. In some regions of the system parameters phase space, the dominant mode may vary with the electron-to-proton mass ratio. Application is made to solar flares, intergalactic streams, and relativistic shocks physics.« less

  3. Silicon solar cell fabrication technology

    NASA Technical Reports Server (NTRS)

    Stafsudd, O. M.

    1979-01-01

    The laser cell scanner was used to characterize a number of solar cells made in various materials. An electron beam-induced current (EBIC) study was performed using a stereoscan scanning electron microscope. Planar p-n junctions were analyzed. A theory for the EBIC based on the analytical solution of the ambipolar diffusion equation under the influence of electron beam excitation parameter z (which is related to beam penetration), the junction depth Z sub j, the beam current and the surface recombination, was formulated and tested. The effect of a grain boundary was studied.

  4. Digital electron diffraction – seeing the whole picture

    PubMed Central

    Beanland, Richard; Thomas, Paul J.; Woodward, David I.; Thomas, Pamela A.; Roemer, Rudolf A.

    2013-01-01

    The advantages of convergent-beam electron diffraction for symmetry determination at the scale of a few nm are well known. In practice, the approach is often limited due to the restriction on the angular range of the electron beam imposed by the small Bragg angle for high-energy electron diffraction, i.e. a large convergence angle of the incident beam results in overlapping information in the diffraction pattern. Techniques have been generally available since the 1980s which overcome this restriction for individual diffracted beams, by making a compromise between illuminated area and beam convergence. Here a simple technique is described which overcomes all of these problems using computer control, giving electron diffraction data over a large angular range for many diffracted beams from the volume given by a focused electron beam (typically a few nm or less). The increase in the amount of information significantly improves the ease of interpretation and widens the applicability of the technique, particularly for thin materials or those with larger lattice parameters. PMID:23778099

  5. Pencil-like mm-size electron beams produced with linear inductive voltage adders

    NASA Astrophysics Data System (ADS)

    Mazarakis, M. G.; Poukey, J. W.; Rovang, D. C.; Maenchen, J. E.; Cordova, S. R.; Menge, P. R.; Pepping, R.; Bennett, L.; Mikkelson, K.; Smith, D. L.; Halbleib, J.; Stygar, W. A.; Welch, D. R.

    1997-02-01

    We present the design, analysis, and results of the high brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 12 MeV, current 35-40 kA, rms radius 0.5 mm, and pulse duration 40 ns full width at half-maximum. The accelerator is SABRE, a pulsed linear inductive voltage adder modified to higher impedance, and the electron source is a magnetically immersed foilless electron diode. 20-30 T solenoidal magnets are required to insulate the diode and contain the beam to its extremely small-sized (1 mm) envelope. These experiments are designed to push the technology to produce the highest possible electron current in a submillimeter radius beam. Design, numerical simulations, and experimental results are presented.

  6. Existence domain of electrostatic solitary waves in the lunar wake

    NASA Astrophysics Data System (ADS)

    Rubia, R.; Singh, S. V.; Lakhina, G. S.

    2018-03-01

    Electrostatic solitary waves (ESWs) and double layers are explored in a four-component plasma consisting of hot protons, hot heavier ions (He++), electron beam, and suprathermal electrons having κ-distribution using the Sagdeev pseudopotential method. Three modes exist: slow and fast ion-acoustic modes and electron-acoustic mode. The occurrence of ESWs and their existence domain as a function of various plasma parameters, such as the number densities of ions and electron beam, the spectral index, κ, the electron beam velocity, the temperatures of ions, and electron beam, are analyzed. It is observed that both the slow and fast ion-acoustic modes support both positive and negative potential solitons as well as their coexistence. Further, they support a "forbidden gap," the region in which the soliton ceases to propagate. In addition, slow ion-acoustic solitons support the existence of both positive and negative potential double layers. The electron-acoustic mode is only found to support negative potential solitons for parameters relevant to the lunar wake plasma. Fast Fourier transform of a soliton electric field produces a broadband frequency spectrum. It is suggested that all three soliton types taken together can provide a good explanation for the observed electrostatic waves in the lunar wake.

  7. Electron Beam-Cure Polymer Matrix Composites: Processing and Properties

    NASA Technical Reports Server (NTRS)

    Wrenn, G.; Frame, B.; Jensen, B.; Nettles, A.

    2001-01-01

    Researchers from NASA and Oak Ridge National Laboratory are evaluating a series of electron beam curable composites for application in reusable launch vehicle airframe and propulsion systems. Objectives are to develop electron beam curable composites that are useful at cryogenic to elevated temperatures (-217 C to 200 C), validate key mechanical properties of these composites, and demonstrate cost-saving fabrication methods at the subcomponent level. Electron beam curing of polymer matrix composites is an enabling capability for production of aerospace structures in a non-autoclave process. Payoffs of this technology will be fabrication of composite structures at room temperature, reduced tooling cost and cure time, and improvements in component durability. This presentation covers the results of material property evaluations for electron beam-cured composites made with either unidirectional tape or woven fabric architectures. Resin systems have been evaluated for performance in ambient, cryogenic, and elevated temperature conditions. Results for electron beam composites and similar composites cured in conventional processes are reviewed for comparison. Fabrication demonstrations were also performed for electron beam-cured composite airframe and propulsion piping subcomponents. These parts have been built to validate manufacturing methods with electron beam composite materials, to evaluate electron beam curing processing parameters, and to demonstrate lightweight, low-cost tooling options.

  8. Control of energy sweep and transverse beam motion in induction linacs

    NASA Astrophysics Data System (ADS)

    Turner, W. C.

    1991-05-01

    Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.

  9. Analysis of parasitic oscillations in 42 GHz gyrotron beam tunnel

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Singh, U.; Singh, T. P.; Sinha, A. K.

    2011-02-01

    Parasitic oscillation excitation analysis has been carried out for the 42 GHz gyrotron beam tunnel. This article presents a systematic approach for the analysis of parasitic oscillation excitation. The electron trajectory code EGUN has been used for the estimation of the electron beam parameters in the beam tunnel. The electromagnetic simulation code CST-MS has been used for the eigenmode and Q value analysis. The analysis of the parasitic oscillations has been performed for the symmetric TE modes and the first three cavity side copper rings. Four different approaches- the Q value study, the mode maxima-electron beam radius mismatching, the electron cyclotron frequency-mode excitation frequency mismatching and the backward wave interaction analysis- have been used for the parasitic oscillation analysis.

  10. Electron beam simulation from gun to collector: Towards a complete solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertzig, R., E-mail: robert.mertzig@cern.ch; Shornikov, A., E-mail: robert.mertzig@cern.ch; Wenander, F.

    An electron-beam simulation technique for high-resolution complete EBIS/T modelling is presented. The technique was benchmarked on the high compression HEC{sup 2} test-stand with an electron beam current, current density and energy of 10 A, 10 kA/cm{sup 2} and 49.2 keV, and on the immersed electron beam at REXEBIS for electron beam characteristics of 0.4 A, 200 A/cm{sup 2} and 4.5 keV. In both Brillouin-like and immersed beams the electron-beam radius varies from several millimeters at the gun, through some hundreds of micrometers in the ionization region to a few centimeters at the collector over a total length of several meters.more » We report on our approach for finding optimal meshing parameters, based on the local beam properties such as magnetic field-strength, electron energy and beam radius. This approach combined with dividing the problem domain into sub-domains, and subsequent splicing of the local solutions allowed us to simulate the beam propagation in EBISes from the gun to the collector using a conventional PC in about 24–36 h. Brillouin-like electron beams propagated through the complete EBIS were used to analyze the beam behavior within the collector region. We checked whether elastically reflected paraxial electrons from a Brillouin-like beam will escape from the collector region and add to the loss current. We have also studied the power deposition profiles as function of applied potentials using two electrode geometries for a Brillouin-like beam including the effects of backscattered electrons.« less

  11. Strong constraints on sub-GeV dark sectors from SLAC beam dump E137.

    PubMed

    Batell, Brian; Essig, Rouven; Surujon, Ze'ev

    2014-10-24

    We present new constraints on sub-GeV dark matter and dark photons from the electron beam-dump experiment E137 conducted at SLAC in 1980-1982. Dark matter interacting with electrons (e.g., via a dark photon) could have been produced in the electron-target collisions and scattered off electrons in the E137 detector, producing the striking, zero-background signature of a high-energy electromagnetic shower that points back to the beam dump. E137 probes new and significant ranges of parameter space and constrains the well-motivated possibility that dark photons that decay to light dark-sector particles can explain the ∼3.6σ discrepancy between the measured and standard model value of the muon anomalous magnetic moment. It also restricts the parameter space in which the relic density of dark matter in these models is obtained from thermal freeze-out. E137 also convincingly demonstrates that (cosmic) backgrounds can be controlled and thus serves as a powerful proof of principle for future beam-dump searches for sub-GeV dark-sector particles scattering off electrons in the detector.

  12. Electron trajectory evaluation in laser-plasma interaction for effective output beam

    NASA Astrophysics Data System (ADS)

    Zobdeh, P.; Sadighi-Bonabi, R.; Afarideh, H.

    2010-06-01

    Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.

  13. High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use.

    PubMed

    Jaccard, Maud; Durán, Maria Teresa; Petersson, Kristoffer; Germond, Jean-François; Liger, Philippe; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François; Bailat, Claude

    2018-02-01

    The Oriatron eRT6 is an experimental high dose-per-pulse linear accelerator (linac) which was designed to deliver an electron beam with variable dose-rates, ranging from a few Gy/min up to hundreds of Gy/s. It was built to study the radiobiological effects of high dose-per-pulse/dose-rate electron beam irradiation, in the context of preclinical and cognitive studies. In this work, we report on the commissioning and beam monitoring of the Oriatron eRT6 prototype linac. The beam was characterized in different steps. The output stability was studied by performing repeated measurements over a period of 20 months. The relative output variations caused by changing beam parameters, such as the temporal electron pulse width, the pulse repetition frequency and the pulse amplitude were also analyzed. Finally, depth dose curves and field sizes were measured for two different beam settings, resulting in one beam with a conventional radiotherapy dose-rate and one with a much higher dose-rate. Measurements were performed with Gafchromic EBT3 films and with a PTW Advanced Markus ionization chamber. In addition, we developed a beam current monitoring system based on the signals from an induction torus positioned at the beam exit of the waveguide and from a graphite beam collimator. The stability of the output over repeated measurements was found to be good, with a standard deviation smaller than 1%. However, non-negligible day-to-day variations of the beam output were observed. Those output variations showed different trends depending on the dose-rate. The analysis of the relative output variation as a function of various beam parameters showed that in a given configuration, the dose-rate could be reliably varied over three orders of magnitude. Interdependence effects on the output variation between the parameters were also observed. The beam energy and field size were found to be slightly dose-rate-dependent and suitable mainly for small animal irradiation. The beam monitoring system was able to measure in a reproducible way the total charge of electrons that exit the machine, as long as the electron pulse amplitude remains above a given threshold. Furthermore, we were able to relate the charge measured with the monitoring system to the absorbed dose in a solid water phantom. The Oriatron eRT6 was successfully commissioned for preclinical use and is currently in full operation, with studies being performed on the radiobiological effects of high dose-per-pulse irradiation. © 2017 American Association of Physicists in Medicine.

  14. IBS FOR ION DISTRIBUTION UNDER ELECTRON COOLING.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FEDOTOV,A.V.; BEN-ZVI,I.; EIDELMAN, YU.

    Standard models of the intra-beam scattering (IBS) are based on the growth of the rms beam parameters for a Gaussian distribution. As a result of electron cooling, the core of beam distribution is cooled much faster than the tails, producing a denser core. In this paper, we compare various approaches to IBS treatment for such distribution. Its impact on the luminosity is also discussed.

  15. ICFA Beam Dynamics Newsletter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, A.

    2017-11-21

    Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a bettermore » EBIS.« less

  16. Dose calculation for electron therapy using an improved LBR method.

    PubMed

    Gebreamlak, Wondesen T; Tedeschi, David J; Alkhatib, Hassaan A

    2013-07-01

    To calculate the percentage depth dose (PDD) of any irregularly shaped electron beam using a modified lateral build-up ratio (LBR) method. Percentage depth dose curves were measured using 6, 9, 12, and 15 MeV electron beam energies for applicator cone sizes of 6 × 6, 10 × 10, 14 × 14, and 20 × 20 cm(2). Circular cutouts for each cone were prepared from 2.0 cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. The LBR for each circular cutout was calculated from the measured PDD curve using the open field of the 14 × 14 cm(2) cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter [σR(z)] of the electron shower was calculated. Unlike the commonly accepted assumption that σR(z) is independent of cutout size, it is shown that its value increases linearly with circular cutout size (R). Using this characteristic of the lateral spread parameter, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. In this research, it is shown that the lateral spread parameter σR(z) increases with cutout size. For radii of circular cutout sizes up to the equilibrium range of the electron beam, the increase of σR(z) with the cutout size is linear. The percentage difference of the calculated PDD curve from the measured PDD data for irregularly shaped cutouts was under 1.0% in the region between the surface and therapeutic range of the electron beam. Similar results were obtained for four electron beam energies (6, 9, 12, and 15 MeV).

  17. Diagnostics for a 1.2 kA, 1 MeV, electron induction injector

    NASA Astrophysics Data System (ADS)

    Houck, T. L.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Lidia, S. M.; Vanecek, D. L.; Westenskow, G. A.; Yu, S. S.

    1998-12-01

    We are constructing a 1.2 kA, 1 MeV, electron induction injector as part of the RTA program, a collaborative effort between LLNL and LBNL to develop relativistic klystrons for Two-Beam Accelerator applications. The RTA injector will also be used in the development of a high-gradient, low-emittance, electron source and beam diagnostics for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility. The electron source will be a 3.5″-diameter, thermionic, flat-surface, m-type cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150 ns flat top (1% energy variation), and a normalized edge emittance of less than 200 π-mm-mr. Precise measurement of the beam parameters is required so that performance of the RTA injector can be confidently scaled to the 4 kA, 3 MeV, and 2-microsecond pulse parameters of the DARHT injector. Planned diagnostics include an isolated cathode with resistive divider for direct measurement of current emission, resistive wall and magnetic probe current monitors for measuring beam current and centroid position, capacitive probes for measuring A-K gap voltage, an energy spectrometer, and a pepperpot emittance diagnostic. Details of the injector, beam line, and diagnostics are presented.

  18. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro

    2012-02-15

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them inmore » detail.« less

  19. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    NASA Astrophysics Data System (ADS)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  20. Harmonics generation of a terahertz wakefield free-electron laser from a dielectric loaded waveguide excited by a direct current electron beam.

    PubMed

    Li, Weiwei; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-06-01

    We propose to generate high-power terahertz (THz) radiation from a cylindrical dielectric loaded waveguide (DLW) excited by a direct-current electron beam with the harmonics generation method. The DLW supports a discrete set of modes that can be excited by an electron beam passing through the structure. The interaction of these modes with the co-propagating electron beam results in micro-bunching and the coherent enhancement of the wakefield radiation, which is dominated by the fundamental mode. By properly choosing the parameters of DLW and beam energy, the high order modes can be the harmonics of the fundamental one; thus, high frequency radiation corresponding to the high order modes will benefit from the dominating bunching process at the fundamental eigenfrequency and can also be coherently excited. With the proposed method, high power THz radiation can be obtained with an easily achievable electron beam and a large DLW structure.

  1. Optimization of Compton Source Performance through Electron Beam Shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander; Yampolsky, Nikolai

    2016-09-26

    We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a waymore » so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.« less

  2. Transmission Electron Microscope Measures Lattice Parameters

    NASA Technical Reports Server (NTRS)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  3. Optimization of laser-plasma injector via beam loading effects using ionization-induced injection

    NASA Astrophysics Data System (ADS)

    Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.

    2018-05-01

    Simulations of ionization-induced injection in a laser driven plasma wakefield show that high-quality electron injectors in the 50-200 MeV range can be achieved in a gas cell with a tailored density profile. Using the PIC code Warp with parameters close to existing experimental conditions, we show that the concentration of N2 in a hydrogen plasma with a tailored density profile is an efficient parameter to tune electron beam properties through the control of the interplay between beam loading effects and varying accelerating field in the density profile. For a given laser plasma configuration, with moderate normalized laser amplitude, a0=1.6 and maximum electron plasma density, ne 0=4 ×1018 cm-3 , the optimum concentration results in a robust configuration to generate electrons at 150 MeV with a rms energy spread of 4% and a spectral charge density of 1.8 pC /MeV .

  4. Energy regeneration model of self-consistent field of electron beams into electric power*

    NASA Astrophysics Data System (ADS)

    Kazmin, B. N.; Ryzhov, D. R.; Trifanov, I. V.; Snezhko, A. A.; Savelyeva, M. V.

    2016-04-01

    We consider physic-mathematical models of electric processes in electron beams, conversion of beam parameters into electric power values and their transformation into users’ electric power grid (onboard spacecraft network). We perform computer simulation validating high energy efficiency of the studied processes to be applied in the electric power technology to produce the power as well as electric power plants and propulsion installation in the spacecraft.

  5. A critical literature review of focused electron beam induced deposition

    NASA Astrophysics Data System (ADS)

    van Dorp, W. F.; Hagen, C. W.

    2008-10-01

    An extensive review is given of the results from literature on electron beam induced deposition. Electron beam induced deposition is a complex process, where many and often mutually dependent factors are involved. The process has been studied by many over many years in many different experimental setups, so it is not surprising that there is a great variety of experimental results. To come to a better understanding of the process, it is important to see to which extent the experimental results are consistent with each other and with the existing model. All results from literature were categorized by sorting the data according to the specific parameter that was varied (current density, acceleration voltage, scan patterns, etc.). Each of these parameters can have an effect on the final deposit properties, such as the physical dimensions, the composition, the morphology, or the conductivity. For each parameter-property combination, the available data are discussed and (as far as possible) interpreted. By combining models for electron scattering in a solid, two different growth regimes, and electron beam induced heating, the majority of the experimental results were explained qualitatively. This indicates that the physical processes are well understood, although quantitatively speaking the models can still be improved. The review makes clear that several major issues remain. One issue encountered when interpreting results from literature is the lack of data. Often, important parameters (such as the local precursor pressure) are not reported, which can complicate interpretation of the results. Another issue is the fact that the cross section for electron induced dissociation is unknown. In a number of cases, a correlation between the vertical growth rate and the secondary electron yield was found, which suggests that the secondary electrons dominate the dissociation rather than the primary electrons. Conclusive evidence for this hypothesis has not been found. Finally, there is a limited understanding of the mechanism of electron induced precursor dissociation. In many cases, the deposit composition is not directly dependent on the stoichiometric composition of the precursor and the electron induced decomposition paths can be very different from those expected from calculations or thermal decomposition. The dissociation mechanism is one of the key factors determining the purity of the deposits and a better understanding of this process will help develop electron beam induced deposition into a viable nanofabrication technique.

  6. Quantitative Analysis of Electron Beam Damage in Organic Thin Films

    PubMed Central

    2017-01-01

    In transmission electron microscopy (TEM) the interaction of an electron beam with polymers such as P3HT:PCBM photovoltaic nanocomposites results in electron beam damage, which is the most important factor limiting acquisition of structural or chemical data at high spatial resolution. Beam effects can vary depending on parameters such as electron dose rate, temperature during imaging, and the presence of water and oxygen in the sample. Furthermore, beam damage will occur at different length scales. To assess beam damage at the angstrom scale, we followed the intensity of P3HT and PCBM diffraction rings as a function of accumulated electron dose by acquiring dose series and varying the electron dose rate, sample preparation, and the temperature during acquisition. From this, we calculated a critical dose for diffraction experiments. In imaging mode, thin film deformation was assessed using the normalized cross-correlation coefficient, while mass loss was determined via changes in average intensity and standard deviation, also varying electron dose rate, sample preparation, and temperature during acquisition. The understanding of beam damage and the determination of critical electron doses provides a framework for future experiments to maximize the information content during the acquisition of images and diffraction patterns with (cryogenic) transmission electron microscopy. PMID:28553431

  7. Investigations of the emittance and brightness of ion beams from an electron beam ion source of the Dresden EBIS type.

    PubMed

    Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk

    2010-02-01

    We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.

  8. Source brightness and useful beam current of carbon nanotubes and other very small emitters

    NASA Astrophysics Data System (ADS)

    Kruit, P.; Bezuijen, M.; Barth, J. E.

    2006-01-01

    The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.

  9. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. Themore » expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.« less

  10. Basic design considerations for free-electron lasers driven by electron beams from RF accelerators

    NASA Astrophysics Data System (ADS)

    Gover, A.; Freund, H.; Granatstein, V. L.; McAdoo, J. H.; Tang, C.-M.

    A design procedure and design criteria are derived for free-electron lasers driven by electron beams from RF accelerators. The procedure and criteria permit an estimate of the oscillation-buildup time and the laser output power of various FEL schemes: with waveguide resonator or open resonator, with initial seed-radiation injection or with spontaneous-emission radiation source, with a linear wiggler or with a helical wiggler. Expressions are derived for computing the various FEL parameters, allowing for the design and optimization of the FEL operational characteristics under ideal conditions or with nonideal design parameters that may be limited by technological or practical constraints. The design procedure enables one to derive engineering curves and scaling laws for the FEL operating parameters. This can be done most conveniently with a computer program based on flowcharts given in the appendices.

  11. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  12. Status report on the development of a tubular electron beam ion source

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Becker, R.; Liljeby, L.; Rensfelt, K.-G.; Beebe, E. N.; Pikin, A. I.

    2004-05-01

    The theoretical estimations and numerical simulations of tubular electron beams in both beam and reflex mode of source operation as well as the off-axis ion extraction from a tubular electron beam ion source (TEBIS) are presented. Numerical simulations have been done with the use of the IGUN and OPERA-3D codes. Numerical simulations with IGUN code show that the effective electron current can reach more than 100 A with a beam current density of about 300-400 A/cm2 and the electron energy in the region of several KeV with a corresponding increase of the ion output. Off-axis ion extraction from the TEBIS, being the nonaxially symmetric problem, was simulated with OPERA-3D (SCALA) code. The conceptual design and main parameters of new tubular sources which are under consideration at JINR, MSL, and BNL are based on these simulations.

  13. Conceptual Design of Electron-Beam Generated Plasma Tools

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; Dorf, Leonid; Collins, Ken; Boris, David; Walton, Scott

    2015-09-01

    Realization of the next generation of high-density nanostructured devices is predicated on etching features with atomic layer resolution, no damage and high selectivity. High energy electron beams generate plasmas with unique features that make them attractive for applications requiring monolayer precision. In these plasmas, high energy beam electrons ionize the background gas and the resultant daughter electrons cool to low temperatures via collisions with gas molecules and lack of any accelerating fields. For example, an electron temperature of <0.6 eV with densities comparable to conventional plasma sources can be obtained in molecular gases. The chemistry in such plasmas can significantly differ from RF plasmas as the ions/radicals are produced primarily by beam electrons rather than those in the tail of a low energy distribution. In this work, we will discuss the conceptual design of an electron beam based plasma processing system. Plasma properties will be discussed for Ar, Ar/N2, and O2 plasmas using a computational plasma model, and comparisons made to experiments. The fluid plasma model is coupled to a Monte Carlo kinetic model for beam electrons which considers gas phase collisions and the effect of electric and magnetic fields on electron motion. The impact of critical operating parameters such as magnetic field, beam energy, and gas pressure on plasma characteristics in electron-beam plasma processing systems will be discussed. Partially supported by the NRL base program.

  14. Investigations of large area electron beam diodes for excimer lasers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    This report summarizes the results of a one year research program at the University of Michigan to investigate the physics and technology of microsecond electron beam diodes. These experiments were performed on the Michigan Electron Long Beam Accelerator (MELBA) at parameters: Voltage {equals} {minus}0.65 to {minus}0.9 MV, current {equals} 1 {minus}50 kA, and pulselength {equals} 0.5 {minus} 5 microseconds. Major accomplishments include: (1) the first two-wavelength (CO2 and HeNe) laser deflection measurements of diode plasma and neutrals; (2) measurements of the effects on magnetic field gradient on microsecond diode closure; (3) demonstration of good fidelity of processed x-ray signals asmore » a diagnostic of beam voltage; (4) extended-pulselength scaling of electron beam diode arcing and diode closure; and (5) innovative Cerenkov plate diagnostics of e-beam dynamics.« less

  15. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns.

    PubMed

    Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E

    2013-08-02

    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  16. Electron Acceleration by Beating of Two Intense Cross-Focused Hollow Gaussian Laser Beams in Plasma

    NASA Astrophysics Data System (ADS)

    Mahmoud, Saleh T.; Gauniyal, Rakhi; Ahmad, Nafis; Rawat, Priyanka; Purohit, Gunjan

    2018-01-01

    This paper presents propagation of two cross-focused intense hollow Gaussian laser beams (HGBs) in collisionless plasma and its effect on the generation of electron plasma wave (EPW) and electron acceleration process, when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams, which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams. Supported by United Arab Emirates University for Financial under Grant No. UPAR (2014)-31S164

  17. Optical properties of YbF3-CaF2 composite thin films deposited by electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Wang, Songlin; Mi, Gaoyuan; Zhang, Jianfu; Yang, Chongmin

    2018-03-01

    We studied electron-beam evaporated YbF3-CaF2 composite films on ZnS substrate at different deposition parameters. The optical properties of films have been fitted, the surface roughness have been measured by AFM. The results of experiments indicated that increased the refractive indices, extinction coefficients, and surface roughness at higher deposition rate. The refractive index of composite film deposited by electron-beam evaporation with assisted-ion source was obviously higher than it without assisted-ion source.

  18. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation

    NASA Astrophysics Data System (ADS)

    Alexander, LYSENKO; Iurii, VOLK

    2018-03-01

    We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.

  19. 2D imaging X-ray diagnostic for measuring the current density distribution in a wide-area electron beam produced in a multiaperture diode with plasma cathode

    NASA Astrophysics Data System (ADS)

    Kurkuchekov, V.; Kandaurov, I.; Trunev, Y.

    2018-05-01

    A simple and inexpensive X-ray diagnostic tool was designed for measuring the cross-sectional current density distribution in a low-relativistic pulsed electron beam produced in a source based on an arc-discharge plasma cathode and multiaperture diode-type electron optical system. The beam parameters were as follows: Uacc = 50–110 kV, Ibeam = 20–100 A, τbeam = 0.1–0.3 ms. The beam effective diameter was ca. 7 cm. Based on a pinhole camera, the diagnostic allows one to obtain a 2D profile of electron beam flux distribution on a flat metal target in a single shot. The linearity of the diagnostic system response to the electron flux density was established experimentally. Spatial resolution of the diagnostic was also estimated in special test experiments. The optimal choice of the main components of the diagnostic technique is discussed.

  20. Observation of electron cloud instabilities and emittance dilution at the Cornell electron-positron Storage ring Test Accelerator

    DOE PAGES

    Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; ...

    2016-04-11

    Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnostics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud withmore » stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains, 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this study we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.« less

  1. Observation of Electron Cloud Instabilities and Emittance Dilution at the Cornell Electron-Positron Storage Ring Test Accelerator

    NASA Astrophysics Data System (ADS)

    Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; Dugan, G. F.; Flanagan, J.; McArdle, K. E.; Miller, M. I.; Palmer, M. A.; Ramirez, G. A.; Sonnad, K. G.; Totten, M. M.; Tucker, S. L.; Williams, H. A.

    2016-04-01

    Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.

  2. Research on Vacuum Laser Accelerator and Proof-of Principle Experiment

    NASA Astrophysics Data System (ADS)

    Shao, Lei

    This thesis discovers a proof-of-principle theory of Vacuum Laser Acceleration (VLA) and proposes a new acceleration mechanism---Capture and Acceleration Scenario (CAS) in our far-field laser acceleration research, which is a promising new scheme in advanced acceleration field. In this thesis, I studied electrons' dynamic behaviors while interacting with intense laser beam. There are two kinds of dynamics trajectories, namely IS (Inelastic Scattering) and CAS. In CAS, electrons can be captured and moving along the laser beam for a long time and receive considerable energy exchange from the laser field, rather than quickly expelled from the intense field region of the laser as predicted by the conventional Ponderomotive Potential Model (PPM). This thesis shows the research on most parameters of both laser beam and electron beam which will affect this VLA scheme. One of the primary factors is the laser intensity. Relatively high laser intensity is critically required for VLA, and there are thresholds of intensity a0( th) for CAS occurrence; the thresholds are different under different laser beam waist widths which is also a very important parameter of laser beam. Laser intensity is still a big obstacle nowadays. In the last decade there are only a few laboratories have the laser power to ˜1019 W/cm2 and above. Our simulation shows that laser intensity threshold of CAS is around a0 = 5˜8, in correspondence to laser power around 1019˜1022 W/cm 2 depending on different wave length and waist width. The interaction is also sensitive to various electron beam parameters, such as the optimal initial electron energy falls in the range of 4--15 MeV, electron incident angle and position, and so on. At last the thesis presents out experimental work on this new VLA scheme. The collaboration is between our UCLA group and Brookhaven National Lab - Accelerator Test Facility (BNL-ATF). At BNL-ATF, they have both intense laser beam and high quality electron beam. The characters of BNL-ATF fit our project very well. The laser system at ATF is a short pulse CO2 laser. Under present ATF condition, the peak power of the CO2 laser is around 5J with pulse duration 5ps. Therefore the maximum laser intensity can reach a 0 ≈ 1.0. Such level of laser intensity is not sufficient to perform violent electron acceleration-CAS according to the threshold we defined. However this level intensity is already high enough to see basic proof-of-principle signal based on our extensive simulations with exact practical ATF experimental conditions. Another important factor is the electron beam condition. ATF uses photoinjector Radio Frequency (RF) gun system for electron beam. The working frequency is at constant level 2856MHz. Generally the electron beam deliver energy around 40MeV˜60MeV to the transport beam line. However as we mentioned before with relatively low laser intensity the electron initial energy is required to be lower as well correspondently. We tried best to tuned ATF electron beam energy down to 15MeV. With laser intensity around a 0 ≈ 1.0 and electron beam 15MeV, our simulation indicates to see energy spread expansion after interaction, and this effect increases while the laser intensity increases (even slightly change from a 0 ≈ 0.9 to 2.2). The experiment design is completed based on ATF beam line condition. The design and layout are presented. All the optical devices are acquired and machined. Installation and alignment have been done a few times for testing. (Abstract shortened by UMI.)

  3. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, J.; Chen, M.; Wu, W. Y.

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. Furthermore, a curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme then benefitsmore » from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. Within moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.« less

  4. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channel

    DOE PAGES

    Luo, J.; Chen, M.; Wu, W. Y.; ...

    2018-04-10

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. Furthermore, a curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme then benefitsmore » from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. Within moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.« less

  5. Pulsed Electron Source with Grid Plasma Cathode and Longitudinal Magnetic Field for Modification of Material and Product Surfaces

    NASA Astrophysics Data System (ADS)

    Devyatkov, V. N.; Koval, N. N.

    2018-01-01

    The description and the main characteristics of the pulsed electron source "SOLO" developed on the basis of the plasma cathode with grid stabilization of the emission plasma boundary are presented. The emission plasma is generated by a low-pressure arc discharge, and that allows to form the dense low-energy electron beam with a wide range of independently adjustable parameters of beam current pulses (pulse duration of 20-250 μs, pulse repetition rate of 1-10 s-1, amplitude of beam current pulses of 20-300 A, and energy of beam electrons of 5-25 keV). The special features of generation of emission plasma by constricted low-pressure arc discharge in the grid plasma cathode partially dipped into a non-uniform magnetic field and of formation and transportation of the electron beam in a longitudinal magnetic field are considered. The application area of the electron source and technologies realized with its help are specified.

  6. Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens.

    PubMed

    Sheikh, Mumtaz; Riza, Nabeel A

    2010-06-01

    To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along the light propagation axis, the proposed analyzer profiles the beam at the same plane for multiple values of the ECVFL focal length, thus eliminating beam profiler assembly motion. In addition to measuring standard Gaussian beam parameters, the analyzer can also be used to measure the M(2) beam propagation parameter of a multimode beam. Proof-of-concept beam parameter measurements with the proposed analyzer are successfully conducted for a 633 nm laser beam. Given the all-digital nature of the DMD-based profiling and all-analog motion-free nature of the ECVFL beam focus control, the proposed analyzer versus prior art promises better repeatability, speed, and reliability.

  7. Electron Source based on Superconducting RF

    NASA Astrophysics Data System (ADS)

    Xin, Tianmu

    High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.

  8. Plasma diagnosis as a tool for the determination of the parameters of electron beam evaporation and sources of ionization

    NASA Astrophysics Data System (ADS)

    Mukherjee, Jaya; Dileep Kumar, V.; Yadav, S. P.; Barnwal, Tripti A.; Dikshit, Biswaranjan

    2016-07-01

    The atomic vapor generated by electron beam heating is partially ionized due to atom-atom collisions (Saha ionization) and electron impact ionization, which depend upon the source temperature and area of evaporation as compared to the area of electron beam bombardment on the target. When electron beam evaporation is carried out by inserting the target inside an insulating liner to reduce conductive heat loss, it is expected that the area of evaporation becomes significantly more than the area of electron beam bombardment on the target, resulting in reduced electron impact ionization. To assess this effect and to quantify the parameters of evaporation, such as temperature and area of evaporation, we have carried out experiments using zirconium, tin and aluminum as a target. By measuring the ion content using a Langmuir probe, in addition to measuring the atomic vapor flux at a specific height, and by combining the experimental data with theoretical expressions, we have established a method for simultaneously inferring the source temperature, evaporation area and ion fraction. This assumes significance because the temperature cannot be reliably measured by an optical pyrometer due to the wavelength dependent source emissivity and reflectivity of thin film mirrors. In addition, it also cannot be inferred from only the atomic flux data at a certain height as the area of evaporation is unknown (it can be much more than the area of electron bombardment, especially when the target is placed in a liner). Finally, the reason for the lower observed electron temperatures of the plasma for all the three cases is found to be the energy loss due to electron impact excitation of the atomic vapor during its expansion from the source.

  9. Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams.

    PubMed

    Sawkey, D L; Faddegon, B A

    2009-03-01

    Monte Carlo simulations of x-ray beams typically take parameters of the electron beam in the accelerating waveguide to be free parameters. In this paper, a methodology is proposed and implemented to determine the energy, spectral width, and beam divergence of the electron source. All treatment head components were removed from the beam path, leaving only the exit window. With the x-ray target and flattener out of the beam, uncertainties in physical characteristics and relative position of the target and flattening filter, and in spot size, did not contribute to uncertainty in the energy. Beam current was lowered to reduce recombination effects. The measured dose distributions were compared with Monte Carlo simulation of the electron beam through the treatment head to extract the electron source characteristics. For the nominal 6 and 18 MV x-ray beams, the energies were 6.51 +/- 0.15 and 13.9 +/- 0.2 MeV, respectively, with the uncertainties resulting from uncertainties in the detector position in the measurement and in the stopping power in the simulations. Gaussian spectral distributions were used, with full widths at half maximum ranging from 20 +/- 4% at 6 MV to 13 +/- 4% at 18 MV required to match the fall-off portion of the percent-depth ionization curve. Profiles at the depth of maximum dose from simulations that used the manufacturer-specified exit window geometry and no beam divergence were 2-3 cm narrower than measured profiles. Two simulation configurations yielding the measured profile width were the manufacturer-specified exit window thickness with electron source divergences of 3.3 degrees at 6 MV and 1.8 degrees at 18 MV and an exit window 40% thicker than the manufacturer's specification with no beam divergence. With the x-ray target in place (and no flattener), comparison of measured to simulated profiles sets upper limits on the electron source divergences of 0.2 degrees at 6 MV and 0.1 degrees at 18 MV. A method of determining source characteristics without mechanical modification of the treatment head, and therefore feasible in clinics, is presented. The energies and spectral widths determined using this method agree with those determined with only the exit window in the beam path.

  10. Comparison of the secondary electrons produced by proton and electron beams in water

    NASA Astrophysics Data System (ADS)

    Kia, Mohammad Reza; Noshad, Houshyar

    2016-05-01

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.

  11. Comparison of the secondary electrons produced by proton and electron beams in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, andmore » secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.« less

  12. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam.

    PubMed

    Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E; Domröse, Till; Gatzmann, J Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha; Ropers, Claus

    2017-05-01

    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9Å focused beam diameter, 200fs pulse duration and 0.6eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    NASA Astrophysics Data System (ADS)

    Deng, Yongfeng; Jiang, Jian; Han, Xianwei; Tan, Chang; Wei, Jianguo

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  14. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  15. On the generation of cnoidal waves in ion beam-dusty plasma containing superthermal electrons and ions

    NASA Astrophysics Data System (ADS)

    El-Bedwehy, N. A.

    2016-07-01

    The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev-Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.

  16. On the generation of cnoidal waves in ion beam-dusty plasma containing superthermal electrons and ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com

    2016-07-15

    The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev–Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.

  17. Steady states of a diode with counterstreaming electron and positron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ender, A. Ya.; Kuznetsov, V. I., E-mail: victor.kuznetsov@mail.ioffe.ru; Gruzdev, A. A.

    2016-10-15

    Steady states of a plasma layer with counterstreaming beams of oppositely charged particles moving without collisions in a self-consistent electric field are analyzed. The study is aimed at clarifying the mechanism of generation and reconstruction of pulsar radiation. Such a layer also models the processes occurring in Knudsen plasma diodes with counterstreaming electron and ion beams. The steady-state solutions are exhaustively classified. The existence of several solutions at the same external parameters is established.

  18. Steady states of a diode with counterstreaming electron and positron beams

    NASA Astrophysics Data System (ADS)

    Ender, A. Ya.; Kuznetsov, V. I.; Gruzdev, A. A.

    2016-10-01

    Steady states of a plasma layer with counterstreaming beams of oppositely charged particles moving without collisions in a self-consistent electric field are analyzed. The study is aimed at clarifying the mechanism of generation and reconstruction of pulsar radiation. Such a layer also models the processes occurring in Knudsen plasma diodes with counterstreaming electron and ion beams. The steady-state solutions are exhaustively classified. The existence of several solutions at the same external parameters is established.

  19. MaRIE Undulator & XFEL Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Dinh Cong; Marksteiner, Quinn R.; Anisimov, Petr Mikhaylovich

    The 22 slides in this presentation treat the subject under the following headings: MaRIE XFEL Performance Parameters, Input Electron Beam Parameters, Undulator Design, Genesis Simulations, Risks, and Summary It is concluded that time-dependent Genesis simulations show the MaRIE XFEL can deliver the number of photons within the required bandwidth, provided a number of assumptions are met; the highest risks are associated with the electron beam driving the XFEL undulator; and risks associated with the undulator and/or distributed seeding technique may be evaluated or retired by performing early validation experiments.

  20. Preliminary research concerning the use of electron accelerators to improve the conservability and to extend the shelf-life of fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Minea, R.; Oproiu, C.; Pascanu, S.; Matei, C.; Ferdes, O.

    1996-06-01

    The potential of ionizing radiation treatment for food preservation, shelf-life extension, control of microbial load and reduction of pathogenic microorganism was demonstrated. The irradiations were performed under normal conditions on the Institute of Physics and Technology for Radiation Device's linear electron accelerator, which has the following parameters: 5 μA mean beam current, 6 MeV electron mean energy, pulse period 3.5 μs and dose rates between 100-1500 Gy/min. This research project was aimed at assuring the consumer's acceptance for radiation-treated food and to obtain a significant reduction of food losses. We also propose a promising solution for the radiation processing of some bulk food products at the place of storage, consisting of a mobile electron accelerator. The main characteristics of the mobile electron accelerator are: electron energy 3 to 5 MeV, maximum beam power 5 kW, vertical electron beam; irradiation is possible both with electron beams and with bremsstrahlung. The results of our preliminary research lead to the conclusion that electron-beam irradiation and the use of electron accelerators is a promising solution for food preservation and food safety. Interesting future applications are outlined.

  1. Control of the diocotron instability of a hollow electron beam with periodic dipole magnets

    DOE PAGES

    Jo, Y. H.; Kim, J. S.; Stancari, G.; ...

    2017-12-28

    A method to control the diocotron instability of a hollow electron beam with peri-odic dipole magnetic fields has been investigated by a two-dimensional particle-in-cell simulation. At first, relations between the diocotron instability and several physical parameters such as the electron number density, current and shape of the electron beam, and the solenoidal field strength are theoretically analyzed without periodic dipole magnetic fields. Then, we study the effects of the periodic dipole magnetic fields on the diocotron instability using the two-dimensional particle-in-cell simulation. In the simulation, we considered the periodic dipole magnetic field applied along the propagation direction of the beam,more » as a temporally varying magnetic field in the beam frame. Lastly, a stabilizing effect is observed when the oscillating frequency of the dipole magnetic field is optimally chosen, which increases with the increasing amplitude of the dipole magnetic field.« less

  2. Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Vali, Indudhar Panduranga; Shetty, Pramoda Kumara; Mahesha, M. G.; Petwal, V. C.; Dwivedi, Jishnu; Choudhary, R. J.

    2017-06-01

    The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I-V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (ΦB), ideality factor (n) and series resistance (Rs). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of ΦB was observed as a function of EBI dose. The improved n with increased ΦB is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune Schottky contact parameters by metal deposition on the electron beam irradiated n-Si wafers.

  3. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Martin, Richard E. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza

    A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of themore » differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.« less

  5. Electrostatic waves driven by electron beam in lunar wake plasma

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2018-05-01

    A linear analysis of electrostatic waves propagating parallel to the ambient field in a four component homogeneous, collisionless, magnetised plasma comprising fluid protons, fluid He++, electron beam, and suprathermal electrons following kappa distribution is presented. In the absence of electron beam streaming, numerical analysis of the dispersion relation shows six modes: two electron acoustic modes (modes 1 and 6), two fast ion acoustic modes (modes 2 and 5), and two slow ion acoustic modes (modes 3 and 4). The modes 1, 2 and 3 and modes 4, 5, and 6 have positive and negative phase speeds, respectively. With an increase in electron beam speed, the mode 6 gets affected the most and the phase speed turns positive from negative. The mode 6 thus starts to merge with modes 2 and 3 and generates the electron beam driven fast and slow ion acoustic waves unstable with a finite growth. The electron beam driven slow ion-acoustic waves occur at lower wavenumbers, whereas fast ion-acoustic waves occur at a large value of wavenumbers. The effect of various other parameters has also been studied. We have applied this analysis to the electrostatic waves observed in lunar wake during the first flyby of the ARTEMIS mission. The analysis shows that the low (high) frequency waves observed in the lunar wake could be the electron beam driven slow (fast) ion-acoustic modes.

  6. Two-dimensional electron beam charging model for polymer films

    NASA Technical Reports Server (NTRS)

    Reeves, R. D.; Balmain, K. G.

    1981-01-01

    A two-dimensional model is developed to describe the charging of strips of thin polymer films above a grounded substrate exposed to a uniform mono-energetic electron beam. The study is motivated by the observed anomalous behavior of geosynchronous satellites, which has been attributed to differential charging of the satellite surfaces exposed to magnetospheric electrons. Surface and bulk electric fields are calcuated at steady state in order to identify regions of high electrical stress, with emphasis on behavior near the material's edge. The model is used to study the effects of some of the experimental parameters, notably beam energy, beam angle of incidence, beam current density, material thickness and material width. Also examined are the consequences of a central gap in the material and a discontinuity in the material thickness.

  7. New Green Polymeric Composites Based on Hemp and Natural Rubber Processed by Electron Beam Irradiation

    PubMed Central

    Stelescu, Maria-Daniela; Craciun, Gabriela; Dumitrascu, Maria

    2014-01-01

    A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica). The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics. PMID:24688419

  8. New green polymeric composites based on hemp and natural rubber processed by electron beam irradiation.

    PubMed

    Stelescu, Maria-Daniela; Manaila, Elena; Craciun, Gabriela; Dumitrascu, Maria

    2014-01-01

    A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica). The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics.

  9. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source.

    PubMed

    Pikin, A; Beebe, E N; Raparia, D

    2013-03-01

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 ÷ 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 ÷ 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  10. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, A.; Beebe, E. N.; Raparia, D.

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current upmore » to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 Division-Sign 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 Division-Sign 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.« less

  11. Commissioning of the Electron-Positron Collider VEPP-2000 after the Upgrade

    NASA Astrophysics Data System (ADS)

    Shatunov, Yu.; Belikov, O.; Berkaev, D.; Gorchakov, K.; Zharinov, Yu.; Zemlyanskii, I.; Kasaev, A.; Kirpotin, A.; Koop, I.; Lysenko, A.; Motygin, S.; Perevedentsev, E.; Prosvetov, V.; Rabusov, D.; Rogovskii, Yu.; Senchenko, A.; Timoshenko, M.; Shatilov, D.; Shatunov, P.; Shvarts, D.

    2018-05-01

    The VEPP-2000 electron-positron collider has been operating at BINP since 2010. Applying the concept of round colliding beams allows us to reach the record value of the beam-beam parameter, ξ 0.12. The VEPP-2000 upgrade, including the connection to the new BINP Injection Complex, the improvement of the BEP booster, and the BEP-VEPP-2000 transfer channels for operation at 1 GeV, substantially increases the installation luminosity. Data collection is in progress.

  12. Numerical model of the plasma formation at electron beam welding

    NASA Astrophysics Data System (ADS)

    Trushnikov, D. N.; Mladenov, G. M.

    2015-01-01

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.

  13. GHz laser-free time-resolved transmission electron microscopy: A stroboscopic high-duty-cycle method

    DOE PAGES

    Qiu, Jiaqi; Zhu, Yimei; Ha, Gwanghui; ...

    2015-11-10

    In this study, a device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at >1 GHz repetition rates, as well as controllably manipulates the resulting pulses. Ultimately, it leads to negligible electron pulse phase-space degradation compared to the incomingmore » dc beam parameters. The temporal pulse length and repetition rate for the EMMP can be continuously tunable over wide ranges.« less

  14. Electron string phenomenon: physics and use

    NASA Astrophysics Data System (ADS)

    Donets, Evgeny D.

    2004-01-01

    Electron string phenomenon arises as a result of phase transition of a state of multiply reflected electron beam to this new discovered state of one component electron plasma and can be easily observed in the reflex mode of EBIS operation. The transition goes via a strong instability, which causes considerable electron energy spread, which in its turn suppresses the instability. Electron string state is a stationary state of hot pure electron plasma, which is heated by injected electron beam and cooled because of electron loses. Electron string is quiet in broad regions of experimental parameters, so that it is used for confinement and ionization of positive ions by electron impact to highly charge states similar to electron beams in EBIS. Application of electron strings instead of electron beams for ion production allows to save about 99% of electric power of electron beam and simultaneously to improve reliability of an ion source considerably. The JINR EBIS `Krion-2' in the string mode of operation is used for production of N7+, Ar16+ and Fe24+ ion beams and their acceleration to relativistic energies on the facility of the JINR super conducting one turn injection synchrotron `Nuklotron'. The tubular electron string possibly can exist and it is under study now theoretically and experiments are prepared now. Estimations show that a Tubular Electron String Ion Source (TESIS) could have up to three orders of magnitude higher ion output then a Linear one (LESIS). In frames of nuclear astrophysics electron strings can be used for research of fusion nuclear reactions at low energies in conditions when both beam and target nuclei do not carry orbital electrons. The project NARITA — Nuclear Astrophysics Researches in an Ion Trap Apparatus is proposed. Polarization effects also can be studied.

  15. Polarized electron beams elastically scattered by atoms as a tool for testing fundamental predictions of quantum mechanics.

    PubMed

    Dapor, Maurizio

    2018-03-29

    Quantum information theory deals with quantum noise in order to protect physical quantum bits (qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams elastically interacting with atomic targets, is described. Selected results of the program concerning Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the Sherman function for low kinetic energy of the incident electrons (1.5eV-350eV). It is demonstrated that the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in good agreement with experimental data down to energies smaller than a few eV.

  16. Interaction of the electron density fluctuations with electron cyclotron waves from the equatorial launcher in ITER

    NASA Astrophysics Data System (ADS)

    Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G. D.; Henderson, M.; Saibene, G.

    2018-01-01

    We present a numerical investigation of electron cyclotron beams interacting with electron density fluctuations in the ITER 15 MA H-mode scenario. In particular, here we study how the beam from the equatorial launcher, which shall be utilized to influence the sawtooth instability, is affected by the fluctuations. Moreover, we present the theory and first estimates of the power that is scattered from the injected O-mode to a secondary X-mode in the presence of the fluctuations. It is shown that for ITER parameters the scattered power stays within acceptable limits and broadening of the equatorial beams is less than those from the upper launcher.

  17. Inductive voltage adder advanced hydrodynamic radiographic technology demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen

    This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less

  18. Statistical process control for electron beam monitoring.

    PubMed

    López-Tarjuelo, Juan; Luquero-Llopis, Naika; García-Mollá, Rafael; Quirós-Higueras, Juan David; Bouché-Babiloni, Ana; Juan-Senabre, Xavier Jordi; de Marco-Blancas, Noelia; Ferrer-Albiach, Carlos; Santos-Serra, Agustín

    2015-07-01

    To assess the electron beam monitoring statistical process control (SPC) in linear accelerator (linac) daily quality control. We present a long-term record of our measurements and evaluate which SPC-led conditions are feasible for maintaining control. We retrieved our linac beam calibration, symmetry, and flatness daily records for all electron beam energies from January 2008 to December 2013, and retrospectively studied how SPC could have been applied and which of its features could be used in the future. A set of adjustment interventions designed to maintain these parameters under control was also simulated. All phase I data was under control. The dose plots were characterized by rising trends followed by steep drops caused by our attempts to re-center the linac beam calibration. Where flatness and symmetry trends were detected they were less-well defined. The process capability ratios ranged from 1.6 to 9.3 at a 2% specification level. Simulated interventions ranged from 2% to 34% of the total number of measurement sessions. We also noted that if prospective SPC had been applied it would have met quality control specifications. SPC can be used to assess the inherent variability of our electron beam monitoring system. It can also indicate whether a process is capable of maintaining electron parameters under control with respect to established specifications by using a daily checking device, but this is not practical unless a method to establish direct feedback from the device to the linac can be devised. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    NASA Astrophysics Data System (ADS)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  20. Beam dynamics in MABE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poukey, J.W.; Coleman, P.D.; Sanford, T.W.L.

    1985-10-01

    MABE is a multistage linear electron accelerator which accelerates up to nine beams in parallel. Nominal parameters per beam are 25 kA, final energy 7 MeV, and guide field 20 kG. We report recent progress via theory and simulation in understanding the beam dynamics in such a system. In particular, we emphasize our results on the radial oscillations and emittance growth for a beam passing through a series of accelerating gaps.

  1. Energy-Sensitive Ion- and Cathode-Luminescent Radiation-Beam Monitors Based on Multilayer Thin-Film Designs.

    PubMed

    Gil-Rostra, Jorge; Ferrer, Francisco J; Espinós, Juan Pedro; González-Elipe, Agustín R; Yubero, Francisco

    2017-05-17

    A multilayer luminescent design concept is presented to develop energy-sensitive radiation-beam monitors on the basis of colorimetric analysis. Each luminescent layer within the stack consists of rare-earth-doped transparent oxides of optical quality and a characteristic luminescent emission under excitation with electron or ion beams. For a given type of particle beam (electron, protons, α particles, etc.), its penetration depth and therefore its energy loss at a particular buried layer within the multilayer stack depend on the energy of the initial beam. The intensity of the luminescent response of each layer is proportional to the energy deposited by the radiation beam within the layer, so characteristic color emission will be achieved if different phosphors are considered in the layers of the luminescent stack. Phosphor doping, emission efficiency, layer thickness, and multilayer structure design are key parameters relevant to achieving a broad colorimetric response. Two case examples are designed and fabricated to illustrate the capabilities of these new types of detector to evaluate the kinetic energy of either electron beams of a few kilo-electron volts or α particles of a few mega-electron volts.

  2. Self-focusing and defocusing of Gaussian laser beams in collisional inhomogeneous plasmas with linear density and temperature ramps

    NASA Astrophysics Data System (ADS)

    Hashemzadeh, M.

    2018-01-01

    Self-focusing and defocusing of Gaussian laser beams in collisional inhomogeneous plasmas are investigated in the presence of various laser intensities and linear density and temperature ramps. Considering the ponderomotive force and using the momentum transfer and energy equations, the nonlinear electron density is derived. Taking into account the paraxial approximation and nonlinear electron density, a nonlinear differential equation, governing the focusing and defocusing of the laser beam, is obtained. Results show that in the absence of ramps the laser beam is focused between a minimum and a maximum value of laser intensity. For a certain value of laser intensity and initial electron density, the self-focusing process occurs in a temperature range which reaches its maximum at turning point temperature. However, the laser beam is converged in a narrow range for various amounts of initial electron density. It is indicated that the σ2 parameter and its sign can affect the self-focusing process for different values of laser intensity, initial temperature, and initial density. Finally, it is found that although the electron density ramp-down diverges the laser beam, electron density ramp-up improves the self-focusing process.

  3. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    NASA Astrophysics Data System (ADS)

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-01

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  4. Low emittance lattice for the storage ring of the Turkish Light Source Facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Z.; Aksoy, A.

    2015-06-01

    The TAC (Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser (IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 GeV. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated. Supported by Turkish Republic Ministry of Development (DPT2006K120470)

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuess, Peter, E-mail: Peter.kuess@meduniwien.ac.at

    Purpose: For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. Methods: The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of themore » VersaHD, the energy of FFF{sub M} (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFF{sub U} beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. Results: For the 6 MV FFF{sub M} beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFF{sub M} and FF beams, only %dd(10){sub x} and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFF{sub U} beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFF{sub M} beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR{sub 20,10} and %dd(10){sub x}. In contrast to that, the DPBQS’s two parameters of the 10 MV FFF{sub M} beam were substantially higher compared to those for the 10 MV FF beam. Conclusions: PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of 0.8% for 6 MV FF and 6 MV FFF{sub M} beams, while for 10 MV beams, they differed by 6.4%. This shows that the DPBQS can provide a differentiation of photon beam characteristics that would remain hidden by the use of a single beam quality specifier, such as %dd(10){sub x} or HVL.« less

  6. Status of Plasma Electron Hose Instability Studies in FACET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adli, Erik; /U. Oslo; England, Robert Joel

    In the FACET plasma-wakefield acceleration experiment a dense 23 GeV electron beam will interact with lithium and cesium plasmas, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons may lead to a fast growing electron hose instability. By using optics dispersion knobs to induce a controlled z-x tilt along the beam entering the plasma, we investigate the transverse behavior of the beam in the plasma as function of the tilt. We seek to quantify limits on the instability in order to further explore potential limitations on future plasma wakefield accelerators due to the electronmore » hose instability. The FACET plasma-wakefield experiment at SLAC will study beam driven plasma wakefield acceleration. A dense 23 GeV electron beam will interact with lithium or cesium plasma, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons drives the electron hose instability, as first studied by Whittum. While Ref. [2] indicates the possibility of a large instability growth rate for typical beam and plasma parameters, other studies including have shown that several physical effects may mitigate the hosing growth rate substantially. So far there has been no quantitative benchmarking of experimentally observed hosing in previous experiments. At FACET we aim to perform such benchmarking by for example inducing a controlled z-x tilt along the beamentering the plasma, and observing the transverse behavior of the beam in the plasma as function. The long-term objective of these studies is to quantify potential limitations on future plasma wakefield accelerators due to the electron hose instability.« less

  7. Study of plasma natural convection induced by electron beam in atmosphere [

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Yongfeng, E-mail: yfdeng@mail.dlut.edu.cn; Han, Xianwei; Tan, Yonghua

    2014-06-15

    Using high-energy electron beams to ionize air is an effective way to produce a large-size plasma in the atmosphere. In particular, with a steady-state high power generator, some unique phenomena can be achieved, including natural convection of the plasma. The characteristics of this convection are studied both experimentally and numerically. The results show that an asymmetrical temperature field develops with magnitudes that vary from 295 K to 389 K at a pressure of 100 Torr. Natural convection is greatly enhanced under 760 Torr. Nevertheless, plasma transport is negligible in this convection flow field and only the plasma core tends to move upward. Parameter analysismore » is performed to discern influencing factors on this phenomenon. The beam current, reflecting the Rayleigh number Ra effect, correlates with convection intensity, which indicates that energy deposition is the underlying key factor in determining such convections. Finally, natural convection is concluded to be an intrinsic property of the electron beam when focused into dense air, and can be achieved by carefully adjusting equipment operations parameters.« less

  8. A Design of Experiments Approach Defining the Relationships Between Processing and Microstructure for Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A.; Bey, Kim S.; Taminger, Karen M. B.; Hafley, Robert A.

    2004-01-01

    A study was conducted to evaluate the relative significance of input parameters on Ti- 6Al-4V deposits produced by an electron beam free form fabrication process under development at the NASA Langley Research Center. Five input parameters where chosen (beam voltage, beam current, translation speed, wire feed rate, and beam focus), and a design of experiments (DOE) approach was used to develop a set of 16 experiments to evaluate the relative importance of these parameters on the resulting deposits. Both single-bead and multi-bead stacks were fabricated using 16 combinations, and the resulting heights and widths of the stack deposits were measured. The resulting microstructures were also characterized to determine the impact of these parameters on the size of the melt pool and heat affected zone. The relative importance of each input parameter on the height and width of the multi-bead stacks will be discussed. .

  9. Enhancement of output power in a two-section periodical circular waveguide structure using magnetized plasma and a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Hasanbeigi, A.; Ashrafi, A.; Mehdian, H.

    2018-02-01

    In the present paper, the excitation of electromagnetic wave by relativistic electron beam, as a radiation source, in a two-section periodical plasma waveguide is investigated. The dispersion relation of TM wave is derived and then solved numerically. Next, the effect of plasma, as an extra controlling parameter, on this radiation source is investigated. Results show that the presence of magnetized plasma can lead to significant increase in output power and it can be an extra parameter for tuning the frequency by varying the plasma density.

  10. Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System

    NASA Astrophysics Data System (ADS)

    Louksha, O. I.; Trofimov, P. A.

    2018-04-01

    New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.

  11. Soviet research on the transport of intense relativistic electron beams through high-pressure air

    NASA Astrophysics Data System (ADS)

    Wells, Nikita

    1987-05-01

    Soviet development of intense relativistic electron beams (IREB) through background air at pressures from 1/100 Torr to atmospheric is analyzed as reflected by Soviet open literature of the last 15 years. Important Soviet findings include: (1) the formation of a plasma channel created by an IREB propagating through background air and the effect of beam parameters upon the plasma channel parameters (and vice versa); (2) determination of the background air pressure for the optimum transport of IREB in two ranges, an ion focused regime at 0.06 to 0.09 Torr and a low pressure window at 1 Torr; (3) observation of current enhancement, whereby the IREB-induced current in plasma is higher than the initial beam current; and (4) the effect of resistive hose instability on IREB propagation. This research is characterized by absence of high energy experimentation. A conclusion of the research is that, for optimum beam transport through air, it is imperative to ensure conditions that allow full neutralization of the IREB's self-fields along the entire path of the beam's transport.

  12. Generation of high power sub millimeter radiation using free electron laser

    NASA Astrophysics Data System (ADS)

    Panwar, J.; Sharma, S. C.; Malik, P.; Yadav, M.; Sharma, R.

    2018-03-01

    We have developed an analytical formalism to study the emission of high power radiation lying in the sub millimetre range. A relativistic electron beam (REB) is velocity modulated by the pondermotive force exerted by the laser beams. After passing through the drift space, the beam gets density modulated which further interacts with the strong field wiggler and acquires a transverse velocity that couples with the modulated density of the beam in the presence of ion channel which contribute to the non-linear current density which further leads to the emission of the radiation. The output radiation can be modified by changing the wiggler parameters and the energy of the electron beam. The power of the output radiation is found to increase with the modulation. The obtained radiation can be employed for various applications.

  13. Beam based measurement of beam position monitor electrode gains

    NASA Astrophysics Data System (ADS)

    Rubin, D. L.; Billing, M.; Meller, R.; Palmer, M.; Rendina, M.; Rider, N.; Sagan, D.; Shanks, J.; Strohman, C.

    2010-09-01

    Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ˜0.1%.

  14. Beam transport program for FEL project

    NASA Astrophysics Data System (ADS)

    Sugimoto, Masayoshi; Takao, Masaru

    1992-07-01

    A beam transport program is developed to design the beam transport line of the free electron laser system at JAERI and to assist the beam diagnosis. The program traces a beam matrix through the elements in the beam transport line and the accelerators. The graphical user interface is employed to access the parameters and to represent the results. The basic computational method is based on the LANL-TRACE program and it is rewritten for personal computers in Pascal.

  15. Electron-Beam-Induced Deposition as a Technique for Analysis of Precursor Molecule Diffusion Barriers and Prefactors.

    PubMed

    Cullen, Jared; Lobo, Charlene J; Ford, Michael J; Toth, Milos

    2015-09-30

    Electron-beam-induced deposition (EBID) is a direct-write chemical vapor deposition technique in which an electron beam is used for precursor dissociation. Here we show that Arrhenius analysis of the deposition rates of nanostructures grown by EBID can be used to deduce the diffusion energies and corresponding preexponential factors of EBID precursor molecules. We explain the limitations of this approach, define growth conditions needed to minimize errors, and explain why the errors increase systematically as EBID parameters diverge from ideal growth conditions. Under suitable deposition conditions, EBID can be used as a localized technique for analysis of adsorption barriers and prefactors.

  16. Acceleration of plasma electrons by intense nonrelativistic ion and electron beams propagating in background plasma due to two-stream instability

    NASA Astrophysics Data System (ADS)

    Kaganovich, Igor D.

    2015-11-01

    In this paper we study the effects of the two-stream instability on the propagation of intense nonrelativistic ion and electron beams in background plasma. Development of the two-stream instability between the beam ions and plasma electrons leads to beam breakup, a slowing down of the beam particles, acceleration of the plasma particles, and transfer of the beam energy to the plasma particles and wave excitations. Making use of the particle-in-cell codes EDIPIC and LSP, and analytic theory we have simulated the effects of the two-stream instability on beam propagation over a wide range of beam and plasma parameters. Because of the two-stream instability the plasma electrons can be accelerated to velocities as high as twice the beam velocity. The resulting return current of the accelerated electrons may completely change the structure of the beam self - magnetic field, thereby changing its effect on the beam from focusing to defocusing. Therefore, previous theories of beam self-electromagnetic fields that did not take into account the effects of the two-stream instability must be significantly modified. This effect can be observed on the National Drift Compression Experiment-II (NDCX-II) facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma. Particle-in-cell, fluid simulations, and analytical theory also reveal the rich complexity of beam- plasma interaction phenomena: intermittency and multiple regimes of the two-stream instability in dc discharges; band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma and repeated acceleration of electrons in a finite system. In collaboration with E. Tokluoglu, D. Sydorenko, E. A. Startsev, J. Carlsson, and R. C. Davidson. Research supported by the U.S. Department of Energy.

  17. Real-time measurement and monitoring of absorbed dose for electron beams

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-09-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  18. Development of plasma cathode electron guns

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  19. Electron Beam Diagnostics Of The JLAB UV FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Pavel; Benson, Stephen; Biallas, George

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A systemmore » of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.« less

  20. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scisciò, M.; Antici, P., E-mail: patrizio.antici@polytechnique.edu; INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2

    2016-03-07

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequencymore » (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.« less

  1. Beam dynamics in MABE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poukey, J.W.; Coleman, P.D.; Sanford, T.W.L.

    1985-01-01

    MABE is a multistage linear electron accelerator which accelerates up to nine beams in parallel. Nominal parameters per beam are 25 kA, final energy 7 MeV, and guide field 20 kG. We report recent progress via theory and simulation in understanding the beam dynamics in such a system. In particular, we emphasize our results on the radial oscillations and emittance growth for a beam passing through a series of accelerating gaps. 12 refs., 8 figs.

  2. Design of sub-Angstrom compact free-electron laser source

    NASA Astrophysics Data System (ADS)

    Bonifacio, Rodolfo; Fares, Hesham; Ferrario, Massimo; McNeil, Brian W. J.; Robb, Gordon R. M.

    2017-01-01

    In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated.

  3. Full Geant4 and FLUKA simulations of an e-LINAC for its use in particle detectors performance tests

    NASA Astrophysics Data System (ADS)

    Alpat, B.; Pilicer, E.; Servoli, L.; Menichelli, M.; Tucceri, P.; Italiani, M.; Buono, E.; Di Capua, F.

    2012-03-01

    In this work we present the results of full Geant4 and FLUKA simulations and comparison with dosimetry data of an electron LINAC of St. Maria Hospital located in Terni, Italy. The facility is being used primarily for radiotherapy and the goal of the present study is the detailed investigation of electron beam parameters to evaluate the possibility to use the e-LINAC (during time slots when it is not used for radiotherapy) to test the performance of detector systems, in particular those designed to operate in space. The critical beam parameters are electron energy, profile and flux available at the surface of device to be tested. The present work aims to extract these parameters from dosimetry calibration data available at the e-LINAC. The electron energy ranges from 4 MeV to 20 MeV. The dose measurements have been performed by using an Advanced Markus Chamber which has a small sensitive volume.

  4. The fundamental parameter method applied to X-ray fluorescence analysis with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Pantenburg, F. J.; Beier, T.; Hennrich, F.; Mommsen, H.

    1992-05-01

    Quantitative X-ray fluorescence analysis applying the fundamental parameter method is usually restricted to monochromatic excitation sources. It is shown here, that such analyses can be performed as well with a white synchrotron radiation spectrum. To determine absolute elemental concentration values it is necessary to know the spectral distribution of this spectrum. A newly designed and tested experimental setup, which uses the synchrotron radiation emitted from electrons in a bending magnet of ELSA (electron stretcher accelerator of the university of Bonn) is presented. The determination of the exciting spectrum, described by the given electron beam parameters, is limited due to uncertainties in the vertical electron beam size and divergence. We describe a method which allows us to determine the relative and absolute spectral distributions needed for accurate analysis. First test measurements of different alloys and standards of known composition demonstrate that it is possible to determine exact concentration values in bulk and trace element analysis.

  5. Electron beam accelerator: A new tool for environmental preservation in Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashim, Siti Aiasah; Bakar, Khomsaton Abu; Othman, Mohd Nahar

    2012-09-26

    Electron beam accelerators are widely used for industrial applications such as surface curing, crosslinking of wires and cables and sterilization/ decontamination of pharmaceutical products. The energy of the electron beam determines the type of applications. This is due to the penetration power of the electron that is limited by the energy. In the last decade, more work has been carried out to utilize the energetic electron for remediation of environmental pollution. For this purposes, 1 MeV electron beam accelerator is sufficient to treat wastewater from textile industry and flue gases from fossil fuel combustions. In Nuclear Malaysia, a variable energymore » Cockroft Walton type accelerator has been utilized to initiate investigations in these two areas. An electron beam flue gas treatment test rig was built to treat emission from diesel combustion, where it was found that using EB parameters of 1MeV and 12mA can successfully remove at least 80% of nitric oxide in the emission. Wastewater from textile industries was treated using combination of biological treatment and EB. The initial findings indicated that the quality of water had improved based on the COD{sub Cr}, BOD{sub 5} indicators.« less

  6. Electron beam accelerator: A new tool for environmental preservation in Malaysia

    NASA Astrophysics Data System (ADS)

    Hashim, Siti Aiasah; Bakar, Khomsaton Abu; Othman, Mohd Nahar

    2012-09-01

    Electron beam accelerators are widely used for industrial applications such as surface curing, crosslinking of wires and cables and sterilization/ decontamination of pharmaceutical products. The energy of the electron beam determines the type of applications. This is due to the penetration power of the electron that is limited by the energy. In the last decade, more work has been carried out to utilize the energetic electron for remediation of environmental pollution. For this purposes, 1 MeV electron beam accelerator is sufficient to treat wastewater from textile industry and flue gases from fossil fuel combustions. In Nuclear Malaysia, a variable energy Cockroft Walton type accelerator has been utilized to initiate investigations in these two areas. An electron beam flue gas treatment test rig was built to treat emission from diesel combustion, where it was found that using EB parameters of 1MeV and 12mA can successfully remove at least 80% of nitric oxide in the emission. Wastewater from textile industries was treated using combination of biological treatment and EB. The initial findings indicated that the quality of water had improved based on the CODCr, BOD5 indicators.

  7. Spatial Control of Laser Wakefield Accelerated Electron Beams

    NASA Astrophysics Data System (ADS)

    Maksimchuk, A.; Behm, K.; Zhao, T.; Joglekar, A. S.; Hussein, A.; Nees, J.; Thomas, A. G. R.; Krushelnick, K.; Elle, J.; Lucero, A.; Samarin, G. M.; Sarry, G.; Warwick, J.

    2017-10-01

    The laser wakefield experiments to study and control spatial properties of electron beams were performed using HERCULES laser at the University of Michigan at power of 100 TW. In the first experiment multi-electron beam generation was demonstrated using co-propagating, parallel laser beams with a π-phase shift mirror and showing that interaction between the wakefields can cause injection to occur for plasma and laser parameters in which a single wakefield displays no significant injection. In the second experiment a magnetic triplet quadrupole system was used to refocus and stabilize electron beams at the distance of 60 cm from the interaction region. This produced a 10-fold increase in remote gamma-ray activation of 63Cu using a lead converter. In the third experiment measurements of un-trapped electrons with high transverse momentum produce a 500 mrad (FWHM) ring. This ring is formed by electrons that receive a forward momentum boost by traversing behind the bubble and its size is inversely proportional to the plasma density. The characterization of divergence and charge of this electron ring may reveal information about the wakefield structure and trapping potential. Supported by U.S. Department of Energy and the National Nuclear Security Administration and Air Force Office of Scientific Research.

  8. Microstructural, thermal and antibacterial properties of electron beam irradiated Bombyx mori silk fibroin films

    NASA Astrophysics Data System (ADS)

    Asha, S.; Sangappa, Naik, Prashantha; Chandra, K. Sharat; Sanjeev, Ganesh

    2014-04-01

    The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size and lattice strain (g in %)) and thermal stability of the irradiated films have increased with radiation dosage. Agar diffusion method demonstrated the antibacterial activity of SF film which was increased after irradiation on both Gram-positive and Gram-negative species.

  9. Hole-cyclotron instability in semiconductor quantum plasmas

    NASA Astrophysics Data System (ADS)

    Areeb, F.; Rasheed, A.; Jamil, M.; Siddique, M.; Sumera, P.

    2018-01-01

    The excitation of electrostatic hole-cyclotron waves generated by an externally injected electron beam in semiconductor plasmas is examined using a quantum hydrodynamic model. The quantum effects such as tunneling potential, Fermi degenerate pressure, and exchange-correlation potential are taken care of. The growth rate of the wave is analyzed on varying the parameters normalized by hole-plasma frequency, like the angle θ between propagation vector and B0∥z ̂ , speed of the externally injected electron beam v0∥k , thermal temperature of the electron beam τ, external magnetic field B0∥z ̂ that modifies the hole-cyclotron frequency, and finally, the semiconductor electron number density. The instability of the hole-cyclotron wave seeks its applications in semiconductor devices.

  10. Formation of space-charge bunches in a multivelocity-electron-beam-based microwave oscillator with a cathode unshielded from the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, Yu. A.; Starodubov, A. V.; Fokin, A. S., E-mail: alexander1989fokin@mail.ru

    The influence of the magnitude and configuration of the magnetic field on the parameters of electron bunches formed in a multivelocity electron beam is analyzed. It is shown that the use of a cathode unshielded from the magnetic field and a nonuniform magnetic field increasing along the drift space enables the formation of compact electron bunches. The ratio between the current density in such bunches and the beam current density at the entrance to the drift space reaches 10{sup 6}, which results in a substantial broadening of the output microwave spectrum due to an increase in the amplitudes of themore » higher harmonics of the fundamental frequency.« less

  11. Electron acoustic solitary waves in a magnetized plasma with nonthermal electrons and an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in; University of the Western Cape, Belville

    2016-08-15

    A theoretical investigation is carried out to study the obliquely propagating electron acoustic solitary waves having nonthermal hot electrons, cold and beam electrons, and ions in a magnetized plasma. We have employed reductive perturbation theory to derive the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing the nonlinear evolution of these waves. The two-dimensional plane wave solution of KdV-ZK equation is analyzed to study the effects of nonthermal and beam electrons on the characteristics of the solitons. Theoretical results predict negative potential solitary structures. We emphasize that the inclusion of finite temperature effects reduces the soliton amplitudes and the width of the solitons increasesmore » by an increase in the obliquity of the wave propagation. The numerical analysis is presented for the parameters corresponding to the observations of “burst a” event by Viking satellite on the auroral field lines.« less

  12. Exact analytical solutions of continuity equation for electron beams precipitating in Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobranskis, R. R.; Zharkova, V. V., E-mail: valentina.zharkova@northumbria.ac.uk

    2014-06-10

    The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained bymore » using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.« less

  13. Characterization of the Li beam probe with a beam profile monitor on JETa)

    NASA Astrophysics Data System (ADS)

    Nedzelskiy, I. S.; Korotkov, A.; Brix, M.; Morgan, P.; Vince, J.; Jet Efda Contributors

    2010-10-01

    The lithium beam probe (LBP) is widely used for measurements of the electron density in the edge plasma of magnetically confined fusion experiments. The quality of LBP data strongly depends on the stability and profile shape of the beam. The main beam parameters are as follows: beam energy, beam intensity, beam profile, beam divergence, and the neutralization efficiency. For improved monitoring of the beam parameters, a beam profile monitor (BPM) from the National Electrostatics Corporation (NEC) has been installed in the Li beam line at JET. In the NEC BPM, a single grounded wire formed into a 45° segment of a helix is rotated by a motor about the axis of the helix. During each full revolution, the wire sweeps twice across the beam to give X and Y profiles. In this paper, we will describe the properties of the JET Li beam as measured with the BPM and demonstrate that it facilitates rapid optimization of the gun performance.

  14. Optimum performance of electron beam pumped GaAs and GaN

    NASA Astrophysics Data System (ADS)

    Afify, M. S.; Moslem, W. M.; Hassouba, M. A.; Abu-El Hassan, A.

    2018-05-01

    This paper introduces a physical solution in order to overcome the damage to semiconductors, due to increasing temperature during the pumping process. For this purpose, we use quantum hydrodynamic fluid equations, including different quantum effects. This study concludes that nonlinear acoustic waves, in the form of soliton and shock-like (double layer) pulses, can propagate depending on the electron beam temperature and the streaming speed. Therefore, one can precisely tune the beam parameters in order to avoid such unfavorable noises that may lead to defects in semiconductors.

  15. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, K. K.; Tsai, H. -E.; Barber, S. K.

    Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less

  16. Diagnostic for a high-repetition rate electron photo-gun and first measurements

    NASA Astrophysics Data System (ADS)

    Filippetto, D.; Doolittle, L.; Huang, G.; Norum, E.; Portmann, G.; Qian, H.; Sannibale, F.

    2015-05-01

    The APEX electron source at LBNL combines the high-repetition-rate with the high beam brightness typical of photoguns, delivering low emittance electron pulses at MHz frequency. Proving the high beam quality of the beam is an essential step for the success of the experiment, opening the doors of the high average power to brightness-hungry applications as X-Ray FELs, MHz ultrafast electron diffraction etc.. As first step, a complete characterization of the beam parameters is foreseen at the Gun beam energy of 750 keV. Diagnostics for low and high current measurements have been installed and tested, and measurements of cathode lifetime and thermal emittance in a RF environment with mA current performed. The recent installation of a double slit system, a deflecting cavity and a high precision spectrometer, allow the exploration of the full 6D phase space. Here we discuss the present layout of the machine and future upgrades, showing the latest results at low and high repetition rate, together with the tools and techniques used.

  17. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector

    DOE PAGES

    Swanson, K. K.; Tsai, H. -E.; Barber, S. K.; ...

    2017-05-30

    Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less

  18. Electron Beam/Optical Hybrid Lithography For The Production Of Gallium Arsenide Monolithic Microwave Integrated Circuits (Mimics)

    NASA Astrophysics Data System (ADS)

    Nagarajan, Rao M.; Rask, Steven D.

    1988-06-01

    A hybrid lithography technique is described in which selected levels are fabricated by high resolution direct write electron beam lithography and all other levels are fabricated optically. This technique permits subhalf micron geometries and the site-by-site alignment for each field written by electron beam lithography while still maintaining the high throughput possible with optical lithography. The goal is to improve throughput and reduce overall cost of fabricating MIMIC GaAS chips without compromising device performance. The lithography equipment used for these experiments is the Cambridge Electron beam vector scan system EBMF 6.4 capable of achieving ultra high current densities with a beam of circular cross section and a gaussian intensity profile operated at 20 kev. The optical aligner is a Karl Suss Contact aligner. The flexibility of the Cambridge electron beam system is matched to the less flexible Karl Suss contact aligner. The lithography related factors, such as image placement, exposure and process related analyses, which influence overlay, pattern quality and performance, are discussed. A process chip containing 3.2768mm fields in an eleven by eleven array was used for alignment evaluation on a 3" semi-insulating GaAS wafer. Each test chip contained five optical verniers and four Prometrix registration marks per field along with metal bumps for alignment marks. The process parameters for these chips are identical to those of HEMT/epi-MESFET ohmic contact and gate layer processes. These layers were used to evaluate the overlay accuracy because of their critical alignment and dimensional control requirements. Two cases were examined: (1) Electron beam written gate layers aligned to optically imaged ohmic contact layers and (2) Electron beam written gate layers aligned to electron beam written ohmic contact layers. The effect of substrate charging by the electron beam is also investigated. The resulting peak overlay error accuracies are: (1) Electron beam to optical with t 0.2μm (2 sigma) and (2) Electron beam to electron beam with f 0.lμm (2 sigma). These results suggest that the electron beam/optical hybrid lithography techniques could be used for MIMIC volume production as alignment tolerances required by GaAS chips are met in both cases. These results are discussed in detail.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpelli, Andrea

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation,more » able to measure intensity, position and transverse cross-section beam.« less

  20. Numerical simulation of electrons dynamics in a microtron on 6 - 10 MeV

    NASA Astrophysics Data System (ADS)

    Bashmakov, Y. A.; Dyubkov, V. S.; Lozeev, Y. Y.

    2017-12-01

    Electron dynamics in 6.5 MeV classic microtron of the Lebedev Physics Institute (LPI) is investigated by means of numerical methods. Particular emphasis is placed on the formation mechanism of electron bunches at the first circular orbits. An effect of microtron main parameters such as accelerating RF field amplitude, DC magnetic field, as well as a geometry and a position of a thermal emitter on characteristics of electron beam extracted from the microtron are studied. In the space of mentioned parameters a region corresponding an optimal microtron operation mode is found. It is noted that the unique geometric and energy characteristics of accelerated beam makes use of microtron attractive not only as injector into a synchrotron, but also as a driver in experiments on generation of coherent terahertz electromagnetic radiation.

  1. Numerical model of the plasma formation at electron beam welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru; The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm 614990; Mladenov, G. M., E-mail: gmmladenov@abv.bg

    2015-01-07

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondarymore » and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.« less

  2. Controlling hollow relativistic electron beam orbits with an inductive current divider

    DOE PAGES

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; ...

    2015-02-06

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I 1), while the outer conductor carries the remainder (I 2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I 2-I 1), while the average force on the envelope (the beam width) is proportional to the beam current I b = (I 2more » + I 1). The values of I 1 and I 2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less

  3. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less

  4. 3D theory of a high-gain free-electron laser based on a transverse gradient undulator

    NASA Astrophysics Data System (ADS)

    Baxevanis, Panagiotis; Ding, Yuantao; Huang, Zhirong; Ruth, Ronald

    2014-02-01

    The performance of a free-electron laser (FEL) depends significantly on the various parameters of the driving electron beam. In particular, a large energy spread in the beam results in a substantial reduction of the FEL gain, an effect which is especially relevant when one considers FELs driven by plasma accelerators or ultimate storage rings. For such cases, one possible solution is to use a transverse gradient undulator (TGU). In this concept, the energy spread problem is mitigated by properly dispersing the electron beam and introducing a linear, transverse field dependence in the undulator. This paper presents a self-consistent theoretical analysis of a TGU-based, high-gain FEL which takes into account three-dimensional (3D) effects, including beam size variations along the undulator. The results of our theory compare favorably with simulation and are used in fast optimization studies of various x-ray FEL configurations.

  5. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    DOE PAGES

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; ...

    2018-04-13

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less

  6. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim

    2018-04-01

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.

  7. Ion Temperature Measurements in an electron beam ion trap (EBIT)

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Decaux, V.; Widmann, K.

    1997-11-01

    An electron beam ion trap consists of a Penning-type cylindrical trap traversed by a high-energy (<= 200 keV), high-density (Ne <= 10^13 cm-3) electron beam. Ions are trapped by the space charge potential of the electron beam, a static potential on the end electrodes, and a 3-T axial magnetic field [1]. The ions are heated by the electron beam and leave the trap once their kinetic energy suffices to overcome the potential barriers. Using high-resolution x-ray spectroscopy, we have made systematic measurements of the temperature of Ti^20+ and Cs^45+ ions in the trap [2]. The dependence of the ion temperature on operating parameters, such as trapping potential, beam current, and neutral gas pressure, will be presented. Temperatures as low as 15.4 ± 4.4 eV and as high as 2 keV were observed. *Work performed under the auspices of the U.S.D.o.E. by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. [1] M. Levine et al., Phys. Scripta T22, 157 (1989). [2]P. Beiersdorfer et al., PRL 77, 5356 (1996); P. Beiersdorfer, in AIP Conf. Proc. No. 389, p. 121 (1997).

  8. Electron Beam Lithography Double Step Exposure Technique for Fabrication of Mushroom-Like Profile in Bilayer Resist System

    NASA Astrophysics Data System (ADS)

    Kornelia, Indykiewicz; Bogdan, Paszkiewicz; Tomasz, Szymański; Regina, Paszkiewicz

    2015-01-01

    The Hi/Lo bilayer resist system exposure in e-beam lithography (EBL) process, intended for mushroom-like profile fabrication, was studied. Different exposure parameters and theirs influence on the resist layers were simulated in CASINO software and the obtained results were compared with the experimental data. The AFM technique was used for the estimation of the e-beam penetration depth in the resist stack. Performed numerical and experimental results allow us to establish the useful ranges of the exposure parameters.

  9. Two-dimensiosnal electron beam charging model for polymer films. M.S. Thesis; [spacecraft charging, geosynchronous satellites

    NASA Technical Reports Server (NTRS)

    Reeves, R. D.; Balmain, K. G.

    1981-01-01

    A two dimensional model was developed to describe the charging of thin polymer films exposed to a uniform mon-energetic electron beam. The study was motivated by observed anomalous behavior of geosynchronous satellites which was attributed to electrical discharges associated with the differential charging of satellite surfaces of magnetospheric electrons. Electric fields both internal and external to the irradiated specimen were calculated at steady state in order to identify regions of high electrical stress. Particular emphasis was placed on evaluating the charging characteristics near the material's edge. The model was used to identify and quantify the effects of some of the experimental parameters notably: beam energy; beam angle of incidence; beam current density; material thickness; and material width. Simulations of the following situations were also conducted: positive or negative precharging over part of the surface; a central gap in the material; and a discontinuity in the material's thickness.

  10. Electron Beam Misalignment Study of MIG for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Singh, Udaybir; Kumar, Nitin; Sahu, Naveen; Shekhawat, Narendra; Srivastava, Deepak; Alaria, M. K.; Bera, A.; Jain, P. K.; Sinha, A. K.

    2017-10-01

    This paper presents the electron beam misalignment study with respect to cathode position and cathode magnetic field of 42 GHz, 200 kW gyrotron. The performance of gyrotron is affected with the misalignment of cathode position. The simulation results confirm the tolerance of cathode misalignment with respect to the design parameters such as the transverse-to-axial velocity ratio, the maximum transverse velocity spread, etc.

  11. SU-F-T-68: Characterizes of Microdetectors in Electron Beam Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, I; Andersen, A; Akino, Y

    Purpose: Electron beam dosimetry requires high resolution data due to finite range that can be accomplished with small volume detectors. The small-field used in advance technologies in photon beam has created a market for microdetectors, however characteristics are significantly variable in photon beams and relatively unknown in electron beam that is investigated in this study. Methods: Among nearly 2 dozen microdetectors that have been investigated in small fields of photon beam, two popular detectors (microDiamond 60019 (PTW)) and W1 plastic scintillator detector (Standard Imaging)) that are tissue equivalent and have very small sensitive volume are selected. Electron beams from Varianmore » linear accelerators were used to investigate dose linearity dose rate dependence, energy dependence, depth dose and profiles in a reference condition in a water phantom. For W1 that has its own Supermax electrometer point by point measurements were performed. For microDiamond, a PTW-scanning tank was used for both scanning and point dose measurements. Results: W1 detector showed excellent dose linearity (r{sup 2} =1.0) from 5–500 MU either with variation of dose rate or beam energy. Similar findings were also observed for microdiamond with r{sup 2}=1.0. Percent variations in dose/MU for W1 and microDiamond were 0.2–1.1% and 0.4–1.2%, respectively among dose rate and beam energy. This variation was random for microDiamond, whereas it decreased with beam energy and dose rate for W1. The depth dose and profiles were within ±1 mm for both detectors. Both detectors did not show any energy dependence in electron beams. Conclusion: Both microDiamond and W1 detectors provided superior characteristics of beam parameters in electron beam including dose, dose rate linearity and energy independence. Both can be used in electron beam except W1 require point by point measurements and microdiamond requires 1500 MU for initial quenching.« less

  12. Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V Alloy

    PubMed Central

    Pushilina, Natalia; Syrtanov, Maxim; Murashkina, Tatyana; Kudiiarov, Viktor; Lider, Andrey; Koptyug, Andrey

    2018-01-01

    Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition αH + βH→βH. PMID:29747471

  13. Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V Alloy.

    PubMed

    Pushilina, Natalia; Syrtanov, Maxim; Kashkarov, Egor; Murashkina, Tatyana; Kudiiarov, Viktor; Laptev, Roman; Lider, Andrey; Koptyug, Andrey

    2018-05-10

    Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition α H + β H →β H .

  14. Stabilization of beam-weibel instability by equilibrium density ripples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, S. K., E-mail: nishfeb@gmail.com; Kaw, Predhiman; Das, A.

    In this paper, we present an approach to achieve suppression/complete stabilization of the transverse electromagnetic beam Weibel instability in counter streaming electron beams by modifying the background plasma with an equilibrium density ripple, shorter than the skin depth; this weakening is more pronounced when thermal effects are included. On the basis of a linear two stream fluid model, it is shown that the growth rate of transverse electromagnetic instabilities can be reduced to zero value provided certain threshold values for ripple parameters are exceeded. We point out the relevance of the work to recent experimental investigations on sustained (long length)more » collimation of fast electron beams and integral beam transport for laser induced fast ignition schemes, where beam divergence is suppressed with the assistance of carbon nano-tubes.« less

  15. Surface hardening of 30CrMnSiA steel using continuous electron beam

    NASA Astrophysics Data System (ADS)

    Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng

    2017-11-01

    30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.

  16. Numerical Simulation of a Double-anode Magnetron Injection Gun for 110 GHz, 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, Ashok K.

    2010-07-01

    A 40 A double-anode magnetron injection gun for a 1 MW, 110 GHz gyrotron has been designed. The preliminary design has been obtained by using some trade-off equations. The electron beam analysis has been performed by using the commercially available code EGUN and the in-house developed code MIGANS. The operating mode of the gyrotron is TE22,6 and it is operated in the fundamental harmonic. The electron beam with a low transverse velocity spread ( δ {β_{ bot max }} = 2.26% ) and the transverse-to-axial velocity ratio of the electron beam (α) = 1.37 is obtained. The simulated results of the MIG obtained with the EGUN code have been validated with another trajectory code TRAK. The results on the design output parameters obtained by both the codes are in good agreement. The sensitivity analysis has been carried out by changing the different gun parameters to decide the fabrication tolerance.

  17. Excitation of Plasma Waves in Aurora by Electron Beams

    NASA Technical Reports Server (NTRS)

    daSilva, C. E.; Vinas, A. F.; deAssis, A. S.; deAzevedo, C. A.

    1996-01-01

    In this paper, we study numerically the excitation of plasma waves by electron beams, in the auroral region above 2000 km of altitude. We have solved the fully kinetic dispersion relation, using numerical method and found the real frequency and the growth rate of the plasma wave modes. We have examined the instability properties of low-frequency waves such as the Electromagnetic Ion Cyclotron (EMIC) wave as well as Lower-Hybrid (LH) wave in the range of high-frequency. In all cases, the source of free energy are electron beams propagating parallel to the geomagnetic field. We present some features of the growth rate modes, when the cold plasma parameters are changed, such as background electrons and ions species (H(+) and O(+)) temperature, density or the electron beam density and/or drift velocity. These results can be used in a test-particle simulation code, to investigate the ion acceleration and their implication in the auroral acceleration processes, by wave-particle interaction.

  18. Enhanced production of ECR plasma by using pulse mode microwaves on a large bore ECRIS with permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yushi; Kiriyama, Ryutaro; Takenaka, Tomoya

    2012-11-06

    In order to enhance the efficiency of an electron cyclotron resonance (ECR) plasma for a broad and dense ion beam source at low pressure, the magnetic field configuration is constructed by all permanent magnets. By using the pulse mode, we aim at the generation of plasma with parameters that cannot be achieved in the CW mode at microwave frequencies of 11-13GHz, under the constraint of the same average incident microwave powers. It is found that the total beam currents are increased by the pulse mode operation compared with the case of the CW mode. According to probe measurements of themore » ECR plasma, it is found that the electron density in the pulse mode is larger than that in the CW mode, while the electron temperatures in the pulse mode are lower than that in the CW mode. These results are discussed from the viewpoint of relaxation times obtained on plasma parameters and ECR efficiency. The cause of the beam current increment and operational windows spread due to the pulse mode are also discussed on these parameters suitable to production of molecular/cluster ions.« less

  19. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  20. Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

    PubMed Central

    Bittencourt, Carla; Bals, Sara; Van Tendeloo, Gustaaf

    2013-01-01

    Summary Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature. PMID:23399584

  1. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators.

    PubMed

    Silva, T F; Bonini, A L; Lima, R R; Maidana, N L; Malafronte, A A; Pascholati, P R; Vanin, V R; Martins, M N

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  2. Fractal model of polarization switching kinetics in ferroelectrics under nonequilibrium conditions of electron irradiation

    NASA Astrophysics Data System (ADS)

    Maslovskaya, A. G.; Barabash, T. K.

    2018-03-01

    The paper presents the results of the fractal and multifractal analysis of polarization switching current in ferroelectrics under electron irradiation, which allows statistical memory effects to be estimated at dynamics of domain structure. The mathematical model of formation of electron beam-induced polarization current in ferroelectrics was suggested taking into account the fractal nature of domain structure dynamics. In order to realize the model the computational scheme was constructed using the numerical solution approximation of fractional differential equation. Evidences of electron beam-induced polarization switching process in ferroelectrics were specified at a variation of control model parameters.

  3. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  4. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asokakumar, P.P.V.; Lynn, K.G.

    1993-04-06

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

  5. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    DOE PAGES

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; ...

    2017-12-27

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  6. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  7. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Sasorov, P. V.; Gasilov, V. A.; Barber, S. K.; Bulanov, S. S.; Gonsalves, A. J.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.; Kando, M.; Bulanov, S. V.

    2017-12-01

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique, is proposed. This method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus on the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. Large aspect ratio rectangular capillaries might be used to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  8. Self-excitation of microwave oscillations in plasma-assisted slow-wave oscillators by an electron beam with a movable focus

    NASA Astrophysics Data System (ADS)

    Bliokh, Yu. P.; Nusinovich, G. S.; Shkvarunets, A. G.; Carmel, Y.

    2004-10-01

    Plasma-assisted slow-wave oscillators (pasotrons) operate without external magnetic fields, which makes these devices quite compact and lightweight. Beam focusing in pasotrons is provided by ions, which appear in the device due to the impact ionization of a neutral gas by beam electrons. Typically, the ionization time is on the order of the rise time of the beam current. This means that, during the rise of the current, beam focusing by ions becomes stronger. Correspondingly, a beam of electrons, which was initially diverging radially due to the self-electric field, starts to be focused by ions, and this focus moves towards the gun as the ion density increases. This feature makes the self-excitation of electromagnetic (em) oscillations in pasotrons quite different from practically all other microwave sources where em oscillations are excited by a stationary electron beam. The process of self-excitation of em oscillations has been studied both theoretically and experimentally. It is shown that in pasotrons, during the beam current rise the amount of current entering the interaction space and the beam coupling to the em field vary. As a result, the self-excitation can proceed faster than in conventional microwave sources with similar operating parameters such as the operating frequency, cavity quality-factor and the beam current and voltage.

  9. Microstructural, thermal and antibacterial properties of electron beam irradiated Bombyx mori silk fibroin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asha, S.; Sanjeev, Ganesh, E-mail: ganeshsanjeev@rediffmail.com; Sangappa

    The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size and lattice strain (g in %)) and thermal stability of the irradiated films have increased with radiation dosage. Agar diffusion method demonstrated themore » antibacterial activity of SF film which was increased after irradiation on both Gram-positive and Gram-negative species.« less

  10. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    DOE PAGES

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; ...

    2016-04-26

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less

  11. Effect of Electron Beam Freeform Fabrication (EBF3) Processing Parameters on Composition of Ti-6-4

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Taminger, Karen; Schuszler, A. Bud, II; Sankaran, Sankara; Ehlers, Helen; Nasserrafi, Rahbar; Woods, Bryan

    2007-01-01

    The Electron Beam Freeform Fabrication (EBF3) process developed at NASA Langley Research Center was evaluated using a design of experiments approach to determine the effect of processing parameters on the composition and geometry of Ti-6-4 deposits. The effects of three processing parameters: beam power, translation speed, and wire feed rate, were investigated by varying one while keeping the remaining parameters constant. A three-factorial, three-level, fully balanced mutually orthogonal array (L27) design of experiments approach was used to examine the effects of low, medium, and high settings for the processing parameters on the chemistry, geometry, and quality of the resulting deposits. Single bead high deposits were fabricated and evaluated for 27 experimental conditions. Loss of aluminum in Ti-6-4 was observed in EBF3 processing due to selective vaporization of the aluminum from the sustained molten pool in the vacuum environment; therefore, the chemistries of the deposits were measured and compared with the composition of the initial wire and base plate to determine if the loss of aluminum could be minimized through careful selection of processing parameters. The influence of processing parameters and coupling between these parameters on bulk composition, measured by Direct Current Plasma (DCP), local microchemistries determined by Wavelength Dispersive Spectrometry (WDS), and deposit geometry will also be discussed.

  12. Simulation of plasma loading of high-pressure RF cavities

    NASA Astrophysics Data System (ADS)

    Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B.

    2018-01-01

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.

  13. An overview of beam diagnostic and control systems for 50 MeV AREAL Linac

    NASA Astrophysics Data System (ADS)

    Sargsyan, A. A.; Amatuni, G. A.; Sahakyan, V. V.; Zanyan, G. S.; Martirosyan, N. W.; Vardanyan, V. V.; Grigoryan, B. A.

    2017-03-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is an electron linear accelerator project with a laser driven RF gun being constructed at CANDLE Synchrotron Research Institute. After the successful operation of the gun section at 5 MeV, a program of facility energy enhancement up to 50 MeV is launched. In this paper the current status of existing diagnostic and control systems, as well as the results of electron beam parameter measurements are presented. The approaches of intended diagnostic and control systems for the upgrade program are also described.

  14. Electron acceleration by a tightly focused Hermite-Gaussian beam: higher-order corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Zhiguo; Institute of Laser Physics and Chemistry, Sichuan University, Chengdu 610064; Yang Dangxiao

    2008-03-15

    Taking the TEM{sub 1,0}-mode Hermite-Gaussian (H-G) beam as a numerical calculation example, and based on the method of the perturbation series expansion, the higher-order field corrections of H-G beams are derived and used to study the electron acceleration by a tightly focused H-G beam in vacuum. For the case of the off-axis injection the field corrections to the terms of order f{sup 3} (f=1/kw{sub 0}, k and w{sub 0} being the wavenumber and waist width, respectively) are considered, and for the case of the on-axis injection the contributions of the terms of higher orders are negligible. By a suitable optimizationmore » of injection parameters the energy gain in the giga-electron-volt regime can be achieved.« less

  15. ELF wave production by an electron beam emitting rocket system and its suppression on auroral field lines - Evidence for Alfven and drift waves

    NASA Astrophysics Data System (ADS)

    Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.

    1985-07-01

    Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.

  16. Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.

    2018-04-01

    We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.

  17. Monolithic millimeter-wave diode array beam controllers: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.

    1992-01-01

    In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, D. T.; Maximov, A. V.; Short, R. W.

    The fraction of laser energy converted into hot electrons by the two-plasmon-decay instability is found to have different overlapped intensity thresholds for various configurations on the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997); J. H. Kelly et al., J. Phys. IV 133, 75 (2006)]. A factor-of-2 difference in the overlapped intensity threshold is observed between two- and four-beam configurations. The overlapped intensity threshold increases by a factor of 2 between the 4- and 18-beam configurations and by a factor of 3 between the 4- and 60-beam configurations. This is explained by a linear common-wavemore » model where multiple laser beams drive a common electron-plasma wave in a wavevector region that bisects the laser beams (resonant common-wave region in k-space). These experimental results indicate that the hot-electron threshold depends on the hydrodynamic parameters at the quarter-critical density surface, the configuration of the laser beams, and the sum of the intensity of the beams that share the same angle with the common-wave vector.« less

  19. Control of Space-Based Electron Beam Free Form Fabrication

    NASA Technical Reports Server (NTRS)

    Seifzer. W. J.; Taminger, K. M.

    2007-01-01

    Engineering a closed-loop control system for an electron beam welder for space-based additive manufacturing is challenging. For earth and space based applications, components must work in a vacuum and optical components become occluded with metal vapor deposition. For extraterrestrial applications added components increase launch weight, increase complexity, and increase space flight certification efforts. Here we present a software tool that closely couples path planning and E-beam parameter controls into the build process to increase flexibility. In an environment where data collection hinders real-time control, another approach is considered that will still yield a high quality build.

  20. Magnetron sputtering system for coatings deposition with activation of working gas mixture by low-energy high-current electron beam

    NASA Astrophysics Data System (ADS)

    Gavrilov, N. V.; Kamenetskikh, A. S.; Men'shakov, A. I.; Bureyev, O. A.

    2015-11-01

    For the purposes of efficient decomposition and ionization of the gaseous mixtures in a system for coatings deposition using reactive magnetron sputtering, a low-energy (100-200 eV) high-current electron beam is generated by a grid-stabilized plasma electron source. The electron source utilizes both continuous (up to 20 A) and pulse-periodic mode of discharge with a self-heated hollow cathode (10-100 A; 0.2 ms; 10-1000 Hz). The conditions for initiation and stable burning of the high-current pulse discharge are studied along with the stable generation of a low-energy electron beam within the gas pressure range of 0.01 - 1 Pa. It is shown that the use of the electron beam with controllable parameters results in reduction of the threshold values both for the pressure of gaseous mixture and for the fluxes of molecular gases. Using such a beam also provides a wide range (0.1-10) of the flux density ratios of ions and sputtered atoms over the coating surface, enables an increase in the maximum pulse density of ion current from plasma up to 0.1 A, ensures an excellent adhesion, optimizes the coating structure, and imparts improved properties to the superhard nanocomposite coatings of (Ti,Al)N/a-Si3N4 and TiC/-a-C:H. Mass-spectrometric measurements of the beam-generated plasma composition proved to demonstrate a twofold increase in the average concentration of N+ ions in the Ar-N2 plasma generated by the high-current (100 A) pulsed electron beam, as compared to the dc electron beam.

  1. Controlling hollow relativistic electron beam orbits with an inductive current divider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.

    2015-02-15

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). Themore » values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less

  2. Generation of a pulsed low-energy electron beam using the channel spark device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgarhy, M. A. I., E-mail: elgarhy@azhar.edu.eg; Hassaballa, S. E.; Rashed, U. M.

    2015-12-15

    For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance,more » while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.« less

  3. A review of studies on ion thruster beam and charge-exchange plasmas

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1982-01-01

    Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.

  4. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  5. Evolution and Control of 2219 Aluminum Microstructural Features Through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  6. A reticle retrofit and dosimetric consideration for a linear accelerator.

    PubMed

    Krithivas, V

    1996-01-01

    An imperfect reticle system in an accelerator causes uncertainties in source-skin distance (SSD), off-axis distance (OAD), isocenter, and so forth. A reticle was designed and fabricated, and its implications on x-ray and electron beam dosimetry were investigated. A new reticle frame was dimensioned to fit snugly in the accelerator. The frame was fabricated to carry a pair of adjustable cross wires and to allow the machine operation in the photon and electron modes. The impact of the cross wires on 6 MV photon and 5-10 MeV electron beam parameters such as dose rate (Gy/monitor unit), beam uniformity, surface dose, and so forth, were studied using suitable ion chambers and phantoms. The retrofitted system offered long-term mechanical stability leading to precise SSD, OAD, and isocenter measurements. Changes introduced by the cross wires on the 6 MV photon and 5-10 MeV electron beams are presented. Long-term stability of a reticle in an accelerator is important for an accurate patient setup and for making reliable dosimetric measurements. Beam characteristrics have to be studied whenever modifications on a reticle system are made.

  7. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko,V.; Yakimenko, V.

    We propose undertaking a demonstration experiment on suppressing spontaneous undulator radiation from an electron beam at BNL's Accelerator Test Facility (ATF). We describe the method, the proposed layout, and a possible schedule. There are several advantages in strongly suppressing shot noise in the electron beam, and the corresponding spontaneous radiation. The self-amplified spontaneous (SASE) emission originating from shot noise in the electron beam is the main source of noise in high-gain FEL amplifiers. It may negatively affect several HG FEL applications ranging from single- to multi-stage HGHG FELs. SASE saturation also imposes a fundamental hard limit on the gain ofmore » an FEL amplifier in a coherent electron-cooling scheme. A novel active method for suppressing shot noise in relativistic electron beams by many orders-of-magnitude was recently proposed. While theoretically such strong suppression appears feasible, the performance and applicability of this novel method must be evaluated experimentally. Several practical questions about the proposed noise suppressor, such as 3D effects and/or sensitivity to the e-beam parameters also require experimental clarification. To do this, we propose here a proof-of-principle experiment using elements of the VISA FEL at BNL's Accelerator Test Facility.« less

  9. Simulation of plasma loading of high-pressure RF cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K.; Samulyak, R.; Yonehara, K.

    2018-01-11

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have also been performed in the range of parameters typical for practical muon cooling channels.

  10. Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms.

    PubMed

    Karlovets, Dmitry V; Serbo, Valeriy G

    2017-10-27

    Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.

  11. Frontiers of beam diagnostics in plasma accelerators: Measuring the ultra-fast and ultra-cold

    NASA Astrophysics Data System (ADS)

    Cianchi, A.; Anania, M. P.; Bisesto, F.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Giribono, A.; Marocchino, A.; Pompili, R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Mostacci, A.; Bacci, A.; Rossi, A. R.; Serafini, L.; Zigler, A.

    2018-05-01

    Advanced diagnostics are essential tools in the development of plasma-based accelerators. The accurate measurement of the quality of beams at the exit of the plasma channel is crucial to optimize the parameters of the plasma accelerator. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement, which is particularly complex due to large energy spread and divergence of the emerging beams, and on femtosecond bunch length measurements.

  12. Generation of 300 MeV Quasi-Monochromatic Electron Beams from Laser Wakefield and Initiation of Photonuclear Reactions

    NASA Astrophysics Data System (ADS)

    Maksimchuk, A.; Beene, J. R.

    2005-10-01

    In the interaction of 30 fs, 40 TW Ti:sapphire Hercules laser at the University of Michigan, which is focused to the intensity of 10^19 W/cm^2 onto a supersonic He gas jet with electron density close to the resonant density, we observed quasi-monoenergetic electron beams with energy up to 300 MeV and angular divergence of about 10 mrad. The results on characterization of relativistic electron beam in terms of energy spread, its charge, divergence and pointing stability will be presented. 2D PIC simulations performed for the parameters close to the experimental conditions show the evolution of the laser pulse in plasma, electron injection, and the specifics of electron acceleration observed in experiments. Resulted relativistic electron beams have been used to perform gamma-neutron activation of ^12C and ^63Cu and photo-fission of ^238U. We demonstrated that approximately 10^6 reaction per shot has been produced in each case. This work was supported by the NSF through the Physics Frontier Center FOCUS. JRB, DRS, DWS, and CRV acknowledge support by the DOE under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  13. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis

    PubMed Central

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-01-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861

  14. Ion thruster performance model

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.

  15. Ion-acoustic and electron-acoustic type nonlinear waves in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Volosevich, A.-V.; Meister, C.-V.

    2003-04-01

    In the present work, two three-dimensional nonlinear theoretical models of electrostatic solitary waves are investigated within the frame of magnetohydrodynamics. Both times, a multi-component plasma is considered, which consists of hot electrons with a rather flexible distribution function, hot ions with Boltzmann-type distribution, and (negatively as well as positively charged) dust. Additionally, cold ion beams are taken into account in the model to study ion-acoustic structures (IAS), and cold electron beams are included into the model to investigate electron-acoustic structures (EAS). The numerical results of the considered theoretical models allow to make the following conclusions: 1) Electrostatic structures with negative potential (of rarefaction type) are formed both in the IAS model and in the EAS model, but structures with negative potential (of compressional type) are formed in the IAS model only. 2) The intervals of various plasma parameters (velocities of ion and electron beams, temperatures, densities of the plasma components, ions' masses), for which the existence of IAS and EAS solitary waves and structures is possible, are calculated. 3) Further, the parameters of the electrostatic structures (wave amplitudes, scales along and perpendicular to the magnetic field, velocities) are estimated. 4) The application of the present numerical simulation for multi-component plasmas to various astrophysical systems under different physical conditions is discussed.

  16. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Paul, V.; Saroja, S.; Albert, S.K.

    This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering processmore » has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.« less

  17. Measurements of charge state breeding efficiency at BNL test EBIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondrashev, S.; Alessi, J.; Beebe, E.N.

    Charge breeding of singly charged ions is required to efficiently accelerate rare isotope ion beams for nuclear and astrophysics experiments, and to enhance the accuracy of low-energy Penning trap-assisted spectroscopy. An efficient charge breeder for the Californium Rare Isotope Breeder Upgrade (CARIBU) to the ANL Tandem Linear Accelerator System (ATLAS) facility is being developed using the BNL Test Electron Beam Ion Source (Test EBIS) as a prototype. Parameters of the CARIBU EBIS charge breeder are similar to those of the BNL Test EBIS except the electron beam current will be adjustable in the range from 1 to 2 {angstrom}. Themore » electron beam current density in the CARIBU EBIS trap will be significantly higher than in existing operational charge state breeders based on the EBIS concept. The charge state breeding efficiency is expected to be about 25% for the isotope ions extracted from the CARIBU. For the success of our EBIS project, it is essential to demonstrate high breeding efficiency at the BNL Test EBIS tuned to the regime close to the parameters of the CARIBU EBIS at ANL. The breeding efficiency optimization and measurements have been successfully carried out using a Cs{sup +} surface ionization ion source for externally pulsed injection into the BNL Test EBIS. A Cs{sup +} ion beam with a total number of ions of 5 x 10{sup 8} and optimized pulse length of 70 {mu}s has been injected into the Test EBIS and charge-bred for 5.3 ms for two different electron beam currents 1 and 1.5 {angstrom}. In these experiments we have achieved 70% injection/extraction efficiency and breeding efficiency into the most abundant charge state 17%.« less

  18. A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector.

    PubMed

    Asuni, G; Jensen, J M; McCurdy, B M C

    2011-02-21

    A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle(3) dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the contaminant electron source model of the Eclipse AAA dose algorithm. The off-axis coefficient in the Pinnacle(3) dose calculation algorithm decreases in the presence of TRD compared to without the device. The electron model parameters were modified to reflect the increase in electron contamination with the TRD, a necessary step for accurate beam modeling when using the device.

  19. End-boundary sheath potential, electron and ion energy distribution in the low-pressure non-ambipolar electron plasma

    NASA Astrophysics Data System (ADS)

    Chen, Lee; Chen, Zhiying; Funk, Merritt

    2013-12-01

    The end-boundary floating-surface sheath potential, electron and ion energy distribution functions (EEDf, IEDf) in the low-pressure non-ambipolar electron plasma (NEP) are investigated. The NEP is heated by an electron beam extracted from an inductively coupled electron-source plasma (ICP) through a dielectric injector by an accelerator located inside the NEP. This plasma's EEDf has a Maxwellian bulk followed by a broad energy continuum connecting to the most energetic group with energies around the beam energy. The NEP pressure is 1-3 mTorr of N2 and the ICP pressure is 5-15 mTorr of Ar. The accelerator is biased positively from 80 to 600 V and the ICP power range is 200-300 W. The NEP EEDf and IEDf are determined using a retarding field energy analyser. The EEDf and IEDf are measured at various NEP pressures, ICP pressures and powers as a function of accelerator voltage. The accelerator current and sheath potential are also measured. The IEDf reveals mono-energetic ions with adjustable energy and it is proportionally controlled by the sheath potential. The NEP end-boundary floating surface is bombarded by a mono-energetic, space-charge-neutral plasma beam. When the injected energetic electron beam is adequately damped by the NEP, the sheath potential is linearly controlled at almost a 1 : 1 ratio by the accelerator voltage. If the NEP parameters cannot damp the electron beam sufficiently, leaving an excess amount of electron-beam power deposited on the floating surface, the sheath potential will collapse and become unresponsive to the accelerator voltage.

  20. Electron cooling of a bunched ion beam in a storage ring

    NASA Astrophysics Data System (ADS)

    Zhao, He; Mao, Lijun; Yang, Jiancheng; Xia, Jiawen; Yang, Xiaodong; Li, Jie; Tang, Meitang; Shen, Guodong; Ma, Xiaoming; Wu, Bo; Wang, Geng; Ruan, Shuang; Wang, Kedong; Dong, Ziqiang

    2018-02-01

    A combination of electron cooling and rf system is an effective method to compress the beam bunch length in storage rings. A simulation code based on multiparticle tracking was developed to calculate the bunched ion beam cooling process, in which the electron cooling, intrabeam scattering (IBS), ion beam space-charge field, transverse and synchrotron motion are considered. Meanwhile, bunched ion beam cooling experiments have been carried out in the main cooling storage ring (CSRm) of the Heavy Ion Research Facility in Lanzhou, to investigate the minimum bunch length obtained by the cooling method, and study the dependence of the minimum bunch length on beam and machine parameters. The experiments show comparable results to those from simulation. Based on these simulations and experiments, we established an analytical model to describe the limitation of the bunch length of the cooled ion beam. It is observed that the IBS effect is dominant for low intensity beams, and the space-charge effect is much more important for high intensity beams. Moreover, the particles will not be bunched for much higher intensity beam. The experimental results in CSRm show a good agreement with the analytical model in the IBS dominated regime. The simulation work offers us comparable results to those from the analytical model both in IBS dominated and space-charge dominated regimes.

  1. Performance of the x-ray free-electron laser oscillator with crystal cavity

    NASA Astrophysics Data System (ADS)

    Lindberg, R. R.; Kim, K.-J.; Shvyd'Ko, Yu.; Fawley, W. M.

    2011-01-01

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include the frequency-dependent Bragg crystal reflectivity and the transverse diffraction and focusing using the two-dimensional FEL code GINGER. A review of the physics of Bragg crystal reflectors and the x-ray FEL oscillator is made, followed by a discussion of its numerical implementation in GINGER. The simulation results for a two-crystal cavity and realistic FEL parameters indicate ˜109 photons in a nearly Fourier-limited, ps pulse. Compressing the electron beam to 100 A and 100 fs results in comparable x-ray characteristics for relaxed beam emittance, energy spread, and/or undulator parameters, albeit in a larger radiation bandwidth. Finally, preliminary simulation results indicate that the four-crystal FEL cavity can be tuned in energy over a range of a few percent.

  2. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting

    PubMed Central

    Sin, Wai Jack; Nai, Mui Ling Sharon; Wei, Jun

    2017-01-01

    As one of the powder bed fusion additive manufacturing technologies, electron beam melting (EBM) is gaining more and more attention due to its near-net-shape production capacity with low residual stress and good mechanical properties. These characteristics also allow EBM built parts to be used as produced without post-processing. However, the as-built rough surface introduces a detrimental influence on the mechanical properties of metallic alloys. Thereafter, understanding the effects of processing parameters on the part’s surface roughness, in turn, becomes critical. This paper has focused on varying the processing parameters of two types of contouring scanning strategies namely, multispot and non-multispot, in EBM. The results suggest that the beam current and speed function are the most significant processing parameters for non-multispot contouring scanning strategy. While for multispot contouring scanning strategy, the number of spots, spot time, and spot overlap have greater effects than focus offset and beam current. The improved surface roughness has been obtained in both contouring scanning strategies. Furthermore, non-multispot contouring scanning strategy gives a lower surface roughness value and poorer geometrical accuracy than the multispot counterpart under the optimized conditions. These findings could be used as a guideline for selecting the contouring type used for specific industrial parts that are built using EBM. PMID:28937638

  3. The Effect of Scan Length on the Structure and Mechanical Properties of Electron Beam-Melted Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Everhart, Wesley; Dinardo, Joseph; Barr, Christian

    2017-02-01

    Electron beam melting (EBM) is a powder bed fusion-based additive manufacturing process in which selective areas of a layer of powder are melted with an electron beam and a part is built layer by layer. EBM scanning strategies within the Arcam AB® A2X EBM system rely upon governing relationships between the scan length of the beam path, the beam current, and speed. As a result, a large parameter process window exists for Ti-6Al-4V. Many studies have reviewed various properties of EBM materials without accounting for this effect. The work performed in this study demonstrates the relationship between scan length and the resulting density, microstructure, and mechanical properties of EBM-produced Ti-6Al-4V using the scanning strategies set by the EBM control software. This emphasizes the criticality of process knowledge and careful experimental design, and provides an alternate explanation for reported orientation-influenced strength differences.

  4. Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, J.; Piot, P.; Sen, T.

    2018-04-12

    This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. Wemore » discuss how the electron beam distributions after the diamond crystal are affected by channeling. We discuss an X-ray detector system to avoid pile-up effects during high charge operations.« less

  5. Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, J.; Piot, P.; Sen, T.

    This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. Wemore » discuss how the electron beam distributions after the diamond crystal are affected by channeling. Here, we discuss an X-ray detector system to avoid pile-up effects during high charge operations.« less

  6. Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation

    DOE PAGES

    Hyun, J.; Piot, P.; Sen, T.

    2018-06-14

    This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. Wemore » discuss how the electron beam distributions after the diamond crystal are affected by channeling. Here, we discuss an X-ray detector system to avoid pile-up effects during high charge operations.« less

  7. Effective NOx remediation from a surrogate flue gas using the US NRL Electra electron beam facility

    NASA Astrophysics Data System (ADS)

    Petrova, Tz. B.; Petrov, G. M.; Wolford, M. F.; Giuliani, J. L.; Ladouceur, H. D.; Hegeler, F.; Myers, M. C.; Sethian, J. D.

    2017-02-01

    Nitric oxide (NOx) emission is under restrictive federal regulations because of its negative impact on atmosphere, biosphere, and human health. Therefore, its removal has been a subject of extensive research to develop new efficient and cost effective techniques that can be applied on an industrial scale. In this work, we study both experimentally and theoretically an effective removal of NOx pollutants from a surrogate flue gas (SFG) using high power electron beam (e-beam) pulses. SFG is a simulant for exhaust from coal combustion power plants (82% N2, 6% O2, 12% CO2, and ˜100 ppm of NOx). The pulsed electron beam is generated using the United States Naval Research Laboratory Electra facility, which delivers e-beams with energies of ˜500 keV and a power pulse duration of ˜140 ns. During the e-beam irradiation, the energetic electrons generate a non-equilibrium plasma containing chemically active species, which then react with NOx to form harmless substances. A non-equilibrium time-dependent model is developed to describe NOx remediation from SFG. The model combines e-beam deposition rates obtained by solving the electron Boltzmann equation and extensive plasma chemistry modeling, which follows the species on a time scale from sub-nanoseconds to a few seconds. NOx decomposition as a function of electron beam parameters is studied. It is demonstrated experimentally that short (ns) pulses are the most efficient for NOx removal. A sharp reduction of NOx was measured with e-beam power deposition increasing, following the trend predicted by the model, achieving a 20 fold reduction to ˜5 ppm at energy deposition ˜20 J/l.

  8. Predicting mesoscale microstructural evolution in electron beam welding

    DOE PAGES

    Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena; ...

    2016-03-16

    Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. As a result, the simulations provide anmore » opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.« less

  9. Transient fields produced by a cylindrical electron beam flowing through a plasma

    NASA Astrophysics Data System (ADS)

    Firpo, Marie-Christine

    2012-10-01

    Fast ignition schemes (FIS) for inertial confinement fusion should involve in their final stage the interaction of an ignition beam composed of MeV electrons laser generated at the critical density surface with a dense plasma target. In this study, the out-of-equilibrium situation in which an initially sharp-edged cylindrical electron beam, that could e.g. model electrons flowing within a wire [1], is injected into a plasma is considered. A detailed computation of the subsequently produced magnetic field is presented [2]. The control parameter of the problem is shown to be the ratio of the beam radius to the electron skin depth. Two alternative ways to address analytically the problem are considered: one uses the usual Laplace transform approach, the other one involves Riemann's method in which causality conditions manifest through some integrals of triple products of Bessel functions.[4pt] [1] J.S. Green et al., Surface heating of wire plasmas using laser-irradiated cone geometries, Nature Physics 3, 853--856 (2007).[0pt] [2] M.-C. Firpo, http://hal.archives-ouvertes.fr/hal-00695629, to be published (2012).

  10. Comparative study of nonideal beam effects in high gain harmonic generation and self-seeded free electron lasers

    NASA Astrophysics Data System (ADS)

    Marinelli, Agostino; Pellegrini, Claudio; Giannessi, Luca; Reiche, Sven

    2010-07-01

    In this paper we investigate and compare the properties of two narrow-bandwidth free-electron laser (FEL) schemes, one using self-seeding and the other high gain harmonic generation (HGHG). The two systems have been thoroughly studied analytically and numerically in the past. The aim of this work is to compare their performances when the FEL is driven by an electron beam with nonideal properties, thus including effects such as shot-to-shot energy fluctuations and nonlinear energy chirp. In both cases nonlinearities produce a bandwidth larger than the Fourier transform limited value. However, our analysis indicates that, for approximately the same output power levels, the self-seeding scheme is less affected than the HGHG scheme by quadratic energy chirps in the electron beam longitudinal phase space. This is confirmed by a specific numerical example corresponding to SPARX parameters where the electron beam was optimized to minimize the FEL gain length. The work has been carried out with the aid of the time dependent FEL codes GENESIS 1.3 (3D) and PERSEO (1D).

  11. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOEpatents

    Campbell, A.N.; Soden, J.M.

    1998-12-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits are disclosed. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal. 4 figs.

  12. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOEpatents

    Campbell, Ann N.; Soden, Jerry M.

    1998-01-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  13. Dual-beam focused ion beam/electron microscopy processing and metrology of redeposition during ion-surface 3D interactions, from micromachining to self-organized picostructures.

    PubMed

    Moberlychan, Warren J

    2009-06-03

    Focused ion beam (FIB) tools have become a mainstay for processing and metrology of small structures. In order to expand the understanding of an ion impinging a surface (Sigmund sputtering theory) to our processing of small structures, the significance of 3D boundary conditions must be realized. We consider ion erosion for patterning/lithography, and optimize yields using the angle of incidence and chemical enhancement, but we find that the critical 3D parameters are aspect ratio and redeposition. We consider focused ion beam sputtering for micromachining small holes through membranes, but we find that the critical 3D considerations are implantation and redeposition. We consider ion beam self-assembly of nanostructures, but we find that control of the redeposition by ion and/or electron beams enables the growth of nanostructures and picostructures.

  14. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    NASA Astrophysics Data System (ADS)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  15. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ronald L.

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to studymore » techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.« less

  16. Multipacting on the trailing edge of proton beam bunches in the PSR and SNS

    NASA Astrophysics Data System (ADS)

    Danilov, V.; Aleksandrov, A.; Galambos, J.; Jeon, D.; Holmes, J.; Olsen, D.

    1999-12-01

    The Proton Storage Ring (PSR) in Los Alamos has a fast intensity-limiting instability, which may result from an electron cloud interaction with the circulating proton beam leading to a transverse mode coupling instability. The most probable mechanism of the electron creation is multipacting. Though the effect depends on many parameters, a model is presented which predicts a large electron creation in the vacuum chamber. A comparison of this effect between the PSR in Los Alamos and the Spallation Neutron Source (SNS) in Oak Ridge is given. In addition, several possibilities to reduce multipactor are discussed.

  17. Powder bed charging during electron-beam additive manufacturing

    DOE PAGES

    Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush; ...

    2016-11-18

    Electrons injected into the build envelope during powder-bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Furthermore, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as smoking. Here, a model of powder bed charging is formulated and used to develop criteria that predict the conditions under which the powder bed will smoke. These criteria suggest dependences on particle size, pre-heat temperature, and process parameters that align closely with those observed in practice.

  18. Compact Undulator for the Cornell High Energy Synchrotron Source: Design and Beam Test Results

    NASA Astrophysics Data System (ADS)

    Temnykh, A.; Dale, D.; Fontes, E.; Li, Y.; Lyndaker, A.; Revesz, P.; Rice, D.; Woll, A.

    2013-03-01

    We developed, built and beam tested a novel, compact, in-vacuum undulator magnet based on an adjustable phase (AP) scheme. The undulator is 1 m long with a 5mm gap. It has a pure permanent magnet structure with 24.4mm period and 1.1 Tesla maximum peak field. The device consists of two planar magnet arrays mounted on rails inside of a rectangular box-like frame with 156 mm × 146 mm dimensions. The undulator magnet is enclosed in a 273 mm (10.75") diameter cylindrical vacuum vessel with a driver mechanism placed outside. In May 2012 the CHESS Compact Undulator (CCU) was installed in Cornell Electron Storage Ring and beam tested. During four weeks of dedicated run we evaluated undulator radiation properties as well as magnetic, mechanical and vacuum properties of the undulator magnet. We also studied the effect of the CCU on storage ring beam. The spectral characteristics and intensity of radiation were found to be in very good agreement with expected. The magnet demonstrated reproducibility of undulator parameter K at 1.4 × 10-4 level. It was also found that the undulator K. parameter change does not affect electron beam orbit and betatron tunes.

  19. Polarized positrons in Jefferson lab electron ion collider (JLEIC)

    NASA Astrophysics Data System (ADS)

    Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong

    2018-05-01

    The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.

  20. Design of High Efficiency High Power Electron Accelerator Systems Based on Normal Conducting RF Technology for Energy and Environmental Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgashev, Valery; Tantawi, Sami

    The goal of this project was to perform engineering design studies of three extremely high efficiency electron accelerators with the following parameters [1]: 2 MeV output beam energy and 1 MW average beam power; 10 MeV output energy and 10 MW; 10 MeV output energy and 1 MW. These linacs are intended for energy and environmental applications [2]. We based our designs on normal conducting radio-frequency technology. We have successfully reached this goal where we show rf-to-beam efficiency of 96.7 %, 97.2 %, and 79.6 % for these linacs.

  1. Nucleation and growth of chimney pores during electron-beam additive manufacturing

    DOE PAGES

    Cordero, Zachary C.; Dinwiddie, Ralph B.; Immel, David; ...

    2016-12-05

    The nucleation and growth of chimney pores during powder-bed, electron-beam additive manufacturing is investigated using in-situ infrared thermography as well as microcomputed tomography of as-printed parts. The pores are found to nucleate at dimples on the part s surface, clearly demonstrating how process parameters can affect surface roughness, which can in turn affect the internal defect structure in an additive manufactured part. Based on the results of this study, several strategies for suppressing the formation of chimney pores are discussed.

  2. Design considerations for the use of laser-plasma accelerators for advanced space radiation studies

    NASA Astrophysics Data System (ADS)

    Königstein, T.; Karger, O.; Pretzler, G.; Rosenzweig, J. B.; Hidding, B.; Hidding

    2012-08-01

    We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed.

  3. Compact compressive arc and beam switchyard for energy recovery linac-driven ultraviolet free electron lasers

    NASA Astrophysics Data System (ADS)

    Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.

    2017-08-01

    High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.

  4. Properties of the electron cloud in a high-energy positron and electron storage ring

    DOE PAGES

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in amore » positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.« less

  5. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation.

    PubMed

    O'Shea, Tuathan P; Foley, Mark J; Faddegon, Bruce A

    2011-06-01

    Monte Carlo (MC) simulation can be used for accurate electron beam treatment planning and modeling. Measurement of large electron fields, with the applicator removed and secondary collimator wide open, has been shown to provide accurate simulation parameters, including asymmetry in the measured dose, for the full range of clinical field sizes and patient positions. Recently, disassembly of the treatment head of a linear accelerator has been used to refine the simulation of the electron beam, setting tightly measured constraints on source and geometry parameters used in simulation. The simulation did not explicitly include the known deflection of the electron beam by a fringe magnetic field from the bending magnet, which extended into the treatment head. Instead, the secondary scattering foil and monitor chamber were unrealistically laterally offset to account for the beam deflection. This work is focused on accounting for this fringe magnetic field in treatment head simulation. The magnetic field below the exit window of a Siemens Oncor linear accelerator was measured with a Tesla-meter from 0 to 12 cm from the exit window and 1-3 cm off-axis. Treatment head simulation was performed with the EGSnrc/BEAMnrc code, modified to incorporate the effect of the magnetic field on charged particle transport. Simulations were used to analyze the sensitivity of dose profiles to various sources of asymmetry in the treatment head. This included the lateral spot offset and beam angle at the exit window, the fringe magnetic field and independent lateral offsets of the secondary scattering foil and electron monitor chamber. Simulation parameters were selected within the limits imposed by measurement uncertainties. Calculated dose distributions were then compared with those measured in water. The magnetic field was a maximum at the exit window, increasing from 0.006 T at 6 MeV to 0.020 T at 21 MeV and dropping to approximately 5% of the maximum at the secondary scattering foil. It was up to three times higher in the bending plane, away from the electron gun, and symmetric within measurement uncertainty in the transverse plane. Simulations showed the magnetic field resulted in an offset of the electron beam of 0.80 cm (mean) at the machine isocenter for the exit window only configuration. The fringe field resulted in a 3.5%-7.6% symmetry and 0.25-0.35 cm offset of the clinical beam R(max) profiles. With the magnetic field included in simulations, a single (realistic) position of the secondary scattering foil and monitor chamber was selected. Measured and simulated dose profiles showed agreement to an average of 2.5%/0.16 cm (maximum: 3%/0.2 cm), which is a better match than previously achieved without incorporating the magnetic field in the simulation. The undulations from the 3 stepped layers of the secondary scattering foil, evident in the measured profiles of the higher energy beams, are now aligned with those in the simulated beam. The simulated fringe magnetic field had negligible effect on the central axis depth dose curves and cross-plane dose profiles. The fringe magnetic field is a significant contributor to the electron beam in-plane asymmetry. With the magnetic field included explicitly in the simulation, realistic monitor chamber and secondary scattering foil positions have been achieved, and the calculated fluence and dose distributions are more accurate.

  6. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    NASA Astrophysics Data System (ADS)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  7. Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas

    NASA Astrophysics Data System (ADS)

    Fein, J. R.; Holloway, J. P.; Trantham, M. R.; Keiter, P. A.; Edgell, D. H.; Froula, D. H.; Haberberger, D.; Frank, Y.; Fraenkel, M.; Raicher, E.; Shvarts, D.; Drake, R. P.

    2017-03-01

    Hard x-ray measurements are used to infer production of hot electrons in laser-irradiated planar foils of materials ranging from low- to high-Z. The fraction of laser energy converted to hot electrons, fhot , was reduced by a factor of 103 going from low-Z CH to high-Z Au, and hot electron temperatures were reduced from 40 to ˜20 keV. The reduction in fhot correlates with steepening electron density gradient length-scales inferred from plasma refraction measurements. Radiation hydrodynamic simulations predicted electron density profiles in reasonable agreement with those from measurements. Both multi-beam two-plasmon decay (TPD) and multi-beam stimulated Raman scattering (SRS) were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased electron plasma wave collisional and Landau damping. The results add to the evidence that SRS may play a comparable or a greater role relative to TPD in generating hot electrons in multi-beam experiments.

  8. Investigations on the Influence of Parameters During Electron Beam Surface Hardening Using the Flash Technique

    NASA Astrophysics Data System (ADS)

    Grafe, S.; Hengst, P.; Buchwalder, A.; Zenker, R.

    2018-06-01

    The electron beam hardening (EBH) process is one of today’s most innovative industrial technologies. Due to the almost inertia-free deflection of the EB (up to 100 kHz), the energy transfer function can be adapted locally to the component geometry and/or loading conditions. The current state-of-the-art technology is that of EBH with continuous workpiece feed. Due to the large range of parameters, the potentials and limitations of EBH using the flash technique (without workpiece feed) have not been investigated sufficiently to date. The aim of this research was to generate surface isothermal energy transfer within the flash field. This paper examines the effects of selected process parameters on the EBH surface layer microstructure and the properties achieved when treating hardened and tempered C45E steel. When using constant point distribution within the flash field and a constant beam current, surface isothermal energy input was not generated. However, by increasing the deflection frequency, point density and beam current, a more homogeneous EBH surface layer microstructure could be achieved, along with higher surface hardness and greater surface hardening depths. Furthermore, using temperature-controlled power regulation, surface isothermal energy transfer could be realised over a larger area in the centre of the sample.

  9. Note: Simulation and test of a strip source electron gun.

    PubMed

    Iqbal, Munawar; Islam, G U; Misbah, I; Iqbal, O; Zhou, Z

    2014-06-01

    We present simulation and test of an indirectly heated strip source electron beam gun assembly using Stanford Linear Accelerator Center (SLAC) electron beam trajectory program. The beam is now sharply focused with 3.04 mm diameter in the post anode region at 15.9 mm. The measured emission current and emission density were 1.12 A and 1.15 A/cm(2), respectively, that corresponds to power density of 11.5 kW/cm(2), at 10 kV acceleration potential. The simulated results were compared with then and now experiments and found in agreement. The gun is without any biasing, electrostatic and magnetic fields; hence simple and inexpensive. Moreover, it is now more powerful and is useful for accelerators technology due to high emission and low emittance parameters.

  10. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  11. Cathodoluminescent characteristics and light technical parameters of thin-film screens based on oxides and oxysulfides of rare-earth elements

    NASA Astrophysics Data System (ADS)

    Bondar, Vyacheslav D.; Grytsiv, Myroslav; Groodzinsky, Arkady; Vasyliv, Mykhailo

    1995-11-01

    Results on creation of thin-film single-crystal high-resolution screens with energy control of luminescence color are presented. In order to create phosphor films ion-plasma technology for deposition of yttrium and lanthanum oxides and oxysulfides activated by rare earth elements has been developed. The screen consists of phosphor film on phosphor substrate with different colors of luminescence (e.g. Y2O3-Eu film with red color on Y3Al5O12- Tb, Ce substrate with green color of luminescence). Electron irradiation causes luminescence with color that depends on energy of the electron beam. The physical reason for color change is that electron beam energy defines electron penetration depth. If the energy is weak, only the film is excited. More powerful beam penetrates into the substrate and thus changes the color of luminescence.

  12. Active experiments in space plasmas; Symposium D4.1 of Commission D, COSPAR Scientific Assembly, 30th, Hamburg, Germany, July 11-21, 1994

    NASA Technical Reports Server (NTRS)

    Rietveld, M. T. (Editor)

    1995-01-01

    Papers from the conference are presented and cover the following topics: ion and electron beams; ionospheric modification; spacecraft interactions; chemical releases; and plasma waves. Auroras and plasma emissions are reported from electron beam injection experiments on the EXCEDE 3 rocket and APEX satellite respectively. The important parameters affecting the charging of spacecraft during the operation of electron guns is covered. The Active Magnetospheric Particle Acceleration Satellite (AMPAS) mission utilizing dual-payload tethered satellites and both up and downward directed electron beams is proposed to study the magnetosphere. Recent results and associated theories from the Sura, Arecibo and Troms ionospheric heating facitlites are presented. The effects of neutral gases on spacecraft charging are examined in a series of rocket flights. Many results from the Combined Release and Radiation Effects Satellite chemical release experiments are presented.

  13. Calculations of the conditions for bunch leakage in the Los Alamos proton storage ring

    NASA Astrophysics Data System (ADS)

    Neuffer, D.; Ohmori, C.

    1994-04-01

    Observations are consistent with the possibility of an "ep" instability in the Los Alamos Proton Storage Ring (PSR) with both bunched and unbunched beam. The instability requires electrons to be trapped within the beam, and calculations have shown that such trapping requires leakage of beam into the interbunch gap. Observationally, leakage of beam into the gap appears necessary for the onset of the instability. In this paper we present results of studies of the longitudinal beam dynamics at PSR parameters. The studies indicate that the combined effects of the rf buncher, longitudinal space charge, and injection mismatch are sufficient to cause the observed bunch leakage. Simulation results are presented and compared with PSR observations. Variations of PSR performance parameters are considered, and methods of improving bunch confinement are suggested and studied.

  14. A PARMELA model of the CEBAF injector valid over a wide range of beam parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhong Zhang; Kevin Beard; Jay Benesch

    A PARMELA model of the CEBAF injector valid over a wide range of beam parameters Yuhong Zhang, Kevin Beard, Jay Benesch, Yu-Chiu Chao, Arne Freyberger, Joseph Grames, Reza Kazimi, Geoff Krafft, Rui Li, Lia Merminga, Matt Poelker, Michael Tiefenback, Byung Yunn Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 USA An earlier PARMELA model of the Jefferson Lab CEBAF photoinjector was recently revised. The initial phase space distribution of an electron bunch was determined by measuring spot size and pulselength of the driver laser and by beam emittance measurements. The improved model has been used formore » simulations of the simultaneous delivery of the Hall A beam required for a hypernuclear experiment, and the Hall C beam required for the G0 parity violation experiment.« less

  15. Dynamics of modulated beams in spectral domain

    DOE PAGES

    Yampolsky, Nikolai A.

    2017-07-16

    General formalism for describing dynamics of modulated beams along linear beamlines is developed. We describe modulated beams with spectral distribution function which represents Fourier transform of the conventional beam distribution function in the 6-dimensional phase space. The introduced spectral distribution function is localized in some region of the spectral domain for nearly monochromatic modulations. It can be characterized with a small number of typical parameters such as the lowest order moments of the spectral distribution. We study evolution of the modulated beams in linear beamlines and find that characteristic spectral parameters transform linearly. The developed approach significantly simplifies analysis ofmore » various schemes proposed for seeding X-ray free electron lasers. We use this approach to study several recently proposed schemes and find the bandwidth of the output bunching in each case.« less

  16. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    DOE PAGES

    Hemsing, E.; Garcia, B.; Huang, Z.; ...

    2017-06-19

    Here, we analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG) transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG) and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by themore » microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.« less

  17. Anisotropic metamaterial waveguide driven by a cold and relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Torabi, Mahmoud; Shokri, Babak

    2018-03-01

    We study the interaction of a cold and relativistic electron beam with a cylindrical waveguide loaded by an anisotropic and dispersive metamaterial layer. The general dispersion relation for the transverse magnetic (TM) mode, through the linear fluid model and Maxwell equations decomposition method, is derived. The effects of some metamaterial parameters on dispersion relation are presented. A qualitative discussion shows the possibility of monomodal propagation band widening and obtaining more control on dispersion relation behavior. Especially for epsilon negative near zero metamaterials, these effects are considerable. Finally, the anisotropy and metamaterial layer thickness impacts on wave growth rate for different metamaterials are considered. The results demonstrate that we can control both wave growth rate and voltage of saturation peak by metamaterial parameters.

  18. Evolution and Control of 2219 Aluminum Microstructural Features through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  19. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    NASA Astrophysics Data System (ADS)

    Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina

    2016-01-01

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.

  20. Modulation instability and dissipative rogue waves in ion-beam plasma: Roles of ionization, recombination, and electron attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Shimin, E-mail: gsm861@126.com; Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn

    The amplitude modulation of ion-acoustic waves is investigated in an unmagnetized plasma containing positive ions, negative ions, and electrons obeying a kappa-type distribution that is penetrated by a positive ion beam. By considering dissipative mechanisms, including ionization, negative-positive ion recombination, and electron attachment, we introduce a comprehensive model for the plasma with the effects of sources and sinks. Via reductive perturbation theory, the modified nonlinear Schrödinger equation with a dissipative term is derived to govern the dynamics of the modulated waves. The effect of the plasma parameters on the modulation instability criterion for the modified nonlinear Schrödinger equation is numericallymore » investigated in detail. Within the unstable region, first- and second-order dissipative ion-acoustic rogue waves are present. The effect of the plasma parameters on the characteristics of the dissipative rogue waves is also discussed.« less

  1. Surface Flashover on Epoxy-Resin Printed Circuit Boards in Vacuum under Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Fujii, Haruhisa; Hasegawa, Taketoshi; Osuga, Hiroyuki; Matsui, Katsuaki

    This paper deals with the surface flashover characteristics of dielectric material in vacuum during electron beam irradiation in order to design adequately the conductive patterns on printed circuit boards used inside a spacecraft. The dielectric material, glass-fiber reinforced epoxy resin, and the electrodes printed on it were irradiated with electrons of the energy of 3-10 keV. DC high voltage was applied between the two electrodes during electron irradiation. The voltage was increased stepwise until the surface flashover occurred on the dielectric material. We obtained the results that the surface flashover voltage increased with the insulation distance between the electrodes but electron irradiation made the flashover voltage lower. The flashover voltage characteristics were obtained as parameters of the electrode distance and the energy of the electron beam.

  2. Local Coulomb explosion of boron nitride nanotubes under electron beam irradiation.

    PubMed

    Wei, Xianlong; Tang, Dai-Ming; Chen, Qing; Bando, Yoshio; Golberg, Dmitri

    2013-04-23

    In many previous reports, the engineering of nanostructures using electron beam irradiation (EBI) in a high vacuum has primarily been based on the knock-on atom displacement. Herein, we report a new phenomenon under EBI that can also be effectively used to engineer a nanostructure: local Coulomb explosion (LCE) of cantilevered multiwalled boron nitride nanotubes (BNNTs) resulted from their profound positive charging. The nanotubes are gradually shortened, while the tubular shells at free ends are torn into graphene-like pieces and then removed during LCE. The phenomenon is dependent not only on the characteristics of an incident electron beam, as in the case of a common knock-on process, but also on the cantilevered tube length. Only after the electron beam density and tube length exceed the threshold values can LCE take place, and the threshold value for one of the parameters decreases with increasing the value of the other one. A model based on the diffusion of electron-irradiation-induced holes along a BNNT is proposed to describe the positive charge accumulation and can well explain the observed LCE. LCE opens up an efficient and versatile way to engineer BNNTs and other dielectric nanostructures with a shorter time and a lower beam density than those required for the knock-on effect-based engineering.

  3. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Tongning, E-mail: TongningHu@hust.edu.cn, E-mail: yjpei@ustc.edu.cn; Qin, Bin; Tan, Ping

    A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables themore » injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented.« less

  4. A novel electromagnetic design and a new manufacturing process for the cavity BPM (Beam Position Monitor)

    NASA Astrophysics Data System (ADS)

    Dal Forno, Massimo; Craievich, Paolo; Baruzzo, Roberto; De Monte, Raffaele; Ferianis, Mario; Lamanna, Giuseppe; Vescovo, Roberto

    2012-01-01

    The Cavity Beam Position Monitor (BPM) is a beam diagnostic instrument which, in a seeded Free Electron Laser (FEL), allows the measurement of the electron beam position in a non-destructive way and with sub-micron resolution. It is composed by two resonant cavities called reference and position cavity, respectively. The measurement exploits the dipole mode that arises when the electron bunch passes off axis. In this paper we describe the Cavity BPM that has been designed and realized in the context of the FERMI@Elettra project [1]. New strategies have been adopted for the microwave design, for both the reference and the position cavities. Both cavities have been simulated by means of Ansoft HFSS [2] and CST Particle Studio [3], and have been realized using high precision lathe and wire-EDM (Electro-Discharge) machine, with a new technique that avoids the use of the sinker-EDM machine. Tuners have been used to accurately adjust the working frequencies for both cavities. The RF parameters have been estimated, and the modifications of the resonant frequencies produced by brazing and tuning have been evaluated. Finally, the Cavity BPM has been installed and tested in the presence of the electron beam.

  5. Fast Beam-Based BPM Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsche, K.; Loos, H.; Nuhn, H.-D.

    2012-10-15

    The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of themore » gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.« less

  6. Space-Charge Waves and Instabilities in Intense Beams

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    1997-11-01

    Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.

  7. MeRHIC - staging approach to eRHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ptitsyn,V.; Beebe-Wang, J.; Ben-Zvi, I.

    Design of a medium energy electron-ion collider (MeRHIC) is under development at the Collider-Accelerator Department at BNL. The design envisions construction of a 4 GeV electron accelerator in a local area inside and near the RHIC tunnel. Electrons will be produced by a polarized electron source and accelerated in energy recovery linacs. Collisions of the electron beam with 100 GeV/u heavy ions or with 250 GeV polarized protons will be arranged in the existing IP2 interaction region of RHIC. The luminosity of electron-proton collisions at the 10{sup 32} cm{sup -2}s{sup -1} level will be achieved with 50 mA CW electronmore » current and presently available proton beam parameters. Efficient proton beam cooling at collision energy may bring the luminosity to 10{sup 33} cm{sup -2}s{sup -1}. An important feature of MeRHIC is that it serves as a first stage of eRHIC, a future electron-ion collider at BNL with both higher luminosity and energy reach. The majority of MeRHIC accelerator components will be used in eRHIC.« less

  8. SU-E-T-598: The Effects of Arm Speed for Quality Assurance and Commissioning Measurements in Rectangular and Cylindrical Scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhtiari, M; Schmitt, J

    2014-06-01

    Purpose: Cylindrical and rectangular scanning water tanks are examined with different scanning speeds to investigate the TG-106 criteria and the errors induced in the measurements. Methods: Beam profiles were measured in a depth of R50 for a low-energy electron beam (6 MeV) using rectangular and cylindrical tanks. The speeds of the measurements (arm movement) were varied in different profile measurements. Each profile was measured with a certain speed to obtain the average and standard deviation as a parameter for investigating the reproducibility and errors. Results: At arm speeds of ∼0.8 mm/s the errors were as large as 2% and 1%more » with rectangular and cylindrical tanks, respectively. The errors for electron beams and for photon beams in other depths were within the TG-106 criteria of 1% for both tank shapes. Conclusion: The measurements of low-energy electron beams in a depth of R50, as an extreme case scenario, are sensitive to the speed of the measurement arms for both rectangular and cylindrical tanks. The measurements in other depths, for electron beams and photon beams, with arm speeds of less than 1 cm/s are within the TG-106 criteria. An arm speed of 5 mm/s appeared to be optimal for fast and accurate measurements for both cylindrical and rectangular tanks.« less

  9. Enhanced tunable narrow-band THz emission from laser-modulated electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, D.; Stupakov, G.; /SLAC

    2009-06-19

    We propose and analyze a scheme to generate enhanced narrow-band terahertz (THz) radiation through down-conversion of the frequency of optical lasers using laser-modulated electron beams. In the scheme the electron beam is first energy modulated by two lasers with wave numbers k{sub 1} and k2, respectively. After passing through a dispersion section, the energy modulation is converted to density modulation. Due to the nonlinear conversion process, the beam will have density modulation at wave number k = nk{sub 1} + mk{sub 2}, where n and m are positive or negative integers. By properly choosing the parameters for the lasers andmore » dispersion section, one can generate density modulation at THz frequency in the beam using optical lasers. This density-modulated beam can be used to generate powerful narrow-band THz radiation. Since the THz radiation is in tight synchronization with the lasers, it should provide a high temporal resolution for the optical-pump THz-probe experiments. The central frequency of the THz radiation can be easily tuned by varying the wavelength of the two lasers and the energy chirp of the electron beam. The proposed scheme is in principle able to generate intense narrow-band THz radiation covering the whole THz range and offers a promising way towards the tunable intense narrow-band THz sources.« less

  10. Spectral optimization for measuring electron density by the dual-energy computed tomography coupled with balanced filter method.

    PubMed

    Saito, Masatoshi

    2009-08-01

    Dual-energy computed tomography (DECT) has the potential for measuring electron density distribution in a human body to predict the range of particle beams for treatment planning in proton or heavy-ion radiotherapy. However, thus far, a practical dual-energy method that can be used to precisely determine electron density for treatment planning in particle radiotherapy has not been developed. In this article, another DECT technique involving a balanced filter method using a conventional x-ray tube is described. For the spectral optimization of DECT using balanced filters, the author calculates beam-hardening error and air kerma required to achieve a desired noise level in electron density and effective atomic number images of a cylindrical water phantom with 50 cm diameter. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimized parameters were applied to cases with different phantom diameters ranging from 5 to 50 cm for the calculations. The author predicts that the optimal combination of tube voltages would be 80 and 140 kV with Tb/Hf and Bi/Mo filter pairs for the 50-cm-diameter water phantom. When a single phantom calibration at a diameter of 25 cm was employed to cover all phantom sizes, maximum absolute beam-hardening errors were 0.3% and 0.03% for electron density and effective atomic number, respectively, over a range of diameters of the water phantom. The beam-hardening errors were 1/10 or less as compared to those obtained by conventional DECT, although the dose was twice that of the conventional DECT case. From the viewpoint of beam hardening and the tube-loading efficiency, the present DECT using balanced filters would be significantly more effective in measuring the electron density than the conventional DECT. Nevertheless, further developments of low-exposure imaging technology should be necessary as well as x-ray tubes with higher outputs to apply DECT coupled with the balanced filter method for clinical use.

  11. Dose properties of a laser accelerated electron beam and prospects for clinical application.

    PubMed

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D; Chiu, C; Fomytskyi, M; Raischel, F; Downer, M; Tajima, T

    2004-07-01

    Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25 x 25 cm2 field. An energy window (deltaE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to deltaE. However, since the falloff of the depth-dose curve (R10-R90) and the dose rate both increase with deltaE, a tradeoff between minimizing (R10-R90) and maximizing dose rate is implied. If deltaE is constrained so that R10-R90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min(-1) for a 9 MeV beam and 0.03 Gy min(-1) for a 15 MeV beam. It was concluded that current LWFA technology should allow a table-top terawatt (T3) laser to produce therapeutic electron beams that have acceptable flatness, penetration, and falloff of depth dose; however, the dose rate is still 1%-3% of that which would be acceptable, especially for higher-energy electron beams. Further progress in laser technology, e.g., increasing the pulse repetition rate or number of high energy electrons generated per pulse, is necessary to give dose rates acceptable for electron beams. Future measurements confirming dosimetric calculations are required to substantiate our results. In addition to achieving adequate dose rate, significant engineering developments are needed for this technology to compete with current electron acceleration technology. Also, the functional benefits of LWFA electron beams require further study and evaluation.

  12. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  13. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE PAGES

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; ...

    2017-03-06

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  14. Improving oxidation resistance and thermal insulation of thermal barrier coatings by intense pulsed electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Mei, Xianxiu; Liu, Xiaofei; Wang, Cunxia; Wang, Younian; Dong, Chuang

    2012-12-01

    In this paper, intense pulsed electron beam was used for the irradiation treatment of 6-8% Y2O3-stablized ZrO2 thermal barrier coating prepared by electron beam-physical vapor deposition to achieve the "sealing" of columnar crystals, thus improving their thermal insulation properties and high temperature oxidation resistance. The electron beam parameters used were: pulse duration 200 μs, electron voltage 15 kV, energy density 3, 5, 8, 15, 20 J/cm2, and pulsed numbers 30. 1050 °C cyclic oxidation and static oxidation experiments were used for the research on oxidation resistance of the coatings. When the energy density of the electron beam was larger than 8 J/cm2, ZrO2 ceramic coating surface was fully re-melted and became smooth, dense and shiny. The coating changed into a smooth polycrystalline structure, thus achieving the "sealing" effect of the columnar crystals. After irradiations with the energy density of 8-15 J/cm2, the thermally grown oxide coating thickness decreased significantly in comparison with non-irradiated coatings, showing that the re-melted coating improved the oxidation resistance of the coatings. The results of thermal diffusivity test by laser flash method showed that the thermal diffusion rate of the irradiated coating was lower than that of the coating without irradiation treatment, and the thermal insulation performance of irradiated coating was improved.

  15. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  16. Improving the particle beam characteristics resulting from laser ion acceleration at ultra high intensity through target manipulation - Numerical modeling

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; d'Humieres, Emmanuel; Vizman, Daniel

    2017-12-01

    The necessity to produce superior quality ion and electron beams has been a hot research field due to the advances in laser science in the past decade. This work focuses on the parametric study of different target density profiles in order to determine their effect on the spatial distribution of the accelerated particle beam, the particle maximum energy, and the electromagnetic field characteristics. For the scope of this study, the laser pulse parameters were kept constant, while varying the target parameters. The study continues the work published in [1] and focuses on further studying the effects of target curvature coupled with a cone laser focusing structure. The results show increased particle beam focusing and a significant enhancement in particle maximum energy.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, M.-L., E-mail: marie-laure.david@univ-poitiers.fr; Pailloux, F.; Canadian Centre for Electron Microscopy, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1

    We demonstrate that the helium density and corresponding pressure can be modified in single nano-scale bubbles embedded in semiconductors by using the electron beam of a scanning transmission electron microscope as a multifunctional probe: the measurement probe for imaging and chemical analysis and the irradiation source to modify concomitantly the pressure in a controllable way by fine tuning of the electron beam parameters. The control of the detrapping rate is achieved by varying the experimental conditions. The underlying physical mechanisms are discussed; our experimental observations suggest that the helium detrapping from bubbles could be interpreted in terms of direct ballisticmore » collisions, leading to the ejection of the helium atoms from the bubble.« less

  18. RF photo-injector beam energy distribution studies by slicing technique

    NASA Astrophysics Data System (ADS)

    Filippetto, D.; Bellaveglia, M.; Musumeci, P.; Ronsivalle, C.

    2009-07-01

    The SPARC photo-injector is an R&D facility dedicated to the production of high brightness electron beams for radiation generation via FEL or Thomson scattering processes. It is the prototype injector for the recently approved SPARX project, aiming at the construction in the Frascati/University of Rome Tor Vergata area of a new high brightness electron linac for the generation of SASE-FEL radiation in the 1-10 nm wavelength range. The first phase of the SPARC project has been dedicated to the e-beam source characterization; the beam transverse and longitudinal parameters at the exit of the gun have been measured, and the photo-injector settings optimized to achieve best performance. Several beam dynamics topics have been experimentally studied in this first phase of operation, as, for example, the effect of photocathode driver laser beam shaping and the evolution of the beam transverse emittance. These studies have been made possible by the use of a novel diagnostic tool, the " emittance-meter" which enables the measurement of the transverse beam parameters at different positions along the propagation axis in the very interesting region at the exit of the RF gun. The new idea of extending the e-meter capabilities came out more recently. Information on the beam longitudinal phase space and correlations with the transverse planes can be retrieved by the slicing technique. In this paper, we illustrate the basic concept of the measurement together with simulations that theoretically validate the methodology. Some preliminary results are discussed and explained with the aid of code simulations.

  19. Time-resolved brightness measurements by streaking

    NASA Astrophysics Data System (ADS)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  20. Imaging spectroscopy of type U and J solar radio bursts with LOFAR

    NASA Astrophysics Data System (ADS)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2017-10-01

    Context. Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, why type III bursts are more frequently observed than U-bursts or J-bursts is an outstanding question. Aims: We use Low-Frequency Array (LOFAR) imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. Radio burst observations provide information not only about the exciting electron beams but also about the structure of large coronal loops with densities that are too low for standard extreme ultraviolet (EUV) or X-ray analysis. Methods: We analysed LOFAR images of a sequence of two J-bursts and one U-burst. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. We also estimated the electron density along the magnetic flux rope and compared it to coronal models. Results: The radio sources infer a magnetic loop that is 1 solar radius in altitude with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. Conclusions: We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III bursts to be more frequently observed. The large instability distances required before Langmuir waves are produced by some electron beams, and the small magnitude of the background density gradients makes closed loops less facilitative for radio emission than loops that extend into interplanetary space.

  1. Modeling nitrogen plasmas produced by intense electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angus, J. R.; Swanekamp, S. B.; Schumer, J. W.

    2016-05-15

    A new gas–chemistry model is presented to treat the breakdown of a nitrogen gas with pressures on the order of 1 Torr from intense electron beams with current densities on the order of 10 kA/cm{sup 2} and pulse durations on the order of 100 ns. For these parameter regimes, the gas transitions from a weakly ionized molecular state to a strongly ionized atomic state on the time scale of the beam pulse. The model is coupled to a 0D–circuit model using the rigid–beam approximation that can be driven by specifying the time and spatial profiles of the beam pulse. Simulation results are inmore » good agreement with experimental measurements of the line–integrated electron density from experiments done using the Gamble II generator at the Naval Research Laboratory. It is found that the species are mostly in the ground and metastable states during the atomic phase, but that ionization proceeds predominantly through thermal ionization of optically allowed states with excitation energies close to the ionization limit.« less

  2. Channeling Radiation Experiment at Fermilab ASTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, D.; Edstrom, D. R.; Piot, P.

    2015-06-01

    Electron beams with moderate energy ranging from 4 to 50 MeV can be used to produce x-rays through the Channeling Radiation (CR) mechanism. Typically, the xray spectrum from these sources extends up to 140 keV and this range covers the demand for most practical applications. The parameters of the electron beam determine the spectral brilliance of the x-ray source. The electron beam produced at the Fermilab new facility Advanced Superconducting Test Accelerator (ASTA) meets the requirements to assemble an experimental high brilliance CR xray source. In the first stage of the experiment the energy of the beam is 20 MeV and due to the very low emittance (more » $$\\approx 100$$ nm ) at low bunch charge (20 pC) the expected average brilliance of the x-ray source is about $10^9$ photons/[s- $(mm-mrad)^2$-0.1% BW]. In the second stage of the experiment the beam energy will be increased to 50 MeV and consequently the average brilliance will increase by a factor of five. Also, the x-ray spectrum will extend from about 30 keV to 140 keV« less

  3. Electronic transport characterization of silicon wafers by spatially resolved steady-state photocarrier radiometric imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@ioe.ac.cn

    2015-09-28

    Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique withmore » multiple pump beam radii.« less

  4. Note: Simulation and test of a strip source electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Munawar, E-mail: muniqbal.chep@pu.edu.pk; Institute of High Energy Physics, Chinese Acedemy of Sciences, Beijing 100049; Islam, G. U.

    We present simulation and test of an indirectly heated strip source electron beam gun assembly using Stanford Linear Accelerator Center (SLAC) electron beam trajectory program. The beam is now sharply focused with 3.04 mm diameter in the post anode region at 15.9 mm. The measured emission current and emission density were 1.12 A and 1.15 A/cm{sup 2}, respectively, that corresponds to power density of 11.5 kW/cm{sup 2}, at 10 kV acceleration potential. The simulated results were compared with then and now experiments and found in agreement. The gun is without any biasing, electrostatic and magnetic fields; hence simple and inexpensive.more » Moreover, it is now more powerful and is useful for accelerators technology due to high emission and low emittance parameters.« less

  5. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam.

    PubMed

    Warwick, J; Dzelzainis, T; Dieckmann, M E; Schumaker, W; Doria, D; Romagnani, L; Poder, K; Cole, J M; Alejo, A; Yeung, M; Krushelnick, K; Mangles, S P D; Najmudin, Z; Reville, B; Samarin, G M; Symes, D D; Thomas, A G R; Borghesi, M; Sarri, G

    2017-11-03

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1  T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  6. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    NASA Astrophysics Data System (ADS)

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; Schumaker, W.; Doria, D.; Romagnani, L.; Poder, K.; Cole, J. M.; Alejo, A.; Yeung, M.; Krushelnick, K.; Mangles, S. P. D.; Najmudin, Z.; Reville, B.; Samarin, G. M.; Symes, D. D.; Thomas, A. G. R.; Borghesi, M.; Sarri, G.

    2017-11-01

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T ) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ɛB≈10-3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  7. Analysis of e-beam impact on the resist stack in e-beam lithography process

    NASA Astrophysics Data System (ADS)

    Indykeiwicz, K.; Paszkiewicz, B.

    2013-07-01

    Paper presents research on the sub-micron gate, AlGaN /GaN HEMT type transistors, fabrication by e-beam lithography and lift-off technique. The impact of the electron beam on the resists layer and the substrate was analyzed by MC method in Casino v3.2 software. The influence of technological process parameters on the metal structures resolution and quality for paths 100 nm, 300 nm and 500 nm wide and 20 μm long was studied. Qualitative simulation correspondences to the conducted experiments were obtained.

  8. Analytical study of beam handling and emittance control

    NASA Astrophysics Data System (ADS)

    Thompson, James R.; Sloan, M. L.

    1993-12-01

    The thrust of our research on beam handling and emittance control was to explore how one might design high current electron accelerators, with the preservation of high beam quality designed as the primary design consideration. We considered high current, induction linacs in the parameter class of the ETA/ATA accelerators at LLNL, but with improvements to the accelerator gap design and other features to permit a significant increase in the deliverable beam brightness. Our approach for beam quality control centered on the use of solenoidal magnetic focusing through such induction accelerators, together with gently-shaped (adiabatic) acceleration gaps. This approach offers several tools for the control of beam quality. The strength and axial variation in the solenoidal magnetic field may be designed, as may the length and shape of the acceleration gaps, the loading of the gaps, and the axial spacing from gap to gap. This research showed that each of these design features may individually be optimized to contribute to improved beam quality control, and by exploiting these features, it appears feasible to produce high current, high energy electron beams possessing breakthrough beam quality and brightness. Applications which have been technologically unachievable may for the first time become possible. One such application is the production of high performance free electron lasers at very short wavelengths, extending down to the optical (less than 1 micron) regime.

  9. Beam Output Audit results within the EORTC Radiation Oncology Group network.

    PubMed

    Hurkmans, Coen W; Christiaens, Melissa; Collette, Sandra; Weber, Damien Charles

    2016-12-15

    Beam Output Auditing (BOA) is one key process of the EORTC radiation therapy quality assurance program. Here the results obtained between 2005 and 2014 are presented and compared to previous results.For all BOA reports the following parameters were scored: centre, country, date of audit, beam energies and treatment machines audited, auditing organisation, percentage of agreement between stated and measured dose.Four-hundred and sixty-one BOA reports were analyzed containing the results of 1790 photon and 1366 electron beams, delivered by 755 different treatment machines. The majority of beams (91.1%) were within the optimal limit of ≤ 3%. Only 13 beams (0.4%; n = 9 electrons; n = 4 photons), were out of the range of acceptance of ≤ 5%. Previous reviews reported a much higher percentage of 2.5% or more of the BOAs with >5% deviation.The majority of EORTC centres present beam output variations within the 3% tolerance cutoff value and only 0.4% of audited beams presented with variations of more than 5%. This is an important improvement compared to previous BOA results.

  10. Electron beam additive manufacturing with wire - Analysis of the process

    NASA Astrophysics Data System (ADS)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  11. Cold Cathode Electron Beam Controlled CO2 Laser Performance.

    DTIC Science & Technology

    1974-10-01

    Siegman (ref. 7), the cavity parameters are g, - 3/2, g2 3/4 so that 0he cavity will be confocal when the mirror separation is 2.5 m. The laser output was...E. Siegman , Laser Focus 7, 42, 1971. 8. W. F. Krupke and W. R. Sooy, IEEE Journal Quant. Elec. QE-5, 575, 1969. 9. 0. R. Wood, et al., Appl. Phys...U t AD/A-000 413 COLD CATHODE ELECTRON BEAM CONTROLLED C02 LASER PERFORMANCE Leslie L. McKee, 1II, et al Air Force Weapons Laboratory Kirtland Air

  12. A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography

    NASA Astrophysics Data System (ADS)

    Pierno, L.; Dispenza, M.; Secchi, A.; Fiorello, A.; Foglietti, V.

    2008-06-01

    We have designed and fabricated a lithium niobate tunable Bragg filter patterned by electron beam lithography and etched by reactive ion etching. Devices with 1 mm, 2 mm and 4 mm length and 360 and 1080 nm Bragg period, with 5 pm V-1 tuning efficiency, have been characterized. Some applications were identified. Optical simulation based on finite element model (FEM) software showing the optical filtering curve and the coupling factor dependence on the manufacturing parameter is reported. The tuning of the filter window position is electro-optically controlled.

  13. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.

    PubMed

    Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J

    2007-02-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.

  14. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412

  15. Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotukhin, D. B.; Tyunkov, A. V.; Yushkov, Yu. G., E-mail: yuyushkov@gmail.com

    2015-12-15

    The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.

  16. Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy.

    PubMed

    Suzuki, Kazumichi; Gillin, Michael T; Sahoo, Narayan; Zhu, X Ronald; Lee, Andrew K; Lippy, Denise

    2011-07-01

    To evaluate patient census, equipment clinical availability, maximum daily treatment capacity, use factor for major beam delivery parameters, and treatment process time for actual treatments delivered by proton therapy systems. The authors have been recording all beam delivery parameters, including delivered dose, energy, range, spread-out Bragg peak widths, gantry angles, and couch angles for every treatment field in an electronic medical record system. We analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the use factor of beam delivery parameters, the size of the patient census, and the equipment clinical availability of the facility. The duration of each treatment session from patient walk-in and to patient walk-out of the treatment room was measured for 82 patients with cancers at various sites. The yearly average equipment clinical availability in the last 3 yrs (June 2007-August 2010) was 97%, which exceeded the target of 95%. Approximately 2200 patients had been treated as of August 2010. The major disease sites were genitourinary (49%), thoracic (25%), central nervous system (22%), and gastrointestinal (2%). Beams have been delivered in approximately 8300 treatment fields. The use factor for six beam delivery parameters was also evaluated. Analysis of the treatment process times indicated that approximately 80% of this time was spent for patient and equipment setup. The other 20% was spent waiting for beam delivery and beam on. The total treatment process time can be expressed by a quadratic polynomial of the number of fields per session. The maximum daily treatment capacity of our facility using the current treatment processes was estimated to be 133 +/- 35 patients. This analysis shows that the facility has operated at a high performance level and has treated a large number of patients with a variety of diseases. The use factor of beam delivery parameters varies by disease site. Further improvements in efficiency may be realized in the equipment- and patient-related processes of treatment.

  17. Influence of low-temperature resistivity on fast electron transport in solids: scaling to fast ignition electron beam parameters

    NASA Astrophysics Data System (ADS)

    McKenna, P.; MacLellan, D. A.; Butler, N. M. H.; Dance, R. J.; Gray, R. J.; Robinson, A. P. L.; Neely, D.; Desjarlais, M. P.

    2015-06-01

    The role of low-temperature electrical resistivity in defining the transport properties of mega-Ampere currents of fast (MeV) electrons in solids is investigated using 3D hybrid particle-in-cell (PIC) simulations. By considering resistivity profiles intermediate to the ordered (lattice) and disordered forms of two example materials, lithium and silicon, it is shown that both the magnitude of the resistivity and the shape of the resistivity-temperature profile at low temperatures strongly affect the self-generated resistive magnetic fields and the onset of resistive instabilities, and thus the overall fast electron beam transport pattern. The scaling of these effects to the giga-Ampere electron currents required for the fast ignition scheme for inertial fusion is also explored.

  18. SU-E-T-279: A Novel Electron-Beam Combined with Magnetic Field Application for Radiotherapy.

    PubMed

    Alezra, D; Nardi, E; Koren, S; Bragilovski, D; Orion, I

    2012-06-01

    The new beam and delivery system consists of an electron accelerator and a system of magnets (one or more). Introducing a transverse magnetic field in and near the tumor, causes the electrons to spiral in this region, thereby producing an effective peak in the depth dose distribution, within the tumor volume. Although the basic idea is not new, we suggest here for the first time, a viable as well as a workable, magnetic field configuration, which in addition to focusing the beam does not interfere with its propagation to the target. The electron accelerator: can be a linear accelerator or any other type electron accelerator, capable of producing different electron energies for different depths and dose absorption accumulation. The Field size can be as small as a pencil beam and as big as any of the other standard field sizes that are used in radiotherapy. The scatter filter can be used or removed. The dose rate accumulation can be as higher as possible.The magnets are able to produce magnetic fields. The order, direction, width, place, shape and number of the magnetic fields define the shape and the Percentage Depth Dose (PDD) curve of the electron beam. Prototypes were successfully tested by means of computer simulation, using:COMSOL-Multiphsics for magnetic fields calculations. FLUKA package, for electron beam MC simulation. Our results suggest that by using an electron beam at different energies, combined with magnetic fields, we could modify the delivered dose. This is caused by manipulating the electron motion via the Lorentz force. The applied magnetic field, will focus the electron beam at a given depth and deposit the energy in a given volume and depth, where otherwise the electron energy will have spread deeper. The direction and magnitude of the magnetic fields will prevent the scattering of the electron beam and its absorption in remote volumes. In practice, we get a pseudo Bragg peak depth dose distribution, applying a relatively low cost system. The therapeutic efficiency induced by the system is of similar efficiency as the ion beam therapy techniques. Our novel concept demonstrates treatment that is almost similar to proton therapy and in some parameters even better performance.Unlike the current high-energy electron therapy, our system's beam deposit almost all of its energy on its target, with a low amount of radiation deposited in tissues from the surface of the skin to the front of tumor, and almost no "exit dose" beyond the tumor. This property will enables to hit tumors with higher, potentially more effective radiation doses, while being considerably less expensive. © 2012 American Association of Physicists in Medicine.

  19. Langmuir instability in partially spin polarized bounded degenerate plasma

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Jamil, M.; Murtaza, G.

    2018-04-01

    Some new features of waves inside the cylindrical waveguide on employing the separated spin evolution quantum hydrodynamic model are evoked. Primarily, the instability of Langmuir wave due to the electron beam in a partially spin polarized degenerate plasma considering a nano-cylindrical geometry is discussed. Besides, the evolution of a new spin-dependent wave (spin electron acoustic wave) due to electron spin polarization effects in the real wave spectrum is elaborated. Analyzing the growth rate, it is found that in the absence of Bohm potential, the electron spin effects or exchange interaction reduce the growth rate as well as k-domain but the inclusion of Bohm potential increases both the growth rate and k-domain. Further, we investigate the geometry effects expressed by R and pon and find that they have opposite effects on the growth rate and k-domain of the instability. Additionally, how the other parameters like electron beam density or streaming speed of beam electrons influence the growth rate is also investigated. This study may find its applications for the signal analysis in solid state devices at nanoscales.

  20. The study of hard x-ray emission and electron beam generation in wire array Z-pinch and X-pinch plasmas at university-scale generators

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor Kumar

    The studies of hard x-ray (HXR) emission and electron beam generation in Z-pinch plasmas are very important for Inertial Confinement Fusion (ICF) research and HXR emission application for sources of K-shell and L-shell radiation. Energetic electron beams from Z-pinch plasmas are potentially a problem in the development of ICF. The electron beams and the accompanying HXR emission can preheat the fuel of a thermonuclear target, thereby preventing the fuel compression from reaching densities required for the ignition of a fusion reaction. The photons above 3-4 keV radiated from a Z pinch can provide detailed information about the high energy density plasmas produced at stagnation. Hence, the investigation of characteristics of hard x-rays and electron beams produced during implosions of wire array loads on university scale-generators may provide important data for future ICF, sources of K-shell and L-shell radiations and basic plasma research. This dissertation presents the results of experimental studies of HXR and electron beam generation in wire-array and X-pinch on the 1.7 MA, 100-ns current rise time Zebra generator at University of Nevada, Reno and 1-MA 100-ns current rise-time Cornell Beam Research Accelerator (COBRA) at Cornell University. The experimental study of characteristics of HXR produced by multi-planar wire arrays, compact cylindrical wire array (CCWA) and nested cylindrical wire array (NCWA) made from Al, Cu, Mo, Ag, W and Au were analyzed. The dependence of the HXR yield and power on geometry of the load, the wire material, and load mass was observed. The presence of aluminum wires in the load with the main material such as stainless steel, Cu, Mo, Ag, W or Au in combined wire array decreases HXR yield. The comparison of emission characteristics of HXR and generation of electron beams in CCWA and NCWA on both the high impedance Zebra generator and low impedance COBRA generator were investigated. Some of the "cold" K- shell spectral lines (0.7-2.3Á) and cold L-shell spectral lines (1-1.54Á) in the HXR region were observed only during the interaction of electron beam with load material and anode surface. These observations suggest that the mechanism of HXR emission should be associated with non-thermal mechanisms such as the interaction of the electron beam with the load material. In order to estimate the characteristics of the high-energetic electron beam in Z-pinch plasmas, a hard x-ray polarimeter (HXP) has been developed and used in experiments on the Zebra generator. The electron beams (energy more than 30keV) have been investigated with measurements of the polarization state of the emitted bremsstrahlung radiation from plasma. We also analyzed characteristics of energetic electron beams produced by implosions of multi-planar wire arrays, compact cylindrical and nested wire arrays as well as X-pinches. Direct indications of electron beams (electron cutoff energy EB from 42-250 keV) were obtained by using the measured current of a Faraday cup placed above the anode or mechanical damage observed in the anode surface. A comparison of total electron beam energy and the spatial and spectral analysis of the parameters of plasmas were investigated for different wire materials. The dependences of the total electron beam energy (E b) on the wire material and the geometry of the wire array load were studied.

  1. Effects of Welding Parameters on Mechanical Properties in Electron Beam Welded CuCrZr Alloy Plates

    NASA Astrophysics Data System (ADS)

    Jaypuria, Sanjib; Doshi, Nirav; Pratihar, Dilip Kumar

    2018-03-01

    CuCrZr alloys are attractive structural materials for plasma-facing components (PFC) and heat sink element in the International Thermonuclear Experimental Reactor (ITER) fusion reactors. This material has gained so much attention because of its high thermal conductivity and fracture toughness, high resistance to radiation damage and stability at elevated temperatures. The objective of this work is to study the effects of electron beam welding parameters on the mechanical strength of the butt welded CuCrZr joint. Taguchi method is used as the design of experiments to optimize the input parameters, such as accelerating voltage, beam current, welding speed, oscillation amplitude and frequency. The joint strength and ductility are the desired responses, which are measured through ultimate tensile strength and percent elongation, respectively. Accelerating voltage and welding speed are found to have significant influence on the strength. A combination of low amplitude and high-frequency oscillation is suggested for the higher joint strength and ductility. There is a close agreement between Taguchi predicted results and experimental ones. Fractographic analysis of joint and weld zone analysis are carried out to study the failure behaviour and microstructural variation in the weld zone, respectively.

  2. Influence on surface characteristics of electron beam melting process (EBM) by varying the process parameters

    NASA Astrophysics Data System (ADS)

    Dolimont, Adrien; Michotte, Sebastien; Rivière-Lorphèvre, Edouard; Ducobu, François; Vivès, Solange; Godet, Stéphane; Henkes, Tom; Filippi, Enrico

    2017-10-01

    The use of additive manufacturing processes keeps growing in aerospace and biomedical industry. Among the numerous existing technologies, the Electron Beam Melting process has advantages (good dimensional accuracy, fully dense parts) and disadvantages (powder handling, support structure, high surface roughness). Analyzes of the surface characteristics are interesting to get a better understanding of the EBM operations. But that kind of analyzes is not often found in the literature. The main goal of this study is to determine if it is possible to improve the surface roughness by modifying some parameters of the process (scan speed function, number of contours, order of contours, etc.) on samples with different thicknesses. The experimental work on the surface roughness leads to a statistical analysis of 586 measures of EBM simple geometry parts.

  3. Experimental determination of the effective point of measurement of cylindrical ionization chambers for high-energy photon and electron beams.

    PubMed

    Huang, Yanxiao; Willomitzer, Christian; Zakaria, Golam Abu; Hartmann, Guenther H

    2010-01-01

    Measurements of depth-dose curves in water phantom using a cylindrical ionization chamber require that its effective point of measurement is located at the measuring depth. Recommendations for the position of the effective point of measurement with respect to the central axis valid for high-energy electron and photon beams are given in dosimetry protocols. According to these protocols, the use of a constant shift P(eff) is currently recommended. However, this is still based on a very limited set of experimental results. It is therefore expected that an improved knowledge of the exact position of the effective point of measurement will further improve the accuracy of dosimetry. Recent publications have revealed that the position of the effective point of measurement is indeed varying with beam energy, field size and also with chamber geometry. The aim of this study is to investigate whether the shift of P(eff) can be taken to be constant and independent from the beam energy. An experimental determination of the effective point of measurement is presented based on a comparison between cylindrical chambers and a plane-parallel chamber using conventional dosimetry equipment. For electron beams, the determination is based on the comparison of halfvalue depth R(50) between the cylindrical chamber of interest and a well guarded plane-parallel Roos chamber. For photon beams, the depth of dose maximum, d(max), the depth of 80% dose, d(80), and the dose parameter PDD(10) were used. It was again found that the effective point of measurement for both, electron and photon beams Dosimetry, depends on the beam energy. The deviation from a constant value remains very small for photons, whereas significant deviations were found for electrons. It is therefore concluded that use of a single upstream shift value from the centre of the cylindrical chamber as recommended in current dosimetry protocols is adequate for photons, however inadequate for accurate electron beam dosimetry.

  4. A singly charged ion source for radioactive {sup 11}C ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katagiri, K.; Noda, A.; Nagatsu, K.

    2016-02-15

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source wasmore » found to have favorable performance as a singly charged ion source.« less

  5. Steering and collimating ballistic electrons with amphoteric refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radu, A.; Dragoman, D.; Iftimie, S.

    2012-07-15

    We show that amphoteric refraction of ballistic electrons, i.e., positive or negative refraction depending on the incidence angle, occurs at an interface between an isotropic and an anisotropic medium and can be employed to steer and collimate electron beams. The steering angle is determined by the materials' parameters, but the degree of collimation can be tuned in a significant range by changing the energy of ballistic electrons.

  6. Coherence parameter measurements for neon and hydrogen

    NASA Astrophysics Data System (ADS)

    Wright, Robert; Hargreaves, Leigh; Khakoo, Murtadha; Zatsarinny, Oleg; Bartschat, Klaus; Stauffer, Al

    2015-09-01

    We present recent coherence parameter measurements for excitation of neon and hydrogen by 50 eV electrons. The measurements were made using a crossed electron/gas beam spectrometer, featuring a hemispherically selected electron energy analyzer for detecting scattered electrons and double-reflection VUV polarization analyzer to register fluorescence photons. Time-coincidence counting methods on the electron and photon signals were employed to determine Stokes Parameters at each scattering angle, with data measured at angles between 20 - 115 degrees. The data are compared with calculated results using the B-Spline R-Matrix (BSR) and Relativistic Distorted Wave (RDW) approaches. Measurements were made of both the linear (Plin and γ) and circular (Lperp) parameters for the lowest lying excited states in these two targets. We particularly focus on results in the Lperp parameter, which shows unusual behavior in these particular targets, including strong sign changes implying reversal of the angular momentum transfer. In the case of neon, the unusual behavior is well captured by the BSR, but not by other models.

  7. Mutual synchronization of weakly coupled gyrotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.

    2015-09-15

    The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.

  8. Technology and techniques for parity experiments at Mainz: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Diefenbach, Juergen

    2016-03-01

    For almost 20 years the Mainz accelerator facility MAMI delivered polarized electron beam to the parity violation experiment A4 that measured the contributions of strange sea quarks to the proton electromagnetic factors. Parity violation asymmetries were of the order of A ~5 ppm. Currently the A1 collaboration carries out single spin asymmetry measurements at MAMI (A ~20 ppm) to prepare for a measurement of neutron skin depth on lead (A ~1 ppm). For such high precision experiments active stabilization and precise determination of beam parameters like current, energy, position, and angle are essential requirements in addition to precision electron beam polarimetry. For the future P2 experiment at the planned superconducting accelerator MESA in Mainz the requirements for beam quality will be even higher. P2 will measure the weak mixing angle with 0.15 percent total uncertainty and, in addition, the neutron skin depth of lead as well as parity violation in electron scattering off 12C. A tiny asymmetry of only -0.03 ppm creates the needs to combine digital feedback with feedforward stabilizations along with new polarimetry developments like a hydro-Moller and a double-Mott polarimeter to meet the goals for systematic uncertainty. This talk gives an overview of our experience with polarimetry, analog feedbacks and compensation techniques for apparative asymmetries at the A4 experiment. It finally leads to the requirements and new techniques for the pioneering P2 experiment at MESA. First results from beam tests currently carried out at the existing MAMI accelerator, employing high speed analog/digital conversion and FPGAs for control of beam parameters, will be presented. Supported by the cluster of excellence PRISMA and the Deutsche Forschungsgemeinschaft in the framework of the SFB1044.

  9. RF emittance in a low energy electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Sanaye Hajari, Sh.; Haghtalab, S.; Shaker, H.; Kelisani, M. Dayyani

    2018-04-01

    Transverse beam dynamics of an 8 MeV low current (10 mA) S-band traveling wave electron linear accelerator has been studied and optimized. The main issue is to limit the beam emittance, mainly induced by the transverse RF forces. The linac is being constructed at Institute for Research in Fundamental Science (IPM), Tehran Iran Labeled as Iran's First Linac, nearly all components of this accelerator are designed and constructed within the country. This paper discusses the RF coupler induced field asymmetry and the corresponding emittance at different focusing levels, introduces a detailed beam dynamics design of a solenoid focusing channel aiming to reduce the emittance growth and studies the solenoid misalignment tolerances. In addition it has been demonstrated that a prebuncher cavity with appropriate parameters can help improving the beam quality in the transverse plane.

  10. Higher harmonics generation in relativistic electron beam with virtual cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in themore » spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.« less

  11. The effect of tail stretching on the ionospheric accessibility of relativistic electron beam experiments

    NASA Astrophysics Data System (ADS)

    Willard, J.; Johnson, J.; Sanchez, E. R.; Kaganovich, I.; Greklek-McKeon, M.; Powis, T.

    2017-12-01

    New accelerator technologies have made it possible to install a lightweight electron beam accelerator onto small to medium satellites. Electron beams fired along the geomagnetic field would be able to carry energy flux into the ionosphere if they were fired into the loss cone, making these particles observable from the ground. Such an experiment would provide a way to accurately map field lines. One of the important challenges to utilizing this concept is understanding accessibility of these electrons to the ionosphere. While relativistic electron beams are generally more stable than lower energy beams, they are more sensitive to the effects of field-line curvature, which can significantly modify the loss cone [Porazik et al., 2014] making accessibility to the ionosphere sensitive to the launch angle with respect to the magnetic field. We examine the loss cone for 1 MeV electrons in a realistic magnetospheric geometry considering, in particular, the role of field-line stretching. To map the loss cone, we consider conservation of the first adiabatic invariant to second order in ρ/L using the asymptotic series derived by Gardner [Phys Fluids, 1966], which is valid on the midnight meridian. We investigate the loss cones for different magnetic field models controlled by a stretching parameter over the entire midnight meridian. We found that, because tail stretching increases field line curvature near the midplane but decreases curvature elsewhere, accessibility to the ionosphere is increased by tail stretching in regions above and below the midplane, although accessibility of particles passing through the midplane is reduced. This result implies that satellites armed with electron beam accelerators may be able to visibly affect the atmosphere from distances greater than previously anticipated.

  12. Experimental study on secondary electron emission characteristics of Cu

    NASA Astrophysics Data System (ADS)

    Liu, Shenghua; Liu, Yudong; Wang, Pengcheng; Liu, Weibin; Pei, Guoxi; Zeng, Lei; Sun, Xiaoyang

    2018-02-01

    Secondary electron emission (SEE) of a surface is the origin of the multipacting effect which could seriously deteriorate beam quality and even perturb the normal operation of particle accelerators. Experimental measurements on secondary electron yield (SEY) for different materials and coatings have been developed in many accelerator laboratories. In fact, the SEY is just one parameter of secondary electron emission characteristics which include spatial and energy distribution of emitted electrons. A novel experimental apparatus was set up in China Spallation Neutron Source, and an innovative method was applied to obtain the whole characteristics of SEE. Taking Cu as the sample, secondary electron yield, its dependence on beam injection angle, and the spatial and energy distribution of secondary electrons were achieved with this measurement device. The method for spatial distribution measurement was first proposed and verified experimentally. This contribution also tries to give all the experimental results a reasonable theoretical analysis and explanation.

  13. GHz laser-free time-resolved transmission electron microscopy: A stroboscopic high-duty-cycle method.

    PubMed

    Qiu, Jiaqi; Ha, Gwanghui; Jing, Chunguang; Baryshev, Sergey V; Reed, Bryan W; Lau, June W; Zhu, Yimei

    2016-02-01

    A device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at >1GHz repetition rates, as well as controllably manipulates the resulting pulses. Ultimately, it leads to negligible electron pulse phase-space degradation compared to the incoming dc beam parameters. The temporal pulse length and repetition rate for the EMMP can be continuously tunable over wide ranges. Applying the EMMP to a transmission electron microscope (TEM) with any dc electron source (e.g. thermionic, Schottky, or field-emission source), a GHz stroboscopic high-duty-cycle TEM can be realized. Unlike in many recent developments in time-resolved TEM that rely on a sample pumping laser paired with a laser launching electrons from a photocathode to probe the sample, there is no laser in the presented experimental set-up. This is expected to be a significant relief for electron microscopists who are not familiar with laser systems. The EMMP and the sample are externally driven by a radiofrequency (RF) source synchronized through a delay line. With no laser pumping the sample, the problem of the pump laser induced residual heating/damaging the sample is eliminated. As many RF-driven processes can be cycled indefinitely, sampling rates of 1-50GHz become accessible. Such a GHz stroboscopic TEM would open up a new paradigm for in situ and in operando experiments to study samples externally driven electromagnetically. Complementary to the lower (MHz) repetition rates experiments enabled by laser photocathode TEM, new experiments in the multi-GHz regime will be enabled by the proposed RF design. Because TEM is also a platform for various analytical methods, there are infinite application opportunities in energy and electronics to resolve charge (electronic and ionic) transport, and magnetic, plasmonic and excitonic dynamics in advanced functional materials. In addition, because the beam duty-cycle can be as high as ~10(-1) (or 10%), detection can be accomplished by commercially available detectors. In this article, we report an optimal design of the EMMP. The optimal design was found using an analytical generalized matrix approach in the thin lens approximation along with detailed beam dynamics taking actual realistic dc beam parameters in a TEM operating at 200keV. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Start-Up of a Pulsed Beam Free Electron Laser (FEL) Oscillator

    DTIC Science & Technology

    1983-04-01

    By slightly increasing the frequency of the R.F. accelerating field, Wacc during the start-up period, i.e., decreasing the beam pulse separation, the...levels. The required fractional increase in Wacc is 16L 1- 6L2 1/Lbow 10 - 6 for the parameters of ref. (3,4). The same 6 effect may also be realized

  15. SU-E-T-313: Dosimetric Deviation of Misaligned Beams for a 6 MV Photon Linear Accelerator Using Monte Carlo Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S

    2015-06-15

    Purpose: To quantify the dosimetric variations of misaligned beams for a linear accelerator by using Monte Carlo (MC) simulations. Method and Materials: Misaligned beams of a Varian 21EX Clinac were simulated to estimate the dosimetric effects. All the linac head components for a 6 MV photon beam were implemented in BEAMnrc/EGSnrc system. For incident electron beam parameters, 6 MeV with 0.1 cm full-width-half-max Gaussian beam was used. A phase space file was obtained below the jaw per each misalignment condition of the incident electron beam: (1) The incident electron beams were tilted by 0.5, 1.0 and 1.5 degrees on themore » x-axis from the central axis. (2) The center of the incident electron beam was off-axially moved toward +x-axis by 0.1, 0.2, and 0.3 cm away from the central axis. Lateral profiles for each misaligned beam condition were acquired at dmax = 1.5 cm and 10 cm depth in a rectangular water phantom. Beam flatness and symmetry were calculated by using the lateral profile data. Results: The lateral profiles were found to be skewed opposite to the angle of the incident beam for the tilted beams. For the displaced beams, similar skewed lateral profiles were obtained with small shifts of penumbra on the +x-axis. The variations of beam flatness were 3.89–11.18% and 4.12–42.57% for the tilted beam and the translated beam, respectively. The beam symmetry was separately found to be 2.95 −9.93% and 2.55–38.06% separately. It was found that the percent increase of the flatness and the symmetry values are approximated 2 to 3% per 0.5 degree tilt or per 1 mm displacement. Conclusion: This study quantified the dosimetric effects of misaligned beams using MC simulations. The results would be useful to understand the magnitude of the dosimetric deviations for the misaligned beams.« less

  16. Development of a compact electron-cyclotron-resonance ion source for high-energy carbon-ion therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.

    2005-11-01

    Ion sources for medical facilities should have characteristics of easy maintenance, low electric power consumption, good stability, and long operation time without problems (one year or longer). For this, a 10GHz compact electron-cyclotron-resonance ion source with all-permanent magnets (Kei2 source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59T at the extraction side and 0.87T at the gas-injection side, while the minimum B strength is 0.25T. These parameters have been optimized for the production of C4+ based on the experience at the 10GHz NIRS-ECR ion source and a previous prototype compact source (Kei source). The Kei2 source has a diameter of 320mm and a length of 295mm. The beam intensity of C4+ was obtained to be 530μA under an extraction voltage of 40kV. The beam stability was better than 6% at C4+ of 280μA during 90h with no adjustment of the operation parameters. The details of the design and beam tests of the source are described in this paper.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janke, C.J.

    Electron beam (EB) curing is a technology that promises, in certain applications, to deliver lower cost and higher performance polymer matrix composite (PMC) structures compared to conventional thermal curing processes. PMCs enhance performance by making products lighter, stronger, more durable, and less energy demanding. They are essential in weight- and performance-dominated applications. Affordable PMCs can enhance US economic prosperity and national security. US industry expects rapid implementation of electron beam cured composites in aircraft and aerospace applications as satisfactory properties are demonstrated, and implementation in lower performance applications will likely follow thereafter. In fact, at this time and partly becausemore » of discoveries made in this project, field demonstrations are underway that may result in the first fielded applications of electron beam cured composites. Serious obstacles preventing the widespread use of electron beam cured PMCs in many applications are their relatively poor interfacial properties and resin toughness. The composite shear strength and resin toughness of electron beam cured carbon fiber reinforced epoxy composites were about 25% and 50% lower, respectively, than those of thermally cured composites of similar formulations. The essential purpose of this project was to improve the mechanical properties of electron beam cured, carbon fiber reinforced epoxy composites, with a specific focus on composite shear properties for high performance aerospace applications. Many partners, sponsors, and subcontractors participated in this project. There were four government sponsors from three federal agencies, with the US Department of Energy (DOE) being the principal sponsor. The project was executed by Oak Ridge National Laboratory (ORNL), NASA and Department of Defense (DOD) participants, eleven private CRADA partners, and two subcontractors. A list of key project contacts is provided in Appendix A. In order to properly manage the large project team and properly address the various technical tasks, the CRADA team was organized into integrated project teams (IPT's) with each team focused on specific research areas. Early in the project, the end user partners developed ''exit criteria'', recorded in Appendix B, against which the project's success was to be judged. The project team made several important discoveries. A number of fiber coatings or treatments were developed that improved fiber-matrix adhesion by 40% or more, according to microdebond testing. The effects of dose-time and temperature-time profiles during the cure were investigated, and it was determined that fiber-matrix adhesion is relatively insensitive to the irradiation procedure, but can be elevated appreciably by thermal postcuring. Electron beam curable resin properties were improved substantially, with 80% increase in electron beam 798 resin toughness, and {approx}25% and 50% improvement, respectively, in ultimate tensile strength and ultimate tensile strain vs. earlier generation electron beam curable resins. Additionally, a new resin electron beam 800E was developed with generally good properties, and a very notable 120% improvement in transverse composite tensile strength vs. earlier generation electron beam cured carbon fiber reinforced epoxies. Chemical kinetics studies showed that reaction pathways can be affected by the irradiation parameters, although no consequential effects on material properties have been noted to date. Preliminary thermal kinetics models were developed to predict degree of cure vs. irradiation and thermal parameters. These models are continually being refined and validated. Despite the aforementioned impressive accomplishments, the project team did not fully realize the project objectives. The best methods for improving adhesion were combined with the improved electron beam 3K resin to make prepreg and uni-directional test laminates from which composite properties could be determined. Nevertheless, only minor improvements in the composite shear strength, and moderate improvements in the transverse tensile strength, were achieved. The project team was not satisfied with the laminate quality achieved, and low quality (specifically, high void fraction) laminates will compromise the composite properties. There were several problems with the prepregging and fabrication, many of them related to the use of new fiber treatments.« less

  18. Growth of ring ripple in a collisionless plasma in relativistic-ponderomotive regime and its effect on stimulated Raman backscattering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Priyanka; Purohit, Gunjan, E-mail: gunjan75@gmail.com; Gauniyal, Rakhi

    A theoretical and numerical study has been made of the propagation of a ring rippled laser beam in collisionless plasma with dominant relativistic ponderomotive nonlinearity and its effect on the excitation of electron plasma wave and stimulated Raman backscattering process. The growth of ring ripple, riding on an intense Gaussian laser beam in plasma has also been studied. A paraxial-ray and WKB approximation has been invoked to understand the nature of propagation of the ring rippled Gaussian laser beam in plasma, electron plasma wave and back reflectivity under the influence of both nonlinearities. The growth rate and focusing of amore » ring rippled beam is found to be considerably affected by the power of the main beam and the phase angle between the electric vectors of the main beam and the ring ripple. It has also been observed that the focusing is released by the coupling of relativistic and ponderomotive nonlinearities, which significantly affected the dynamics of the excitation of electron plasma wave and back reflectivity of stimulated Raman scattering (SRS). Due to the strong coupling between ring rippled laser beam and the excited electron plasma wave, back reflectivity of SRS is enhanced. It has been observed from the computational results that the effect of the increased intensity leads to suppression of SRS back reflectivity. The results have been presented for established laser and plasma parameters.« less

  19. Line-edge quality optimization of electron beam resist for high-throughput character projection exposure utilizing atomic force microscope analysis

    NASA Astrophysics Data System (ADS)

    Ikeno, Rimon; Mita, Yoshio; Asada, Kunihiro

    2017-04-01

    High-throughput electron-beam lithography (EBL) by character projection (CP) and variable-shaped beam (VSB) methods is a promising technique for low-to-medium volume device fabrication with regularly arranged layouts, such as standard-cell logics and memory arrays. However, non-VLSI applications like MEMS and MOEMS may not fully utilize the benefits of CP method due to their wide variety of layout figures including curved and oblique edges. In addition, the stepwise shapes that appear on such irregular edges by VSB exposure often result in intolerable edge roughness, which may degrade performances of the fabricated devices. In our former study, we proposed a general EBL methodology for such applications utilizing a combination of CP and VSB methods, and demonstrated its capabilities in electron beam (EB) shot reduction and edge-quality improvement by using a leading-edge EB exposure tool, ADVANTEST F7000S-VD02, and high-resolution Hydrogen Silsesquioxane resist. Both scanning electron microscope and atomic force microscope observations were used to analyze quality of the resist edge profiles to determine the influence of the control parameters used in the exposure-data preparation process. In this study, we carried out detailed analysis of the captured edge profiles utilizing Fourier analysis, and successfully distinguish the systematic undulation by the exposed CP character profiles from random roughness components. Such capability of precise edge-roughness analysis is useful to our EBL methodology to maintain both the line-edge quality and the exposure throughput by optimizing the control parameters in the layout data conversion.

  20. The design and dosimetric evaluation of tannin-based Rhizophora spp. particleboards as phantoms for high energy photons and electrons

    NASA Astrophysics Data System (ADS)

    Yusof, M. F. Mohd; Abdullah, R.; Tajuddin, A. A.; Hashim, R.; Bauk, S.; Hamid, P. N. K. Abd

    2018-01-01

    A set of phantom with an external dimension of 30 cm x 30 cm was constructed from tannin-based Rhizophora spp. particleboards similar to the solid water phantoms. The dosimetric characteristics of the particleboard phantoms were evaluated at high energy photons and electrons by measuring the beam output at 6 MV photons and 6 MeV electrons based on the IAEA TRS 398:2000 protocol. The tissue-phantom ratio (TPR20,10) was measured at 6 and 10 MV photons. The beam output calibration of the particleboards was in good agreement to water and solid water phantoms at 6 MV photons with percentage difference of 1.7 and 6.2% respectively. The beam output calibration of the tannin-based Rhizophora spp. particleboards at 6 MeV electrons on the other hand were in excellent agreement to water with percentage difference of 0.3. The percentage depth dose of tannin-based Rhizophora spp. particleboards were in agreement to water and solid water within 4.5% when measured using ionization chamber and EBT2 film. The electron beam parameters of R50, R80 and R90 at 6 MeV electrons also were in good agreement to water and solid water phantoms. The overall results had indicated the suitability of tannin-based Rhizophora spp. particleboards as water substitute phantom materials for high energy photons and electrons.

  1. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  2. Thermal limits on MV x-ray production by bremsstrahlung targets in the context of novel linear accelerators.

    PubMed

    Wang, Jinghui; Trovati, Stefania; Borchard, Philipp M; Loo, Billy W; Maxim, Peter G; Fahrig, Rebecca

    2017-12-01

    To study the impact of target geometrical and linac operational parameters, such as target material and thickness, electron beam size, repetition rate, and mean current on the ability of the radiotherapy treatment head to deliver high-dose-rate x-ray irradiation in the context of novel linear accelerators capable of higher repetition rates/duty cycle than conventional clinical linacs. The depth dose in a water phantom without a flattening filter and heat deposition in an x-ray target by 10 MeV pulsed electron beams were calculated using the Monte-Carlo code MCNPX, and the transient temperature behavior of the target was simulated by ANSYS. Several parameters that affect both the dose distribution and temperature behavior were investigated. The target was tungsten with a thickness ranging from 0 to 3 mm and a copper heat remover layer. An electron beam with full width at half maximum (FWHM) between 0 and3 mm and mean current of 0.05-2 mA was used as the primary beam at repetition rates of 100, 200, 400, and 800 Hz. For a 10 MeV electron beam with FWHM of 1 mm, pulse length of 5 μs, by using a thin tungsten target with thickness of 0.2 mm instead of 1 mm, and by employing a high repetition rate of 800 Hz instead of 100 Hz, the maximum dose rate delivered can increase two times from 0.57 to 1.16 Gy/s. In this simple model, the limiting factor on dose rate is the copper heat remover's softening temperature, which was considered to be 500°C in our study. A high dose rate can be obtained by employing thin targets together with high repetition rate electron beams enabled by novel linac designs, whereas the benefit of thin targets is marginal at conventional repetition rates. Next generation linacs used to increase dose rate need different target designs compared to conventional linacs. © 2017 American Association of Physicists in Medicine.

  3. Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krafft, C., E-mail: catherine.krafft@u-psud.fr; Universite´ Paris Sud, 91405 Orsay Cedex; Volokitin, A., E-mail: a.volokitin@mail.ru

    2016-03-25

    The self-consistent evolution of Langmuir turbulence generated by electron beams in solar wind plasmas with density inhomogeneities is calculated by numerical simulations based on a 1D Hamiltonian model. It is shown, owing to numerical simulations performed with parameters relevant to type III solar bursts’ conditions at 1 AU, that the presence of long-wavelength random density fluctuations of sufficiently large average level crucially modifies the well-known process of beam interaction with Langmuir waves in homogeneous plasmas.

  4. Active experiments in space plasmas; Symposium D4.1 of Commission D, COSPAR Scientific Assembly, 30th, Hamburg, Germany, July 11-21, 1994

    NASA Astrophysics Data System (ADS)

    Rietveld, M. T.

    1995-07-01

    Papers from the conference are presented and cover the following topics: ion and electron beams; ionospheric modification; spacecraft interactions; chemical releases; and plasma waves. Auroras and plasma emissions are reported from electron beam injection experiments on the EXCEDE 3 rocket and APEX satellite respectively. The important parameters affecting the charging of spacecraft during the operation of electron guns is covered. The Active Magnetospheric Particle Acceleration Satellite (AMPAS) mission utilizing dual-payload tethered satellites and both up and downward directed electron beams is proposed to study the magnetosphere. Recent results and associated theories from the Sura, Arecibo and Troms ionospheric heating facitlites are presented. The effects of neutral gases on spacecraft charging are examined in a series of rocket flights. Many results from the Combined Release and Radiation Effects Satellite chemical release experiments are presented. For individual titles, see A95-83500 through A95-83535.

  5. Design, Modeling and Simulations in the RACE Project: Preliminary study for the development of a transport line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, C. O.; Hunt, A. W.; Idaho State University, Department of Physics, PO Box 8106, Pocatello, ID 83209

    2007-02-12

    As part of the Reactor Accelerator Coupling Experiment (RACE) a set of preliminary studies were conducted to design a transport beam line that could bring a 25 MeV electron beam from a Linear Accelerator to a neutron-producing target inside a subcritical system. Because of the relatively low energy beam, the beam size and a relatively long beam line (implicating a possible divergence problem) different parameters and models were studied before a final design could be submitted for assembly. This report shows the first results obtained from different simulations of the transport line optics and dynamics.

  6. A new evaluation method of electron optical performance of high beam current probe forming systems.

    PubMed

    Fujita, Shin; Shimoyama, Hiroshi

    2005-10-01

    A new numerical simulation method is presented for the electron optical property analysis of probe forming systems with point cathode guns such as cold field emitters and the Schottky emitters. It has long been recognized that the gun aberrations are important parameters to be considered since the intrinsically high brightness of the point cathode gun is reduced due to its spherical aberration. The simulation method can evaluate the 'threshold beam current I(th)' above which the apparent brightness starts to decrease from the intrinsic value. It is found that the threshold depends on the 'electron gun focal length' as well as on the spherical aberration of the gun. Formulas are presented to estimate the brightness reduction as a function of the beam current. The gun brightness reduction must be included when the probe property (the relation between the beam current l(b) and the probe size on the sample, d) of the entire electron optical column is evaluated. Formulas that explicitly consider the gun aberrations into account are presented. It is shown that the probe property curve consists of three segments in the order of increasing beam current: (i) the constant probe size region, (ii) the brightness limited region where the probe size increases as d approximately I(b)(3/8), and (iii) the angular current intensity limited region in which the beam size increases rapidly as d approximately I(b)(3/2). Some strategies are suggested to increase the threshold beam current and to extend the effective beam current range of the point cathode gun into micro ampere regime.

  7. Modulational instability of helicon waves in a magnetoactive semiconductor n-InSb

    NASA Astrophysics Data System (ADS)

    Salimullah, M.; Ferdous, T.

    1984-03-01

    In this paper the modulational instabilithy of a beam of high amplitude helicon wave in a magnetoactive piezoelectric semiconductor is studied. The nonlinear response of electrons in the semiconductor plasma has been found by following the fluid model of homogeneous plasmas. The low frequency nonlinearity has been taken through the ponderomotive force on electrons, whereas the nonlinearity in the scattered helicon waves arises through the nonlinear current densities of electrons. For typical plasma parameters in n-type indium antimonide and for a considerable power density (approximately 20 kW/sq cm) of the incident helicon beam, the growth rate of the modulational instability is quite high (approximately 10 to the 7th rad/s).

  8. Current transport and capacitance-voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique

    NASA Astrophysics Data System (ADS)

    Nasr, Mahmoud; El Radaf, I. M.; Mansour, A. M.

    2018-04-01

    In this study, a crystalline n-PbTe/p-GaP heterojunction was fabricated using the electron beam deposition technique. The structural properties of the prepared heterojunction were examined by X-ray diffraction and scanning electron microscopy. The dark current-voltage characteristics of the heterojunction were investigated at different temperatures ranging from 298 to 398 K. The rectification factor, series resistance, shunt resistance, diode ideality factor, and effective barrier height (ϕb) were determined. The photovoltaic parameters were identified based on the current density-voltage characteristics under illumination. The capacitance-voltage characteristics showed that the junction was abrupt in nature.

  9. An Adiabatic Phase-Matching Accelerator

    DOE PAGES

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...

    2018-05-25

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  10. Simulation of transvertron high power microwave sources

    NASA Astrophysics Data System (ADS)

    Sullivan, Donald J.; Walsh, John E.; Arman, M. Joseph; Godfrey, Brendan B.

    1989-07-01

    The transvertron oscillator or amplifier is a new and efficient type of intense relativistic electron-beam-driven microwave radiation source. In the m = 0 axisymmetric version, it consists of single or multiple cylindrical cavities driven at one of the TM(0np) resonances by a high-voltage, low-impedance electron beam. There is no applied magnetic field, and the oscillatory transverse motion acquired by the axially-injected electron beam is an essential part of the drive mechanism. The transvertron theory was systematically tested for a wide range of parameters and two possible applications. The simulations were designed to verify the theoretical predictions, assess the transvertron as a possible source of intense microwave radiation, and study its potential as a microwave amplifier. Numerical results agree well in all regards with the analytical theory. Simulations were carried out in two dimensions using CCUBE, with the exception of radial loading cases, where the three-dimensional code SOS was required.

  11. Synchronous acceleration with tapered dielectric-lined waveguides

    DOE PAGES

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...

    2018-05-25

    Here, we present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  12. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.

    Here, we report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥ 1T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε B ≈ 10 -3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma formore » thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.« less

  13. Measurement of surface recombination velocity for silicon solar cells using a scanning electron microscope with pulsed beam

    NASA Technical Reports Server (NTRS)

    Daud, T.; Cheng, L. J.

    1981-01-01

    The role of surface recombination velocity in the design and fabrication of silicon solar cells is discussed. A scanning electron microscope with pulsed electron beam was used to measure this parameter of silicon surfaces. It is shown that the surface recombination velocity, s, increases by an order of magnitude when an etched surface degrades, probably as a result of environmental reaction. A textured front-surface-field cell with a high-low junction near the surface shows the effect of minority carrier reflection and an apparent reduction of s, whereas a tandem-junction cell shows an increasing s value. Electric fields at junction interfaces in front-surface-field and tandem-junction cells acting as minority carrier reflectors or sinks tend to alter the value of effective surface recombination velocity for different beam penetration depths. A range of values of s was calculated for different surfaces.

  14. Development of a novel optimization tool for electron linacs inspired by artificial intelligence techniques in video games

    NASA Astrophysics Data System (ADS)

    Meier, E.; Biedron, S. G.; LeBlanc, G.; Morgan, M. J.

    2011-03-01

    This paper reports the results of an advanced algorithm for the optimization of electron beam parameters in Free Electron Laser (FEL) Linacs. In the novel approach presented in this paper, the system uses state of the art developments in video games to mimic an operator's decisions to perform an optimization task when no prior knowledge, other than constraints on the actuators is available. The system was tested for the simultaneous optimization of the energy spread and the transmission of the Australian Synchrotron Linac. The proposed system successfully increased the transmission of the machine from 90% to 97% and decreased the energy spread of the beam from 1.04% to 0.91%. Results of a control experiment performed at the new FERMI@Elettra FEL is also reported, suggesting the adaptability of the scheme for beam-based control.

  15. An Adiabatic Phase-Matching Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe

    2017-12-22

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  16. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    DOE PAGES

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; ...

    2017-11-03

    Here, we report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥ 1T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε B ≈ 10 -3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma formore » thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.« less

  17. The curvature of sensitometric curves for Kodak XV-2 film irradiated with photon and electron beams.

    PubMed

    van Battum, L J; Huizenga, H

    2006-07-01

    Sensitometric curves of Kodak XV-2 film, obtained in a time period of ten years with various types of equipment, have been analyzed both for photon and electron beams. The sensitometric slope in the dataset varies more than a factor of 2, which is attributed mainly to variations in developer conditions. In the literature, the single hit equation has been proposed as a model for the sensitometric curve, as with the parameters of the sensitivity and maximum optical density. In this work, the single hit equation has been translated into a polynomial like function as with the parameters of the sensitometric slope and curvature. The model has been applied to fit the sensitometric data. If the dataset is fitted for each single sensitometric curve separately, a large variation is observed for both fit parameters. When sensitometric curves are fitted simultaneously it appears that all curves can be fitted adequately with a sensitometric curvature that is related to the sensitometric slope. When fitting each curve separately, apparently measurement uncertainty hides this relation. This relation appears to be dependent only on the type of densitometer used. No significant differences between beam energies or beam modalities are observed. Using the intrinsic relation between slope and curvature in fitting sensitometric data, e.g., for pretreatment verification of intensity-modulated radiotherapy, will increase the accuracy of the sensitometric curve. A calibration at a single dose point, together with a predetermined densitometer-dependent parameter ODmax will be adequate to find the actual relation between optical density and dose.

  18. Pros and cons of characterising an optical translocation setup

    NASA Astrophysics Data System (ADS)

    Maphanga, Charles; Malabi, Rudzani; Ombinda-Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    The delivery of genetic material and drugs into mammalian cells using femtosecond (fs) laser pulses is escalating rapidly. This novel light based technique achieved through a precise focusing of a laser beam on the plasma membrane is called photoporation. This technique is attained using ultrashort laser pulses to irradiate plasma membrane of mammalian cells, thus resulting in the accumulation of a vast amount of free electrons. These generated electrons react photochemically with the cell membrane, resulting in the generation of sub-microscopic pores on the cell membrane enabling a variety of extracellular media to diffuse into the cell. This study is aimed at critically analysing the "do's and don'ts" of designing, assembling, and characterising an optical translocation setup using a femtosecond legend titanium sapphire regenerative amplifier pulsed laser (Gaussian beam, 800 nm, 1 kHz, 113 fs, and an output power of 850 mW). The main objective in our study is to determine optical phototranslocation parameters which are compatible to the plasma membrane and cell viability. Such parameters included beam profiling, testing a range of laser fluencies suitable for photoporation, assessment of the beam quality and laser-cell interaction time. In our study, Chinese Hamster Ovary-K1 (CHO-K1) cells were photoporated in the presence of trypan blue to determine optimal parameters for photoporation experiment. An average power of 4.5 μW, exposure time of 7 ms, with a laser beam spot of 1.1 μm diameter at the focus worked optimally without any sign of cell stress and cytoplasmic bleeding. Cellular responses post laser treatment were analysed using cell morphology studies.

  19. Bolt beam propagation analysis

    NASA Astrophysics Data System (ADS)

    Shokair, I. R.

    BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.

  20. Mechanical Properties of Aluminum-Based Dissimilar Alloy Joints by Power Beams, Arc and FSW Processes

    NASA Astrophysics Data System (ADS)

    Okubo, Michinori; Kon, Tomokuni; Abe, Nobuyuki

    Dissimilar smart joints are useful. In this research, welded quality of dissimilar aluminum alloys of 3 mm thickness by various welding processes and process parameters have been investigated by hardness and tensile tests, and observation of imperfection and microstructure. Base metals used in this study are A1050-H24, A2017-T3, A5083-O, A6061-T6 and A7075-T651. Welding processes used are YAG laser beam, electron beam, metal inert gas arc, tungsten inert gas arc and friction stir welding. The properties of weld zones are affected by welding processes, welding parameters and combination of base metals. Properties of high strength aluminum alloy joints are improved by friction stir welding.

  1. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Zaslavsky, V. Yu.; Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of themore » incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.« less

  2. Generation, and applications of stable, 100-500-MeV, dark-current-free beams, from a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Banerjee, Sudeep

    2011-10-01

    This talk will report the production of high energy, quasi-monoenergetic electron bunches without the low-energy electron background that is typically detected from self-injected laser-wakefield accelerators. These electron bunches are produced when the accelerator is operated in the blowout regime, and the laser and plasma parameters are optimized. High-contrast, high power (30-60 TW) and ultra-short-duration (30 fs) laser pulses are focused onto He-gas-jet targets. The high energy (300-400 MeV) monoenergetic (energy spread < 10%) beams are characterized by 1-4-mrad divergence, pointing stability of 1-2 mrad, and a few-percent shot-to-shot fluctuation of peak energy. The results are scalable: the beam energy can be tuned by appropriate choice of acceleration length, laser power and plasma density. Three-dimensional particle-in-cell simulations show that these electron beams are generated when the accelerator is operated near the self-injection threshold, which suppresses dark current (continuous injection in the first bucket). Suppression of dark current is required to minimize noise, improve the quality of secondary radiation sources, and minimize shielding requirements for high repetition-rate operation. Also reported, is the application of this novel electron-beam source to radiography of dense objects with sub-millimeter spatial resolution. In this case, the energetic electron beam is incident on a 2''-thick steel target with embedded voids, which are detected with image plates. Current progress on the generation of GeV energy electron beams with petawatt peak power laser pulses, from the upgraded DIOCLES laser system, will also be discussed. Work supported by U. S. DOE grants DEFG02-05ER15663, DE-FG02-08ER55000; DARPA grant FA9550-09-1-0009; DTRA grant HDTRA1-11-C-0001 and, DHS grant 2007-DN-007-ER0007-02. The laser is supported by AFOSR contracts FA 9550-08-1-0232, FA9550-07-1-0521.

  3. Characterization of peeled and unpeeled almond (Prunus amygdalus) flour after electron beam processing

    NASA Astrophysics Data System (ADS)

    Lanza, C. M.; Mazzaglia, A.; Paladino, R.; Auditore, L.; Barnà, R. C.; Loria, D.; Trifirò, A.; Trimarchi, M.; Bellia, G.

    2013-05-01

    Flours of unpeeled and peeled almond seeds have been irradiated with ionising radiation at 1.5 kGy dose by means of 5 MeV energy electron beam. The effects of ionising radiation have been studied concerning microbiological parameters, such as total mesophilic counts, mould, yeast, enterobacters, coliform bacteria, as well as physicochemical parameters, free fatty acid, peroxide number, humidity, activity water, aflatoxin, pesticides, and sensory evaluation of attributes regarding only appearance, olfactory and rheological aspects in accordance with the prescription of Italian laws about the consumption of irradiated food. The results, compared with non-irradiated samples from the same supply, show a sharp decrease of pathogen loads while no significant variations of physicochemical parameters and sensory descriptors have been noticed. These results indicate that irradiation at 1.5 kGy dose, lower than values usually reported in literature, seems to be still a suitable sanitation treatment to extend the shelf-life of this kind of foodstuff while maintaining its nutritional, safe and sensory characteristics.

  4. Measuring multielectron beam imaging fidelity with a signal-to-noise ratio analysis

    NASA Astrophysics Data System (ADS)

    Mukhtar, Maseeh; Bunday, Benjamin D.; Quoi, Kathy; Malloy, Matt; Thiel, Brad

    2016-07-01

    Java Monte Carlo Simulator for Secondary Electrons (JMONSEL) simulations are used to generate expected imaging responses of chosen test cases of patterns and defects with the ability to vary parameters for beam energy, spot size, pixel size, and/or defect material and form factor. The patterns are representative of the design rules for an aggressively scaled FinFET-type design. With these simulated images and resulting shot noise, a signal-to-noise framework is developed, which relates to defect detection probabilities. Additionally, with this infrastructure, the effect of detection chain noise and frequency-dependent system response can be made, allowing for targeting of best recipe parameters for multielectron beam inspection validation experiments. Ultimately, these results should lead to insights into how such parameters will impact tool design, including necessary doses for defect detection and estimations of scanning speeds for achieving high throughput for high-volume manufacturing.

  5. Evaluating focused ion beam patterning for position-controlled nanowire growth using computer vision

    NASA Astrophysics Data System (ADS)

    Mosberg, A. B.; Myklebost, S.; Ren, D.; Weman, H.; Fimland, B. O.; van Helvoort, A. T. J.

    2017-09-01

    To efficiently evaluate the novel approach of focused ion beam (FIB) direct patterning of substrates for nanowire growth, a reference matrix of hole arrays has been used to study the effect of ion fluence and hole diameter on nanowire growth. Self-catalyzed GaAsSb nanowires were grown using molecular beam epitaxy and studied by scanning electron microscopy (SEM). To ensure an objective analysis, SEM images were analyzed with computer vision to automatically identify nanowires and characterize each array. It is shown that FIB milling parameters can be used to control the nanowire growth. Lower ion fluence and smaller diameter holes result in a higher yield (up to 83%) of single vertical nanowires, while higher fluence and hole diameter exhibit a regime of multiple nanowires. The catalyst size distribution and placement uniformity of vertical nanowires is best for low-value parameter combinations, indicating how to improve the FIB parameters for positioned-controlled nanowire growth.

  6. In-situ electrochemical transmission electron microscopy for battery research.

    PubMed

    Mehdi, B Layla; Gu, Meng; Parent, Lucas R; Xu, Wu; Nasybulin, Eduard N; Chen, Xilin; Unocic, Raymond R; Xu, Pinghong; Welch, David A; Abellan, Patricia; Zhang, Ji-Guang; Liu, Jun; Wang, Chong-Min; Arslan, Ilke; Evans, James; Browning, Nigel D

    2014-04-01

    The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.

  7. Terahertz radiation source using a high-power industrial electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Kalkal, Yashvir; Kumar, Vinit

    2017-04-01

    High-power (˜ 100 kW) industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of μW can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.

  8. Systematic design and three-dimensional simulation of X-ray FEL oscillator for Shanghai Coherent Light Facility

    NASA Astrophysics Data System (ADS)

    Li, Kai; Deng, Haixiao

    2018-07-01

    The Shanghai Coherent Light Facility (SCLF) is a quasi-continuous wave hard X-ray free electron laser facility, which is currently under construction. Due to the high repetition rate and high-quality electron beams, it is straightforward to consider X-ray free electron laser oscillator (XFELO) operation for the SCLF. In this paper, the main processes for XFELO design, and parameter optimization of the undulator, X-ray cavity, and electron beam are described. A three-dimensional X-ray crystal Bragg diffraction code, named BRIGHT, was introduced for the first time, which can be combined with the GENESIS and OPC codes for the numerical simulations of the XFELO. The performance of the XFELO of the SCLF is investigated and optimized by theoretical analysis and numerical simulation.

  9. Third-dimension information retrieval from a single convergent-beam transmission electron diffraction pattern using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Pennington, Robert S.; Van den Broek, Wouter; Koch, Christoph T.

    2014-05-01

    We have reconstructed third-dimension specimen information from convergent-beam electron diffraction (CBED) patterns simulated using the stacked-Bloch-wave method. By reformulating the stacked-Bloch-wave formalism as an artificial neural network and optimizing with resilient back propagation, we demonstrate specimen orientation reconstructions with depth resolutions down to 5 nm. To show our algorithm's ability to analyze realistic data, we also discuss and demonstrate our algorithm reconstructing from noisy data and using a limited number of CBED disks. Applicability of this reconstruction algorithm to other specimen parameters is discussed.

  10. Cyclotron harmonic lines in the thermal magnetic fluctuation spectrum of spiraling electrons in plasmas

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Golubyatnikov, G.

    1993-10-01

    Radio frequency (rf) magnetic fluctuations B˜ have been measured with loop antennas in a large pulsed discharge plasma column (ne≲1012 cm-3, kTe≲3 eV, B0≂20 G, Ar, 2×10-4 Torr, 1 m diam×2.5 m length). A 1/f-like noise spectrum is observed in the whistler wave regime (ωce1/2ωci1/2<ω<ωce) both in the Maxwellian afterglow plasma and in the active discharge which contains energetic (45 eV) electrons. Discrete emission lines at the electron cyclotron frequency and its harmonics are found only in the presence of spiraling energetic electrons. These are naturally present in the active discharge but have also been injected as a controlled oblique electron beam into the Maxwellian afterglow plasma. In the latter case up to 15 cyclotron harmonic lines with weak amplitude decay B˜z(ω) are generated in the beam flux tube. From two-point correlation measurements it is shown that the line spectrum is due to ballistic beam modes rather than plasma eigenmodes driven unstable by the beam. The lines evolve from broadband thermal current fluctuations of the beam through a filtering effect. Those fluctuations which rotate synchronously with the ordered cyclotron motion (ω=nωc) constructively interfere (k∥=0) and produce coherent solenoidal rf fields, while others interfere destructively. Axial and azimuthal phase velocity measurements for rf-modulated beams clearly demonstrate the filtering effect. In the present parameter regime (ωp≫ωc) the fluctuations are evanescent and localized near the electron flux tube (rc≳c/ωp). In low density plasmas the fluctuations may couple to propagating electromagnetic waves and be observable externally as in earlier observations by Landauer or Ikegami.

  11. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    PubMed

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  12. Production of low-Z ions in the Dresden superconducting electron ion beam source for medical particle therapy.

    PubMed

    Zschornack, G; Schwan, A; Ullmann, F; Grossmann, F; Ovsyannikov, V P; Ritter, E

    2012-02-01

    We report on experiments with a new superconducting electron beam ion source (EBIS-SC), the Dresden EBIS-SC, with the objective to meet the main requirements for their application in particle-therapy facilities. Synchrotrons as well as innovative accelerator concepts, such as high-gradient linacs which are driven by a large-current cyclotron (CYCLINACS) and direct drive RF linear accelerators may benefit from the advantages of EBISs in regard to their functional principle. First experimental studies of the production of low-Z ions such as H(+), H(2)(+), H(3)(+), C(4+), and C(6+) are presented. Particular attention is paid to the ion output, i.e., the number of ions per pulse and per second, respectively. Important beam parameters in this context are, among others, ion pulse shaping, pulse repetition rates, beam emittance, and ion energy spread.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gündoğan, M. Tural, E-mail: mugetural@yahoo.com; Yavaş, Ö., E-mail: yavas@ankara.edu.tr; Kaya, Ç., E-mail: c.kaya@ankara.edu.tr

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC.more » The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.« less

  14. Selective propagation and beam splitting of surface plasmons on metallic nanodisk chains.

    PubMed

    Hu, Yuhui; Zhao, Di; Wang, Zhenghan; Chen, Fei; Xiong, Xiang; Peng, Ruwen; Wang, Mu

    2017-05-01

    Manipulating the propagation of surface plasmons (SPs) on a nanoscale is a fundamental issue of nanophotonics. By using focused electron beam, SPs can be excited with high spatial accuracy. Here we report on the propagation of SPs on a chain of gold nanodisks with cathodoluminescence (CL) spectroscopy. Experimental evidence for the propagation of SPs excited by the focused electron beam is demonstrated. The wavelength of the transmitted SPs depends on the geometrical parameters of the nanodisk chain. Furthermore, we design and fabricate a beam splitter, which selectively transmits SPs of certain wavelengths to a specific direction. By scanning the sample surface point by point and collecting the CL spectra, we obtain the spectral mapping and identify that the chain of the smaller nanodisks can efficiently transport SPs at shorter wavelengths. This Letter provides a unique approach to manipulate in-plane propagation of SPs.

  15. 2 MeV linear accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Smith, Richard R.; Farrell, Sherman R.

    1997-02-01

    RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.

  16. Studies of Resistive-Wall Instability with Space-Charge Dominated Electron Beams

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Suk, H.; Reiser, M.

    1996-05-01

    An experiment to study the resistive-wall instability with space-charge dominated electrom beams is underway at the University of Maryland. The beams with localized perturbations are launched from a gridded electron gun and are matched into a resistive channel focused by a uniform solenoid. The channel is made of a 1-m long glass tube coated with resistive material (ITO). Two different tubes with 5.4 kΩ and 10.1 kΩ resistance, respectively, have been employed. Two fast wall-current monitors at both the entrance and exit of the channel provide the information about the instability. Typical beam parameters are 3-8 keV in energy, 30-80 mA in current and 100 ns in duration. The experiment has shown the growth of localized slow waves and decay of fast waves. The results are presented and compared with theory. The status of the experiment and future work are also discussed.

  17. The impact of positrons beam on the propagation of super freak waves in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali Shan, S.; National Centre for Physics; Pakistan Institute of Engineering and Applied Sciences

    2016-07-15

    In this work, we examine the nonlinear propagation of planar ion-acoustic freak waves in an unmagnetized plasma consisting of cold positive ions and superthermal electrons subjected to cold positrons beam. For this purpose, the reductive perturbation method is used to derive a nonlinear Schrödinger equation (NLSE) for the evolution of electrostatic potential wave. We determine the domain of the plasma parameters where the rogue waves exist. The effect of the positron beam on the modulational instability of the ion-acoustic rogue waves is discussed. It is found that the region of the modulational stability is enhanced with the increase of positronmore » beam speed and positron population. Second as positrons beam increases the nonlinearities of the plasma system, large amplitude ion acoustic rogue waves are pointed out. The present results will be helpful in providing a good fit between the theoretical analysis and real applications in future laboratory plasma experiments.« less

  18. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-11-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance.

  19. Performance Evaluation of Titanium Ion Optics for the NASA 30 cm Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with titanium ion optics were presented and compared to those of molybdenum ion optics. Both titanium and molybdenum ion optics were initially operated until ion optics performance parameters achieved steady state values. Afterwards, performance characterizations were conducted. This permitted proper performance comparisons of titanium and molybdenum ion optics. Ion optics' performance A,as characterized over a broad thruster input power range of 0.5 to 3.0 kW. All performance parameters for titanium ion optics of achieved steady state values after processing 1200 gm of propellant. Molybdenum ion optics exhibited no burn-in. Impingement-limited total voltages for titanium ion optics where up to 55 V greater than those for molybdenum ion optics. Comparisons of electron backstreaming limits as a function of peak beam current density for molybdenum and titanium ion optics demonstrated that titanium ion optics operated with a higher electron backstreaming limit than molybdenum ion optics for a given peak beam current density. Screen grid ion transparencies for titanium ion optics were as much as 3.8 percent lower than those for molybdenum ion optics. Beam divergence half-angles that enclosed 95 percent of the total beam current for titanium ion optics were within 1 to 3 deg. of those for molybdenum ion optics. All beam divergence thrust correction factors for titanium ion optics were within 1 percent of those with molybdenum ion optics.

  20. Technology to Establish a Factory for High QE Alkali Antimonide Photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheiss, Thomas

    2015-11-16

    Intense electron beams are key to a large number of scientific endeavors, including electron cooling of hadron beams, electron-positron colliders, secondary-particle beams such as photons and positrons, sub-picosecond ultrafast electron diffraction (UED), and new high gradient accelerators that use electron-driven plasmas. The last decade has seen a considerable interest in pursuit and realization of novel light sources such as Free Electron Lasers [1] and Energy Recovery Linacs [2] that promise to deliver unprecedented quality x-ray beams. Many applications for high-intensity electron beams have arisen in recent years in high-energy physics, nuclear physics and energy sciences, such as recent designs formore » an electron-hadron collider at CERN (LHeC) [3], and beam coolers for hadron beams at LHC and eRHIC [4,5]. Photoinjectors are used at the majority of high-brightness electron linacs today, due to their efficiency, timing structure flexibility and ability to produce high power, high brightness beams. The performance of light source machines is strongly related to the brightness of the electron beam used for generating the x-rays. The brightness of the electron beam itself is mainly limited by the physical processes by which electrons are generated. For laser based photoemission sources this limit is ultimately related to the properties of photocathodes [6]. Most facilities are required to expend significant manpower and money to achieve a workable, albeit often non-ideal, compromise photocathode solution. If entirely fabricated in-house, the photocathode growth process itself is laborious and not always reproducible: it involves the human element while requiring close adherence to recipes and extremely strict control of deposition parameters. Lack of growth reliability and as a consequence, slow adoption of viable photoemitter types, can be partly attributed to the absence of any centralized facility or commercial entity to routinely provide high peak current capable, low emittance, visible-light sensitive photocathodes to the myriad of source systems in use and under development. Successful adoption of photocathodes requires strict adherence to proper fabrication, operation, and maintenance methodologies, necessitating specialized knowledge and skills. Key issues include the choice of photoemitter material, development of a more streamlined growth process to minimize human operator uncertainties, accommodation of varying photoemitter substrate materials and geometries, efficient transport and insertion mechanisms preserving the photo-yield, and properly conveyed photoemitter operational and maintenance methodologies. AES, in collaboration with Cornell University in a Phase I STTR, developed an on-demand industrialized growth and centralized delivery system for high-brightness photocathodes focused upon the alkali antimonide photoemitters. To the end user, future photoemitter sourcing will become as simple as other readily available consumables, rather than a research project requiring large investments in time and personnel.« less

  1. Emittance studies of the 2.45 GHz permanent magnet ECR ion source

    NASA Astrophysics Data System (ADS)

    Zelenak, A.; Bogomolov, S. L.; Yazvitsky, N. Yu.

    2004-05-01

    During the past several years different types of permanent magnet 2.45 GHz (electron cyclotron resonance) ion sources were developed for production of singly charged ions. Ion sources of this type are used in the first stage of DRIBs project, and are planned to be used in the MASHA mass separator. The emittance of the beam provided by the source is one of the important parameters for these applications. An emittance scanner composed from a set of parallel slits and rotary wire beam profile monitor was used for the studying of the beam emittance characteristics. The emittance of helium and argon ion beams was measured with different shapes of the plasma electrode for several ion source parameters: microwave power, source potential, plasma aperture-puller aperture gap distance, gas pressure. The results of measurements are compared with previous simulations of ion optics.

  2. Two dimensional model for coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.

    2013-01-01

    Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.

  3. Operation of large RF sources for H-: Lessons learned at ELISE

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Wünderlich, D.; Heinemann, B.; Kraus, W.; Riedl, R.

    2017-08-01

    The goal of the ELISE test facility is to demonstrate that large RF-driven negative ion sources (1 × 1 m2 source area with 360 kW installed RF power) can achieve the parameters required for the ITER beam sources in terms of current densities and beam homogeneity at a filling pressure of 0.3 Pa for pulse lengths of up to one hour. With the experience in operation of the test facility, the beam source inspection and maintenance as well as with the results of the achieved source performance so far, conclusions are drawn for commissioning and operation of the ITER beam sources. Addressed are critical technical RF issues, extrapolations to the required RF power, Cs consumption and Cs ovens, the need of adjusting the magnetic filter field strength as well as the temporal dynamic and spatial asymmetry of the co-extracted electron current. It is proposed to relax the low pressure limit to 0.4 Pa and to replace the fixed electron-to-ion ratio by a power density limit for the extraction grid. This would be highly beneficial for controlling the co-extracted electrons.

  4. Tuning the third-order nonlinear optical properties of In:ZnO thin films by 8 MeV electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Shettigar, Nayana; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Eljald, E. M.; Regragui, M.; Antony, Albin; Rao, Ashok; Sanjeev, Ganesh; Ajeyakashi, K. C.; Poornesh, P.

    2017-11-01

    We report the third-order nonlinear optical properties of electron beam treated Indium doped ZnO (Zn1-xInxO (x = 0.03) thin films at different dose rate. Zn1-xInxO (x = 0.03) thin films prepared by spray pyrolysis deposition technique were irradiated using 8 MeV electron beam at dose rates ranging from 1 kGy to 4 kGy. X-ray diffraction patterns were obtained to examine the structural changes, The transformation from sphalerite to wurtzite structure of ZnO was observed which indicates occurrence of structural changes due to irradiation. Morphology of irradiated thin films examined using atomic force microscopy (AFM) technique indicates the surface roughness varying with irradiation dose rate. The switching over from Saturable Absorption (SA) to Reverse Saturable Absorption (RSA) behaviour was noted when the irradiation dose rate was increased from 1 kGy to 4 kGy. The significant changes observed in the third-order nonlinear optical susceptibility χ(3) of the Zn1-xInxO (x = 0.03) thin films is attributed mainly due to electron beam irradiation. The study indicates that nonlinear optical parameters can be controlled by electron beam irradiation by choosing appropriate dose rate which is very much essential for device applications. Hence Zn1-xInxO (x = 0.03) materialize as a promising material for use in nonlinear optical device applications.

  5. Progress on development of SPIDER diagnostics

    NASA Astrophysics Data System (ADS)

    Pasqualotto, R.; Agostini, M.; Barbisan, M.; Bernardi, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Palma, M. Dalla; Delogu, R. S.; Gorini, G.; Lotto, L.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rizzolo, A.; Serianni, G.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.

    2017-08-01

    SPIDER experiment, the full size prototype of the beam source for the ITER heating neutral beam injector, has to demonstrate extraction and acceleration to 100 kV of a large negative ion hydrogen or deuterium beam with co-extracted electron fraction e-/D- <1 and beam uniformity within 10%, for up to one hour beam pulses. Main RF source plasma and beam parameters are measured with different complementary techniques to exploit the combination of their specific features. While SPIDER plant systems are being installed, the different diagnostic systems are in the procurement phase. Their final design is described here with a focus on some key solutions and most original and cost effective implementations. Thermocouples used to measure the power load distribution in the source and over the beam dump front surface will be efficiently fixed with proven technique and acquired through commercial and custom electronics. Spectroscopy needs to use well collimated lines of sight and will employ novel design spectrometers with higher efficiency and resolution and filtered detectors with custom built amplifiers. The electrostatic probes will be operated through electronics specifically developed to cope with the challenging environment of the RF source. The instrumented calorimeter STRIKE will use new CFC tiles, still under development. Two linear cameras, one built in house, have been tested as suitable for optical beam tomography. Some diagnostic components are off the shelf, others are custom developed: some of these are being prototyped or are under test before final production and installation, which will be completed before start of SPIDER operation.

  6. Design of a double-anode magnetron-injection gun for the W-band gyrotron

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Ho; Choi, Jin Joo; So, Joon Ho

    2015-07-01

    A double-anode magnetron-injection gun (MIG) was designed. The MIG is for a W-band 10-kW gyrotron. Analytic equations based on adiabatic theory and angular momentum conservation were used to examine the initial design parameters such as the cathode angle, and the radius of the beam emitting surface. The MIG's performances were predicted by using an electron trajectory code, the EGUN code. The beam spread of the axial velocity, Δvz/vz, obtained from the EGUN code was observed to be 1.34% at α = 1.3. The cathode edge emission and the thermal effect were modeled. The cathode edge emission was found to have a major effect on the velocity spread. The electron beam's quality was significantly improved by affixing non-emissive cylinders to the cathode.

  7. Damping Ring R&D at CESR-TA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, David L.

    2015-01-23

    Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams ofmore » electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring, and that an instability associated with residual gas in the beam pipe would limit the intensity of the electron ring. It was also not clear whether the required very small beam size could be achieved. The results of this study are important contributions to the design of both the electron and positron damping rings in which all of those challenges are addressed and overcome. Our findings are documented in the ILC Technical Design Report, a document that represents the work of an international collaboration of scientists. Our contributions include design of the beam magnetic optics for the 3 km circumference damping rings, the vacuum system and surface treatments for electron cloud mitigation, the design of the guide field magnets, design of the superconducting damping wigglers, and new detectors for precision measurement of beam properties. Our study informed the specification of the basic design parameters for the damping rings, including alignment tolerances, magnetic field errors, and instrumentation. We developed electron cloud modelling tools and simulations to aid in the interpretation of the measurements that we carried out in the Cornell Electron-positron Storage Ring (CESR). The simulations provide a means for systematic extrapolation of our measurements at CESR to the proposed ILC damping rings, and ultimately to specify how the beam pipes should be fabricated in order to minimize the effects of the electron cloud. With the conclusion of this study, the design of the essential components of the damping rings is complete, including the development and characterization (with computer simulations) of the beam optics, specification of techniques for minimizing beam size, design of damping ring instrumentation, R&D into electron cloud suppression methods, tests of long term durability of electron cloud coatings, and design of damping ring vacuum system components.« less

  8. Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression

    DOE PAGES

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...

    2014-12-15

    In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC) electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less thanmore » 200 attoseconds can be obtained.« less

  9. Zemax simulations describing collective effects in transition and diffraction radiation.

    PubMed

    Bisesto, F G; Castellano, M; Chiadroni, E; Cianchi, A

    2018-02-19

    Transition and diffraction radiation from charged particles is commonly used for diagnostics purposes in accelerator facilities as well as THz sources for spectroscopy applications. Therefore, an accurate analysis of the emission process and the transport optics is crucial to properly characterize the source and precisely retrieve beam parameters. In this regard, we have developed a new algorithm, based on Zemax, to simulate both transition and diffraction radiation as generated by relativistic electron bunches, therefore considering collective effects. In particular, unlike other previous works, we take into account electron beam physical size and transverse momentum, reproducing some effects visible on the produced radiation, not observable in a single electron analysis. The simulation results have been compared with two experiments showing an excellent agreement.

  10. Determination of nitrogen in coal macerals using electron microprobe technique-experimental procedure

    USGS Publications Warehouse

    Mastalerz, Maria; Gurba, L.W.

    2001-01-01

    This paper discusses nitrogen determination with the Cameca SX50 electron microprobe using PCO as an analyzing crystal. A set of conditions using differing accelerating voltages, beam currents, beam sizes, and counting times were tested to determine parameters that would give the most reliable nitrogen determination. The results suggest that, for the instrumentation used, 10 kV, current 20 nA, and a counting time of 20 s provides the most reliable nitrogen determination, with a much lower detection limit than the typical concentration of this element in coal. The study demonstrates that the electron microprobe technique can be used to determine the nitrogen content of coal macerals successfully and accurately. ?? 2001 Elsevier Science B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archambault, L; Papaconstadopoulos, P; Seuntjens, J

    Purpose: To study Cherenkov light emission in plastic scintillation detectors (PSDs) from a theoretical point of view to identify situations that may arise where the calibration coefficient obtained in one condition is not applicable to another condition. By identifying problematic situations, we hope to provide guidance on how to confidently use PSDs. Methods: Cherenkov light emission in PSD was modelled using basic physical principles. In particular, changes in refractive index as a function of wavelength were accounted for using the Sellmeier empirical equation. Both electron and photon beams were considered. For photons, realistic distributions of secondary charged particles were calculatedmore » using Klein-Nishina’s formula. Cherenkov production and collection in PSDs were studied for a range of parameters including beam energy, charged particle momentum distribution, detector orientation and material composition. Finally, experimental validation was made using a commercial plastic scintillation detector. Results: In specific situations, results show that the Cherenkov spectrum coupled in the PSD can deviate from its expected behaviour (i.e. one over the square of the wavelength). In these cases were the model is realistic it is possible to see a peak wavelength instead of a monotonically decreasing function. Consequences of this phenomenon are negligible when the momentum of charged particle is distributed randomly, but in some clinically relevant cases, such as an electron beam at depth close to R50 or for photon beams with minimal scatter component, the value of the calibration coefficient can be altered. Experimental tests with electron beams showed changes in the Cherenkov light ratio, the parameter used in the calibration of PSDs, up to 2–3% depending on the PSD orientation. Conclusion: This work is the first providing a physical explanation for apparent change in PSD calibration coefficient. With this new information at hand, it will be possible to better guide the clinical use of PSDs.« less

  12. Passive runaway electron suppression in tokamak disruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H. M.; Helander, P.; Boozer, A. H.

    2013-07-15

    Runaway electrons created in disruptions pose a serious problem for tokamaks with large current. It would be desirable to have a runaway electron suppression method which is passive, i.e., a method that does not rely on an uncertain disruption prediction system. One option is to let the large electric field inherent in the disruption drive helical currents in the wall. This would create ergodic regions in the plasma and increase the runaway losses. Whether these regions appear at a suitable time and place to affect the formation of the runaway beam depends on disruption parameters, such as electron temperature andmore » density. We find that it is difficult to ergodize the central plasma before a beam of runaway current has formed. However, the ergodic outer region will make the Ohmic current profile contract, which can lead to instabilities that yield large runaway electron losses.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Yuri, E-mail: yufi55@mail.ru; National Research Tomsk State University, 36 Lenina Str., Tomsk, 634050; National Research Tomsk Polytechnic University, 30 Lenina Str., Tomsk, 634050

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm{sup 2}, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electronmore » beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.« less

  14. Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

    2014-12-01

    Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prost, Lionel; Carneiro, Jean-Paul; Shemyakin, Alexander

    In a Low Energy Beam Transport line (LEBT), the emittance growth due to the beam's own space charge is typically suppressed by way of neutralization from either electrons or ions, which originate from ionization of the background gas. In cases where the beam is chopped, the neutralization pattern changes throughout the beginning of the pulse, causing the Twiss parameters to differ significantly from their steady state values, which, in turn, may result in beam losses downstream. For a modest beam perveance, there is an alternative solution, in which the beam is kept un-neutralized in the portion of the LEBT thatmore » contains the chopper. The emittance can be nearly preserved if the transition to the un-neutralized section occurs where the beam exhibits low transverse tails. This report discusses the experimental realization of such a scheme at Fermilab's PXIE, where low beam emittance dilution was demonstrated« less

  16. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    NASA Astrophysics Data System (ADS)

    Li, F.; Nie, Z.; Wu, Y. P.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Mori, W. B.

    2018-04-01

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Numerical simulations that are in qualitative agreement with the experimental results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.

  17. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, F.; Nie, Z.; Wu, Y. P.

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less

  18. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    DOE PAGES

    Li, F.; Nie, Z.; Wu, Y. P.; ...

    2018-02-22

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less

  19. Nonlinear stability of solar type 3 radio bursts. 1: Theory

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.

    1978-01-01

    A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond.

  20. Adaptive method for electron bunch profile prediction

    DOE PAGES

    Scheinker, Alexander; Gessner, Spencer

    2015-10-15

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. Thus, the simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrialmore » control system. Finally, the main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.« less

  1. Adaptive method for electron bunch profile prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial controlmore » system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.« less

  2. Biaxial Creep Specimen Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JL Bump; RF Luther

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Navalmore » Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.« less

  3. Critical system issues and modeling requirements: The problem of beam energy sweep in an electron linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, W.C.; Barrett, D.M.; Sampayan, S.E.

    1990-08-06

    In this paper we discuss system issues and modeling requirements within the context of energy sweep in an electron linear induction accelerator. When needed, particular parameter values are taken from the ETA-II linear induction accelerator at Lawrence Livermore National Laboratory. For this paper, the most important parameter is energy sweep during a pulse. It is important to have low energy sweep to satisfy the FEL resonance condition and to limit the beam corkscrew motion. It is desired to achieve {Delta}E/E = {plus minus}1% for a 50-ns flattop whereas the present level of performance is {Delta}E/E = {plus minus}1% in 10more » ns. To improve this situation we will identify a number of areas in which modeling could help increase understanding and improve our ability to design linear induction accelerators.« less

  4. Determination of Flux-Gate Magnetometer Spin Axis Offsets with the Electron Drift Instrument

    NASA Astrophysics Data System (ADS)

    Plaschke, Ferdinand; Nakamura, Rumi; Giner, Lukas; Teubenbacher, Robert; Chutter, Mark; Leinweber, Hannes K.; Magnes, Werner

    2014-05-01

    Spin-stabilization of spacecraft enormously supports the in-flight calibration of onboard flux-gate magnetometers (FGMs): eight out of twelve calibration parameters can be determined by minimization of spin tone and harmonics in the calibrated magnetic field measurements. From the remaining four parameters, the spin axis offset is usually obtained by analyzing observations of Alfvénic fluctuations in the solar wind. If solar wind measurements are unavailable, other methods for spin axis offset determination need to be used. We present two alternative methods that are based on the comparison of FGM and electron drift instrument (EDI) data: (1) EDI measures the gyration periods of instrument-emitted electrons in the ambient magnetic field. They are inversely proportional to the magnetic field strength. Differences between FGM and EDI measured field strengths can be attributed to inaccuracies in spin axis offset, if the other calibration parameters are accurately known. (2) For EDI electrons to return to the spacecraft, they have to be sent out in perpendicular direction to the ambient magnetic field. Minimization of the variance of electron beam directions with respect to the FGM-determined magnetic field direction also yields an estimate of the spin axis offset. Prior to spin axis offset determination, systematic inaccuracies in EDI gyration period measurements and in the transformation of EDI beam directions into the FGM spin-aligned reference coordinate system have to be corrected. We show how this can be done by FGM/EDI data comparison, as well.

  5. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  6. Unfolding linac photon spectra and incident electron energies from experimental transmission data, with direct independent validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, E. S. M.; McEwen, M. R.; Rogers, D. W. O.

    2012-11-15

    Purpose: In a recent computational study, an improved physics-based approach was proposed for unfolding linac photon spectra and incident electron energies from transmission data. In this approach, energy differentiation is improved by simultaneously using transmission data for multiple attenuators and detectors, and the unfolding robustness is improved by using a four-parameter functional form to describe the photon spectrum. The purpose of the current study is to validate this approach experimentally, and to demonstrate its application on a typical clinical linac. Methods: The validation makes use of the recent transmission measurements performed on the Vickers research linac of National Research Councilmore » Canada. For this linac, the photon spectra were previously measured using a NaI detector, and the incident electron parameters are independently known. The transmission data are for eight beams in the range 10-30 MV using thick Be, Al and Pb bremsstrahlung targets. To demonstrate the approach on a typical clinical linac, new measurements are performed on an Elekta Precise linac for 6, 10 and 25 MV beams. The different experimental setups are modeled using EGSnrc, with the newly added photonuclear attenuation included. Results: For the validation on the research linac, the 95% confidence bounds of the unfolded spectra fall within the noise of the NaI data. The unfolded spectra agree with the EGSnrc spectra (calculated using independently known electron parameters) with RMS energy fluence deviations of 4.5%. The accuracy of unfolding the incident electron energy is shown to be {approx}3%. A transmission cutoff of only 10% is suitable for accurate unfolding, provided that the other components of the proposed approach are implemented. For the demonstration on a clinical linac, the unfolded incident electron energies and their 68% confidence bounds for the 6, 10 and 25 MV beams are 6.1 {+-} 0.1, 9.3 {+-} 0.1, and 19.3 {+-} 0.2 MeV, respectively. The unfolded spectra for the clinical linac agree with the EGSnrc spectra (calculated using the unfolded electron energies) with RMS energy fluence deviations of 3.7%. The corresponding measured and EGSnrc-calculated transmission data agree within 1.5%, where the typical transmission measurement uncertainty on the clinical linac is 0.4% (not including the uncertainties on the incident electron parameters). Conclusions: The approach proposed in an earlier study for unfolding photon spectra and incident electron energies from transmission data is accurate and practical for clinical use.« less

  7. High brightness fully coherent x-ray amplifier seeded by a free-electron laser oscillator

    NASA Astrophysics Data System (ADS)

    Li, Kai; Yan, Jiawei; Feng, Chao; Zhang, Meng; Deng, Haixiao

    2018-04-01

    X-ray free-electron laser oscillator (XFELO) is expected to be a cutting-edge tool for fully coherent x-ray laser generation, and undulator taper technique is well-known for considerably increasing the efficiency of free-electron lasers (FELs). In order to combine the advantages of these two schemes, FEL amplifier seeded by XFELO is proposed by simply using a chirped electron beam. With the right choice of the beam parameters, the bunch tail is within the gain bandwidth of XFELO, and lase to saturation, which will be served as a seeding for further amplification. Meanwhile, the bunch head which is outside the gain bandwidth of XFELO, is preserved and used in the following FEL amplifier. It is found that the natural "double-horn" beam current, as well as residual energy chirp from chicane compressor, are quite suitable for the new scheme. Inheriting the advantages from XFELO seeding and undulator tapering, it is feasible to generate nearly terawatt level, fully coherent x-ray pulses with unprecedented shot-to-shot stability, which might open up new scientific opportunities in various research fields.

  8. The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on the electrical resistance of a multiwalled carbon nanotube-to-metal contact interface

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Henry, Matthew R.; Kim, Song-Kil; Fedorov, Andrei G.; Kulkarni, Dhaval; Singamaneni, Srikanth; Tsukruk, Vladimir V.

    2010-01-01

    Multiwall carbon nanotubes (MWNTs) are promising candidates for yielding next generation electrical and electronic devices such as interconnects and tips for conductive force microscopy. One of the main challenges in MWNT implementation in such devices is the high contact resistance of the MWNT-metal electrode interface. Electron beam induced deposition (EBID) of an amorphous carbon interface has previously been demonstrated to simultaneously lower the electrical contact resistance and improve the mechanical characteristics of the MWNT-electrode connection. In this work, we investigate the influence of process parameters, such as the electron beam energy, current, geometry, and deposition time, on the EBID-made carbon joint geometry and electrical contact resistance. The influence of the composition of the deposited material on its resistivity is also investigated. The relative importance of each component of the contact resistance and the limiting factor of the overall electrical resistance of a MWNT-based interconnect is determined through a combination of a model analysis and comprehensive experiments.

  9. Electron beam diagnostic system using computed tomography and an annular sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less

  10. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murokh, A.

    VISA (Visible to Infrared SASE Amplifier) is a high-gain self-amplified spontaneous emission FEL, which achieved saturation at 840 nm within a single-pass 4-m undulator. A gain length shorter than 18 cm has been obtained, yielding the gain of 2 x 10{sup 8} at saturation. The FEL performance, including spectral, angular, and statistical properties of SASE radiation, has been characterized for different electron beam conditions. The results are compared to 3-D SASE FEL theory and start-to-end numerical simulations of the entire injector, transport, and FEL system. Detailed agreement between simulations and experimental results is obtained over the wide range of themore » electron beam parameters.« less

  12. Observation of Electron Neutrino Appearance in a Muon Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L. J.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-02-01

    The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm322 and a CP violating phase δCP. In this neutrino oscillation scenario, assuming |Δm322|=2.4×10-3 eV2, sin2θ23=0.5, and Δm322>0 (Δm322<0), a best-fit value of sin22θ13=0.140-0.032+0.038 (0.170-0.037+0.045) is obtained at δCP=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ13 from reactor experiments, some values of δCP are disfavored at the 90% C.L.

  13. Three-Dimensional Electron Beam Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Shiu, Almon Sowchee

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry. A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional, fluence-based, pencil-beam algorithm, especially in predicting the dose distribution downstream of a local inhomogeneity. The accuracy of this algorithm appears sufficient for clinical use, and the algorithm is structured for future expansion of the physical model if required for site specific treatment planning problems.

  14. Cancellation of coherent synchrotron radiation kicks with optics balance.

    PubMed

    Di Mitri, S; Cornacchia, M; Spampinati, S

    2013-01-04

    Minimizing transverse emittance is essential in linear accelerators designed to deliver very high brightness electron beams. Emission of coherent synchrotron radiation (CSR), as a contributing factor to emittance degradation, is an important phenomenon to this respect. A manner in which to cancel this perturbation by imposing certain symmetric conditions on the electron transport system has been suggested.We first expand on this idea by quantitatively relating the beam Courant-Snyder parameters to the emittance growth and by providing a general scheme of CSR suppression with asymmetric optics, provided it is properly balanced along the line. We present the first experimental evidence of this cancellation with the resultant optics balance of multiple CSR kicks: the transverse emittance of a 500 pC, sub-picosecond, high brightness electron beam is being preserved after the passage through the achromatic transfer line of the FERMI@Elettra free electron laser, and emittance growth is observed when the optics balance is intentionally broken. We finally show the agreement between the theoretical model and the experimental results. This study holds the promise of compact dispersive lines with relatively large bending angles, thus reducing costs for future electron facilities.

  15. Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization

    PubMed Central

    Vutova, Katia; Donchev, Veliko

    2013-01-01

    Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR) is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials. PMID:28788351

  16. Kinetics of electron-beam dispersion of fullerite C60

    NASA Astrophysics Data System (ADS)

    Razanau, Ihar; Mieno, Tetsu; Kazachenko, Victor

    2012-06-01

    Electron-beam dispersion of pressed fullerite C60 targets in vacuum leads to the deposition of thin films containing polymeric forms of C60. The aim of the present report is to analyze physical-chemical processes in the fullerite target during its electron-beam dispersion through the analysis of the kinetics of the radiation temperature of the target surface, the coating growth rate and the density of negative current on the substrate. It was shown that the induction stage of the process is determined by the negative charging and radiation-induced modification and heating of the target. The transitional stage is characterized by nonstationary sublimation of the target material through the pores in the modified surface layer and release of the accumulated negative charge. Stabilization of the process parameters owing to the convection cooling of the target by the sublimation products and the decrease in the pressure inside the microcavities beneath the pores leads to a quasi-stationary stage of target sublimation and deposition of a coating containing polymeric forms of C60.

  17. Two-colour hard X-ray free-electron laser with wide tunability.

    PubMed

    Hara, Toru; Inubushi, Yuichi; Katayama, Tetsuo; Sato, Takahiro; Tanaka, Hitoshi; Tanaka, Takashi; Togashi, Tadashi; Togawa, Kazuaki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2013-01-01

    Ultrabrilliant, femtosecond X-ray pulses from X-ray free-electron lasers (XFELs) have promoted the investigation of exotic interactions between intense X-rays and matters, and the observation of minute targets with high spatio-temporal resolution. Although a single X-ray beam has been utilized for these experiments, the use of multiple beams with flexible and optimum beam parameters should drastically enhance the capability and potentiality of XFELs. Here we show a new light source of a two-colour double-pulse (TCDP) XFEL in hard X-rays using variable-gap undulators, which realizes a large and flexible wavelength separation of more than 30% with an ultraprecisely controlled time interval in the attosecond regime. Together with sub-10-fs pulse duration and multi-gigawatt peak powers, the TCDP scheme enables us to elucidate X-ray-induced ultrafast transitions of electronic states and structures, which will significantly contribute to the advancement of ultrafast chemistry, plasma and astronomical physics, and quantum X-ray optics.

  18. Nonlinear stability of solar type 3 radio bursts. 2: Application to observations near 1 AU

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Smith, R. A.; Papadopoulos, K.

    1978-01-01

    A set of rate equations including strong turbulence effects and anomalous resitivity are solved using parmeters which model several solar type 3 bursts. Exciter distributions observed at 1 AU are excitation of the linear bump-in-tail instability, amplifying Langmuir waves above the threshold for the oscillating two stream instability (OTSI). The OTSI, and the attendant anomalous resistivity produce a rapid spectral transfer of Langmuir waves to short wavelengths, out of resonance with the electron exciter. Further energy loss of the beam is thus precluded. The various parameters needed to model the bursts are extrapolated inside 1 AU with similar results. Again, the OTSI is excited and decouples the electron beam from the Langmuir radiation. Reabsorption of the Langmuir waves by the beam is shown to be unimportant in all cases, even at 0.1 AU. The theory provides a natural explanation for the observed realationship between radio flux, and the electron flux.

  19. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    PubMed

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. Relativistic electromagnetic waves in an electron-ion plasma

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  1. E-beam column monitoring for improved CD SEM stability and tool matching

    NASA Astrophysics Data System (ADS)

    Hayes, Timothy S.; Henninger, Randall S.

    2000-06-01

    Tool matching is an important metric for in-line semiconductor metrology systems. The ability to obtain the same measurement results on two or more systems allows a semiconductor fabrication facility (fab) to deploy product in an efficient manner improving overall equipment efficiency (OEE). Many parameters on the critical dimension scanning electron microscopes (CDSEMs) can affect the long-term precision component to the tool-matching metric. One such class of parameters is related to the electron beam column stability. The alignment and condition of the gun and apertures, as well as astigmatism correction, have all been found to affect the overall measurements of the CDSEM. These effects are now becoming dominant factors in sub-3nm tool-matching criteria. This paper discusses the methodologies of column parameter monitoring and actions and controls for improving overall stability. Results have shown that column instabilities caused by contamination, gun fluctuations, component failures, detector efficiency, and external issues can be identified through parameter monitoring. The Applied Materials (AMAT) 7830 Series CDSEMs evaluated at IBM's Burlington, Vermont manufacturing facility have demonstrated 5 nm tool matching across 11 systems, which has resulted in non-dedicated product deployment and has significantly reduced cost of ownership.

  2. Generation of high quality electron beams via ionization injection in a plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Vafaei-Najafabadi, Navid; Joshi, Chan; E217 SLAC Collaboration

    2016-10-01

    Ionization injection in a beam driven plasma wakefield accelerator has been used to generate electron beams with over 30 GeV of energy in a 130 cm of lithium plasma. The experiments were performed using the 3 nC, 20.35 GeV electron beam at the FACET facility of the SLAC National Accelerator Laboratory as the driver of the wakefield. The ionization of helium atoms in the up ramp of a lithium plasma were injected into the wake and over the length of acceleration maintained an emittance on the order of 30 mm-mrad, which was an order of magnitude smaller than the drive beam, albeit with an energy spread of 10-20%. The process of ionization injection occurs due to an increase in the electric field of the drive beam as it pinches through its betatron oscillations. Thus, this energy spread is attributed to the injection region encompassing multiple betatron oscillations. In this poster, we will present evidence through OSIRIS simulations of producing an injected beam with percent level energy spread and low emittance by designing the plasma parameters appropriately, such that the ionization injection occurs over a very limited distance of one betatron cycle. Work at UCLA was supported by the NSF Grant Number PHY-1415386 and DOE Grant Number DE-SC0010064. Work at SLAC was supported by DOE contract number DE-AC02-76SF00515. Simulations used the Hoffman cluster at UCLA.

  3. Design of a Ku band miniature multiple beam klystron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, Ayan Kumar, E-mail: ayan.bandyopadhyay@gmail.com; Pal, Debasish; Kant, Deepender

    2016-03-09

    The design of a miniature multiple beam klystron (MBK) working in the Ku-band frequency range is presented in this article. Starting from the main design parameters, design of the electron gun, the input and output couplers and radio frequency section (RF-section) are presented. The design methodology using state of the art commercial electromagnetic design tools, analytical formulae as well as noncommercial design tools are briefly presented in this article.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, A

    Purpose: Novel linac machines, TrueBeam (TB) and Elekta Versa have updated head designing and software control system, include flattening-filter-free (FFF) photon and electron beams. Later on FFF beams were also introduced on C-Series machines. In this work FFF beams for same energy 6MV but from different machine versions were studied with reference to beam data parameters. Methods: The 6MV-FFF percent depth doses, profile symmetry and flatness, dose rate tables, and multi-leaf collimator (MLC) transmission factors were measured during commissioning process of both C-series and Truebeam machines. The scanning and dosimetric data for 6MV-FFF beam from Truebeam and C-Series linacs wasmore » compared. A correlation of 6MV-FFF beam from Elekta Versa with that of Varian linacs was also found. Results: The scanning files were plotted for both qualitative and quantitative analysis. The dosimetric leaf gap (DLG) for C-Series 6MV-FFF beam is 1.1 mm. Published values for Truebeam dosimetric leaf gap is 1.16 mm. 6MV MLC transmission factor varies between 1.3 % and 1.4 % in two separate measurements and measured DLG values vary between 1.32 mm and 1.33 mm on C-Series machine. MLC transmission factor from C-Series machine varies between 1.5 % and 1.6 %. Some of the measured data values from C-Series FFF beam are compared with Truebeam representative data. 6MV-FFF beam parameter values like dmax, OP factors, beam symmetry and flatness and additional parameters for C-Series and Truebeam liancs will be presented and compared in graphical form and tabular data form if selected. Conclusion: The 6MV flattening filter (FF) beam data from C-Series & Truebeam and 6MV-FFF beam data from Truebeam has already presented. This particular analysis to compare 6MV-FFF beam from C-Series and Truebeam provides opportunity to better elaborate FFF mode on novel machines. It was found that C-Series and Truebeam 6MV-FFF dosimetric and beam data was quite similar.« less

  5. Study of Collective Beam Effects in Energy Recovery Linac Driven Free Electron Lasers

    NASA Astrophysics Data System (ADS)

    Hall, Christpher C.

    Collective beam effects such as coherent synchrotron radiation (CSR) and longitudinal space charge (LSC) can degrade the quality of high-energy electron beams used for applications such as free-electron lasers (FELs). The advent of energy recovery linac (ERL)-based FELs brings exciting possibilities for very high-average current FELs that can operate with greater efficiency. However, due to the structure of ERLs, they may be even more susceptible to CSR. It is therefore necessary that these collective beam effects be well understood if future ERL-based designs are to be successful. The Jefferson Laboratory ERL driven IR FEL provides an ideal test-bed for looking at how CSR impacts the electron beam. Due to its novel design we can easily test how CSR's impact on the beam varies as a function of compression within the machine. In this work we will look at measurements of both average energy loss and energy spectrum fragmentation as a function of bunch compression. These results are compared to particle tracking simulations including a 1D CSR model and, in general, good agreement is seen between simulation and measurement. Of particular interest is fragmentation of the energy spectrum that is observed due to CSR and LSC. We will also show how this fragmentation develops and how it can be mitigated through use of the sextupoles in the JLab FEL. Finally, a more complete 2D model is used to simulate CSR-beam interaction. Due to the parameters of the experiment it is expected that a 2D CSR model would yield different results than the 1D CSR model. However, excellent agreement is seen between the two CSR model results.

  6. Preliminary Mechanical Design Study of the Hollow Electron Lens for HL-LHC

    NASA Astrophysics Data System (ADS)

    Zanoni, Carlo; Gobbi, Giorgia; Perini, Diego; Stancari, Giulio

    2017-07-01

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a hollow beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field. The first step of the design is the definition of the magnetic field that drives the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB tool is presented. The influence of the main geometrical and electrical parameters is analyzed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the feasibility study of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar devices.

  7. Compact Electron Gun Based on Secondary Emission Through Ionic Bombardment

    PubMed Central

    Diop, Babacar; Bonnet, Jean; Schmid, Thomas; Mohamed, Ajmal

    2011-01-01

    We present a new compact electron gun based on the secondary emission through ionic bombardment principle. The driving parameters to develop such a gun are to obtain a quite small electron gun for an in-flight instrument performing Electron Beam Fluorescence measurements (EBF) on board of a reentry vehicle in the upper atmosphere. These measurements are useful to characterize the gas flow around the vehicle in terms of gas chemical composition, temperatures and velocity of the flow which usually presents thermo-chemical non-equilibrium. Such an instrument can also be employed to characterize the upper atmosphere if placed on another carrier like a balloon. In ground facilities, it appears as a more practical tool to characterize flows in wind tunnel studies or as an alternative to complex electron guns in industrial processes requiring an electron beam. We describe in this paper the gun which has been developed as well as its different features which have been characterized in the laboratory. PMID:22163896

  8. Preliminary Mechanical Design Study of the Hollow Electron Lens for HL-LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanoni, Carlo; Gobbi, Giorgia; Perini, Diego

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a hollow beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field. The first step of the design is the definition of the magnetic field that drives the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB tool is presented. The influencemore » of the main geometrical and electrical parameters is analyzed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the feasibility study of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar devices.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Ludmila, E-mail: llm@ispms.tsc.ru; Meisner, Stanislav, E-mail: msn@ispms.tsc.ru; Mironov, Yurii, E-mail: myp@ispms.tsc.ru

    The paper considers the effects arising on X-ray diffraction patterns taken in different diffraction geometries and how these effects can be interpreted to judge structural states in NiTi near-surface regions after electron and ion beam treatment. It is shown that qualitative and quantitative analysis of phase composition, lattice parameters of main phases, elastic stress states, and their in-depth variation requires X-ray diffraction patterns in both symmetric Bragg–Brentano and asymmetric Lambot–Vassamilleta geometries with variation in X-ray wavelengths and imaging conditions (with and with no β-filter). These techniques of structural phase analysis are more efficient when the thickness of modified NiTi surfacemore » layers is 1–10 μm (after electron beam treatment) and requires special imaging conditions when the thickness of modified NiTi surface layers is no greater than 1 μm (after ion beam treatment)« less

  10. Modelling of Electron and Proton Beams in a White-light Solar Flare

    NASA Astrophysics Data System (ADS)

    Milligan, R. O.; Procházka, O.; Reid, A.; Allred, J. C.; Mathioudakis, M.

    2017-12-01

    Observations of an X1 class WL solar flare on 2014 June 11 showed a surprisingly weak emission in both higher order Balmer and Lyman lines and continua. The flare was observed by RHESSI but low energy cut-off of non-thermal component was indeterminable due to the unusually hard electron spectrum (delta = 3). An estimate of power in non-thermal electron beams together with an area of WL emission observed by HMI yielded to an upper and lower estimate of flux 1E9 and 3E10 erg/cm2/s, respectively. We performed a grid of models using a radiative hydrodynamic code RADYN in order to compare synthetic spectra with observations. For low energy cut-off we chose a range from 20 to 120 keV with a step of 20 keV and delta parameter equal to 3. Electron beam-driven models show that higher low energy cut-off is more likely to produce an absorption Balmer line profile, if the total energy flux remains relatively low. On the other hand a detectable rise of HMI continuum (617 nm) lays a lower limit on the beam flux. Proton beam-driven models with equivalent fluxes indicate a greater penetration depth, while the Balmer lines reveal significantly weaker emission. Atmospheric temperature profiles show that for higher values of low energy cut-off the energy of the beam is deposited lower in chromosphere or even in temperature minimum region. This finding suggests, that suppressed hydrogen emission can indicate a formation of white-light continuum below chromosphere.

  11. Electron irradiation induced effects on the physico-chemical properties of L-Arginine Maleate Dihydrate (LAMD) single crystals

    NASA Astrophysics Data System (ADS)

    Thomas, Prince; Dhole, S. D.; Joseph, Ginson P.

    2018-07-01

    Single crystals of L-Arginine Maleate Dihydrate (LAMD) have been synthesized by slow solvent evaporation technique and irradiated with 6 MeV electrons at fluences of 0.5 ×1015e /cm2 , 1.0 ×1015e /cm2 and 1.5 ×1015e /cm2 . The Powder X-ray Diffraction (PXRD) studies showed that the intensity of the diffraction peaks of the Electron Beam (EB) irradiated crystals decreases with irradiation fluence. The electron irradiation induced effects on the optical parameters such as cut-off wavelength, band gap, Urbach energy and refractive index have been studied and the results are tabulated. The electronic parameters such as valence electron plasma energy, ℏωp , Penn gap, Ep , Fermi energy, EF and Electronic polarizability, α for pure and irradiated LAMD crystals are calculated. The electrical and thermal properties of the pure and irradiated LAMD crystals are also investigated.

  12. Effect of Hypoeutectic Boron Additions on the Grain Size and Mechanical Properties of Ti-6Al-4V Manufactured with Powder Bed Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; Wojcieszynski, Andrzej; Dehoff, Ryan; Nandwana, Peeyush; Horn, Timothy

    2017-03-01

    In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25-1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.

  13. Effect of Growth Parameters on SnO2 Nanowires Growth by Electron Beam Evaporation Method

    NASA Astrophysics Data System (ADS)

    Rakesh Kumar, R.; Manjula, Y.; Narasimha Rao, K.

    2018-02-01

    Tin oxide (SnO2) nanowires were synthesized via catalyst assisted VLS growth mechanism by the electron beam evaporation method at a growth temperature of 450 °C. The effects of growth parameters such as evaporation rate of Tin, catalyst film thickness, and different types of substrates on the growth of SnO2 nanowires were studied. Nanowires (NWs) growth was completely seized at higher tin evaporation rates due to the inability of the catalyst particle to initiate the NWs growth. Nanowires diameters were able to tune with catalyst film thickness. Nanowires growth was completely absent at higher catalyst film thickness due to agglomeration of the catalyst film. Optimum growth parameters for SnO2 NWs were presented. Nanocomposites such as Zinc oxide - SnO2, Graphene oxide sheets- SnO2 and Graphene nanosheets-SnO2 were able to synthesize at a lower substrate temperature of 450 °C. These nanocompsoites will be useful in enhancing the capacity of Li-ion batteries, the gas sensing response and also useful in increasing the photo catalytic activity.

  14. The trapping and distribution of charge in polarized polymethylmethacrylate under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Song, Z. G.; Gong, H.; Ong, C. K.

    1997-06-01

    A scanning electron microscope (SEM) mirror-image method (MIM) is employed to investigate the charging behaviour of polarized polymethylmethacrylate (PMMA) under electron-beam irradiation. An ellipsoid is used to model the trapped charge distribution and a fitting method is employed to calculate the total amount of the trapped charge and its distribution parameters. The experimental results reveal that the charging ability decreases with increasing applied electric field, which polarizes the PMMA sample, whereas the trapped charge distribution is elongated along the direction of the applied electric field and increases with increasing applied electric field. The charges are believed to be trapped in some localization states, of activation energy and radius estimated to be about 19.6 meV and 0022-3727/30/11/004/img6, respectively.

  15. Sensitivity Testing of the NSTAR Ion Thruster

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Anderson, John; Brophy, John

    2007-01-01

    During the Extended Life Test of the DS1 flight spare ion thruster, the engine was subjected to sensitvity testing in order to characterize the macroscopic dependence of discharge chamber sensitivity to a +\\-3% vatiation in main flow, cathode flow and beam current, and to +\\5% variation in beam and accelerator voltage, was determined for the minimum- (THO), half- (TH8) and full power (TH15) throttle levels. For each power level investigared, 16 high/low operating conditions were chosen to vary the flows, beam current, and grid voltages in in a matrix that mapped out the entire parameter space. The matrix of data generated was used to determine the partial derivative or senitivity of the dependent parameters--discharge voltage, discharge current, discharge loss, double-to-single-ion current ratio, and neutralizer-keeper voltage--to the variation in the independent parameters--main flow, cathode flow, beam current, and beam voltage. The sensititivities of each dependent parameter with respect to each independent parameter were determined using a least-square fit routine. Variation in these sensitivities with thruster runtime was recorded over the duration of the ELT, to detemine if discharge performance changed with thruster wear. Several key findings have been ascertained from the sensitivity testing. Discharge operation is most sensitve to changes in cathode flow and to a lesser degree main flow. The data also confirms that for the NSTAR configuration plasma production is limited by primary electron input due to the fixed neutral population. Key sensitivities along with their change with thruster wear (operating time) will be presented. In addition double ion content measurements with an ExB probe will also be presented to illustrate beam ion production and content sensitivity to the discharge chamber operating parameteres.

  16. Charge breeding simulations for radioactive ion beam production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Variale, V.; Raino, A. C.; Clauser, T.

    2012-02-15

    The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+more » ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied.« less

  17. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Danni; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang

    2015-11-15

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% aremore » obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.« less

  18. Accurate monoenergetic electron parameters of laser wakefield in a bubble model

    NASA Astrophysics Data System (ADS)

    Raheli, A.; Rahmatallahpur, S. H.

    2012-11-01

    A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal model and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. As a result, the quasi-mono-energetic electrons output beam interacting with the laser plasma can be more appropriately described with this model.

  19. Wire position system to consistently measure and record the location change of girders following ground changes

    NASA Astrophysics Data System (ADS)

    Choi, H. J.; Lee, S. B.; Lee, H. G.; Y Back, S.; Kim, S. H.; Kang, H. S.

    2017-07-01

    Several parts that comprise the large scientific device should be installed and operated at the accurate three-dimensional location coordinates (X, Y, and Z) where they should be subjected to survey and alignment. The location of the aligned parts should not be changed in order to ensure that the electron beam parameters (Energy 10 GeV, Charge 200 pC, and Bunch Length 60 fs, Emittance X/Y 0.481 μm/0.256 μm) of PAL-XFEL (X-ray Free Electron Laser of the Pohang Accelerator Laboratory) remain stable and can be operated without any problems. As time goes by, however, the ground goes through uplift and subsidence, which consequently deforms building floors. The deformation of the ground and buildings changes the location of several devices including magnets and RF accelerator tubes, which eventually leads to alignment errors (∆X, ∆Y, and ∆Z). Once alignment errors occur with regard to these parts, the electron beam deviates from its course and beam parameters change accordingly. PAL-XFEL has installed the Hydrostatic Leveling System (HLS) to measure and record the vertical change of buildings and ground consistently and systematically and the Wire Position System (WPS) to measure the two dimensional changes of girders. This paper is designed to introduce the operating principle and design concept of WPS and discuss the current situation regarding installation and operation.

  20. SU-D-19A-06: The Effect of Beam Parameters On Very High-Energy Electron Radiotherapy: A Planning Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palma, B; Bazalova, M; Qu, B

    Purpose: We evaluated the effect of very high-energy electron (VHEE) beam parameters on the planning of a lung cancer case by means of Monte Carlo simulations. Methods: We simulated VHEE radiotherapy plans using the EGSnrc/BEAMnrc-DOSXYZnrc code. We selected a lung cancer case that was treated with 6MV photon VMAT to be planned with VHEE. We studied the effect of beam energy (80 MeV, 100 MeV, and 120 MeV), number of equidistant beams (16 or 32), and beamlets sizes (3 mm, 5 mm or 7 mm) on PTV coverage, sparing of organs at risk (OARs) and dose conformity. Inverse-planning optimization wasmore » performed in a research version of RayStation (RaySearch Laboratories AB) using identical objective functions and constraints for all VHEE plans. Results: Similar PTV coverage and dose conformity was achieved by all the VHEE plans. The 100 MeV and 120 MeV VHEE plans were equivalent amongst them and were superior to the 80 MeV plan in terms of OARs sparing. The effect of using 16 or 32 equidistant beams was a mean difference in average dose of 2.4% (0%–7.7%) between the two plans. The use of 3 mm beamlet size systematically reduced the dose to all the OARs. Based on these results we selected the 100MeV-16beams-3mm-beamlet-size plan to compare it against VMAT. The selected VHEE plan was more conformal than VMAT and improved OAR sparing (heart and trachea received 125% and 177% lower dose, respectively) especially in the low-dose region. Conclusion: We determined the VHEE beam parameters that maximized the OAR dose sparing and dose conformity of the actually delivered VMAT plan of a lung cancer case. The selected parameters could be used for the planning of other treatment sites with similar size, shape, and location. For larger targets, a larger beamlet size might be used without significantly increasing the dose. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Americas. E Hynning: Employee, RaySearch Americas. B Qu: None. B Loo Jr.: Research support, RaySearch, Varian. P Maxim: Research support, RaySearch, Varian.« less

  1. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator.

    PubMed

    Li, F; Hua, J F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-07-05

    The production of ultrabright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional particle-in-cell simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is reduced, and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. Simulations show that ultrashort (~8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes, respectively, and a brightness of 1.7×10(19) A rad(-2) m(-2) can be obtained for realistic parameters.

  2. Insight in the 3D morphology of silica-based nanotubes using electron microscopy.

    PubMed

    Dennenwaldt, Teresa; Wisnet, Andreas; Sedlmaier, Stefan J; Döblinger, Markus; Schnick, Wolfgang; Scheu, Christina

    2016-11-01

    Amorphous silica-based nanotubes (SBNTs) were synthesized from phosphoryl triamide, OP(NH 2 ) 3 , thiophosphoryl triamide, SP(NH 2 ) 3 , and silicon tetrachloride, SiCl 4 , at different temperatures and with varying amount of the starting material SiCl 4 using a recently developed template-free synthesis approach. Diameter and length of the SBNTs are tunable by varying the synthesis parameters. The 3D mesocrystals of the SBNTs were analyzed with focused ion beam sectioning and electron tomography in the transmission electron microscope showing the hollow tubular structure of the SBNTs. The reconstruction of a small SBNT assembly was achieved from a high-angle annular-dark field scanning transmission electron microscopy tilt series containing only thirteen images allowing analyzing beam sensitive material without altering the structure. The reconstruction revealed that the individual nanotubes are forming an interconnected array with an open channel structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.

    2011-03-01

    The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods includingmore » multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.« less

  4. A megawatt-level surface wave oscillator in Y-band with large oversized structure driven by annular relativistic electron beam.

    PubMed

    Wang, Jianguo; Wang, Guangqiang; Wang, Dongyang; Li, Shuang; Zeng, Peng

    2018-05-03

    High power vacuum electronic devices of millimeter wave to terahertz regime are attracting extensive interests due to their potential applications in science and technologies. In this paper, the design and experimental results of a powerful compact oversized surface wave oscillator (SWO) in Y-band are presented. The cylindrical slow wave structure (SWS) with rectangular corrugations and large diameter about 6.8 times the radiation wavelength is proposed to support the surface wave interacting with annular relativistic electron beam. By choosing appropriate beam parameters, the beam-wave interaction takes place near the π-point of TM 01 mode dispersion curve, giving high coupling impedance and temporal growth rate compared with higher TM 0n modes. The fundamental mode operation of the device is verified by the particle-in-cell (PIC) simulation results, which also indicate its capability of tens of megawatts power output in the Y-band. Finally, a compact experimental setup is completed to validate our design. Measurement results show that a terahertz pulse with frequency in the range of 0.319-0.349 THz, duration of about 2 ns and radiation power of about 2.1 MW has been generated.

  5. Monopole HOMs Dumping in the LCLS-II 1.3 GHz Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunin, Andrei; Khabiboulline, Timergali; Solyak, Nikolay

    2017-05-01

    Developing an upgrade of Linac Coherent Light Source (LCLS-II) is currently underway. The central part of LCLS-II is a continuous wave superconducting RF (CW SRF) electron linac. High order modes (HOMs) excited in SRF structures by passing beam may deteriorate beam quality and affect beam stability. In this paper we report the simulation results of monopole High Order Modes (HOM) spectrum in the 1.3 GHz accelerating structure. Optimum parameters of the HOM feedthrough are suggested for minimizing RF losses on the HOM antenna tip and for preserving an efficiency of monopole HOMs damping simultaneously.

  6. Superconducting accelerator cavity with a heat affected zone having a higher RRR

    DOEpatents

    Brawley, John; Phillips, H. Lawrence

    2000-01-01

    An improved method for welding accelerator cavities without the need for time consuming and expensive faying surface treatments comprising electron beam welding such cavities in a vacuum welding chamber within a vacuum envelope and using the following welding parameters: a beam voltage of between about 45 KV and 55 KV; a beam current between about 38 ma and 47 ma; a weld speed of about 15 cm/min; and a sharp focus and a rhombic raster of between about 9 KHz and 10 Khz. A welded cavity made according to the method of the present invention is also described.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sairam, T., E-mail: sairamtvv@gmail.com; Bhatt, Pragya; Safvan, C. P.

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied.

  8. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  9. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    Polevoy, Jeffrey Todd

    1989-06-01

    Experimental measurements of the average axial velocity v(sub parallel) of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V(sub p) and the beam current I(sub b). The V(sub p) is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I(sub b) is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v(sub parallel) and calculations of the corresponding transverse to longitudinal beam velocity ratio (alpha) = v(sub perpendicular)/v(sub parallel) at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical RF interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v(sub parallel) and (alpha) are determined through the use of a computer code (EGUN) which is used to model the cathode and anode regions of the gyrotron. It also computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of (alpha) at low (alpha), with the expected values from EGUN often falling within the standard errors of the measured values.

  10. Energy monitoring device for 1.5-2.4 MeV electron beams

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  11. Effect of ion beam on the characteristics of ion acoustic Gardner solitons and double layers in a multicomponent superthermal plasma

    NASA Astrophysics Data System (ADS)

    Kaur, Nimardeep; Singh, Kuldeep; Saini, N. S.

    2017-09-01

    The nonlinear propagation of ion acoustic solitary waves (IASWs) is investigated in an unmagnetized plasma composed of a positive warm ion fluid, two temperature electrons obeying kappa type distribution and penetrated by a positive ion beam. The reductive perturbation method is used to derive the nonlinear equations, namely, Korteweg-de Vries (KdV), modified KdV (mKdV), and Gardner equations. The characteristic features of both compressive and rarefactive nonlinear excitations from the solution of these equations are studied and compared in the context with the observation of the He+ beam in the polar cap region near solar maximum by the Dynamics Explorer 1 satellite. It is observed that the superthermality and density of cold electrons, number density, and temperature of the positive ion beam crucially modify the basic properties of compressive and rarefactive IASWs in the KdV and mKdV regimes. It is further analyzed that the amplitude and width of Gardner solitons are appreciably affected by different plasma parameters. The characteristics of double layers are also studied in detail below the critical density of cold electrons. The theoretical results may be useful for the observation of nonlinear excitations in laboratory and ion beam driven plasmas in the polar cap region near solar maximum and polar ionosphere as well in Saturn's magnetosphere, solar wind, pulsar magnetosphere, etc., where the population of two temperature superthermal electrons is present.

  12. Characterization and Design of Spiral Frequency Steerable Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Repale, Rohan

    Structural Health Monitoring (SHM) is an emerging research area devoted to improving the safety and maintainability of civil structures. Guided wave structural testing method is an effective approach used for SHM of plate-like structures using piezoelectric transducers. These transducers are attached to the surface of the structure and are capable of sensing its health by using surface waves. Transducers with beam steering i.e. electronic scanning capabilities can perform surface interrogation with higher precision and ease. A frequency steerable acoustic transducer (FSAT) is capable of beam steering and directional surface wave sensing to detect and localize damage in structures. The objective of this research is to further explore the possibilities of FSAT technology by designing and testing new FSAT designs. The beam steering capability of FSAT can be controlled by manipulating its design parameters. These design parameters therefore play a significant role in FSAT's performance. Studying the design parameters and documenting the performance improvements based on parameter variation is the primary goal of this research. Design and characterization of spiral FSAT was performed and results were simulated. Array FSAT documented results were validated. Modified designs were modeled based on design parameter variations. Characterization of these designs was done and their performance was recorded. Plate simulation results confirm direct relationship between design parameters and beam steering. A set of guidelines for future designs was also proposed. Two designs developed based on the set guidelines were sent to our collaborator Genziko Inc. for fabrication.

  13. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    PubMed

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  14. SU-F-T-70: A High Dose Rate Total Skin Electron Irradiation Technique with A Specific Inter-Film Variation Correction Method for Very Large Electron Beam Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Rosenfield, J; Dong, X

    2016-06-15

    Purpose: Rotational total skin electron irradiation (RTSEI) is used in the treatment of cutaneous T-cell lymphoma. Due to inter-film uniformity variations the dosimetry measurement of a large electron beam of a very low energy is challenging. This work provides a method to improve the accuracy of flatness and symmetry for a very large treatment field of low electron energy used in dual beam RTSEI. Methods: RTSEI is delivered by dual angles field a gantry of ±20 degrees of 270 to cover the upper and the lower halves of the patient body with acceptable beam uniformity. The field size is inmore » the order of 230cm in vertical height and 120 cm in horizontal width and beam energy is a degraded 6 MeV (6 mm of PMMA spoiler). We utilized parallel plate chambers, Gafchromic films and OSLDs as a measuring devices for absolute dose, B-Factor, stationary and rotational percent depth dose and beam uniformity. To reduce inter-film dosimetric variation we introduced a new specific correction method to analyze beam uniformity. This correction method uses some image processing techniques combining film value before and after radiation dose to compensate the inter-variation dose response differences among films. Results: Stationary and rotational depth of dose demonstrated that the Rp is 2 cm for rotational and the maximum dose is shifted toward the surface (3mm). The dosimetry for the phantom showed that dose uniformity reduced to 3.01% for the vertical flatness and 2.35% for horizontal flatness after correction thus achieving better flatness and uniformity. The absolute dose readings of calibrated films after our correction matched with the readings from OSLD. Conclusion: The proposed correction method for Gafchromic films will be a useful tool to correct inter-film dosimetric variation for the future clinical film dosimetry verification in very large fields, allowing the optimizations of other parameters.« less

  15. First results from negative ion beam extraction in ROBIN in surface mode

    NASA Astrophysics Data System (ADS)

    Pandya, Kaushal; Gahlaut, Agrajit; Yadav, Ratnakar K.; Bhuyan, Manas; Bandyopadhyay, Mainak; Das, B. K.; Bharathi, P.; Vupugalla, Mahesh; Parmar, K. G.; Tyagi, Himanshu; Patel, Kartik; Bhagora, Jignesh; Mistri, Hiren; Prajapati, Bhavesh; Pandey, Ravi; Chakraborty, Arun. K.

    2017-08-01

    ROBIN, the first step in the Indian R&D program on negative ion beams has reached an important milestone, with the production of negative ions in the surface conversion mode through Cesium (Cs) vapor injection into the source. In the present set-up, negative hydrogen ion beam extraction is effected through an extraction area of ˜73.38 cm2 (146 apertures of 8mm diameter). The three grid electrostatic accelerator system of ROBIN is fed by high voltage DC power supplies (Extraction Power Supply System: 11kV, 35A and Acceleration Power Supply System: 35kV, 15A). Though, a considerable reduction of co-extracted electron current is usually observed during surface mode operation, in order to increase the negative ion current, various other parameters such as plasma grid temperature, plasma grid bias, extraction to acceleration voltage ratio, impurity control and Cs recycling need to be optimized. In the present experiments, to control and to understand the impurity behavior, a Cryopump (14,000 l/s for Hydrogen) is installed along with a Residual Gas Analyzer (RGA). To characterize the source plasma, two sets of Langmuir probes are inserted through the diagnostic flange ports available at the extraction plane. To characterize the beam properties, thermal differential calorimeter, Doppler Shift Spectroscopy and electrical current measurements are implemented in ROBIN. In the present set up, all the negative ion beam extraction experiments have been performed by varying different experimental parameters e.g. RF power (30-70 kW), source operational pressure (0.3 - 0.6Pa), plasma grid bias voltage, extraction & acceleration voltage combination etc. The experiments in surface mode operation is resulted a reduction of co-extracted electron current having electron to ion ratio (e/i) ˜2 whereas the extracted negative ion current density was increased. However, further increase in negative ion current density is expected to be improved after a systematic optimization of the operational parameters and Cs conditioning of the source. It was also found out that a better performance of ROBIN is achieved in the pressure range: 0.5-0.6 Pa. In this paper, the preliminary results on parametric study of ROBIN operation and beam optimization in surface mode are discussed.

  16. Microwave Emission From Relativistic Electron Beams

    DTIC Science & Technology

    1993-04-12

    the Army position, policyX, or decision, unless so designated by other documentation. 124. DISTRIBUTION i AVAILAOILITY STATEMENT I 12b. DISTRIBUTION...klystron (inodel 343). An assembly of six focusing coils is de - signed so that their magnetic field lines lie along the zero-magnetic field electron...less than 1% is achieved. Preliminary field measurements of a 30 period prototype undulator and the design parameters of a submillimeter experiment

  17. Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Mahmood, R.; Johnson, D. L.

    1979-01-01

    A wide range of ion beam etch parameters capable of producing uniform homogeneous alignment of nematic liquid crystals on SiO2 films are discussed. The alignment surfaces were generated by obliquely incident (angles of 5 to 25 deg) argon ions with energies in the range of 0.5 to 2.0 KeV, ion current densities of 0.1 to 0.6 mA sq cm and etch times of 1 to 9 min. A smaller range of ion beam parameters (2.0 KeV, 0.2 mA sq cm, 5 to 10 deg and 1 to 5 min.) were also investigated with ZrO2 films and found suitable for homogeneous alignment. Extinction ratios were very high (1000), twist angles were small ( or = 3 deg) and tilt-bias angles very small ( or = 1 deg). Preliminary scanning electron microscopy results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment.

  18. Multi-Frequency Microwaves Plasma Production for Active Profile Control of Ion Beams on a Large Bore ECR Ion Source with Permanent Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Naoki; Kato, Yushi; Kiriyama, Ryutaro

    2011-01-07

    A new concept on magnetic field of plasma production and confinement by using permanent magnets, i.e. cylindrically comb-shaped magnets, has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure and also the low microwave power. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequency are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds.more » It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequency microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.« less

  19. MO-H-19A-01: FEATURED PRESENTATION - Treatment Planning Tool for Radiotherapy with Very High-Energy Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova, M; Qu, B; Palma, B

    2014-06-15

    Purpose: To develop a tool for treatment planning optimization for fast radiotherapy delivered with very high-energy electron beams (VHEE) and to compare VHEE plans to state-of-the-art plans for challenging pelvis and H'N cases. Methods: Treatment planning for radiotherapy delivered with VHEE scanning pencil beams was performed by integrating EGSnrc Monte Carlo (MC) dose calculations with spot scanning optimization run in a research version of RayStation. A Matlab GUI for MC beamlet generation was developed, in which treatment parameters such as the pencil beam size and spacing, energy and number of beams can be selected. Treatment planning study for H'N andmore » pelvis cases was performed and the effect of treatment parameters on the delivered dose distributions was evaluated and compared to the clinical treatment plans. The pelvis case with a 691cm3 PTV was treated with 2-arc 15MV VMAT and the H'N case with four PTVs with total volume of 531cm3 was treated with 4-arc 6MV VMAT. Results: Most studied VHEE plans outperformed VMAT plans. The best pelvis 80MeV VHEE plan with 25 beams resulted in 12% body dose sparing and 8% sparing to the bowel and right femur compared to the VMAT plan. The 100MeV plan was superior to the 150MeV plan. Mixing 100 and 150MeV improved dose sparing to the bladder by 7% compared to either plan. Plans with 16 and 36 beams did not significantly affect the dose distributions compared to 25 beam plans. The best H'N 100MeV VHEE plan decreased mean doses to the brainstem, chiasm, and both globes by 10-42% compared to the VMAT plan. Conclusion: The pelvis and H'N cases suggested that sixteen 100MeV beams might be sufficient specifications of a novel VHEE treatment machine. However, optimum machine parameters will be determined with the presented VHEE treatment-planning tool for a large number of clinical cases. BW Loo and P Maxim received research support from RaySearch Laboratories. E Hynning and B Hardemark are employees of RaySearch Laboratories.« less

  20. Amplification due to two-stream instability of self-electric and magnetic fields of an ion beam propagating in background plasma

    NASA Astrophysics Data System (ADS)

    Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.

    2018-05-01

    Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.

  1. Miniature low voltage beam systems producable by combined lithographies

    NASA Astrophysics Data System (ADS)

    Koops, Hans W. P.; Munro, Eric; Rouse, John; Kretz, Johannes; Rudolph, Michael; Weber, Markus; Dahm, Gerold

    The project of a miniaturized vacuum microelectronic 100 GHz switch is described. It implies the development of a field emission electron gun as well as the investigation of miniaturized lenses and deflectors. Electrostatic elements are designed and developed for this application. Connector pads and wiring pattern are created by conventional electron beam lithography and a lift-off or etching process. Wire and other 3-dimensional structures are grown using electron beam induced deposition. This additive lithography allows to form electrodes and resistors of a preset conductivity. The scanning electron microscope features positioning the structures with nm precision. An unconventional lithography system is used that is capable of controlling the pixel dwell time within a shape with different time functions. With this special function 3-dimensional structures can be generated like free standing square shaped electrodes. The switch is built by computer controlled additive lithography avoiding assembly from parts. Lenses of micrometer dimensions were investigated with numerical electron optics programs computing the 3-dimensional potential and field distribution. From the extracted axial field distribution the electron optic characteristic parameters, like focal length, chromatic and spherical aberration, were calculated for various lens excitations. The analysis reveals that miniaturized optics for low energy electrons, as low as 30 eV, are diffraction limited. For a lens with 2 μm focal length, a chromatic aberration disc of 1 nm contributes to 12 nm diffraction disc. The spherical aberration blurs the probe by 0.02 nm, assuming an aperture of 0.01 rad. Employing hydrogen ions at 100 V, a probe diameter of 0.3 nm generated by chromatic aberration is possible. Miniaturized electron optical probe forming systems and imaging systems can be constructed with those lenses. Its application as lithography systems with massive parallel beams can be forseen.

  2. Power smart in-door optical wireless link design

    NASA Astrophysics Data System (ADS)

    Marraccini, P. J.; Riza, N. A.

    2011-12-01

    Presented for the first time, to the best of the authors´ knowledge, is the design of a power smart in-door optical wireless link that provides lossless beam propagation between Transmitter (T) and Receiver (R) for changing link distances. Each T/R unit uses a combination of fixed and variable focal length optics to smartly adjust the laser beam propagation parameters of minimum beam waist size and its location to produce the optimal zero propagation loss coupling condition at the R for that link distance. An Electronically Controlled Variable Focus Lens (ECVFL) is used to form the wide field-of-view search beam and change the beam size at R to form a low loss beam. The T/R unit can also deploy camera optics and thermal energy harvesting electronics to improve link operational smartness and efficiency. To demonstrate the principles of the beam conditioned low loss indoor link, a visible 633 nm laser link using an electro-wetting technology liquid ECVFL is demonstrated for a variable 1 to 4 m link range. Measurements indicate a 53% improvement over an unconditioned laser link at 4 m. Applications for this power efficient wireless link includes mobile computer platform communications and agile server rack interconnections in data centres.

  3. Magnetogasdynamic Power Extraction and Flow Conditioning for a Gas Turbine

    NASA Technical Reports Server (NTRS)

    Adamovich, Igor V.; Rich, J. William; Schneider, Steven; Blankson, Isaiah

    2003-01-01

    An extension of the Russian AJAX concept to a turbojet is being explored. This magnetohydrodynamic (MHD) energy bypass engine cycle incorporating conventional gas turbine technology has MHD flow conditioning at the inlet to electromagnetically extract part of the inlet air kinetic energy. The electrical power generated can be used for various on-board vehicle requirements including plasma flow control around the vehicle or it may be used for augmenting the expanding flow in the high speed nozzle by MHD forces to generate more thrust. In order to achieve this interaction, the air needs to be ionized by an external means even up to fairly high flight speeds, and the leading candidates may be classified as electrical discharge devices. The present kinetic modeling calculations suggest that the use of electron beams with characteristics close to the commercially available e-beam systems (electron energy approx. 60 keV, beam current approx. 0.2 mA/sq cm) to sustain ionization in intermediate pressure, low-temperature (P = 0.1 atm, T = 300 K) supersonic air flows allows considerable reduction of the flow kinetic energy (up to 10 to 20 percent in M = 3 flows). The calculations also suggest that this can be achieved at a reasonable electron beam efficiency (eta approx. 5), even if the e-beam window losses are taken into account. At these conditions, the exit NO and O atom concentrations due to e-beam initiated chemical reactions do not exceed 30 ppm. Increasing the beam current up to approx. 2 mA/sq cm, which corresponds to a maximum electrical conductivity of sigma(sub max) approx. 0.8 mho/m at the loading parameter of K = 0.5, would result in a much greater reduction of the flow kinetic energy (up to 30 to 40 percent). The MHD channel efficiency at these conditions would be greatly reduced (to eta approx. 1) due to increased electron recombination losses in the channel. At these conditions, partial energy conversion from kinetic energy to heat would result in a significant total pressure loss (P(sub 0)/P(sub 0i) approx. 0.3). The total pressure loss can be reduced operating at the loading parameter closer to unity, at the expense of the reduced electrical power output. Raising the beam current would also result in the increase of the exit O atom concentrations (up to 600 ppm) and NO (up to 150 ppm).

  4. Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki; Sato, Masahiro

    2017-02-01

    Controlling electric and magnetic properties of matter by laser beams is actively explored in the broad region of condensed matter physics, including spintronics and magneto-optics. Here we theoretically propose an application of optical and electron vortex beams carrying intrinsic orbital angular momentum to chiral ferro- and antiferromagnets. We analyze the time evolution of spins in chiral magnets under irradiation of vortex beams by using the stochastic Landau-Lifshitz-Gilbert equation. We show that beam-driven nonuniform temperature leads to a class of ring-shaped magnetic defects, what we call skyrmion multiplex, as well as conventional skyrmions. We discuss the proper beam parameters and the optimal way of applying the beams for the creation of these topological defects. Our findings provide an ultrafast scheme of generating topological magnetic defects in a way applicable to both metallic and insulating chiral (anti-) ferromagnets.

  5. Generation of magneto-immersed electron beams

    NASA Astrophysics Data System (ADS)

    Pikin, A.; Raparia, D.

    2018-05-01

    There are many applications of electron beams in accelerator facilities: for electron coolers, electron lenses, and electron beam ion sources (EBIS) to mention a few. Most of these applications require magnetic compression of the electron beam to reduce the beam radius with the goal of either matching the circulating ion beam (electron lenses and electron coolers) or increasing the ionization capability for the production of highly charged ions (EBIS). The magnetic compression of the electron beam comes at a cost of increasing share of the transverse component of energy and therefore increased angles of the electron trajectories to the longitudinal axis. Considering the effect of the magnetic mirror, it is highly desirable to produce a laminar electron beam in the electron gun. The analysis of electron guns with different configurations is given in this paper with emphasis on generating laminar electron beams.

  6. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    NASA Astrophysics Data System (ADS)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  7. Mechanical and thermal properties and morphological studies of 10 MeV electron beam irradiated LDPE/hydroxyapatite nano-composite

    NASA Astrophysics Data System (ADS)

    Soltani, Z.; Ziaie, F.; Ghaffari, M.; Afarideh, H.; Ehsani, M.

    2013-02-01

    In this work the nano-composite samples were prepared using the LDPE filled with different weight percentages of hydroxyapatite powder which was synthesized via hydrolysis method. The samples were subjected to irradiation under 10 MeV electron beam in 75-250 kGy doses. Mechanical and thermal properties as well as the morphology of the nano-composite samples were investigated and compared. The hot-set and swelling tests confirmed the radiation crosslinking induced in the polymer matrix especially between the matrix and reinforcement phase. The result indicates that the mechanical and thermal parameters are strongly dependent on the hydroxyapatite content in comparison to radiation.

  8. Calculation of x-ray spectra emerging from an x-ray tube. Part I. electron penetration characteristics in x-ray targets.

    PubMed

    Poludniowski, Gavin G; Evans, Philip M

    2007-06-01

    The penetration characteristics of electron beams into x-ray targets are investigated for incident electron kinetic energies in the range 50-150 keV. The frequency densities of electrons penetrating to a depth x in a target, with a fraction of initial kinetic energy, u, are calculated using Monte Carlo methods for beam energies of 50, 80, 100, 120 and 150 keV in a tungsten target. The frequency densities for 100 keV electrons in Al, Mo and Re targets are also calculated. A mixture of simple modeling with equations and interpolation from data is used to generalize the calculations in tungsten. Where possible, parameters derived from the Monte Carlo data are compared to experimental measurements. Previous electron transport approximations in the semiempirical models of other authors are discussed and related to this work. In particular, the crudity of the use of the Thomson-Whiddington law to describe electron penetration and energy loss is highlighted. The results presented here may be used towards calculating the target self-attenuation correction for bremsstrahlung photons emitted within a tungsten target.

  9. Control of Laser Plasma Based Accelerators up to 1 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Kei

    2007-12-01

    This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> ± 10 mrad) were realized by employing a slitless scheme. A scintillating screenmore » (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 μm diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 10 18 W/cm 2) over 3.3 centimeters of sufficiently low density (≃ 4.3 x 10 18/cm 3) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of ≃ 0.5 GeV by using a 225 μm diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 10 18W/cm 2) were guided over 3.3 centimeters of low density (≃ 3.5 x 10 18/cm 3) plasma in this experiment. A statistical analysis of the CDG-LWFAs performance was carried out. By taking advantage of the high repetition rate experimental system, several thousands of shots were taken in a broad range of the laser and plasma parameters. An analysis program was developed to sort and select the data by specified parameters, and then to evaluate performance statistically. The analysis suggested that the generation of GeV-level beams comes from a highly unstable and regime. By having the plasma density slightly above the threshold density for self injection, (1) the longest dephasing length possible was provided, which led to the generation of high energy e-beams, and (2) the number of electrons injected into the wakefield was kept small, which led to the generation of high quality (low energy spread) e-beams by minimizing the beam loading effect on the wake. The analysis of the stable half-GeV beam regime showed the requirements for stable self injection and acceleration. A small change of discharge delay t dsc, and input energy E in, significantly affected performance. The statistical analysis provided information for future optimization, and suggested possible schemes for improvement of the stability and higher quality beam generation. A CDG-LWFA is envisioned as a construction block for the next generation accelerator, enabling significant cost and size reductions.« less

  10. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-01

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  11. Ion streaming instabilities with application to collisionless shock wave structure

    NASA Technical Reports Server (NTRS)

    Golden, K. I.; Linson, L. M.; Mani, S. A.

    1973-01-01

    The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. The parameters are then chosen to be applicable for parallel shocks. It was found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5. It is suggested that this mechanism could generate sufficient turbulence within the shock layer to scatter the incoming ions and create the required dissipation for intermediate strength shocks.

  12. Study of Storage Ring Free-Electron Laser Using Experimental and Simulation Approaches

    NASA Astrophysics Data System (ADS)

    Jia, Botao

    2011-12-01

    The Duke electron storage ring, first commissioned in November of 1994, has been developed as a dedicated driver for storage ring free-electron lasers (SRFELs) operating in a wide wavelength range from infrared, to visible, to ultraviolet (UV) and vacuum ultraviolet (VUV). The storage ring has a long straight section for various insertion devices and can be operated in a wide energy range (0.25 GeV to 1.15 GeV). Commissioned in 1995, the first free-electron laser (FEL) on the Duke storage ring was the OK-4 FEL, an optical klystron with two planar undulators sandwiching a buncher magnet. In 2005, the OK-5 FEL with two helical undulators was commissioned. Operating four undulators---two OK-4 and two OK-5 undulators, the world's first distributed optical klystron FEL was brought to operation in 2005. Via Compton scattering of FEL photons and electrons in the storage ring, the Duke FEL drives the world's most powerful, nearly monochromatic, and polarized Compton gamma-ray source, the High Intensity Gamma-ray Source (HIgammaS). Today, a variety of configurations of the storage ring FELs at Duke have been used in a wide range of research areas from nuclear physics to biophysics, from chemical and medical research to industrial applications. The capability of accurately measuring the storage ring electron beam energy spread is crucial for understanding the longitudinal beam dynamics and the dynamics of the storage ring FEL. In this dissertation, we have successfully developed a noninvasive, versatile, and accurate method to measure the energy spread using optical klystron radiation. Novel numerical methods based upon the Gauss-Hermite expansion have been developed to treat both spectral broadening and modulation on an equal footing. Through properly configuring the optical klystron, this energy spread measurement method has a large dynamic range. In addition, a model-based scheme has been developed for correcting the electron beam emittance related inhomogeneous spectral broadening effect, to further enhance the accuracy of measuring the electron beam energy spread. Taking advantage of the direct measurement method of the electron beam energy spread, we have developed another novel technique to simultaneously measure the FEL power, electron beam energy spread, and other beam parameters. This allowed us to study the FEL power in a systematic manner for the first time. Based on the experimental findings and results of the theoretical predictions, we have proposed a compact formula to predict the FEL power using only the knowledge of electron beam current, beam energy, and bunch length. As part of the dissertation work, we have developed a self-consistent numerical model to study the storage ring FEL. The simulation program models the electron beam propagation along the storage ring, multi-turn FEL interaction in the undulators, gradual intra-cavity optical power buildup, etc. This simulation code captures the main features of a storage ring FEL at different time and space scales. The simulated FEL gain has been benchmarked against measured gain and calculated gain with good agreement. The simulation package can provide comprehensive information about the FEL gain, optical pulse growth, electron beam properties, etc. In the near future, we plan to further improve the simulation model, by including additional physics effects such as microwave instability, to make it a more useful tool for FEL research.

  13. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types.

    PubMed

    Muir, B R; Rogers, D W O

    2014-11-01

    To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers' effective point of measurement (EPOM) and beam quality conversion factors. The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R50 converted from I50 (calculated using ion chamber simulations in phantom) to R50 calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, kQ, as a function of R50. The optimal shift of cylindrical chambers is found to be less than the 0.5 rcav recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 rcav. Values of kecal are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R50 = 7.5 cm (kQ (')) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.

  14. High current H2(+) and H3(+) beam generation by pulsed 2.45 GHz electron cyclotron resonance ion source.

    PubMed

    Xu, Yuan; Peng, Shixiang; Ren, Haitao; Zhao, Jie; Chen, Jia; Zhang, Ailin; Zhang, Tao; Guo, Zhiyu; Chen, Jia'er

    2014-02-01

    The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H2(+) and H3(+)) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H3(+) ions with fraction 43.2% and 40 mA H2(+) ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.

  15. Qualification and implementation of line ratio spectroscopy on helium as plasma edge diagnostic at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Griener, M.; Muñoz Burgos, J. M.; Cavedon, M.; Birkenmeier, G.; Dux, R.; Kurzan, B.; Schmitz, O.; Sieglin, B.; Stroth, U.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team

    2018-02-01

    A new thermal helium beam diagnostic has been implemented as plasma edge diagnostic at the ASDEX Upgrade (AUG) tokamak. The helium beam is built to measure the electron density n e and temperature T e simultaneously with high spatial and temporal resolution in order to investigate steady-state as well as fast transport processes in the plasma edge region. For the thermal helium beam emission line ratio spectroscopy, neutral helium is locally injected into the plasma by a piezo valve. This enabled the measurement of the line resolved emission intensities of seven He I lines for different plasma scenarios in AUG. The different line ratios can be used together with a collisional-radiative model (CRM) to reconstruct the underlying electron temperature and density. Ratios from the same spin species are used for the electron density reconstruction, whereas spin mixed ratios are sensitive to electron temperature changes. The different line ratios as well as different CRMs are tested for their suitability for diagnostic applications. Furthermore their consistency in calculating identical parameters is validated and the resulting profiles are compared to other available diagnostics at AUG.

  16. LIGHT SOURCE: Physical design of a 10 MeV LINAC for polymer radiation processing

    NASA Astrophysics Data System (ADS)

    Feng, Guang-Yao; Pei, Yuan-Ji; Wang, Lin; Zhang, Shan-Cai; Wu, Cong-Feng; Jin, Kai; Li, Wei-Min

    2009-06-01

    In China, polymer radiation processing has become one of the most important processing industries. The radiation processing source may be an electron beam accelerator or a radioactive source. Physical design of an electron beam facility applied for radiation crosslinking is introduced in this paper because of it's much higher dose rate and efficiency. Main part of this facility is a 10 MeV travelling wave electron linac with constant impedance accelerating structure. A start to end simulation concerning the linac is reported in this paper. The codes Opera-3d, Poisson-superfish and Parmela are used to describe electromagnetic elements of the accelerator and track particle distribution from the cathode to the end of the linac. After beam dynamic optimization, wave phase velocities in the structure have been chosen to be 0.56, 0.9 and 0.999 respectively. Physical parameters about the main elements such as DC electron gun, iris-loaded periodic structure, solenoids, etc, are presented. Simulation results proves that it can satisfy the industrial requirement. The linac is under construction. Some components have been finished. Measurements proved that they are in a good agreement with the design values.

  17. High power long pulse microwave generation from a metamaterial structure with reverse symmetry

    NASA Astrophysics Data System (ADS)

    Lu, Xueying; Stephens, Jacob C.; Mastovsky, Ivan; Shapiro, Michael A.; Temkin, Richard J.

    2018-02-01

    Experimental operation of a high power microwave source with a metamaterial (MTM) structure is reported at power levels to 2.9 MW at 2.4 GHz in full 1 μs pulses. The MTM structure is formed by a waveguide that is below cutoff for TM modes. The waveguide is loaded by two axial copper plates machined with complementary split ring resonators, allowing two backward wave modes to propagate in the S-Band. A pulsed electron beam of up to 490 kV, 84 A travels down the center of the waveguide, midway between the plates. The electron beam is generated by a Pierce gun and is focused by a lens into a solenoidal magnetic field. The MTM plates are mechanically identical but are placed in the waveguide with reverse symmetry. Theory indicates that both Cherenkov and Cherenkov-cyclotron beam-wave interactions can occur. High power microwave generation was studied by varying the operating parameters over a wide range, including the electron beam voltage, the lens magnetic field, and the solenoidal field. Frequency tuning with a magnetic field and beam voltage was studied to discriminate between operation in the Cherenkov mode and the Cherenkov-cyclotron mode. Both modes were observed, but pulses above 1 MW of output power were only seen in the Cherenkov-cyclotron mode. A pair of steering coils was installed prior to the interaction space to initiate the cyclotron motion of the electron beam and thus encourage the Cherenkov-cyclotron high power mode. This successfully increased the output power from 2.5 MW to 2.9 MW (450 kV, 74 A, 9% efficiency).

  18. Dose rate effect of pulsed electron beam on micronucleus frequency in human peripheral blood lymphocytes.

    PubMed

    Acharya, Santhosh; Sanjeev, Ganesh; Bhat, Nagesh N; Narayana, Yerol

    2010-03-01

    The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7+/-0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor.

  19. The use of Monte Carlo simulations for accurate dose determination with thermoluminescence dosemeters in radiation therapy beams.

    PubMed

    Mobit, P

    2002-01-01

    The energy responses of LiF-TLDs irradiated in megavoltage electron and photon beams have been determined experimentally by many investigators over the past 35 years but the results vary considerably. General cavity theory has been used to model some of the experimental findings but the predictions of these cavity theories differ from each other and from measurements by more than 13%. Recently, two groups or investigators using Monte Carlo simulations and careful experimental techniques showed that the energy response of 1 mm or 2 mm thick LiF-TLD irradiated by megavoltage photon and electron beams is not more than 5% less than unity for low-Z phantom materials like water or Perspex. However, when the depth of irradiation is significantly different from dmax and the TLD size is more than 5 mm, then the energy response is up to 12% less than unity for incident electron beams. Monte Carlo simulations of some of the experiments reported in the literature showed that some of the contradictory experimental results are reproducible with Monte Carlo simulations. Monte Carlo simulations show that the energy response of LiF-TLDs depends on the size of detector used in electron beams, the depth of irradiation and the incident electron energy. Other differences can be attributed to absolute dose determination and precision of the TL technique. Monte Carlo simulations have also been used to evaluate some of the published general cavity theories. The results show that some of the parameters used to evaluate Burlin's general cavity theory are wrong by factor of 3. Despite this, the estimation of the energy response for most clinical situations using Burlin's cavity equation agrees with Monte Carlo simulations within 1%.

  20. Analysis of the interaction of an electron beam with a solar cell. III - The effect of spacial variations of the number density of recombination centers on SEM measurements

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1979-01-01

    By means of an exactly soluble model the short circuit current generated by a scanning electron microscope in a P-N junction has been determined in cases where the trap density is inhomogeneous. The diffusion length for minority carriers becomes then dependent on the spacial coordinates. It is shown that in this case the dependence of the Isc on characteristic parameters as cell thickness, distance of the beam excitation spot from ohmic contacts, etc., becomes very intricate. This fact precludes the determination of the local diffusion length in the usual manner. Although the model is somewhat simplified in order to make it amenable to exact solutions, it is nevertheless realistic enough to lead to the conclusion that SEM measurements of bulk transport parameters in inhomogeneous semiconductor material are impractical since they may lead to serious errors in the interpretation of the data by customary means.

Top