Sample records for electron beam stop

  1. Measurement and interpretation of electron angle at mabe beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.

    1985-10-01

    This analysis shows that radiation measurements combined with a sophisticated simulation provides a simple but powerful tool for estimating beam temperature in intense pulsed annular electron-beam accelerators. Specifically, the mean angle of incidence of a 60 kA, 7 MeV annular electron-beam at the beam stop of the MABE accelerator and the transverse beam temperature are determined. The angle is extracted by comparing dose profiles measured downstream of the stop with that expected from a simulation of the electron/photon transport in the stop. By calculating and removing the effect on the trajectories due to the change in electric field near themore » stop, the beam temperature is determined. Such measurements help give insight to beam generation and propagation within the accelerator.« less

  2. Measurement and interpretation of electron angle at MABE beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.

    1985-01-01

    This analysis shows that radiation measurements combined with a sophisticated simulation provides a simple but powerful tool for estimating beam temperature in intense pulsed annular electron-beam accelerators. Specifically, the mean angle of incidence of a 60 kA, 7 MeV annular electron-beam at the beam stop of the MABE accelerator and the transverse beam temperature are determined. The angle is extracted by comparing dose profiles measured downstream of the stop with that expected from a simulation of the electron/photon transport in the stop. By calculating and removing the effect on the trajectories due to the change in electric field near themore » stop, the beam temperature is determined. Such measurements help give insight to beam generation and propagation within the accelerator. 9 refs., 6 figs., 1 tab.« less

  3. Measurement and interpretation of electron angle at MABE beam stop

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Coleman, P. D.; Poukey, J. W.

    1985-02-01

    The mean angle of incidence at the beam stop of a 60 kA, 7 MV annular electron beam, in the 20 kG guide field of the MABE accelerator, was determined. Radiation dose measured in TLD arrays mounted downstream of the stop is compared with the radiation dose expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15(0) + or - 2(0). A comparison of theta with that expected from the Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.

  4. Measurement of electron angle at MABE beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.

    1984-01-01

    The mean angle of incidence at the beam stop of a 60 KA, 7 MV annular electron beam, in the 20 kg guide field of the MABE accelerator, is determined. Radiation measured in TLD arrays mounted downstream of the stop is compared with the radiation expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15/sup 0/ +- 2/sup 0/. Comparing theta with that expected from themore » Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.« less

  5. Measurement and interpretation of electron angle at MABE beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.

    1985-02-01

    The mean angle of incidence at the beam stop of a 60 kA, 7 MV annular electron beam, in the 20 kG guide field of the MABE accelerator, is determined. Radiation dose measured in TLD arrays mounted downstream of the stop is compared with the radiation dose expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15/sup 0/ +- 2/sup 0/. Comparing this theta with thatmore » expected from the Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.« less

  6. The influence of magnetic fields on the wake field and stopping power of an ion-beam pulse in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiao-ying; Zhang, Ya-ling; Duan, Wen-shan

    2015-09-15

    We performed two-dimensional particle-in-cell simulations to investigate how a magnetic field affects the wake field and stopping power of an ion-beam pulse moving in plasmas. The corresponding density of plasma electrons is investigated. At a weak magnetic field, the wakes exhibit typical V-shaped cone structures. As the magnetic field strengthens, the wakes spread and lose their typical V-shaped structures. At a sufficiently strong magnetic field, the wakes exhibit conversed V-shaped structures. Additionally, strengthening the magnetic field reduces the stopping power in regions of low and high beam density. However, the influence of the magnetic field becomes complicated in regions ofmore » moderate beam density. The stopping power increases in a weak magnetic field, but it decreases in a strong magnetic field. At high beam density and moderate magnetic field, two low-density channels of plasma electrons appear on both sides of the incident beam pulse trajectory. This is because electrons near the beam pulses will be attracted and move along with the beam pulses, while other electrons nearby are restricted by the magnetic field and cannot fill the gap.« less

  7. Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams.

    PubMed

    Björk, Peter; Knöös, Tommy; Nilsson, Per

    2004-10-07

    The aim of the present study was to investigate three different detector types (a parallel-plate ionization chamber, a p-type silicon diode and a diamond detector) with regard to output factor measurements in degraded electron beams, such as those encountered in small-electron-field radiotherapy and intraoperative radiation therapy (IORT). The Monte Carlo method was used to calculate mass collision stopping-power ratios between water and the different detector materials for these complex electron beams (nominal energies of 6, 12 and 20 MeV). The diamond detector was shown to exhibit excellent properties for output factor measurements in degraded beams and was therefore used as a reference. The diode detector was found to be well suited for practical measurements of output factors, although the water-to-silicon stopping-power ratio was shown to vary slightly with treatment set-up and irradiation depth (especially for lower electron energies). Application of ionization-chamber-based dosimetry, according to international dosimetry protocols, will introduce uncertainties smaller than 0.3% into the output factor determination for conventional IORT beams if the variation of the water-to-air stopping-power ratio is not taken into account. The IORT system at our department includes a 0.3 cm thin plastic scatterer inside the therapeutic beam, which furthermore increases the energy degradation of the electrons. By ignoring the change in the water-to-air stopping-power ratio due to this scatterer, the output factor could be underestimated by up to 1.3%. This was verified by the measurements. In small-electron-beam dosimetry, the water-to-air stopping-power ratio variation with field size could mostly be ignored. For fields with flat lateral dose profiles (>3 x 3 cm2), output factors determined with the ionization chamber were found to be in close agreement with the results of the diamond detector. For smaller field sizes the lateral extension of the ionization chamber hampers its use. We therefore recommend that the readily available silicon diode detector should be used for output factor measurements in complex electron fields.

  8. Unraveling resistive versus collisional contributions to relativistic electron beam stopping power in cold-solid and in warm-dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vauzour, B.; Laboratoire d'Optique Appliquée, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau; Debayle, A.

    2014-03-15

    We present results on laser-driven relativistic electron beam propagation through aluminum samples, which are either solid and cold or compressed and heated by laser-induced shock. A full numerical description of fast electron generation and transport is found to reproduce the experimental absolute K{sub α} yield and spot size measurements for varying target thicknesses, and to sequentially quantify the collisional and resistive electron stopping powers. The results demonstrate that both stopping mechanisms are enhanced in compressed Al samples and are attributed to the increase in the medium density and resistivity, respectively. For the achieved time- and space-averaged electronic current density, 〈j{submore » h}〉∼8×10{sup 10} A/cm{sup 2} in the samples, the collisional and resistive stopping powers in warm and compressed Al are estimated to be 1.5 keV/μm and 0.8 keV/μm, respectively. By contrast, for cold and solid Al, the corresponding estimated values are 1.1 keV/μm and 0.6 keV/μm. Prospective numerical simulations involving higher j{sub h} show that the resistive stopping power can reach the same level as the collisional one. In addition to the effects of compression, the effect of the transient behavior of the resistivity of Al during relativistic electron beam transport becomes progressively more dominant, and for a significantly high current density, j{sub h}∼10{sup 12} A/cm{sup 2}, cancels the difference in the electron resistive stopping power (or the total stopping power in units of areal density) between solid and compressed samples. Analytical calculations extend the analysis up to j{sub h}=10{sup 14} A/cm{sup 2} (representative of the full-scale fast ignition scenario of inertial confinement fusion), where a very rapid transition to the Spitzer resistivity regime saturates the resistive stopping power, averaged over the electron beam duration, to values of ∼1 keV/μm.« less

  9. Stopping-power ratios for clinical electron beams from a scatter-foil linear accelerator.

    PubMed

    Kapur, A; Ma, C M

    1999-09-01

    Restricted mass collision stopping-power ratios for electron beams from a scatter-foil medical linear accelerator (Varian Clinac 2100C) were calculated for various combinations of beams, phantoms and detector materials using the Monte Carlo method. The beams were of nominal energy 6, 12 or 20 MeV, with square dimensions 1 x 1 cm2 to 10 x 10 cm2. They were incident at nominal SSDs of 100 or 120 cm and inclined at 90 degrees or 30 degrees to the surface of homogeneous water phantoms or water phantoms interspersed with layered lung or bone-like materials. The broad beam water-to-air stopping-power ratios were within 1.3% of the AAPM TG21 protocol values and consistent with the results of Ding et al to within 0.2%. On the central axis the stopping-power ratio variations for narrow beams compared with normally incident broad beams were 0.1% or less for water-to-LiF-100, graphite, ferrous sulfate dosimeter solution, polystyrene and PMMA, 0.5% for water-to-silicon and 1% for water-to-air and water-to-photographic-film materials. The transverse variations of the stopping-power ratios were up to 4% for water-to-silicon, 7% for water-to-photographic-film materials and 10% for water-to-air in the penumbral regions (where the dose was 10% of the global dose maximum) at shallow depths compared with the values at the same depths on the central axis. In the inhomogeneous phantoms studied, the stopping-power ratio correction factors varied more significantly for air, followed by photographic materials and silicon, at various depths on the central axis in the heterogeneous regions. For the simple layered phantoms studied, the estimation of the stopping-power ratio correction factors based on the relative electron-density derived effective depth approach yielded results that were within 0.5% of the Monte Carlo derived values for all the detector materials studied.

  10. Sci-Thur AM: YIS – 04: Stopping power-to-Cherenkov power ratios and beam quality specification for clinical Cherenkov emission dosimetry of electrons: beam-specific effects and experimental validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlateva, Yana; Seuntjens, Jan; El Naqa, Issam

    Purpose: To advance towards clinical Cherenkov emission (CE)-based dosimetry by investigating beam-specific effects on Monte Carlo-calculated electron-beam stopping power-to-CE power ratios (SCRs), addressing electron beam quality specification in terms of CE, and validating simulations with measurements. Methods: The EGSnrc user code SPRRZnrc, used to calculate Spencer-Attix stopping-power ratios, was modified to instead calculate SCRs. SCRs were calculated for 6- to 22-MeV clinical electron beams from Varian TrueBeam, Clinac 21EX, and Clinac 2100C/D accelerators. Experiments were performed with a 20-MeV electron beam from a Varian TrueBeam accelerator, using a diffraction grating spectrometer with optical fiber input and a cooled back-illuminated CCD.more » A fluorophore was dissolved in the water to remove CE signal anisotropy. Results: It was found that angular spread of the incident beam has little effect on the SCR (≤ 0.3% at d{sub max}), while both the electron spectrum and photon contamination increase the SCR at shallow depths and decrease it at large depths. A universal data fit of R{sub 50} in terms of C{sub 50} (50% CE depth) revealed a strong linear dependence (R{sup 2} > 0.9999). The SCR was fit with a Burns-type equation (R{sup 2} = 0.9974, NRMSD = 0.5%). Below-threshold incident radiation was found to have minimal effect on beam quality specification (< 0.1%). Experiments and simulations were in good agreement. Conclusions: Our findings confirm the feasibility of the proposed CE dosimetry method, contingent on computation of SCRs from additional accelerators and on further experimental validation. This work constitutes an important step towards clinical high-resolution out-of-beam CE dosimetry.« less

  11. SU-C-201-07: Towards Clinical Cherenkov Emission Dosimetry: Stopping Power-To-Cherenkov Power Ratios and Beam Quality Specification of Clinical Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlateva, Y; Seuntjens, J; El Naqa, I

    Purpose: We propose a Cherenkov emission (CE)-based reference dosimetry method, which in contrast to ionization chamber-based dosimetry, employs spectrum-averaged electron restricted mass collision stopping power-to-Cherenkov power ratios (SCRs), and we examine Monte Carlo-calculated SCRs and beam quality specification of clinical electron beams. Methods: The EGSnrc user code SPRRZnrc was modified to compute SCRs instead of stopping-power ratios (single medium: water; cut-off: CE threshold (observing Spencer-Attix conditions); CE power: Frank-Tamm). SCRs are calculated with BEAMnrc for realistic electron beams with nominal energies of 6–22 MeV from three Varian accelerators (TrueBeam Clinac 21EX, Clinac 2100C/D) and for mono-energetic beams of energies equalmore » to the mean electron energy at the water surface. Sources of deviation between clinical and mono-energetic SCRs are analyzed quantitatively. A universal fit for the beam-quality index R{sub 50} in terms of the depth of 50% CE C{sub 50} is carried out. Results: SCRs at reference depth are overestimated by mono-energetic values by up to 0.2% for a 6-MeV beam and underestimated by up to 2.3% for a 22-MeV beam. The variation is mainly due to the clinical beam spectrum and photon contamination. Beam angular spread has a small effect across all depths and energies. The influence of the electron spectrum becomes increasingly significant at large depths, while at shallow depths and high beam energies photon contamination is predominant (up to 2.0%). The universal data fit reveals a strong linear correlation between R{sub 50} and C{sub 50} (ρ > 0.99999). Conclusion: CE is inherent to radiotherapy beams and can be detected outside the beam with available optical technologies, which makes it an ideal candidate for out-of-beam high-resolution 3D dosimetry. Successful clinical implementation of CE dosimetry hinges on the development of robust protocols for converting measured CE to radiation dose. Our findings constitute a key step towards clinical CE dosimetry.« less

  12. Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams.

    PubMed

    Sánchez-Doblado, F; Andreo, P; Capote, R; Leal, A; Perucha, M; Arráns, R; Núñez, L; Mainegra, E; Lagares, J I; Carrasco, E

    2003-07-21

    Absolute dosimetry with ionization chambers of the narrow photon fields used in stereotactic techniques and IMRT beamlets is constrained by lack of electron equilibrium in the radiation field. It is questionable that stopping-power ratio in dosimetry protocols, obtained for broad photon beams and quasi-electron equilibrium conditions, can be used in the dosimetry of narrow fields while keeping the uncertainty at the same level as for the broad beams used in accelerator calibrations. Monte Carlo simulations have been performed for two 6 MV clinical accelerators (Elekta SL-18 and Siemens Mevatron Primus), equipped with radiosurgery applicators and MLC. Narrow circular and Z-shaped on-axis and off-axis fields, as well as broad IMRT configured beams, have been simulated together with reference 10 x 10 cm2 beams. Phase-space data have been used to generate 3D dose distributions which have been compared satisfactorily with experimental profiles (ion chamber, diodes and film). Photon and electron spectra at various depths in water have been calculated, followed by Spencer-Attix (delta = 10 keV) stopping-power ratio calculations which have been compared to those used in the IAEA TRS-398 code of practice. For water/air and PMMA/air stopping-power ratios, agreements within 0.1% have been obtained for the 10 x 10 cm2 fields. For radiosurgery applicators and narrow MLC beams, the calculated s(w,air) values agree with the reference within +/-0.3%, well within the estimated standard uncertainty of the reference stopping-power ratios (0.5%). Ionization chamber dosimetry of narrow beams at the photon qualities used in this work (6 MV) can therefore be based on stopping-power ratios data in dosimetry protocols. For a modulated 6 MV broad beam used in clinical IMRT, s(w,air) agrees within 0.1% with the value for 10 x 10 cm2, confirming that at low energies IMRT absolute dosimetry can also be based on data for open reference fields. At higher energies (24 MV) the difference in s(w,air) was up to 1.1%, indicating that the use of protocol data for narrow beams in such cases is less accurate than at low energies, and detailed calculations of the dosimetry parameters involved should be performed if similar accuracy to that of 6 MV is sought.

  13. Relativistic high-current electron-beam stopping-power characterization in solids and plasmas: collisional versus resistive effects.

    PubMed

    Vauzour, B; Santos, J J; Debayle, A; Hulin, S; Schlenvoigt, H-P; Vaisseau, X; Batani, D; Baton, S D; Honrubia, J J; Nicolaï, Ph; Beg, F N; Benocci, R; Chawla, S; Coury, M; Dorchies, F; Fourment, C; d'Humières, E; Jarrot, L C; McKenna, P; Rhee, Y J; Tikhonchuk, V T; Volpe, L; Yahia, V

    2012-12-21

    We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K(α) yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of ≈ 8 × 10(10) A/cm(2) they reach 1.5 keV/μm and 0.8 keV/μm, respectively. For higher current densities up to 10(12)A/cm(2), numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV/μm for electron current densities of 10(14)A/cm(2), representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.

  14. Stopping power of an electron gas with anisotropic temperature

    NASA Astrophysics Data System (ADS)

    Khelemelia, O. V.; Kholodov, R. I.

    2016-04-01

    A general theory of motion of a heavy charged particle in the electron gas with an anisotropic velocity distribution is developed within the quantum-field method. The analytical expressions for the dielectric susceptibility and the stopping power of the electron gas differs in no way from well-known classic formulas in the approximation of large and small velocities. Stopping power of the electron gas with anisotropic temperature in the framework of the quantum-field method is numerically calculated for an arbitrary angle between directions of the motion of the projectile particle and the electron beam. The results of the numerical calculations are compared with the dielectric model approach.

  15. Dosimetric characteristics of electron beams produced by a mobile accelerator for IORT.

    PubMed

    Pimpinella, M; Mihailescu, D; Guerra, A S; Laitano, R F

    2007-10-21

    Energy and angular distributions of electron beams with different energies were simulated by Monte Carlo calculations. These beams were generated by the NOVAC7 system (Hitesys, Italy), a mobile electron accelerator specifically dedicated to intra-operative radiation therapy (IORT). The electron beam simulations were verified by comparing the measured dose distributions with the corresponding calculated distributions. As expected, a considerable difference was observed in the energy and angular distributions between the IORT beams studied in the present work and the electron beams produced by conventional accelerators for non-IORT applications. It was also found that significant differences exist between the IORT beams used in this work and other IORT beams with different collimation systems. For example, the contribution from the scattered electrons to the total dose was found to be up to 15% higher in the NOVAC7 beams. The water-to-air stopping power ratios of the IORT beams used in this work were calculated on the basis of the beam energy distributions obtained by the Monte Carlo simulations. These calculated stopping power ratios, s(w,air), were compared with the corresponding s(w,air) values recommended by the TRS-381 and TRS-398 IAEA dosimetry protocols in order to estimate the deviations between a dosimetry based on generic parameters and a dosimetry based on parameters specifically obtained for the actual IORT beams. The deviations in the s(w,air) values were found to be as large as up to about 1%. Therefore, we recommend that a preliminary analysis should always be made when dealing with IORT beams in order to assess to what extent the possible differences in the s(w,air) values have to be accounted for or may be neglected on the basis of the specific accuracy needed in clinical dosimetry.

  16. A high-current electron beam ion trap as a charge breeder for the reacceleration of rare isotopes at the NSCL.

    PubMed

    Schwarz, S; Bollen, G; Kostin, M; Marti, F; Zavodszky, P; Crespo López-Urrutia, J R; Dilling, J; Kester, O

    2008-02-01

    Reacceleration of low-energy rare isotope beams available from gas stopping of fast-fragment beams or from an ISOL target station to energies in the range of 0.3-12 MeV/nucleon is needed for experiments such as low-energy Coulomb excitation and transfer reaction studies and for the precise study of astrophysical reactions. The implementation of charge breeding as a first step in a reaccelerator is a key to obtaining a compact and cost-efficient reacceleration scheme. For highest efficiency it is essential that single charge states are obtained in a short breeding time. A low-emittance beam must be delivered. An electron beam ion trap (EBIT) has the potential to meet these requirements. An EBIT-based charge breeder is presently under design and construction at the NSCL as part of the construction of a reaccelerator for stopped beams from projectile fragmentation. This new facility will have the potential to provide low-energy rare isotope beams not yet available elsewhere.

  17. Collective Deceleration: Toward a Compact Beam Dump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, H.-C.; /Munich, Max Planck Inst. Quantenopt.; Tajima, T.

    With the increasing development of laser accelerators, the electron energy is already beyond GeV and even higher in near future. Conventional beam dump based on ionization or radiation loss mechanism is cumbersome and costly, also has radiological hazards. We revisit the stopping power of high-energy charged particles in matter and discuss the associated problem of beam dump from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than the Bethe-Bloch and multiple electromagnetic cascades stopping length in solid. At the mean time, the tenuous density of themore » gas makes the radioactivation negligible. Such a compact and non-radioactivating beam dump works well for short and dense bunches, which is typically generated from laser wakefield accelerator.« less

  18. Note on measuring electronic stopping of slow ions

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2017-11-01

    Extracting stopping cross sections from energy-loss measurements requires careful consideration of the experimental geometry. Standard procedures for separating nuclear from electronic stopping treat electronic energy loss as a friction force, ignoring its dependence on impact parameter. In the present study we find that incorporating this dependence has a major effect on measured stopping cross sections, in particular for light ions at low beam energies. Calculations have been made for transmission geometry, nuclear interactions being quantified by Bohr-Williams theory of multiple scattering on the basis of a Thomas-Fermi-Molière potential, whereas electronic interactions are characterized by Firsov theory or PASS code. Differences between the full and the restricted stopping cross section depend on target thickness and opening angle of the detector and need to be taken into account in comparisons with theory as well as in applications of stopping data. It follows that the reciprocity principle can be violated when checked on restricted instead of full electronic stopping cross sections. Finally, we assert that a seeming gas-solid difference in stopping of low-energy ions is actually a metal-insulator difference. In comparisons with experimental results we mostly consider proton data, where nuclear stopping is only a minor perturbation.

  19. Stopping of protons - Improved accuracy of the UCA model

    NASA Astrophysics Data System (ADS)

    Schiwietz, G.; Grande, P. L.

    2012-02-01

    Recent theoretical developments in the unitary convolution approximation (UCA) for electronic energy losses of bare and screened ions are presented. Examples are given for proton beams and rare-gas targets. For gas targets there exists a sufficient amount of experimental data on charge exchange, for pinpointing the largely unknown stopping-power contribution of electron-capture processes at low and intermediate energies.

  20. Materials modification using ions with energies below 1 MeV/u

    NASA Astrophysics Data System (ADS)

    Karlušić, M.; Jakšić, M.; Buljan, M.; Sancho-Parramon, J.; Bogdanović-Radović, I.; Radić, N.; Bernstorff, S.

    2013-12-01

    Materials modifications using swift heavy ion beams provided by large scale accelerators have been used for many years in a wide variety of ways, e.g. to produce ion tracks or to modify the shape of nanoparticles. In all those applications the most relevant parameter for the materials modification is the electronic stopping power and not the ion kinetic energy. For many materials, ions with energies below 1 MeV/u delivered from medium and small size accelerators have already sufficiently high electronic stopping power to modify materials in different ways. Also, in this energy range the nuclear stopping power can be large enough to provide additional opportunities for materials modifications. In the present paper, we review recent experimental activities of the Zagreb group where ion beams with energies below 1 MeV/u, obtained from a 6 MV EN Tandem Van de Graaff accelerator have been used. Additionally, we present several novel examples of materials modifications and their analysis with such ion beams.

  1. Roos and NACP-02 ion chamber perturbations and water-air stopping-power ratios for clinical electron beams for energies from 4 to 22 MeV

    NASA Astrophysics Data System (ADS)

    Bailey, M.; Shipley, D. R.; Manning, J. W.

    2015-02-01

    Empirical fits are developed for depth-compensated wall- and cavity-replacement perturbations in the PTW Roos 34001 and IBA / Scanditronix NACP-02 parallel-plate ionisation chambers, for electron beam qualities from 4 to 22 MeV for depths up to approximately 1.1 × R50,D. These are based on calculations using the Monte Carlo radiation transport code EGSnrc and its user codes with a full simulation of the linac treatment head modelled using BEAMnrc. These fits are used with calculated restricted stopping-power ratios between air and water to match measured depth-dose distributions in water from an Elekta Synergy clinical linear accelerator at the UK National Physical Laboratory. Results compare well with those from recent publications and from the IPEM 2003 electron beam radiotherapy Code of Practice.

  2. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W [Danville, CA; Palmer, Todd A [Livermore, CA; Teruya, Alan T [Livermore, CA

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  3. Fabrication of frequency selective surface for band stop IR-filter

    NASA Astrophysics Data System (ADS)

    Mishra, Akshita; Sudheer, Tiwari, P.; Mondal, P.; Bhatt, H.; Rai, V. N.; Srivastava, A. K.

    2016-05-01

    Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO2 on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infrared region.

  4. Electron beam collector for a microwave power tube

    DOEpatents

    Dandl, Raphael A.

    1980-01-01

    This invention relates to a cylindrical, electron beam collector that efficiently couples the microwave energy out of a high power microwave source while stopping the attendant electron beam. The interior end walls of the collector are a pair of facing parabolic mirrors and the microwave energy from an input horn is radiated between the two mirrors and reassembled at the entrance to the output waveguide where the transmitted mode is reconstructed. The mode transmission through the collector of the present invention has an efficiency of at least 94%.

  5. Poster - Thur Eve - 69: Electron beam dosimetry in heterogeneous phantoms using the MAGIC normoxic polymer gel.

    PubMed

    Nedaie, H A; Ghahraman, A R; Bolouri, B; Arbabi, A

    2012-07-01

    Recently, radiation sensitive polymer gels are being used as a reliable dosimetry method for three-dimensional (3D) verification of radiation doses in clinical use. Some properties of gel dosimeters have made them useful in verifying complex situations in electron therapy. The aim of this study was to experimentally evaluate the influence of tissue inhomogeneities on electron beam dose distributions by use of polymer gel dosimetry. Another purpose was to evaluate the appropriateness of polymer gels for electron beam dosimetry applications. A cylindrical phantom filled with MAGIC polymer gel with a polyacrilic wall (ρ = 1.18 g.cm -3 ) was placed in a Perspex water-filled tank exactly underneath the bone inhomogeneity region .Then, the slab phantom was irradiated with a dose of 5Gy of 8MeV electrons to measure the dose distribution beyond the heterogeneity region. Afterwards, another cylindrical gel phantom similar to the above was used and irradiated with the same dose of 15 MeV electrons to measure the dose distribution beyond the same heterogeneity region. The same mentioned setup was repeated for measurement of the dose distribution beneath the air heterogeneity and homogenous phantom. The results of gel dosimetry under bone inhomogeneity have shown a reduction in dose. This is related to the high mass stopping and mass scattering powers of bone tissue. In addition, dose enhancement is seen laterally near the bone-tissue interface, due to increased side scattering of electrons. Hot and cold scatter lobes under heterogeneity regions are other effects that can be seen. The results of gel dosimetry under the air inhomogeneity have shown an increase in dose. This is related to the low mass stopping and mass scattering powers of the air cavity. When a high energy beam passes through a low-density medium or an air cavity, electronic equilibrium is lost along the central axis of the beam .The dose rebuild up is a consequence of this electronic disequilibrium. An overall good agreement was found between measurements with gel and with a diode detector for the single beam experiment. Electron dose distributions are significantly altered in the presence of tissue inhomogeneities such as bone and air cavities which are related to mass stopping and mass scattering powers of heterogeneous materials. © 2012 American Association of Physicists in Medicine.

  6. Fabrication of frequency selective surface for band stop IR-filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Akshita, E-mail: akshitamishra27@gmail.com; Sudheer,; Tiwari, P.

    2016-05-23

    Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO{sub 2} on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infraredmore » region.« less

  7. Extracting Wair from the electron beam measurements of Domen and Lamperti.

    PubMed

    Tessier, Frédéric; Cojocaru, Claudiu D; Ross, Carl K

    2018-01-01

    The average energy expended by an energetic electron to create an ion pair in dry air, W air , is a key quantity in radiation dosimetry. Although W air is well established for electron energies up to about 3 MeV, there is limited data for higher energies. The measurements by Domen and Lamperti [Med. Phys. 3, 294-301 (1976)] using electron beams in the energy range from 15 to 50 MeV can, in principle, be used to deduce values for W air , if the electron stopping power of graphite and air are known. A previous analysis of these data revealed an anomalous variation of 2% in W air as a function of the electron energy. We use Monte Carlo simulation techniques to reanalyze the original data and obtain new estimates for W air , and to investigate the source of the reported anomaly. Domen and Lamperti (DL) reported the ratio of the response of a graphite calorimeter to that of a graphite ionization chamber for broad beams of electrons with energies between 15 and 50 MeV and at different depths in graphite (including depths well beyond the range of the primary electrons, i.e., in the bremsstrahlung photon regime). Using a detailed EGSnrc model of the DL apparatus, as well as up-to-date stopping powers, we compute the dose ratio between the ionization chamber cavity and the calorimeter core, for plane-parallel electron beams. This dose ratio, multiplied by the DL measured ratio, provides a direct estimate for W air . Despite an improved analysis of the original work, the extracted values of W air still exhibit an increase as the mean electron energy at the point of measurement decreases below about 15 MeV. This anomalous trend is dubious physically, and inconsistent with extensive data for W air obtained at lower energies. A thorough sensitivity analysis indicates that this trend is unlikely to stem from errors in extrapolation and correction procedures, uncertainties in electron stopping powers, or bias in calorimetry or ionization chamber measurements. However, we find that results are quite sensitive to the intrinsic graphite mass thickness of the detectors and to the incident beam energy. The DL experiment provides data in an energy regime where the electron stopping power is insensitive to the mean excitation energy of graphite - an issue plaguing W air experiments at lower energies. Unfortunately, state-of-the-art scrutiny of the original data cannot explain the anomalous trend in terms of perturbation effects or extrapolation bias. It can only be understood in terms of speculative offsets in graphite mass thickness or beam energy. Therefore higher accuracy measurements for electron energies above 15 MeV are recommended to further resolve the value of W air . © Her Majesty the Queen in Right of Canada 2017. Reproduced with the permission of the Minister of Science.

  8. The preplasma effect on the properties of the shock wave driven by a fast electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llor Aisa, E.; Ribeyre, X.; Tikhonchuk, V. T.

    2016-08-15

    Strong shock wave generation by a mono-energetic fast electron beam in a plasma with an increasing density profile is studied theoretically. The proposed analytical model describes the shock wave characteristics for a homogeneous plasma preceded by a low density precursor. The shock pressure and the time of shock formation depend on the ratio of the electron stopping length to the preplasma areal density and on the initial energy of injected electrons. The conclusions of theoretical model are confirmed in numerical simulations.

  9. Experiments investigating the generation and transport of 10--12 MeV, 30-kA, mm-size electron beams with linear inductive voltage adders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    The authors present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: 8--12 MeV, 35--50 kA, 30--60 ns FWHM, and 0.5-mm rms beam radius. The accelerators utilized are SABRE and HERMES III. Both are linear inductive voltage adders modified to higher impedance and fitted with magnetically immersed foil less electron diodes. In the strong 20--50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrodemore » and is contained in a similar size envelop by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30-kA, 1.5-mm FWHM electron beams, while the HERMES-III experiments are on-going.« less

  10. Foil cooling for rep-rated electron beam pumped KrF lasers

    NASA Astrophysics Data System (ADS)

    Giuliani, J. L.; Hegeler, F.; Sethian, J. D.; Wolford, M. F.; Myers, M. C.; Abdel-Khalik, S.; Sadowski, D.; Schoonover, K.; Novak, V.

    2006-06-01

    In rep-rated electron beam pumped lasers the foil separating the vacuum diode from the laser gas is subject to repeated heating due to partial beam stopping. Three cooling methods are examined for the Electra KrF laser at the Naval Research Laboratory (NRL). Foil temperature measurements for convective cooling by the recirculating laser gas and by spray mist cooling are reported, along with estimates for thermal conductive foil cooling to the hibachi ribs. Issues on the application of each of these approaches to laser drivers in a fusion power plant are noted. Work supported by DOE/NNSA.

  11. Experiments Investigating the Generation and Transport of 10--12 MeV, 30-kA, mm-size Electron Beams with Linear Inductive Voltage Adders.

    NASA Astrophysics Data System (ADS)

    Mazarakis, M. G.; Poukey, J. W.; Maenchen, J. E.; Rovang, D. C.; Menge, P. R.; Lash, J. S.; Smith, D. L.; Halbleib, J. A.; Cordova, S. R.; Mikkelson, K.; Gustwiller, J.; Stygar, W. A.; Welch, D. R.; Smith, I.; Corcoran, P.

    1997-05-01

    We present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 8-12 MeV, current 35-50 kA, rms radius 0.5 mm, and pulse duration 30-60 ns FWHM. The accelerators utilized are SABRE and Hermes-III. Both are linear inductive voltage adders (IVA) modified to higher impedance and fitted with magnetically immersed foilless electron diodes. In the strong 20-50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrode and is contained in a similar size envelope by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30 kA, 1.5-2.5 FWHM electron beams, while the Hermes-III experiments are currently under way. Results and analysis of the SABRE experimentation and a progress report on Hermes-III experiments will be presented.

  12. Time-Resolved Tandem Faraday Cup Development for High Energy TNSA Particles

    NASA Astrophysics Data System (ADS)

    Padalino, S.; Simone, A.; Turner, E.; Ginnane, M. K.; Glisic, M.; Kousar, B.; Smith, A.; Sangster, C.; Regan, S.

    2015-11-01

    MTW and OMEGA EP Lasers at LLE utilize ultra-intense laser light to produce high-energy ion pulses through Target Normal Sheath Acceleration (TNSA). A Time Resolved Tandem Faraday Cup (TRTF) was designed and built to collect and differentiate protons from heavy ions (HI) produced during TNSA. The TRTF includes a replaceable thickness absorber capable of stopping a range of user-selectable HI emitted from TNSA plasma. HI stop within the primary cup, while less massive particles continue through and deposit their remaining charge in the secondary cup, releasing secondary electrons in the process. The time-resolved beam current generated in each cup will be measured on a fast storage scope in multiple channels. A charge-exchange foil at the TRTF entrance modifies the charge state distribution of HI to a known distribution. Using this distribution and the time of flight of the HI, the total HI current can be determined. Initial tests of the TRTF have been made using a proton beam produced by SUNY Geneseo's 1.7 MV Pelletron accelerator. A substantial reduction in secondary electron production, from 70% of the proton beam current at 2MeV down to 0.7%, was achieved by installing a pair of dipole magnet deflectors which successfully returned the electrons to the cups in the TRTF. Ultimately the TRTF will be used to normalize a variety of nuclear physics cross sections and stopping power measurements. Based in part upon work supported by a DOE NNSA Award#DE-NA0001944.

  13. Image acquisition with immersion objective lenses using electrons emitted with several tenths of an electron volt energies: towards high spatial resolution ESCA analysis.

    PubMed

    Bernheim, M

    2006-03-01

    This study aims to evaluate the spatial resolution achievable with photoelectrons in order to perform localised UPS or XPS analyses on various heterogeneous samples. This investigation is intentionally restricted to direct image acquisition by immersion objective lenses, involving electrons ejected with initial energies of several tenths of an electron-volt. In order to characterise the contribution of all optical elements, analytical investigations were associated to numerical simulations based on SIMION 7 software. The acquisition of high-quality images implies a simultaneous reduction in spherical and chromatic aberrations by a narrow aperture stop placed at the output pupil of the objective. With such limitations in useful emission angles, it is shown that monochromatic electron beams build images with a resolution of about 1 nm, especially for the acceleration bias mode where the focussing electrode is biased at a positive high voltage. Even energy dispersed electron beams, limited by a 4 eV band pass spectrometer, can produce images convenient for highly localised ESCA analyses (resolution 3 nm), where the objective lens is associated with an aperture stop of 30 microm in diameter without using acceleration voltages above 5000 V.

  14. Rigid thin windows for vacuum applications

    DOEpatents

    Meyer, Glenn Allyn; Ciarlo, Dino R.; Myers, Booth Richard; Chen, Hao-Lin; Wakalopulos, George

    1999-01-01

    A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

  15. Electronic stopping power calculation for water under the Lindhard formalism for application in proton computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, A. F., E-mail: afguerreror@uqvirtual.edu.co; Mesa, J., E-mail: jmesa@ibb.unesp.br

    2016-07-07

    Because of the behavior that charged particles have when they interact with biological material, proton therapy is shaping the future of radiation therapy in cancer treatment. The planning of radiation therapy is made up of several stages. The first one is the diagnostic image, in which you have an idea of the density, size and type of tumor being treated; to understand this it is important to know how the particles beam interacts with the tissue. In this work, by using de Lindhard formalism and the Y.R. Waghmare model for the charge distribution of the proton, the electronic stopping powermore » (SP) for a proton beam interacting with a liquid water target in the range of proton energies 10{sup 1} eV - 10{sup 10} eV taking into account all the charge states is calculated.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, R.; Bailey, J.; Virgo, M.

    Argonne National Laboratory, in cooperation with Los Alamos National Laboratory, is developing technology with NorthStar Medical Technologies to produce 99Mo from the γ,n reaction on a 100Mo target in an electron accelerator. During production runs and thermal testing of the helium-cooled target, it became obvious that a production-scale beam-line configuration would need a collimator to protect the target from accidental beam misplacement or a beam-profile change. A prototype high-power collimator and beam stop were designed and fabricated. Testing indicated that they will be able to operate at full power in the production-scale accelerator.

  17. OPTIMAL ELECTRON ENERGIES FOR DRIVING CHROMOSPHERIC EVAPORATION IN SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reep, J. W.; Bradshaw, S. J.; Alexander, D., E-mail: jr665@cam.ac.uk, E-mail: stephen.bradshaw@rice.edu, E-mail: dalex@rice.edu

    2015-08-01

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher et al., who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lowermore » energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Further, at low electron energies, a much weaker beam flux is required to drive explosive evaporation.« less

  18. Propagation of modulated electron and X-ray beams through matter and interactions with radio-frequency structures

    NASA Astrophysics Data System (ADS)

    Harris, J. R.; Miller, R. B.

    2018-02-01

    The generation and evolution of modulated particle beams and their interactions with resonant radiofrequency (RF) structures are of fundamental interest for both particle accelerator and vacuum electronic systems. When the constraint of propagation in a vacuum is removed, the evolution of such beams can be greatly affected by interactions with matter including scattering, absorption, generation of atmospheric plasma, and the production of multiple generations of secondary particles. Here, we study the propagation of 21 MeV and 25 MeV electron beams produced in S-band and L-band linear accelerators, and their interaction with resonant RF structures, under a number of combinations of geometry, including transmission through both air and metal. Both resonant and nonresonant interactions were observed, with the resonant interactions indicating that the RF modulation on the electron beam is at least partially preserved as the beam propagates through air and metal. When significant thicknesses of metal are placed upstream of a resonant structure, preventing any primary beam electrons from reaching the structure, RF signals could still be induced in the structures. This indicated that the RF modulation present on the electron beam was also impressed onto the x-rays generated when the primary electrons were stopped in the metal, and that this RF modulation was also present on the secondary electrons generated when the x-rays struck the resonant structures. The nature of these interactions and their sensitivities to changes in system configurations will be discussed.

  19. Shielding Analyses for VISION Beam Line at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Irina; Gallmeier, Franz X

    2014-01-01

    Full-scale neutron and gamma transport analyses were performed to design shielding around the VISION beam line, instrument shielding enclosure, beam stop, secondary shutter including a temporary beam stop for the still closed neighboring beam line to meet requirement is to achieve dose rates below 0.25 mrem/h at 30 cm from the shielding surface. The beam stop and the temporary beam stop analyses were performed with the discrete ordinate code DORT additionally to Monte Carlo analyses with the MCNPX code. Comparison of the results is presented.

  20. First charge breeding of a rare-isotope beam with the electron-beam ion trap of the ReA post-accelerator at the National Superconducting Cyclotron Laboratory.

    PubMed

    Lapierre, A; Schwarz, S; Baumann, T M; Cooper, K; Kittimanapun, K; Rodriguez, A J; Sumithrarachchi, C; Williams, S J; Wittmer, W; Leitner, D; Bollen, G

    2014-02-01

    An electron-beam ion trap (EBIT) charge breeder is being brought into operation at the National Superconducting Cyclotron Laboratory at Michigan State University. The EBIT is part of the ReA post-accelerator for reacceleration of rare isotopes, which are thermalized in a gas "stopping" cell after being produced at high energy by projectile fragmentation. The ReA EBIT has a distinctive design; it is characterized by a high-current electron gun and a two-field superconducting magnet to optimize the capture and charge-breeding efficiency of continuously injected singly charged ion beams. Following a brief overview of the reaccelerator system and the ReA EBIT, this paper presents the latest commissioning results, particularly, charge breeding and reacceleration of the highly charged rare isotopes, (76)Ga(24 +, 25 +).

  1. Relativistic-electron-beam/target interaction in plasma channels

    NASA Astrophysics Data System (ADS)

    Halbleib, J. A., Sr.; Wright, T. P.

    1980-08-01

    A model describing the transport of relativistic electron beams in plasma channels and their subsequent interaction with solid targets is developed and applied to single-beam and multiple-beam configurations. For single beams the targets consist of planar tantalum foils and, in some cases, cusp fields on the transmission side of the foils are employed to improve beam/target coupling efficiency. In the multi-beam configurations, several beams are arranged in wagon-wheel fashion so as to converge upon cylindrical targets, consisting of either hollow tantalum or solid graphite cylinders, located at the hub. For 0.3-cm beam radii that are less than or equal to the channel radii, mean specific power depositions up to about 17 TW/g per MA of injected beam current are obtained for single beams; 12-beam results are typically an order-of-magnitude less. The corresponding enhancements are up to five times the collisional stopping power for either single or multiple beams. Substantial improvement is predicted for the multi-beam interaction should future channel technology permit transport at higher current densities in smaller channels.

  2. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report themore » resulting neutron and photon dose fields.« less

  3. Collective effects on the wakefield and stopping power of an ion beam pulse in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ling-yu; University of Chinese Academy of Sciences, Beijing 100049; Zhao, Xiao-ying

    A two-dimensional (2D) particle-in-cell simulation is carried out to study the collective effects on the wakefield and stopping power for a hydrogen ion beam pulse propagation in hydrogen plasmas. The dependence of collective effects on the beam velocity and density is obtained and discussed. For the beam velocity, it is found that the collective effects have the strongest impact on the wakefield as well as the stopping power in the case of the intermediate beam velocities, in which the stopping power is also the largest. For the beam density, it is found that at low beam densities, the collective contributionmore » to the stopping power increase linearly with the increase of the beam density, which corresponds well to the results calculated using the dielectric theory. However, at high beam densities, our results show that after reaching a maximum value, the collective contribution to the stopping power starts to decrease significantly with the increase of the beam density. Besides, at high beam densities, the wakefield loses typical V-shaped cone structures, and the wavelength of the oscillation wakefield increases as the beam density increases.« less

  4. Study of the effective point of measurement for ion chambers in electron beams by Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. L. W.; Rogers, D. W. O.

    In current dosimetry protocols for electron beams, for plane-parallel chambers, the effective point of measurement is at the front face of the cavity, and, for cylindrical chambers, it is at a point shifted 0.5r upstream from the cavity center. In this study, Monte Carlo simulations are employed to study the issue of effective point of measurement for both plane-parallel chambers and cylindrical thimble chambers in electron beams. It is found that there are two ways of determining the position of the effective point of measurement: One is to match the calculated depth-ionization curve obtained from a modeled chamber to amore » calculated depth-dose curve; the other is to match the electron fluence spectrum in the chamber cavity to that in the phantom. For plane-parallel chambers, the effective point of measurement determined by the first method is generally not at the front face of the chamber cavity, which is obtained by the second method, but shifted downstream toward the cavity center by an amount that could be larger than one-half a millimeter. This should not be ignored when measuring depth-dose curves in electron beams. For cylindrical chambers, these two methods also give different positions of the effective point of measurement: The first gives a shift of 0.5r, which is in agreement with measurements for high-energy beams and is the same as the value currently used in major dosimetry protocols; the latter gives a shift of 0.8r, which is closer to the value predicted by a theoretical calculation assuming no-scatter conditions. The results also show that the shift of 0.8r is more appropriate if the cylindrical chamber is to be considered as a Spencer-Attix cavity. In electron beams, since the water/air stopping-power ratio changes with depth in a water phantom, the difference of the two shifts (0.3r) will lead to an incorrect evaluation of the water/air stopping-power ratio at the point of measurement, thus resulting in a systematic error in determining the absorbed dose by cylindrical chambers. It is suggested that a shift of 0.8r be used for electron beam calibrations with cylindrical chambers and a shift of 0.4r-0.5r be used for depth-dose measurements.« less

  5. Study of the effective point of measurement for ion chambers in electron beams by Monte Carlo simulation.

    PubMed

    Wang, L L W; Rogers, D W O

    2009-06-01

    In current dosimetry protocols for electron beams, for plane-parallel chambers, the effective point of measurement is at the front face of the cavity, and, for cylindrical chambers, it is at a point shifted 0.5r upstream from the cavity center. In this study, Monte Carlo simulations are employed to study the issue of effective point of measurement for both plane-parallel chambers and cylindrical thimble chambers in electron beams. It is found that there are two ways of determining the position of the effective point of measurement: One is to match the calculated depth-ionization curve obtained from a modeled chamber to a calculated depth-dose curve; the other is to match the electron fluence spectrum in the chamber cavity to that in the phantom. For plane-parallel chambers, the effective point of measurement determined by the first method is generally not at the front face of the chamber cavity, which is obtained by the second method, but shifted downstream toward the cavity center by an amount that could be larger than one-half a millimeter. This should not be ignored when measuring depth-dose curves in electron beams. For cylindrical chambers, these two methods also give different positions of the effective point of measurement: The first gives a shift of 0.5r, which is in agreement with measurements for high-energy beams and is the same as the value currently used in major dosimetry protocols; the latter gives a shift of 0.8r, which is closer to the value predicted by a theoretical calculation assuming no-scatter conditions. The results also show that the shift of 0.8r is more appropriate if the cylindrical chamber is to be considered as a Spencer-Attix cavity. In electron beams, since the water/air stopping-power ratio changes with depth in a water phantom, the difference of the two shifts (0.3r) will lead to an incorrect evaluation of the water/air stopping-power ratio at the point of measurement, thus resulting in a systematic error in determining the absorbed dose by cylindrical chambers. It is suggested that a shift of 0.8r be used for electron beam calibrations with cylindrical chambers and a shift of 0.4r-0.5r be used for depth-dose measurements.

  6. The NSCL electron beam ion trap for the reacceleration of rare isotopes coming to life: first extraction tests with a high-current electron gun.

    PubMed

    Schwarz, S; Bollen, G; Johnson, M; Kester, O; Kostin, M; Ottarson, J; Portillo, M; Wilson, C; López-Urrutia, J R Crespo; Dilling, J

    2010-02-01

    NSCL is currently constructing the ReA3 reaccelerator, which will accelerate rare isotopes obtained from gas stopping of fast-fragment beams to energies of up to 3 MeV/u for uranium and higher for lighter ions. A high-current charge breeder, based on an electron beam ion trap (EBIT), has been chosen as the first step in the acceleration process, as it has the potential to efficiently produce highly charged ions in a single charge state. These ions are fed into a compact linear accelerator consisting of a radio frequency quadrupole structure and superconducting cavities. The NSCL EBIT has been fully designed with most of the parts constructed. The design concept of the EBIT and results from initial commissioning tests of the electron gun and collector with a temporary 0.4 T magnet are presented.

  7. Development of high damage threshold multilayer thin film beam combiner for laser application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nand, Mangla, E-mail: mnand@rrcat.gov.in; Babita,; Jena, S.

    2016-05-23

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm{sup 2} at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  8. Development of high damage threshold multilayer thin film beam combiner for laser application

    NASA Astrophysics Data System (ADS)

    Nand, Mangla; Babita, Jena, S.; Tokas, R. B.; Rajput, P.; Mukharjee, C.; Thakur, S.; Jha, S. N.; Sahoo, N. K.

    2016-05-01

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm2 at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  9. The LEBIT ion cooler and buncher

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Bollen, G.; Ringle, R.; Savory, J.; Schury, P.

    2016-04-01

    This paper presents a detailed description of the ion cooler and buncher, installed at the Low Energy Beam and Ion Trap Facility (LEBIT) at the National Superconducting Cyclotron Laboratory (NSCL). NSCL uses gas stopping to provide rare isotopes from projectile fragmentation for its low-energy physics program and to the re-accelerator ReA. The LEBIT ion buncher converts the continuous rare-isotope beam, delivered from the gas stopping cell, into short, low-emittance ion pulses, required for high-precision mass measurements with a 9.4 T Penning trap mass spectrometer. Operation at cryogenic temperatures, a simplified electrode structure and dedicated rugged electronics contribute to the high performance and reliability of the device, which have been essential to the successful LEBIT physics program since 2005.

  10. Electronic stopping power of Ti, V and Cr ions in Ge and Au at 150-500 keV/u energies

    NASA Astrophysics Data System (ADS)

    Linares, R.; Ribas, R. V.; Oliveira, J. R. B.; Medina, N. H.; Santos, H. C.; Seabra, C. C.; Sigaud, L.; Cybulska, E. W.; Seale, W. A.; Allegro, P. R. P.; Touffen, D. L.; Silveira, M. A. G.

    2017-12-01

    In this paper new experimental data are presented for the stopping power of Ti, V and Cr ions in Ge and Au, in the 150-500 keV/u energy range. The heavy ions at low energies are produced from the elastic scattering between particles of an energetic primary beam (28Si and 16O) directed onto the primary foil of interest (Ti, V or Cr). Measurements were performed using the transmission method. New experimental data points for the stopping power of Ti in Au were compared with previous measurement. The agreement between these two datasets indicates the consistence of the experimental technique. Our experimental data were also compared to some selected theoretical and semi-empirical methods: i) the Unitary Convolution Approximation, ii) the Binary theory, iii) the SRIM code and iv) the Northcliffe & Schilling tables. The experimental data for Ge foil deviate from the theoretical curves possibly due to the effect of band gap structure of the material in the electronic stopping power. For the systems measured here, we observe that the Binary theory exhibits an overall good agreement. The velocity-proportional dependence of the electronic stopping power in the measured energy range is also discussed.

  11. Semiconductors Under Ion Radiation: Ultrafast Electron-Ion Dynamics in Perfect Crystals and the Effect of Defects

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Wei; Schleife, André

    Stability and safety issues have been challenging difficulties for materials and devices under radiation such as solar panels in outer space. On the other hand, radiation can be utilized to modify materials and increase their performance via focused-ion beam patterning at nano-scale. In order to grasp the underlying processes, further understanding of the radiation-material and radiation-defect interactions is required and inevitably involves the electron-ion dynamics that was traditionally hard to capture. By applying Ehrenfest dynamics based on time-dependent density functional theory, we have been able to perform real-time simulation of electron-ion dynamics in MgO and InP/GaP. By simulating a high-energy proton penetrating the material, the energy gain of electronic system can be interpreted as electronic stopping power and the result is compared to existing data. We also study electronic stopping in the vicinity of defects: for both oxygen vacancy in MgO and interface of InP/GaP superlattice, electronic stopping shows strong dependence on the velocity of the proton. To study the energy transfer from electronic system to lattice, simulations of about 100 femto-seconds are performed and we analyze the difference between Ehrenfest and Born-Oppenheimer molecular dynamics.

  12. High Intensity e-beam Diode Development for Flash X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Oliver, Bryan

    2007-11-01

    A variety of electron beam diodes are being used and developed for the purpose of creating high-brightness, flash x-ray radiography sources. In these diodes, high energy (multi MeV), high current (multi kA), small spot (multi mm) electron beams are generated and stopped in high atomic number anode-targets (typically Ta or W). Beam stopping in the target creates copious amounts of bremsstrahlung radiation. In addition, beam heating of the target liberates material, either in the form of low density (˜10^12-10^14 cm-3) ion emission or higher density (> 10^15 cm-3) plasma. In all cases, beam/target collective effects dominate the diode and beam characteristics, affecting the radiation properties (dose and spot-size). Recent experiments at Sandia National Laboratories have demonstrated diodes capable of producing > 350 rad@m with 1.7mm FWHM x-ray source distributions. A review of our present theoretical understanding of the diode (s) operation and our experimental and simulation methods to investigate them will be presented. Emphasis will be given to e- beam sources used on state-of-the-art Inductive Voltage Adder (IVA) pulsed-power accelerators. In particular, the physics of magnetically pinched diodes (e.g. the rod-pinch [1,2]), gas-cell focusing diodes [3] and the magnetically immersed [4] diode will be discussed. Various proposed methods to optimize the x-ray intensity and the direction of future diode research will be discussed. [1] G. Cooperstein, et al., Phys. Plasmas 8, 4618 (2001).[2] B.V. Oliver et al., Phys. Plasmas 11, 3976 (2004)[3] B.V. Oliver, et al., IEEE Trans. on Plasma Science 33, 704 (2005).[4] M.G. Mazarakis, et al., Appl. Phys. Lett. 70, 832 (1997)

  13. Design and construction of a Faraday cup for measurement of small electronic currents

    NASA Technical Reports Server (NTRS)

    Veyssiere, A.

    1985-01-01

    The design of a device to measure and integrate very small currents generated by the impact of a charged particle beam upon a Faraday cut is described. The main component is a graphite block capable of stopping practically all the incident changes. The associated electronic apparatus required to measure better than 10/13 ampere with a precision of 10/0 is described.

  14. Variable energy, high flux, ground-state atomic oxygen source

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)

    1987-01-01

    A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.

  15. The electronic stopping powers and angular energy-loss dependence of helium and lithium ions in the silicon crystal

    NASA Astrophysics Data System (ADS)

    Mikšová, R.; Macková, A.; Malinský, P.

    2017-09-01

    We have measured the electronic stopping powers of helium and lithium ions in the channelling direction of the Si〈1 0 0〉 crystal. The energy range used (2.0-8.0 MeV) was changed by 200 and 400-keV steps. The ratio α between the channelling and random stopping powers was determined as a function of the angle for 2, 3 and 4 MeV 4He+ ions and for 3 and 6 MeV 7Li+,2+ ions. The measurements were carried out using the Rutherford backscattering spectrometry in the channelling mode (RBS-C) in a silicon-on-insulator material. The experimental channelling stopping-power values measured in the channelling direction were then discussed in the frame of the random energy stopping predictions calculated using SRIM-2013 code and the theoretical unitary convolution approximation (UCA) model. The experimental channelling stopping-power values decrease with increasing ion energy. The stopping-power difference between channelled and randomly moving ions increases with the enhanced initial ion energy. The ratio between the channelling and random ion stopping powers α as a function of the ion beam incoming angle for 2, 3 and 4 MeV He+ ions and for 3 and 6 MeV Li+,2+ ions was observed in the range 0.5-1.

  16. The Direct Injection of Electron Pulses into Air -- An SREMP Simulation Tool

    DTIC Science & Technology

    1981-06-01

    Traversing AURORA Test Cell. Thermoluminescent Dosimetry - In order to determine the extent of the ionization produced by the electron beam, a...was sensitive only to electrons above ~ 1.7 MeV. The TLDs which were used for this experiment were Teledyne-Isotopes type SD-CaF2 :Mn-0.4L. These...collision stopping power of 1.55 ~ 0.1 MeV-cm2 /g for electrons between 0.5 and 9.5 MeV. The dose deposited in such a TLD by electrons can be shown to be

  17. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 11: Commissioning of a system for the measurement of electron stopping powers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEwen, Malcolm; Roy, Timothy; Tessier, Frederic

    Purpose: To develop the techniques required to experimentally determine electron stopping powers for application in primary standards and dosimetry protocols. Method and Materials: A large-volume HPGe detector system (>80% efficiency) was commissioned for the measurement of high energy (5–35 MeV) electron beams. As a proof of principle the system was used with a Y-90/Sr-90 radioactive source. Thin plates of absorbing material (< 0.1 gcm-2) were then placed between the source and detector and the emerging electron spectrum was acquired. The full experimental geometry was modelled using the EGSnrc package to validate the detector design, optimize the experimental setup and comparemore » measured and calculated spectra. Results: The biggest challenge using a beta source was to identify a robust spectral parameter to determine for each measurement. An end-point-fitting routine was used to determine the maximum energy, Emax, of the beta spectrum for each absorber thickness t. The parameter dEmax/dt is related to the electron stopping power and the same routine was applied to both measured and simulated spectra. Although the standard uncertainty in dEmax/dt was of the order of 5 %, by taking the ratio of measured and Monte Carlo values for dEmax/dt the uncertainty of the fitting routine was eliminated and the uncertainty was reduced to less than 2 %. The agreement between measurement and simulation was within this uncertainty estimate. Conclusion: The investigation confirmed the experimental approach and demonstrated that EGSnrc could accurately determine correction factors that will be required for the final measurement setup in a linac beam.« less

  18. Low-velocity ion stopping in a dense and low-temperature plasma target

    NASA Astrophysics Data System (ADS)

    Deutsch, Claude; Popoff, Romain

    2007-07-01

    We investigate the stopping specificities involved in the heating of thin foils irradiated by intense ion beams in the 0.3-3 MeV/amu energy range and in close vicinity of the Bragg peak. Considering a swiftly ionized target to eV temperatures before expansion while retaining solid-state density, a typical warm dense matter (WDM) situation thus arises. We stress low Vp stopping through ion diffusion in the given target plasma. This allows to include the case of a strongly magnetized target in a guiding center approximation. We also demonstrate that the ion projectile penetration depth in target is significantly affected by multiple scattering on target electrons. The given plasma target is taken weakly coupled with Maxwell electron either with no magnetic field ( B=0) or strongly magnetized ( B≠0). Dynamical coupling between ion projectiles energy losses and projectiles charge state will also be addressed.

  19. Light-Based Triggering and Reconstruction of Michel Electrons in LArIAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foreman, W.

    2016-01-19

    The LArIAT Experiment aims to calibrate the liquid argon time projection chamber (LArTPC) using a beam of charged particles at the Fermilab Test Beam Facility. It is equipped with a novel scintillation light readout system using PMTs and custom SiPM preamplifier boards to detect light from reflector foils coated with wavelength-shifting TPB. A trigger on delayed secondary flashes of light captures events containing stopping cosmic muons together with the Michel electrons coming from their subsequent decay. This dedicated Michel trigger supplies an abundant sample of low-energy electrons throughout the detector's active volume, providing opportunities to study the combined calorimetric capabilitiesmore » of the light system and the TPC. Preliminary results using scintillation light to study properties of the Michel electron sample are presented.« less

  20. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the isopropanol gel dosimeter over the same energy range. For x-ray beams over the energy range 180 keV-18 MV, both gel dosimeters have less than 2% discrepancy with water. For megavoltage electron beams, the dose differences with water reach 7% and 14% for the co-solvent free gel dosimeter and the isopropanol gel dosimeter, respectively. Our results demonstrate that for x-ray beam dosimetry with photon energies higher than 100 keV and megavoltage electron beams, correction factors are needed for both NIPAM gels to be used as water equivalent dosimeters.

  1. SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, B; Rogers, D

    2013-06-15

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber inmore » high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.« less

  2. Electron Cloud Trapping in Recycler Combined Function Dipole Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergey A.; Nagaitsev, S.

    2016-10-04

    Electron cloud can lead to a fast instability in intense proton and positron beams in circular accelerators. In the Fermilab Recycler the electron cloud is confined within its combined function magnets. We show that the field of combined function magnets traps the electron cloud, present the results of analytical estimates of trapping, and compare them to numerical simulations of electron cloud formation. The electron cloud is located at the beam center and up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electronsmore » significantly increases the density of the cloud on the next revolution. In a Recycler combined function dipole this multiturn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The multi-turn build-up can be stopped by injection of a clearing bunch of 1010 p at any position in the ring.« less

  3. Fabrication of nanoscale Ga balls via a Coulomb explosion of microscale silica-covered Ga balls by TEM electron-beam irradiation

    PubMed Central

    Chen, Ying; Huang, Yanli; Liu, Nishuang; Su, Jun; Li, Luying; Gao, Yihua

    2015-01-01

    Nanoscale Ga particles down to 5 nm were fabricated by an explosion via an in situ electron-beam irradiation on microscale silica-covered Ga balls in a transmission electron microscope. The explosion is confirmed to be a Coulomb explosion because it occurs on the surface rather than in the whole body of the insulating silica-covered Ga micro–balls, and on the pure Ga nano-balls on the edge of carbon film. The ejected particles in the explosion increase their sizes with increasing irradiation time until the stop of the explosion, but decrease their sizes with increasing distance from the original ball. The Coulomb explosion suggests a novel method to fabricate nanoscale metal particles with low melting point. PMID:26100238

  4. Mu2e, a coherent μ --> e conversion experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Brown, D. N.; Mu2e Collaboration

    2012-09-01

    We describe a proposed experiment to search for Charged Lepton Flavor Violation (CLFV) using stopped muons at Fermilab. A primary Proton beam will strike a gold target, producing pions which decay to muons. Low-momentum negative muons will be collected, selected, and transported by a custom arrangement of solenoidal magnets and collimators. Muons will stop in thin foil targets, creating muonic atoms with significant nuclear overlap. Mu2e will search for the coherent conversion of nuclear bound muons to electrons, with an experimental signature of a single mono-energetic electron. Conversion electrons will be detected and measured in a low-mass straw tracker and a crystal calorimeter. Mu2e will have a sensitivity four orders of magnitude better than the most sensitive published result for μ → e conversion, and will have complementary physics reach to LHC experiments and μ → eγ decay experiments such as MEG.

  5. A simple model of space radiation damage in GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stith, J. J.; Stock, L. V.

    1983-01-01

    A simple model is derived for the radiation damage of shallow junction gallium arsenide (GaAs) solar cells. Reasonable agreement is found between the model and specific experimental studies of radiation effects with electron and proton beams. In particular, the extreme sensitivity of the cell to protons stopping near the cell junction is predicted by the model. The equivalent fluence concept is of questionable validity for monoenergetic proton beams. Angular factors are quite important in establishing the cell sensitivity to incident particle types and energies. A fluence of isotropic incidence 1 MeV electrons (assuming infinite backing) is equivalent to four times the fluence of normal incidence 1 MeV electrons. Spectral factors common to the space radiations are considered, and cover glass thickness required to minimize the initial damage for a typical cell configuration is calculated. Rough equivalence between the geosynchronous environment and an equivalent 1 MeV electron fluence (normal incidence) is established.

  6. Monte Carlo-based investigations on the impact of removing the flattening filter on beam quality specifiers for photon beam dosimetry.

    PubMed

    Czarnecki, Damian; Poppe, Björn; Zink, Klemens

    2017-06-01

    The impact of removing the flattening filter in clinical electron accelerators on the relationship between dosimetric quantities such as beam quality specifiers and the mean photon and electron energies of the photon radiation field was investigated by Monte Carlo simulations. The purpose of this work was to determine the uncertainties when using the well-known beam quality specifiers or energy-based beam specifiers as predictors of dosimetric photon field properties when removing the flattening filter. Monte Carlo simulations applying eight different linear accelerator head models with and without flattening filter were performed in order to generate realistic radiation sources and calculate field properties such as restricted mass collision stopping power ratios (L¯/ρ)airwater, mean photon and secondary electron energies. To study the impact of removing the flattening filter on the beam quality correction factors k Q , this factor for detailed ionization chamber models was calculated by Monte Carlo simulations. Stopping power ratios (L¯/ρ)airwater and k Q values for different ionization chambers as a function of TPR1020 and %dd(10) x were calculated. Moreover, mean photon energies in air and at the point of measurement in water as well as mean secondary electron energies at the point of measurement were calculated. The results revealed that removing the flattening filter led to a change within 0.3% in the relationship between %dd(10) x and (L¯/ρ)airwater, whereby the relationship between TPR1020 and (L¯/ρ)airwater changed up to 0.8% for high energy photon beams. However, TPR1020 was a good predictor of (L¯/ρ)airwater for both types of linear accelerator with energies < 10 MeV with a maximal deviation between both types of accelerators of 0.23%. According to the results, the mean photon energy below the linear accelerators head as well as at the point of measurement may not be suitable as a predictor of (L¯/ρ)airwater and k Q to merge the dosimetry of both linear accelerator types. It was possible to derive (L¯/ρ)airwater using the mean secondary electron energy at the point of measurement as a predictor with an accuracy of 0.17%. A bias between k Q for linear accelerators with and without flattening filter within 1.1% and 1.6% was observed for TPR1020 and %dd(10) x respectively. The results of this study have shown that removing the flattening filter led to a change in the relationship between the well-known beam quality specifiers and dosimetric quantities at the point of measurement, namely (L¯/ρ)airwater, mean photon and electron energy. Furthermore, the results show that a beam profile correction is important for dose measurements with large ionization chambers in flattening filter free beams. © 2017 American Association of Physicists in Medicine.

  7. Fusion Energy and Stopping Power in a Degenerate DT Pellet Driven by a Laser-Accelerated Proton Beam

    NASA Astrophysics Data System (ADS)

    Mehrangiz, M.; Ghasemizad, A.; Jafari, S.; Khanbabaei, B.

    2016-06-01

    In this paper, we have improved the fast ignition scheme in order to have more authority needed for high-energy-gain. Due to the more penetrability and energy deposition of the particle beams in fusion targets, we employ a laser-to-ion converter foil as a scheme for generating energetic ion beams to ignite the fusion fuel. We find the favorable intensity and wavelength of incident laser by evaluating the laser-proton conversion gain. By calculating the source-target distance, proton beam power and energy are estimated. Our analysis is generalized to the plasma degeneracy effects which can increase the fusion gain several orders of magnitude by decreasing the ion-electron collisions in the plasma. It is found that the wavelength of 0.53 μm and the intensity of about 1020 W/cm2, by saving about 10% conversion coefficient, are the suitable measured values for converting a laser into protons. Besides, stopping power and fusion burn calculations have been done in degenerate and non-degenerate plasma mediums. The results indicate that in the presence of degeneracy, the rate of fusion enhances. Supported by the Research Council of University of Guilan

  8. Impulsive phase transport

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.; Bely-Dubau, Francoise; Brown, John C.; Dulk, George A.; Emslie, A. Gordon; Enome, Shinzo; Gabriel, Alan H.; Kundu, Mukul R.; Melrose, Donald; Neidig, Donald F.

    1986-01-01

    The transport of nonthermal electrons is explored. The thick-target electron beam model, in which electrons are presumed to be accelerated in the corona and typically thermalized primarily in the chromosphere and photosphere, is supported by observations throughout the electromagnetic spectrum. At the highest energies, the anisotropy of gamma-ray emission above 10 MeV clearly indicates that these photons are emitted by anisotropically-directed particles. The timing of this high-energy gamma-radiation with respect to lower-energy hard X-radiation implies that the energetic particles have short life-times. For collisional energy loss, this means that they are stopped in the chromosphere or below. Stereoscopic (two-spacecraft) observations at hard X-ray energies (up to 350 keV) imply that these lower-energy (but certainly nonthermal) electrons are also stopped deep in the chromosphere. Hard X-ray images show that, in spatially resolved flares whose radiation consists of impulsive bursts, the impulsive phase starts with X-radiation that comes mostly from the foot-points of coronal loops whose coronal component is outlined by microwaves.

  9. A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water.

    PubMed

    Garcia-Molina, Rafael; Abril, Isabel; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2011-10-07

    We have evaluated the spatial distribution of energy deposition by proton beams in liquid water using the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids), which combines molecular dynamics and Monte Carlo techniques and includes the main interaction phenomena between the projectile and the target constituents: (i) the electronic stopping force due to energy loss to target electronic excitations, including fluctuations due to the energy-loss straggling, (ii) the elastic scattering with the target nuclei, with their corresponding energy loss and (iii) the dynamical changes in projectile charge state due to electronic capture and loss processes. An important feature of SEICS is the accurate account of the excitation spectrum of liquid water, based on a consistent solid-state description of its energy-loss-function over the whole energy and momentum space. We analyse how the above-mentioned interactions affect the depth distribution of the energy delivered in liquid water by proton beams with incident energies of the order of several MeV. Our simulations show that the position of the Bragg peak is determined mainly by the stopping power, whereas its width can be attributed to the energy-loss straggling. Multiple elastic scattering processes contribute slightly only at the distal part of the Bragg peak. The charge state of the projectiles only changes when approaching the end of their trajectories, i.e. near the Bragg peak. We have also simulated the proton-beam energy distribution at several depths in the liquid water target, and found that it is determined mainly by the fluctuation in the energy loss of the projectile, evaluated through the energy-loss straggling. We conclude that a proper description of the target excitation spectrum as well as the inclusion of the energy-loss straggling is essential in the calculation of the proton beam depth-dose distribution.

  10. Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter.

    PubMed

    Cayzac, W; Frank, A; Ortner, A; Bagnoud, V; Basko, M M; Bedacht, S; Bläser, C; Blažević, A; Busold, S; Deppert, O; Ding, J; Ehret, M; Fiala, P; Frydrych, S; Gericke, D O; Hallo, L; Helfrich, J; Jahn, D; Kjartansson, E; Knetsch, A; Kraus, D; Malka, G; Neumann, N W; Pépitone, K; Pepler, D; Sander, S; Schaumann, G; Schlegel, T; Schroeter, N; Schumacher, D; Seibert, M; Tauschwitz, An; Vorberger, J; Wagner, F; Weih, S; Zobus, Y; Roth, M

    2017-06-01

    The energy deposition of ions in dense plasmas is a key process in inertial confinement fusion that determines the α-particle heating expected to trigger a burn wave in the hydrogen pellet and resulting in high thermonuclear gain. However, measurements of ion stopping in plasmas are scarce and mostly restricted to high ion velocities where theory agrees with the data. Here, we report experimental data at low projectile velocities near the Bragg peak, where the stopping force reaches its maximum. This parameter range features the largest theoretical uncertainties and conclusive data are missing until today. The precision of our measurements, combined with a reliable knowledge of the plasma parameters, allows to disprove several standard models for the stopping power for beam velocities typically encountered in inertial fusion. On the other hand, our data support theories that include a detailed treatment of strong ion-electron collisions.

  11. Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter

    NASA Astrophysics Data System (ADS)

    Cayzac, W.; Frank, A.; Ortner, A.; Bagnoud, V.; Basko, M. M.; Bedacht, S.; Bläser, C.; Blažević, A.; Busold, S.; Deppert, O.; Ding, J.; Ehret, M.; Fiala, P.; Frydrych, S.; Gericke, D. O.; Hallo, L.; Helfrich, J.; Jahn, D.; Kjartansson, E.; Knetsch, A.; Kraus, D.; Malka, G.; Neumann, N. W.; Pépitone, K.; Pepler, D.; Sander, S.; Schaumann, G.; Schlegel, T.; Schroeter, N.; Schumacher, D.; Seibert, M.; Tauschwitz, An.; Vorberger, J.; Wagner, F.; Weih, S.; Zobus, Y.; Roth, M.

    2017-06-01

    The energy deposition of ions in dense plasmas is a key process in inertial confinement fusion that determines the α-particle heating expected to trigger a burn wave in the hydrogen pellet and resulting in high thermonuclear gain. However, measurements of ion stopping in plasmas are scarce and mostly restricted to high ion velocities where theory agrees with the data. Here, we report experimental data at low projectile velocities near the Bragg peak, where the stopping force reaches its maximum. This parameter range features the largest theoretical uncertainties and conclusive data are missing until today. The precision of our measurements, combined with a reliable knowledge of the plasma parameters, allows to disprove several standard models for the stopping power for beam velocities typically encountered in inertial fusion. On the other hand, our data support theories that include a detailed treatment of strong ion-electron collisions.

  12. Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter

    PubMed Central

    Cayzac, W.; Frank, A.; Ortner, A.; Bagnoud, V.; Basko, M. M.; Bedacht, S.; Bläser, C.; Blažević, A.; Busold, S.; Deppert, O.; Ding, J.; Ehret, M.; Fiala, P.; Frydrych, S.; Gericke, D. O.; Hallo, L.; Helfrich, J.; Jahn, D.; Kjartansson, E.; Knetsch, A.; Kraus, D.; Malka, G.; Neumann, N. W.; Pépitone, K.; Pepler, D.; Sander, S.; Schaumann, G.; Schlegel, T.; Schroeter, N.; Schumacher, D.; Seibert, M.; Tauschwitz, An.; Vorberger, J.; Wagner, F.; Weih, S.; Zobus, Y.; Roth, M.

    2017-01-01

    The energy deposition of ions in dense plasmas is a key process in inertial confinement fusion that determines the α-particle heating expected to trigger a burn wave in the hydrogen pellet and resulting in high thermonuclear gain. However, measurements of ion stopping in plasmas are scarce and mostly restricted to high ion velocities where theory agrees with the data. Here, we report experimental data at low projectile velocities near the Bragg peak, where the stopping force reaches its maximum. This parameter range features the largest theoretical uncertainties and conclusive data are missing until today. The precision of our measurements, combined with a reliable knowledge of the plasma parameters, allows to disprove several standard models for the stopping power for beam velocities typically encountered in inertial fusion. On the other hand, our data support theories that include a detailed treatment of strong ion-electron collisions. PMID:28569766

  13. Luminescent beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, Diane; Morton, Simon A.

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end ofmore » the optical fiber attached to the third side of the luminescent material.« less

  14. Resonant beam behavior studies in the Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Cousineau, S.; Holmes, J.; Galambos, J.; Fedotov, A.; Wei, J.; Macek, R.

    2003-07-01

    We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. We investigate the profile broadening through detailed particle-in-cell simulations of several experiments and obtain results in good agreement with the measurements. We interpret these results within the framework of coherent resonance theory. With increasing intensity, our simulations show strong evidence for the presence of a quadrupole-mode resonance of the beam envelope with the lattice in the vertical plane. Specifically, we observe incoherent tunes crossing integer values, and large amplitude, nearly periodic envelope oscillations. At the highest operating intensities, we observe a continuing relaxation of the beam through space charge forces leading to emittance growth. The increase of emittance commences when the beam parameters encounter an envelope stop band. Once the stop band is reached, the emittance growth balances the intensity increase to maintain the beam near the stop band edge. Additionally, we investigate the potential benefit of a stop band correction to the high intensity PSR beam.

  15. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  16. Diffraction properties of opaque disks outside and inside a laser cavity

    NASA Astrophysics Data System (ADS)

    de Saint Denis, Renaud; Passilly, Nicolas; Fromager, Michael; Cagniot, Emmanuel; Ait-Ameur, Kamel

    2008-02-01

    Diffraction of symmetrical Laguerre-Gauss TEMp0 beams incident on an opaque disk known as a stop is considered. The near- and far-field patterns are studied. Thanks to zero-field occluding, conversion from TEM10 beam to dark hollow beam can be achieved with better efficiency than from a TEM00 beam. It is shown that the fundamental mode of a laser cavity including a diaphragm and a stop can be TEM00- or TEM10-like in shape depending on their size. This result is interpreted from the new divergence hierarchy, which characterises the diffracted TEMp0 beams emerging from the stop.

  17. Modern applications of high energy ion beams: From "single-event burnout" to human eye cancer treatment

    NASA Astrophysics Data System (ADS)

    Homeyer, H.; Mahnke, H.-E.

    1996-12-01

    Energetic ion beams, originally the domain of nuclear physics, become increasingly important tools in many other fields of research and development. The choice of ion species and ion energy allows an enormously wide variation of the penetration depth and of the amount of the electronic stopping power. These features are utilized to modify or damage materials and living tissues in a specific way. Materials modification with energetic ion beams is one of the central aims of research and development at the ion beam laboratory, ISL-Berlin, a center for ion-beam applications at the Hahn-Meitner-Institut Berlin. In particular, energetic protons will be used for eye cancer treatment. Selected topics such as the "single-event burnout" of high power diodes and the eye cancer therapy setup will be presented in detail.

  18. ESR dosimeter material properties of phenols compound exposed to radiotherapeutic electron beams

    NASA Astrophysics Data System (ADS)

    Gallo, Salvatore; Iacoviello, Giuseppina; Bartolotta, Antonio; Dondi, Daniele; Panzeca, Salvatore; Marrale, Maurizio

    2017-09-01

    There is a need for a sensitive dosimeter using Electron Spin Resonance spectroscopy for use in medical applications, since non-destructive read-out and dose archival could be achieved with this method. This work reports a systematic ESR investigation of IRGANOX ® 1076 exposed to clinical electron beams produced by a LINAC used for radiation therapy treatments. Recently, dosimetric features of this material were investigated for irradiation with 60Co γ -photons and neutrons in both pellet and film shape and have been found promising thanks to their high efficiency of radiation-matter energy transfer and radical stability at room temperature. Here the analysis of the dosimetric features of these ESR dosimeters exposed to clinical electron beams at energies of 7, 10 and 14 MeV, is described in terms of dependence on microwave power and modulation amplitude, response on dose, dependence on beam type, detection limits, and signal stability after irradiation. The analysis of the ESR signal as function of absorbed dose highlights that the response of this material is linear in the dose range investigated (1-13 Gy) and is independent of the beam energy. The minimum detectable dose is found to be smaller than 1 Gy. Comparison of electron stopping power values of these dosimeters with those of water and soft tissue highlights equivalence of the response to electron beams in the energy range considered. The signal intensity was monitored for 40 days after irradiation and for all energies considered and it shows negligible variations in the first 500 h after irradiation whereas after 1100 h the signal decay is only of about 4%. In conclusion, it is found that phenolic compounds possess good dosimetric features which make it useful as a sensitive dosimeter for medical applications.

  19. Short-Pulse Laser-Matter Computational Workshop Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Town, R; Tabak, M

    For three days at the end of August 2004, 55 plasma scientists met at the Four Points by Sheraton in Pleasanton to discuss some of the critical issues associated with the computational aspects of the interaction of short-pulse high-intensity lasers with matter. The workshop was organized around the following six key areas: (1) Laser propagation/interaction through various density plasmas: micro scale; (2) Anomalous electron transport effects: From micro to meso scale; (3) Electron transport through plasmas: From meso to macro scale; (4) Ion beam generation, transport, and focusing; (5) ''Atomic-scale'' electron and proton stopping powers; and (6) K{alpha} diagnostics.

  20. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.

    2016-04-01

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

  1. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.; McGuffey, C., E-mail: cmcguffey@ucsd.edu; Qiao, B.

    2016-04-15

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam depositionmore » profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.« less

  2. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.

    2003-08-01

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  3. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams.

    PubMed

    Doucet, R; Olivares, M; DeBlois, F; Podgorsak, E B; Kawrakow, I; Seuntjens, J

    2003-08-07

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 x 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid Water (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  4. Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams.

    PubMed

    Sawkey, D L; Faddegon, B A

    2009-03-01

    Monte Carlo simulations of x-ray beams typically take parameters of the electron beam in the accelerating waveguide to be free parameters. In this paper, a methodology is proposed and implemented to determine the energy, spectral width, and beam divergence of the electron source. All treatment head components were removed from the beam path, leaving only the exit window. With the x-ray target and flattener out of the beam, uncertainties in physical characteristics and relative position of the target and flattening filter, and in spot size, did not contribute to uncertainty in the energy. Beam current was lowered to reduce recombination effects. The measured dose distributions were compared with Monte Carlo simulation of the electron beam through the treatment head to extract the electron source characteristics. For the nominal 6 and 18 MV x-ray beams, the energies were 6.51 +/- 0.15 and 13.9 +/- 0.2 MeV, respectively, with the uncertainties resulting from uncertainties in the detector position in the measurement and in the stopping power in the simulations. Gaussian spectral distributions were used, with full widths at half maximum ranging from 20 +/- 4% at 6 MV to 13 +/- 4% at 18 MV required to match the fall-off portion of the percent-depth ionization curve. Profiles at the depth of maximum dose from simulations that used the manufacturer-specified exit window geometry and no beam divergence were 2-3 cm narrower than measured profiles. Two simulation configurations yielding the measured profile width were the manufacturer-specified exit window thickness with electron source divergences of 3.3 degrees at 6 MV and 1.8 degrees at 18 MV and an exit window 40% thicker than the manufacturer's specification with no beam divergence. With the x-ray target in place (and no flattener), comparison of measured to simulated profiles sets upper limits on the electron source divergences of 0.2 degrees at 6 MV and 0.1 degrees at 18 MV. A method of determining source characteristics without mechanical modification of the treatment head, and therefore feasible in clinics, is presented. The energies and spectral widths determined using this method agree with those determined with only the exit window in the beam path.

  5. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  6. Chemical Reactions of Molecules Promoted and Simultaneously Imaged by the Electron Beam in Transmission Electron Microscopy.

    PubMed

    Skowron, Stephen T; Chamberlain, Thomas W; Biskupek, Johannes; Kaiser, Ute; Besley, Elena; Khlobystov, Andrei N

    2017-08-15

    The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.

  7. Choosing a therapy electron accelerator target.

    PubMed

    Hutcheon, R M; Schriber, S O; Funk, L W; Sherman, N K

    1979-01-01

    Angular distributions of photon depth dose produced by 25-MeV electrons incident on several fully stopping single-element targets (C, Al, Cu, Mo, Ta, Pb) and two composite layered targets (Ni-Al, W-Al) were studied. Depth-dose curves measured using TLD-700 (thermoluminescent dosimeter) chips embedded in lucite phantoms. Several useful therapy electron accelerator design curves were determined, including relative flattener thickness as a function of target atomic number, "effective" bremsstrahlung endpoint energy or beam "hardness" as a function of target atomic number and photon emission angle, and estimates of shielding thickness as a function of angle required to reduce the radiation outside the treatment cone to required levels.

  8. Dose calculations using MARS for Bremsstrahlung beam stops and collimators in APS beamline stations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooling, J.; Accelerator Systems Division

    The Monte Carlo radiation transport code MARS is used to model the generation of gas bremsstrahlung (GB) radiation from 7-GeV electrons which scatter from residual gas atoms in undulator straight sections within the Advanced Photon Source (APS) storage ring. Additionally, MARS is employed to model the interactions of the GB radiation with components along the x-ray beamlines and then determine the expected radiation dose-rates that result. In this manner, MARS can be used to assess the adequacy of existing shielding or the specifications for new shielding when required. The GB radiation generated in the 'thin-target' of an ID straight sectionmore » will consist only of photons in a 1/E-distribution up to the full energy of the stored electron beam. Using this analytical model, the predicted GB power for a typical APS 15.38-m insertion device (ID) straight section is 4.59 x 10{sup -7} W/nTorr/mA, assuming a background gas composed of air (Z{sub eff} = 7.31) at room temperature (293K). The total GB power provides a useful benchmark for comparisons between analytical and numerical approaches. We find good agreement between MARS and analytical estimates for total GB power. The extended straight section 'target' creates a radial profile of GB, which is highly peaked centered on the electron beam. The GB distribution reflects the size of the electron beam that creates the radiation. Optimizing the performance of MARS in terms of CPU time per incident trajectory requires the use of a relatively short, high-density gas target (air); in this report, the target density is {rho}L = 2.89 x 10{sup -2} g/cm{sup 2} over a length of 24 cm. MARS results are compared with the contact dose levels reported in TB-20, which used EGS4 for radiation transport simulations. Maximum dose-rates in 1 cc of tissue phantom form the initial basis for comparison. MARS and EGS4 results are approximately the same for maximum 1-cc dose-rates and attenuation in the photon-dominated regions; for thicker targets, however, the dose-rate no longer depends only on photon attenuation, as photoneutrons (PNs) begin to dominate. The GB radiation-induced photoneutron measurements from four different metals (Fe, Cu, W, and Pb) are compared with MARS predictions. The simulated dose-rates for beamline 6-ID are approximately 3-5 times larger than the measured values, whereas those for beamline 11-ID are much closer. Given the uncertainty in local values of pressure and Z, the degree of agreement between MARS and the PN measurements is good. MARS simulations of GB-induced radiation in and around the FOE show the importance of using actual pressure and gas composition (Z{sub eff}) to obtain accurate PN dose. For a beam current of 300 mA, extrapolating pressure data measured in previously published studies predicts an average background gas pressure of 27 nTorr. An average atomic number of Z{sub eff} = 4.0 is obtained from the same studies. In addition, models of copper masks presently in use at the APS are included. Simulations show that inclusion of exit masks make significant differences in both the radiation spatial distribution within the FOE, as well as the peak intensity. Two studies have been conducted with MARS to assess shielding requirements. First, dose levels in contact with the outside wall of the FOE are examined when GB radiation strikes Pb or W beam stops of varying transverse size within the FOE. Four separate phantom regions are utilized to measure the dose, two at beam elevation and two at the horizontal beam position. The first two phantoms are used for scoring FOE dose along the outside and back walls, horizontally; the second two collect dose on the roof and vertically on the back wall. In all cases, the beam stop depth is maintained at 30 cm. Inclusion of front end (FE) exit masks typically cause a 1-2 order-of-magnitude increase in the dose-rates relative to the case with no masks. Masks place secondary bremsstrahlung sources inside the FOE, and therefore they must be shielded appropriately. The MARS model does not fully account for all shielding present in the hutches; localized shielding is employed in individual hutches. Typically, a collimator, placed downstream of the FE exit masks, mitigates the possible increase in dose. Regarding beam stop transverse size, a modest reduction in dose on the back wall is noted as the stop dimension (square cross section) is increased from 12 cm to 24 cm. In the second study, the thickness of Pb required to shield against the GB extremal ray is determined. In this study, we are interested in finding the thickness of material necessary to add at the edge of a stop to adequately block GB radiation; therefore, we look at the case of no masks in order to have a well-defined GB beam edge. Simulations show the separation between the extremal ray and the edge of the shielding should be 2R{sub m}, where R{sub m} is the Moliere radius.« less

  9. Automation of the electron-beam welding process

    NASA Astrophysics Data System (ADS)

    Koleva, E.; Dzharov, V.; Kardjiev, M.; Mladenov, G.

    2016-03-01

    In this work, the automatic control is considered of the vacuum and cooling systems of the located in the IE-BAS equipment for electron-beam welding, evaporation and surface modification. A project was elaborated for the control and management based on the development of an engineering support system using existing and additional technical means of automation. Optimization of the indicators, which are critical for the duration of reaching the working regime and stopping the operation of the installation, can be made using experimentally obtained transient characteristics. The automation of the available equipment aimed at improving its efficiency and the repeatability of the obtained results, as well as at stabilizing the process parameters, should be integrated in an Engineering Support System which, besides the operator supervision, consists of several subsystems for equipment control, data acquisition, information analysis, system management and decision-making support.

  10. Energy deposition of H and He ion beams in hydroxyapatite films: a study with implications for ion-beam cancer therapy.

    PubMed

    Limandri, Silvina; de Vera, Pablo; Fadanelli, Raul C; Nagamine, Luiz C C M; Mello, Alexandre; Garcia-Molina, Rafael; Behar, Moni; Abril, Isabel

    2014-02-01

    Ion-beam cancer therapy is a promising technique to treat deep-seated tumors; however, for an accurate treatment planning, the energy deposition by the ions must be well known both in soft and hard human tissues. Although the energy loss of ions in water and other organic and biological materials is fairly well known, scarce information is available for the hard tissues (i.e., bone), for which the current stopping power information relies on the application of simple additivity rules to atomic data. Especially, more knowledge is needed for the main constituent of human bone, calcium hydroxyapatite (HAp), which constitutes 58% of its mass composition. In this work the energy loss of H and He ion beams in HAp films has been obtained experimentally. The experiments have been performed using the Rutherford backscattering technique in an energy range of 450-2000 keV for H and 400-5000 keV for He ions. These measurements are used as a benchmark for theoretical calculations (stopping power and mean excitation energy) based on the dielectric formalism together with the MELF-GOS (Mermin energy loss function-generalized oscillator strength) method to describe the electronic excitation spectrum of HAp. The stopping power calculations are in good agreement with the experiments. Even though these experimental data are obtained for low projectile energies compared with the ones used in hadron therapy, they validate the mean excitation energy obtained theoretically, which is the fundamental quantity to accurately assess energy deposition and depth-dose curves of ion beams at clinically relevant high energies. The effect of the mean excitation energy choice on the depth-dose profile is discussed on the basis of detailed simulations. Finally, implications of the present work on the energy loss of charged particles in human cortical bone are remarked.

  11. a Search for Neutrino-Electron Elastic Scattering at the LAMPF Beam Stop.

    NASA Astrophysics Data System (ADS)

    Brooks, George Alfred

    Neutrino-electron elastic scattering reactions play an important role in tests of weak interaction theory. The four reactions which may be considered are:. (nu)(,e) + e('-) (--->) (nu)(,e) + e('-). (nu)(,e)(' )+ e('-) (--->) (nu)(,e) + e('-). (nu)(,(mu)) + e('-) (--->) (nu)(,(mu)) + e('-). (nu)(,(mu))(' )+ e('-) (--->) (nu)(,(mu)) + e(' -). The experimental study of these purely leptonic interactions severely tests basic theoretical ideas, and the reaction with (nu)(,e) has not yet been observed. The characteristics of Los Alamos Meson Physics Facility. (LAMPF) are such that (nu)(,e) is rarely produced, whereas (nu)(,e),(nu)(,(mu)), and(' ). (nu)(,(mu)) are present in equal numbers. Thus, data on all three processes(' ). will be collected simultaneously, but the (nu)(,e) reaction is expected to dominate. However, such studies are exceedingly difficult. The main problem arises from the nature of the event signature (an undetected particle enters the detector producing a single recoil electron) coupled with the miniscule cross sections expected (and therefore low event rates) amid numerous sources of background events. To learn how to reduce the rates of such backgrounds, the UCI Neutrino Group installed in the Neutrino Facility in 1974 a small scale detector system consisting of a sandwich of optical spark chambers and plastic scintillator slabs (0.38 metric tons) which was shielded by 2 1/2" of Pb and enclosed by tanks of liquid scintillator used as an anticoincidence. Electronics and instrumentation, including a CAMAC system interfaced with a PDP-11/05 computer, were housed in a nearby trailer. The 1974 study was carried out with the LAMPF Neutrino Facility shielded against cosmic rays by Fe walls 3' thick and a 4' Fe roof. Nevertheless, stopping cosmic ray muons appeared to give rise to the substantial number of background electron events observed. Several techniques were invoked to reduce the potential background for neutrino -electron elastic scattering to (1.5 (+OR-) 0.5) day('-1). Improved statistics from 1976 gave (1.48 (+OR-) 0.34) day('-1). If this number could be further reduced--by additional shielding, for example--then the experiment would be easier. However, data taken in 1975 with varying thicknesses of Pb on top of the sandwich detector and in 1976 with an additional 1' of Fe on the roof showed that there is no significant advantage to having more Pb or Fe in those areas. The accelerator may also be a source of background. When the accelerator is operating, neutrons from the beam stop can penetrate the Fe shielding to produce an excessive trigger rate (energetic neutrons) or on excessive dead time (thermal neutrons), especially in the more massive ANTI required for the full scale experiment. However, data taken in 1974 with 10(mu)A accelerator current and 4m Fe as beam stop shielding, and in 1976 with 100 (mu)A and 5m Fe, showed that the neutron flux was well under control. The ultimate configuration requires much higher beam currents, but also calls for additional Fe so that neutrons will not be a problem. In both 1974 and 1976 there were no electron events remaining in the accelerator data following subtraction of cosmic ray background. This fact can be used to set an upper limit on the elastic scattering cross section for (nu)(,e):. (sigma)(,exp) < 38 (sigma)(,V-A) with 90% confidence. The results of these studies determined the amount of shielding required for a full scale neutrino experiment, established the need for a very efficient active anticoincidence, and aided the design of a 14.4 metric ton sandwich detector of flash chamber modules and plastic scintillator slabs. Developmental work for the full scale detector system began in 1977, and some of the subsequent construction work is still in progress. However, the Neutrino Facility has been prepared, and portions of the sandwich detector have been installed. The first information on neutrino -electron elastic scattering could be available by the middle of 1982.

  12. Beam dynamics design of the muon linac high-beta section

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Hasegawa, K.; Otani, M.; Mibe, T.; Yoshida, M.; Kitamura, R.

    2017-07-01

    A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H line) at the J-PARC muon science facility are once stopped in a silica-aerogel target, and room temperature muoniums are evaporated from the aerogel. They are dissociated with lasers, then accelerated up to 212 MeV using a linear accelerator. For the accelerating structure from 40 MeV, disk-loaded traveling-wave structure is applicable because the particle beta is more than 0.7. The structure itself is similar to that for electron linacs, however, the cell length should be harmonic to the increase of the particle velocity. In this paper, the beam dynamics design of this muon linac using the disk-loaded structure (DLS) is described.

  13. Modification of graphene by ion beam

    NASA Astrophysics Data System (ADS)

    Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J.

    2017-09-01

    Ion induced defect generation in graphene was analyzed using Raman spectroscopy. A single layer graphene membrane produced by chemical vapor deposition (CVD) on copper foil and then transferred on glass substrate was subjected to helium, carbon, nitrogen, argon and krypton ions bombardment at energies from the range 25 keV to 100 keV. A density of ion induced defects and theirs mean size were estimated by using Raman measurements. Increasing number of defects generated by ion with increase of ion mass and decrease of ion energy was observed. Dependence of ion defect efficiency (defects/ion) on ion mass end energy was proportional to nuclear stopping power simulated by SRIM. No correlation between ion defect efficiency and electronic stopping power was observed.

  14. Polymer photonic crystal slab waveguides

    NASA Astrophysics Data System (ADS)

    Liguda, C.; Böttger, G.; Kuligk, A.; Blum, R.; Eich, M.; Roth, H.; Kunert, J.; Morgenroth, W.; Elsner, H.; Meyer, H. G.

    2001-04-01

    We present details of the fabrication, calculations, and transmission measurements for finite two-dimensional (2D) polymer photonic crystal (PC) slab waveguides, which were fabricated from a benzocyclobutene polymer on a low refractive index substrate from Teflon. A square air hole lattice (500 nm lattice constant, 300 nm hole diameter) was realized by electron beam lithography and reactive ion etching. Polarization and wavelength dependent transmission results show TE-like and TM-like stop gaps at 1.3 μm excitation wavelengths and are in good agreement with the calculated data obtained by 2D and three-dimensional finite difference time domain methods. Transmission was suppressed by 15 dB in the center of the TE-like stop gap for a PC length of ten lattice constants.

  15. Range prediction for tissue mixtures based on dual-energy CT

    NASA Astrophysics Data System (ADS)

    Möhler, Christian; Wohlfahrt, Patrick; Richter, Christian; Greilich, Steffen

    2016-06-01

    The use of dual-energy CT (DECT) potentially decreases range uncertainties in proton and ion therapy treatment planning via determination of the involved physical target quantities. For eventual clinical application, the correct treatment of tissue mixtures and heterogeneities is an essential feature, as they naturally occur within a patient’s CT. Here, we present how existing methods for DECT-based ion-range prediction can be modified in order to incorporate proper mixing behavior on several structural levels. Our approach is based on the factorization of the stopping-power ratio into the relative electron density and the relative stopping number. The latter is confined for tissue between about 0.95 and 1.02 at a therapeutic beam energy of 200 MeV u-1 and depends on the I-value. We show that convenient mixing and averaging properties arise by relating the relative stopping number to the relative cross section obtained by DECT. From this, a maximum uncertainty of the stopping-power ratio prediction below 1% is suggested for arbitrary mixtures of human body tissues.

  16. Electron fluence correction factors for various materials in clinical electron beams.

    PubMed

    Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P

    2001-08-01

    Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.

  17. Sensitivity improvement of one-shot Fourier spectroscopic imager for realization of noninvasive blood glucose sensors in smartphones

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Nogo, Kosuke; Hosono, Satsuki; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-11-01

    The use of the wide-field-stop and beam-expansion method for sensitivity enhancement of one-shot Fourier spectroscopy is proposed to realize health care sensors installed in smartphones for daily monitoring. When measuring the spectral components of human bodies noninvasively, diffuse reflected light from biological membranes is too weak for detection using conventional hyperspectral cameras. One-shot Fourier spectroscopy is a spatial phase-shift-type interferometer that can determine the one-dimensional spectral characteristics from a single frame. However, this method has low sensitivity, so that only the spectral characteristics of light sources with direct illumination can be obtained, because a single slit is used as a field stop. The sensitivity of the proposed spectroscopic method is improved by using the wide-field-stop and beam-expansion method. The use of a wider field stop slit width increases the detected light intensity; however, this simultaneously narrows the diffraction angle. The narrower collimated objective beam diameter degrades the visibility of interferograms. Therefore, a plane-concave cylindrical lens between the objective plane and the single slit is introduced to expand the beam diameter. The resulting sensitivity improvement achieved when using the wide-field-stop and beam-expansion method allows the spectral characteristics of hemoglobin to be obtained noninvasively from a human palm using a midget lamp.

  18. Focused-ion-beam-inflicted surface amorphization and gallium implantation--new insights and removal by focused-electron-beam-induced etching.

    PubMed

    Roediger, P; Wanzenboeck, H D; Waid, S; Hochleitner, G; Bertagnolli, E

    2011-06-10

    Recently focused-electron-beam-induced etching of silicon using molecular chlorine (Cl(2)-FEBIE) has been developed as a reliable and reproducible process capable of damage-free, maskless and resistless removal of silicon. As any electron-beam-induced processing is considered non-destructive and implantation-free due to the absence of ion bombardment this approach is also a potential method for removing focused-ion-beam (FIB)-inflicted crystal damage and ion implantation. We show that Cl(2)-FEBIE is capable of removing FIB-induced amorphization and gallium ion implantation after processing of surfaces with a focused ion beam. TEM analysis proves that the method Cl(2)-FEBIE is non-destructive and therefore retains crystallinity. It is shown that Cl(2)-FEBIE of amorphous silicon when compared to crystalline silicon can be up to 25 times faster, depending on the degree of amorphization. Also, using this method it has become possible for the first time to directly investigate damage caused by FIB exposure in a top-down view utilizing a localized chemical reaction, i.e. without the need for TEM sample preparation. We show that gallium fluences above 4 × 10(15) cm(-2) result in altered material resulting from FIB-induced processes down to a depth of ∼ 250 nm. With increasing gallium fluences, due to a significant gallium concentration close beneath the surface, removal of the topmost layer by Cl(2)-FEBIE becomes difficult, indicating that gallium serves as an etch stop for Cl(2)-FEBIE.

  19. Stopping and Coulomb explosion of energetic carbon clusters in a plasma irradiated by an intense laser field

    NASA Astrophysics Data System (ADS)

    Wang, Guiqiu; Wang, Younian

    2015-09-01

    The interaction of a charged particle beam with a plasma is a very important subject of relevance for many fields of physics, such as inertial confinement fusion (ICF) driven by ion or electron beams, high energy density physics, and related astrophysical problems. Recently, a promising ICF scheme has been proposed, in which the plasma target is irradiated simultaneously by intense laser and ion beams. For molecular ion or cluster, slowing down process will company the Coulomb explosion phenomenon. In this paper, we present a study of the effects of intense radiation field (RF) on the interaction of energetic carbon clusters in a plasma. The emphasis is laid on the dynamic polarization and correlation effects of the constituent ions within the cluster in order to disclose the role of the vicinage effects on the Coulomb explosion and energy deposition of the clusters in plasma. On the other hand, affecting of a strong laser field on the cluster propagating in plasma is considered, the influence of a large range of laser parameters and plasma parameters on the Coulomb explosion and stopping power are discussed. This work is supported by the National Natural Science Foundation of China (11375034), and the Fundamental Research Funds for the Central Universities of China (3132015144, 3132014337).

  20. Demonstration of a novel technique to measure two-photon exchange effects in elastic e±p scattering

    DOE PAGES

    Moteabbed, Maryam; Niroula, Megh; Raue, Brian A.; ...

    2013-08-30

    The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. The TPE contributions depend on the sign of the lepton charge in e±p scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct e±p comparisons, which has themore » potential to make precise measurements over a broad range in Q 2 and scattering angles. We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q 2 and scattering angle. Nonetheless, this measurement yields a data sample for e±p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable to study the difference between the incoming electron and positron beams. This systematic effect leads to the largest uncertainty in the final ratio of positron to electron scattering: R=1.027±0.005±0.05 for < Q 2 >=0.206 GeV 2 and 0.830 ≤ ε ≤ 0.943. We have demonstrated that the tertiary e ± beam generated using this technique provides the opportunity for dramatically improved comparisons of e±p scattering, covering a significant range in both Q 2 and scattering angle. Combining data with different chicane polarities will allow for detailed studies of the difference between the incoming e + and e - beams.« less

  1. Demonstration of a novel technique to measure two-photon exchange effects in elastic e±p scattering

    NASA Astrophysics Data System (ADS)

    Moteabbed, M.; Niroula, M.; Raue, B. A.; Weinstein, L. B.; Adikaram, D.; Arrington, J.; Brooks, W. K.; Lachniet, J.; Rimal, Dipak; Ungaro, M.; Afanasev, A.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lewis, S.; Lu, H. Y.; MacCormick, M.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Strauch, S.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2013-08-01

    Background: The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections.Purpose: The TPE contributions depend on the sign of the lepton charge in e±p scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct e±p comparisons, which has the potential to make precise measurements over a broad range in Q2 and scattering angles.Methods: We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton.Results: The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2 and scattering angle. Nonetheless, this measurement yields a data sample for e±p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable to study the difference between the incoming electron and positron beams. This systematic effect leads to the largest uncertainty in the final ratio of positron to electron scattering: R=1.027±0.005±0.05 for =0.206 GeV2 and 0.830⩽ɛ⩽0.943.Conclusions: We have demonstrated that the tertiary e± beam generated using this technique provides the opportunity for dramatically improved comparisons of e±p scattering, covering a significant range in both Q2 and scattering angle. Combining data with different chicane polarities will allow for detailed studies of the difference between the incoming e+ and e- beams.

  2. Mu2e: a Muon to Electron Conversion Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Brown, David

    2014-03-01

    We present the status of Mu2e, a proposed experiment to measure the rate of muon to electron conversion in the field of a nucleus. The Mu2e experiment will be hosted by Fermilab at a new muon campus, using a new beamline to deliver protons to the muon generation target. Mu2e will use a series of three solenoids to collect, transport, stop, and analyze the muons produced when the 8 GeV pulsed proton beam from the booster hits the tungsten production target. The 200 nsec wide proton pulse is designed to have a ratio of out-of-time to in-time protons better than 10-10, insuring a measurement time window of approximately 1 microsecond essentially free from beam pion background. A precision, low-mass straw tube tracker will measure electron momenta with a precision of 1/1000, allowing clean separation of the conversion signal from Decay In Orbit electrons, the principle experimental background. Extensive coverage of multi-layer scintillation counters will detect 99.99% of the cosmic muons which could generate fake signals. A crystal calorimeter will provide particle ID to further reduce backgrounds. Detailed simulations show a 3-year run with 7.56×1017 stopped muons will allow a Single Event Sensitivity of 2×10-17, allowing an estimated 90% confidence level sensitivity to R of 6×10-17, a four-orders of magnitude improvement over existing limits. The Mu2e schedule is technically limited, with commissioning beginning in 2019. Mu2e may also run at Project X with 10× higher luminosity using either an aluminum or titanium target after minimal upgrades.

  3. Dual energy scanning beam laminographic x-radiography

    DOEpatents

    Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.

  4. Dual energy scanning beam laminographic x-radiography

    DOEpatents

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  5. Comparison between TG-51 and TG-21: Calibration of photon and electron beams in water using cylindrical chambers.

    PubMed

    Cho, S H; Lowenstein, J R; Balter, P A; Wells, N H; Hanson, W F

    2000-01-01

    A new calibration protocol, developed by the AAPM Task Group 51 (TG-51) to replace the TG-21 protocol, is based on an absorbed-dose to water standard and calibration factor (N(D,w)), while the TG-21 protocol is based on an exposure (or air-kerma) standard and calibration factor (N(x)). Because of differences between these standards and the two protocols, the results of clinical reference dosimetry based on TG-51 may be somewhat different from those based on TG-21. The Radiological Physics Center has conducted a systematic comparison between the two protocols, in which photon and electron beam outputs following both protocols were compared under identical conditions. Cylindrical chambers used in this study were selected from the list given in the TG-51 report, covering the majority of current manufacturers. Measured ratios between absorbed-dose and air-kerma calibration factors, derived from the standards traceable to the NIST, were compared with calculated values using the TG-21 protocol. The comparison suggests that there is roughly a 1% discrepancy between measured and calculated ratios. This discrepancy may provide a reasonable measure of possible changes between the absorbed-dose to water determined by TG-51 and that determined by TG-21 for photon beam calibrations. The typical change in a 6 MV photon beam calibration following the implementation of the TG-51 protocol was about 1%, regardless of the chamber used, and the change was somewhat smaller for an 18 MV photon beam. On the other hand, the results for 9 and 16 MeV electron beams show larger changes up to 2%, perhaps because of the updated electron stopping power data used for the TG-51 protocol, in addition to the inherent 1% discrepancy presented in the calibration factors. The results also indicate that the changes may be dependent on the electron energy.

  6. Shielding and Activation Analyses for BTF Facility at SNS

    NASA Astrophysics Data System (ADS)

    Popova, Irina; Gallmeier, Franz X.

    2017-09-01

    The beam test facility (BTF), which simulates front end of the Spallation Neutron Source (SNS), has been built at the SNS, and is preparing for commissioning. The BTF has been assembled and will operate in one of service buildings at the site. The 2.5 MeV proton beam, produced in the facility, will be stopped in the beam dump. In order to support BTF project from radiation protection site, neutronics simulations and activation analyses were performed to evaluate the necessary shielding around the facility and radionuclide inventory of the beam stop.

  7. Heavily Boron-Doped Silicon Layer for the Fabrication of Nanoscale Thermoelectric Devices

    PubMed Central

    Liu, Yang; Deng, Lingxiao; Zhang, Mingliang; Zhang, Shuyuan; Ma, Jing; Song, Peishuai; Liu, Qing; Ji, An; Yang, Fuhua; Wang, Xiaodong

    2018-01-01

    Heavily boron-doped silicon layers and boron etch-stop techniques have been widely used in the fabrication of microelectromechanical systems (MEMS). This paper provides an introduction to the fabrication process of nanoscale silicon thermoelectric devices. Low-dimensional structures such as silicon nanowire (SiNW) have been considered as a promising alternative for thermoelectric applications in order to achieve a higher thermoelectric figure of merit (ZT) than bulk silicon. Here, heavily boron-doped silicon layers and boron etch-stop processes for the fabrication of suspended SiNWs will be discussed in detail, including boron diffusion, electron beam lithography, inductively coupled plasma (ICP) etching and tetramethylammonium hydroxide (TMAH) etch-stop processes. A 7 μm long nanowire structure with a height of 280 nm and a width of 55 nm was achieved, indicating that the proposed technique is useful for nanoscale fabrication. Furthermore, a SiNW thermoelectric device has also been demonstrated, and its performance shows an obvious reduction in thermal conductivity. PMID:29385759

  8. The JWST/NIRCam Coronagraph: Mask Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Krista, John E.; Balasubramanian, Kunjithapatha; Beichman, Charles A.; Echternach, Pierre M.; Green, Joseph J.; Liewer, Kurt M.; Muller, Richard E.; Serabyn, Eugene; Shaklan, Stuart B.; Trauger, John T.; hide

    2009-01-01

    The NIRCam instrument on the James Webb Space Telescope will provide coronagraphic imaging from lambda =1-5 microns of high contrast sources such as extrasolar planets and circumstellar disks. A Lyot coronagraph with a variety of circular and wedge-shaped occulting masks and matching Lyot pupil stops will be implemented. The occulters approximate grayscale transmission profiles using halftone binary patterns comprising wavelength-sized metal dots on anti-reflection coated sapphire substrates. The mask patterns are being created in the Micro Devices Laboratory at the Jet Propulsion Laboratory using electron beam lithography. Samples of these occulters have been successfully evaluated in a coronagraphic testbed. In a separate process, the complex apertures that form the Lyot stops will be deposited onto optical wedges. The NIRCam coronagraph flight components are expected to be completed this year.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusrat, H; Pang, G; Sarfehnia, A

    Purpose: This work seeks to develop a beam quality meter using multiple differently doped plastic scintillators that are thus intrinsically beam-quality dependent. Plastic scintillators spontaneously emit visible light upon irradiation; the amount of light produced is dependent on stopping power (closely related to LET) according to Birks’ law. Doping plastic scintillators can be used to tune their sensitivity to specific LET ranges. Methods: GEANT4.10.1 Monte Carlo (MC) was used to evaluate the response of various scintillator dopant combinations. MC radiation transport and scintillator light response were validated against previously published literature. Current work involves evaluating detector response experimentally; to thatmore » end, a detector prototype with interchangeable scintillator housing was constructed. Measurement set-up guides light emitted by the scintillator to a photomultiplier tube via a glass taper junction coupled to an optical fiber. The resulting signal is measured by an electrometer, and normalized to dose readout from a diode. Measurements have been done using clinical electron and orthovoltage beams. MC response (simulated scintillator light normalized to dose scored inside the scintillating volume) was evaluated for four different LET radiations for an undoped and 1%Pb doped scintillator (σ=0.85%). Simulated incident electrons included: 0.05, 0.1, 0.2, 6, 12, and 18 MeV; these energies correspond to a range of stopping power (related to LET) values ranging from 1.824 to 11.09 MeVcm{sup 2}g{sup −1} (SCOL from NIST-ESTAR). Results: Initial MC results show a distinct divergence in scintillator response as LET increases. The response for undoped plastic scintillator indicated a 35.0% increase in signal when going from 18 MeV (low LET) to 0.05 MeV (high LET) while 1%-Pb doped scintillator indicated a 100.9% increase. Conclusion: After validating MC against measurement, simulations will be used to test various concentrations (2%, 4%, 6%) of different high-Z material dopants (W, Mo) to optimize the scintillator types for the beam quality meter. NSERC Discovery Grant RGPIN-435608.« less

  10. Water and tissue equivalence of a new PRESAGE{sup Registered-Sign} formulation for 3D proton beam dosimetry: A Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorjiara, Tina; Kuncic, Zdenka; Doran, Simon

    2012-11-15

    Purpose: To evaluate the water and tissue equivalence of a new PRESAGE{sup Registered-Sign} 3D dosimeter for proton therapy. Methods: The GEANT4 software toolkit was used to calculate and compare total dose delivered by a proton beam with mean energy 62 MeV in a PRESAGE{sup Registered-Sign} dosimeter, water, and soft tissue. The dose delivered by primary protons and secondary particles was calculated. Depth-dose profiles and isodose contours of deposited energy were compared for the materials of interest. Results: The proton beam range was found to be Almost-Equal-To 27 mm for PRESAGE{sup Registered-Sign }, 29.9 mm for soft tissue, and 30.5 mmmore » for water. This can be attributed to the lower collisional stopping power of water compared to soft tissue and PRESAGE{sup Registered-Sign }. The difference between total dose delivered in PRESAGE{sup Registered-Sign} and total dose delivered in water or tissue is less than 2% across the entire water/tissue equivalent range of the proton beam. The largest difference between total dose in PRESAGE{sup Registered-Sign} and total dose in water is 1.4%, while for soft tissue it is 1.8%. In both cases, this occurs at the distal end of the beam. Nevertheless, the authors find that PRESAGE{sup Registered-Sign} dosimeter is overall more tissue-equivalent than water-equivalent before the Bragg peak. After the Bragg peak, the differences in the depth doses are found to be due to differences in primary proton energy deposition; PRESAGE{sup Registered-Sign} and soft tissue stop protons more rapidly than water. The dose delivered by secondary electrons in the PRESAGE{sup Registered-Sign} differs by less than 1% from that in soft tissue and water. The contribution of secondary particles to the total dose is less than 4% for electrons and Almost-Equal-To 1% for protons in all the materials of interest. Conclusions: These results demonstrate that the new PRESAGE{sup Registered-Sign} formula may be considered both a tissue- and water-equivalent 3D dosimeter for a 62 MeV proton beam. The results further suggest that tissue-equivalent thickness may provide better dosimetric and geometric accuracy than water-equivalent thickness for 3D dosimetry of this proton beam.« less

  11. Coherent resonance stop bands in alternating gradient beam transport

    NASA Astrophysics Data System (ADS)

    Ito, K.; Okamoto, H.; Tokashiki, Y.; Fukushima, K.

    2017-06-01

    An extensive experimental study is performed to confirm fundamental resonance bands of an intense hadron beam propagating through an alternating gradient linear transport channel. The present work focuses on the most common lattice geometry called "FODO" or "doublet" that consists of two quadrupoles of opposite polarities. The tabletop ion-trap system "S-POD" (Simulator of Particle Orbit Dynamics) developed at Hiroshima University is employed to clarify the parameter-dependence of coherent beam instability. S-POD can provide a non-neutral plasma physically equivalent to a charged-particle beam in a periodic focusing potential. In contrast with conventional experimental approaches relying on large-scale machines, it is straightforward in S-POD to control the doublet geometry characterized by the quadrupole filling factor and drift-space ratio. We verify that the resonance feature does not essentially change depending on these geometric factors. A few clear stop bands of low-order resonances always appear in the same pattern as previously found with the sinusoidal focusing model. All stop bands become widened and shift to the higher-tune side as the beam density is increased. In the space-charge-dominated regime, the most dangerous stop band is located at the bare betatron phase advance slightly above 90 degrees. Experimental data from S-POD suggest that this severe resonance is driven mainly by the linear self-field potential rather than by nonlinear external imperfections and, therefore, unavoidable at high beam density. The instability of the third-order coherent mode generates relatively weak but noticeable stop bands near the phase advances of 60 and 120 degrees. The latter sextupole stop band is considerably enhanced by lattice imperfections. In a strongly asymmetric focusing channel, extra attention may have to be paid to some coupling resonance lines induced by the Coulomb potential. Our interpretations of experimental data are supported by theoretical predictions and systematic multiparticle simulations.

  12. Polarized γ source based on Compton backscattering in a laser cavity

    NASA Astrophysics Data System (ADS)

    Yakimenko, V.; Pogorelsky, I. V.

    2006-09-01

    We propose a novel gamma source suitable for generating a polarized positron beam for the next generation of electron-positron colliders, such as the International Linear Collider (ILC), and the Compact Linear Collider (CLIC). This 30-MeV polarized gamma source is based on Compton scattering inside a picosecond CO2 laser cavity generated from electron bunches produced by a 4-GeV linac. We identified and experimentally verified the optimum conditions for obtaining at least one gamma photon per electron. After multiplication at several consecutive interaction points, the circularly polarized gamma rays are stopped on a target, thereby creating copious numbers of polarized positrons. We address the practicality of having an intracavity Compton-polarized positron source as the injector for these new colliders.

  13. The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.

    In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiationmore » testing of carbon nanotube field effect transistor will be discussed.« less

  14. Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment.

    PubMed

    Shiu, A S; Tung, S S; Gastorf, R J; Hogstrom, K R; Morrison, W H; Peters, L J

    1996-06-01

    The purpose of this study is to report that commercially available eye shields (designed for orthovoltage x-rays) are inadequate to protect the ocular structures from penetrating electrons for electron beam energies equal to or greater than 6 MeV. Therefore, a prototype medium size tungsten eye shield was designed and fabricated. The advantages of the tungsten eye shield over lead are discussed. Electron beams (6-9 MeV) are often used to irradiate eyelid tumors to curative doses. Eye shields can be placed under the eyelids to protect the globe. Film and thermoluminescent dosimeters (TLDs) were used within a specially constructed polystyrene eye phantom to determine the effectiveness of various commercially available internal eye shields (designed for orthovoltage x-rays). The same procedures were used to evaluate a prototype medium size tungsten eye shield (2.8 mm thick), which was designed and fabricated for protection of the globe from penetrating electrons for electron beam energy equal to 9 MeV. A mini-TLD was used to measure the dose enhancement due to electrons backscattered off the tungsten eye shield, both with or without a dental acrylic coating that is required to reduce discomfort, permit sterilization of the shield, and reduce the dose contribution from backscattered electrons. Transmission of a 6 MeV electron beam through a 1.7 mm thick lead eye shield was found to be 50% on the surface (cornea) of the phantom and 27% at a depth of 6 mm (lens). The thickness of lead required to stop 6-9 MeV electron beams is impractical. In place of lead, a prototype medium size tungsten eye shield was made. For 6 to 9 MeV electrons, the doses measured on the surface (cornea) and at 6 mm (lens) and 21 mm (retina) depths were all less than 5% of the maximum dose of the open field (4 x 4 cm). Electrons backscattered off a tungsten eye shield without acrylic coating increased the lid dose from 85 to 123% at 6 MeV and 87 to 119% at 9 MeV. For the tungsten eye shield coated with 2-3 mm of dental acrylic, the lid dose was increased from 85 to 98.5% at 6 MeV and 86 to 106% at 9 MeV. Commercially available eye shields were evaluated and found to be clearly inadequate to protect the ocular structures for electron beam energies equal to or greater than 6 MeV. A tungsten eye shield has been found to provide adequate protection for electrons up to 9 MeV. The increase in lid dose due to electrons backscattered off the tungsten eye shield should be considered in the dose prescription. A minimum thickness of 2 mm dental acrylic on the beam entrance surface of the tungsten eye shield was found to reduce the backscattered electron effect to acceptable levels.

  15. Diagnostic Systems Plan for the Advanced Light Source Top-OffUpgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Walter; Chin, Mike; Robin, David

    2005-05-10

    The Advanced Light Source (ALS) will soon be upgraded to enable top-off operations [1], in which electrons are quasi-continuously injected to produce constant stored beam current. The upgrade is structured in two phases. First, we will upgrade our injector from 1.5 GeV to 1.9 GeV to allow full energy injection and will start top-off operations. In the second phase, we will upgrade the Booster Ring (BR) with a bunch cleaning system to allow high bunch purity top-off injection. A diagnostics upgrade will be crucial for success in both phases of the top-off project, and our plan for it is describedmore » in this paper. New booster ring diagnostics will include updated beam position monitor (BPM) electronics, a tune monitoring system, and a new scraper. Two new synchrotron light monitors and a beam stop will be added to the booster-to-storage ring transfer line (BTS), and all the existing beam current monitors along the accelerator chain will be integrated into a single injection efficiency monitoring application. A dedicated bunch purity monitor will be installed in the storage ring (SR). Together, these diagnostic upgrades will enable smooth commissioning of the full energy injector and a quick transition to high quality top-off operation at the ALS.« less

  16. Ion Fast Ignition-Establishing a Scientific Basis for Inertial Fusion Energy --- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Richard Burnite; Foord, Mark N.; Wei, Mingsheng

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional ?central hot spot? (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10?s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The compressed fuel is opaque to laser light. The ignition laser energy must be converted to a jet ofmore » energetic charged particles to deposit energy in the dense fuel. The original concept called for a spray of laser-generated hot electrons to deliver the energy; lack of ability to focus the electrons put great weight on minimizing the electron path. An alternative concept, proton-ignited FI, used those electrons as intermediaries to create a jet of protons that could be focused to the ignition spot from a more convenient distance. Our program focused on the generation and directing of the proton jet, and its transport toward the fuel, none of which were well understood at the onset of our program. We have developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to create a self-consistent understanding of the fundamental physics underlying these issues. Our strategy was to examine the new physics emerging as we added the complexity necessary to use proton beams in an inertial fusion energy (IFE) application. From the starting point of a proton beam accelerated from a flat, isolated foil, we 1) curved it to focus the beam, 2) attached the foil to a superstructure, 3) added a side sheath to protect it from the surrounding plasma, and finally 4) studied the proton beam behavior as it passed through a protective end cap into plasma. We built up, as we proceeded, a self-consistent picture of the quasi-neutral plasma jet that is the proton beam that, for the first time, included the role of the hot electrons in shaping the jet. Controlling them?through design of the accelerating surface and its connection to the surrounding superstructure?is critical; their uniform spread across the proton accelerating area is vital, but their presence in the jet opposes focus; their electron flow away from the acceleration area reduces conversion efficiency but can also increase focusing ability. The understanding emerging from our work and the improved simulation tools we have developed allow designing structures that optimize proton beams for focused heating. Our findings include: ? The achievable focus of proton beams is limited by the thermal pressure gradient in the laser-generated hot electrons that drive the process. This bending can be suppressed using a controlled flow of hot electrons along the surrounding cone wall, which induces a local transverse focusing sheath electric field. The resultant (vacuum-focused) spot can meet IFE requirements. ? Confinement of laser-generated electrons to the proton accelerating area can be achieved by supporting targets on thin struts. That increases laser-to-proton conversion energy by ~50%. As noted above, confinement should not be total; necessary hot-electron leakage into the surrounding superstructure for proton focusing can be controlled by with the strut width/number. ? Proton jets are further modified as they enter the fuel through the superstructure?s end cap. They can generate currents during that transit that further focus the proton beams. We developed a new ion stopping module for LSP code that properly accounted for changes in stopping power with ionization (e.g. temperature), and will be using it in future studies. The improved understanding, new experimental platforms, and the self-consistent modeling capability allow researchers a new ability to investigate the interaction of large ion currents with warm dense matter. That is of direct importance to the creation and investigation of all aspects of warm dense matter as well as to proton-ignited FI.« less

  17. Comparative dosimetry of diode and diamond detectors in electron beams for intraoperative radiation therapy.

    PubMed

    Björk, P; Knöös, T; Nilsson, P

    2000-11-01

    The aim of the present study is to examine the validity of using silicon semiconductor detectors in degraded electron beams with a broad energy spectrum and a wide angular distribution. A comparison is made with diamond detector measurements, which is the dosimeter considered to give the best results provided that dose rate effects are corrected for. Two-dimensional relative absorbed dose distributions in electron beams (6-20 MeV) for intraoperative radiation therapy (IORT) are measured in a water phantom. To quantify deviations between the detectors, a dose comparison tool that simultaneously examines the dose difference and distance to agreement (DTA) is used to evaluate the results in low- and high-dose gradient regions, respectively. Uncertainties of the experimental measurement setup (+/- 1% and +/- 0.5 mm) are taken into account by calculating a composite distribution that fails this dose-difference and DTA acceptance limit. Thus, the resulting area of disagreement should be related to differences in detector performance. The dose distributions obtained with the diode are generally in very good agreement with diamond detector measurements. The buildup region and the dose falloff region show good agreement with increasing electron energy, while the region outside the radiation field close to the water surface shows an increased difference with energy. The small discrepancies in the composite distributions are due to several factors: (a) variation of the silicon-to-water collision stopping-power ratio with electron energy, (b) a more pronounced directional dependence for diodes than for diamonds, and (c) variation of the electron fluence perturbation correction factor with depth. For all investigated treatment cones and energies, the deviation is within dose-difference and DTA acceptance criteria of +/- 3% and +/- 1 mm, respectively. Therefore, p-type silicon diodes are well suited, in the sense that they give results in close agreement with diamond detectors, for practical measurements of relative absorbed dose distributions in degraded electron beams used for IORT.

  18. Calibrating the MicroBooNE Photomultiplier Tube (PMT) Array with Michel Electrons from Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Greene, Amy

    2013-04-01

    MicroBooNE is a neutrino experiment at Fermilab designed to investigate the 3σ low-energy electron candidate events measured by the MiniBooNE experiment. Neutrinos from the Booster Neutrino Beam are detected by a 89-ton liquid argon time projection chamber, which is expected to start taking data in 2014. MicroBooNE measures both the ionization electrons and scintillation light produced by neutrino interactions in the liquid argon. The scintillation light is collected by an array of 30 PMTs located at one side of the detector. This array can be calibrated using Michel electrons from stopping cosmic ray muons, by fitting the measured PMT response with the theoretical expectation. I will report on the progress of the PMT calibration software that has been developed using the MicroBooNE Monte Carlo.

  19. Systematic uncertainties in the Monte Carlo calculation of ion chamber replacement correction factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. L. W.; La Russa, D. J.; Rogers, D. W. O.

    In a previous study [Med. Phys. 35, 1747-1755 (2008)], the authors proposed two direct methods of calculating the replacement correction factors (P{sub repl} or p{sub cav}p{sub dis}) for ion chambers by Monte Carlo calculation. By ''direct'' we meant the stopping-power ratio evaluation is not necessary. The two methods were named as the high-density air (HDA) and low-density water (LDW) methods. Although the accuracy of these methods was briefly discussed, it turns out that the assumption made regarding the dose in an HDA slab as a function of slab thickness is not correct. This issue is reinvestigated in the current study,more » and the accuracy of the LDW method applied to ion chambers in a {sup 60}Co photon beam is also studied. It is found that the two direct methods are in fact not completely independent of the stopping-power ratio of the two materials involved. There is an implicit dependence of the calculated P{sub repl} values upon the stopping-power ratio evaluation through the choice of an appropriate energy cutoff {Delta}, which characterizes a cavity size in the Spencer-Attix cavity theory. Since the {Delta} value is not accurately defined in the theory, this dependence on the stopping-power ratio results in a systematic uncertainty on the calculated P{sub repl} values. For phantom materials of similar effective atomic number to air, such as water and graphite, this systematic uncertainty is at most 0.2% for most commonly used chambers for either electron or photon beams. This uncertainty level is good enough for current ion chamber dosimetry, and the merits of the two direct methods of calculating P{sub repl} values are maintained, i.e., there is no need to do a separate stopping-power ratio calculation. For high-Z materials, the inherent uncertainty would make it practically impossible to calculate reliable P{sub repl} values using the two direct methods.« less

  20. Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks

    NASA Astrophysics Data System (ADS)

    Bao, Bin; Guyomar, Daniel; Lallart, Mickaël

    2017-01-01

    Smart periodic structures covered by periodically distributed piezoelectric patches have drawn more and more attention in recent years for wave propagation attenuation and corresponding structural vibration suppression. Since piezoelectric materials are special type of energy conversion materials that link mechanical characteristics with electrical characteristics, shunt circuits coupled with such materials play a key role in the wave propagation and/or vibration control performance in smart periodic structures. Conventional shunt circuit designs utilize resistive shunt (R-shunt) and resonant shunt (RL-shunt). More recently, semi-passive nonlinear approaches have also been developed for efficiently controlling the vibrations of such structures. In this paper, an innovative smart periodic beam structure with nonlinear interleaved-switched electric networks based on synchronized switching damping on inductor (SSDI) is proposed and investigated for vibration reduction and wave propagation attenuation. Different from locally resonant band gap mechanism forming narrow band gaps around the desired resonant frequencies, the proposed interleaved electrical networks can induce new broadly low-frequency stop bands and broaden primitive Bragg stop bands by virtue of unique interleaved electrical configurations and the SSDI technique which has the unique feature of realizing automatic impedance adaptation with a small inductance. Finite element modeling of a Timoshenko electromechanical beam structure is also presented for validating dispersion properties of the structure. Both theoretical and experimental results demonstrate that the proposed beam structure not only shows better vibration and wave propagation attenuation than the smart beam structure with independent switched networks, but also has technical simplicity of requiring only half of the number of switches than the independent switched network needs.

  1. Reconciling Particle-Beam and Optical Stopping-Power Measurements in Silicon

    NASA Astrophysics Data System (ADS)

    Karstens, William; Shiles, E. J.; Smith, David Y.

    A swift, charged particle passing through matter loses energy to electronic excitations via the electro-magnetic transients experienced by atoms along its path. Bethe related this process to the matter's frequency-dependent dielectric function ɛ (ℏω) through the energy-loss function, Im[-1/ ɛ (ℏω) ]. The matter's response may be summarized by a single parameter, the mean excitation energy, or I value, that combines the optical excitation spectrum and excitation probability. Formally, ln I is the mean of ln ℏω weighted by the energy-loss function. This provides an independent optical check on particle energy-loss experiments. However, a persistent disagreement is found for silicon: direct particle-beam studies yield 173.5< I<176 eV, but a fit to the stopping-power of 36 elements suggests 165 eV. An independent determination from optical data in 1986 gave 174 eV supporting the higher values. However, recent x-ray measurements disclosed short comings in the 1986 optical data: 1. Measurements by Ershov and Lukirskii underestimated the L-edge strength, and 2. A power-law extrapolation overestimated the K-edge strength. We have updated these data and find I = 162 eV, suggesting that silicon's recommended I value should be reconsidered. While this 5% change in I value changes the stopping power by only 1%, it is significant for precision measurements with Si detectors. Supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC02-06CH11357.

  2. Effects of the in-medium nucleon-nucleon cross section on collective flow and nuclear stopping in heavy-ion collisions in the Fermi-energy domain

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Wang, Yongjia; Li, Qingfeng; Guo, Chenchen; Zhang, Hongfei

    2018-04-01

    With the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model, a systematic investigation of the effects of in-medium nucleon-nucleon (NN ) elastic cross section on the collective flow and the stopping observables in 197Au+197Au collisions at beam energies from 40 to 150 MeV/nucleon is performed. Simulations with the medium correction factors F =σNN in -medium/σNN free=0.2 ,0.3 ,0.5 and the one obtained with the FU3FP1 parametrization which depends on both the density and the momentum are compared to the FOPI and INDRA experimental data. It is found that, to best fit the experimental data of the slope of the directed flow and the elliptic flow at midrapidity as well as the nuclear stopping, the correction factors of F =0.2 and 0.5 are required for reactions at beam energies of 40 and 150 MeV/nucleon, respectively. Whereas calculations with the FU3FP1 parametrization can simultaneously reproduce these experimental data reasonably well. And, the observed increasing nuclear stopping with increasing beam energy in experimental data can also be reproduced by using the FU3FP1 parametrization, whereas the calculated stopping power in Au + Au collisions with beam energies from 40 to 150 MeV /nucleon almost remains constant when taking F equal to a fixed value.

  3. The NSCL cyclotron gas stopper - Entering commissioning

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Bollen, G.; Chouhan, S.; Das, J. J.; Green, M.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Sumithrarachchi, C.; Villari, A. C. C.; Zeller, A.

    2016-06-01

    Linear gas stopping cells have been used successfully at NSCL to slow down ions produced by projectile fragmentation from the 100 MeV/u to the keV energy range. These 'stopped beams' have first been used for low-energy high precision experiments and more recently for NSCLs re-accelerator ReA. A gas-filled reverse cyclotron is currently under construction by the NSCL to complement the existing stopping cells: Due to its extended stopping length, efficient stopping and fast extraction is expected even for light and medium-mass ions, which are difficult to thermalize in linear gas cells. The device is based on a 2.6 T maximum-field cyclotron-type magnet to confine the injected beam while it is slowed down in ≈100 mbar of LN2-temperature helium gas. Once thermalized, the beam will be transported to the center of the device by a traveling-wave RF-carpet system, extracted along the symmetry axis with an ion conveyor and miniature RF-carpets, and accelerated to a few tens of keV of energy for delivery to the users. The superconducting magnet has been constructed on a 60 kV platform and energized to its nominal field strength. The magnet's two cryostats use 3 cryo-refrigerators each and liquid-nitrogen cooled thermal shields to cool the coil pair to superconductivity. This concept, chosen not to have to rely on external liquid helium, has been working well. Measurements of axial and radial field profiles confirm the field calculations. The individual RF-ion guiding components for low-energy ion transport through the device have been tested successfully. The beam stopping chamber with its 0.9 m-diameter RF carpet system and the ion extraction system are being prepared for installation inside the magnet for low-energy ion transport tests.

  4. A search for long-lived particles that stop in the CMS detector and decay to muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alimena, Juliette

    2016-05-01

    A search for long-lived particles that are produced in proton-proton collisions at the CERN LHC, come to rest in the CMS detector, and decay to muons is presented. The decays of the stopped particles could be observed during the intervals between LHC beam crossings, at times that are well separated from any proton-proton collisions. The analysis uses 19.7 1/fb of 8 TeV data collected by CMS in 2012, during a search interval of 293 hours of trigger livetime. Massive, long-lived particles do not exist in the Standard Model, and so any sign of them would be an indication of newmore » physics. The results are interpreted with a model that predicts a long-lived particle that has a charge of twice the electron charge and that behaves like a lepton. Cross section limits are set for each long-lived particle mass as a function of lifetime, for lifetimes between 100 ns and 10 days. These are the first limits for long-lived stopped particles that decay to muons.« less

  5. TU-FG-BRB-03: Basis Vector Model Based Method for Proton Stopping Power Estimation From Experimental Dual Energy CT Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S; Politte, D; O’Sullivan, J

    2016-06-15

    Purpose: This work aims at reducing the uncertainty in proton stopping power (SP) estimation by a novel combination of a linear, separable basis vector model (BVM) for stopping power calculation (Med Phys 43:600) and a statistical, model-based dual-energy CT (DECT) image reconstruction algorithm (TMI 35:685). The method was applied to experimental data. Methods: BVM assumes the photon attenuation coefficients, electron densities, and mean excitation energies (I-values) of unknown materials can be approximated by a combination of the corresponding quantities of two reference materials. The DECT projection data for a phantom with 5 different known materials was collected on a Philipsmore » Brilliance scanner using two scans at 90 kVp and 140 kVp. The line integral alternating minimization (LIAM) algorithm was used to recover the two BVM coefficient images using the measured source spectra. The proton stopping powers are then estimated from the Bethe-Bloch equation using electron densities and I-values derived from the BVM coefficients. The proton stopping powers and proton ranges for the phantom materials estimated via our BVM based DECT method are compared to ICRU reference values and a post-processing DECT analysis (Yang PMB 55:1343) applied to vendorreconstructed images using the Torikoshi parametric fit model (tPFM). Results: For the phantom materials, the average stopping power estimations for 175 MeV protons derived from our method are within 1% of the ICRU reference values (except for Teflon with a 1.48% error), with an average standard deviation of 0.46% over pixels. The resultant proton ranges agree with the reference values within 2 mm. Conclusion: Our principled DECT iterative reconstruction algorithm, incorporating optimal beam hardening and scatter corrections, in conjunction with a simple linear BVM model, achieves more accurate and robust proton stopping power maps than the post-processing, nonlinear tPFM based DECT analysis applied to conventional reconstructions of low and high energy scans. Funding Support: NIH R01CA 75371; NCI grant R01 CA 149305.« less

  6. LiF TLD-100 as a Dosimeter in High Energy Proton Beam Therapy-Can It Yield Accurate Results?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zullo, John R.; Kudchadker, Rajat J.; Zhu, X. Ronald

    In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly inmore » the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within {+-}5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within {+-} 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy.« less

  7. Measurement of the response time of the delay window for the neutron converter of the SPIRAL2 project

    NASA Astrophysics Data System (ADS)

    Acosta, G.; Andre, T.; Bermudez, J.; Blinov, M. F.; Jamet, C.; Logatchev, P. V.; Semenov, Y. I.; Starostenko, A. A.; Tecchio, L. B.; Tsyganov, A. S.; Udup, E.; Vasquez, J.

    2014-09-01

    Research and development of a safety system for the SPIRAL2 facility has been conceived to protect the UCx target from a possible interaction with the 200 kW deuteron beam. The system called "delay window" (DW) is designed as an integral part of the neutron converter module and is located in between the neutron converter and the fission target. The device has been designed as a barrier, located directly behind the neutron converter on the axis of the deuteron beam, with the purpose of "delaying" the eventual interaction of the deuteron beam with the UCx target in case of a failure of the neutron converter. The "delay" must be long enough to allow the interlock to react and safely stop the beam operation, before the beam will reach the UCx target. The working concept of the DW is based on the principle of the electrical fuse. Electrically insulated wires placed on the surface of a Tantalum disk assure a so called "free contact", normally closed to an electronic circuit located on the HV platform, far from the radioactive environment. The melting temperature of the wires is much less than Tantalum. Once the beam is impinging on the disk, one or more wires are melted and the "free contact" is open. A solid state relay is changing its state and a signal is sent to the interlock device. A prototype of the DW has been constructed and tested with an electron beam of power density equivalent to the SPIRAL2 beam. The measured "delay" is 682.5 ms (σ=116 ms), that is rather long in comparison to the intrinsic delays introduced by the detectors itself (2 ms) and by the associated electronic devices (120 ns). The experimental results confirm that, in the case of a failure of the neutron converter, the DW as conceived is enable to withstand the beam power for a period of time sufficiently long to safely shut down the SPIRAL2 accelerator.

  8. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chibani, O; Price, R; Ma, C

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows thatmore » the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.« less

  9. Sensitivity analysis for dose deposition in radiotherapy via a Fokker–Planck model

    DOE PAGES

    Barnard, Richard C.; Frank, Martin; Krycki, Kai

    2016-02-09

    In this paper, we study the sensitivities of electron dose calculations with respect to stopping power and transport coefficients. We focus on the application to radiotherapy simulations. We use a Fokker–Planck approximation to the Boltzmann transport equation. Equations for the sensitivities are derived by the adjoint method. The Fokker–Planck equation and its adjoint are solved numerically in slab geometry using the spherical harmonics expansion (P N) and an Harten-Lax-van Leer finite volume method. Our method is verified by comparison to finite difference approximations of the sensitivities. Finally, we present numerical results of the sensitivities for the normalized average dose depositionmore » depth with respect to the stopping power and the transport coefficients, demonstrating the increase in relative sensitivities as beam energy decreases. In conclusion, this in turn gives estimates on the uncertainty in the normalized average deposition depth, which we present.« less

  10. An experimental study of recombination and polarity effect in a set of customized plane parallel ionization chambers.

    PubMed

    Kron, T; McNiven, A; Witruk, B; Kenny, M; Battista, J

    2006-12-01

    Plane parallel ionization chambers are an important tool for dosimetry and absolute calibration of electron beams used for radiotherapy. Most dosimetric protocols require corrections for recombination and polarity effects, which are to be determined experimentally as they depend on chamber design and radiation quality. Both effects were investigated in electron beams from a linear accelerator (Varian 21CD) for a set of four tissue equivalent plane parallel ionization chambers customized for the present research by Standard Imaging (Madison WI). All four chambers share the same design and air cavity dimensions, differing only in the diameter of their collecting electrode and the corresponding width of the guard ring. The diameters of the collecting electrodes were 2 mm, 4 mm, 10 mm and 20 mm. Measurements were taken using electron beams of nominal energy 6 to 20 MeV in a 10 cm x 10 cm field size with a SSD of 100 cm at various depths in a Solid Water slab phantom. No significant variation of recombination effect was found with radiation quality, depth of measurement or chamber design. However, the polarity effect exceeded 5% for the chambers with small collecting electrode for an effective electron energy below 4 MeV at the point of measurement. The magnitude of the effect increased with decreasing electron energy in the phantom. The polarity correction factor calculated following AAPM protocol TG51 ranged from approximately 1.00 for the 20.0 mm chamber to less than 0.95 for the 2 mm chamber at 4.1 cm depth in a electron beam of nominally 12 MeV. By inverting the chamber it could be shown that the polarity effect did not depend on the polarity of the electrode first traversed by the electron beam. Similarly, the introduction of an air gap between the overlying phantom layer and the chambers demonstrated that the angular distribution of the electrons at the point of measurement had a lesser effect on the polarity correction than the electron energy itself. The magnitude of the absolute difference between charge collected at positive and negative polarity was found to correlate with the area of the collecting electrode which is consistent with the explanation that differences in thickness of the collecting electrodes and the number of electrons stopped in them contribute significantly to the polarity effect. Overall, the polarity effects found in the present study would have a negligible effect on electron beam calibration at a measurement depth recommended by most calibration protocols. However, the present work tested the corrections under extreme conditions thereby aiming at greater understanding of the mechanism underlying the correction factors for these chambers. This may lead to better chamber design for absolute dosimetry and electron beam characterization with less reliance on empirical corrections.

  11. Curved Surface Beam Splitter

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1983-01-01

    Beam splitter with curved entrance and exit surfaces introduces less chromatic aberration and Seidel aberrations in some optical systems than traditional plate or block beam splitters. Spherical-surface beam splitter is used in Schmidt-type mirror objective to split converging image-forming beam so two images are formed. Small aberrations introduced are corrected by compensator plate located at or near aperture stop.

  12. WE-F-16A-03: 3D Printer Application in Proton Therapy: A Novel Method to Deliver Passive-Scattering Proton Beams with a Fixed Range and Modulation for SRS and SRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, X; Witztum, A; Liang, X

    2014-06-15

    Purpose: To present a novel technique to deliver passive-scattering proton beam with fixed range and modulation using a 3D printed patient-specific bolus for proton stereotactic radiosurgery and radiotherapy. Methods: A CIRS head phantom was used to simulate a patient with a small brain lesion. A custom bolus was created in the Eclipse Treatment Planning System (TPS) to compensate for the different water equivalent depths from the patient surface to the target from multiple beam directions. To simulate arc therapy, a plan was created on the initial CT using three passive-scattering proton beams with a fixed range and modulations irradiating frommore » different angles. The DICOM-RT structure file of the bolus was exported from the TPS and converted to STL format for 3D printing. The phantom was rescanned with the printed custom bolus and head cup to verify the dose distribution comparing to the initial plan. EBT3 films were placed in the sagital plane of the target to verify the delivered dose distribution. The relative stopping power of the printing material(ABSplus-P430) was measured using the Zebra multi-plate ion chamber. Results: The relative stopping power of the 3D printing material, ABSplus-P430 was 1.05 which is almost water equivalent. The dose difference between verification CT and Initial CT is almost negligible. Film measurement also confirmed the accuracy for this new proton delivery technique. Conclusion: Our method using 3D printed range modifiers simplify the treatment delivery of multiple passive-scattering beams in treatment of small lesion in brain. This technique makes delivery of multiple beam more efficient and can be extended to allow arc therapy with proton beams. The ability to create and construct complex patient specific bolus structures provides a new dimension in creating optimized quality treatment plans not only for proton therapy but also for electron and photon therapy.« less

  13. On- and off-line monitoring of ion beam treatment

    NASA Astrophysics Data System (ADS)

    Parodi, Katia

    2016-02-01

    Ion beam therapy is an emerging modality for high precision radiation treatment of cancer. In comparison to conventional radiation sources (photons, electrons), ion beams feature major dosimetric advantages due to their finite range with a localized dose deposition maximum, the Bragg peak, which can be selectively adjusted in depth. However, due to several sources of treatment uncertainties, full exploitation of these dosimetric advantages in clinical practice would require the possibility to visualize the stopping position of the ions in vivo, ideally in real-time. To this aim, different imaging methods have been proposed and investigated, either pre-clinically or even clinically, based on the detection of prompt or delayed radiation following nuclear interaction of the beam with the irradiated tissue. However, the chosen or ad-hoc developed instrumentation has often relied on technologies originally conceived for different applications, thus compromising on the achievable performances for the sake of cost-effectiveness. This contribution will review major examples of used instrumentation and related performances, identifying the most promising detector developments for next generation devices especially dedicated to on-line monitoring of ion beam treatment. Moreover, it will propose an original combination of different techniques in a hybrid detection scheme, aiming to make the most of complementary imaging methods and open new perspectives of image guidance for improved precision of ion beam therapy.

  14. Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions

    National Institute of Standards and Technology Data Gateway

    SRD 124 NISStopping-Power and Range Tables for Electrons, Protons, and Helium Ions (Web, free access)   The databases ESTAR, PSTAR, and ASTAR calculate stopping-power and range tables for electrons, protons, or helium ions. Stopping-power and range tables can be calculated for electrons in any user-specified material and for protons and helium ions in 74 materials.

  15. The implementation of physical safety system in bunker of the electron beam accelerator

    NASA Astrophysics Data System (ADS)

    Ahmad, M. A.; Hashim, S. A.; Ahmad, A.; Leo, K. W.; Chulan, R. M.; Dalim, Y.; Baijan, A. H.; Zain, M. F.; Ros, R. C.

    2017-01-01

    This paper describes the implementation of physical safety system for the new low energy electron beam (EB) accelerator installed at Block 43T Nuclear Malaysia. The low energy EB is a locally designed and developed with a target energy of 300 keV. The issues on radiation protection have been addressed by the installation of radiation shielding in the form of a bunker and installation radiation monitors. Additional precaution is needed to ensure that personnel are not exposed to radiation and other physical hazards. Unintentional access to the radiation room can cause serious hazard and hence safety features must be installed to prevent such events. In this work we design and built a control and monitoring system for the shielding door. The system provides signals to the EB control panel to allow or prevent operation. The design includes limit switches, key-activated switches and emergency stop button and surveillance camera. Entry procedure is also developed as written record and for information purposes. As a result, through this safety implementation human error will be prevented, increase alertness during operation and minimizing unnecessary radiation exposure.

  16. Readiness of the ATLAS detector: Performance with the first beam and cosmic data

    NASA Astrophysics Data System (ADS)

    Pastore, F.

    2010-05-01

    During 2008 the ATLAS experiment went through an intense period of preparation to have the detector fully commissioned for the first beam period. In about 30 h of beam time available to ATLAS in 2008 the systems went through a rapid setup sequence, from successfully recording the first bunch ever reaching ATLAS, to setting up the timing of the trigger system synchronous to the incoming single beams. The so-called splash events were recorded, where the beam was stopped on a collimator 140 m upstream of ATLAS, showering the experiment with millions of particles per beam shot. These events were found to be extremely useful for timing setup. After the stop of the beam operation, the experiment went through an extensive cosmic ray data taking campaign, recording more than 500 million cosmic ray events. These events have been used to make significant progress on the calibration and alignment of the detector. This paper describes the commissioning programme and the results obtained from both the single beam data and the cosmic data recorded in 2008.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ke; Zhang, Yanwen; Zhu, Zihua

    Accurate information of electronic stopping power is fundamental for broad advances in electronic industry, space exploration, national security, and sustainable energy technologies. The Stopping and Range of Ions in Matter (SRIM) code has been widely applied to predict stopping powers and ion distributions for decades. Recent experimental results have, however, shown considerable errors in the SRIM predictions for stopping of heavy ions in compounds containing light elements, indicating an urgent need to improve current stopping power models. The electronic stopping powers of 35Cl, 80Br, 127I, and 197Au ions are experimentally determined in two important functional materials, SiC and SiO2, frommore » tens to hundreds keV/u based on a single ion technique. By combining with the reciprocity theory, new electronic stopping powers are suggested in a region from 0 to 15 MeV, where large deviations from SRIM predictions are observed. For independent experimental validation of the electronic stopping powers we determined, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC with energies from 700 keV to 15 MeV. The measured ion distributions from both RBS and SIMS are considerably deeper (up to ~30%) than the predictions from the commercial SRIM code. In comparison, the new electronic stopping power values are utilized in a modified TRIM-85 (the original version of the SRIM) code, M-TRIM, to predict ion distributions, and the results are in good agreement with the experimentally measured ion distributions.« less

  18. Particle Beam Radiography

    NASA Astrophysics Data System (ADS)

    Peach, Ken; Ekdahl, Carl

    2014-02-01

    Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.

  19. NSLS-II beamline scattered gas bremsstrahlung radiation shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Razvan; Xia, Zhenghua, E-mail: xiazhenghuacn@hotmail.com; Job, Panakkal

    2016-07-27

    National Synchrotron Light Source II (NSLS-II) is a new state-of-the-art 3rd generation synchrotron. The NSLS-II facility is shielded up to 3 GeV electron beam energy at 500 mA. When the gas bremsstrahlung (GB) from the storage ring is scattered by the beamline components in the first optical enclosure (FOE), the scattered radiation will pose additional radiation hazard (bypassing primary GB collimators and stops) and challenge the FOE shielding. The scattered GB radiation hazard can be mitigated by supplementary shielding or with an exclusion zone downstream of the FOE.

  20. Scaling of Energy Deposition in Fast Ignition Targets

    NASA Astrophysics Data System (ADS)

    Campbell, R. B.; Welch, Dale

    2005-10-01

    We examine the scaling to ignition of the energy deposition of laser generated electrons in compressed fast ignition cores. Relevant cores have densities of several hundred g/cm^3, with a few keV initial temperature. As the laser intensities increase approaching ignition systems, on the order of a few 10^21W/cm^2, the hot electron energies expected to approach 100MeV[1]. Most certainly anomalous processes must play a role in the energy transfer, but the exact nature of these processes, as well as a practical way to model them, remain open issues. Traditional PIC explicit methods are limited to low densities on current and anticipated computing platforms, so the study of relevant parameter ranges has received so far little attention. We use LSP[2] to examine a relativistic electron beam (presumed generated from a laser plasma interaction) of legislated energy and angular distribution is injected into a 3D block of compressed DT. Collective effects will determine the stopping, most likely driven by magnetic field filamentation. The scaling of the stopping as a function of block density and temperature, as well as hot electron current and laser intensity is presented. Sub-grid models may be profitably used and degenerate effects included in the solution of this problem. Sandia is operated by Sandia Corporation, for the USDOE. [1] A. Pukhov, et. al., Phys. Plas. 6, p2847 (1999) [2] D. R. Welch et al., Comput. Phys.Commun. 164, p183 (2004).

  1. Radiological considerations for the operation of the Advanced Photon Source storage ring (revised).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, H. J.

    2002-05-02

    This report deals with the radiological considerations of operations using 7700-MeV positron and electron beams in the storage ring (SR) tunnel. The radiological considerations addressed include the following: prompt secondary radiation (bremsstrahlung, giant resonance neutrons, medium and high energy neutrons, and muons) produced by electrons/positrons interacting in a beam stop or by particle losses in the component structures; skyshine radiation, which produces a radiation field in nearby areas and at the nearest off-site location; radioactive gases produced by neutron irradiation of air in the vicinity of a particle loss site; noxious gases (ozone and others) produced in air by themore » escaping bremsstrahlung radiation that results from absorbing particles in the components or by synchrotron radiation escaping into the tunnel; activation of the storage ring components that results in a residual radiation field in the vicinity of these materials following shutdown; potential activation of water used for cooling the magnets and other purposes in the SR tunnel; evaluation of the radiation fields due to escaping synchrotron radiation and gas bremsstrahlung. Estimated dose rates outside of the tunnel, in the early assembly area (EAA), and in the Experiment Hall for several modes of operation (including potential safety envelope beam power, normal beam power, and MCI (maximum credible incident) conditions) have been computed. Shielding in the first optics enclosure (FOE) and for the photon beamlines is discussed in ANL/APS/TB-7 (IPE 93), but additional radiological considerations for the ASD diagnostic beamlines are contained in Appendix C. Although the calculations refer to positrons, electron operation would produce essentially the same effects for the identical assumptions.« less

  2. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    NASA Astrophysics Data System (ADS)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  3. The Mu2e Solenoid Cold Mass Position Monitor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.

    The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less

  4. The Mu2e Solenoid Cold Mass Position Monitor System

    DOE PAGES

    Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.; ...

    2018-01-23

    The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less

  5. Thermal Analysis of Fermilab Mu2e Beamstop and Structural Analysis of Beamline Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narug, Colin S.

    The Mu2e project at Fermilab National Accelerator Laboratory aims to observe the unique conversion of muons to electrons. The success or failure of the experiment to observe this conversion will further the understanding of the standard model of physics. Using the particle accelerator, protons will be accelerated and sent to the Mu2e experiment, which will separate the muons from the beam. The muons will then be observed to determine their momentum and the particle interactions occur. At the end of the Detector Solenoid, the internal components will need to absorb the remaining particles of the experiment using polymer absorbers. Becausemore » the internal structure of the beamline is in a vacuum, the heat transfer mechanisms that can disperse the energy generated by the particle absorption is limited to conduction and radiation. To determine the extent that the absorbers will heat up over one year of operation, a transient thermal finite element analysis has been performed on the Muon Beam Stop. The levels of energy absorption were adjusted to determine the thermal limit for the current design. Structural finite element analysis has also been performed to determine the safety factors of the Axial Coupler, which connect and move segments of the beamline. The safety factor of the trunnion of the Instrument Feed Through Bulk Head has also been determined for when it is supporting the Muon Beam Stop. The results of the analysis further refine the design of the beamline components prior to testing, fabrication, and installation.« less

  6. Electron and Positron Stopping Powers of Materials

    National Institute of Standards and Technology Data Gateway

    SRD 7 NIST Electron and Positron Stopping Powers of Materials (PC database for purchase)   The EPSTAR database provides rapid calculations of stopping powers (collisional, radiative, and total), CSDA ranges, radiation yields and density effect corrections for incident electrons or positrons with kinetic energies from 1 keV to 10 GeV, and for any chemically defined target material.

  7. WE-D-BRF-05: Quantitative Dual-Energy CT Imaging for Proton Stopping Power Computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, D; Williamson, J; Siebers, J

    2014-06-15

    Purpose: To extend the two-parameter separable basis-vector model (BVM) to estimation of proton stopping power from dual-energy CT (DECT) imaging. Methods: BVM assumes that the photon cross sections of any unknown material can be represented as a linear combination of the corresponding quantities for two bracketing basis materials. We show that both the electron density (ρe) and mean excitation energy (Iex) can be modeled by BVM, enabling stopping power to be estimated from the Bethe-Bloch equation. We have implemented an idealized post-processing dual energy imaging (pDECT) simulation consisting of monogenetic 45 keV and 80 keV scanning beams with polystyrene-water andmore » water-CaCl2 solution basis pairs for soft tissues and bony tissues, respectively. The coefficients of 24 standard ICRU tissue compositions were estimated by pDECT. The corresponding ρe, Iex, and stopping power tables were evaluated via BVM and compared to tabulated ICRU 44 reference values. Results: BVM-based pDECT was found to estimate ρe and Iex with average and maximum errors of 0.5% and 2%, respectively, for the 24 tissues. Proton stopping power values at 175 MeV, show average/maximum errors of 0.8%/1.4%. For adipose, muscle and bone, these errors result range prediction accuracies less than 1%. Conclusion: A new two-parameter separable DECT model (BVM) for estimating proton stopping power was developed. Compared to competing parametric fit DECT models, BVM has the comparable prediction accuracy without necessitating iterative solution of nonlinear equations or a sample-dependent empirical relationship between effective atomic number and Iex. Based on the proton BVM, an efficient iterative statistical DECT reconstruction model is under development.« less

  8. LiF TLD-100 as a dosimeter in high energy proton beam therapy--can it yield accurate results?

    PubMed

    Zullo, John R; Kudchadker, Rajat J; Zhu, X Ronald; Sahoo, Narayan; Gillin, Michael T

    2010-01-01

    In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly in the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within +/-5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within +/- 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy. Copyright 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  9. Stopping power measurements with the Time-of-Flight (ToF) technique

    DOE PAGES

    Fontana, Cristiano L.; Chen, Chien-Hung; Crespillo, Miguel L.; ...

    2015-11-10

    In our review of measurements of the stopping power of ions in matter is presented along with new measurements of the stopping powers of O, Si, Ti, and Au ions in self-supporting thin foils of SiO 2, Nb 2O 5, and Ta 2O 5. Moreover, a Time-of-Flight system at the Ion Beam Materials Laboratory at the University of Tennessee, Knoxville, was used in transmission geometry in order to reduce experimental uncertainties. Finally, the resulting stopping powers show good precision and accuracy and corroborate previously quoted values in the literature. New stopping data are determined.

  10. Stopping power measurements with the Time-of-Flight (ToF) technique

    NASA Astrophysics Data System (ADS)

    Fontana, Cristiano L.; Chen, Chien-Hung; Crespillo, Miguel L.; Graham, Joseph T.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2016-01-01

    A review of measurements of the stopping power of ions in matter is presented along with new measurements of the stopping powers of O, Si, Ti, and Au ions in self-supporting thin foils of SiO2, Nb2O5, and Ta2O5. A Time-of-Flight system at the Ion Beam Materials Laboratory at the University of Tennessee, Knoxville, was used in transmission geometry in order to reduce experimental uncertainties. The resulting stopping powers show good precision and accuracy and corroborate previously quoted values in the literature. New stopping data are determined.

  11. Research and Development for the Mu2e Extinction Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mott, Casey Benjamin

    Mu2e is a planned experiment to search for flavor-violating conversion from a muon to an electron. The experiment will use a pulsed 8 GeV proton beam to produce muons which will then stop in an aluminum target. Mu2e will search for themore » $$\\mu^- + Al \\rightarrow e^- + Al$$ process. For Mu2e, an extinction rate of 10$$^{-10}$$ is required to reduce the backgrounds to an acceptable level. Extinction is the ratio of the amount of protons striking the production target between beam pulses to the number striking it during the beam pulse. One of the backgrounds, off-target interactions, was simulated using G4beamline and Fermilab's Grid setup to confirm that an extinction rate of 10$$^{-10}$$ is possible. The extinction level will be measured by the extinction monitor which will include scintillation counters read out by photomultiplier tubes. In order to build a beam time profile, low fake responses (after pulses) are needed in the photomultiplier tubes. This thesis determines the best combination of resistors, voltage, and other components that provide the lowest after pulse rate.« less

  12. Method for nanomachining high aspect ratio structures

    DOEpatents

    Yun, Wenbing; Spence, John; Padmore, Howard A.; MacDowell, Alastair A.; Howells, Malcolm R.

    2004-11-09

    A nanomachining method for producing high-aspect ratio precise nanostructures. The method begins by irradiating a wafer with an energetic charged-particle beam. Next, a layer of patterning material is deposited on one side of the wafer and a layer of etch stop or metal plating base is coated on the other side of the wafer. A desired pattern is generated in the patterning material on the top surface of the irradiated wafer using conventional electron-beam lithography techniques. Lastly, the wafer is placed in an appropriate chemical solution that produces a directional etch of the wafer only in the area from which the resist has been removed by the patterning process. The high mechanical strength of the wafer materials compared to the organic resists used in conventional lithography techniques with allows the transfer of the precise patterns into structures with aspect ratios much larger than those previously achievable.

  13. Pulse Power Compression by Cutting a Dense Z-Pinch with a Laser Beam

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    1999-07-01

    A thin cut made through a z-pinch by an intense laser beam can become a magnetically insulated diode crossed by an intense ion beam. For larger cuts, the gap is crossed by an intense relativistic electron beam, stopped by magnetic bremsstrahlung resulting in a pointlike intense x-ray source. In either case, the impedance of the pinch discharge is increased, with the power delivered rising in the same pro-portion. A magnetically insulated cut is advantageous for three reasons: First, with the ion current com-parable to the Alfvèn ion current, the pinch instabilities are reduced. Second, with the energy deposit-ed into fast ions, a non-Maxwellian velocity distribution is established increasing<σ ν> value for nuclear fusion reactions taking place in the pinch discharge. Third, in a high density z-pinch plasma, the intense ion beam can launch a thermonuclear detonation wave propagating along the pinch discharge channel. For larger cuts the soft x-rays produced by magnetic bremsstrahlung can be used to drive a thermonuclear hohlraum target. Finally, the proposed pulse power compression scheme permits to use a cheap low power d.c. source charging a magnetic storage coil delivering the magnetically stored energy to the pinch discharge load by an exploding wire opening switch.

  14. Stopping power of Au for Cu ions with energies below Bragg’s peak

    NASA Astrophysics Data System (ADS)

    Linares, R.; Freire, J. A.; Ribas, R. V.; Medina, N. H.; Oliveira, J. R. B.; Cybulska, E. W.; Seale, W. A.; Added, N.; Silveira, M. A. G.; Wiedemann, K. T.

    2007-10-01

    The stopping power of Au for Cu in the energy range 6 < E < 25 MeV was measured using a secondary beam of low velocity heavy ions produced by elastic scattering of an energetic primary beam (typically 28Si or 16O) on a natural Cu target. The results were compared to predictions of the Lindhard, Scharf and Schiott (LSS) theory, the binary theory (BT), and the unitary convolution approximation (UCA) and also to semi-empirical predictions such as the Northcliffe and Schilling tables and the SRIM2003 computer program.

  15. Stopping power: Effect of the projectile deceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kompaneets, Roman, E-mail: kompaneets@mpe.mpg.de; Ivlev, Alexei V.; Morfill, Gregor E.

    2014-11-15

    The stopping force is the force exerted on the projectile by its wake. Since the wake does not instantly adjust to the projectile velocity, the stopping force should be affected by the projectile deceleration caused by the stopping force itself. We address this effect by deriving the corresponding correction to the stopping force in the cold plasma approximation. By using the derived expression, we estimate that if the projectile is an ion passing through an electron-proton plasma, the correction is small when the stopping force is due to the plasma electrons, but can be significant when the stopping force ismore » due to the protons.« less

  16. Feasibility of Isotope Harvesting at a Projectile Fragmentation Facility: 67Cu

    PubMed Central

    Mastren, Tara; Pen, Aranh; Peaslee, Graham F.; Wozniak, Nick; Loveless, Shaun; Essenmacher, Scott; Sobotka, Lee G.; Morrissey, David J.; Lapi, Suzanne E.

    2014-01-01

    The work presented here describes a proof-of-principle experiment for the chemical extraction of 67Cu from an aqueous beam stop at the National Superconducting Cyclotron Laboratory (NSCL). A 76 MeV/A 67Cu beam was stopped in water, successfully isolated from the aqueous solution through a series of chemical separations involving a chelating disk and anion exchange chromatography, then bound to NOTA-conjugated Herceptin antibodies, and the bound activity was validated using instant thin-layer chromatography (ITLC). The chemical extraction efficiency was found to be 88 ± 3% and the radiochemical yield was ≥95%. These results show that extraction of radioisotopes from an aqueous projectile-fragment beam dump is a feasible method for obtaining radiochemically pure isotopes. PMID:25330839

  17. Electronic stopping powers for heavy ions in SiC and SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, K.; Xue, H.; Zhang, Y., E-mail: Zhangy1@ornl.gov

    2014-01-28

    Accurate information on electronic stopping power is fundamental for broad advances in materials science, electronic industry, space exploration, and sustainable energy technologies. In the case of slow heavy ions in light targets, current codes and models provide significantly inconsistent predictions, among which the Stopping and Range of Ions in Matter (SRIM) code is the most commonly used one. Experimental evidence, however, has demonstrated considerable errors in the predicted ion and damage profiles based on SRIM stopping powers. In this work, electronic stopping powers for Cl, Br, I, and Au ions are experimentally determined in two important functional materials, SiC andmore » SiO{sub 2}, based on a single ion technique, and new electronic stopping power values are derived over the energy regime from 0 to 15 MeV, where large deviations from the SRIM predictions are observed. As an experimental validation, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC for energies from 700 keV to 15 MeV. The measured ion distributions by both RBS and SIMS are considerably deeper than the SRIM predictions, but agree well with predictions based on our derived stopping powers.« less

  18. Electronic Stopping Powers For Heavy Ions In SiC And SiO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ke; Zhang, Y.; Zhu, Zihua

    2014-01-24

    Accurate information on electronic stopping power is fundamental for broad advances in materials science, electronic industry, space exploration, and sustainable energy technologies. In the case of slow heavy ions in light targets, current codes and models provide significantly inconsistent predictions, among which the Stopping and Range of Ions in Matter (SRIM) code is the most commonly used one. Experimental evidence, however, has demonstrated considerable errors in the predicted ion and damage profiles based on SRIM stopping powers. In this work, electronic stopping powers for Cl, Br, I, and Au ions are experimentally determined in two important functional materials, SiC andmore » SiO2, based on a single ion technique, and new electronic stopping power values are derived over the energy regime from 0 to 15 MeV, where large deviations from the SRIM predictions are observed. As an experimental validation, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC for energies from 700 keV to 15MeV. The measured ion distributions by both RBS and SIMS are considerably deeper than the SRIM predictions, but agree well with predictions based on our derived stopping powers.« less

  19. Preliminary results of an in-beam PET prototype for proton therapy

    NASA Astrophysics Data System (ADS)

    Attanasi, F.; Belcari, N.; Camarda, M.; Cirrone, G. A. P.; Cuttone, G.; Del Guerra, A.; Di Rosa, F.; Lanconelli, N.; Rosso, V.; Russo, G.; Vecchio, S.

    2008-06-01

    Proton therapy can overcome the limitations of conventional radiotherapy due to the more selective energy deposition in depth and to the increased biological effectiveness. Verification of the delivered dose is desirable, but the complete stopping of the protons in patient prevents the application of electronic portal imaging methods that are used in conventional radiotherapy During proton therapy β + emitters like 11C, 15O, 10C are generated in irradiated tissues by nuclear reactions. The measurement of the spatial distribution of this activity, immediately after patient irradiation, can lead to information on the effective delivered dose. First, results of a feasibility study of an in-beam PET for proton therapy are reported. The prototype is based on two planar heads with an active area of about 5×5 cm 2. Each head is made up of a position sensitive photomultiplier coupled to a square matrix of same size of LYSO scintillating crystals (2×2×18 mm 3 pixel dimensions). Four signals from each head are acquired through a dedicated electronic board that performs signal amplification and digitization. A 3D reconstruction of the activity distribution is calculated using an expectation maximization algorithm. To characterize the PET prototype, the detection efficiency and the spatial resolution were measured using a point-like radioactive source. The validation of the prototype was performed using 62 MeV protons at the CATANA beam line of INFN LNS and PMMA phantoms. Using the full energy proton beam and various range shifters, a good correlation between the position of the activity distal edge and the thickness of the beam range shifter was found along the axial direction.

  20. SU-G-TeP2-13: Patient-Specific Reduction of Range Uncertainties in Proton Therapy by Proton Radiography with a Multi-Layer Ionization Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deffet, S; Macq, B; Farace, P

    2016-06-15

    Purpose: The conversion from Hounsfield units (HU) to stopping powers is a major source of range uncertainty in proton therapy (PT). Our contribution shows how proton radiographs (PR) acquired with a multi-layer ionization chamber in a PT center can be used for accurate patient positioning and subsequently for patient-specific optimization of the conversion from HU to stopping powers. Methods: A multi-layer ionization chamber was used to measure the integral depth-dose (IDD) of 220 MeV pencil beam spots passing through several anthropomorphic phantoms. The whole area of interest was imaged by repositioning the couch and by acquiring a 45×45 mm{sup 2}more » frame for each position. A rigid registration algorithm was implemented to correct the positioning error between the proton radiographs and the planning CT. After registration, the stopping power map obtained from the planning CT with the calibration curve of the treatment planning system was used together with the water equivalent thickness gained from two proton radiographs to generate a phantom-specific stopping power map. Results: Our results show that it is possible to make a registration with submillimeter accuracy from proton radiography obtained by sending beamlets separated by more than 1 mm. This was made possible by the complex shape of the IDD due to the presence of lateral heterogeneities along the path of the beam. Submillimeter positioning was still possible with a 5 mm spot spacing. Phantom specific stopping power maps obtained by minimizing the range error were cross-verified by the acquisition of an additional proton radiography where the phantom was positioned in a random but known manner. Conclusion: Our results indicate that a CT-PR registration algorithm together with range-error based optimization can be used to produce a patient-specific stopping power map. Sylvain Deffet reports financial funding of its PhD thesis by Ion Beam Applications (IBA) during the confines of the study and outside the submitted work. Francois Vander Stappen reports being employed by Ion Beam Applications (IBA) during the confines of the study and outside the submitted work.« less

  1. Electronic stopping in oxides beyond Bragg additivity

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2018-01-01

    We present stopping cross sections calculated by our PASS code for several ions in metal oxides and SiO2 over a wide energy range. Input takes into account changes in the valence structure by assigning two additional electrons to the 2p shell of oxygen and removing the appropriate number of electrons from the outer shells of the metal atom. Results are compared with tabulated experimental values and with two versions of Bragg's additivity rule. Calculated stopping cross sections are applied in testing a recently-proposed scaling rule, which relates the stopping cross section to the number of oxygen atoms per molecule.

  2. The g factor of the 21+ state in 126Sn

    NASA Astrophysics Data System (ADS)

    Kumbartzki, G. J.; Benczer-Koller, N.; Torres, D. A.; Gürdal, G.; Gross, C. J.; Galindo-Uribarri, A.; Bingham, C.; Stone, N.; Stuchberry, A. E.; Speidel, K.-H.

    2011-10-01

    In the quest to develop the necessary tools and gather experience in using the transient field technique to measure g factors of low-lying short-lived nuclear states in radioactive beam experiments, the 126Sn (t1/2 = 2 . 3 .105 years) will be measured at the HRIBF, ORNL. Each radioactive beam experiment presents its own set of problems and challenges due to the radioactive background from the beam and beam contaminants and their life times, and the low beam intensity. This experiment is a test with a very long lived, nearly stable beam. The target is designed to stop the reaction products in the backing of the target but to allow the bulk of the beam to pass through and stop in a foil placed between the target and the particle detector. This foil can be changed in the course of the experiment, should it become too radioactive. The experiment is scheduled to run in July 2011. Success or failure will provide a wealth of information on working in different radioactive environments and will extend the spectroscopic information on g factors of 21+states in Sn isotopes. The transient field measurement will provide the sign of the g factor.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandapaka, A; Ghebremedhin, A; Patyal, B

    Purpose: Patients who undergo n-BCA glue embolization as part of treatment for AVMs are later referred for proton therapy. Knowing the relative stopping power of the glue accurately allows us to perform accurate dose calculations. In this study we experimentally determine the relative stopping power of an n-BCA mixture in a 126 MeV and 149.6 MeV proton beams. Methods: One unit of the TRUFILL™ n-BCA liquid embolic system consists of 1g unit of n-BCA, 1g unit of Tantalum powder and one 10mL vial of Ethiodized oil. The physician mixed 3:1 Ethiodized oil to n-BCA. Five units (20cc) of the n-BCAmore » liquid embolic glue were prepared and placed in a 6cm x 3cm x3cm Lucite container. The container was placed in front of a water tank in the proton beam path. A diamond detector (active volume 0.004mm3) was used to measure distal edge of depth dose of a modulated 126 MeV proton beam collimated using a 3cm brass aperture. The procedure was repeated with a container carrying the same amount of water placed in front of the water tank. The difference in the depth dose measured with glue and with water was used to determine the relative stopping power of the glue. The same determination was done earlier at 149.6 MeV using a different smaller sample (4cc) of n-BCA. Results: The relative stopping power of this particular n-BCA mixture was determined to be 1.06 at both 126 MeV and 149.6 MeV. We are working on obtaining the composition data of the n-BCA glue so we can perform Monte Carlo calculations. Conclusion: Accurate value of the stopping power of the n-BCA glue in the proton beam was determined to be 1.06. It will improve the accuracy of dose calculations in proton radiosurgery procedures on AVM patients with n-BCA embolization.« less

  4. Southwest electronic one-stop shopping, motor carrier test report

    DOT National Transportation Integrated Search

    1997-12-22

    The Electronic One-Stop System (EOSS) used in this credential test was designed to replace current normal credentialling procedures with a personal computer-based electronic method that allows users to prepare, apply for, and obtain certain types of ...

  5. Southwest electronic one-stop shopping, state agency test report

    DOT National Transportation Integrated Search

    1997-12-22

    The Electronic One-Stop System (EOSS) used in this credential test was designed to replace current normal credentialling procedures with a personal computer-based electronic method that allows users to prepare, apply for, and obtain certain types of ...

  6. Feasibility of Isotope Harvesting at a Projectile Fragmentation Facility: 67Cu

    DOE PAGES

    Mastren, Tara; Pen, Aranh; Peaslee, Graham F.; ...

    2014-10-21

    The work presented here describes a proof-of-principle experiment for the chemical extraction of 67Cu from an aqueous beam stop at the National Superconducting Cyclotron Laboratory (NSCL). A 76 MeV/A 67Cu beam was stopped in water, successfully isolated from the aqueous solution through a series of chemical separations involving a chelating disk and anion exchange chromatography, then bound to NOTA-conjugated Herceptin antibodies, and the bound activity was validated using instant thin-layer chromatography (ITLC). The chemical extraction efficiency was found to be 88 ± 3% and the radiochemical yield was ≥95%. These results show that extraction of radioisotopes from an aqueous projectile-fragmentmore » beam dump is a feasible method for obtaining radiochemically pure isotopes.« less

  7. Electron beam initiated modification of acrylic elastomer in presence of polyfunctional monomers

    NASA Astrophysics Data System (ADS)

    Vijayabaskar, V.; Bhattacharya, S.; Tikku, V. K.; Bhowmick, Anil K.

    2004-12-01

    The structural changes of an acrylic rubber (ACM) in presence and absence of polyfunctional monomers like trimethylolpropane triacrylate, tripropyleneglycol diacrylate, trimethylolmethane tetraacrylate and trimethylolpropane trimethacrylate at different doses of electron beam (EB) irradiations were investigated with the help of FTIR spectroscopy (in the attenuated total reflectance mode) and sol-gel analysis. As the radiation dose increases, the concentration of carbonyl group increases in the ACM rubber due to aerial oxidation. This is corroborated from the increase in the absorbance values at 1734 and 1160 cm -1, which are due to carbonyl and C-O-C stretching frequencies, respectively. The increase in crosslinking is revealed by the increase in percentage gel content with radiation dose. The lifetime of spurs formed and the critical dose, an important criterion for overlapping of spurs have been determined for both grafted and ungrafted ACM rubber using a mathematical model. The predominance of crosslinking by electronic stopping with energetic EB projectile and the increase in effective radius of crosslinking have also been verified by this model. The doses at which the synergistic occurrence of both dislinking and endlinking steps originate have been calculated using linear energy transfer of EB. The ratio of scissioning to crosslinking for ACM rubber has been determined by using Charlesby-Pinner equation. The mechanical properties have been studied for different modified and unmodified systems and the tensile strength is found to increase with grafting of polyfunctional monomers.

  8. Electronic band structure effects in the stopping of protons in copper [Electronic band structure non-linear effects in the stopping of protons in copper

    DOE PAGES

    Quashie, Edwin E.; Saha, Bidhan C.; Correa, Alfredo A.

    2016-10-05

    Here, we present an ab initio study of the electronic stopping power of protons in copper over a wide range of proton velocities v = 0.02–10a.u. where we take into account nonlinear effects. Time-dependent density functional theory coupled with molecular dynamics is used to study electronic excitations produced by energetic protons. A plane-wave pseudopotential scheme is employed to solve the time-dependent Kohn-Sham equations for a moving ion in a periodic crystal. The electronic excitations and the band structure determine the stopping power of the material and alter the interatomic forces for both channeling and off-channeling trajectories. Our off-channeling results aremore » in quantitative agreement with experiments, and at low velocity they unveil a crossover region of superlinear velocity dependence (with a power of ~1.5) in the velocity range v = 0.07–0.3a.u., which we associate to the copper crystalline electronic band structure. The results are rationalized by simple band models connecting two separate regimes. We find that the limit of electronic stopping v → 0 is not as simple as phenomenological models suggest and it is plagued by band-structure effects.« less

  9. Accurate atomistic first-principles calculations of electronic stopping

    DOE PAGES

    Schleife, André; Kanai, Yosuke; Correa, Alfredo A.

    2015-01-20

    In this paper, we show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent Kohn-Sham equations for representative systems of H and He projectiles in crystalline aluminum. This approach to simulate nonadiabatic electron-ion interaction provides an accurate framework that allows for quantitative comparison with experiment without introducing ad hoc parameters such as effective charges, or assumptions about the dielectric function. Finally, our work clearlymore » shows that this atomistic first-principles description of electronic stopping is able to disentangle contributions due to tightly bound semicore electrons and geometric aspects of the stopping geometry (channeling versus off-channeling) in a wide range of projectile velocities.« less

  10. First measurements of muon production rate using a novel pion capture system at MuSIC

    NASA Astrophysics Data System (ADS)

    Cook, S.; D'Arcy, R.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Nam, T. H.; Ogitsu, T.; Sakamoto, H.; Sato, A.; Truong, N. M.; Yamamoto, A.; Yoshida, M.; Wing, M.

    2013-02-01

    The MuSIC (Muon Science Innovative Channel) beam line at RCNP (Research Centre for Nuclear Physics), Osaka will be the most intense source of muons in the world. A proton beam is incident on a target and, by using a novel capture solenoid, guides the produced pions into the beam line where they subsequently decay to muons. This increased muon flux will allow more precise measurements of cLFV (charged Lepton Flavour Violation) as well as making muon beams more economically feasible. Currently the first 36° of solenoid beam pipe have been completed and installed for testing with low proton current of 1 nA. Measurements of the total particle flux and the muon life time were made. The measurements were taken using thin plastic scintillators coupled to MPPCs (Multi-Pixel Photon Counter) that surrounded a magnesium or copper stopping target. The scintillators were used to record which particles stopped and their subsequent decay times giving a muon yield of 8.5 × 105 muons W-1proton beam or 3 × 108 muons s-1 when using the RCNP's full power (400 W).

  11. Adiabatic perturbation theory of electronic stopping in insulators

    DOE PAGES

    Horsfield, Andrew P.; Lim, Anthony; Foulkes, W. M. C.; ...

    2016-06-02

    A model able to explain the complicated structure of electronic stopping at low velocities in insulating materials is presented. It is shown to be in good agreement with results obtained from time-dependent density-functional theory for the stopping of a channeling Si atom in a Si crystal. If we define the repeat frequency f=v/λ, where λ is the periodic repeat length of the crystal along the direction the channeling atom is traveling, and v is the velocity of the channeling atom, we find that electrons experience a perturbing force that varies in time at integer multiples l of f. This enablesmore » electronic excitations at low atom velocity, but their contributions diminish rapidly with increasing values of l. The expressions for stopping power are derived using adiabatic perturbation theory for many-electron systems, and they are then specialized to the case of independent electrons. Lastly, a simple model for the nonadiabatic matrix elements is described, along with the procedure for determining its parameters.« less

  12. Massively Parallel Real-Time TDDFT Simulations of Electronic Stopping Processes

    NASA Astrophysics Data System (ADS)

    Yost, Dillon; Lee, Cheng-Wei; Draeger, Erik; Correa, Alfredo; Schleife, Andre; Kanai, Yosuke

    Electronic stopping describes transfer of kinetic energy from fast-moving charged particles to electrons, producing massive electronic excitations in condensed matter. Understanding this phenomenon for ion irradiation has implications in modern technologies, ranging from nuclear reactors, to semiconductor devices for aerospace missions, to proton-based cancer therapy. Recent advances in high-performance computing allow us to achieve an accurate parameter-free description of these phenomena through numerical simulations. Here we discuss results from our recently-developed large-scale real-time TDDFT implementation for electronic stopping processes in important example materials such as metals, semiconductors, liquid water, and DNA. We will illustrate important insight into the physics underlying electronic stopping and we discuss current limitations of our approach both regarding physical and numerical approximations. This work is supported by the DOE through the INCITE awards and by the NSF. Part of this work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  13. A prototype scintillating fibre beam profile monitor for Ion Therapy beams

    NASA Astrophysics Data System (ADS)

    Leverington, B. D.; Dziewiecki, M.; Renner, L.; Runze, R.

    2018-05-01

    A prototype plastic scintillating fibre based beam profile monitor was tested at the Heidelberg Ion Therapy Centre/Heidelberg Ionenstrahl Therapiezentrum (HIT) in 2016 to determine its beam property reconstruction performance and the feasibility of further developing an expanded system. At HIT protons, helium, carbon, and oxygen ions are available for therapy and experiments. The beam can be scanned in two dimensions using fast deflection magnets. A tracking system is used to monitor beam position and to adjust scanning magnet currents online. A new detector system with a finer granularity and without the drift time delay of the current MWPC system with a similar amount of material along the beamline would prove valuable in patient treatment. The sensitive detector components in the tested prototype detector are double-clad Kuraray SCSF-78MJ scintillating fibres with a diameter of 0.250 mm wound as a thin multi-layer ribbon. The scintillation light is detected at the end of the ribbon with Hamamatsu S11865-64 photodiode arrays with a pitch of 0.8 mm. Commercial or readily available readout electronics have been used to evaluate the system feasibility. The results shown in this paper include the linearity with respect to beam intensity, the RMS of the beam intensity as measured by two planes, along with the RMS of the mean position, and the measured beam width RMS. The Signal-to-Noise ratio of the current system is also measured as an indicator of potential performance. Additionally, the non-linear light yield of the scintillating fibres as measured by the photodiode arrays is compared to two models which describe the light yield as a function of the ion stopping power and Lorentz β.

  14. Noniterative approach to the missing data problem in coherent diffraction imaging by phase retrieval.

    PubMed

    Nakajima, Nobuharu

    2010-07-20

    When a very intense beam is used for illuminating an object in coherent x-ray diffraction imaging, the intensities at the center of the diffraction pattern for the object are cut off by a beam stop that is utilized to block the intense beam. Until now, only iterative phase-retrieval methods have been applied to object reconstruction from a single diffraction pattern with a deficiency of central data due to a beam stop. As an alternative method, I present a noniterative solution in which an interpolation method based on the sampling theorem for the missing data is used for object reconstruction with our previously proposed phase-retrieval method using an aperture-array filter. Computer simulations demonstrate the reconstruction of a complex-amplitude object from a single diffraction pattern with a missing data area, which is generally difficult to treat with the iterative methods because a nonnegativity constraint cannot be used for such an object.

  15. A note on extracting electronic stopping from energy spectra of backscattered slow ions applying Bragg's rule

    NASA Astrophysics Data System (ADS)

    Bruckner, B.; Roth, D.; Goebl, D.; Bauer, P.; Primetzhofer, D.

    2018-05-01

    Electronic stopping measurements in chemically reactive targets, e.g., transition and rare earth metals are challenging. These metals often contain low Z impurities, which contribute to electronic stopping. In this article, we present two ways how one can correct for the presence of impurities in the evaluation of proton and He stopping in Ni for primary energies between 1 and 100 keV, either considering or ignoring the contribution of the low Z impurities to multiple scattering. We find, that for protons either method leads to concordant results, but for heavier projectiles, e.g. He ions, the influence on multiple scattering must not be neglected.

  16. Diamond detector in absorbed dose measurements in high‐energy linear accelerator photon and electron beams

    PubMed Central

    Binukumar, John Pichy; Amri, Iqbal Al; Davis, Cheriyathmanjiyil Antony

    2016-01-01

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue‐equivalent properties. We investigated a commercially available ‘microdiamond’ detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1 mm, thickness 1×10−3mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ±0.17% (1 SD) (n=11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stopping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long‐term stability and reproducibility. Based on micro‐dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PACS number(s): 87.56.Da PMID:27074452

  17. Excimer laser delivery system for astigmatic and hyperopic photorefractive surgery

    NASA Astrophysics Data System (ADS)

    Beck, Rasmus; Foerster, Werner

    1994-06-01

    Ablation of corneal tissue with excimer laser light is an effective way to correct refractive errors of the eye. For this purpose a beam-stop (iris diaphragm or interchangeable masks) is illuminated by the laser radiation. The beam-stop is imaged onto the cornea, and circular or elliptic ablations are produced. The computer-controlled process varies the diameter of the ablation area in a way that the inner portions of the treatment zone receive more laser energy than the outer portions, thus flattening the curvature of the refractive surface. For the treatment of hyperopia, the outer portions of the ablation area receive more laser energy to steepen the surface profile of the cornea. The beam delivery system employs several sets of circular, elliptic and ring shaped masks which are etched into a stainless-steel tape.

  18. Stopping power beyond the adiabatic approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caro, M.; Correa, A. A.; Artacho, E.

    2017-06-01

    Energetic ions traveling in solids deposit energy in a variety of ways, being nuclear and electronic stopping the two avenues in which dissipation is usually treated. This separation between electrons and ions relies on the adiabatic approximation in which ions interact via forces derived from the instantaneous electronic ground state. In a more detailed view, in which non-adiabatic effects are explicitly considered, electronic excitations alter the atomic bonding, which translates into changes in the interatomic forces. In this work, we use time dependent density functional theory and forces derived from the equations of Ehrenfest dynamics that depend instantaneously on themore » time-dependent electronic density. With them we analyze how the inter-ionic forces are affected by electronic excitations in a model of a Ni projectile interacting with a Ni target, a metallic system with strong electronic stopping and shallow core level states. We find that the electronic excitations induce substantial modifications to the inter-ionic forces, which translate into nuclear stopping power well above the adiabatic prediction. Particularly, we observe that most of the alteration of the adiabatic potential in early times comes from the ionization of the core levels of the target ions, not readily screened by the valence electrons.« less

  19. Adequacy of damped dynamics to represent the electron-phonon interaction in solids

    DOE PAGES

    Caro, A.; Correa, A. A.; Tamm, A.; ...

    2015-10-16

    Time-dependent density functional theory and Ehrenfest dynamics are used to calculate the electronic excitations produced by a moving Ni ion in a Ni crystal in the case of energetic MeV range (electronic stopping power regime), as well as thermal energy meV range (electron-phonon interaction regime). Results at high energy compare well to experimental databases of stopping power, and at low energy the electron-phonon interaction strength determined in this way is very similar to the linear response calculation and experimental measurements. This approach to electron-phonon interaction as an electronic stopping process provides the basis for a unified framework to perform classicalmore » molecular dynamics of ion-solid interaction with ab initio type nonadiabatic terms in a wide range of energies.« less

  20. Extracting the Electron-Ion Temperature Relaxation Rate from Ion Stopping Experiments

    NASA Astrophysics Data System (ADS)

    Grabowski, Paul E.; Frenje, Johan A.; Benedict, Lorin X.

    2016-10-01

    Direct measurement of i-e equilibration rates at ICF-relevant conditions is a big challenge, as it is difficult to differentiate from other sinks and sources of energy, such as heat conduction and pdV work. Another method is to use information from ion stopping experiments. Such experiments at the OMEGA laser have made precision energy loss measurements of fusion products at these conditions. Combined with the multimonochromatic x-ray imager technique, which gives temporally and spatially resolved electron temperature and density, we have a robust stopping experiment. We propose to use such stopping measurements to assess the i-e temperature relaxation rate, since both processes involve energy exchange between electrons and ions. We require that the fusion products are 1) much faster than the thermal ions so that i-i collisions are negligible compared to i-e collisions and 2) slower than the thermal electrons so that the stopping obeys a linear friction law. Then the Coulomb logarithms associated with ion stopping and i-e temperature relaxation rate are identical and a measurement of the former provides the latter. Prepared by LLNL under Contract DE-AC52-07NA27344.

  1. Influence of damping on proton energy loss in plasmas of all degeneracies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barriga-Carrasco, Manuel D.

    2007-07-15

    The purpose of the present paper is to describe the effects of electron-electron collisions on the stopping power of plasmas of any degeneracy. Plasma targets are considered fully ionized so electronic stopping is only due to the free electrons. We focus our analysis on plasmas which electronic density is around solid values n{sub e}{approx_equal}10{sup 23} cm{sup -3} and which temperature is around T{approx_equal}10 eV; these plasmas are in the limit of weakly coupled plasmas. This type of plasma has not been studied extensively though it is very important for inertial confinement fusion. The electronic stopping is obtained from an exactmore » quantum mechanical evaluation, which takes into account the degeneracy of the target plasma, and later it is compared with common classical and degenerate approximations. Differences are around 30% in some cases which can produce bigger mistakes in further energy deposition and projectile range studies. Then we consider electron-electron collisions in the exact quantum mechanical electronic stopping calculation. Now the maximum stopping occurs at velocities smaller than for the calculations without considering collisions for all kinds of plasmas analyzed. The energy loss enhances for velocities smaller than the velocity at maximum while decreases for higher velocities. Latter effects are magnified with increasing collision frequency. Differences with the same results for the case of not taking into account collisions are around 20% in the analyzed cases.« less

  2. Electron beam diagnostic system using computed tomography and an annular sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less

  3. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  4. Method and apparatus for removing unwanted reflections from an interferometer

    NASA Technical Reports Server (NTRS)

    Steimle, Lawrence J. (Inventor); Thiessen, David L. (Inventor)

    1994-01-01

    A device for eliminating unwanted reflections from refractive optical elements in an optical system is provided. The device operates to prevent desired multiple fringe patterns from being obscured by reflections from refractive elements positioned in proximity to a focal plane of the system. The problem occurs when an optical beam is projected into, and reflected back out of, the optical system. Surfaces of the refractive elements reflect portions of the beam which interfere with portions of the beam which are transmitted through the refractive elements. Interference between the reflected and transmitted portions of the beam produce multiple fringe sets which tend to obscure desired interference fringes. With the refractive optical element in close proximity to the focal plane of the system, the undesired reflected light reflects at an angle 180 degrees opposite from the desired transmitted beam. The device exploits the 180-degree offset, or rotational shear, of the undesired reflected light by providing an optical stop for blocking one-half of the cross-section of the test beam. By blocking one-half of the test beam, the undesired offset beam is blocked, while the returning transmitted beam passes into the optical system unaffected. An image is thereby produced from only the desired transmitted beam. In one configuration, the blocking device includes a semicircular aperture which is caused to rotate about the axis of the test beam. By rotating, all portions of the test beam are cyclically projected into the optical system to thereby produce a complete test image. The rotating optical stop is preferably caused to rotate rapidly to eliminate flicker in the resulting image.

  5. Slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); St.clair, Terry L. (Inventor)

    1991-01-01

    A slow positron beam generator uses a conductive source residing between two test films. Moderator pieces are placed next to the test film on the opposite side of the conductive source. A voltage potential is applied between the moderator pieces and the conductive source. Incident energetic positrons: (1) are emitted from the conductive source; (2) are passed through test film; and (3) isotropically strike moderator pieces before diffusing out of the moderator pieces as slow positrons, respectively. The slow positrons diffusing out of moderator pieces are attracted to the conductive source which is held at an appropriate potential below the moderator pieces. The slow positrons have to pass through the test films before reaching the conductive source. A voltage is adjusted so that the potential difference between the moderator pieces and the conductive source forces the positrons to stop in the test films. Measurable annihilation radiation is emitted from the test film when positrons annihilate (combine) with electrons in the test film.

  6. Radiation damage studies of soft magnetic metallic glasses irradiated with high-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Pavlovič, Márius; Miglierini, Marcel; Mustafin, Edil; Ensinger, Wolfgang; Šagátová, Andrea; Šoka, Martin

    2015-01-01

    Some soft magnetic metallic glasses are considered for use in magnetic cores of accelerator radio frequency cavities. Due to losses of the circulating ion beam, they may be exposed to irradiation by different ions at different energies. This paper presents data and review results of irradiation experiments concerning the influence of high-energy heavy ions on magnetic susceptibility of VITROPERM®-type metallic glasses. Samples of the VITROPERM® magnetic ribbons were irradiated by Au, Xe and U ions at 11.1 MeV/A (per nucleon) and 5.9 MeV/A, respectively. Irradiation fluences from 1 × 1011 up to 1 × 1013 ions/cm2 were applied. In case of the Au and U ions, the total fluence was accumulated in one beamtime, whereas two separate beamtimes were used to accumulate the final fluence in case of the Xe ions. Relative change in the samples' magnetic susceptibility after and before irradiation was evaluated as a function of the irradiation fluence. The irradiation experiments were performed with the UNILAC accelerator at GSI Helmholtzzentrum für Schwerionenforschung GmbH. They were simulated in SRIM2010 in order to obtain ionization densities (electronic stopping, dE/dx) and dpa (displacements per atom) caused by the ion beams in the sample material. This paper focuses mainly on the results collected in experiments with the Xe ions and compares them with data obtained in earlier experiments using Au and U ions. Radiation hardness of VITROPERM® is compared with radiation hardness of VITROVAC® that was studied in previous experiments. The VITROPERM® samples showed less drop in magnetic susceptibility in comparison with the VITROVAC® ones, and this drop occurred at higher fluences. This indicates higher radiation hardness of VITROPERM® compared with VITROVAC®. In addition, heavier ions cause bigger change in magnetic susceptibility than the lighter ones. The effect can be roughly scaled with electronic stopping, which suggests that the main mechanism of radiation damage is associated with swift electrons generated in the material via ionization by primary heavy ions.

  7. Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy

    PubMed Central

    2017-01-01

    We report an approach, named chemTEM, to follow chemical transformations at the single-molecule level with the electron beam of a transmission electron microscope (TEM) applied as both a tunable source of energy and a sub-angstrom imaging probe. Deposited on graphene, disk-shaped perchlorocoronene molecules are precluded from intermolecular interactions. This allows monomolecular transformations to be studied at the single-molecule level in real time and reveals chlorine elimination and reactive aryne formation as a key initial stage of multistep reactions initiated by the 80 keV e-beam. Under the same conditions, perchlorocoronene confined within a nanotube cavity, where the molecules are situated in very close proximity to each other, enables imaging of intermolecular reactions, starting with the Diels–Alder cycloaddition of a generated aryne, followed by rearrangement of the angular adduct to a planar polyaromatic structure and the formation of a perchlorinated zigzag nanoribbon of graphene as the final product. ChemTEM enables the entire process of polycondensation, including the formation of metastable intermediates, to be captured in a one-shot “movie”. A molecule with a similar size and shape but with a different chemical composition, octathio[8]circulene, under the same conditions undergoes another type of polycondensation via thiyl biradical generation and subsequent reaction leading to polythiophene nanoribbons with irregular edges incorporating bridging sulfur atoms. Graphene or carbon nanotubes supporting the individual molecules during chemTEM studies ensure that the elastic interactions of the molecules with the e-beam are the dominant forces that initiate and drive the reactions we image. Our ab initio DFT calculations explicitly incorporating the e-beam in the theoretical model correlate with the chemTEM observations and give a mechanism for direct control not only of the type of the reaction but also of the reaction rate. Selection of the appropriate e-beam energy and control of the dose rate in chemTEM enabled imaging of reactions on a time frame commensurate with TEM image capture rates, revealing atomistic mechanisms of previously unknown processes. PMID:28191929

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Chune; Xue, Jianming; Zhang, Yanwen

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (< {approx} 25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation schememore » is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Chune; Xue, Jianming; Zhang, Yanwen

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developedmore » to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.« less

  10. Calculated stopping powers of low-energy electrons in some materials of interest in radiation protection.

    PubMed

    Akande, W

    1993-03-01

    Stopping powers of low-energy (< 10 keV) electrons in aluminum, copper, cesium, barium, lead, lithium, and uranium were calculated using an analytic method. The interaction of the electrons with the materials were characterized in terms of three cross sections for total ionization and total scattering. Experimental cross section data were collated, where available, for the materials. The expressions were then fitted to the data to obtain the values of the relevant constants in the expressions. This enabled the basic equation of stopping powers of electrons to be evaluated for the materials. Comparison of the results obtained with those of other workers was affected.

  11. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Lu, W.; Zhang, W. H.

    2016-02-15

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showedmore » its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.« less

  12. Measurements of ion stopping around the Bragg peak in high-energy-density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenje, J. A.; Grabowski, P. E.; Li, C. K.

    2015-11-09

    For the first time, quantitative measurements of ion stopping at energies about the Bragg peak (or peak ion stopping, which occurs at an ion velocity comparable to the average thermal electron velocity), and its dependence on electron temperature (T e) and electron number density (n e) in the range of 0.5 – 4.0 keV and 3 × 10 22 – 3 × 10 23 cm -3 have been conducted, respectively. It is experimentally demonstrated that the position and amplitude of the Bragg peak varies strongly with T e with n e. As a result, the importance of including quantum diffractionmore » is also demonstrated in the stopping-power modeling of High-Energy-Density Plasmas.« less

  13. Chemical sensor with oscillating cantilevered probe

    DOEpatents

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  14. 10 CFR 35.642 - Periodic spot-checks for teletherapy units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... coincidence of the radiation field and the field indicated by the light beam localizing device; (4) The... to assure proper operation of— (1) Electrical interlocks at each teletherapy room entrance; (2) Electrical or mechanical stops installed for the purpose of limiting use of the primary beam of radiation...

  15. Radiological considerations in the operation of the low-energy undulator test line (LEUTL).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, H.J.

    1998-11-11

    The Low-Energy Undulator Test Line (LEUTL) is a facility that uses the existing APS linac to accelerate electrons up to an energy of 700 MeV. These electrons are transported through the Pm into a portion of the booster synchrotrons and on into the LEUTL main enclosure (MIL 97). Figure 1 shows the layout of the LEUTL building, which consists of an earth-benned concrete enclosure and an end-station building. The concrete enclosure houses the electron beamline, test undulator, and beam dump. This facility is about 51 m long and 3.66 m wide. Technical components and diagnostics for characterizing the undulator lightmore » are found in the end station. This building has about 111 m{sup 2} of floor space. This note deals with the radiological considerations of operations using electrons up to 700 MeV and at power levels up to the safety envelope of 1 kW. Previous radiological considerations for electron and positron operations in the linac, PAR, and synchrotrons have been addressed else-where (MOE 93a, 93b, and 93c). Much of the methodology discussed in the previous writeups, as well as in MOE 94, has been used in the computations in this note. The radiological aspects that are addressed include the following: prompt secondary radiation (bremsstrahlung, giant resonance neutrons, medium- and high-energy neutrons) produced by electrons interacting in a beam stop or in component structures; skyshine radiation, which produces a radiation field in nearby areas and at the nearest off-site location; radioactive gases produced by neutron irradiation of air in the vicinity of a particle loss site; noxious gases (ozone and others) produced in air by the escaping bremsstrahlung radiation that results from absorbing particles in the components; activation of the LEUTL components that results in a residual radiation field in the vicinity of these materials following shutdown; potential activation of water used for cooling the magnets and other purposes in the tunnel; and evaluation of the radiation fields due to escaping gas bremsstrahlung. Estimated dose rates have been computed or scaled (in the case of 400 MeV electrons) outside of the bermed tunnel, in Building 412, and in the Klystron Gallery for several modes of operation, including potential safety envelope beam power, normal beam power and MCI (maximum credible incident) conditions. Radiological aspects of shielding changes to the synchrotrons and their effect upon operations are addressed in MOE 97. No change in the safety envelope for synchrotrons operation was warranted.« less

  16. Monte Carlo calculation of proton stopping power and ranges in water for therapeutic energies

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ahmet

    2017-09-01

    Monte Carlo is a statistical technique for obtaining numerical solutions to physical or mathematical problems that are analytically impractical, if not impossible, to solve. For charged particle transport problems, it presents many advantages over deterministic methods since such problems require a realistic description of the problem geometry, as well as detailed tracking of every source particle. Thus, MC can be considered as a powerful alternative to the well-known Bethe-Bloche equation where an equation with various corrections is used to obtain stopping power and ranges of electrons, positrons, protons, alphas, etc. This study presents how a stochastic method such as MC can be utilized to obtain certain quantities of practical importance related to charged particle transport. Sample simulation geometries were formed for water medium where disk shaped thin detectors were employed to compute average values of absorbed dose and flux at specific distances. For each detector cell, these quantities were utilized to evaluate the values of the range and the stopping power, as well as the shape of Bragg curve, for mono-energetic point source pencil beams of protons. The results were found to be ±2% compared to the data from the NIST compilation. It is safe to conclude that this approach can be extended to determine dosimetric quantities for other media, energies and charged particle types.

  17. Technical developments for an upgrade of the LEBIT Penning trap mass spectrometry facility for rare isotopes

    NASA Astrophysics Data System (ADS)

    Redshaw, M.; Barquest, B. R.; Bollen, G.; Bustabad, S. E.; Campbell, C. M.; Ferrer, R.; Gehring, A.; Kwiatkowski, A. A.; Lincoln, D. L.; Morrissey, D. J.; Pang, G. K.; Ringle, R.; Schwarz, S.

    2011-07-01

    The LEBIT (Low Energy Beam and Ion Trap) facility is the only Penning trap mass spectrometry (PTMS) facility to utilize rare isotopes produced via fast-beam fragmentation. This technique allows access to practically all elements lighter than uranium, and in particular enables the production of isotopes that are not available or that are difficult to obtain at isotope separation on-line facilities. The preparation of the high-energy rare-isotope beam produced by projectile fragmentation for low-energy PTMS experiments is achieved by gas stopping to slow down and thermalize the fast-beam ions, along with an rf quadrupole cooler and buncher and rf quadrupole ion guides to deliver the beam to the Penning trap. During its first phase of operation LEBIT has been very successful, and new developments are now underway to access rare isotopes even farther from stability, which requires dealing with extremely short lifetimes and low production rates. These developments aim at increasing delivery efficiency, minimizing delivery and measurement time, and maximizing use of available beam time. They include an upgrade to the gas-stopping station, active magnetic field monitoring and stabilization by employing a miniature Penning trap as a magnetometer, the use of stored waveform inverse Fourier transform (SWIFT) to most effectively remove unwanted ions, and charge breeding.

  18. Southwest Electronic One-Stop Shopping (EOSS) : field operational test : final evaluation report

    DOT National Transportation Integrated Search

    1999-06-01

    This report presents an evaluation of the Southwest Electronic One-Stop Shopping System (EOSS) Operational Test. The system consisted of a PC-based software application that enabled interstate carriers to identify required commercial vehicle credenti...

  19. First quantitative measurements of charged-particle stopping and its dependence on electron temperature and density in Inertial-Confinement-Fusion plasmas

    NASA Astrophysics Data System (ADS)

    Frenje, J.; Li, C. K.; Séguin, F.; Zylstra, A.; Rinderknecht, H.; Petrasso, R.; Delettrez, J.; Glebov, V.; Sangster, T.

    2013-10-01

    We report on the first quantitative measurements of charged-particle stopping in Inertial-Confinement-Fusion (ICF) plasmas at various conditions. In these experiments, four charged fusion products from the DD and D3He reactions in D3He gas-filled filled implosions were used to determine the stopping power of ICF plasmas at electron temperatures (Te) , ion temperatures (Ti) , and areal densities (ρR) in the range of 0.6-4.0 keV, 3-14 keV and 2-10 mg/cm2, respectively. The resulting data, in the form of measured energy downshift of the charged fusion products, clearly indicate that the stopping-power function depends strongly on Te. It was also observed that the stopping-power function change in characteristics for higher-density implosions in which ions and electrons equilibrate faster, resulting in higher Te relative to Ti and higher ρR s. These results will be modelled by Landau-Spitzer theory and contrasted to different stopping-power models. This work was partially supported by the US DOE, NLUF, LLE, and GA.

  20. Human-simulated intelligent control of train braking response of bridge with MRB

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhou, Hongli; Wu, Yueyuan; Wang, Xiaojie

    2016-04-01

    The urgent train braking could bring structural response menace to the bridge under passive control. Based on the analysis of breaking dynamics of a train-bridge vibration system, a magnetorheological elastomeric bearing (MRB) whose mechanical parameters are adjustable is designed, tested and modeled. A finite element method (FEM) is carried out to model and optimize a full scale vibration isolation system for railway bridge based on MRB. According to the model above, we also consider the effect of different braking stop positions on the vibration isolation system and classify the bridge longitudinal vibration characteristics into several cases. Because the train-bridge vibration isolation system has multiple vibration states and strongly coupling with nonlinear characteristics, a human-simulated intelligent control (HSIC) algorithm for isolating the bridge vibration under the impact of train braking is proposed, in which the peak shear force of pier top, the displacement of beam and the acceleration of beam are chosen as control goals. The simulation of longitudinal vibration control system under the condition of train braking is achieved by MATLAB. The results indicate that different braking stop positions significantly affect the vibration isolation system and the structural response is the most drastic when the train stops at the third cross-span. With the proposed HSIC smart isolation system, the displacement of bridge beam and peak shear force of pier top is reduced by 53.8% and 34.4%, respectively. Moreover, the acceleration of bridge beam is effectively controlled within limited range.

  1. Performance of the full size nGEM detector for the SPIDER experiment

    NASA Astrophysics Data System (ADS)

    Muraro, A.; Croci, G.; Albani, G.; Claps, G.; Cavenago, M.; Cazzaniga, C.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2016-03-01

    The ITER neutral beam test facility under construction in Padova will host two experimental devices: SPIDER, a 100 kV negative H/D RF beam source, and MITICA, a full scale, 1 MeV deuterium beam injector. SPIDER will start operations in 2016 while MITICA is expected to start during 2019. Both devices feature a beam dump used to stop the produced deuteron beam. Detection of fusion neutrons produced between beam-deuterons and dump-implanted deuterons will be used as a means to resolve the horizontal beam intensity profile. The neutron detection system will be placed right behind the beam dump, as close to the neutron emitting surface as possible thus providing the map of the neutron emission on the beam dump surface. The system uses nGEM neutron detectors. These are Gas Electron Multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is designed to ensure that most of the detected neutrons at a point of the nGEM surface are emitted from the corresponding beamlet footprint (with dimensions of about 40×22 mm2) on the dump front surface. The size of the nGEM detector for SPIDER is 352 mm×200 mm. Several smaller size prototypes have been successfully made in the last years and the experience gained on these detectors has led to the production of the full size detector for SPIDER during 2014. This nGEM has a read-out board made of 256 pads (arranged in a 16×16 matrix) each with a dimension of 22 mm×13 mm. This paper describes the production of this detector and its tests (in terms of beam profile reconstruction capability, uniformity over the active area, gamma rejection capability and time stability) performed on the ROTAX beam-line at the ISIS spallation source (Didcot-UK).

  2. Comparison between the TRS-398 code of practice and the TG-51 dosimetry protocol for flattening filter free beams

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Butler, D. J.; Oliver, C. P.; Alves, A.; Lehmann, J.; Gibbons, F. P.; Williams, I. M.

    2016-07-01

    Dosimetry protocols for external beam radiotherapy currently in use, such as the IAEA TRS-398 and AAPM TG-51, were written for conventional linear accelerators. In these accelerators, a flattening filter is used to produce a beam which is uniform at water depths where the ionization chamber is used to measure the absorbed dose. Recently, clinical linacs have been implemented without the flattening filter, and published theoretical analysis suggested that with these beams a dosimetric error of order 0.6% could be expected for IAEA TRS-398, because the TPR20,10 beam quality index does not accurately predict the stopping power ratio (water to air) for the softer flattening-filter-free (FFF) beam spectra. We measured doses on eleven FFF linacs at 6 MV and 10 MV using both dosimetry protocols and found average differences of 0.2% or less. The expected shift due to stopping powers was not observed. We present Monte Carlo k Q calculations which show a much smaller difference between FFF and flattened beams than originally predicted. These results are explained by the inclusion of the added backscatter plates and build-up filters used in modern clinical FFF linacs, compared to a Monte Carlo model of an FFF linac in which the flattening filter is removed and no additional build-up or backscatter plate is added.

  3. Generation of magneto-immersed electron beams

    NASA Astrophysics Data System (ADS)

    Pikin, A.; Raparia, D.

    2018-05-01

    There are many applications of electron beams in accelerator facilities: for electron coolers, electron lenses, and electron beam ion sources (EBIS) to mention a few. Most of these applications require magnetic compression of the electron beam to reduce the beam radius with the goal of either matching the circulating ion beam (electron lenses and electron coolers) or increasing the ionization capability for the production of highly charged ions (EBIS). The magnetic compression of the electron beam comes at a cost of increasing share of the transverse component of energy and therefore increased angles of the electron trajectories to the longitudinal axis. Considering the effect of the magnetic mirror, it is highly desirable to produce a laminar electron beam in the electron gun. The analysis of electron guns with different configurations is given in this paper with emphasis on generating laminar electron beams.

  4. Thermal and Structural Analysis of Beamline Components in the Mu2e Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Luke Daniel

    2016-01-01

    Fermi National Accelerator Laboratory will be conducting the high energy particle physics experiment Muons to Electrons (Mu2e). In this experiment, physicists will attempt to witness and understand an ultra-rare process which is the conversion of a muon into the lighter mass electron, without creating additional neutrinos. The experiment is conducted by first generating a proton beam which will be collided into a target within the production solenoid (PS). This creates a high-intensity muon beam which passes through a transport solenoid (TS) and into the detector solenoid (DS). In the detector solenoid the muons will be stopped in an aluminum targetmore » and a series of detectors will measure the electrons produced. These components have been named the DS train since they are coupled and travel on a rail system when being inserted or extracted from the DS. To facilitate the installation and removal of the DS train, a set of external stands and a support stand for the instrumentation feed-through bulkhead (IFB) have been designed. Full analysis of safety factors and performance of these two designs has been completed. The detector solenoid itself will need to be maintained to a temperature of 22°C ± 10°C. This will minimize thermal strain and ensure the accurate position of the components is maintained to the tolerance of 2 mm. To reduce the thermal gradient, a passive heating system has been developed and reported.« less

  5. 3D printed plastics for beam modulation in proton therapy

    NASA Astrophysics Data System (ADS)

    Lindsay, C.; Kumlin, J.; Jirasek, A.; Lee, R.; Martinez, D. M.; Schaffer, P.; Hoehr, C.

    2015-06-01

    Two 3D printing methods, fused filament fabrication (FFF) and PolyJet™ (PJ) were investigated for suitability in clinical proton therapy (PT) energy modulation. Measurements of printing precision, printed density and mean stopping power are presented. FFF is found to be accurate to 0.1 mm, to contain a void fraction of 13% due to air pockets and to have a mean stopping power dependent on geometry. PJ was found to print accurate to 0.05 mm, with a material density and mean stopping power consistent with solid poly(methyl methacrylate) (PMMA). Both FFF and PJ were found to print significant, sporadic defects associated with sharp edges on the order of 0.2 mm. Site standard PT modulator wheels were printed using both methods. Measured depth-dose profiles with a 74 MeV beam show poor agreement between PMMA and printed FFF wheels. PJ printed wheel depth-dose agreed with PMMA within 1% of treatment dose except for a distal falloff discrepancy of 0.5 mm.

  6. Stopping effects in U+U collisions with a beam energy of 520 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Feng; Dong, Xin; Shao, Ming; Wu, Ke-Jun; Li, Cheng; Chen, Hong-Fang; Xu, Hu-Shan

    2007-10-01

    A relativistic transport model (ART1.0) is applied to simulate the stopping effects in tip-tip and body-body U+U collisions, at a beam kinetic energy of 520 MeV/nucleon. Our simulation results have demonstrated that both central collisions of the two extreme orientations can achieve full stopping and also form a bulk of hot, dense nuclear matter with a sufficiently large volume and long duration, because of the largely deformed uranium nuclei. The nucleon sideward flow in the tip-tip collisions is nearly three times larger than that in body-body ones at the normalized impact parameter b/bmax<0.5, and that the body-body central collisions have a large negative nucleon elliptic flow v2=-12% in contrast to zero in tip-tip ones. Thus the extreme circumstance and the novel experimental observables in tip-tip and body-body collisions can provide a good condition and sensitive probe for studying the nuclear EoS, respectively. The cooling storage ring (CSR) external target facility (ETF) to be built at Lanzhou, China, delivering a uranium beam up to 520 MeV/nucleon is expected to make a significant contribution to exploring the nuclear equation of state (EoS).

  7. Muon polarization in the MEG experiment: predictions and measurements

    DOE PAGES

    Baldini, A. M.; Bao, Y.; Baracchini, E.; ...

    2016-04-22

    The MEG experiment makes use of one of the world’s most intense low energy muon beams, in order to search for the lepton flavour violating process μ +→e +γ. We determined the residual beam polarization at the thin stopping target, by measuring the asymmetry of the angular distribution of Michel decay positrons as a function of energy. The initial muon beam polarization at the production is predicted to be P μ=-1 by the Standard Model (SM) with massless neutrinos. We estimated our residual muon polarization to be P μ= -0.86 ± 0.02 (stat)more » $$+0.05\\atop{-0.06}$$ (syst) at the stopping target, which is consistent with the SM predictions when the depolarizing effects occurring during the muon production, propagation and moderation in the target are taken into account. The knowledge of beam polarization is of fundamental importance in order to model the background of our μ +→e +γ search induced by the muon radiative decay: μ +→e +$$\\bar{v}$$ μν eγ.« less

  8. The effect of low-energy electrons on the response of ion chambers to ionizing photon beams

    NASA Astrophysics Data System (ADS)

    La Russa, Daniel J.

    Cavity ionization chambers are one of the most popular and widely used devices for quantifying ionizing photon beams. This popularity originates from the precision of these devices and the relative ease with which ionization measurements are converted to quantities of interest in therapeutic radiology or radiation protection, collectively referred to as radiation dosimetry. The formalisms used for these conversions, known as cavity theory, make several assumptions about the electron spectrum in the low-energy range resulting from the incident photon beam. These electrons often account for a significant fraction of the ion chamber response. An inadequate treatment of low-energy electrons can therefore significantly effect calculated quantities of interest. This thesis sets out to investigate the effect of low-energy electrons on (1) the use of Spencer-Attix cavity theory with 60Co beams; and (2) the standard temperature-pressure correction factor, P TP, used to relate the measured ionization to a set of reference temperature and pressure conditions for vented ion chambers. Problems with the PTP correction are shown to arise when used with kilovoltage x rays, where ionization measurements are due primarily to electrons that do not have enough energy to cross the cavity. A combination of measurements and Monte Carlo calculations using the EGSnrc Monte Carlo code demonstrate the breakdown of PTP in these situations when used with non-air-equivalent chambers. The extent of the breakdown is shown to depend on cavity size, energy of the incident photons, and the composition of the chamber. In the worst case, the standard P TP factor overcorrects the response of an aluminum chamber by ≈12% at an air density typical of Mexico City. The response of a more common graphite-walled chamber with similar dimensions at the same air density is undercorrected by ≈ 2%. The EGSnrc Monte Carlo code is also used to investigate Spencer-Attix cavity theory as it is used in the formalism to determine the air kerma for a 60Co beam. Following a comparison with measurements in the literature, the air kerma formalism is shown to require a fluence correction factor, Kfl, to ensure the accuracy of the formalism regardless of chamber composition and cavity size. The need for such a correction stems from the fact that the cavity clearly distorts the fluence for mismatched cavity and wall materials, and the inability to select the appropriate "cut-off" energy, Delta, in the Spencer-Attix stopping-power ratio. A discussion of this issue is followed by detailed calculations of K fl values for several of the graphite ionization chambers used at national metrology institutes, which range between 0.9999 and 0.9994 with a one standard deviation uncertainty of +/- 0.0002.

  9. Origins of the changing detector response in small megavoltage photon radiation fields.

    PubMed

    Fenwick, John D; Georgiou, Georgios; Rowbottom, Carl G; Underwood, Tracy S A; Kumar, Sudhir; Nahum, Alan E

    2018-06-08

    Differences in detector response between measured small fields, f clin, and wider reference fields, f msr , can be overcome by using correction factors [Formula: see text] or by designing detectors with field-size invariant responses. The changing response in small fields is caused by perturbations of the electron fluence within the detector sensitive volume. For solid-state detectors, it has recently been suggested that these perturbations might be caused by the non-water-equivalent effective atomic numbers Z of detector materials, rather than by their non-water-like densities. Using the EGSnrc Monte Carlo code we have analyzed the response of a PTW 60017 diode detector in a 6 MV beam, calculating the [Formula: see text] correction factor from computed doses absorbed by water and by the detector sensitive volume in 0.5  ×  0.5 and 4  ×  4 cm 2 fields. In addition to the 'real' detector, fully modelled according to the manufacturer's blue-prints, we calculated doses and [Formula: see text] factors for a 'Z  →  water' detector variant in which mass stopping-powers and microscopic interaction coefficients were set to those of water while preserving real material densities, and for a 'density  →  1' variant in which densities were set to 1 g cm -3 , leaving mass stopping-powers and interaction coefficients at real levels. [Formula: see text] equalled 0.910  ±  0.005 (2 standard deviations) for the real detector, was insignificantly different at 0.912  ±  0.005 for the 'Z  →  H 2 O' variant, but equalled 1.012  ±  0.006 for the 'density  →  1' variant. For the 60017 diode in a 6 MV beam, then, [Formula: see text] was determined primarily by the detector's density rather than its atomic composition. Further calculations showed this remained the case in a 15 MV beam. Interestingly, the sensitive volume electron fluence was perturbed more by detector atomic composition than by density; however, the density-dependent perturbation varied with field-size, whereas the Z-dependent perturbation was relatively constant, little affecting [Formula: see text].

  10. Origins of the changing detector response in small megavoltage photon radiation fields

    NASA Astrophysics Data System (ADS)

    Fenwick, John D.; Georgiou, Georgios; Rowbottom, Carl G.; Underwood, Tracy S. A.; Kumar, Sudhir; Nahum, Alan E.

    2018-06-01

    Differences in detector response between measured small fields, f clin, and wider reference fields, f msr , can be overcome by using correction factors or by designing detectors with field-size invariant responses. The changing response in small fields is caused by perturbations of the electron fluence within the detector sensitive volume. For solid-state detectors, it has recently been suggested that these perturbations might be caused by the non-water-equivalent effective atomic numbers Z of detector materials, rather than by their non-water-like densities. Using the EGSnrc Monte Carlo code we have analyzed the response of a PTW 60017 diode detector in a 6 MV beam, calculating the correction factor from computed doses absorbed by water and by the detector sensitive volume in 0.5  ×  0.5 and 4  ×  4 cm2 fields. In addition to the ‘real’ detector, fully modelled according to the manufacturer’s blue-prints, we calculated doses and factors for a ‘Z  →  water’ detector variant in which mass stopping-powers and microscopic interaction coefficients were set to those of water while preserving real material densities, and for a ‘density  →  1’ variant in which densities were set to 1 g cm‑3, leaving mass stopping-powers and interaction coefficients at real levels. equalled 0.910  ±  0.005 (2 standard deviations) for the real detector, was insignificantly different at 0.912  ±  0.005 for the ‘Z  →  H2O’ variant, but equalled 1.012  ±  0.006 for the ‘density  →  1’ variant. For the 60017 diode in a 6 MV beam, then, was determined primarily by the detector’s density rather than its atomic composition. Further calculations showed this remained the case in a 15 MV beam. Interestingly, the sensitive volume electron fluence was perturbed more by detector atomic composition than by density; however, the density-dependent perturbation varied with field-size, whereas the Z-dependent perturbation was relatively constant, little affecting .

  11. Summary of the Normal-Conducting Accelerating Structures for LEDA and APT

    NASA Astrophysics Data System (ADS)

    Schneider, J. David

    1998-04-01

    The accelerator production of tritium (APT) plant requires a continuous (100% duty-factor), 100-mA, 1000--1700-MeV proton beam. Superconducting structures will accelerate protons above about 200 MeV, but room-temperature, normal-conducting (NC) copper structures will be used for lower energies. We will assemble the front 11-MeV portion of this NC accelerator as the low-energy demonstration accelerator (LEDA). This presentation will cover the demonstated operation of the proton injector, the design, fabrication, and tuning status of the 6.7-MeV RFQ, and the design features of the CCDTL (coupled-cavity drift-tube linac) that will accelerate protons to 100 MeV, before use of a conventional CCL (coupled-cavity linac). Several innovative features result in improved performance, ease of use, and improved reliabiltiy. The75-keV injector features a microwave ion source, dual-solenoid transport, and has no electronics at high potential. Its demonstrated high efficiency (less than 800 Watts), excellent proton fraction (>90%), high current (>110 mA), and reliability make it attractive for several other high-current applications. The 6.7-MeV, 350-MHz RFQ is an 8-meter-long, brazed-copper structure with hundreds of cooling channels that carry away the 1.3 MW of waste heat. During beam operation, only the cooling-water temperature is adjustable to maintain structure resonance. LEDA's 700-MHz CCDTL structure is new, combining features of the conventional DTL and CCL structures. All focus magnets are external to the copper accelerating cavities, each of which contains either one or two drift tubes. A `hot model' will validate fabrication, cooling, tuning, and coupling techniques. The LEDA facility is being upgraded with 15 MW of power and cooling utiliites, to support seven 1-MW cw RF systems needed to power all structures. The first few of these 1.3 MW 350-MHz systems are operational, and extensive testing was completed on the critical RF windows. Updates will be given on the development of vacuum, diagnostic, control, and cooling systems, as well as transport lines and beam stops. The unique and very compact, thin-walled beam stop is surrounded by an integral water shield for the prompt neutrons.

  12. Handling Density Conversion in TPS.

    PubMed

    Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji

    2016-01-01

    Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.

  13. Universal ICT Picosecond Camera

    NASA Astrophysics Data System (ADS)

    Lebedev, Vitaly B.; Syrtzev, V. N.; Tolmachyov, A. M.; Feldman, Gregory G.; Chernyshov, N. A.

    1989-06-01

    The paper reports on the design of an ICI camera operating in the mode of linear or three-frame image scan. The camera incorporates two tubes: time-analyzing ICI PIM-107 1 with cathode S-11, and brightness amplifier PMU-2V (gain about 104) for the image shaped by the first tube. The camera is designed on the basis of streak camera AGAT-SF3 2 with almost the same power sources, but substantially modified pulse electronics. Schematically, the design of tube PIM-107 is depicted in the figure. The tube consists of cermet housing 1, photocathode 2 made in a separate vacuum volume and introduced into the housing by means of a manipulator. In a direct vicinity of the photocathode, accelerating electrode is located made of a fine-structure grid. An electrostatic lens formed by focusing electrode 4 and anode diaphragm 5 produces a beam of electrons with a "remote crossover". The authors have suggested this term for an electron beam whose crossover is 40 to 60 mm away from the anode diaphragm plane which guarantees high sensitivity of scan plates 6 with respect to multiaperture framing diaphragm 7. Beyond every diaphragm aperture, a pair of deflecting plates 8 is found shielded from compensation plates 10 by diaphragm 9. The electronic image produced by the photocathode is focused on luminescent screen 11. The tube is controlled with the help of two saw-tooth voltages applied in antiphase across plates 6 and 10. Plates 6 serve for sweeping the electron beam over the surface of diaphragm 7. The beam is either allowed toward the screen, or delayed by the diaphragm walls. In such a manner, three frames are obtained, the number corresponding to that of the diaphragm apertures. Plates 10 serve for stopping the compensation of the image streak sweep on the screen. To avoid overlapping of frames, plates 8 receive static potentials responsible for shifting frames on the screen. Changing the potentials applied to plates 8, one can control the spacing between frames and partially or fully overlap the frames. This sort of control is independent of the frequency of frame running and of their duration, and can only determine frame positioning on the screen. Since diaphragm 7 is located in the area of crossover and electron trajectories cross in the crossover, the frame is not decomposed into separate elements during its formation. The image is transferred onto the screen practically within the entire time of frame duration increasing the aperture ratio of the tube as compared to that in Ref. 3.

  14. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

    NASA Astrophysics Data System (ADS)

    Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.

    2012-03-01

    The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF2, SrF2, and BaF2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ˜2 × 103 pA/cm2). In BaF2 samples, the transformation of BaO into Ba(OH)2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH)2 into BaO. In the initial stage of irradiation of all MF2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ˜20 nm in the sample.

  15. BepiColombo Serena/ELENA instrument:development and testing

    NASA Astrophysics Data System (ADS)

    Orsini, S.; De Angelis, E.; Selci, S.; Di Lellis, A. M.:; Leoni, R.; Rispoli, R.; Colasanti, L.; Vertolli, N.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; D'Alessandro, M.; Maschietti, D.; Mattioli, F.; Cibella, S.; Brienza, D.; lo Spazio, Compagnia Generale per

    2012-04-01

    ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section) which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (<1eV - >100 eV) as well as Hydrogen back-scattered at hundreds eV. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. The instrument is now validated and tested to reach its performances: the up-graded shutter system (Start section) has been operated for the first time with neutral atom beam and tested at high frequency, the Stop section has been calibrated investigating the region of very low energy detection efficiency, the electronics boards and the entire acquisition chain has been appointed and tested with ion beam. The first results of all the ELENA capability will be presented.

  16. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  17. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  18. Electron beam-plasma interaction and electron-acoustic solitary waves in a plasma with suprathermal electrons

    NASA Astrophysics Data System (ADS)

    Danehkar, A.

    2018-06-01

    Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.

  19. Transverse profile of the electron beam for the RHIC electron lenses

    NASA Astrophysics Data System (ADS)

    Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; Montag, C.; Pikin, A. I.

    2015-10-01

    The transverse profile of the electron beam plays a very important role in assuring the success of the electron lens beam-beam compensation, as well as its application in space charge compensation. To compensate for the beam-beam effect in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, we recently installed and commissioned two electron lenses. In this paper, we describe, via theory and simulations using the code Parmela, the evolution of the density of the electron beam with space charge within an electron lens from the gun to the main solenoid. Our theoretical analysis shows that the change in the beam transverse density is dominated by the effects of the space charge induced longitudinal velocity reduction, not by those of transverse Coulomb collisions. We detail the transverse profile of RHIC electron-lens beam, measured via the YAG screen and pinhole detector, and also describe its profile that we assessed from the signal of the electron-backscatter detector (eBSD) via scanning the electron beam with respect to the RHIC beam. We verified, in simulations and experiments, that the distribution of the transverse electron beam is Gaussian throughout its propagation in the RHIC electron lens.

  20. Phase modulation of the bucket stops bunch oscillations at the Fermilab Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, C.Y.; Burov, A.; /Fermilab

    2012-04-02

    Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely. These oscillations are colloquially called 'dancing bunches.' Although the dancing proton bunches do not cause single bunch emittance growth or beam loss at injection, they lead to bunch lengthening at collisions. In Tevatron operations, a longitudinal damper has been built which stops this dance and damps out coupled bunch modes. Recent theoretical work predicts that the dance can also be stopped by an appropriate change in the bunch distribution. This paper describes the Tevatron experiments which support this theory.

  1. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complementmore » the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.« less

  2. Electron lenses for head-on beam-beam compensation in RHIC

    DOE PAGES

    Gu, X.; Fischer, W.; Altinbas, Z.; ...

    2017-02-17

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  3. Electron lenses for head-on beam-beam compensation in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Fischer, W.; Altinbas, Z.

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  4. Simulation of radial expansion of an electron beam injected into a background plasma

    NASA Technical Reports Server (NTRS)

    Koga, J.; Lin, C. S.

    1989-01-01

    A 2-D electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.

  5. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    DOEpatents

    Teruya, Alan T [Livermore, CA; Elmer,; John, W [Danville, CA; Palmer, Todd A [State College, PA

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  6. Electron mass stopping power in H2

    NASA Astrophysics Data System (ADS)

    Fursa, Dmitry V.; Zammit, Mark C.; Threlfall, Robert L.; Savage, Jeremy S.; Bray, Igor

    2017-08-01

    Calculations of electron mass stopping power (SP) of electrons in H2 have been performed using the convergent close-coupling method for incident electron energies up to 2000 eV. Convergence of the calculated SP has been established by increasing the size of the close-coupling expansion from 9 to 491 states. Good agreement was found with the SP measurements of Munoz et al. [Chem. Phys. Lett. 433, 253 (2007), 10.1016/j.cplett.2006.10.114].

  7. SU-E-T-146: Reference Dosimetry for Protons and Light-Ion Beams Based on Graphite Calorimetry.

    PubMed

    Rossomme, S; Palmans, H; Thomas, R; Lee, N; Bailey, M; Shipley, D; Al-Sulaiti, L; Cirrone, P; Romano, F; Kacperek, A; Bertrand, D; Vynckier, S

    2012-06-01

    The IAEA TRS-398 code of practice can be applied for the measurement of absorbed dose to water under reference conditions with an ionization chamber. For protons, the combined relative standard uncertainty on those measurements is less than 2% while for light-ion beams, it is considerably larger, i.e. 3.2%, mainly due to the higher uncertainty contributions for the water to air stopping power ration and the W air-value on the beam quality correction factors kQ,Q 0 . To decrease this uncertainty, a quantification of kQ,Q 0 is proposed using a primary standard level graphite calorimeter. This work includes numerical and experimental determinations of dose conversion factors to derive dose to water from graphite calorimetry. It also reports on the first experimental data obtained with the graphite calorimeter in proton, alpha and carbon ion beams. Firstly, the dose conversion has been calculated with by Geant4 Monte-Carlo simulations through the determination of the water to graphite stopping power ratio and the fluence correction factor. The latter factor was also derived by comparison of measured ionization curves in graphite and water. Secondly, kQ,Q 0 was obtained by comparison of the dose response of ionization chambers with that of the calorimeter. Stopping power ratios are found to vary by no more than 0.35% up to the Bragg peak, while fluence correction factors are shown to increase slightly above unity close to the Bragg peak. The comparison of the calorimeter with ionization chambers is currently under analysis. For the modulated proton beam, preliminary results on W air confirm the value recommended in TRS-398. Data in both the non-modulated proton and light-ion beams indicate higher values but further investigation of heat loss corrections is needed. The application of graphite calorimetry to proton, alpha and carbon ion beams has been demonstrated successfully. Other experimental campaigns will be held in 2012. This work is supported by the BioWin program of the Wallon Government. © 2012 American Association of Physicists in Medicine.

  8. Stable operating regime for traveling wave devices

    DOEpatents

    Carlsten, Bruce E.

    2000-01-01

    Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.

  9. Innovative real-time and non-destructive method of beam profile measurement under large beam current irradiation for BNCT

    NASA Astrophysics Data System (ADS)

    Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.

    2012-10-01

    We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.

  10. Investigating the foil-generated deuteron beam interaction with a DT target in degenerate and classical plasma

    NASA Astrophysics Data System (ADS)

    Mehrangiz, M.; Ghasemizad, A.

    2017-06-01

    Deuteron fast ignition of a conically guided pre-compressed DT fuel is investigated. For this purpose, the acceleration of the deuterated thin foil by the intense laser beam is evaluated. The acceleration values and the number of foil-generated deuterons are calculated in terms of the laser pulse duration. Using the created deuterons as the fast ignitors, we investigate the fast ignition scheme by comparing fully degenerate, partial degenerate and classical types of DT plasma. The total energy gain of deuterons "beam fusion" is calculated to show the efficiency of beam reactions in increasing fusion rate. Besides, the stopping time and stopping range of incident deuterons are evaluated. Our numerical results indicate that degeneracy increases the beam-target collisions. Thus, it prepares the ignition situation sooner than the classical plasma. Moreover, the number of generated deuterons and their acceleration depend on the foil thickness and laser parameters. We show that when a 4ps laser with intensity of 10^{19} W/cm^2 focused onto a 20μm foil, 35× 10^{15} deuterons are generated. Moreover, under our analysis, in order to have a practicable fast ignition, 18% of the laser energy is necessary to convert into a deuteron driver.

  11. Free electron laser with masked chicane

    DOEpatents

    Nguyen, Dinh C.; Carlsten, Bruce E.

    1999-01-01

    A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.

  12. Remote Shutoff Stops Runaway Lawnmower

    ERIC Educational Resources Information Center

    Grambo, Alan A.

    2007-01-01

    In this article, the author describes how electronics students at Central Nine Career Center designed a kill switch circuit to stop a runaway lawnmower. This project is ideal for a career center since the electronics/robotics, small engines and horticulture classes can all work together on their respective parts of the modification, installation…

  13. Use of beam deflection to control an electron beam wire deposition process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  14. Scientific Opportunities and Plans for FRIB

    NASA Astrophysics Data System (ADS)

    Bollen, Georg

    2014-09-01

    FRIB, the US's ``Facility for Rare Isotope Beams'' under construction at Michigan State University will be a world-leading rare isotope beam facility. FRIB will be based on a 400 kW, 200 MeV/u heavy ion linac and provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. This talk will summarize the scientific opportunities with FRIB in the areas of nuclear science, nuclear astrophysics, and the test of fundamental interaction and symmetries, as well using isotopes from FRIB for societal benefits. Design features of FRIB and the status of the ongoing construction will be presented. FRIB, the US's ``Facility for Rare Isotope Beams'' under construction at Michigan State University will be a world-leading rare isotope beam facility. FRIB will be based on a 400 kW, 200 MeV/u heavy ion linac and provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. This talk will summarize the scientific opportunities with FRIB in the areas of nuclear science, nuclear astrophysics, and the test of fundamental interaction and symmetries, as well using isotopes from FRIB for societal benefits. Design features of FRIB and the status of the ongoing construction will be presented. This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE.

  15. Nonlinear electronic stopping power of channeled slow light ions in ZnSe: Evidence of energy loss caused by formation and breaking of chemical bond

    NASA Astrophysics Data System (ADS)

    Li, Chang-kai; Wang, Feng; Gao, Cong-Zhang; Liao, Bin; Ouyang, Xiao-ping; Zhang, Feng-Shou

    2018-07-01

    Electronic stopping power of helium ions in a semiconductor material ZnSe has been investigated through non-adiabatic dynamics simulations at energies of a few keV under channeling condition. The stopping power is predicted to be proportional to velocity for the trajectory along middle axis of a 〈 1 1 0 〉 channel, as expected for the linear response theory accounts for election-hole pair creation. While for the off-center channeling trajectory, a counterintuitive of electronic stopping power versus velocity is observed. Our study, presented herein, finds a non-trivial connection between charge transfer and the force experienced by the projectile. Charge transfer can produce, throughout the collision process, additional force by continuously forming and breaking instantaneous chemical bonds between the projectile and the neighboring host atoms.

  16. Kinetic energy offsets for multicharged ions from an electron beam ion source.

    PubMed

    Kulkarni, D D; Ahl, C D; Shore, A M; Miller, A J; Harriss, J E; Sosolik, C E; Marler, J P

    2017-08-01

    Using a retarding field analyzer, we have measured offsets between the nominal and measured kinetic energy of multicharged ions extracted from an electron beam ion source (EBIS). By varying source parameters, a shift in ion kinetic energy was attributed to the trapping potential produced by the space charge of the electron beam within the EBIS. The space charge of the electron beam depends on its charge density, which in turn depends on the amount of negative charge (electron beam current) and its velocity (electron beam energy). The electron beam current and electron beam energy were both varied to obtain electron beams of varying space charge and these were related to the observed kinetic energy offsets for Ar 4+ and Ar 8+ ion beams. Knowledge of these offsets is important for studies that seek to utilize slow, i.e., low kinetic energy, multicharged ions to exploit their high potential energies for processes such as surface modification. In addition, we show that these offsets can be utilized to estimate the effective radius of the electron beam inside the trap.

  17. Solenoid Magnet System for the Fermilab Mu2e Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamm, M. J.; Andreev, N.; Ambrosio, G.

    2011-12-14

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoidmore » at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.« less

  18. SU-F-T-136: Breath Hold Lung Phantom Study in Using CT Density Versus Relative Stopping Power Ratio for Proton Pencil Beam Scanning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Wu, H; Rosen, L

    Purpose: To evaluate mass density effects of CT conversion table and its variation in current treatment planning system of spot scanning proton beam using an IROC proton lung phantom for this study. Methods: A proton lung phantom study was acquired to Imaging and Radiation Oncology Core Houston (IROC) Quality Assurance Center. Inside the lung phantom, GAF Chromic films and couples of thermal luminescent dosimeter (TLD) capsules embedded in specified PTV and adjacent structures to monitor delivered dosage and 3D dose distribution profiles. Various material such as cork (Lung), blue water (heart), Techron HPV (ribs) and organic material of balsa woodmore » and cork as dosimetry inserts within phantom of solid water (soft tissue). Relative stopping power (RLSP) values were provided. Our treatment planning system (TPS) doesn’t require SP instead relative density was converted relative to water. However lung phantom was irradiated by planning with density override and the results were compared with IROC measurements. The second attempt was conducted without density override and compared with IROC’s. Results: The higher passing rate of imaging and measurement results of the lung phantom irradiation met the criteria by IROC without density override. The film at coronal plane was found to be shift due to inclined cylinder insertion. The converted CT density worked as expected to correlate relative stopping power. Conclusion: The proton lung phantom provided by IROC is a useful tool to qualify our commissioned proton pencil beam delivery with TPS within reliable confidence. The relative mass stopping power ratios of materials were converted from the relative physical density relative to water and the results were satisfied.« less

  19. π0 mass reconstruction in NOvA Far Detector.

    NASA Astrophysics Data System (ADS)

    Edayath, Sijith

    2017-01-01

    NOvA is a long-baseline neutrino oscillation experiment with functionally identical, segmented, tracking calorimeter Near and Far detectors. The detectors lie 14.6 mrad off-axis from the Fermilab NuMI beam, with a well-defined peak in neutrino energy at 2 GeV. The absolute calibration of the energy scale of the detectors is a major systematic uncertainty in long-baseline oscillation search in NOvA. Neutrino detectors make use of some standard candles for absolute energy calibration. Stopping muon energy distributions, Michel electron energy distributions, and invariant π0 mass are among them. In this talk, we cover NOvA's use of a new method to identify π0 with cosmic origins in the NOvA Far Detector. We employ a computer vision based particle identifier using convolutional neural networks (CVN) to identify π0s, complementing an existing strategy to identify π0 from the neutrino beam using more traditional methods in the Near Detector. Registered for PhD at Cochin University of Science and Technology, India and doing research in NOvA experiment at Fermilab.

  20. Neutral beam dose and sputtering characteristics in an ion implantation system

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ash, R. L.; Berger, M. H.

    1973-01-01

    A technique and instrument design for calorimetric detection of the neutral atom content of a 60 keV argon ion beam. A beam sampling method is used to measure local heat flux to a small platinum wire at steady state; integration of power density profiles leads to a determination of equivalent neutral beam current. The fast neutral production occurs as a result of charge transfer processes in the region of the beam system between analyzing magnet and beam stop where the pressure remains less than .00001 torr. A description of the neutral beam detector is given in section along with a presentation of results. An elementary analysis of sputter material transport from target to substrate was performed; the analysis relates to semiconductor sputtering.

  1. A UHV compatible source for a highly polarized thermal atomic beam of radioactive 8Li

    NASA Astrophysics Data System (ADS)

    Jänsch, H. J.; Kirchner, G.; Kühlert, O.; Lisowski, M.; Paggel, J. J.; Platzer, R.; Schillinger, R.; Tilsner, H.; Weindel, C.; Winnefeld, H.; Fick, D.

    2000-12-01

    A beam of the radioactive isotope 8Li is prepared at thermal velocities. The nuclei are highly spin polarized by transverse optical pumping of the thermal beam. The installation is ultra-high vacuum (UHV) compatible in a non-UHV accelerator environment. Since the atomic beam is used in a surface science experiment, where contamination must be avoided, special emphasis is given to the vacuum coupling of the accelerator/ 8Li production/surface experimental areas. The atomic beam is produced by stopping the nuclear reaction products and evaporating them again from high-temperature graphite. To enhance the atomic beam, a novel tubular thermalizer is applied. The thermal polarized atomic beam intensity is approximately 5×10 8 atoms/s sr.

  2. Potential clinical impact of laser-accelerated beams in cancer ion therapy

    NASA Astrophysics Data System (ADS)

    Obcemea, Ceferino

    2016-09-01

    In this article, I present three advantages of plasma-accelerated ion beams for cancer therapy. I discuss how: 1. low-emittance and well-collimated beams are advantageous in proximal normal tissue-sparing; 2. highly-peaked quasi-monoenergetic beams are ideal for fast energy selection and switching in Pencil Beam Scanning (PBS) as a treatment delivery; 3. high fluence and ultra-short pulse delivery produce collective excitations in the medium and enhance the stopping power. This in turn produces denser ionization track signatures (spurs, blobs, etc.) in target tumors, higher linear energy transfer, higher Bragg peak, and higher radiobiological effectiveness at the micro-level.

  3. Rotating Aperture System

    DOEpatents

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  4. A simulation study of radial expansion of an electron beam injected into an ionospheric plasma

    NASA Technical Reports Server (NTRS)

    Koga, J.; Lin, C. S.

    1994-01-01

    Injections of nonrelativistic electron beams from a finite equipotential conductor into an ionospheric plasma have been simulated using a two-dimensional electrostatic particle code. The purpose of the study is to survey the simulation parameters for understanding the dependence of beam radius on physical variables. The conductor is charged to a high potential when the background plasma density is less than the beam density. Beam electrons attracted by the charged conductor are decelerated to zero velocity near the stagnation point, which is at a few Debye lengths from the conductor. The simulations suggest that the beam electrons at the stagnation point receive a large transverse kick and the beam expands radially thereafter. The buildup of beam electrons at the stagnation point produces a large electrostatic force responsible for the transverse kick. However, for the weak charging cases where the background plasma density is larger than the beam density, the radial expansion mechanism is different; the beam plasma instability is found to be responsible for the radial expansion. The simulations show that the electron beam radius for high spacecraft charging cases is of the order of the beam gyroradius, defined as the beam velocity divided by the gyrofrequency. In the weak charging cases, the beam radius is only a fraction of the beam gyroradius. The parameter survey indicates that the beam radius increases with beam density and decreases with magnetic field and beam velocity. The beam radius normalized by the beam gyroradius is found to scale according to the ratio of the beam electron Debye length to the ambient electron Debye length. The parameter dependence deduced would be useful for interpreting the beam radius and beam density of electron beam injection experiments conducted from rockets and the space shuttle.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezzullo, Gianantonio

    The Mu2e experiment will search for Charged Lepton Flavor Violation (CLFV) looking at the conversion of a muon into an electron in the field of an aluminum nucleus. Aboutmore » $$7\\cdot 10^{17}$$ muons, provided by a dedicated muon beam line in construction at the Fermi National Accelarator Laboratory (Fermilab), will be stopped in 3 years in the Aluminum target. The corresponding single event sensitivity will be $$2.5\\cdot 10^{-17}$$. The Standard Model of particle physics, even extendend to include the finite neutrino masses, predicts the ratio R μe between muon conversions and muon nuclear captures to be $$\\sim 10^{- 52}$$. Several extensions of the Standard Model predict R μe to be in the range of $$10^{-14} - 10^{-18}$$. % The current best experimental limit, set by the SINDRUM II experiment is $$7 \\cdot 10^{-13}$$ @ $$90\\%$$ CL. The Mu2e experiment plans to improve this experimental limit by four order of magnitude to test many of the possible extensions of the Standard Model. To reach this ambitious goal, the Mu2e experiment is expected to use an intense pulsed muon beam, and rely on a detector system composed of a straw tube tracker and a calorimeter made of pure CsI crystals. The calorimeter plays a central role in the Mu2e measurement, providing particle identification capabilities that are necessary for rejecting two of the most dangerous background sources that can mimic the μ⁻N → e⁻N conversion electron: cosmic muons and $$\\bar{p}$$ induced background. The calorimeter information allows also to improve the tracking performance. Thanks to a calorimeter-seeded track finder algorithm, it is possible to increase the track reconstruction efficiency, and make it more robust with respect to the occupancy level. Expected performances of the calorimeter have been studied in a beam test at the Beam Test Facility in Frascati (Rome, Italy). A reduced scale calorimeter prototype has been exposed to an electron beam, with energy varying from 80 to 140 MeV, for measuring the timing resolution and validate the Monte Carlo prediction. A timing resolution $$\\sigma_{\\rm t}<200$$ ps @ 100 MeV has been obtained. Combination of the background rejection performance, and the improvements in the track reconstruction, have then been used in the calculation of the expected Mu2e sensitivity.« less

  6. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  7. Basic Mechanisms of Radiation Effects in Electronic Materials and Devices

    DTIC Science & Technology

    1987-09-01

    power as function of particle energy for electrons and protons Incident on silic,,n...8217-Mev 0000 Neutrons0 0 Fluenoe n/oma e 1-MeV equivalent fluenos n/orm DlSlLAOUMllW Ionizing radltlon O Stopping power (linear energy MeV/(g/om...from the interaction of radiation energy that goes Into ionization Is given by the stop- with electronic materials are Ionization (primarily ping power

  8. CVD diamond detector with interdigitated electrode pattern for time-of-flight energy-loss measurements of low-energy ion bunches

    NASA Astrophysics Data System (ADS)

    Cayzac, W.; Pomorski, M.; Blažević, A.; Canaud, B.; Deslandes, D.; Fariaut, J.; Gontier, D.; Lescoute, E.; Marmouget, J. G.; Occelli, F.; Oudot, G.; Reverdin, C.; Sauvestre, J. E.; Sollier, A.; Soullié, G.; Varignon, C.; Villette, B.

    2018-05-01

    Ion stopping experiments in plasma for beam energies of few hundred keV per nucleon are of great interest to benchmark the stopping-power models in the context of inertial confinement fusion and high-energy-density physics research. For this purpose, a specific ion detector on chemical-vapor-deposition diamond basis has been developed for precise time-of-flight measurements of the ion energy loss. The electrode structure is interdigitated for maximizing its sensitivity to low-energy ions, and it has a finger width of 100 μm and a spacing of 500 μm. A short single α-particle response is obtained, with signals as narrow as 700 ps at full width at half maximum. The detector has been tested with α-particle bunches at a 500 keV per nucleon energy, showing an excellent time-of-flight resolution down to 20 ps. In this way, beam energy resolutions from 0.4 keV to a few keV have been obtained in an experimental configuration using a 100 μg/cm2 thick carbon foil as an energy-loss target and a 2 m time-of-flight distance. This allows a highly precise beam energy measurement of δE/E ≈ 0.04%-0.2% and a resolution on the energy loss of 0.6%-2.5% for a fine testing of stopping-power models.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Haizhou; Zhang, Yanwen; Zhu, Zihua

    Single crystalline 6H-SiC samples were irradiated at 150 K using 2MeV Pt ions. Local volume swelling is determined by electron energy loss spectroscopy (EELS), a nearly sigmoidal dependence with irradiation dose is observed. The disorder profiles and ion distribution are determined by Rutherford backscattering spectrometry (RBS), transmission electron microscopy and secondary ion mass spectrum. Since the volume swelling reaches 12% over the damage region under high ion fluence, lattice expansion is considered and corrected during the data analysis of RBS spectra to obtain depth profiles. Projectile and damage profiles are estimated by SRIM (Stopping and Range of Ions in Matter).more » Comparing with the measured profiles, SRIM code significantly overestimates the electronic stopping power for the slow heavy Pt ions, and large derivations are observed in the predicted ion distribution and the damage profiles. Utilizing the reciprocity method that is based on the invariance of the inelastic excitation in ion atom collisions against interchange of projectile and target, much lower electronic stopping is deduced. A simple approach based on reducing the density of SiC target in SRIM simulation is proposed to compensate the overestimated SRIM electronic stopping power values. Better damage profile and ion range are predicted.« less

  10. Transverse profile of the electron beam for the RHIC electron lenses

    DOE PAGES

    Gu, X.; Altinbas, Z.; Costanzo, M.; ...

    2015-07-10

    To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for bothmore » the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.« less

  11. Compact two-beam push-pull free electron laser

    DOEpatents

    Hutton, Andrew [Yorktown, VA

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  12. Experimental Investigation and Computer Modeling of Optical Switching in Distributed Bragg Reflector and Vertical Cavity Surface Emitting Laser Structures.

    DTIC Science & Technology

    1995-12-01

    of a Molecular Beam Epitaxy (MBE) system prior to growing a Vertical Cavity Surface Emitting Laser ( VCSEL ). VCSEL bistability is discussed later in...addition, optical bistability 1 in the reflectivity of a DBR, as well as in the lasing power, wavelength, and beam divergence of a lasing VCSEL are...Spectral Reflectivity of AlGaAs/AlAs VCSEL Top DBR Mirror Cavity Bottom DBR Mirror Substrate Output Beam Resonance Pump Minimum Stop Band Figure 2. VCSEL

  13. Electron beam focusing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  14. Low-bias flat band-stop filter based on velocity modulated gaussian graphene superlattice

    NASA Astrophysics Data System (ADS)

    Sattari-Esfahlan, S. M.; Shojaei, S.

    2018-05-01

    Transport properties of biased planar Gaussian graphene superlattice (PGGSL) with Fermi velocity barrier is investigated by transfer matrix method (TMM). It is observed that enlargement of bias voltage over miniband width breaks the miniband to WSLs leads to suppressing resonant tunneling. Transmission spectrum shows flat wide stop-band property controllable by external bias voltage with stop-band width of near 200 meV. The simulations demonstrate that strong velocity barriers prevent tunneling of Dirac electrons leading to controllable enhancement of stop-band width. By increasing ratio of Fermi velocity in barriers to wells υc stop-band width increase. As wide transmission stop-band width (BWT) of filter is tunable from 40 meV to 340 meV is obtained by enhancing ratio of υc from 0.2 to 1.5, respectively. Proposed structure suggests easy tunable wide band-stop electronic filter with a modulated flat stop-band characteristic by height of electrostatic barrier and structural parameters. Robust sensitivity of band width to velocity barrier intensity in certain bias voltages and flat band feature of proposed filter may be opens novel venue in GSL based flat band low noise filters and velocity modulation devices.

  15. Radiation source

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

  16. Origin of coloration in beetle scales: An optical and structural investigation

    NASA Astrophysics Data System (ADS)

    Nagi, Ramneet Kaur

    In this thesis the origin of angle-independent yellowish-green coloration of the exoskeleton of a beetle was studied. The beetle chosen was a weevil with the Latin name Eupholus chevrolati. The origin of this weevil's coloration was investigated by optical and structural characterization techniques, including optical microscopy, scanning electron microscopy imaging and focused ion beam milling, combined with three-dimensional modeling and photonic band structure calculations. Furthermore, using color theory the pixel-like coloring of the weevil's exoskeleton was investigated and an interesting additive color mixing scheme was discovered. For optical studies, a microreflectance microscopy/spectroscopy set-up was optimized. This set-up allowed not only for imaging of individual colored exoskeleton domains with sizes ˜2-10 μm, but also for obtaining reflection spectra of these micrometer-sized domains. Spectra were analyzed in terms of reflection intensity and wavelength position and shape of the reflection features. To find the origin of these colored exoskeleton spots, a combination of focused ion beam milling and scanning electron microscopy imaging was employed. A three-dimensional photonic crystal in the form of a face-centered cubic lattice of ABC-stacked air cylinders in a biopolymeric cuticle matrix was discovered. Our photonic band structure calculations revealed the existence of different sets of stop-gaps for the lattice constant of 360, 380 and 400 nm in the main lattice directions, Gamma-L, Gamma-X, Gamma-U, Gamma-W and Gamma-K. In addition, scanning electron microscopy images were compared to the specific directional-cuts through the constructed face-centered cubic lattice-based model and the optical micrographs of individual domains to determine the photonic structure corresponding to the different lattice directions. The three-dimensional model revealed stop-gaps in the Gamma-L, Gamma-W and Gamma-K directions. Finally, the coloration of the weevil as perceived by an unaided human eye was represented (mathematically) on the xy-chromaticity diagram, based on XYZ color space developed by CIE (Commission Internationale de l'Eclairage), using the micro-reflectance spectroscopy measurements. The results confirmed the additive mixing of various colors produced by differently oriented photonic crystal domains present in the weevil's exoskeleton scales, as a reason for the angle-independent dull yellowish-green coloration of the weevil E. chevrolati.

  17. Motorized control for mirror mount apparatus

    DOEpatents

    Cutburth, Ronald W.

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  18. Application of Traditional and Nanostructure Materials for Medical Electron Beams Collimation: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.

    2015-11-01

    Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q.

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medicalmore » physics.« less

  20. Micromirror arrays to assess luminescent nano-objects.

    PubMed

    Kawakami, Yoichi; Kanai, Akinobu; Kaneta, Akio; Funato, Mitsuru; Kikuchi, Akihiko; Kishino, Katsumi

    2011-05-01

    We propose an array of submicrometer mirrors to assess luminescent nano-objects. Micromirror arrays (MMAs) are fabricated on Si (001) wafers via selectively doping Ga using the focused ion beam technique to form p-type etch stop regions, subsequent anisotropic chemical etching, and Al deposition. MMAs provide two benefits: reflection of luminescence from nano-objects within MMAs toward the Si (001) surface normal and nano-object labeling. The former increases the probability of optics collecting luminescence and is demonstrated by simulations based on the ray-tracing and finite-difference time-domain methods as well as by experiments. The latter enables different measurements to be repeatedly performed on a single nano-object located at a certain micromirror. For example, a single InGaN∕GaN nanocolumn is assessed by scanning electron microscopy and microphotoluminescence spectroscopy.

  1. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, L.E.

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.

  2. Gigatron microwave amplifier

    DOEpatents

    McIntyre, P.M.

    1993-07-13

    An electron tube for achieving high power at high frequency with high efficiency is described, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot there through for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  3. Gigatron microwave amplifier

    DOEpatents

    McIntyre, Peter M.

    1993-01-01

    An electron tube for achieving high power at high frequency with high efficiency, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot therethrough for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  4. Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields.

    PubMed

    Czarnecki, D; Zink, K

    2013-04-21

    The application of small photon fields in modern radiotherapy requires the determination of total scatter factors Scp or field factors Ω(f(clin), f(msr))(Q(clin), Q(msr)) with high precision. Both quantities require the knowledge of the field-size-dependent and detector-dependent correction factor k(f(clin), f(msr))(Q(clin), Q(msr)). The aim of this study is the determination of the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) for different types of detectors in a clinical 6 MV photon beam of a Siemens KD linear accelerator. The EGSnrc Monte Carlo code was used to calculate the dose to water and the dose to different detectors to determine the field factor as well as the mentioned correction factor for different small square field sizes. Besides this, the mean water to air stopping power ratio as well as the ratio of the mean energy absorption coefficients for the relevant materials was calculated for different small field sizes. As the beam source, a Monte Carlo based model of a Siemens KD linear accelerator was used. The results show that in the case of ionization chambers the detector volume has the largest impact on the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)); this perturbation may contribute up to 50% to the correction factor. Field-dependent changes in stopping-power ratios are negligible. The magnitude of k(f(clin), f(msr))(Q(clin), Q(msr)) is of the order of 1.2 at a field size of 1 × 1 cm(2) for the large volume ion chamber PTW31010 and is still in the range of 1.05-1.07 for the PinPoint chambers PTW31014 and PTW31016. For the diode detectors included in this study (PTW60016, PTW 60017), the correction factor deviates no more than 2% from unity in field sizes between 10 × 10 and 1 × 1 cm(2), but below this field size there is a steep decrease of k(f(clin), f(msr))(Q(clin), Q(msr)) below unity, i.e. a strong overestimation of dose. Besides the field size and detector dependence, the results reveal a clear dependence of the correction factor on the accelerator geometry for field sizes below 1 × 1 cm(2), i.e. on the beam spot size of the primary electrons hitting the target. This effect is especially pronounced for the ionization chambers. In conclusion, comparing all detectors, the unshielded diode PTW60017 is highly recommended for small field dosimetry, since its correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) is closest to unity in small fields and mainly independent of the electron beam spot size.

  5. Electron Lenses for the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as anmore » option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.« less

  6. New beam line for time-of-flight medium energy ion scattering with large area position sensitive detector

    NASA Astrophysics Data System (ADS)

    Linnarsson, M. K.; Hallén, A.; Åström, J.; Primetzhofer, D.; Legendre, S.; Possnert, G.

    2012-09-01

    A new beam line for medium energy ion mass scattering (MEIS) has been designed and set up at the Ångström laboratory, Uppsala University, Sweden. This MEIS system is based on a time-of-flight (ToF) concept and the electronics for beam chopping relies on a 4 MHz function generator. Repetition rates can be varied between 1 MHz and 63 kHz and pulse widths below 1 ns are typically obtained by including beam bunching. A 6-axis goniometer is used at the target station. Scattering angle and energy of backscattered ions are extracted from a time-resolved and position-sensitive detector. Examples of the performance are given for three kinds of probing ions, 1H+, 4He+, and 11B+. Depth resolution is in the nanometer range and 1 and 2 nm thick Pt layers can easily be resolved. Mass resolution between nearby isotopes can be obtained as illustrated by Ga isotopes in GaAs. Taking advantage of the large size detector, a direct imaging (blocking pattern) of crystal channels are shown for hexagonal, 4H-SiC. The ToF-MEIS system described in this paper is intended for use in semiconductor and thin film areas. For example, depth profiling in the sub nanometer range for device development of contacts and dielectric interfaces. In addition to applied projects, fundamental studies of stopping cross sections in this medium energy range will also be conducted.

  7. Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Moens, Vince; Redaelli, Stefano

    2014-07-01

    Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The designmore » of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.« less

  8. Charge neutralization apparatus for ion implantation system

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.

    1992-01-01

    Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.

  9. Current-limited electron beam injection

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1977-01-01

    The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.

  10. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  11. Vibrational Analysis of a Shipboard Free Electron Laser Beam Path

    DTIC Science & Technology

    2011-12-01

    2 Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1...in Figure 2. Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1]) The narrow beam...3 is a top down view of the entire electron beam path. Figure 3. Electron Beam Line of a Notional FEL Oscillator . 2. Optical Path The optical

  12. Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.

    DTIC Science & Technology

    1982-07-01

    of my research to the mainstream of technology. The techniques used for beam processing are distinguished by their * ~.* beam source and method by...raster scanned CW lasers (CWL), pulsed ion beams (PI), area pulsed electron beams (PEE), raster scanned (RSEB) or multi - scanned electron beams (MSEB...where high quality or tailored profiles are required. Continuous wave lasers and multi -scanned or swept-line electron beams are the most likely candidates

  13. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from human fingers.

  14. Electron beam magnetic switch for a plurality of free electron lasers

    DOEpatents

    Schlitt, Leland G.

    1984-01-01

    Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.

  15. Definition of Beam Diameter for Electron Beam Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgardt, Paul; Pierce, Stanley W.; Dvornak, Matthew John

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machinemore » (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.« less

  16. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J.-F.; Opper, A.; Poelker, M.; Réal, J.-S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.; PEPPo Collaboration

    2016-05-01

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19 MeV /c , limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  17. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    DOE PAGES

    Abbott, D.; Adderley, P.; Adeyemi, A.; ...

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  18. DCS - A high flux beamline for time resolved dynamic compression science – Design highlights

    DOE PAGES

    Capatina, D.; D’Amico, K.; Nudell, J.; ...

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures.more » Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm 2. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm 2. Finally, a new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.« less

  19. DCS - A high flux beamline for time resolved dynamic compression science – Design highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capatina, D., E-mail: capatina@aps.anl.gov; D’Amico, K., E-mail: kdamico@aps.anl.gov; Nudell, J., E-mail: jnudell@aps.anl.gov

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures.more » Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm{sup 2}. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm{sup 2}. A new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.« less

  20. DCS - A High Flux Beamline for Time Resolved Dynamic Compression Science – Design Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capatina, D.; D'Amico, Kevin L.; Nudell, J.

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures.more » Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm2. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm2. A new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.« less

  1. Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target.

    PubMed

    Mattei, I; Bini, F; Collamati, F; De Lucia, E; Frallicciardi, P M; Iarocci, E; Mancini-Terracciano, C; Marafini, M; Muraro, S; Paramatti, R; Patera, V; Piersanti, L; Pinci, D; Rucinski, A; Russomando, A; Sarti, A; Sciubba, A; Solfaroli Camillocci, E; Toppi, M; Traini, G; Voena, C; Battistoni, G

    2017-02-21

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at [Formula: see text] and [Formula: see text] with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature, while no other results from helium and oxygen beams have been published yet. A discussion on the expected resolution of a slit camera detector is presented, demonstrating the feasibility of a prompt-γ-based monitoring technique for PT treatments using helium, carbon and oxygen ion beams.

  2. Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target

    NASA Astrophysics Data System (ADS)

    Mattei, I.; Bini, F.; Collamati, F.; De Lucia, E.; Frallicciardi, P. M.; Iarocci, E.; Mancini-Terracciano, C.; Marafini, M.; Muraro, S.; Paramatti, R.; Patera, V.; Piersanti, L.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Battistoni, G.

    2017-02-01

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at {{60}\\circ} and {{90}\\circ} with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature, while no other results from helium and oxygen beams have been published yet. A discussion on the expected resolution of a slit camera detector is presented, demonstrating the feasibility of a prompt-γ-based monitoring technique for PT treatments using helium, carbon and oxygen ion beams.

  3. Detectors for low energy electron cooling in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlier, F. S.

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions betweenmore » the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.« less

  4. Stopping Power for Degenerate Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, Jr., Robert

    2016-05-16

    This is a first attempt at calculating the BPS stopping power with electron degeneracy corrections. Section I establishes some notation and basic facts. Section II outlines the basics of the calculation, and in Section III contains some brief notes on how to proceed with the details of the calculation. The remaining work for the calculation starts with Section III.

  5. The radiated electromagnetic field from collimated gamma rays and electron beams in air

    NASA Astrophysics Data System (ADS)

    Tumolillo, T. A.; Wondra, J. P.; Hobbs, W. E.; Smith, K.

    1980-12-01

    Nuclear weapons effects computer codes are used to study the electromagnetic field produced by gamma rays or by highly relativistic electron beams moving through the air. Consideration is given to large-area electron and gamma beams, small-area electron beams, variation of total beam current, variation of pressure in the beam channel, variation of the beam rise time, variation of beam radius, far-field radiated signals, and induced current on a system from a charged-particle beam. The work has application to system EMP coupling from nuclear weapons or charged-particle-beam weapons.

  6. Photon generator

    DOEpatents

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  7. Use of electronic portal imaging devices for electron treatment verification.

    PubMed

    Kairn, T; Aland, T; Crowe, S B; Trapp, J V

    2016-03-01

    This study aims to help broaden the use of electronic portal imaging devices (EPIDs) for pre-treatment patient positioning verification, from photon-beam radiotherapy to photon- and electron-beam radiotherapy, by proposing and testing a method for acquiring clinically-useful EPID images of patient anatomy using electron beams, with a view to enabling and encouraging further research in this area. EPID images used in this study were acquired using all available beams from a linac configured to deliver electron beams with nominal energies of 6, 9, 12, 16 and 20 MeV, as well as photon beams with nominal energies of 6 and 10 MV. A widely-available heterogeneous, approximately-humanoid, thorax phantom was used, to provide an indication of the contrast and noise produced when imaging different types of tissue with comparatively realistic thicknesses. The acquired images were automatically calibrated, corrected for the effects of variations in the sensitivity of individual photodiodes, using a flood field image. For electron beam imaging, flood field EPID calibration images were acquired with and without the placement of blocks of water-equivalent plastic (with thicknesses approximately equal to the practical range of electrons in the plastic) placed upstream of the EPID, to filter out the primary electron beam, leaving only the bremsstrahlung photon signal. While the electron beam images acquired using a standard (unfiltered) flood field calibration were observed to be noisy and difficult to interpret, the electron beam images acquired using the filtered flood field calibration showed tissues and bony anatomy with levels of contrast and noise that were similar to the contrast and noise levels seen in the clinically acceptable photon beam EPID images. The best electron beam imaging results (highest contrast, signal-to-noise and contrast-to-noise ratios) were achieved when the images were acquired using the higher energy electron beams (16 and 20 MeV) when the EPID was calibrated using an intermediate (12 MeV) electron beam energy. These results demonstrate the feasibility of acquiring clinically-useful EPID images of patient anatomy using electron beams and suggest important avenues for future investigation, thus enabling and encouraging further research in this area. There is manifest potential for the EPID imaging method proposed in this work to lead to the clinical use of electron beam imaging for geometric verification of electron treatments in the future.

  8. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  9. SU-E-T-161: Characterization and Validation of CT Simulator Hounsfield Units to Relative Stopping Power Values for Proton Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnell, E; Ahmad, S; De La Fuente Herman, T

    2015-06-15

    Purpose: To develop a calibration curve that includes and minimizes the variations of Hounsfield Unit (HU) from a CT scanner to Relative Stopping Power (RSP) of tissues along the proton beam path. The variations are due to scanner and proton energy, technique, phantom size and placement, and tissue arrangement. Methods: A CIRS 062 M phantom with 10 plugs of known relative electron density (RED) was scanned through a 16 slice GE Discovery CT Simulator scanner. Three setup combinations of plug distributions and techniques clinically implemented for five treatment regions were scanned with energies of 100, 120, and 140 kV. Volumetricmore » HU values were measured for each plug and scan. The RSP values derived through the Bethe-Bloch formula are currently being verified with parallel-plate ionization chamber measurements in water using 80, 150, and 225 MeV proton beam. Typical treatment plans for treatment regions of brain, head-&-neck, chest, abdomen, and pelvis are being planned and dose delivered will be compared with film and Optically Stimulated Luminescence (OSL) measurements. Results: Percentage variations were determined for each variable. For tissues close to water, variations were <1% from any given parameter. Tissues far from water equivalence (lung and bone) showed the greatest sensitivity to change (7.4% maximum) with scanner energy and up to 5.3% with positioning of the phantom. No major variations were observed for proton energies within the treatment range. Conclusion: When deriving a calibration curve, attention should be placed to low and high HU values. A thorough verification process of calculated vs. water-phantom measured RSP values at different proton energies, followed by dose validation of planned vs. measured doses in phantom with film and OSL detectors are currently being undertaken.« less

  10. Ex vivo validation of a stoichiometric dual energy CT proton stopping power ratio calibration

    NASA Astrophysics Data System (ADS)

    Xie, Yunhe; Ainsley, Christopher; Yin, Lingshu; Zou, Wei; McDonough, James; Solberg, Timothy D.; Lin, Alexander; Teo, Boon-Keng Kevin

    2018-03-01

    A major source of uncertainty in proton therapy is the conversion of Hounsfield unit (HU) to proton stopping power ratio relative to water (SPR). In this study, we measured and quantified the accuracy of a stoichiometric dual energy CT (DECT) SPR calibration. We applied a stoichiometric DECT calibration method to derive the SPR using CT images acquired sequentially at 80 kVp and 140 kVp . The dual energy index was derived based on the HUs of the paired spectral images and used to calculate the effective atomic number (Z eff), relative electron density ({{ρ }e} ), and SPRs of phantom and biological materials. Two methods were used to verify the derived SPRs. The first method measured the sample’s water equivalent thicknesses to deduce the SPRs using a multi-layer ion chamber (MLIC) device. The second method utilized Gafchromic EBT3 film to directly compare relative ranges between sample and water after proton pencil beam irradiation. Ex vivo validation was performed using five different types of frozen animal tissues with the MLIC and three types of fresh animal tissues using film. In addition, the residual ranges recorded on the film were used to compare with those from the treatment planning system using both DECT and SECT derived SPRs. Bland-Altman analysis indicates that the differences between DECT and SPR measurement of tissue surrogates, frozen and fresh animal tissues has a mean of 0.07% and standard deviation of 0.58% compared to 0.55% and 1.94% respectively for single energy CT (SECT) and SPR measurement. Our ex vivo study indicates that the stoichiometric DECT SPR calibration method has the potential to be more accurate than SECT calibration under ideal conditions although beam hardening effects and other image artifacts may increase this uncertainty.

  11. Circular free-electron laser

    DOEpatents

    Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.

    1984-01-01

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  12. Electron beam simulation from gun to collector: Towards a complete solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertzig, R., E-mail: robert.mertzig@cern.ch; Shornikov, A., E-mail: robert.mertzig@cern.ch; Wenander, F.

    An electron-beam simulation technique for high-resolution complete EBIS/T modelling is presented. The technique was benchmarked on the high compression HEC{sup 2} test-stand with an electron beam current, current density and energy of 10 A, 10 kA/cm{sup 2} and 49.2 keV, and on the immersed electron beam at REXEBIS for electron beam characteristics of 0.4 A, 200 A/cm{sup 2} and 4.5 keV. In both Brillouin-like and immersed beams the electron-beam radius varies from several millimeters at the gun, through some hundreds of micrometers in the ionization region to a few centimeters at the collector over a total length of several meters.more » We report on our approach for finding optimal meshing parameters, based on the local beam properties such as magnetic field-strength, electron energy and beam radius. This approach combined with dividing the problem domain into sub-domains, and subsequent splicing of the local solutions allowed us to simulate the beam propagation in EBISes from the gun to the collector using a conventional PC in about 24–36 h. Brillouin-like electron beams propagated through the complete EBIS were used to analyze the beam behavior within the collector region. We checked whether elastically reflected paraxial electrons from a Brillouin-like beam will escape from the collector region and add to the loss current. We have also studied the power deposition profiles as function of applied potentials using two electrode geometries for a Brillouin-like beam including the effects of backscattered electrons.« less

  13. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  14. SEPAC data analysis in support of the environmental interaction program

    NASA Technical Reports Server (NTRS)

    Lin, Chin S.

    1990-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a two dimensional electrostatic particle code. The ionization effects of spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged space craft produced an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the space craft charging potential measured during the SEPAC experiments from Spacelab 1. A second paper is presented in which a two dimensional electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.

  15. Electron-Beam-Induced Current | Materials Science | NREL

    Science.gov Websites

    Electron-Beam-Induced Current Electron-Beam-Induced Current Photo of a GaAsP-on-Si solar cell. EBIC measure electron-beam-induced current (EBIC). In presence of an electrostatic field (p-n junction

  16. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  17. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  18. Conceptual designs of E × B multistage depressed collectors for gyrotrons

    NASA Astrophysics Data System (ADS)

    Wu, Chuanren; Pagonakis, Ioannis Gr.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John

    2017-04-01

    Multistage depressed collectors are challenges for high-power, high-frequency fusion gyrotrons. Two concepts exist in the literature: (1) unwinding the spent electron beam cyclotron motion utilizing non-adiabatic transitions of magnetic fields and (2) sorting and collecting the electrons using the E × B drift. To facilitate the collection by the drift, the hollow electron beam can be transformed to one or more thin beams before applying the sorting. There are many approaches, which can transform the hollow electron beam to thin beams; among them, two approaches similar to the tilted electric field collectors of traveling wave tubes are conceptually studied in this paper: the first one transforms the hollow circular electron beam to an elongated elliptic beam, and then the thin elliptic beam is collected by the E × B drift; the second one splits an elliptic or a circular electron beam into two arc-shaped sheet beams; these two parts are collected individually. The functionality of these concepts is proven by CST simulations. A model of a three-stage collector for a 170 GHz, 1 MW gyrotron using the latter approach shows 76% collector efficiency while taking secondary electrons and realistic electron beam characteristics into account.

  19. Beam characterisation of the KIRAMS electron microbeam system.

    PubMed

    Sun, G M; Kim, E H; Song, K B; Jang, M

    2006-01-01

    An electron microbeam system has been installed at the Korea Institute of Radiological and Medical Sciences (KIRAMS) for use in radiation biology studies. The electron beam is produced from a commercial electron gun, and the beam size is defined by a 5 microm diameter pinhole. Beam energy can be varied in the range of 1-100 keV, covering a range of linear energy transfer from 0.4 to 12.1 keV microm-1. The micrometer-sized electron beam selectively irradiates cells cultured in a Mylar-bottomed dish. The positioning of target cells one by one onto the beam exit is automated, as is beam shooting. The electron beam entering the target cells has been calibrated using a Passivated Implanted Planar Silicon (PIPS) detector. This paper describes the KIRAMS microbeam cell irradiation system and its beam characteristics.

  20. Prototype electron lens set-up for the Tevatron beam-beam compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Saewert, G.; Santucci, J.

    1999-05-17

    A prototype "electron lens" for the Tevatron beam-beam compensation project is commissioned at Fermilab. We de-scribe the set-up, report results of the first tests of the elec-tron beam, and discuss future plans.

  1. Instantaneous electron beam emittance measurement system based on the optical transition radiation principle

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin

    2014-01-01

    One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.

  2. An electron beam ion trap and source for re-acceleration of rare-isotope ion beams at TRIUMF

    NASA Astrophysics Data System (ADS)

    Blessenohl, M. A.; Dobrodey, S.; Warnecke, C.; Rosner, M. K.; Graham, L.; Paul, S.; Baumann, T. M.; Hockenbery, Z.; Hubele, R.; Pfeifer, T.; Ames, F.; Dilling, J.; Crespo López-Urrutia, J. R.

    2018-05-01

    Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.

  3. $pi$$sup +-$ TRACKS IN A FILAMENT SCINTILLATION CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, G.T.; Swanson, R.A.; Scarl, D.B.

    1960-09-01

    The performance of a filament scintillation chamber system designed for studies on stopping mesons was studied by exposing it to the 90-Mev pi/sup plus or minus/ beam of the Nevis cyclotron and taking a total of 16,000 photographs. THe results indicate that (1) except for meson tracks, the chamber appears clean even without the 200-mu sec gating and the iron blockhouse, (2) the magnetic field has no effect on the performance and resolution, (3) three or four tracks can appear in a single picture of the 1-in.-diameter chamber without confusion, and (4) even at the highest beam fluxes, the gatingmore » restricts the tracks to those selected by the counter system. Pictures of the distinguishable stopping of pi/ sup +/ and pi/sup -/ mesons are included. (D.L.C.)« less

  4. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    NASA Astrophysics Data System (ADS)

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    2018-01-01

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is set up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. The beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.

  5. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    PubMed

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  6. On the nuclear halo of a proton pencil beam stopping in water.

    PubMed

    Gottschalk, Bernard; Cascio, Ethan W; Daartz, Juliane; Wagner, Miles S

    2015-07-21

    The dose distribution of a proton beam stopping in water has components due to basic physics and may have others from beam contamination. We propose the concise terms core for the primary beam, halo (see Pedroni et al 2005 Phys. Med. Biol. 50 541-61) for the low dose region from charged secondaries, aura for the low dose region from neutrals, and spray for beam contamination. We have measured the dose distribution in a water tank at 177 MeV under conditions where spray, therefore radial asymmetry, is negligible. We used an ADCL calibrated thimble chamber and a Faraday cup calibrated integral beam monitor so as to obtain immediately the absolute dose per proton. We took depth scans at fixed distances from the beam centroid rather than radial scans at fixed depths. That minimizes the signal range for each scan and better reveals the structure of the core and halo. Transitions from core to halo to aura are already discernible in the raw data. The halo has components attributable to coherent and incoherent nuclear reactions. Due to elastic and inelastic scattering by the nuclear force, the Bragg peak persists to radii larger than can be accounted for by Molière single scattering. The radius of the incoherent component, a dose bump around midrange, agrees with the kinematics of knockout reactions. We have fitted the data in two ways. The first is algebraic or model dependent (MD) as far as possible, and has 25 parameters. The second, using 2D cubic spline regression, is model independent. Optimal parameterization for treatment planning will probably be a hybrid of the two, and will of course require measurements at several incident energies. The MD fit to the core term resembles that of the PSI group (Pedroni et al 2005), which has been widely emulated. However, we replace their T(w), a mass stopping power which mixes electromagnetic (EM) and nuclear effects, with one that is purely EM, arguing that protons that do not undergo hard single scatters continue to lose energy according to the Beth-Bloch formula. If that is correct, it is no longer necessary to measure T(w), and the dominant role played by the 'Bragg peak chamber' vanishes. For mathematical and other details we will refer to Gottschalk et al (2014, arXiv: 1409.1938v1), a long technical report of this project.

  7. On the nuclear halo of a proton pencil beam stopping in water

    NASA Astrophysics Data System (ADS)

    Gottschalk, Bernard; Cascio, Ethan W.; Daartz, Juliane; Wagner, Miles S.

    2015-07-01

    The dose distribution of a proton beam stopping in water has components due to basic physics and may have others from beam contamination. We propose the concise terms core for the primary beam, halo (see Pedroni et al 2005 Phys. Med. Biol. 50 541-61) for the low dose region from charged secondaries, aura for the low dose region from neutrals, and spray for beam contamination. We have measured the dose distribution in a water tank at 177 MeV under conditions where spray, therefore radial asymmetry, is negligible. We used an ADCL calibrated thimble chamber and a Faraday cup calibrated integral beam monitor so as to obtain immediately the absolute dose per proton. We took depth scans at fixed distances from the beam centroid rather than radial scans at fixed depths. That minimizes the signal range for each scan and better reveals the structure of the core and halo. Transitions from core to halo to aura are already discernible in the raw data. The halo has components attributable to coherent and incoherent nuclear reactions. Due to elastic and inelastic scattering by the nuclear force, the Bragg peak persists to radii larger than can be accounted for by Molière single scattering. The radius of the incoherent component, a dose bump around midrange, agrees with the kinematics of knockout reactions. We have fitted the data in two ways. The first is algebraic or model dependent (MD) as far as possible, and has 25 parameters. The second, using 2D cubic spline regression, is model independent. Optimal parameterization for treatment planning will probably be a hybrid of the two, and will of course require measurements at several incident energies. The MD fit to the core term resembles that of the PSI group (Pedroni et al 2005), which has been widely emulated. However, we replace their T(w), a mass stopping power which mixes electromagnetic (EM) and nuclear effects, with one that is purely EM, arguing that protons that do not undergo hard single scatters continue to lose energy according to the Beth-Bloch formula. If that is correct, it is no longer necessary to measure T(w), and the dominant role played by the ‘Bragg peak chamber’ vanishes. For mathematical and other details we will refer to Gottschalk et al (2014, arXiv: 1409.1938v1), a long technical report of this project.

  8. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  9. Dose to 'water-like' media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.

    PubMed

    Andreo, Pedro

    2015-01-07

    The difference between Monte Carlo Treatment Planning (MCTP) based on the assumption of 'water-like' tissues with densities obtained from CT procedures, or on tissue compositions derived from CT-determined densities, have been investigated. Stopping powers and electron fluences have been calculated for a range of media and body tissues for 6 MV photon beams, including changes in their physical data (density and stopping powers). These quantities have been used to determine absorbed doses using cavity theory. It is emphasized that tissue compositions given in ICRU or ICRP reports should not be given the standing of physical constants as they correspond to average values obtained for a limited number of human-body samples. It has been shown that mass stopping-power ratios to water are more dependent on patient-to-patient composition differences, and therefore on their mean excitation energies (I-values), than on mass density. Electron fluence in different media are also more dependent on media composition (and their I-values) than on density. However, as a consequence of the balance between fluence and stopping powers, doses calculated from their product are more constant than what the independent stopping powers and fluence variations suggest. Additionally, cancelations in dose ratios minimize the differences between the 'water-like' and 'tissue' approaches, yielding practically identical results except for bone, and to a lesser extent for adipose tissue. A priori, changing from one approach to another does not seem to be justified considering the large number of approximations and uncertainties involved throughout the treatment planning tissue segmentation and dose calculation procedures. The key issue continues to be the composition of tissues and their I-values, and as these cannot be obtained for individual patients, whatever approach is selected does not lead to significant differences from a water reference dose, the maximum of these being of the order of 5% for bone tissues. Considering, however, current developments in advanced dose calculation methods, planning in terms of dose-to-tissue should be the preferred choice, under the expectancy that progress in the field will gradually improve some of the crude approximations included in MCTP and numerical transport methods. The small differences obtained also show that a retrospective conversion from dose-to-tissue to dose-to-water, based on a widely used approach, would mostly increase the final uncertainty of the treatment planning process. It is demonstrated that, due to the difference between electron fluence distributions in water and in body tissues, the conversion requires an additional fluence correction that has so far been neglected. An improved expression for the conversion and data for the fluence correction factor are provided. These will be necessary even in a dose-to-tissue environment, for the normalization of the treatment plan to the reference dosimetry of the treatment unit, always calibrated in terms of absorbed dose to water.

  10. Dose to ‘water-like’ media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro

    2015-01-01

    The difference between Monte Carlo Treatment Planning (MCTP) based on the assumption of ‘water-like’ tissues with densities obtained from CT procedures, or on tissue compositions derived from CT-determined densities, have been investigated. Stopping powers and electron fluences have been calculated for a range of media and body tissues for 6 MV photon beams, including changes in their physical data (density and stopping powers). These quantities have been used to determine absorbed doses using cavity theory. It is emphasized that tissue compositions given in ICRU or ICRP reports should not be given the standing of physical constants as they correspond to average values obtained for a limited number of human-body samples. It has been shown that mass stopping-power ratios to water are more dependent on patient-to-patient composition differences, and therefore on their mean excitation energies (I-values), than on mass density. Electron fluence in different media are also more dependent on media composition (and their I-values) than on density. However, as a consequence of the balance between fluence and stopping powers, doses calculated from their product are more constant than what the independent stopping powers and fluence variations suggest. Additionally, cancelations in dose ratios minimize the differences between the ‘water-like’ and ‘tissue’ approaches, yielding practically identical results except for bone, and to a lesser extent for adipose tissue. A priori, changing from one approach to another does not seem to be justified considering the large number of approximations and uncertainties involved throughout the treatment planning tissue segmentation and dose calculation procedures. The key issue continues to be the composition of tissues and their I-values, and as these cannot be obtained for individual patients, whatever approach is selected does not lead to significant differences from a water reference dose, the maximum of these being of the order of 5% for bone tissues. Considering, however, current developments in advanced dose calculation methods, planning in terms of dose-to-tissue should be the preferred choice, under the expectancy that progress in the field will gradually improve some of the crude approximations included in MCTP and numerical transport methods. The small differences obtained also show that a retrospective conversion from dose-to-tissue to dose-to-water, based on a widely used approach, would mostly increase the final uncertainty of the treatment planning process. It is demonstrated that, due to the difference between electron fluence distributions in water and in body tissues, the conversion requires an additional fluence correction that has so far been neglected. An improved expression for the conversion and data for the fluence correction factor are provided. These will be necessary even in a dose-to-tissue environment, for the normalization of the treatment plan to the reference dosimetry of the treatment unit, always calibrated in terms of absorbed dose to water.

  11. Beam transport and monitoring for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Sokollik, T.; van Tilborg, J.; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W.

    2012-12-01

    The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.

  12. Highly parallel implementation of non-adiabatic Ehrenfest molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kanai, Yosuke; Schleife, Andre; Draeger, Erik; Anisimov, Victor; Correa, Alfredo

    2014-03-01

    While the adiabatic Born-Oppenheimer approximation tremendously lowers computational effort, many questions in modern physics, chemistry, and materials science require an explicit description of coupled non-adiabatic electron-ion dynamics. Electronic stopping, i.e. the energy transfer of a fast projectile atom to the electronic system of the target material, is a notorious example. We recently implemented real-time time-dependent density functional theory based on the plane-wave pseudopotential formalism in the Qbox/qb@ll codes. We demonstrate that explicit integration using a fourth-order Runge-Kutta scheme is very suitable for modern highly parallelized supercomputers. Applying the new implementation to systems with hundreds of atoms and thousands of electrons, we achieved excellent performance and scalability on a large number of nodes both on the BlueGene based ``Sequoia'' system at LLNL as well as the Cray architecture of ``Blue Waters'' at NCSA. As an example, we discuss our work on computing the electronic stopping power of aluminum and gold for hydrogen projectiles, showing an excellent agreement with experiment. These first-principles calculations allow us to gain important insight into the the fundamental physics of electronic stopping.

  13. Measuring the stopping power of α particles in compact bone for BNCT

    NASA Astrophysics Data System (ADS)

    Provenzano, L.; Rodríguez, L. M.; Fregenal, D.; Bernardi, G.; Olivares, C.; Altieri, S.; Bortolussi, S.; González, S. J.

    2015-01-01

    The stopping power of α particles in thin films of decalcified sheep femur, in the range of 1.5 to 5.0 MeV incident energy, was measured by transmission of a backscattered beam from a heavy target. Additionally, the film elemental composition was determined by Rutherford Backscattering Spectrometry (RBS). These data will be used to measure boron concentration in thin films of bone using a spectrometry technique developed by the University of Pavia, since the concentration ratio between healthy tissue and tumor is of fundamental importance in Boron Neutron Capture Therapy (BNCT). The present experimental data are compared with numerical simulation results and with tabulated stopping power data of non-decalcified human bone.

  14. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Krucker, S.; Glesener, L.; Ishikawa, S.; Ramsey, B.; Takahashi, T.; Lin, R.

    2012-05-01

    Hard x-ray (HXR) observations are a powerful diagnostic tool providing quantitative measurements of nonthermal energetic (>10 keV) electrons. Energetic electrons traveling in a plasma radiate HXR emission through the well-known process of bremsstrahlung. Solar eruptive events are the most powerful particle accelerators in the solar system, accelerating electrons up to hundreds of MeV. It is thought that the energy release process and particle acceleration occur somewhere in the corona. Since bremsstrahlung emission depends on the density of the ambient medium, solar HXR emission is strongest when electron beams enter the chromosphere where they lose their energy quickly through collisions. Energetic electrons moving in the relatively tenuous corona suffer few collisions, losing little energy and producing only faint HXR emission. Present-day instruments do not have the sensitivity to see the faint HXR emission from electrons traveling in the corona, nor the dynamic range to see such faint emission in the presence of bright HXR footpoint emission. Existing observations therefore show us only where energetic electrons are stopped but not where they are accelerated, nor along what path they escape from the acceleration site. Thus, to make the next breakthrough in understanding the energy release in solar eruptive events requires HXR imaging with much higher sensitivity and dynamic range. HXR focusing optics combined with position sensitive solid state detectors can provide both. We discuss the current state of technological development in this area and the science it would make possible.

  15. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.

    PubMed

    Rossomme, S; Palmans, H; Shipley, D; Thomas, R; Lee, N; Romano, F; Cirrone, P; Cuttone, G; Bertrand, D; Vynckier, S

    2013-08-21

    Based on experiments and numerical simulations, a study is carried out pertaining to the conversion of dose-to-graphite to dose-to-water in a carbon ion beam. This conversion is needed to establish graphite calorimeters as primary standards of absorbed dose in these beams. It is governed by the water-to-graphite mass collision stopping power ratio and fluence correction factors, which depend on the particle fluence distributions in each of the two media. The paper focuses on the experimental and numerical determination of this fluence correction factor for an 80 MeV/A carbon ion beam. Measurements have been performed in the nuclear physics laboratory INFN-LNS in Catania (Sicily, Italy). The numerical simulations have been made with a Geant4 Monte Carlo code through the GATE simulation platform. The experimental data are in good agreement with the simulated results for the fluence correction factors and are found to be close to unity. The experimental values increase with depth reaching 1.010 before the Bragg peak region. They have been determined with an uncertainty of 0.25%. Different numerical results are obtained depending on the level of approximation made in calculating the fluence correction factors. When considering carbon ions only, the difference between measured and calculated values is maximal just before the Bragg peak, but its value is less than 1.005. The numerical value is close to unity at the surface and increases to 1.005 near the Bragg peak. When the fluence of all charged particles is considered, the fluence correction factors are lower than unity at the surface and increase with depth up to 1.025 before the Bragg peak. Besides carbon ions, secondary particles created due to nuclear interactions have to be included in the analysis: boron ions ((10)B and (11)B), beryllium ions ((7)Be), alpha particles and protons. At the conclusion of this work, we have the conversion of dose-to-graphite to dose-to-water to apply to the response of a graphite calorimeter in an 80 MeV/A carbon ion beam. This conversion consists of the product of two contributions: the water-to-graphite electronic mass collision stopping power ratio, which is equal to 1.115, and the fluence correction factor which varies linearly with depth, as k(fl, all) = 0.9995 + 0.0048(zw-eq). The latter has been determined on the basis of experiments and numerical simulations.

  16. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  17. Diffractometer data collecting method and apparatus

    DOEpatents

    Steinmeyer, P.A.

    1991-04-16

    Diffractometer data is collected without the use of a movable receiver. A scanning device, positioned in the diffractometer between a sample and detector, varies the amount of the beam diffracted from the sample that is received by the detector in such a manner that the beam is detected in an integrated form. In one embodiment, a variable diameter beam stop is used which comprises a drop of mercury captured between a pair of spaced sheets and disposed in the path of the diffracted beam. By varying the spacing between the sheets, the diameter of the mercury drop is varied. In another embodiment, an adjustable iris diaphragm is positioned in the path of the diffracted beam and the iris opening is adjusted to control the amount of the beam reaching the detector. 5 figures.

  18. Diffractometer data collecting method and apparatus

    DOEpatents

    Steinmeyer, Peter A.

    1991-04-16

    Diffractometer data is collected without the use of a movable receiving s. A scanning device, positioned in the diffractometer between a sample and detector, varies the amount of the beam diffracted from the sample that is received by the detector in such a manner that the beam is detected in an integrated form. In one embodiment, a variable diameter beam stop is used which comprises a drop of mercury captured between a pair of spaced sheets and disposed in the path of the diffracted beam. By varying the spacing between the sheets, the diameter of the mercury drop is varied. In another embodiment, an adjustable iris diaphragm is positioned in the path of the diffracted beam and the iris opening is adjusted to control the amount of the beam reaching the detector.

  19. Optical property modification of PMMA by ion-beam implantation

    NASA Astrophysics Data System (ADS)

    Hong, Wan; Woo, Hyung-Joo; Choi, Han-Woo; Kim, Young-Suk; Kim, Gi-dong

    2001-01-01

    Polymeric waveguides were fabricated by proton implantation on poly(methyl methacrylate) (PMMA). Depth profiles of the refractive indices of modified regions were obtained and were found to be in good agreement with the stopping power curve of protons in PMMA. It means that the waveguides are formed at the depths where the stopping power is the maximum value. Light losses for 635 nm wavelength were measured using planar waveguides to verify if the transmittance is enough for the application of the technique to optical devices.

  20. Interaction of (O,Ar)ions with Prostate tissue

    NASA Astrophysics Data System (ADS)

    Saied, Bashair Mohammed, Dr.; Yaqoob, SaadNafea

    2018-05-01

    The use of Ion beam in cancer therapy allows an accurate irradiation of the tumor with minimum collateral damage in surrounding healthy tissue, for this purpose we calculate the energy loss for (O,Ar) ions beams with (prostate tissue) in energy rang(0.001-200) MeV using different theoretical and semi-empirical formulation. The stopping power values calculated using semi-empirical approaches SRIM, CaSP and SRIM Dictionary compound.

  1. Storage-ring Electron Cooler for Relativistic Ion Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less

  2. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, George R.

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  3. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  4. Verification of passive cooling techniques in the Super-FRS beam collimators

    NASA Astrophysics Data System (ADS)

    Douma, C. A.; Gellanki, J.; Najafi, M. A.; Moeini, H.; Kalantar-Nayestanaki, N.; Rigollet, C.; Kuiken, O. J.; Lindemulder, M. F.; Smit, H. A. J.; Timersma, H. J.

    2016-08-01

    The Super FRagment Separator (Super-FRS) at the FAIR facility will be the largest in-flight separator of heavy ions in the world. One of the essential steps in the separation procedure is to stop the unwanted ions with beam collimators. In one of the most common situations, the heavy ions are produced by a fission reaction of a primary 238U-beam (1.5 GeV/u) hitting a 12C target (2.5 g/cm2). In this situation, some of the produced ions are highly charged states of 238U. These ions can reach the collimators with energies of up to 1.3 GeV/u and a power of up to 500 W. Under these conditions, a cooling system is required to prevent damage to the collimators and to the corresponding electronics. Due to the highly radioactive environment, both the collimators and the cooling system must be suitable for robot handling. Therefore, an active cooling system is undesirable because of the increased possibility of malfunctioning and other complications. By using thermal simulations (performed with NX9 of Siemens PLM), the possibility of passive cooling is explored. The validity of these simulations is tested by independent comparison with other simulation programs and by experimental verification. The experimental verification is still under analysis, but preliminary results indicate that the explored passive cooling option provides sufficient temperature reduction.

  5. Enhancements to the Low-Energy Ion Facility at SUNY Geneseo

    NASA Astrophysics Data System (ADS)

    Barfield, Zachariah; Kostick, Steven; Nagasing, Ethan; Fletcher, Kurt; Padalino, Stephen

    2017-10-01

    The Low Energy Ion Facility at SUNY Geneseo is used for detector development and characterization for inertial confinement fusion diagnostics. The system has been upgraded to improve the ion beam quality by reducing contaminant ions. In the new configuration, ions produced by the Peabody Scientific duoplasmatron ion source are accelerated through a potential, focused into a new NEC analyzing magnet and directed to an angle of 30°. A new einzel lens on the output of the magnet chamber focuses the beam into a scattering chamber with a water-cooled target mount and rotatable detector mount plates. The analyzing magnet has been calibrated for deuteron, 4He+, and 4He2+ ion beams at a range of energies, and no significant hysteresis has been observed. The system can accelerate deuterons to energies up to 25 keV to initiate d-d fusion using a deuterated polymer target. Charged particle spectra with protons, tritons, and 3He ions from d-d fusion have been measured at scattering angles ranging from 55° to 135°. A time-of-flight beamline has been designed to measure the energies of ions elastically scattered at 135°. CEM detectors initiate start and stop signals from secondary electrons produced when low energy ions pass through very thin carbon foils. Funded in part by the U.S. Department of Energy through the Laboratory for Laser Energetics.

  6. Characterisation of mega-voltage electron pencil beam dose distributions: viability of a measurement-based approach.

    PubMed

    Barnes, M P; Ebert, M A

    2008-03-01

    The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.

  7. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  8. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from the ion source by high voltage applied to the extraction and accelerating grids. The current distribution of a single beamlet emitted from a single pore of IOS depends on the shape of the plasma boundary in the emission region. Total beam extracted by IOS is calculated at every point of 3D mesh as sum of all contributions from each grid pore. The code effectively unifies the ion beam formation, extraction and neutralization processes with neutral beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. Running time: 10 min for a standard run.

  9. Electron Beam Pattern Rotation as a Method of Tunable Bunch Train Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    Transversely modulated electron beams can be formed in photo injectors via microlens array (MLA) UV laser shap- ing technique. Microlenses can be arranged in polygonal lattices, with resulting transverse electron beam modula- tion mimicking the lenses pattern. Conventionally, square MLAs are used for UV laser beam shaping, and generated electron beam patterns form square beamlet arrays. The MLA setup can be placed on a rotational mount, thereby rotating electron beam distribution. In combination with transverse-to-longitudinal emittance exchange (EEX) beam line, it allows to vary beamlets horizontal projection and tune electron bunch train. In this paper, we extend the technique tomore » the case of different MLA lattice arrangements and explore the benefits of its rotational symmetries.« less

  10. Low-energy plasma focus device as an electron beam source.

    PubMed

    Khan, Muhammad Zubair; Ling, Yap Seong; Yaqoob, Ibrar; Kumar, Nitturi Naresh; Kuang, Lim Lian; San, Wong Chiow

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 10(16)/m(3), respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  11. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes.

    PubMed

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  12. Beam transport and monitoring for laser plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Sokollik, T.; Tilborg, J. van

    The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system,more » XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.« less

  13. TEM observations of radiation damage in tungsten irradiated by 20 MeV W ions

    NASA Astrophysics Data System (ADS)

    Ciupiński, Ł.; Ogorodnikova, O. V.; Płociński, T.; Andrzejczuk, M.; Rasiński, M.; Mayer, M.; Kurzydłowski, K. J.

    2013-12-01

    Polycrystalline, recrystallized W targets were subjected to implantation with 20 MeV W6+ ions in order to simulate radiation damage caused by fusion neutrons. Three samples with cumulative damage of 0.01, 0.1 and 0.89 dpa were produced. The near-surface zone of each sample has been analyzed by transmission electron microscopy (TEM). To this end, lamellae oriented perpendicularly to the targets implanted surface were milled out using focused ion beam (FIB). A reference lamella from non-irradiated, recrystallized W target was also prepared to estimate the damage introduced during FIB processing. TEM studies revealed a complex microstructure of the damaged zones as well as its evolution with cumulative damage level. The experimentally observed damage depth agrees very well with the one calculated using the Stopping and Range of Ions in Matter (SRIM) software.

  14. Characterization of Deuteron-Deuteron Neutron Generators

    NASA Astrophysics Data System (ADS)

    Waltz, Cory Scott

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) was commissioned at the University of California Berkeley. The characterization of the HFNG is presented in the following study. The current generator design produces near mono-energetic 2.45 MeV neutrons at outputs of 108 n/s. Calculations provided show that future conditioning at higher currents and voltages will allow for a production rate over 1010 n/s. Characteristics that effect the operational stability include the suppression of the target-emitted back streaming electrons, target sputtering and cooling, and ion beam optics. Suppression of secondary electrons resulting from the deuterium beam striking the target was achieved via the implementation of an electrostatic shroud with a voltage offset of greater than -400 V relative to the target. Ion beam optics analysis resulted in the creation of a defocussing extraction nozzle, allowing for cooler target temperatures and a more compact design. To calculate the target temperatures, a finite difference method (FDM) solver incorporating the additional heat removal effects of subcooled boiling was developed. Validation of the energy balance results from the finite difference method calculations showed the iterative solver converged to heat removal results within about 3% of the expected value. Testing of the extraction nozzle at 1.43 mA and 100 kV determined that overheating of the target did not occur as the measured neutron flux of the generator was near predicted values. Many factors, including the target stopping power, deuterium atomic species, and target loading ratio, affect the flux distribution of the HFNG neutron generator. A detailed analysis to understand these factors effects is presented. Comparison of the calculated flux of the neutron generator using deuteron depth implantation data, neutron flux distribution data, and deuterium atomic species data matched the experimentally calculated flux determined from indium foil irradiations. An overview of experiments using the HFNG, including medical isotope cross section measurements, geochronology, delayed gamma measurements from uranium fission, and single event upset of cpu's is discussed. Future work should focus on the reduction of beam induced arcing between the shroud and the vacuum chamber. Investigation of insulator charge build-up, as well as electrical ash-over of insulators should be explored. The reduction of beam induced arcing will allow for larger beam currents and acceleration voltages, therefore increasing the neutron flux.

  15. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    NASA Astrophysics Data System (ADS)

    Chen, Teng; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  16. Laser wakefield accelerated electron beam monitoring and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koga, J. K.; Mori, M.; Kotaki, H.

    2016-03-25

    We will discuss our participation in the ImPACT project, which has as one of its goals the development of an ultra-compact electron accelerator using lasers (< 1 GeV, < 10   m) and the generation of an x-ray beam from the accelerated electrons. Within this context we will discuss our investigation into electron beam monitoring and control. Since laser accelerated electrons will be used for x-ray beam generation combined with an undulator, we will present investigation into the possibilities of the improvement of electron beam emittance through cooling.

  17. Profiling of back-scattered electrons in opposed magnetic field of a Twin Electron Beam Gun

    NASA Astrophysics Data System (ADS)

    Sethi, S.; Gupta, Anchal; Dileep Kumar, V.; Mukherjee, Jaya; Gantayet, L. M.

    2012-11-01

    Electron gun is extensively used in material processing, physical vapour deposition and atomic vapour based laser processes. In these processes where the electron beam is incident on the substrate, a significant fraction of electron beam gets back-scattered from the target surface. The trajectory of this back scattered electron beam depends on the magnetic field in the vicinity. The fraction of back-scattered depends on the atomic number of the target metal and can be as high as ~40% of the incident beam current. These back-scattered electrons can cause undesired hot spots and also affect the overall process. Hence, the study of the trajectory of these back-scattered electrons is important. This paper provides the details of experimentally mapped back-scattered electrons of a 2×20kW Twin Electron Beam Gun (TEBG) in opposed magnetic field i.e. with these guns placed at 180° to each other.

  18. Future Opportunities at the Facility for Rare Isotope Beams

    NASA Astrophysics Data System (ADS)

    Sherrill, Bradley M.

    2018-05-01

    This paper overviews the Facility for Rare Isotope Beams, FRIB, its construction status at the time of the conference, and its scientific program. FRIB is based on a high-power, heavy-ion, superconducting linear accelerator that is designed to deliver at least 400kW at 200 MeV/u for all stable-ion beams and produce a large fraction of all possible isotopes of the elements. A three-stage fragment separator will separate rare isotope beams for use in experiments at high energy or stopped and reaccelerated to up to 10MeV/u. The facility is expected to have first beams in 2021. An overview of the planned scientific program, experimental capabilities, and equipment initiatives are presented.

  19. Influence of the electrode gap separation on the pseudospark-sourced electron beam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland

    Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less

  20. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitterer, M.; Stancari, G.; Valishev, A.

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  1. Device and method for imploding a microsphere with a fast liner

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner to drive the fast liner to implode a microsphere.

  2. Electron-beam-inactivated vaccine against Salmonella enteritidis colonization in molting hens

    USDA-ARS?s Scientific Manuscript database

    Electron Beam (eBeam) ionization technology has a variety of applications in modern society. The underlying hypothesis was that electron beam (eBeam) inactivated Salmonella enterica serovar Enteritidis (SE) cells can serve as a vaccine to control Salmonella colonization and Salmonella shedding in c...

  3. Microsecond Electron Beam Source with Electron Energy Up to 400 Kev and Plasma Anode

    NASA Astrophysics Data System (ADS)

    Abdullin, É. N.; Basov, G. F.; Shershnev, S.

    2017-12-01

    A new high-power source of electrons with plasma anode for producing high-current microsecond electron beams with electron energy up to 400 keV has been developed, manufactured, and put in operation. To increase the cross section and pulse current duration of the beam, a multipoint explosive emission cathode is used in the electron beam source, and the beam is formed in an applied external guiding magnetic field. The Marx generator with vacuum insulation is used as a high-voltage source. Electron beams with electron energy up to 300-400 keV, current of 5-15 kA, duration of 1.5-3 μs, energy up to 4 kJ, and cross section up to 150 cm2 have been produced. The operating modes of the electron beam source are realized in which the applied voltage is influenced weakly on the current. The possibility of source application for melting of metal surfaces is demonstrated.

  4. Fast electron microscopy via compressive sensing

    DOEpatents

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  5. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    DOEpatents

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  6. Harvesting (67)Cu from the Collection of a Secondary Beam Cocktail at the National Superconducting Cyclotron Laboratory.

    PubMed

    Mastren, Tara; Pen, Aranh; Loveless, Shaun; Marquez, Bernadette V; Bollinger, Elizabeth; Marois, Boone; Hubley, Nicholas; Brown, Kyle; Morrissey, David J; Peaslee, Graham F; Lapi, Suzanne E

    2015-10-20

    Isotope harvesting is a promising new method to obtain isotopes for which there is no reliable continuous supply at present. To determine the possibility of obtaining radiochemically pure radioisotopes from an aqueous beam dump at a heavy-ion fragmentation facility, preliminary experiments were performed to chemically extract a copper isotope from a large mixture of projectile fragmentation products in an aqueous medium. In this work a 93 MeV/u secondary beam cocktail was collected in an aqueous beam stop at the National Superconducting Cyclotron Laboratory (NSCL) located on the Michigan State University (MSU) campus. The beam cocktail consisted of ∼2.9% (67)Cu in a large mixture of co-produced isotopes ranging in atomic number from ∼19 to 34. The chemical extraction of (67)Cu was achieved via a two-step process: primary extraction using a divalent metal chelation disk followed by anion-exchange chromatography. A significant fraction (74 ± 4%) of the (67)Cu collected in the aqueous beam stop was recovered with >99% radiochemical purity. To illustrate the utility of this product, the purified (67)Cu material was then used to radiolabel an anti-EGFR antibody, Panitumumab, and injected into mice bearing colon cancer xenografts. The tumor uptake at 5 days postinjection was found to be 12.5 ± 0.7% which was in very good agreement with previously reported studies with this radiolabeled antibody. The present results demonstrate that harvesting isotopes from a heavy-ion fragmentation facility could be a promising new method for obtaining high-quality isotopes that are not currently available by traditional methods.

  7. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    DOE PAGES

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    2018-01-01

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less

  8. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less

  9. The characteristics of welded joints for air conditioning application

    NASA Astrophysics Data System (ADS)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  10. Simulation study of interactions of Space Shuttle-generated electron beams with ambient plasmas

    NASA Technical Reports Server (NTRS)

    Lin, Chin S.

    1992-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-1936. The objective of this report is to conduct large scale simulations of electron beams injected into space. The topics covered include the following: (1) simulation of radial expansion of an injected electron beam; (2) simulations of the active injections of electron beams; (3) parameter study of electron beam injection into an ionospheric plasma; and (4) magnetosheath-ionospheric plasma interactions in the cusp.

  11. An Investigation of Nonuniform Dose Deposition From an Electron Beam

    DTIC Science & Technology

    1994-08-01

    to electron - beam pulse. Ceramic package HIPEC Lid Electron beam Die Bond wires TLD TLD Silver epoxy 6 package cavity die TLD’s 21 3 4 5 Figure 2...these apertures was documented in a previous experiment relating to HIFX electron -beam dosimetry .2 The hardware required for this setup was a 60-cm...impurity serves 2Gregory K. Ovrebo, Steven M. Blomquist, and Steven R. Murrill, A HIFX Electron -Beam Dosimetry System, Army Research Laboratory, ARL-TR

  12. Beam-beam interaction study of medium energy eRHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao,Y.; Litvinenko, V. N.; Ptitsyn, V.

    Medium Energy eRHIC (MeRHIC), the first stage design of eRHIC, includes a multi-pass ERL that provides 4GeV high quality electron beam to collide with the ion beam of RHIC. It delivers a minimum luminosity of 10{sup 32} cm{sup -2}s{sup -1}. Beam-beam effects present one of major factors limiting the luminosity of colliders. In this paper, both beam-beam effects on the electron beam and the proton beam in MeRHIC are investigated. The beam-beam interaction can induce a head-tail type instability of the proton beam referred to as the kink instability. Thus, beam stability conditions should be established to avoid proton beammore » loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure that the beam quality is good enough for the energy recovery pass. The relation of proton beam stability, electron disruption and consequential luminosity are carried out after thorough discussion.« less

  13. Development and Testing of the Positron Identification By Coincident Annihilation Photons (PICAP) System

    NASA Astrophysics Data System (ADS)

    Tran, D.; Connell, J. J.; Lopate, C.; Bickford, B.

    2014-12-01

    Moderate energy positrons (~few to 10 MeV) have seldom been observed in the Heliosphere, due primarily to there not having been dedicated instruments for such measurements. Their detection would have implications in the study of Solar energetic particle events and the transport and modulation of the Solar wind and Galactic cosmic rays. The Positron Identification by Coincident Annihilation Photons (PICAP) system is designed specifically to measure these moderate energy positrons by simultaneously detecting the two 511-keV γ-ray photons that result from a positron stopping in the instrument and the subsequent electron-positron annihilation. This method is also expected to effectively discriminate positrons from protons by measuring the amount of energy deposited in the detectors (dE/dx versus residual energy). PICAP offers a low-mass, low-power option for measuring positrons, electrons, and ions in space. Following Monte Carlo modeling, a PICAP laboratory prototype, adaptable to a space-flight design, was designed, built, and tested. This instrument is comprised of (Si) solid-state detectors, plastic scintillation detectors, and high-Z BGO crystal scintillator suitable for detecting the 511-keV γ rays. The prototype underwent preliminary laboratory testing and calibration using radioactive sources for the purpose of establishing functionality. It has since been exposed to beams of energetic protons (up to ~200 MeV) at Massachusetts General Hospital's Francis H. Burr Proton Beam Therapy Center and positrons and electrons (up to ~10 MeV) at Idaho State University's Idaho Accelerator Center. The goal is to validate modeling and determine the performance of the instrument concept. We will present a summary of modeling calculations and analysis of data taken at the accelerator tests. This work is 95% supported by NASA Grant NNX10AC10G.

  14. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  15. Low-Energy Plasma Focus Device as an Electron Beam Source

    PubMed Central

    Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952

  16. Modeling of beam customization devices in the pencil-beam splitting algorithm for heavy charged particle radiotherapy.

    PubMed

    Kanematsu, Nobuyuki

    2011-03-07

    A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter with angular-acceptance correction for upstream collimation followed by stopping and scattering. They are individually transported with possible splitting near the aperture edge of a downstream collimator to form a sharp field edge. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will be used in the greater framework of the pencil-beam splitting algorithm for accurate and efficient patient dose calculation.

  17. New target and detection methods: active detectors

    NASA Astrophysics Data System (ADS)

    Mittig, W.; Savajols, H.; Demonchy, C. E.; Giot, L.; Roussel-Chomaz, P.; Wang, H.; Ter-Akopian, G.; Fomichev, A.; Golovkov, M. S.; Stepansov, S.; Wolski, R.; Alamanos, N.; Drouart, A.; Gillibert, A.; Lapoux, V.; Pollacco, E.

    2003-07-01

    The study of nuclei far from stability interacting with simple target nuclei, such as protons, deuterons, 3He and 4He implies the use of inverse kinematics. The very special kinematics, together with the low intensities of the beams calls for special techniques. In july 2002 we tested a new detector, in which the detector gas is the target. This allows in principle a 4π solid angle of the detection, and a big effective target thickness without loss of resolution. The detector developped, called Maya, used isobuthane C4H10 as gas in present tests, and other gases are possible. The multiplexed electronics of more than 1000channels allows the reconstruction of the events occuring between the incoming particle and the detector gas atoms in 3D. Here we were interested in the elastic scattering of 8He on protons for the study of the isobaric analogue states (IAS) of 9He. The beam, in this case, is stopped in the detector. The resonance energy is determined by the place of interaction and the energy of the recoiling proton. The design of the detector is shown, together with some preliminary results are discussed.

  18. Stable generation of GeV-class electron beams from self-guided laser-plasma channels

    NASA Astrophysics Data System (ADS)

    Hafz, Nasr A. M.; Jeong, Tae Moon; Choi, Il Woo; Lee, Seong Ku; Pae, Ki Hong; Kulagin, Victor V.; Sung, Jae Hee; Yu, Tae Jun; Hong, Kyung-Han; Hosokai, Tomonao; Cary, John R.; Ko, Do-Kyeong; Lee, Jongmin

    2008-09-01

    Table-top laser-driven plasma accelerators are gaining attention for their potential use in miniaturizing future high-energy accelerators. By irradiating gas jet targets with ultrashort intense laser pulses, the generation of quasimonoenergetic electron beams was recently observed. Currently, the stability of beam generation and the ability to scale to higher electron beam energies are critical issues for practical laser acceleration. Here, we demonstrate the first generation of stable GeV-class electron beams from stable few-millimetre-long plasma channels in a self-guided wakefield acceleration process. As primary evidence of the laser wakefield acceleration in a bubble regime, we observed a boost of both the electron beam energy and quality by reducing the plasma density and increasing the plasma length in a 1-cm-long gas jet. Subsequent three-dimensional simulations show the possibility of achieving even higher electron beam energies by minimizing plasma bubble elongation, and we anticipate dramatic increases in beam energy and quality in the near future. This will pave the way towards ultracompact, all-optical electron beam accelerators and their applications in science, technology and medicine.

  19. Beam-induced electron modulations observed during TSS 1R

    NASA Astrophysics Data System (ADS)

    Rubin, A. G.; Burke, W. J.; Gough, M. P.; Machuzak, J. S.; Gentile, L. C.; Huang, C. Y.; Hardy, D. A.; Thompson, D. C.; Raitt, W. J.

    1999-08-01

    We report on modulations of electron fluxes at megahertz frequencies measured by the Shuttle Potential and Return Electron Experiment (SPREE) during fast pulsed electron gun (FPEG) beam experiments conducted after the tether break event of the Tethered Satellite System Reflight. Six intervals of sustained modulations were identified while FPEG emitted a 100 mA beam of 1 kev electrons. During five events the beam pitch angle αB was near 90° and the modulations were near even or odd half harmonics of the electron gyrofrequency fce. In the sixth event with 60°>=αB>=45°, electron modulations were near estimated values of the electron plasma frequency fpe and 2fpe. Whenever SPREE detected beam electrons modulated at a given frequency, secondary electrons were also modulated at the same frequency over a broad range of energies. Occasionally, some secondary electrons were modulated simultaneously at a second frequency. Multiple frequencies were related as ratios of low integers. In one case the beam electrons were simultaneously modulated at 0.8 MHz and 1.25 kHz. SPREE measurements suggest that the beam electrons propagate in cylindrical shells whose inner edge is marked by steep spatial gradients in fluxes at 1 keV [Hardy et al., 1995]. Inside the shell, electron distribution functions have positive slopes ∂f/∂v⊥>0 at velocities near that of the beam. Velocity space gradients act as free-energy sources to drive cavity modes that alter the instantaneous guiding centers of electrons causing SPREE to sample alternating parts of the beam cylinder's inner edge. Associated time-varying electric fields also modulated the fluxes of secondary electrons reaching SPREE. Other cavity modes may be excited through nonlinear processes [Calvert, 1982]. With αB far from 90°, electrons in the beam cylinder evolved toward bump-on-tail distributions to excite large-amplitude Langmuir modulations at fpe and its harmonics [Klimas, 1983]. Low-frequency modulations are attributed to electron interactions with ion acoustic-like waves generated as the beam moved across magnetic field lines in the ionosphere at supersonic speeds.

  20. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory.

    PubMed

    Schwarz, S; Baumann, T M; Kittimanapun, K; Lapierre, A; Snyder, A

    2014-02-01

    The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm(2) has been reached when the EBIT magnet was operated at 4 T.

  1. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, S., E-mail: schwarz@nscl.msu.edu; Baumann, T. M.; Kittimanapun, K.

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assessmore » the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.« less

  2. Hardware-software complex of informing passengers of forecasted route transport arrival at stop

    NASA Astrophysics Data System (ADS)

    Pogrebnoy, V. Yu; Pushkarev, M. I.; Fadeev, A. S.

    2017-02-01

    The paper presents the hardware-software complex of informing the passengers of the forecasted route transport arrival. A client-server architecture of the forecasting information system is represented and an electronic information board prototype is described. The scheme of information transfer and processing, starting with receiving navigating telemetric data from a transport vehicle and up to the time of passenger public transport arrival at the stop, as well as representation of the information on the electronic board is illustrated and described. Methods and algorithms of determination of the transport vehicle current location in the city route network are considered in detail. The description of the proposed forecasting model of transport vehicle arrival time at the stop is given. The obtained result is applied in Tomsk for forecasting and displaying the arrival time information at the stops.

  3. Compact electron beam focusing column

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  4. Fast and precise processing of material by means of an intensive electron beam

    NASA Astrophysics Data System (ADS)

    Beisswenger, S.

    1984-07-01

    For engraving a picture carrying screen of cells into the copper-surface of gravure cylinders, an electron beam system was developed. Numerical computations of the power density in the image planes of the electron beam determined the design of the electron optical assembly. A highly stable electron beam of high power density is generated by a ribbon-like cathode. A system of magnetic lenses is used for fast control of the engraving processes and for dynamic changing of the electron optical demagnification. The electron beam engraving system is capable of engraving up to 150,000 gravure cells per sec.

  5. Reciprocity in the electronic stopping of slow ions in matter

    NASA Astrophysics Data System (ADS)

    Sigmund, P.

    2008-04-01

    The principle of reciprocity, i.e., the invariance of the inelastic excitation in ion-atom collisions against interchange of projectile and target, has been applied to the electronic stopping cross section of low-velocity ions and tested empirically on ion-target combinations supported by a more or less adequate amount of experimental data. Reciprocity is well obeyed (within ~10%) for many systems studied, and deviations exceeding ~20% are exceptional. Systematic deviations such as gas-solid or metal-insulator differences have been looked for but not identified on the present basis. A direct consequence of reciprocity is the equivalence of Z1 with Z2 structure for random slowing down. This feature is reasonably well supported empirically for ion-target combinations involving carbon, nitrogen, aluminium and argon. Reciprocity may be utilized as a criterion to reject questionable experimental data. In cases where a certain stopping cross section has not been or cannot be measured, the stopping cross section for the inverted system may be available and serve as a first estimate. It is suggested to build in reciprocity as a fundamental requirement into empirical interpolation schemes directed at the stopping of low-velocity ions. Examination of the SRIM and MSTAR codes reveals cases where reciprocity is obeyed accurately, but deviations of up to a factor of two are common. In case of heavy ions such as gold, electronic stopping cross sections predicted by SRIM are asserted to be almost an order of magnitude too high.

  6. Comparative dosimetric characterization for different types of detectors in high-energy electron beams

    NASA Astrophysics Data System (ADS)

    Lee, Chang Yeol; Kim, Woo Chul; Kim, Hun Jeong; Huh, Hyun Do; Park, Seungwoo; Choi, Sang Hyoun; Kim, Kum Bae; Min, Chul Kee; Kim, Seong Hoon; Shin, Dong Oh

    2017-02-01

    The purpose of this study is to perform a comparison and on analysis of measured dose factor values by using various commercially available high-energy electron beam detectors to measure dose profiles and energy property data. By analyzing the high-energy electron beam data from each detector, we determined the optimal detector for measuring electron beams in clinical applications. The dose linearity, dose-rate dependence, percentage depth dose, and dose profile of each detector were measured to evaluate the dosimetry characteristics of high-energy electron beams. The dose profile and the energy characteristics of high-energy electron beams were found to be different when measured by different detectors. Through comparison with other detectors based on the analyzed data, the microdiamond detector was found to have outstanding dose linearity, a low dose-rate dependency, and a small effective volume. Thus, this detector has outstanding spatial resolution and is the optimal detector for measuring electron beams. Radiation therapy results can be improved and related medical accidents can be prevented by using the procedure developed in this research in clinical practice for all beam detectors when measuring the electron beam dose.

  7. Free electron laser using Rf coupled accelerating and decelerating structures

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1984-01-01

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  8. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majeski, R.; Bell, R. E.; Boyle, D. P.

    We measured high edge electron temperatures (200 eV or greater) at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 x 10(17) m(-3), consistent with a low recycling metallic lithium boundary. In spite of the high edge temperature, the core impurity content is low. Z(eff) is estimated to be similar to 1.2, with a very modest contribution (< 0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gasmore » injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-beta, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-beta is briefly described.« less

  9. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    DOE PAGES

    Majeski, R.; Bell, R. E.; Boyle, D. P.; ...

    2017-03-20

    We measured high edge electron temperatures (200 eV or greater) at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 x 10(17) m(-3), consistent with a low recycling metallic lithium boundary. In spite of the high edge temperature, the core impurity content is low. Z(eff) is estimated to be similar to 1.2, with a very modest contribution (< 0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gasmore » injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-beta, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-beta is briefly described.« less

  10. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Majeski, R.; Bell, R. E.; Boyle, D. P.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Merino, E.; Raitses, Y.; Schmitt, J. C.; Allain, J. P.; Bedoya, F.; Bialek, J.; Biewer, T. M.; Canik, J. M.; Buzi, L.; Koel, B. E.; Patino, M. I.; Capece, A. M.; Hansen, C.; Jarboe, T.; Kubota, S.; Peebles, W. A.; Tritz, K.

    2017-05-01

    High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 × 1017 m-3, consistent with a low recycling metallic lithium boundary. Despite the high edge temperature, the core impurity content is low. Zeff is estimated to be ˜1.2, with a very modest contribution (<0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-β, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-β is briefly described.

  11. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    NASA Astrophysics Data System (ADS)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  12. Edge roughness evaluation method for quantifying at-size beam blur in electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Masaki; Moriya, Shigeru

    2000-07-01

    At-size beam blur at any given pattern size of an electron beam (EB) direct writer, HL800D, was quantified using the new edge roughness evaluation (ERE) method to optimize the electron-optical system. We characterized the two-dimensional beam-blur dependence on the electron deflection length of the EB direct writer. The results indicate that the beam blur ranged from 45 nm to 56 nm in a deflection field 2520 micrometer square. The new ERE method is based on the experimental finding that line edge roughness of a resist pattern is inversely proportional to the slope of the Gaussian-distributed quasi-beam-profile (QBP) proposed in this paper. The QBP includes effects of the beam blur, electron forward scattering, acid diffusion in chemically amplified resist (CAR), the development process, and aperture mask quality. The application the ERE method to investigating the beam-blur fluctuation demonstrates the validity of the ERE method in characterizing the electron-optical column conditions of EB projections such as SCALPEL and PREVAIL.

  13. Detection of an electron beam in a high density plasma via an electrostatic probe

    NASA Astrophysics Data System (ADS)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki

    2018-07-01

    An electron beam is detected by a 1D floating potential probe array in a relatively high density (1012–1013 cm‑3) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.

  14. Detection of an electron beam in a high density plasma via an electrostatic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart

    Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less

  15. Detection of an electron beam in a high density plasma via an electrostatic probe

    DOE PAGES

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; ...

    2018-05-08

    Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less

  16. New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten

    1994-01-01

    We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.

  17. Electron Beam-Cure Polymer Matrix Composites: Processing and Properties

    NASA Technical Reports Server (NTRS)

    Wrenn, G.; Frame, B.; Jensen, B.; Nettles, A.

    2001-01-01

    Researchers from NASA and Oak Ridge National Laboratory are evaluating a series of electron beam curable composites for application in reusable launch vehicle airframe and propulsion systems. Objectives are to develop electron beam curable composites that are useful at cryogenic to elevated temperatures (-217 C to 200 C), validate key mechanical properties of these composites, and demonstrate cost-saving fabrication methods at the subcomponent level. Electron beam curing of polymer matrix composites is an enabling capability for production of aerospace structures in a non-autoclave process. Payoffs of this technology will be fabrication of composite structures at room temperature, reduced tooling cost and cure time, and improvements in component durability. This presentation covers the results of material property evaluations for electron beam-cured composites made with either unidirectional tape or woven fabric architectures. Resin systems have been evaluated for performance in ambient, cryogenic, and elevated temperature conditions. Results for electron beam composites and similar composites cured in conventional processes are reviewed for comparison. Fabrication demonstrations were also performed for electron beam-cured composite airframe and propulsion piping subcomponents. These parts have been built to validate manufacturing methods with electron beam composite materials, to evaluate electron beam curing processing parameters, and to demonstrate lightweight, low-cost tooling options.

  18. Effects of two-temperature model on cascade evolution in Ni and NiFe

    DOE PAGES

    Samolyuk, German D.; Xue, Haizhou; Bei, Hongbin; ...

    2016-07-05

    We perform molecular dynamics simulations of Ni ion cascades in Ni and equiatomic NiFe under the following conditions: (a) classical molecular dynamics (MD) simulations without consideration of electronic energy loss, (b) classical MD simulations with the electronic stopping included, and (c) using the coupled two-temperature MD (2T-MD) model that incorporates both the electronic stopping and the electron-phonon interactions. Our results indicate that the electronic effects are more profound in the higher-energy cascades, and that the 2T-MD model results in a smaller amount of surviving damage and smaller defect clusters, while less damage is produced in NiFe than in Ni.

  19. Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator.

    PubMed

    Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V

    2012-06-01

    To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.

  20. Stopping power of ions in a magnetized two-temperature plasma.

    PubMed

    Nersisyan, H B; Walter, M; Zwicknagel, G

    2000-06-01

    Using the dielectric theory for a weakly coupled plasma, we investigate the stopping power of an ion in an anisotropic two-temperature electron plasma in the presence of a magnetic field. The analysis is based on the assumption that the energy variation of the ion is much less than its kinetic energy. A general expression for the stopping power is analyzed for weak and strong magnetic fields (i.e., for the electron cyclotron frequency less than and greater than the plasma frequency), and for low and high ion velocities. It is found that the usually velocity independent friction coefficient contains an anomalous term which diverges logarithmically as the projectile velocity approaches zero. The physical origin of this anomalous term is the coupling between the cyclotron motion of the electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion.

  1. Neon transport in selected organic composites. [stopping power of Kapton and polyethylene

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.

    1984-01-01

    An energy-dependent, perturbation expansion solution for heavy-ion transport in one dimension was used to calculate the dose from Ne-20 beams at incident kinetic energies of 350, 670, and 2000 MeV/amu onto selected organic composites. Transport coefficients, applicable to arbitrary ion beams over a broad range of energies, are presented. Polyethylene and Kapton were tested as constituents of multilayered shielding for spacecraft and astronauts.

  2. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electronmore » beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.« less

  3. ELECTRON BEAM SHAPING AND ITS APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, Aliaksei

    Transverse and longitudinal electron beam shaping is a crucial part of high-brightness electron accelerator operations. In this dissertation, we report on the corresponding beam dynamics research conducted at Fermilab Accelerator Science and Technology facility (FAST) and Argonne Wakeeld Accelerator (AWA). We demonstrate an experimental method for spatial laser and electron beam shaping using microlens arrays (MLAs) at a photoinjector facility. Such a setup was built at AWA and resulted in transverse emittance reduction by a factor of 2. We present transverse emittance partitioning methods that were recently employed at FAST facility. A strongly coupled electron beam was generated in anmore » axial magnetic eld and accelerated in 1.3 GHz SRF cavities to 34 MeV. It was then decoupled in Round-To-Flat beam transformer and beams with emittance asymmetry ratio of 100 were generated. We introduce the new methods of measuring electron beam canonical angular momentum, beam transformer optimization and beam image analysis. We also describe a potential longitudinal space-charge amplier setup for FAST high-energy beamline. As an outcome, a broadband partially coherent radiation in the UV range could be generated.« less

  4. Effect of electron beam on the properties of electron-acoustic rogue waves

    NASA Astrophysics Data System (ADS)

    El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.

    2015-04-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  5. Feasibility study for mega-electron-volt electron beam tomography.

    PubMed

    Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R

    2012-09-01

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  6. Method of automatic measurement and focus of an electron beam and apparatus therefore

    DOEpatents

    Giedt, W.H.; Campiotti, R.

    1996-01-09

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding is disclosed. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined. 12 figs.

  7. Method of automatic measurement and focus of an electron beam and apparatus therefor

    DOEpatents

    Giedt, Warren H.; Campiotti, Richard

    1996-01-01

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined.

  8. Filamentation instability of a fast electron beam in a dielectric target.

    PubMed

    Debayle, A; Tikhonchuk, V T

    2008-12-01

    High-intensity laser-matter interaction is an efficient method for high-current relativistic electron beam production. At current densities exceeding a several kA microm{-2} , the beam propagation is maintained by an almost complete current neutralization by the target electrons. In such a geometry of two oppositely directed flows, beam instabilities can develop, depending on the target and the beam parameters. The present paper proposes an analytical description of the filamentation instability of an electron beam propagating through an insulator target. It is shown that the collisionless and resistive instabilities enter into competition with the ionization instability. This latter process is dominant in insulator targets where the field ionization by the fast beam provides free electrons for the neutralization current.

  9. Tandem betatron

    DOEpatents

    Keinigs, Rhonald K.

    1992-01-01

    Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

  10. Calculation of the transverse kicks generated by the bends of a hollow electron lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio

    2014-03-25

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam in high-energy accelerators. They were used in the Fermilab Tevatron collider for abort-gap clearing, beam-beam compensation, and halo scraping. A beam-beam compensation scheme based upon electron lenses is currently being implemented in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. This work is in support of a conceptual design of hollow electron beam scraper for the Large Hadron Collider. It also applies to the implementation of nonlinear integrable optics with electron lenses in the Integrable Optics Testmore » Accelerator at Fermilab. We consider the axial asymmetries of the electron beam caused by the bends that are used to inject electrons into the interaction region and to extract them. A distribution of electron macroparticles is deposited on a discrete grid enclosed in a conducting pipe. The electrostatic potential and electric fields are calculated using numerical Poisson solvers. The kicks experienced by the circulating beam are estimated by integrating the electric fields over straight trajectories. These kicks are also provided in the form of interpolated analytical symplectic maps for numerical tracking simulations, which are needed to estimate the effects of the electron lens imperfections on proton lifetimes, emittance growth, and dynamic aperture. We outline a general procedure to calculate the magnitude of the transverse proton kicks, which can then be generalized, if needed, to include further refinements such as the space-charge evolution of the electron beam, magnetic fields generated by the electron current, and longitudinal proton dynamics.« less

  11. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohsen, O.; Gonin, I.; Kephart, R.

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to formmore » $$\\sim$$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.« less

  12. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  13. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  14. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  15. Modern developments in electron-beam fluorescence

    NASA Technical Reports Server (NTRS)

    Cattolica, Robert J.

    1991-01-01

    Recent developments in the area of electron-beam fluorescence are discussed with special attention given to the experience in the use of the electron-beam fluorescence in flight research. A new measurement approach, called electron-photon fluorescence (EPF), is described, and it is shown that EPF offers the potential of overcoming some of the disadvantages of electron-beam fluorescence in high-density flows. Examples of using the EPF technique are presented.

  16. Experimental Analysis of Pseudospark Sourced Electron Beam

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.

    2011-12-01

    The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.

  17. Propagation of electron beams in space

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Okuda, H.

    1988-01-01

    Particle simulations were performed in order to study the effects of beam plasma interaction and the propagation of an electron beam in a plasma with a magnetic field. It is found that the beam plasma instability results in the formation of a high energy tail in the electron velocity distribution which enhances the mean free path of the beam electrons. Moreover, the simulations show that when the beam density is much smaller than the ambient plasma density, currents much larger than the thermal return current can be injected into a plasma.

  18. Energy broadening due to space-charge oscillations in high current electron beams. [SEPAC payload experiment on Spacelab 1

    NASA Technical Reports Server (NTRS)

    Katz, I.; Jongeward, G. A.; Parks, D. E.; Reasoner, D. L.; Purvis, C. K.

    1986-01-01

    During electron beam accelerator operation on Spacelab I, substantial fluxes of electrons were observed with energies greater than the initial beam energy. Numerical calculations are performed for the emission of an unneutralized, one-dimensional electron beam. These calculations show clearly that space charge oscillations, which are associated with the charge buildup on the emitter, strongly modify the beam and cause the returning beam particles to have a distribution of kinetic energies ranging from half to over twice the initial energy.

  19. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  20. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, Alfred W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.

  1. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, A.W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.

  2. Value of the use of a combination of photons and electrons in radiotherapy (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharbi, H.E.A.; Rietsch, J.

    1973-01-01

    The modification of the distribution of the dose delivered in an electron beam by its addition to a photon beam is studied for three cases: electron beams of 10 to 30 MeV, x-ray beams produced by the same accelerator with gamma beams from /sup 60/Co, and thicknesses of 10 to 20 cm. The results showed that the dose distributions obtained in the combination of the two beams varies according to the energy (particularly the electron energy) and according to the contribution of the different beams and the geometric comparison of the irradiated region. The graphs presented show the relative contributionmore » or each beam. (JSR)« less

  3. Potential for EMU Fabric Damage by Electron Beam and Molten Metal During Space Welding for the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.

    1998-01-01

    As a consequence of preparations concerning the International Space Welding Experiment (ISWE), studies were performed to better understand the effect of molten metal contact and electron beam impingement with various fabrics for space suit applications. The question arose as to what would occur if the electron beam from the Ukrainian Universal Hand Tool (UHT) designed for welding in space were to impinge upon a piece of Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The expectation was that the electron beam would lay down a static charge pattern with no damage to the ceramic fabric. The electron beam is capable of spraying the fabric with enough negative charge to repel further electrons from the fabric before significant heating occurs. The static charge pattern would deflect any further charge accumulation except for a small initial amount of leakage to the grounded surface of the welder. However, when studies were made of the effect of the electron beam on the insulating ceramic fabric it was surprisingly found that the electron beam did indeed burn through the ceramic fabric. It was also found that the shorter electron beam standoff distances had longer burnthrough times than did some greater electron beam standoff distances. A possible explanation for the longer burnthrough times for the small electron beam standoff distance would be outgassing of the fabric which caused the electron beam hand-tool to cycle on and off to provide some protection for the cathodes. The electron beam hand tool was observed to cycle off at the short standoff distance of two inches likely due to vapors being outgassed. During the electron beam welding process there is an electron leakage, or current leakage, flow from the fabric. A static charge pattern is initially laid down by the electron beam current flow. The static charge makes up the current leakage flow which initially slightly heats up the fabric. The initially laid down surface charge leaks a small amount of current. The rate at which the current charge leaks from the fabric controls how fast the fabric heats up. As the ceramic fabric is heated it begins to outgass primarily from contamination/impurities atoms or molecules on and below the fabric surface. The contaminant gases ionize to create extra charge carriers and multiply a current of electrons. The emitted gas which ionized in the electron leakage flow promotes further leakage. Thus, the small leakage of charge from the fabric surface is enhanced by outgassing. When the electron beam current makes up the lost current, the incoming electrons heat the fabric and further enhance the outgassing. The additional leakage promotes additional heating up of the ceramic fabric. The electrons bound to the ceramic fabric surface leak off more and more as the surface gets hotter promoting even greater leakage. The additional electrons that result also gain energy in the field and produce further electrons. Eventually the process becomes unstable and accelerates to the point where a hole is burned through the fabric.

  4. Comparative study of cross-field and field-aligned electron beams in active experiments. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Pritchett, P. L.

    1988-01-01

    Beam-plasma interactions associated with the cross-field and field-aligned injection of electron beams from spacecraft were investigated using a two-dimensional (three velocity component) electrostatic particle simulations. It is shown that the beam properties and plasma response can be characterized well by the ratio between the stagnation time and the plasma response time, which depends on the ratio of the ambient plasma density to the beam density, the beam width, the beam energy, and the spacecraft length. It was found that the beams injected across the field lines tend to lose their coherence after about one or two gyrations due to space-charge oscillations induced by the beam, irrespective of the spacecraft charging. These oscillations scatter the beam electrons into a hollow cylinder of a radius equal to a beam electron gyroradius and thickness of the order of two beam Debye lengths. Parallel injected beams are subjected to similar oscillations, which cause the beam to expand to fill a solid cylinder of a comparable thickness.

  5. Electron Beam/Optical Hybrid Lithography For The Production Of Gallium Arsenide Monolithic Microwave Integrated Circuits (Mimics)

    NASA Astrophysics Data System (ADS)

    Nagarajan, Rao M.; Rask, Steven D.

    1988-06-01

    A hybrid lithography technique is described in which selected levels are fabricated by high resolution direct write electron beam lithography and all other levels are fabricated optically. This technique permits subhalf micron geometries and the site-by-site alignment for each field written by electron beam lithography while still maintaining the high throughput possible with optical lithography. The goal is to improve throughput and reduce overall cost of fabricating MIMIC GaAS chips without compromising device performance. The lithography equipment used for these experiments is the Cambridge Electron beam vector scan system EBMF 6.4 capable of achieving ultra high current densities with a beam of circular cross section and a gaussian intensity profile operated at 20 kev. The optical aligner is a Karl Suss Contact aligner. The flexibility of the Cambridge electron beam system is matched to the less flexible Karl Suss contact aligner. The lithography related factors, such as image placement, exposure and process related analyses, which influence overlay, pattern quality and performance, are discussed. A process chip containing 3.2768mm fields in an eleven by eleven array was used for alignment evaluation on a 3" semi-insulating GaAS wafer. Each test chip contained five optical verniers and four Prometrix registration marks per field along with metal bumps for alignment marks. The process parameters for these chips are identical to those of HEMT/epi-MESFET ohmic contact and gate layer processes. These layers were used to evaluate the overlay accuracy because of their critical alignment and dimensional control requirements. Two cases were examined: (1) Electron beam written gate layers aligned to optically imaged ohmic contact layers and (2) Electron beam written gate layers aligned to electron beam written ohmic contact layers. The effect of substrate charging by the electron beam is also investigated. The resulting peak overlay error accuracies are: (1) Electron beam to optical with t 0.2μm (2 sigma) and (2) Electron beam to electron beam with f 0.lμm (2 sigma). These results suggest that the electron beam/optical hybrid lithography techniques could be used for MIMIC volume production as alignment tolerances required by GaAS chips are met in both cases. These results are discussed in detail.

  6. Beam energy spread in FERMI@elettra gun and linac induced by intrabeam scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zholents, Alexander A; Zholents, Alexander A; Zolotorev, Max S.

    Intrabeam scattering (IBS) of electrons in the pre-cathode area in the electron guns know in the literature as Boersh effect is responsible for a growth of the electron beam energy spread there. Albeit most visible within the electron gun where the electron beam density is large and the energy spread is small, the IBS acts all along the entire electron beam pass through the Linac. In this report we calculate the energy spread induced by IBS in the FERMI@elettra electron gun.

  7. Accelerated Electron-Beam Formation with a High Capture Coefficient in a Parallel Coupled Accelerating Structure

    NASA Astrophysics Data System (ADS)

    Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.

    2018-01-01

    An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.

  8. Electron linear accelerator system for natural rubber vulcanization

    NASA Astrophysics Data System (ADS)

    Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.

    2017-09-01

    Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.

  9. Measurement of the electron beam mode in earth's foreshock

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Holzworth, R. H.

    1990-01-01

    High frequency electric field measurements from the AMPTE IRM plasma wave receiver are used to identify three simultaneously excited electrostatic wave modes in the earth's foreshock region: the electron beam mode, the Langmuir mode, and the ion acoustic mode. A technique is developed which allows the rest frame frequecy and wave number of the electron beam waves to be determined. It is shown that the experimentally determined rest frame frequency and wave number agree well with the most unstable frequency and wave number predicted by linear homogeneous Vlasov theory for a plasma with Maxwellian background electrons and a Lorentzian electron beam. From a comparison of the experimentally determined and theoretical values, approximate limits are put on the electron foreshock beam temperatures. A possible generation mechanism for ion acoustic waves involving mode coupling between the electron beam and Langmuir modes is also discussed.

  10. Single-shot coherent diffraction imaging of microbunched relativistic electron beams for free-electron laser applications.

    PubMed

    Marinelli, A; Dunning, M; Weathersby, S; Hemsing, E; Xiang, D; Andonian, G; O'Shea, F; Miao, Jianwei; Hast, C; Rosenzweig, J B

    2013-03-01

    With the advent of coherent x rays provided by the x-ray free-electron laser (FEL), strong interest has been kindled in sophisticated diffraction imaging techniques. In this Letter, we exploit such techniques for the diagnosis of the density distribution of the intense electron beams typically utilized in an x-ray FEL itself. We have implemented this method by analyzing the far-field coherent transition radiation emitted by an inverse-FEL microbunched electron beam. This analysis utilizes an oversampling phase retrieval method on the transition radiation angular spectrum to reconstruct the transverse spatial distribution of the electron beam. This application of diffraction imaging represents a significant advance in electron beam physics, having critical applications to the diagnosis of high-brightness beams, as well as the collective microbunching instabilities afflicting these systems.

  11. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  12. A simulation study of interactions of space-shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1991-01-01

    The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  13. A simulation study of interactions of Space-Shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  14. A fast and sensitive TLD method for measurement of energy and homogeneity of electron beams using transmitted radiation through lead.

    PubMed

    Pradhan, A S; Quast, U; Sharma, P K

    1994-09-01

    A simple and fast, but sensitive TLD method for the measurement of energy and homogeneity of therapeutically used electron beams has been developed and tested. This method is based on the fact that when small thicknesses of high-Z absorbers such as lead are interposed in the high-energy electron beams, the transmitted radiation increases with the energy of the electron beams. Consequently, the ratio of readouts of TLDS held on the two sides of a lead plate varied sharply (by factor of 70) with a change in energy of the electron beam from 5 MeV to 18 MeV, offering a very sensitive method for the measurement of the energy of electron beams. By using the ratio of TL readouts of two types of TLD ribbon with widely different sensitivities, LiF TLD-700 ribbons on the upstream side and highly sensitive CaF2:Dy TLD-200 ribbons on the downstream side, an electron energy discrimination of better than +/- 0.1 MeV could be achieved. The homogeneity of the electron beam energy and the absorbed dose was measured by using a jig in which the TLDS were held in the desired array on both sides of a 4 mm thick lead plate. The method takes minimal beam time and makes it possible to carry out measurements for the audit of the quality of electron beams as well as for intercomparison of beams by mail.

  15. Transverse Mode Electron Beam Microwave Generator

    NASA Technical Reports Server (NTRS)

    Wharton, Lawrence E.

    1994-01-01

    An electron beam microwave device having an evacuated interaction chamber to which are coupled a resonant cavity which has an opening between the resonant cavity and the evacuated interaction chamber and an electron gun which causes a narrow beam of electrons to traverse the evacuated interaction chamber. The device also contains a mechanism for feeding back a microwave electromagnetic field from the resonant cavity to the evacuated interaction chamber in such a way as to modulate the direction of propagation of the electron beam, thereby further amplifyjng the microwave electromagnetic field. Furthermore, provision is made for coupling the electromagnetic field out of the electron beam microwave device.

  16. Broad-band beam buncher

    DOEpatents

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1984-03-20

    A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

  17. Monte Carlo study of si diode response in electron beams.

    PubMed

    Wang, Lilie L W; Rogers, David W O

    2007-05-01

    Silicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc. The results indicate that, for this particular diode model, the diode response per unit water dose (or water/diode dose ratio) in both 6 and 18 MeV electron beams is flat within 2% versus depth, from near the phantom surface to the depth of R50 (with calculation uncertainty <0.3%). This suggests that there must be some other correction factors for ion chambers that counter-balance the large wall correction factor at depth in electron beams. In addition, the beam quality and field-size dependence of the diode model are also calculated. The results show that the water/diode dose ratio remains constant within 2% over the electron energy range from 6 to 18 MeV. The water/diode dose ratio does not depend on field size as long as the incident electron beam is broad and the electron energy is high. However, for a very small beam size (1 X 1 cm(2)) and low electron energy (6 MeV), the water/diode dose ratio may decrease by more than 2% compared to that of a broad beam.

  18. Process margin enhancement for 0.25-μm metal etch process

    NASA Astrophysics Data System (ADS)

    Lee, Chung Y.; Ma, Wei Wen; Lim, Eng H.; Cheng, Alex T.; Joy, Raymond; Ross, Matthew F.; Wong, Selmer S.; Marlowe, Trey

    2000-06-01

    This study evaluates electron beam stabilization of UV6, a positive tone Deep-UV (DUV) resist from Shipley, for a 0.25 micrometer metal etch application. Results are compared between untreated resist and resist treated with different levels of electron beam stabilization. The electron beam processing was carried out in an ElectronCureTM flood electron beam exposure system from Honeywell International Inc., Electron Vision. The ElectronCureTM system utilizes a flood electron beam source which is larger in diameter than the substrate being processed, and is capable of variable energy so that the electron range is matched to the resist film thickness. Changes in the UV6 resist material as a result of the electron beam stabilization are monitored via spectroscopic ellipsometry for film thickness and index of refraction changes and FTIR for analysis of chemical changes. Thermal flow stability is evaluated by applying hot plate bakes of 150 degrees Celsius and 200 degrees Celsius, to patterned resist wafers with no treatment and with an electron beam dose level of 2000 (mu) C/cm2. A significant improvement in the thermal flow stability of the patterned UV6 resist features is achieved with the electron beam stabilization process. Etch process performance of the UV6 resist was evaluated by performing a metal pattern transfer process on wafers with untreated resist and comparing these with etch results on wafers with different levels of electron beam stabilization. The etch processing was carried out in an Applied Materials reactor with an etch chemistry including BCl3 and Cl2. All wafers were etched under the same conditions and the resist was treated after etch to prevent further erosion after etch but before SEM analysis. Post metal etch SEM cross-sections show the enhancement in etch resistance provided by the electron beam stabilization process. Enhanced process margin is achieved as a result of the improved etch resistance, and is observed in reduced resist side-wall angles after etch. Only a slight improvement is observed in the isolated to dense bias effects of the etch process. Improved CD control is also achieved by applying the electron beam process, as more consistent CDs are observed after etch.

  19. SU-E-T-340: Dosimetry of a Small Field Electron Beam for Innovative Radiotherapy of Small Surface Or Internal Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reft, C; Lu, Z; Noonan, J

    2015-06-15

    Purpose: An innovative small high intensity electron beams with energies from 6 to 12 MeV is being developed at Argonne National Laboratory to deliver an absorbed dose via a catheter to small malignant and nonmalignant lesions. This study reports on the initial dosimetric characteristics of this electron beam. These include output calibration, percent depth dose, beam profiles and leakage through the catheter. Methods: To simulate the narrow electron beam, the Argonne Wakefield Accelerator is used to produce high energy electron beams. The electron beam from the accelerator is monitored by measuring the current through a transmission coil while the beammore » shape is observed with a fluorescent screen. The dosimetry properties of the electron beam transmitting through bone and tissue-like materials are measured with nanodot optically stimulated luminescent dosimeters and EDR radiographic film. The 6 MV photon beam from a Varian True beam linac is used to calibrate both the OSLDs and the film. Results: The beam characteristics of the 12 MeV beam were measured. The properties of the small diameter, 5 mm, beam differs from that of broad clinical electron beams from radiotherapy linacs. Due to the lack of scatter from the narrow beam, the maximum dose is at the surface and the depth of the 50% depth dose is 35 mm compared to 51 mm for a clinical 12 MeV. The widths of the 90% isodose measured at the surface and depths of 2, 6, 12, and 16 mm varied from 6.6 to 8.8 mm while the widths of the FWHM isodose varied from 7.8 to 25.5 mm. Conclusion: Initial beam measurements show favorable dosimetric properties for its use in treating either small surface or internal lesions, particularly to deliver radiation at the time of surgery to maximize the dose to the lesion and spare normal tissue.« less

  20. Space Charge Effect in the Sheet and Solid Electron Beam

    NASA Astrophysics Data System (ADS)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  1. Neutron production during the interaction of monoenergetic electrons with a Tungsten foil in the radiotherapeutic energy range

    NASA Astrophysics Data System (ADS)

    Soto-Bernal, Tzinnia Gabriela; Baltazar-Raigosa, Antonio; Medina-Castro, Diego; Vega-Carrillo, Hector Rene

    2017-10-01

    The electron, photon, and neutron spectra produced during the interaction between monoenergetic electron beams (8, 10, 12, 15, and 18 MeV) and a 0.05 cm-thick tungsten scattering foil were estimated using Monte Carlo method. Incoming electrons is a pencil beam that after collide with the foil acquires a broader distribution peaked in the same direction of the incoming electrons. Electron spectra show the influence of the binding energy of electrons in the tungsten shells and the increase of the electron fluence. In the interaction between the electrons in the beam and the tungsten atoms in the foil, bremsstrahlung and characteristic photons are produced. These photons are also peaked in the same direction of the incoming beam, and the electron fluence increases as the energy of the electron beam raises. The electron and photon spectra have particles whose energy is larger than the binding energy of neutron in the nucleus. Thus neutron production was noticed for 10, 12, 15, and 18 MeV electron beam. The neutron fluence becomes larger as the energy of the electron beam increases, the neutron spectra are mainly evaporation neutrons for 10 and 12 MeV, and for 15 and 18 MeV knock-on neutrons are also produced. Neutrons are produced in the foil volume having a quasi-isotropic distribution.

  2. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    PubMed

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  3. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams.

    PubMed

    Figueroa, R; Leiva, J; Moncada, R; Rojas, L; Santibáñez, M; Valente, M; Velásquez, J; Young, H; Zelada, G; Yáñez, R; Guillen, Y

    2018-03-08

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing device´s components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used to predict megavoltage electron beam control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Improved Design of Beam Tunnel for 42 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, A. K.

    2011-04-01

    In gyrotron, there is the chance of generation and excitation of unwanted RF modes (parasite oscillations). These modes may interact with electron beam and consequently degrade the beam quality. This paper presents the improved design of the beam tunnel to reduce the parasite oscillations and the effect of beam tunnel geometry on the electron beam parameters. The design optimization of the beam tunnel has been done with the help of 3-D simulation software CST-Microwave Studio and the effect of beam tunnel geometry on the electron beam parameters has been analyzed by EGUN code.

  5. Compensation of head-on beam-beam induced resonance driving terms and tune spread in the Relativistic Heavy Ion Collider

    DOE PAGES

    Fischer, W.; Gu, X.; Drees, K. A.; ...

    2017-09-13

    A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory [Phys. Rev. Lett. 115, 264801 (2015)]. The compensation consists of electron lenses for the reduction of the beam-beam induced tune spread, and a lattice for the minimization of beam-beam generated resonance driving terms. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.

  6. Compensation of head-on beam-beam induced resonance driving terms and tune spread in the Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, W.; Gu, X.; Drees, K. A.

    A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory [Phys. Rev. Lett. 115, 264801 (2015)]. The compensation consists of electron lenses for the reduction of the beam-beam induced tune spread, and a lattice for the minimization of beam-beam generated resonance driving terms. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.

  7. First test of BNL electron beam ion source with high current density electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, themore » EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.« less

  8. SU-F-T-67: Correction Factors for Monitor Unit Verification of Clinical Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haywood, J

    Purpose: Monitor units calculated by electron Monte Carlo treatment planning systems are often higher than TG-71 hand calculations for a majority of patients. Here I’ve calculated tables of geometry and heterogeneity correction factors for correcting electron hand calculations. Method: A flat water phantom with spherical volumes having radii ranging from 3 to 15 cm was created. The spheres were centered with respect to the flat water phantom, and all shapes shared a surface at 100 cm SSD. D{sub max} dose at 100 cm SSD was calculated for each cone and energy on the flat phantom and for the spherical volumesmore » in the absence of the flat phantom. The ratio of dose in the sphere to dose in the flat phantom defined the geometrical correction factor. The heterogeneity factors were then calculated from the unrestricted collisional stopping power for tissues encountered in electron beam treatments. These factors were then used in patient second check calculations. Patient curvature was estimated by the largest sphere that aligns to the patient contour, and appropriate tissue density was read from the physical properties provided by the CT. The resulting MU were compared to those calculated by the treatment planning system and TG-71 hand calculations. Results: The geometry and heterogeneity correction factors range from ∼(0.8–1.0) and ∼(0.9–1.01) respectively for the energies and cones presented. Percent differences for TG-71 hand calculations drop from ∼(3–14)% to ∼(0–2)%. Conclusion: Monitor units calculated with the correction factors typically decrease the percent difference to under actionable levels, < 5%. While these correction factors work for a majority of patients, there are some patient anatomies that do not fit the assumptions made. Using these factors in hand calculations is a first step in bringing the verification monitor units into agreement with the treatment planning system MU.« less

  9. SU-E-T-782: Using Light Output From Doped Plastic Scintillators to Resolve the Linear Energy Transfer Spectrum of Clinical Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusrat, H; Pang, G; Ahmad, S

    2015-06-15

    Purpose: This research seeks to develop a portable, clinically-suitable linear energy transfer (LET) detector. In radiotherapy, absorbed dose is commonly used to measure the amount of delivered radiation, though, it is not a good indicator of actual biological damage. LET is the energy absorbed per unit length by a medium along charged particle’s pathway; studies have shown that LET correlates well with relative biological effectiveness (RBE). Methods: According to Birks’ law, light output of plastic scintillators is stopping-power dependent. This dependency can be varied through doping by various high-Z elements. By measuring light output signals of differently doped plastic scintillatorsmore » (represented by column vector S, where each row corresponds to different scintillator material), the fluence of charged particles of a given LET (represented by column vector Φ, where each row corresponds to different LET bins) can be unfolded by S=R*Φ where R is system response matrix (each row represents a different scintillator, each column corresponds to different electron LET). Monte Carlo (MC) GEANT4.10.1 was used to evaluate ideal detector response of BC408 scintillating material doped with various concentrations of several high Z dopants. Measurements were performed to validate MC. Results: Signal for 1%-lead doped BC408 and the non-doped scintillator was measured experimentally by guiding light emitted by the scintillator (via in-house made taper, fiber system) to a PMT and then an electrometer. Simulations of 1%Pb-doped scintillator to non-doped scintillator revealed 9.3% reduction in light output for 6 MeV electrons which compared well (within uncertainty) with measurements showing 10% reduction (6MeV electrons). Conclusion: Measurements were used to validate MC simulation of light output from doped scintillators. The doping of scintillators is a viable technique to induce LET dependence. Our goal is to use this effect to resolve the LET spectrum of an incident beam.« less

  10. Electron beam deflection control system of a welding and surface modification installation

    NASA Astrophysics Data System (ADS)

    Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.

    2018-03-01

    In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.

  11. Pulsed electron beam propagation in gases under pressure of 6.6 kPa in drift tube

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Poloskov, A. V.

    2017-02-01

    This paper presents the results of an investigation of pulsed electron beam transport propagated in a drift tube filled with different gases (He, H2, N2, Ar, SF6, and CO2). The total pressure in the drift tube was 6.6 kPa. The experiments were carried out using a TEA-500 pulsed electron accelerator. The electron beam was propagated in the drift tube composed of two sections equipped with reverse current shunts. Under a pressure of 6.6 kPa, the maximum value of the electron beam charge closed on the walls of the drift tube was recorded when the beam was propagated in hydrogen and carbon dioxide. The minimum value of the electron beam charge closed on the walls of the drift tube was recorded for sulfur hexafluoride. The visualization of the pulsed electron beam energy losses onto the walls of the drift chamber was carried out using radiation-sensitive film.

  12. Observation of electron cloud instabilities and emittance dilution at the Cornell electron-positron Storage ring Test Accelerator

    DOE PAGES

    Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; ...

    2016-04-11

    Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnostics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud withmore » stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains, 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this study we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.« less

  13. Observation of Electron Cloud Instabilities and Emittance Dilution at the Cornell Electron-Positron Storage Ring Test Accelerator

    NASA Astrophysics Data System (ADS)

    Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; Dugan, G. F.; Flanagan, J.; McArdle, K. E.; Miller, M. I.; Palmer, M. A.; Ramirez, G. A.; Sonnad, K. G.; Totten, M. M.; Tucker, S. L.; Williams, H. A.

    2016-04-01

    Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.

  14. New experimental measurements of electron clouds in ion beams with large tune depression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molvik, A W; Covo, M K; Cohen, R H

    We study electron clouds in high perveance beams (K = 8E-4) with a large tune depression of 0.2 (defined as the ratio of a single particle oscillation response to the applied focusing fields, with and without space charge). These 1 MeV, 180 mA, K+ beams have a beam potential of +2 kV when electron clouds are minimized. Simulation results are discussed in a companion paper [J-L. Vay, this Conference]. We have developed the first diagnostics that quantitatively measure the accumulation of electrons in a beam [1]. This, together with measurements of electron sources, will enable the electron particle balance tomore » be measured, and electron-trapping efficiencies determined. We, along with colleagues from GSI and CERN, have also measured the scaling of gas desorption with beam energy and dE/dx [2]. Experiments where the heavy-ion beam is transported with solenoid magnetic fields, rather than with quadrupole magnetic or electrostatic fields, are being initiated. We will discuss initial results from experiments using electrode sets (in the middle and at the ends of magnets) to either expel or to trap electrons within the magnets. We observe electron oscillations in the last quadrupole magnet when we flood the beam with electrons from an end wall. These oscillations, of order 10 MHz, are observed to grow from the center of the magnet while drifting upstream against the beam, in good agreement with simulations.« less

  15. Microwave accelerator E-beam pumped laser

    DOEpatents

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  16. Ultrafast gating of a mid-infrared laser pulse by a sub-pC relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesar, D. B.; Musumeci, P.; Alesini, D.

    In this paper we discuss a relative time-of-arrival measurement scheme between an electron beam and a mid-infrared laser pulse based on the electron-beam controlled transmission in semiconductor materials. This technique can be used as a time-stamping diagnostic in ultrafast electron diffraction or microscopy. In particular, our characterization of Germanium demonstrates that sub-ps time-of-arrival sensitivity could be achieved in a single shot and with very low charge beams (<1 pC). Detailed measurements as a function of the beam charge and the laser wavelength offer insights on the free carrier dynamics in the semiconductor upon excitation by the electron beam.

  17. Measurements on wave propagation characteristics of spiraling electron beams

    NASA Technical Reports Server (NTRS)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  18. Slit injection device

    DOEpatents

    Alger, Terry W.; Schlitt, Leland G.; Bradley, Laird P.

    1976-06-15

    A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.

  19. Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.

    2016-08-01

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  20. SU-F-J-193: Efficient Dose Extinction Method for Water Equivalent Path Length (WEPL) of Real Tissue Samples for Validation of CT HU to Stopping Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R; Baer, E; Jee, K

    Purpose: For proton therapy, an accurate model of CT HU to relative stopping power (RSP) conversion is essential. In current practice, validation of these models relies solely on measurements of tissue substitutes with standard compositions. Validation based on real tissue samples would be much more direct and can address variations between patients. This study intends to develop an efficient and accurate system based on the concept of dose extinction to measure WEPL and retrieve RSP in biological tissue in large number of types. Methods: A broad AP proton beam delivering a spread out Bragg peak (SOBP) is used to irradiatemore » the samples with a Matrixx detector positioned immediately below. A water tank was placed on top of the samples, with the water level controllable in sub-millimeter by a remotely controlled dosing pump. While gradually lowering the water level with beam on, the transmission dose was recorded at 1 frame/sec. The WEPL were determined as the difference between the known beam range of the delivered SOBP (80%) and the water level corresponding to 80% of measured dose profiles in time. A Gammex 467 phantom was used to test the system and various types of biological tissue was measured. Results: RSP for all Gammex inserts, expect the one made with lung-450 material (<2% error), were determined within ±0.5% error. Depends on the WEPL of investigated phantom, a measurement takes around 10 min, which can be accelerated by a faster pump. Conclusion: Based on the concept of dose extinction, a system was explored to measure WEPL efficiently and accurately for a large number of samples. This allows the validation of CT HU to stopping power conversions based on large number of samples and real tissues. It also allows the assessment of beam uncertainties due to variations over patients, which issue has never been sufficiently studied before.« less

  1. Theory and simulations of current drive via injection of an electron beam in the ACT-1 device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuda, H.; Horton, R.; Ono, M.

    1985-02-01

    One- and two-dimensional particle simulations of beam-plasma interaction have been carried out in order to understand current drive experiments that use an electron beam injected into the ACT-1 device. Typically, the beam velocity along the magnetic field is V = 10/sup 9/ cm/sec while the thermal velocity of the background electrons is v/sub t/ = 10/sup 8//cm. The ratio of the beam density to the background density is about 10% so that a strong beam-plasma instability develops causing rapid diffusion of beam particles. For both one- and two- dimensional simulations, it is found that a significant amount of beam andmore » background electrons is accelerated considerably beyond the initial beam velocity when the beam density is more than a few percent of the background plasma density. In addition, electron distribution along the magnetic field has a smooth negative slope, f' (v/sub parallel/) < 0, for v/ sub parallel/ > 0 extending v/sub parallel/ = 1.5 V approx. 2 V, which is in sharp contrast to the predictions from quasilinear theory. An estimate of the mean-free path for beam electrons due to Coulomb collisions reveals that the beam electrons can propagate a much longer distance than is predicted from a quasilinear theory, due to the presence of a high energy tail. These simulation results agree well with the experimental observations from the ACT-1 device.« less

  2. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  3. The Electrical Structure of Discharges Modified by Electron Beams

    NASA Astrophysics Data System (ADS)

    Haas, F. A.; Braithwaite, N. St. J.

    1997-10-01

    Injection of an electron beam into a low pressure plasma modifies both the electrical structure and the distributions of charged particle energies. The electrical structure is investigated here in a one-dimensional model by representing the discharge as two collisionless sheaths with a monenergetic electron beam, linked by a quasi-neutral collisional region. The latter is modelled by fluid equations in which the beam current decreases with position. Since the electrodes are connected by an external conductor this implies through Kirchoff's laws that the thermal electron current must correspondingly increase with position. Given the boundary conditions and beam input at the first electrode then the rest of the system is uniquely described. The model reveals the dependence of the sheath potentials at the emitting and absorbing surfaces on the beam current. The model is relevant to externally injected beams and to electron beams originating from secondary processes on surfaces exposed to the plasma.

  4. Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre-Gaussian laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; College of Science, National University of Defense Technology, Changsha 410073; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-15

    We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radiusmore » on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.« less

  5. Manufacturing Methods and Technology Application of High Energy Laser Welding Process.

    DTIC Science & Technology

    1980-08-01

    surface appearance and the lowest porosity of the three beam shapes evaluated. Welds made with the pure annular beam resembled a TIG weld in both surface...improper starts and stops when welding with a conventional MIG or TIG process. Figure 16 left and center illustrates cracking due to fast freezing conditions...REPORT RL-82-2 0 MANUFACTURING METHODS AND TECHNOLOGY APPLICATION _OF HIGH ENERGY LASER WELDING PROCESS 0John V. Melonas Structures Directorate, U S

  6. Method of Making Large Area Nanostructures

    NASA Technical Reports Server (NTRS)

    Marks, Alvin M.

    1995-01-01

    A method which enables the high speed formation of nanostructures on large area surfaces is described. The method uses a super sub-micron beam writer (Supersebter). The Supersebter uses a large area multi-electrode (Spindt type emitter source) to produce multiple electron beams simultaneously scanned to form a pattern on a surface in an electron beam writer. A 100,000 x 100,000 array of electron point sources, demagnified in a long electron beam writer to simultaneously produce 10 billion nano-patterns on a 1 meter squared surface by multi-electron beam impact on a 1 cm squared surface of an insulating material is proposed.

  7. Electron-beam irradiation-induced gate oxide degradation

    NASA Astrophysics Data System (ADS)

    Cho, Byung Jin; Chong, Pei Fen; Chor, Eng Fong; Joo, Moon Sig; Yeo, In Seok

    2000-12-01

    Gate oxide degradation induced by electron-beam irradiation has been studied. A large increase in the low-field excess leakage current was observed on irradiated oxides and this was very similar to electrical stress-induced leakage currents. Unlike conventional electrical stress-induced leakage currents, however, electron-beam induced leakage currents exhibit a power law relationship with fluency without any signs of saturation. It has also been found that the electron-beam neither accelerates nor initiates quasibreakdown of the ultrathin gate oxide. Therefore, the traps generated by electron-beam irradiation do not contribute to quasibreakdown, only to the leakage current.

  8. High fidelity 3-dimensional models of beam-electron cloud interactions in circular accelerators

    NASA Astrophysics Data System (ADS)

    Feiz Zarrin Ghalam, Ali

    Electron cloud is a low-density electron profile created inside the vacuum chamber of circular machines with positively charged beams. Electron cloud limits the peak current of the beam and degrades the beams' quality through luminosity degradation, emittance growth and head to tail or bunch to bunch instability. The adverse effects of electron cloud on long-term beam dynamics becomes more and more important as the beams go to higher and higher energies. This problem has become a major concern in many future circular machines design like the Large Hadron Collider (LHC) under construction at European Center for Nuclear Research (CERN). Due to the importance of the problem several simulation models have been developed to model long-term beam-electron cloud interaction. These models are based on "single kick approximation" where the electron cloud is assumed to be concentrated at one thin slab around the ring. While this model is efficient in terms of computational costs, it does not reflect the real physical situation as the forces from electron cloud to the beam are non-linear contrary to this model's assumption. To address the existing codes limitation, in this thesis a new model is developed to continuously model the beam-electron cloud interaction. The code is derived from a 3-D parallel Particle-In-Cell (PIC) model (QuickPIC) originally used for plasma wakefield acceleration research. To make the original model fit into circular machines environment, betatron and synchrotron equations of motions have been added to the code, also the effect of chromaticity, lattice structure have been included. QuickPIC is then benchmarked against one of the codes developed based on single kick approximation (HEAD-TAIL) for the transverse spot size of the beam in CERN-LHC. The growth predicted by QuickPIC is less than the one predicted by HEAD-TAIL. The code is then used to investigate the effect of electron cloud image charges on the long-term beam dynamics, particularly on the transverse tune shift of the beam at CERN Super Proton Synchrotron (SPS) ring. The force from the electron cloud image charges on the beam cancels the force due to cloud compression formed on the beam axis and therefore the tune shift is mainly due to the uniform electron cloud density. (Abstract shortened by UMI.)

  9. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, Sergei M.

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electronmore » beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.« less

  10. Effects associated with nanostructure fabrication using in situ liquid cell TEM technology

    DOE PAGES

    Chen, Xin; Zhou, Lihui; Wang, Ping; ...

    2015-07-28

    We studied silicon, carbon, and SiC x nanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems. Nanodots obtained from fixed electron beam irradiation followed a universal size versus beam dose trend, with precursor concentrations from pure SiCl 4 to 0 % SiCl 4 in CH 2Cl 2, and electron beamintensity ranges of two orders of magnitude, showing good controllability of the deposition. Secondary electrons contributed to the determination of the lateral sizes of the nanostructures, while the primary beam appeared to have an effect in reducing the vertical growth rate. These results can be used to generatemore » donut-shaped nanostructures. Using a scanning electron beam, line structures with both branched and unbranched morphologies were also obtained. As a result, the liquid-phase electron-beam induced deposition technology is shown to be an effective tool for advanced nanostructured material generation.« less

  11. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  12. Phase space manipulation in high-brightness electron beams

    NASA Astrophysics Data System (ADS)

    Rihaoui, Marwan M.

    Electron beams have a wide range of applications, including discovery science, medicine, and industry. Electron beams can also be used to power next-generation, high-gradient electron accelerators. The performances of some of these applications could be greatly enhanced by precisely tailoring the phase space distribution of the electron beam. The goal of this dissertation is to explore some of these phase space manipulations. We especially focus on transformations capable of tailoring the beam current distribution. Specifically, we investigate a beamline exchanging phase space coordinates between the horizontal and longitudinal degrees of freedom. The key components necessary for this beamline were constructed and tested. The preliminary beamline was used as a singleshot phase space diagnostics and to produce a train of picoseconds electron bunches. We also investigate the use of multiple electron beams to control the transverse focusing. Our numerical and analytical studies are supplemented with experiments performed at the Argonne Wakefield Accelerator.

  13. Conceptual Design of Electron-Beam Generated Plasma Tools

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; Dorf, Leonid; Collins, Ken; Boris, David; Walton, Scott

    2015-09-01

    Realization of the next generation of high-density nanostructured devices is predicated on etching features with atomic layer resolution, no damage and high selectivity. High energy electron beams generate plasmas with unique features that make them attractive for applications requiring monolayer precision. In these plasmas, high energy beam electrons ionize the background gas and the resultant daughter electrons cool to low temperatures via collisions with gas molecules and lack of any accelerating fields. For example, an electron temperature of <0.6 eV with densities comparable to conventional plasma sources can be obtained in molecular gases. The chemistry in such plasmas can significantly differ from RF plasmas as the ions/radicals are produced primarily by beam electrons rather than those in the tail of a low energy distribution. In this work, we will discuss the conceptual design of an electron beam based plasma processing system. Plasma properties will be discussed for Ar, Ar/N2, and O2 plasmas using a computational plasma model, and comparisons made to experiments. The fluid plasma model is coupled to a Monte Carlo kinetic model for beam electrons which considers gas phase collisions and the effect of electric and magnetic fields on electron motion. The impact of critical operating parameters such as magnetic field, beam energy, and gas pressure on plasma characteristics in electron-beam plasma processing systems will be discussed. Partially supported by the NRL base program.

  14. Response of TLD-100 in mixed fields of photons and electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawless, Michael J.; Junell, Stephanie; Hammer, Cliff

    Purpose: Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. Methods: TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable {sup 60}Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam.more » The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the {sup 60}Co beam. Irradiations were performed in water and in a Virtual Water Trade-Mark-Sign phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. Results: TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. Conclusions: The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.« less

  15. Response of TLD-100 in mixed fields of photons and electrons.

    PubMed

    Lawless, Michael J; Junell, Stephanie; Hammer, Cliff; DeWerd, Larry A

    2013-01-01

    Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable (60)Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam. The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the (60)Co beam. Irradiations were performed in water and in a Virtual Water™ phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.

  16. Electron Beam "Writes" Silicon On Sapphire

    NASA Technical Reports Server (NTRS)

    Heinemann, Klaus

    1988-01-01

    Method of growing silicon on sapphire substrate uses beam of electrons to aid growth of semiconductor material. Silicon forms as epitaxial film in precisely localized areas in micron-wide lines. Promising fabrication method for fast, densely-packed integrated circuits. Silicon deposited preferentially in contaminated substrate zones and in clean zone irradiated by electron beam. Electron beam, like surface contamination, appears to stimulate decomposition of silane atmosphere.

  17. Transient effects in beam-plasma interactions in a space simulation chamber stimulated by a fast pulse electron gun

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Banks, P. M.; Denig, W. F.; Anderson, H. R.

    1982-01-01

    Interest in the interaction of electron beams with plasma generated by ionization caused by the primary electron beam was stimulated by the need to develop special vacuum tubes to operate in the kMHz frequency region. The experiments of Getty and Smullin (1963) indicated that the interaction of an energetic electron beam with its self-produced plasma resulted in the emission of wave energy over a wide range of frequencies associated with cyclotron and longitudinal plasma instabilities. This enhanced the thermal plasma density in the vicinity of the beam, and the term Beam-Plasma Discharge (BPD) was employed to described this phenomenon. The present investigation is concerned with some of the transient phenomena associated with wave emission during the beam switch-on and switch-off periods. Results are presented on the changes in electron energy spectra on a time scale of tens of milliseconds following beam switch-on. The results are discussed in terms of the beam plasma discharge phenomenon.

  18. Two-dimensional optimization of free electron laser designs

    DOEpatents

    Prosnitz, Donald; Haas, Roger A.

    1985-01-01

    Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  19. Simulation of electron beam formation and transport in a gas-filled electron-optical system with a plasma emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishkov, A. A.; Kornilov, S. Yu., E-mail: kornilovsy@gmail.com; Rempe, N. G.

    2016-07-15

    The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.

  20. Plasma Shield for In-Air and Under-Water Beam Processes

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2007-11-01

    As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.

  1. Optimization of combined electron and photon beams for breast cancer

    NASA Astrophysics Data System (ADS)

    Xiong, W.; Li, J.; Chen, L.; Price, R. A.; Freedman, G.; Ding, M.; Qin, L.; Yang, J.; Ma, C.-M.

    2004-05-01

    Recently, intensity-modulated radiation therapy and modulated electron radiotherapy have gathered a growing interest for the treatment of breast and head and neck tumours. In this work, we carried out a study to combine electron and photon beams to achieve differential dose distributions for multiple target volumes simultaneously. A Monte Carlo based treatment planning system was investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We compared breast treatment plans generated using this home-grown optimization and dose calculation software for different treatment techniques. Five different planning techniques have been developed for this study based on a standard photon beam whole breast treatment and an electron beam tumour bed cone down. Technique 1 includes two 6 MV tangential wedged photon beams followed by an anterior boost electron field. Technique 2 includes two 6 MV tangential intensity-modulated photon beams and the same boost electron field. Technique 3 optimizes two intensity-modulated photon beams based on a boost electron field. Technique 4 optimizes two intensity-modulated photon beams and the weight of the boost electron field. Technique 5 combines two intensity-modulated photon beams with an intensity-modulated electron field. Our results show that technique 2 can reduce hot spots both in the breast and the tumour bed compared to technique 1 (dose inhomogeneity is reduced from 34% to 28% for the target). Techniques 3, 4 and 5 can deliver a more homogeneous dose distribution to the target (with dose inhomogeneities for the target of 22%, 20% and 9%, respectively). In many cases techniques 3, 4 and 5 can reduce the dose to the lung and heart. It is concluded that combined photon and electron beam therapy may be advantageous for treating breast cancer compared to conventional treatment techniques using tangential wedged photon beams followed by a boost electron field.

  2. Observations of waves artificially stimulated by an electron beam inside a region with auroral precipitation

    NASA Technical Reports Server (NTRS)

    Grandal, B.; Troim, J.; Maehlum, B.; Holtet, J. A.; Pran, B.

    1980-01-01

    Observations of waves stimulated by artificial injection inside an auroral arc by an electron accelerator mounted on the POLAR 5 sounding rocket are presented. The accelerator produced a pulsed electron beam with currents up to 130 mA and energies up to 10 keV; emissions after the end of beam injection were generated by perturbations in the ambient plasma near the accelerator during beam injection. These emissions were independent of the electron beam direction along the geomagnetic field. The high frequency emission observed after beam injection correlated with the passage through an auroral arc; the low frequency emissions after beam injection were concentrated in two bands below the lower hybrid frequency.

  3. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  4. Heavy ion irradiation of crystalline water ice. Cosmic ray amorphisation cross-section and sputtering yield

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.

    2015-04-01

    Context. Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. Aims: We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. Methods: We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). Results: The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. Conclusions: The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices. Experiments performed at the Grand Accélérateur National d'Ions Lourds (GANIL) Caen, France. Part of this work has been financed by the French INSU-CNRS programme "Physique et Chimie du Milieu Interstellaire" (PCMI) and the ANR IGLIAS.

  5. ATTO SECOND ELECTRON BEAMS GENERATION AND CHARACTERIZATION EXPERIMENT AT THE ACCELERATOR TEST FACILITY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZOLOTOREV, M.; ZHOLENTS, A.; WANG, X.J.

    2002-02-01

    We are proposing an Atto-second electron beam generation and diagnostics experiment at the Brookhaven Accelerator Test facility (ATF) using 1 {micro}m Inverse Free Electron Laser (IFEL). The proposed experiment will be carried out by an BNL/LBNL collaboration, and it will be installed at the ATF beam line II. The proposed experiment will employ a one-meter long undulator with 1.8 cm period (VISA undulator). The electron beam energy will be 63 MeV with emittance less than 2 mm-mrad and energy spread less than 0.05%. The ATF photocathode injector driving laser will be used for energy modulation by Inverse Free Electron Lasermore » (IFEL). With 10 MW laser peak power, about 2% total energy modulation is expected. The energy modulated electron beam will be further bunched through either a drift space or a three magnet chicane into atto-second electron bunches. The attosecond electron beam bunches will be analyzed using the coherent transition radiation (CTR).« less

  6. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE PAGES

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang; ...

    2017-05-25

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  7. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  8. Automated pinhole-aperture diagnostic for the current profiling of TWT electron beams

    NASA Astrophysics Data System (ADS)

    Wei, Yu-Xiang; Huang, Ming-Guang; Liu, Shu-Qing; Liu, Jin-Yue; Hao, Bao-Liang; Du, Chao-Hai; Liu, Pu-Kun

    2013-02-01

    The measurement system reported here is intended for use in determining the current density distribution of electron beams from Pierce guns for use in TWTs. The system was designed to automatically scan the cross section of the electron beam and collect the high-resolution data with a Faraday cup probe mounted on a multistage manipulator using the LabVIEW program. A 0.06 mm thick molybdenum plate with a pinhole and a Faraday cup mounted as a probe assembly was employed to sample the electron beam current with 0.5 µm space resolution. The thermal analysis of the probe with pulse beam heating was discussed. A 0.45 µP electron gun with the expected minimum beam radius 0.42 mm was measured and the three-dimensional current density distribution, beam envelope and phase space were presented.

  9. [Vaping (electronic cigarette): how to advise smokers in 2017 ?

    PubMed

    Jacot Sadowski, Isabelle; Humair, Jean-Paul; Cornuz, Jacques

    2017-06-07

    Questions about electronic cigarettes, also called electronic nicotine delivery systems (ENDS), are very common when advising patients to stop smoking in medical practice. It is widely recognized that the risks of vaping are significantly lower than those of smoking, although there are uncertainties about its long-term health effects. Some studies suggest that vaping helps to stop smoking. Effective smoking cessation medications should be recommended in first line but vaping should not be discouraged when patients choose to use this device, as the main aim is smoking cessation. This paper proposes recommendations about vaping in common situations in medical practice with smokers.

  10. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  11. Empirical modeling of high-intensity electron beam interaction with materials

    NASA Astrophysics Data System (ADS)

    Koleva, E.; Tsonevska, Ts; Mladenov, G.

    2018-03-01

    The paper proposes an empirical modeling approach to the prediction followed by optimization of the exact shape of the cross-section of a welded seam, as obtained by electron beam welding. The approach takes into account the electron beam welding process parameters, namely, electron beam power, welding speed, and distances from the magnetic lens of the electron gun to the focus position of the beam and to the surface of the samples treated. The results are verified by comparison with experimental results for type 1H18NT stainless steel samples. The ranges considered of the beam power and the welding speed are 4.2 – 8.4 kW and 3.333 – 13.333 mm/s, respectively.

  12. High current polarized electron source for future eRHIC

    NASA Astrophysics Data System (ADS)

    Wang, Erdong

    2018-05-01

    The high current and high bunch charge polarized electron source is essential for cost reduction of Linac-Ring (L-R) eRHIC. In the baseline design, electron beam from multiple guns (probably 4-8) will be combined using deflection plates or accumulate ring. Each gun aims to deliver electron beam with 10 mA average current and 5.3 nC bunch charge. With total 50 mA and 5.3 nC electron beam, this beam combining design could use for generating positron too. The gun has been designed, fabricated and expected to start commissioning by the mid of this year. In this paper, we will present the DC gun design parameters and beam combine schemes. Also, we will describe the details of gun design and the strategies to demonstrate high current high charge polarized electron beam from this source.

  13. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    NASA Astrophysics Data System (ADS)

    Baumann, Thomas M.; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r_{80%}=(212± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm2 is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  14. Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Khledi, Navid; Arbabi, Azim; Sardari, Dariush; Mohammadi, Mohammad; Ameri, Ahmad

    2015-02-01

    Depending on the location and depth of tumor, the electron or photon beams might be used for treatment. Electron beam have some advantages over photon beam for treatment of shallow tumors to spare the normal tissues beyond of the tumor. In the other hand, the photon beam are used for deep targets treatment. Both of these beams have some limitations, for example the dependency of penumbra with depth, and the lack of lateral equilibrium for small electron beam fields. In first, we simulated the conventional head configuration of Varian 2300 for 16 MeV electron, and the results approved by benchmarking the Percent Depth Dose (PDD) and profile of the simulation and measurement. In the next step, a perforated Lead (Pb) sheet with 1mm thickness placed at the top of the applicator holder tray. This layer producing bremsstrahlung x-ray and a part of the electrons passing through the holes, in result, we have a simultaneous mixed electron and photon beam. For making the irradiation field uniform, a layer of steel placed after the Pb layer. The simulation was performed for 10×10, and 4×4 cm2 field size. This study was showed the advantages of mixing the electron and photon beam by reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size.

  15. A simple model of electron beam initiated dielectric breakdown

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Daniell, R. E.; Delmer, T. N.

    1985-01-01

    A steady state model that describes the internal charge distribution of a planar dielectric sample exposed to a uniform electron beam was developed. The model includes the effects of charge deposition and ionization of the beam, separate trap-modulated mobilities for electrons and holes, electron-hole recombination, and pair production by drifting thermal electrons. If the incident beam current is greater than a certain critical value (which depends on sample thickness as well as other sample properties), the steady state solution is non-physical.

  16. Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalov, Sergey, E-mail: konovserg@gmail.com; Alsaraeva, Krestina, E-mail: gromov@physics.sibsiu.ru; Gromov, Victor, E-mail: gromov@physics.sibsiu.ru

    By methods of scanning and transmission electron diffraction microscopy the analysis of structure-phase states and defect substructure of silumin subjected to high-intensity electron beam irradiation in various regimes and subsequent fatigue loading up to failure was carried out. It is revealed that the sources of fatigue microcracks are silicon plates of micron and submicron size are not soluble in electron beam processing. The possible reasons of the silumin fatigue life increase under electron-beam treatment are discussed.

  17. Broad-band beam buncher

    DOEpatents

    Goldberg, David A.; Flood, William S.; Arthur, Allan A.; Voelker, Ferdinand

    1986-01-01

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  18. Electron cloud generation and trapping in a quadrupole magnet at the Los Alamos proton storage ring

    NASA Astrophysics Data System (ADS)

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T. F.

    2008-01-01

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the “prompt” electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the “swept” electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100μs. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  19. Quantitative Analysis of Electron Beam Damage in Organic Thin Films

    PubMed Central

    2017-01-01

    In transmission electron microscopy (TEM) the interaction of an electron beam with polymers such as P3HT:PCBM photovoltaic nanocomposites results in electron beam damage, which is the most important factor limiting acquisition of structural or chemical data at high spatial resolution. Beam effects can vary depending on parameters such as electron dose rate, temperature during imaging, and the presence of water and oxygen in the sample. Furthermore, beam damage will occur at different length scales. To assess beam damage at the angstrom scale, we followed the intensity of P3HT and PCBM diffraction rings as a function of accumulated electron dose by acquiring dose series and varying the electron dose rate, sample preparation, and the temperature during acquisition. From this, we calculated a critical dose for diffraction experiments. In imaging mode, thin film deformation was assessed using the normalized cross-correlation coefficient, while mass loss was determined via changes in average intensity and standard deviation, also varying electron dose rate, sample preparation, and temperature during acquisition. The understanding of beam damage and the determination of critical electron doses provides a framework for future experiments to maximize the information content during the acquisition of images and diffraction patterns with (cryogenic) transmission electron microscopy. PMID:28553431

  20. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, H.W.; Kaita, R.

    1983-09-26

    Objects of the present invention are provided for a particle beam having a full energy component at least as great as 25 keV, which is directed onto a beamstop target, such that Rutherford backscattering, preferably near-surface backscattering occurs. The geometry, material composition and impurity concentration of the beam stop are predetermined, using any suitable conventional technique. The energy-yield characteristic response of backscattered particles is measured over a range of angles using a fast ion electrostatic analyzer having a microchannel plate array at its focal plane. The knee of the resulting yield curve, on a plot of yield versus energy, is analyzed to determine the energy species components of various beam particles having the same mass.

  1. Acceleration of plasma electrons by intense nonrelativistic ion and electron beams propagating in background plasma due to two-stream instability

    NASA Astrophysics Data System (ADS)

    Kaganovich, Igor D.

    2015-11-01

    In this paper we study the effects of the two-stream instability on the propagation of intense nonrelativistic ion and electron beams in background plasma. Development of the two-stream instability between the beam ions and plasma electrons leads to beam breakup, a slowing down of the beam particles, acceleration of the plasma particles, and transfer of the beam energy to the plasma particles and wave excitations. Making use of the particle-in-cell codes EDIPIC and LSP, and analytic theory we have simulated the effects of the two-stream instability on beam propagation over a wide range of beam and plasma parameters. Because of the two-stream instability the plasma electrons can be accelerated to velocities as high as twice the beam velocity. The resulting return current of the accelerated electrons may completely change the structure of the beam self - magnetic field, thereby changing its effect on the beam from focusing to defocusing. Therefore, previous theories of beam self-electromagnetic fields that did not take into account the effects of the two-stream instability must be significantly modified. This effect can be observed on the National Drift Compression Experiment-II (NDCX-II) facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma. Particle-in-cell, fluid simulations, and analytical theory also reveal the rich complexity of beam- plasma interaction phenomena: intermittency and multiple regimes of the two-stream instability in dc discharges; band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma and repeated acceleration of electrons in a finite system. In collaboration with E. Tokluoglu, D. Sydorenko, E. A. Startsev, J. Carlsson, and R. C. Davidson. Research supported by the U.S. Department of Energy.

  2. Electron beam generation in the turbulent plasma of Z-pinch discharges

    NASA Astrophysics Data System (ADS)

    Vikhrev, Victor V.; Baronova, Elena O.

    1997-05-01

    Numerical modeling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column has been accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression due to run away mechanism and it is not related with the current break effect.

  3. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. Themore » expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.« less

  4. Microwave signal processing with photorefractive dynamic holography

    NASA Astrophysics Data System (ADS)

    Fotheringham, Edeline B.

    Have you ever found yourself listening to the music playing from the closest stereo rather than to the bromidic (uninspiring) person speaking to you? Your ears receive information from two sources but your brain listens to only one. What if your cell phone could distinguish among signals sharing the same bandwidth too? There would be no "full" channels to stop you from placing or receiving a call. This thesis presents a nonlinear optical circuit capable of distinguishing uncorrelated signals that have overlapping temporal bandwidths. This so called autotuning filter is the size of a U.S. quarter dollar and requires less than 3 mW of optical power to operate. It is basically an oscillator in which the losses are compensated with dynamic holographic gain. The combination of two photorefractive crystals in the resonator governs the filter's winner-take-all dynamics through signal-competition for gain. This physical circuit extracts what is mathematically referred to as the largest principal component of its spatio-temporal input space. The circuit's practicality is demonstrated by its incorporation in an RF-photonic system. An unknown mixture of unknown microwave signals, received by an antenna array, constitutes the input to the system. The output electronically returns one of the original microwave signals. The front-end of the system down converts the 10 GHz microwave signals and amplifies them before the signals phase modulate optical beams. The optical carrier is suppressed from these beams so that it may not be considered as a signal itself to the autotuning filter. The suppression is achieved with two-beam coupling in a single photorefractive crystal. The filter extracts the more intense of the signals present on the carrier-suppressed input beams. The detection of the extracted signal restores the microwave signal to an electronic form. The system, without the receiving antenna array, is packaged in a 13 x 18 x 6″ briefcase. Its power consumption equals that of a regular 50 W household light bulb. The system was shipped to different parts of the country for real-time demonstrations of signal separation thus also validating its claim to robustness.

  5. Electron string phenomenon: physics and use

    NASA Astrophysics Data System (ADS)

    Donets, Evgeny D.

    2004-01-01

    Electron string phenomenon arises as a result of phase transition of a state of multiply reflected electron beam to this new discovered state of one component electron plasma and can be easily observed in the reflex mode of EBIS operation. The transition goes via a strong instability, which causes considerable electron energy spread, which in its turn suppresses the instability. Electron string state is a stationary state of hot pure electron plasma, which is heated by injected electron beam and cooled because of electron loses. Electron string is quiet in broad regions of experimental parameters, so that it is used for confinement and ionization of positive ions by electron impact to highly charge states similar to electron beams in EBIS. Application of electron strings instead of electron beams for ion production allows to save about 99% of electric power of electron beam and simultaneously to improve reliability of an ion source considerably. The JINR EBIS `Krion-2' in the string mode of operation is used for production of N7+, Ar16+ and Fe24+ ion beams and their acceleration to relativistic energies on the facility of the JINR super conducting one turn injection synchrotron `Nuklotron'. The tubular electron string possibly can exist and it is under study now theoretically and experiments are prepared now. Estimations show that a Tubular Electron String Ion Source (TESIS) could have up to three orders of magnitude higher ion output then a Linear one (LESIS). In frames of nuclear astrophysics electron strings can be used for research of fusion nuclear reactions at low energies in conditions when both beam and target nuclei do not carry orbital electrons. The project NARITA — Nuclear Astrophysics Researches in an Ion Trap Apparatus is proposed. Polarization effects also can be studied.

  6. Integrated control system for electron beam processes

    NASA Astrophysics Data System (ADS)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  7. Probe measurements of the electron velocity distribution function in beams: Low-voltage beam discharge in helium

    NASA Astrophysics Data System (ADS)

    Sukhomlinov, V.; Mustafaev, A.; Timofeev, N.

    2018-04-01

    Previously developed methods based on the single-sided probe technique are altered and applied to measure the anisotropic angular spread and narrow energy distribution functions of charged particle (electron and ion) beams. The conventional method is not suitable for some configurations, such as low-voltage beam discharges, electron beams accelerated in near-wall and near-electrode layers, and vacuum electron beam sources. To determine the range of applicability of the proposed method, simple algebraic relationships between the charged particle energies and their angular distribution are obtained. The method is verified for the case of the collisionless mode of a low-voltage He beam discharge, where the traditional method for finding the electron distribution function with the help of a Legendre polynomial expansion is not applicable. This leads to the development of a physical model of the formation of the electron distribution function in a collisionless low-voltage He beam discharge. The results of a numerical calculation based on Monte Carlo simulations are in good agreement with the experimental data obtained using the new method.

  8. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  9. MO-A-201-01: A Cliff’s Notes Version of Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruse, J.

    Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatchesmore » between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ from standard x-ray approaches, due to equipment design or the desire to maximize efficiency within a high-cost proton therapy treatment room. Differences between x-ray and proton therapy delivery will be described. Learning Objectives: Understand how CT HU are calibrated to provide proton stopping power, and the sources of uncertainty in this process. Understand why a PTV is not suitable for proton therapy, and how robust treatment planning and evaluation are used to mitigate uncertainties. Understand the source and implications of variable RBE in proton therapy Learn about proton specific challenges and approaches in beam delivery and image guidance Jon Kruse has a research grant from Varian Medical Systems related to proton therapy treatment plannning.; J. Kruse, Jon Kruse has a research grant with Varian Medical Systems related to proton therapy planning.« less

  10. MO-A-201-00: A Cliff’s Notes Version of Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatchesmore » between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ from standard x-ray approaches, due to equipment design or the desire to maximize efficiency within a high-cost proton therapy treatment room. Differences between x-ray and proton therapy delivery will be described. Learning Objectives: Understand how CT HU are calibrated to provide proton stopping power, and the sources of uncertainty in this process. Understand why a PTV is not suitable for proton therapy, and how robust treatment planning and evaluation are used to mitigate uncertainties. Understand the source and implications of variable RBE in proton therapy Learn about proton specific challenges and approaches in beam delivery and image guidance Jon Kruse has a research grant from Varian Medical Systems related to proton therapy treatment plannning.; J. Kruse, Jon Kruse has a research grant with Varian Medical Systems related to proton therapy planning.« less

  11. Incident-beam effects in electron-stimulated Auger-electron diffraction

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Cao, Jianming

    1991-04-01

    We have examined incident-beam effects in electron-stimulated Auger-electron diffraction (AED) on a cleaved GaAs(110) surface. The results indicate that incident-beam diffraction is significant in an AED experiment, and that the dissipative nature of the incident beam in contributing to the Auger process must be accounted for. We have developed a qualitative model that describes the trend of the polar-angle dependence of the Auger intensity for both the incident and exit beams. In calculating the diffraction features, we used a zeroth-order approximation to simulate the dissipation of the incident beam, which is found to adequately describe the experimental data.

  12. Study of a high power hydrogen beam diagnostic based on secondary electron emission.

    PubMed

    Sartori, E; Panasenkov, A; Veltri, P; Serianni, G; Pasqualotto, R

    2016-11-01

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  13. Electron-beam broadening in amorphous carbon films in low-energy scanning transmission electron microscopy.

    PubMed

    Drees, H; Müller, E; Dries, M; Gerthsen, D

    2018-02-01

    Resolution in scanning transmission electron microscopy (STEM) is ultimately limited by the diameter of the electron beam. The electron beam diameter is not only determined by the properties of the condenser lens system but also by electron scattering in the specimen which leads to electron-beam broadening and degradation of the resolution with increasing specimen thickness. In this work we introduce a new method to measure electron-beam broadening which is based on STEM imaging with a multi-segmented STEM detector. We focus on STEM at low electron energies between 10 and 30 keV and use an amorphous carbon film with known thickness as test object. The experimental results are compared with calculated beam diameters using different analytical models and Monte-Carlo simulations. We find excellent agreement of the experimental data with the recently published model by Gauvin and Rudinsky [1] for small t/λ el (thickness to elastic mean free path) values which are considered in our study. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Beam distribution reconstruction simulation for electron beam probe

    NASA Astrophysics Data System (ADS)

    Feng, Yong-Chun; Mao, Rui-Shi; Li, Peng; Kang, Xin-Cai; Yin, Yan; Liu, Tong; You, Yao-Yao; Chen, Yu-Cong; Zhao, Tie-Cheng; Xu, Zhi-Guo; Wang, Yan-Yu; Yuan, You-Jin

    2017-07-01

    An electron beam probe (EBP) is a detector which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While it can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain a parallel electron beam is introduced and a simulation code is developed. An EBP as a profile monitor for dense beams is then simulated using the fast scan method for various target beam profiles, including KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory is implemented and compared with the actual profile, and the expected agreement is achieved. Furthermore, as well as fast scan, a slow scan, i.e. step-by-step scan, is considered, which lowers the requirement for hardware, i.e. Radio Frequency deflector. We calculate the three-dimensional electric field of a Gaussian distribution and simulate the electron motion in this field. In addition, a fast scan along the target beam direction and slow scan across the beam are also presented, and can provide a measurement of longitudinal distribution as well as transverse profile simultaneously. As an example, simulation results for the China Accelerator Driven Sub-critical System (CADS) and High Intensity Heavy Ion Accelerator Facility (HIAF) are given. Finally, a potential system design for an EBP is described.

  15. Observations of ionospheric electron beams in the plasma sheet.

    PubMed

    Zheng, H; Fu, S Y; Zong, Q G; Pu, Z Y; Wang, Y F; Parks, G K

    2012-11-16

    Electrons streaming along the magnetic field direction are frequently observed in the plasma sheet of Earth's geomagnetic tail. The impact of these field-aligned electrons on the dynamics of the geomagnetic tail is however not well understood. Here we report the first detection of field-aligned electrons with fluxes increasing at ~1 keV forming a "cool" beam just prior to the dissipation of energy in the current sheet. These field-aligned beams at ~15 R(E) in the plasma sheet are nearly identical to those commonly observed at auroral altitudes, suggesting the beams are auroral electrons accelerated upward by electric fields parallel (E([parallel])) to the geomagnetic field. The density of the beams relative to the ambient electron density is δn(b)/n(e)~5-13% and the current carried by the beams is ~10(-8)-10(-7) A m(-2). These beams in high β plasmas with large density and temperature gradients appear to satisfy the Bohm criteria to initiate current driven instabilities.

  16. Digital electron diffraction – seeing the whole picture

    PubMed Central

    Beanland, Richard; Thomas, Paul J.; Woodward, David I.; Thomas, Pamela A.; Roemer, Rudolf A.

    2013-01-01

    The advantages of convergent-beam electron diffraction for symmetry determination at the scale of a few nm are well known. In practice, the approach is often limited due to the restriction on the angular range of the electron beam imposed by the small Bragg angle for high-energy electron diffraction, i.e. a large convergence angle of the incident beam results in overlapping information in the diffraction pattern. Techniques have been generally available since the 1980s which overcome this restriction for individual diffracted beams, by making a compromise between illuminated area and beam convergence. Here a simple technique is described which overcomes all of these problems using computer control, giving electron diffraction data over a large angular range for many diffracted beams from the volume given by a focused electron beam (typically a few nm or less). The increase in the amount of information significantly improves the ease of interpretation and widens the applicability of the technique, particularly for thin materials or those with larger lattice parameters. PMID:23778099

  17. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less

  18. Stopping dynamics of ions passing through correlated honeycomb clusters

    NASA Astrophysics Data System (ADS)

    Balzer, Karsten; Schlünzen, Niclas; Bonitz, Michael

    2016-12-01

    A combined nonequilibrium Green functions-Ehrenfest dynamics approach is developed that allows for a time-dependent study of the energy loss of a charged particle penetrating a strongly correlated system at zero and finite temperatures. Numerical results are presented for finite inhomogeneous two-dimensional Fermi-Hubbard models, where the many-electron dynamics in the target are treated fully quantum mechanically and the motion of the projectile is treated classically. The simulations are based on the solution of the two-time Dyson (Keldysh-Kadanoff-Baym) equations using the second-order Born, third-order, and T -matrix approximations of the self-energy. As application, we consider protons and helium nuclei with a kinetic energy between 1 and 500 keV/u passing through planar fragments of the two-dimensional honeycomb lattice and, in particular, examine the influence of electron-electron correlations on the energy exchange between projectile and electron system. We investigate the time dependence of the projectile's kinetic energy (stopping power), the electron density, the double occupancy, and the photoemission spectrum. Finally, we show that, for a suitable choice of the Hubbard model parameters, the results for the stopping power are in fair agreement with ab initio simulations for particle irradiation of single-layer graphene.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quashie, Edwin E.; Saha, Bidhan C.; Correa, Alfredo A.

    Here, we present an ab initio study of the electronic stopping power of protons in copper over a wide range of proton velocities v = 0.02–10a.u. where we take into account nonlinear effects. Time-dependent density functional theory coupled with molecular dynamics is used to study electronic excitations produced by energetic protons. A plane-wave pseudopotential scheme is employed to solve the time-dependent Kohn-Sham equations for a moving ion in a periodic crystal. The electronic excitations and the band structure determine the stopping power of the material and alter the interatomic forces for both channeling and off-channeling trajectories. Our off-channeling results aremore » in quantitative agreement with experiments, and at low velocity they unveil a crossover region of superlinear velocity dependence (with a power of ~1.5) in the velocity range v = 0.07–0.3a.u., which we associate to the copper crystalline electronic band structure. The results are rationalized by simple band models connecting two separate regimes. We find that the limit of electronic stopping v → 0 is not as simple as phenomenological models suggest and it is plagued by band-structure effects.« less

  20. Simulation studies for operating electron beam ion trap at very low energy for disentangling edge plasma spectra

    NASA Astrophysics Data System (ADS)

    Jin, Xuelong; Fei, Zejie; Xiao, Jun; Lu, Di; Hutton, Roger; Zou, Yaming

    2012-07-01

    Electron beam ion traps (EBITs) are very useful tools for disentanglement studies of atomic processes in plasmas. In order to assist studies on edge plasma spectroscopic diagnostics, a very low energy EBIT, SH-PermEBIT, has been set up at the Shanghai EBIT lab. In this work, simulation studies for factors which hinder an EBIT to operate at very low electron energies were made based on the Tricomp (Field Precision) codes. Longitudinal, transversal, and total kinetic energy distributions were analyzed for all the electron trajectories. Influences from the electron current and electron energy on the energy depression caused by the space charge are discussed. The simulation results show that although the energy depression is most serious along the center of the electron beam, the electrons in the outer part of the beam are more likely to be lost when an EBIT is running at very low energy. Using the simulation results to guide us, we successfully managed to reach the minimum electron beam energy of 60 eV with a beam transmission above 57% for the SH-PermEBIT. Ar and W spectra were measured from the SH-PermEBIT at the apparent electron beam energies (read from the voltage difference between the electron gun cathode and the central drift tube) of 60 eV and 1200 eV, respectively. The spectra are shown in this paper.

Top