Sample records for electron beam surface

  1. Use of beam deflection to control an electron beam wire deposition process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  2. Method of Making Large Area Nanostructures

    NASA Technical Reports Server (NTRS)

    Marks, Alvin M.

    1995-01-01

    A method which enables the high speed formation of nanostructures on large area surfaces is described. The method uses a super sub-micron beam writer (Supersebter). The Supersebter uses a large area multi-electrode (Spindt type emitter source) to produce multiple electron beams simultaneously scanned to form a pattern on a surface in an electron beam writer. A 100,000 x 100,000 array of electron point sources, demagnified in a long electron beam writer to simultaneously produce 10 billion nano-patterns on a 1 meter squared surface by multi-electron beam impact on a 1 cm squared surface of an insulating material is proposed.

  3. Flexible foils formed by a prolonged electron beam irradiation in scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Čechal, Jan; Šikola, Tomáš

    2017-11-01

    The ubiquitous presence of hydrocarbon contamination on solid surfaces alters their inherent physical properties and complicates the surface analyses. An irradiation of sample surface with electron beam can lead to the chemical transformation of the hydrocarbon layer to carbon films, which are flexible and capable of acting as a barrier for chemical etching of an underlying material. The growth of these foils is limited by supply of hydrocarbons to the writing beam position rather than the electron dose or electron beam current. The prepared films can find their applications in fabrication of surface nanostructures without a need of an electron sensitive resist material.

  4. Electron beam selectively seals porous metal filters

    NASA Technical Reports Server (NTRS)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  5. Effect of Surface Treatments on Electron Beam Freeform Fabricated Aluminum Structures

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Hafley, Robert A.; Fahringer, David T.; Martin, Richard E.

    2004-01-01

    Electron beam freeform fabrication (EBF3) parts exhibit a ridged surface finish typical of many layer-additive processes. This, post-processing is required to produce a net shape with a smooth surface finish. High speed milling wire electrical discharge machining (EDM), electron beam glazing, and glass bead blasting were performed on EBF3-build 2219 aluminum alloy parts to reduce or eliminate the ridged surface features. Surface roughness, surface residual stress state, and microstructural characteristics were examined for each of the different surface treatment to assess the quality and effect of the surface treatments on the underlying material. The analysis evaluated the effectivenes of the different surface finishing techniques for achieving a smooth surface finish on an electron beam freeform fabricated part.

  6. Analysis of microscopic parameters of surface charging in polymer caused by defocused electron beam irradiation.

    PubMed

    Liu, Jing; Zhang, Hai-Bo

    2014-12-01

    The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Min, Daomin; Li, Shengtao; Li, Zhen; Xie, Dongri; Wang, Xuan; Lin, Shengjun

    2017-06-01

    The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al2O3 microcomposite was investigated. Epoxy resin/Al2O3 microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.

  8. Surface hardening of 30CrMnSiA steel using continuous electron beam

    NASA Astrophysics Data System (ADS)

    Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng

    2017-11-01

    30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.

  9. Electron Beam-Induced Writing of Nanoscale Iron Wires on a Functional Metal Oxide

    PubMed Central

    2013-01-01

    Electron beam-induced surface activation (EBISA) has been used to grow wires of iron on rutile TiO2(110)-(1 × 1) in ultrahigh vacuum. The wires have a width down to ∼20 nm and hence have potential utility as interconnects on this dielectric substrate. Wire formation was achieved using an electron beam from a scanning electron microscope to activate the surface, which was subsequently exposed to Fe(CO)5. On the basis of scanning tunneling microscopy and Auger electron spectroscopy measurements, the activation mechanism involves electron beam-induced surface reduction and restructuring. PMID:24159366

  10. Electron spectroscopy of the diamond surface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1981-01-01

    The diamond surface is studied by ionization loss spectroscopy and Auger electron spectroscopy. For surfaces heated to temperatures not exceeding 900 C, the band gap was found to be devoid of empty states in the absence of electron beam effects. The incident electron beam generates empty states in the band gap and loss of structure in the valence band for these surfaces. A cross section of 1.4 x 10 to the -19th sq cm was obtained for this effect. For surfaces heated to temperatures exceeding 900 C the spectra were identical to those from surfaces modified by the electron beam. The diamond surface undergoes a thermal conversion in its electronic structure at about 900 C.

  11. Ion beam neutralization using three-dimensional electron confinement by surface modification of magnetic poles

    NASA Astrophysics Data System (ADS)

    Nicolaescu, Dan; Sakai, Shigeki; Gotoh, Yasuhito; Ishikawa, Junzo

    2011-07-01

    Advanced implantation systems used for semiconductor processing require transportation of quasi-parallel ion beams, which have low energy (11B+, 31P+,75As+, Eion=200-1000 eV). Divergence of the ion beam due to space charge effects can be compensated through injection of electrons into different regions of the ion beam. The present study shows that electron confinement takes place in regions of strong magnetic field such as collimator magnet provided with surface mirror magnetic fields and that divergence of the ion beam passing through such regions is largely reduced. Modeling results have been obtained using Opera3D/Tosca/Scala. Electrons may be provided by collision between ions and residual gas molecules or may be injected by field emitter arrays. The size of surface magnets is chosen such as not to disturb ion beam collimation, making the approach compatible with ion beam systems. Surface magnets may form thin magnetic layers with thickness h=0.5 mm or less. Conditions for spacing of surface magnet arrays for optimal electron confinement are outlined.

  12. Beam impingement angle effects on secondary electron emission characteristics of textured pyrolytic graphite

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion-textured pyrolytic graphite over a range of primary electron energy levels and electron beam impingement angles are presented. Information required to develop high efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes for space communication and aircraft applications is provided. To attain the highest possible MDC efficiencies, the electrode surfaces must have low secondary electron emission characteristics. Pyrolytic graphite, a chemically vapor-deposited material, is a particularly promising candidate for this application. The pyrolytic graphite surfaces studied were tested over a range of primary electron beam energies and beam impingement angles from 200 to 2000 eV and direct (0 deg) to near-grazing angles (85 deg), respectively. Surfaces both parallel to and normal to the planes of material deposition were examined. The true secondary electron emission and reflected primary electron yield characteristics of the pyrolytic graphite surfaces are compared to those of sooted control surfaces.

  13. Electron beam induced damage in ITO coated Kapton. [Indium Tin Oxide

    NASA Technical Reports Server (NTRS)

    Krainsky, I.; Gordon, W. L.; Hoffman, R. W.

    1981-01-01

    Data for the stability of thin conductive indium tin oxide films on 0.003 inch thick Kapton substrates during exposure of the surface to electron beams are reported. The electron beam energy was 3 keV and the diameter was about 0.8 mm. Thermal effects and surface modifications are considered. For primary current greater than 0.6 microamperes, an obvious dark discoloration with diameter approximately that of the beam was produced. The structure of the discolored region was studied with the scanning electron microscope, and the findings are stated. Surface modifications were explored by AES, obtaining spectra and secondary emission coefficient as a function of time for different beam intensities. In all cases beam exposure results in a decrease of the secondary yield but because of thermal effects this change, as well as composition changes, cannot be directly interpreted in terms of electron beam dosage.

  14. Potential for EMU Fabric Damage by Electron Beam and Molten Metal During Space Welding for the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.

    1998-01-01

    As a consequence of preparations concerning the International Space Welding Experiment (ISWE), studies were performed to better understand the effect of molten metal contact and electron beam impingement with various fabrics for space suit applications. The question arose as to what would occur if the electron beam from the Ukrainian Universal Hand Tool (UHT) designed for welding in space were to impinge upon a piece of Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The expectation was that the electron beam would lay down a static charge pattern with no damage to the ceramic fabric. The electron beam is capable of spraying the fabric with enough negative charge to repel further electrons from the fabric before significant heating occurs. The static charge pattern would deflect any further charge accumulation except for a small initial amount of leakage to the grounded surface of the welder. However, when studies were made of the effect of the electron beam on the insulating ceramic fabric it was surprisingly found that the electron beam did indeed burn through the ceramic fabric. It was also found that the shorter electron beam standoff distances had longer burnthrough times than did some greater electron beam standoff distances. A possible explanation for the longer burnthrough times for the small electron beam standoff distance would be outgassing of the fabric which caused the electron beam hand-tool to cycle on and off to provide some protection for the cathodes. The electron beam hand tool was observed to cycle off at the short standoff distance of two inches likely due to vapors being outgassed. During the electron beam welding process there is an electron leakage, or current leakage, flow from the fabric. A static charge pattern is initially laid down by the electron beam current flow. The static charge makes up the current leakage flow which initially slightly heats up the fabric. The initially laid down surface charge leaks a small amount of current. The rate at which the current charge leaks from the fabric controls how fast the fabric heats up. As the ceramic fabric is heated it begins to outgass primarily from contamination/impurities atoms or molecules on and below the fabric surface. The contaminant gases ionize to create extra charge carriers and multiply a current of electrons. The emitted gas which ionized in the electron leakage flow promotes further leakage. Thus, the small leakage of charge from the fabric surface is enhanced by outgassing. When the electron beam current makes up the lost current, the incoming electrons heat the fabric and further enhance the outgassing. The additional leakage promotes additional heating up of the ceramic fabric. The electrons bound to the ceramic fabric surface leak off more and more as the surface gets hotter promoting even greater leakage. The additional electrons that result also gain energy in the field and produce further electrons. Eventually the process becomes unstable and accelerates to the point where a hole is burned through the fabric.

  15. A new technique for Auger analysis of surface species subject to electron-induced desorption.

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1973-01-01

    A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time-independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the sample velocity, incident electron current, beam diameter, and desorption cross section is analyzed. It is shown that it is advantageous to analyze the moving sample with a high beam current, in contrast to the usual practice of using a low beam current to minimize desorption from a stationary sample. The method is illustrated by the analysis of a friction transfer film of PTFE, in which the fluorine is removed by electron-induced desorption. The method is relevant to surface studies in the field of lubrication and catalysis.

  16. SU-E-T-340: Dosimetry of a Small Field Electron Beam for Innovative Radiotherapy of Small Surface Or Internal Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reft, C; Lu, Z; Noonan, J

    2015-06-15

    Purpose: An innovative small high intensity electron beams with energies from 6 to 12 MeV is being developed at Argonne National Laboratory to deliver an absorbed dose via a catheter to small malignant and nonmalignant lesions. This study reports on the initial dosimetric characteristics of this electron beam. These include output calibration, percent depth dose, beam profiles and leakage through the catheter. Methods: To simulate the narrow electron beam, the Argonne Wakefield Accelerator is used to produce high energy electron beams. The electron beam from the accelerator is monitored by measuring the current through a transmission coil while the beammore » shape is observed with a fluorescent screen. The dosimetry properties of the electron beam transmitting through bone and tissue-like materials are measured with nanodot optically stimulated luminescent dosimeters and EDR radiographic film. The 6 MV photon beam from a Varian True beam linac is used to calibrate both the OSLDs and the film. Results: The beam characteristics of the 12 MeV beam were measured. The properties of the small diameter, 5 mm, beam differs from that of broad clinical electron beams from radiotherapy linacs. Due to the lack of scatter from the narrow beam, the maximum dose is at the surface and the depth of the 50% depth dose is 35 mm compared to 51 mm for a clinical 12 MeV. The widths of the 90% isodose measured at the surface and depths of 2, 6, 12, and 16 mm varied from 6.6 to 8.8 mm while the widths of the FWHM isodose varied from 7.8 to 25.5 mm. Conclusion: Initial beam measurements show favorable dosimetric properties for its use in treating either small surface or internal lesions, particularly to deliver radiation at the time of surgery to maximize the dose to the lesion and spare normal tissue.« less

  17. Control method and system for use when growing thin-films on semiconductor-based materials

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    2001-01-01

    A process and system for use during the growth of a thin film upon the surface of a substrate by exposing the substrate surface to vaporized material in a high vacuum (HV) facility involves the directing of an electron beam generally toward the surface of the substrate as the substrate is exposed to vaporized material so that electrons are diffracted from the substrate surface by the beam and the monitoring of the pattern of electrons diffracted from the substrate surface as vaporized material settles upon the substrate surface. When the monitored pattern achieves a condition indicative of the desired condition of the thin film being grown upon the substrate, the exposure of the substrate to the vaporized materials is shut off or otherwise adjusted. To facilitate the adjustment of the crystallographic orientation of the film relative to the electron beam, the system includes a mechanism for altering the orientation of the surface of the substrate relative to the electron beam.

  18. Structure of electroexplosive TiC-Ni composite coatings on steel after electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Romanov, D. A.; Goncharova, E. N.; Budovskikh, E. A.; Gromov, V. E.; Ivanov, Yu. F.; Teresov, A. D.; Kazimirov, S. A.

    2016-11-01

    The phase and elemental compositions of the surface layer in Hardox 450 steel after electroexplosive spraying of a TiC-Ni composite coating and subsequent irradiation by a submillisecond high-energy electron beam are studied by the methods of modern physical metallurgy. The electron-beam treatment conditions that result in the formation of dense surface layers having high luster and a submicrocrystalline structure based on titanium carbide and nickel are found. It is shown that electron-beam treatment of an electroexplosive coating performed under melting conditions leads to the formation of a homogeneous (in structure and concentration) surface layer.

  19. Treatment of surfaces with low-energy electrons

    NASA Astrophysics Data System (ADS)

    Frank, L.; Mikmeková, E.; Lejeune, M.

    2017-06-01

    Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  20. Secondary electron emission characteristics of ion-textured copper and high-purity isotropic graphite surfaces

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.

  1. The Electrical Structure of Discharges Modified by Electron Beams

    NASA Astrophysics Data System (ADS)

    Haas, F. A.; Braithwaite, N. St. J.

    1997-10-01

    Injection of an electron beam into a low pressure plasma modifies both the electrical structure and the distributions of charged particle energies. The electrical structure is investigated here in a one-dimensional model by representing the discharge as two collisionless sheaths with a monenergetic electron beam, linked by a quasi-neutral collisional region. The latter is modelled by fluid equations in which the beam current decreases with position. Since the electrodes are connected by an external conductor this implies through Kirchoff's laws that the thermal electron current must correspondingly increase with position. Given the boundary conditions and beam input at the first electrode then the rest of the system is uniquely described. The model reveals the dependence of the sheath potentials at the emitting and absorbing surfaces on the beam current. The model is relevant to externally injected beams and to electron beams originating from secondary processes on surfaces exposed to the plasma.

  2. Electron spectroscopy analysis

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.

  3. Ultrastructure Processing and Environmental Stability of Advanced Structural and Electronic Materials.

    DTIC Science & Technology

    1983-03-01

    network dissolution, electron beam simulated desorption, electron signal decay, oxidation, oxide layer , growth kinetics, silicon carbide, assivation...surface layers on silicate glasses are reviewed. A type IIIB glass surface is proposed. The mechanisms of hydrothermal attack of two phase lithia...method to make reliable lifetime predictions. Use of electron beam techniques is essential for understanding surface layers formed on glasses (Section III

  4. Electron beam deflection control system of a welding and surface modification installation

    NASA Astrophysics Data System (ADS)

    Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.

    2018-03-01

    In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.

  5. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    NASA Astrophysics Data System (ADS)

    Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina

    2016-01-01

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.

  6. Surface dose measurements for highly oblique electron beams.

    PubMed

    Ostwald, P M; Kron, T

    1996-08-01

    Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.

  7. Textured carbon on copper: A novel surface with extremely low secondary electron emission characteristics

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1985-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for a range of primary electron beam energies and beam impingement angles are presented for a series of novel textured carbon surfaces on copper substrates. (All copper surfaces used in this study were oxygen-free, high-conductivity grade). The purpose of this investigation is to provide information necessary to develop high-efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes (TWT's) for communications and aircraft applications. To attain the highest TWT signal quality and overall efficiency, the MDC electrode surface must have low secondary electron emission characteristics. While copper is the material most commonly used for MDC electrodes, it exhibits relatively high levels of secondary electron emission unless its surface is treated for emission control. The textured carbon surface on copper substrate described in this report is a particularly promising candidate for the MDC electrode application. Samples of textured carbon surfaces on copper substrates typical of three different levels of treatment are prepared and tested for this study. The materials are tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near-grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the textured surfaces are compared with each other and with those of untreated copper. All the textured carbon surfaces on copper substrate tested exhibited sharply lower secondary electron emission characteristics than those of an untreated copper surface.

  8. Secondary Electron Emission Yields

    NASA Technical Reports Server (NTRS)

    Krainsky, I.; Lundin, W.; Gordon, W. L.; Hoffman, R. W.

    1981-01-01

    The secondary electron emission (SEE) characteristics for a variety of spacecraft materials were determined under UHV conditions using a commercial double pass CMA which permits sequential Auger electron electron spectroscopic analysis of the surface. The transparent conductive coating indium tin oxide (ITO) was examined on Kapton and borosilicate glass and indium oxide on FED Teflon. The total SEE coefficient ranges from 2.5 to 2.6 on as-received surfaces and from 1.5 to 1.6 on Ar(+) sputtered surfaces with 5 nm removed. A cylindrical sample carousel provides normal incidence of the primary beam as well as a multiple Faraday cup measurement of the approximately nA beam currents. Total and true secondary yields are obtained from target current measurements with biasing of the carousel. A primary beam pulsed mode to reduce electron beam dosage and minimize charging of insulating coatings was applied to Mg/F2 coated solar cell covers. Electron beam effects on ITO were found quite important at the current densities necessary to do Auger studies.

  9. A new technique for Auger analysis of surface species subject to electron-induced desorption

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1973-01-01

    A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the surface velocity, incident electron current, beam diameter, and desorption cross section are analyzed. The method is illustrated by the Auger analysis of PTFE, in which the fluorine is removed by electron induced desorption.

  10. Spiraling contaminant electrons increase doses to surfaces outside the photon beam of an MRI-linac with a perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Hackett, S. L.; van Asselen, B.; Wolthaus, J. W. H.; Bluemink, J. J.; Ishakoglu, K.; Kok, J.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2018-05-01

    The transverse magnetic field of an MRI-linac sweeps contaminant electrons away from the radiation beam. Films oriented perpendicular to the magnetic field and 5 cm from the radiation beam edge show a projection of the divergent beam, indicating that contaminant electrons spiral along magnetic field lines and deposit dose on surfaces outside the primary beam perpendicular to the magnetic field. These spiraling contaminant electrons (SCE) could increase skin doses to protruding regions of the patient along the cranio-caudal axis. This study investigated doses from SCE for an MRI-linac comprising a 7 MV linac and a 1.5 T MRI scanner. Surface doses to films perpendicular to the magnetic field and 5 cm from the radiation beam edge showed increased dose within the projection of the primary beam, whereas films parallel to the magnetic field and 5 cm from the beam edge showed no region of increased dose. However, the dose from contaminant electrons is absorbed within a few millimeters. For large fields, the SCE dose is within the same order of magnitude as doses from scattered and leakage photons. Doses for both SCE and scattered photons decrease rapidly with decreasing beam size and increasing distance from the beam edge.

  11. Electron-beam induced current characterization of back-surface field solar cells using a chopped scanning electron microscope beam

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Cheng, L.-J.

    1984-01-01

    A chopped electron beam induced current (EBIC) technique for the chacterization of back-surface field (BSF) solar cells is presented. It is shown that the effective recombination velocity of the low-high junction forming the back-surface field of BSF cells, in addition to the diffusion length and the surface recombination velocity of the surface perpendicular to both the p-n and low-high junctions, can be determined from the data provided by a single EBIC scan. The method for doing so is described and illustrated. Certain experimental considerations taken to enhance the quality of the EBIC data are also discussed.

  12. Excitation of terahertz radiation by an electron beam in a dielectric lined waveguide with rippled dielectric surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Deepak; Uma, R.; Tripathi, V. K.

    A relativistic electron beam propagating through a dielectric lined waveguide, with ripple on the dielectric surface, excites a free electron laser type instability where ripple acts as a wiggler. The spatial modulation of permittivity in the ripple region couples a terahertz radiation mode to a driven mode of lower phase velocity, where the beam is in Cerenkov resonance with the slow mode. Both the modes grow at the expanse of beam energy. The terahertz frequency increases as the beam velocity increases. The growth rate of the instability goes as one third power of beam density.

  13. Considerable knock-on displacement of metal atoms under a low energy electron beam.

    PubMed

    Gu, Hengfei; Li, Geping; Liu, Chengze; Yuan, Fusen; Han, Fuzhou; Zhang, Lifeng; Wu, Songquan

    2017-03-15

    Under electron beam irradiation, knock-on atomic displacement is commonly thought to occur only when the incident electron energy is above the incident-energy threshold of the material in question. However, we report that when exposed to intense electrons at room temperature at a low incident energy of 30 keV, which is far below the theoretically predicted incident-energy threshold of zirconium, Zircaloy-4 (Zr-1.50Sn-0.25Fe-0.15Cr (wt.%)) surfaces can undergo considerable displacement damage. We demonstrate that electron beam irradiation of the bulk Zircaloy-4 surface resulted in a striking radiation effect that nanoscale precipitates within the surface layer gradually emerged and became clearly visible with increasing the irradiation time. Our transmission electron microscope (TEM) observations further reveal that electron beam irradiation of the thin-film Zircaly-4 surface caused the sputtering of surface α-Zr atoms, the nanoscale atomic restructuring in the α-Zr matrix, and the amorphization of precipitates. These results are the first direct evidences suggesting that displacement of metal atoms can be induced by a low incident electron energy below threshold. The presented way to irradiate may be extended to other materials aiming at producing appealing properties for applications in fields of nanotechnology, surface technology, and others.

  14. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    NASA Astrophysics Data System (ADS)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M. A.; Akhter, J. I.

    2011-06-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  15. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  16. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  17. Analysis of the interaction of an electron beam with back surface field solar cells

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Luke, K. L.

    1983-01-01

    In this paper the short circuit current Isc induced by the electron beam of a scanning electron microscope in a back surface field solar cell will be determined theoretically. It will be shown that, in a configuration used previously for solar cells with an ohmic back surface, the Isc gives a convenient means for estimating the back surface recombination velocities and thus the quality of back surface field cells. Numerical data will be presented applicable to a point source model for the electron-hole pair generation.

  18. Modelling of pulsed electron beam induced graphite ablation: Sublimation versus melting

    NASA Astrophysics Data System (ADS)

    Ali, Muddassir; Henda, Redhouane

    2017-12-01

    Pulsed electron beam ablation (PEBA) has recently emerged as a very promising technique for the deposition of thin films with superior properties. Interaction of the pulsed electron beam with the target material is a complex process, which consists of heating, phase transition, and erosion of a small portion from the target surface. Ablation can be significantly affected by the nature of thermal phenomena taking place at the target surface, with subsequent bearing on the properties, stoichiometry and structure of deposited thin films. A two stage, one-dimensional heat conduction model is presented to describe two different thermal phenomena accounting for interaction of a graphite target with a polyenergetic electron beam. In the first instance, the thermal phenomena are comprised of heating, melting and vaporization of the target surface, while in the second instance the thermal phenomena are described in terms of heating and sublimation of the graphite surface. In this work, the electron beam delivers intense electron pulses of ∼100 ns with energies up to 16 keV and an electric current of ∼400 A to a graphite target. The temperature distribution, surface recession velocity, ablated mass per unit area, and ablation depth for the graphite target are numerically simulated by the finite element method for each case. Based on calculation findings and available experimental data, ablation appears to occur mainly in the regime of melting and vaporization from the surface.

  19. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    PubMed

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  20. Experimental Simulation of Solar Wind Interaction with MagneticDipole Fields above Insulating Surfaces

    NASA Astrophysics Data System (ADS)

    Yeo, L. H.; Han, J.; Wang, X.; Werner, G.; Deca, J.; Munsat, T.; Horanyi, M.

    2017-12-01

    Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection/reflection of thecharged particles. Consequently, surface charging in these regions will be modified. Using the Colorado Solar Wind Experiment facility, this interaction is investigated with high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole (0.13 T) embedded under various insulating surfaces. The dipole moment is perpendicular to the surface. Using an emissive probe, 2D plasma potential profiles are obtained above the surface. In the dipole lobe regions, the surfaces are charged to significantly positive potentials due to the impingement of the unmagnetized ions while the electrons are magnetically shielded. At low ion beam energies, the results agree with the theoretical predictions, i.e., the surface potential follows the energy of the beam ions in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of investigations have been conducted and indicate that the surface properties (e.g., modified surface conductance, ion induced secondary electrons and electron-neutral collision at the surface) are likely to play a role in determining the surface potential.

  1. An EBIC equation for solar cells. [Electron Beam Induced Current

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Von Roos, O.

    1983-01-01

    When an electron beam of a scanning electron microscope (SEM) impinges on an N-P junction, the generation of electron-hole pairs by impact ionization causes a characteristic short circuit current I(sc) to flow. The I(sc), i.e., EBIC (electron beam induced current) depends strongly on the configuration used to investigate the cell's response. In this paper the case where the plane of the junction is perpendicular to the surface is considered. An EBIC equation amenable to numerical computations is derived as a function of cell thickness, source depth, surface recombination velocity, diffusion length, and distance of the junction to the beam-cell interaction point for a cell with an ohmic contact at its back surface. It is shown that the EBIC equation presented here is more general and easier to use than those previously reported. The effects of source depth, ohmic contact, and diffusion length on the normalized EBIC characteristic are discussed.

  2. Height Control and Deposition Measurement for the Electron Beam Free Form Fabrication (EBF3) Process

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A. (Inventor); Seufzer, William J. (Inventor)

    2017-01-01

    A method of controlling a height of an electron beam gun and wire feeder during an electron freeform fabrication process includes utilizing a camera to generate an image of the molten pool of material. The image generated by the camera is utilized to determine a measured height of the electron beam gun relative to the surface of the molten pool. The method further includes ensuring that the measured height is within the range of acceptable heights of the electron beam gun relative to the surface of the molten pool. The present invention also provides for measuring a height of a solid metal deposit formed upon cooling of a molten pool. The height of a single point can be measured, or a plurality of points can be measured to provide 2D or 3D surface height measurements.

  3. Electron Beam "Writes" Silicon On Sapphire

    NASA Technical Reports Server (NTRS)

    Heinemann, Klaus

    1988-01-01

    Method of growing silicon on sapphire substrate uses beam of electrons to aid growth of semiconductor material. Silicon forms as epitaxial film in precisely localized areas in micron-wide lines. Promising fabrication method for fast, densely-packed integrated circuits. Silicon deposited preferentially in contaminated substrate zones and in clean zone irradiated by electron beam. Electron beam, like surface contamination, appears to stimulate decomposition of silane atmosphere.

  4. Fabrication of plasmonic nanopore by using electron beam irradiation for optical bio-sensor

    NASA Astrophysics Data System (ADS)

    Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Oh, Seh Joong; Park, Nam Kyou; Park, Doo Jae; Choi, Soo Bong; Kim, Yong-Sang

    2017-05-01

    The Au nano-hole surrounded by the periodic nano-patterns would provide the enhanced optical intensity. Hence, the nano-hole surrounded with periodic groove patterns can be utilized as single molecule nanobio optical sensor device. In this report, the nano-hole on the electron beam induced membrane surrounded by periodic groove patterns were fabricated by focused ion beam technique (FIB), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Initially, the Au films with three different thickness of 40 nm, 60 nm, and 200 nm were deposited on the SiN film by using an electron beam sputter-deposition technique, followed by removal of the supporting SiN film. The nanopore was formed on the electron beam induced membrane under the FESEM electron beam irradiation. Nanopore formation inside the Au aperture was controlled down to a few nanometer, by electron beam irradiations. The optical intensities from the biomolecules on the surfaces including Au coated pyramid with periodic groove patterns were investigated via surface enhanced Raman spectroscopy (SERS). The fabricated nanopore surrounded by periodic patterns can be utilized as a next generation single molecule bio optical sensor.

  5. Measurement of surface recombination velocity for silicon solar cells using a scanning electron microscope with pulsed beam

    NASA Technical Reports Server (NTRS)

    Daud, T.; Cheng, L. J.

    1981-01-01

    The role of surface recombination velocity in the design and fabrication of silicon solar cells is discussed. A scanning electron microscope with pulsed electron beam was used to measure this parameter of silicon surfaces. It is shown that the surface recombination velocity, s, increases by an order of magnitude when an etched surface degrades, probably as a result of environmental reaction. A textured front-surface-field cell with a high-low junction near the surface shows the effect of minority carrier reflection and an apparent reduction of s, whereas a tandem-junction cell shows an increasing s value. Electric fields at junction interfaces in front-surface-field and tandem-junction cells acting as minority carrier reflectors or sinks tend to alter the value of effective surface recombination velocity for different beam penetration depths. A range of values of s was calculated for different surfaces.

  6. Effects of ion- and electron-beam treatment on surface physicochemical properties of polylactic acid

    NASA Astrophysics Data System (ADS)

    Pukhova, I. V.; Savkin, K. P.; Laput, O. A.; Lytkina, D. N.; Botvin, V. V.; Medovnik, A. V.; Kurzina, I. A.

    2017-11-01

    We describe our investigations of the surface physicochemical and mechanical properties of polylactic acid modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ions/cm2 at energies of 20 keV (for C and Ar) and 40 keV (for Ag), and by electron beam treatment with pulse-width of 100-300 μs in 50 μs increments at a beam energy 8 keV. Carbonyl bonds (sbnd Cdbnd O) related IR peak was reduced after ion and electron beam irradiation. Molecular weight of PLA decreases twice and does not depend on the nature of the bombarding particles. The microhardness of treated samples decreases by a factor of 1.3, and the surface conductivity increases by 6 orders of magnitude after ion implantation, and increases only modestly after electron beam treatment. Atomic force microscopy shows that surface roughness increases with irradiation dose. Samples irradiated with Ag to a dose of 1 × 1016 ions/cm2 show the greatest roughness of 190 nm.

  7. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-11-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance.

  8. Characterization of ion beam modified ceramic wear surfaces using Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wei, W.; Lankford, J.

    1987-01-01

    An investigation of the surface chemistry and morphology of the wear surfaces of ceramic material surfaces modified by ion beam mixing has been conducted using Auger electron spectroscopy and secondary electron microscopy. Studies have been conducted on ceramic/ceramic friction and wear couples made up of TiC and NiMo-bonded TiC cermet pins run against Si3N4 and partially stabilized zirconia disc surfaces modified by the ion beam mixing of titanium and nickel, as well as ummodified ceramic/ceramic couples in order to determine the types of surface changes leading to the improved friction and wear behavior of the surface modified ceramics in simulated diesel environments. The results of the surface analyses indicate that the formation of a lubricating oxide layer of titanium and nickel, is responsible for the improvement in ceramic friction and wear behavior. The beneficial effect of this oxide layer depends on several factors, including the adherence of the surface modified layer or subsequently formed oxide layer to the disc substrate, the substrate materials, the conditions of ion beam mixing, and the environmental conditions.

  9. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns.

    PubMed

    Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E

    2013-08-02

    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  10. Gradient changes in structural condition of the B2 phase of NiTi surface layers after electron-beam treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Ludmila L., E-mail: llm@ispms.tsc.ru, E-mail: egu@ispms.tsc.ru; Gudimova, Ekaterina Yu., E-mail: llm@ispms.tsc.ru, E-mail: egu@ispms.tsc.ru; Ostapenko, Marina G., E-mail: artifact@ispms.tsc.ru

    2014-11-14

    Structural conditions of the B2 phase of the Ti{sub 49.5}Ni{sub 50.5} alloy surface layers before and after electron-beam treatments (pulse duration τ = 150 μs, number of pulses n = 5, beam energy density E ≤ 20 J/cm{sup 2}) were studied by X-ray diffraction analysis. Analysis of the X-ray patterns demonstrates that surface layers modified by electron beam treatment contain phase with B2{sup surf} structure. It is revealed that the lattice parameter of the B2{sup surf} phase in the surface (modified) layer is also higher than the lattice parameter of the B2 phase in the underlying layer (a{sub B2} = 3.0159±0.0005). Themore » values of lattice parameter of phase B2{sup surf} amounted a{sub B2}{sup surf} = 3.0316±0.0005 Å and a{sub B2}{sup surf} = 3.0252±0.0005 Å, for the specimens after electron-beam treatment at E{sub 1} = 15 J/cm{sup 2} and E{sub 2} = 20 J/cm{sup 2}, respectively. Inflated lattice parameters a{sub B2}{sup surf} are associated with changes in the chemical composition and the presence of residual stresses in the surface region of the samples after electron-beam treatments.« less

  11. Method of automatic measurement and focus of an electron beam and apparatus therefore

    DOEpatents

    Giedt, W.H.; Campiotti, R.

    1996-01-09

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding is disclosed. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined. 12 figs.

  12. Method of automatic measurement and focus of an electron beam and apparatus therefor

    DOEpatents

    Giedt, Warren H.; Campiotti, Richard

    1996-01-01

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined.

  13. Compression of pulsed electron beams for material tests

    NASA Astrophysics Data System (ADS)

    Metel, Alexander S.

    2018-03-01

    In order to strengthen the surface of machine parts and investigate behavior of their materials exposed to highly dense energy fluxes an electron gun has been developed, which produces the pulsed beams of electrons with the energy up to 300 keV and the current up to 250 A at the pulse width of 100-200 µs. Electrons are extracted into the accelerating gap from the hollow cathode glow discharge plasma through a flat or a spherical grid. The flat grid produces 16-cm-diameter beams with the density of transported per one pulse energy not exceeding 15 J·cm-2, which is not enough even for the surface hardening. The spherical grid enables compression of the beams and regulation of the energy density from 15 J·cm-2 up to 15 kJ·cm-2, thus allowing hardening, pulsed melting of the machine part surface with the further high-speed recrystallization as well as an explosive ablation of the surface layer.

  14. Fast and precise processing of material by means of an intensive electron beam

    NASA Astrophysics Data System (ADS)

    Beisswenger, S.

    1984-07-01

    For engraving a picture carrying screen of cells into the copper-surface of gravure cylinders, an electron beam system was developed. Numerical computations of the power density in the image planes of the electron beam determined the design of the electron optical assembly. A highly stable electron beam of high power density is generated by a ribbon-like cathode. A system of magnetic lenses is used for fast control of the engraving processes and for dynamic changing of the electron optical demagnification. The electron beam engraving system is capable of engraving up to 150,000 gravure cells per sec.

  15. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam

    PubMed Central

    Mirsaidov, Utkur M.; Zheng, Haimei; Bhattacharya, Dipanjan; Casana, Yosune; Matsudaira, Paul

    2012-01-01

    Dynamics of the first few nanometers of water at the interface are encountered in a wide range of physical, chemical, and biological phenomena. A simple but critical question is whether interfacial forces at these nanoscale dimensions affect an externally induced movement of a water droplet on a surface. At the bulk-scale water droplets spread on a hydrophilic surface and slip on a nonwetting, hydrophobic surface. Here we report the experimental description of the electron beam-induced dynamics of nanoscale water droplets by direct imaging the translocation of 10- to 80-nm-diameter water nanodroplets by transmission electron microscopy. These nanodroplets move on a hydrophilic surface not by a smooth flow but by a series of stick-slip steps. We observe that each step is preceded by a unique characteristic deformation of the nanodroplet into a toroidal shape induced by the electron beam. We propose that this beam-induced change in shape increases the surface free energy of the nanodroplet that drives its transition from stick to slip state. PMID:22517747

  16. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  17. Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Bat, Erhan; Lee, Juneyoung; Lau, Uland Y.; Maynard, Heather D.

    2015-03-01

    Direct-write patterning of multiple proteins on surfaces is of tremendous interest for a myriad of applications. Precise arrangement of different proteins at increasingly smaller dimensions is a fundamental challenge to apply the materials in tissue engineering, diagnostics, proteomics and biosensors. Herein, we present a new resist that protects proteins during electron-beam exposure and its application in direct-write patterning of multiple proteins. Polymers with pendant trehalose units are shown to effectively crosslink to surfaces as negative resists, while at the same time providing stabilization to proteins during the vacuum and electron-beam irradiation steps. In this manner, arbitrary patterns of several different classes of proteins such as enzymes, growth factors and immunoglobulins are realized. Utilizing the high-precision alignment capability of electron-beam lithography, surfaces with complex patterns of multiple proteins are successfully generated at the micrometre and nanometre scale without requiring cleanroom conditions.

  18. Modification of the titanium alloy surface in electroexplosive alloying with boron carbide and subsequent electron-beam treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, Victor E., E-mail: gromov@physics.sibsiu.ru; Budovskikh, Evgeniy A., E-mail: budovskikh-ea@physics.sibsiu.ru; Bashchenko, Lyudmila P., E-mail: gromov@physics.sibsiu.ru

    2015-10-27

    The modification of the VT6 titanium alloy surface in electroexplosion alloying with plasma being formed in titanium foil with a weighed powder of boron carbide with subsequent irradiation by a pulsed electron beam has been carried out. An electroexplosive alloying zone of a thickness up to 50 μm with a gradient structure is found to form. The subsequent electron-beam treatment of the alloying zone results in smoothing of the alloying surface and is accompanied by the formation of the multilayer structure with alternating layers of various alloying degree at a depth of 30 μm.

  19. Modification of the sample's surface of hypereutectic silumin by pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Rygina, M. E.; Ivanov, Yu F.; Lasconev, A. P.; Teresov, A. D.; Cherenda, N. N.; Uglov, V. V.; Petricova, E. A.; Astashinskay, M. V.

    2016-04-01

    The article presents the results of the analysis of the elemental and phase composition, defect substructures. It demonstrates strength and tribological characteristics of the aluminium-silicon alloy of the hypereutectic composition in the cast state and after irradiation with a high-intensity pulsed electron beam of a submillisecond exposure duration (a Solo installation, Institute of High Current Electrons of the Siberian Branch of the Russian Academy of Sciences). The research has been conducted using optical and scanning electron microscopy, and the X-ray phase analysis. Mechanical properties have been characterized by microhardness, tribological properties - by wear resistance and the friction coefficient value. Irradiation of silumin with the high-intensity pulsed electron beam has led to the modification of the surface layer up to 1000 microns thick. The surface layer with the thickness of up to 100 microns is characterized by melting of all phases present in the alloy; subsequent highspeed crystallization leads to the formation of a submicro- and nanocrystalline structure in this layer. The hardness of the modified layer decreases with the increasing distance from the surface exposure. The hardness of the surface layer is more than twice the hardness of cast silumin. Durability of silumin treated with a high intensity electron beam is ≈ 1, 2 times as much as the wear resistance of the cast material.

  20. The role of electro-explosion alloying with titanium diboride and treatment with pulsed electron beam in the surface modification of VT6 alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalov, Sergey, E-mail: konovserg@gmail.com; Gromov, Victor, E-mail: gromov@physics.sibsiu.ru; Kobzareva, Tatyana

    The paper presents the results of the investigation of VT6 titanium alloy subjected to electro-explosion alloying with TiB{sub 2} and irradiation with pulsed electron beam. It was established that electro-explosion alloying resulted in a high level of roughness of the surface layer with high adhesion of the modified layer and matrix. Further irradiation of the material with electron beam resulted in the smoothing of the surface of alloying and formation of a porous structure with various scale levels in the surface layer. It was also established that the energetic exposure causes the formation of a gradient structure with a changingmore » elemental composition along the direction from the surface of alloying.« less

  1. Application of electron beam equipment based on a plasma cathode gun in additive technology

    NASA Astrophysics Data System (ADS)

    Galchenko, N. K.; Kolesnikova, K. A.; Semenov, G. V.; Rau, A. G.; Raskoshniy, S. Y.; Bezzubko, A. V.; Dampilon, B. V.; Sorokova, S. N.

    2016-11-01

    The paper discusses the application of electron beam equipment based on a plasma cathode gun for three-dimensional surface modification of metals and alloys. The effect of substrate surface preparation on the adhesion strength of gas thermal coatings has been investigated.

  2. Kinetic energy offsets for multicharged ions from an electron beam ion source.

    PubMed

    Kulkarni, D D; Ahl, C D; Shore, A M; Miller, A J; Harriss, J E; Sosolik, C E; Marler, J P

    2017-08-01

    Using a retarding field analyzer, we have measured offsets between the nominal and measured kinetic energy of multicharged ions extracted from an electron beam ion source (EBIS). By varying source parameters, a shift in ion kinetic energy was attributed to the trapping potential produced by the space charge of the electron beam within the EBIS. The space charge of the electron beam depends on its charge density, which in turn depends on the amount of negative charge (electron beam current) and its velocity (electron beam energy). The electron beam current and electron beam energy were both varied to obtain electron beams of varying space charge and these were related to the observed kinetic energy offsets for Ar 4+ and Ar 8+ ion beams. Knowledge of these offsets is important for studies that seek to utilize slow, i.e., low kinetic energy, multicharged ions to exploit their high potential energies for processes such as surface modification. In addition, we show that these offsets can be utilized to estimate the effective radius of the electron beam inside the trap.

  3. Modeling the process of interaction of 10 keV electrons with a plane dielectric surface

    NASA Astrophysics Data System (ADS)

    Vokhmyanina, Kristina; Sotnikova, Valentina; Sotnikov, Alexey; Kaplii, Anna; Nikulicheva, Tatyana; Kubankin, Alexandr; Kishin, Ivan

    2018-05-01

    The effect of guiding of charged particles by dielectric channels is of noticeable interest at the present time. The phenomenon is widely studied experimentally and theoretically but some points still need to be clarified. A previously developed model of interaction of fast electrons with dielectric surface at grazing incidence is used to study the independence of electron deflection on the value of electron beam current. The calculations were performed assuming a smooth dependence of the surface conductivity on the beam current in the 40-3000 nA range.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Yuri, E-mail: yufi55@mail.ru; National Research Tomsk State University, 36 Lenina Str., Tomsk, 634050; National Research Tomsk Polytechnic University, 30 Lenina Str., Tomsk, 634050

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm{sup 2}, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electronmore » beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.« less

  5. Electron-beam-induced potentials in semiconductors: calculation and measurement with an SEM/SPM hybrid system

    NASA Astrophysics Data System (ADS)

    Thomas, Ch; Joachimsthaler, I.; Heiderhoff, R.; Balk, L. J.

    2004-10-01

    In this work electron-beam-induced potentials are analysed theoretically and experimentally for semiconductors. A theoretical model is developed to describe the surface potential distribution produced by an electron beam. The distribution of generated carriers is calculated using semiconductor equations. This distribution causes a local change in surface potential, which is derived with the help of quasi-Fermi energies. The potential distribution is simulated using the model developed and measured with a scanning probe microscope (SPM) built inside a scanning electron microscope (SEM), for different samples, for different beam excitations and for different cantilever voltages of SPM. In the end, some fields of application are shown where material properties can be determined using an SEM/SPM hybrid system.

  6. Multi-walled carbon nanotube structural instability with/without metal nanoparticles under electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Huang, Shengli; Wu, Chenxu

    2017-12-01

    The structural transformation of multi-walled carbon nanotubes (MWCNT) under electron beam (e-beam) irradiation at room temperature is studied, with respect to a novel passivation effect due to gold nanoparticles (Au NPs). MWCNT structural evolution induced by energetic e-beam irradiation leads to faster shrinkage, as revealed via in situ transmission electron microscopy, while MWCNT surface modification with Au NPs (Au-MWCNT) slows down the shrinkage by impeding the structural evolution process for a prolonged time under the same irradiation conditions. The new relationship between MWCNT and Au-MWCNT shrinking radii and irradiation time illustrates that the MWCNT shrinkage rate is faster than either theoretical predictions or the same process in Au-MWCNTs. As compared with the outer surface energy (positive curvature), the inner surface energy (negative curvature) of the MWCNT contributes more to the athermal evaporation of tube wall atoms, leading to structural instability and shrinkage under e-beam irradiation. Conversely, Au NPs possess only outer surface energy (positive curvature) compared with the MWCNT. Their presence on MWCNT surfaces retards the dynamics of MWCNT structural evolution by slowing down the evaporation process of carbon atoms, thus restricting Au-MWCNT shrinkage. Au NP interaction and growth evolves athermally on MWCNT surfaces, exhibits increase in their size, and indicates the association of this mechanism with the coalescence induced by e-beam activated electronic excitations. Despite their growth, Au NPs show extreme structural stability, and remain crystalline under prolonged irradiation. It is proposed that the surface energy of MWCNTs and Au NPs, together with e-beam activated soft modes or lattice instability effects, predominantly govern all the above varieties of structural evolution.

  7. Experimental Simulation of Solar Wind Interactions with Magnetic Dipole Fields above Insulating Surfaces

    NASA Astrophysics Data System (ADS)

    Munsat, Tobin; Deca, Jan; Han, Jia; Horanyi, Mihaly; Wang, Xu; Werner, Greg; Yeo, Li Hsia; Fuentes, Dominic

    2017-10-01

    Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection of the charged particles and thus localized surface charging. This interaction is studied in the Colorado Solar Wind Experiment with large-cross-section ( 300 cm2) high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole embedded under various insulating surfaces. Measured 2D plasma potential profiles indicate that in the dipole lobe regions, the surfaces are charged to high positive potentials due to the collection of unmagnetized ions, while the electrons are magnetically shielded. At low ion beam energies, the surface potential follows the beam energy in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of studies indicate that secondary electrons are likely to play a dominant role in determining the surface potential. Early results will also be presented from a second experiment, in which a strong permanent magnet with large dipole moment (0.55 T, 275 A*m2) is inserted into the flowing plasma beam to replicate aspects of the solar wind interaction with the earth's magnetic field. This work is supported by the NASA SSERVI program.

  8. Kapton charging characteristics: Effects of material thickness and electron-energy distribution

    NASA Technical Reports Server (NTRS)

    Williamson, W. S.; Dulgeroff, C. R.; Hymann, J.; Viswanathan, R.

    1985-01-01

    Charging characteristics of polyimide (Kapton) of varying thicknesses under irradiation by a very-low-curent-density electron beam, with the back surface of the sample grounded are reported. These charging characteristics are in good agreement with a simple analytical model which predicts that in thin samples at low current density, sample surface potential is limited by conduction leakage through the bulk material. The charging of Kapton in a low-current-density electron beam in which the beam energy was modulated to simulate Maxwellian and biMaxwellian distribution functions is measured.

  9. Optical properties of YbF3-CaF2 composite thin films deposited by electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Wang, Songlin; Mi, Gaoyuan; Zhang, Jianfu; Yang, Chongmin

    2018-03-01

    We studied electron-beam evaporated YbF3-CaF2 composite films on ZnS substrate at different deposition parameters. The optical properties of films have been fitted, the surface roughness have been measured by AFM. The results of experiments indicated that increased the refractive indices, extinction coefficients, and surface roughness at higher deposition rate. The refractive index of composite film deposited by electron-beam evaporation with assisted-ion source was obviously higher than it without assisted-ion source.

  10. Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique

    DOE PAGES

    Halavanau, A.; Qiang, G.; Ha, G.; ...

    2017-10-26

    A transversely inhomogeneous laser distribution on the photocathode surface generally produces electron beams with degraded beam quality. In this paper, we explore the use of microlens arrays to dramatically improve the transverse uniformity of an ultraviolet drive-laser pulse used in a photoinjector. Here, we also demonstrate a capability of microlens arrays to generate transversely modulated electron beams and present an application of such a feature to diagnose the properties of a magnetized beam.

  11. Electron beam extraction on plasma cathode electron sources system

    NASA Astrophysics Data System (ADS)

    Purwadi, Agus; Taufik, M., Lely Susita R.; Suprapto, Saefurrochman, H., Anjar A.; Wibowo, Kurnia; Aziz, Ihwanul; Siswanto, Bambang

    2017-03-01

    ELECTRON BEAM EXTRACTION ON PLASMA CATHODE ELECTRON SOURCES SYSTEM. The electron beam extraction through window of Plasma Generator Chamber (PGC) for Pulsed Electron Irradiator (PEI) device and simulation of plasma potential has been studied. Plasma electron beam is extracted to acceleration region for enlarging their power by the external accelerating high voltage (Vext) and then it is passed foil window of the PEI for being irradiated to any target (atmospheric pressure). Electron beam extraction from plasma surface must be able to overcome potential barrier at the extraction window region which is shown by estimate simulation (Opera program) based on data of plasma surface potential of 150 V with Ueks values are varied by 150 kV, 175 kV and 200 kV respectively. PGC is made of 304 stainless steel with cylindrical shape in 30 cm of diameter, 90 cm length, electrons extraction window as many as 975 holes on the area of (15 × 65) cm2 with extraction hole cell in 0.3 mm of radius each other, an cylindrical shape IEP chamber is made of 304 stainless steel in 70 cm diameter and 30 cm length. The research result shown that the acquisition of electron beam extraction current depends on plasma parameters (electron density ne, temperature Te), accelerating high voltage Vext, the value of discharge parameter G, anode area Sa, electron extraction window area Se and extraction efficiency value α.

  12. Characterisation of a MOSFET-based detector for dose measurement under megavoltage electron beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Jong, W. L.; Ung, N. M.; Tiong, A. H. L.; Rosenfeld, A. B.; Wong, J. H. D.

    2018-03-01

    The aim of this study is to investigate the fundamental dosimetric characteristics of the MOSkin detector for megavoltage electron beam dosimetry. The reproducibility, linearity, energy dependence, dose rate dependence, depth dose measurement, output factor measurement, and surface dose measurement under megavoltage electron beam were tested. The MOSkin detector showed excellent reproducibility (>98%) and linearity (R2= 1.00) up to 2000 cGy for 4-20 MeV electron beams. The MOSkin detector also showed minimal dose rate dependence (within ±3%) and energy dependence (within ±2%) over the clinical range of electron beams, except for an energy dependence at 4 MeV electron beam. An energy dependence correction factor of 1.075 is needed when the MOSkin detector is used for 4 MeV electron beam. The output factors measured by the MOSkin detector were within ±2% compared to those measured with the EBT3 film and CC13 chamber. The measured depth doses using the MOSkin detector agreed with those measured using the CC13 chamber, except at the build-up region due to the dose volume averaging effect of the CC13 chamber. For surface dose measurements, MOSkin measurements were in agreement within ±3% to those measured using EBT3 film. Measurements using the MOSkin detector were also compared to electron dose calculation algorithms namely the GGPB and eMC algorithms. Both algorithms were in agreement with measurements to within ±2% and ±4% for output factor (except for the 4 × 4 cm2 field size) and surface dose, respectively. With the uncertainties taken into account, the MOSkin detector was found to be a suitable detector for dose measurement under megavoltage electron beam. This has been demonstrated in the in vivo skin dose measurement on patients during electron boost to the breast tumour bed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Woo-Young; Seol, Jae-Bok, E-mail: jb-seol@postech.ac.kr; Kwak, Chan-Min

    The compositional distribution of In atoms in InGaN/GaN multiple quantum wells is considered as one of the candidates for carrier localization center, which enhances the efficiency of the light-emitting diodes. However, two challenging issues exist in this research area. First, an inhomogeneous In distribution is initially formed by spinodal decomposition during device fabrication as revealed by transmission electron microscopy. Second, electron-beam irradiation during microscopy causes the compositional inhomogeneity of In to appear as a damage contrast. Here, a systematic approach was proposed in this study: Electron-beam with current density ranging from 0 to 20.9 A/cm{sup 2} was initially exposed to themore » surface regions during microscopy. Then, the electron-beam irradiated regions at the tip surface were further removed, and finally, atom probe tomography was performed to run the samples without beam-induced damage and to evaluate the existence of local inhomegenity of In atoms. We proved that after eliminating the electron-beam induced damage regions, no evidence of In clustering was observed in the blue-emitting InGaN/GaN devices. In addition, it is concluded that the electron-beam induced localization of In atoms is a surface-related phenomenon, and hence spinodal decomposition, which is typically responsible for such In clustering, is negligible for biaxially strained blue-emitting InGaN/GaN devices.« less

  14. End-boundary sheath potential, electron and ion energy distribution in the low-pressure non-ambipolar electron plasma

    NASA Astrophysics Data System (ADS)

    Chen, Lee; Chen, Zhiying; Funk, Merritt

    2013-12-01

    The end-boundary floating-surface sheath potential, electron and ion energy distribution functions (EEDf, IEDf) in the low-pressure non-ambipolar electron plasma (NEP) are investigated. The NEP is heated by an electron beam extracted from an inductively coupled electron-source plasma (ICP) through a dielectric injector by an accelerator located inside the NEP. This plasma's EEDf has a Maxwellian bulk followed by a broad energy continuum connecting to the most energetic group with energies around the beam energy. The NEP pressure is 1-3 mTorr of N2 and the ICP pressure is 5-15 mTorr of Ar. The accelerator is biased positively from 80 to 600 V and the ICP power range is 200-300 W. The NEP EEDf and IEDf are determined using a retarding field energy analyser. The EEDf and IEDf are measured at various NEP pressures, ICP pressures and powers as a function of accelerator voltage. The accelerator current and sheath potential are also measured. The IEDf reveals mono-energetic ions with adjustable energy and it is proportionally controlled by the sheath potential. The NEP end-boundary floating surface is bombarded by a mono-energetic, space-charge-neutral plasma beam. When the injected energetic electron beam is adequately damped by the NEP, the sheath potential is linearly controlled at almost a 1 : 1 ratio by the accelerator voltage. If the NEP parameters cannot damp the electron beam sufficiently, leaving an excess amount of electron-beam power deposited on the floating surface, the sheath potential will collapse and become unresponsive to the accelerator voltage.

  15. Direction-division multiplexed holographic free-electron-driven light sources

    NASA Astrophysics Data System (ADS)

    Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.

    2018-01-01

    We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.

  16. Microplastic deformation of polycrystalline iron and molybdenum subjected to high-current electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Dudarev, E. F.; Pochivalova, G. P.; Proskurovskii, D. I.; Rotshtein, V. P.; Markov, A. B.

    1996-03-01

    A technique for determination of residual stresses at various distances from the irradiated surface is proposed. It is established for iron and molybdenum that compressive stresses are set up under irradiation by low-energy high-current electron beams and that their values decrease sharply with increasing distance from the surface. The residual stresses are much smaller in absolute magnitude than those operating during irradiation. It is shown that the change in resistance to microplastic deformation on irradiation with low-energy high-current electron beams is governed not only by formation of a gradient dislocation substructure in the surface layer, but also by the residual stresses and the appearance of the Bauschinger effect.

  17. Return Current Electron Beams and Their Generation of "Raman" Scattering

    NASA Astrophysics Data System (ADS)

    Simon, A.

    1998-11-01

    For some years, we(A. Simon and R. W. Short, Phys. Rev. Lett. 53), 1912 (1984). have proposed that the only reasonable explanation for many of the observations of "Raman" scattering is the presence of an electron beam in the plasma. (The beam creates a bump-on-tail instability.) Two major objections to this picture have been observation of Raman when no n_c/4 surface was present, with no likely source for the electron beam, and the necessity for the initially outward directed beam to bounce once to create the proper waves. Now new observations on LLE's OMEGA(R. Petrasso et al), this conference. and at LULI(C. Labaune et al)., Phys. Plasma 5, 234 (1998). have suggested a new origin for the electron beam. This new scenario answers the previous objections, maintains electron beams as the explanation of the older experiments, and may clear up puzzling observations that have remained unexplained. The new scenario is based on two assumptions: (1) High positive potentials develop in target plasmas during their creation. (2) A high-intensity laser beam initiates spark discharges from nearby surfaces to the target plasma. The resulting return current of electrons should be much more delta-like, is initially inwardly directed, and no longer requires the continued presence of a n_c/4 surface. Scattering of the interaction beam from the BOT waves yields the observed Raman signal. Experimental observations that support this picture will be cited. ``Pulsation'' of the scattering and broadband ``flashes'' are a natural part of this scenario. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  18. Profiling of back-scattered electrons in opposed magnetic field of a Twin Electron Beam Gun

    NASA Astrophysics Data System (ADS)

    Sethi, S.; Gupta, Anchal; Dileep Kumar, V.; Mukherjee, Jaya; Gantayet, L. M.

    2012-11-01

    Electron gun is extensively used in material processing, physical vapour deposition and atomic vapour based laser processes. In these processes where the electron beam is incident on the substrate, a significant fraction of electron beam gets back-scattered from the target surface. The trajectory of this back scattered electron beam depends on the magnetic field in the vicinity. The fraction of back-scattered depends on the atomic number of the target metal and can be as high as ~40% of the incident beam current. These back-scattered electrons can cause undesired hot spots and also affect the overall process. Hence, the study of the trajectory of these back-scattered electrons is important. This paper provides the details of experimentally mapped back-scattered electrons of a 2×20kW Twin Electron Beam Gun (TEBG) in opposed magnetic field i.e. with these guns placed at 180° to each other.

  19. Integrated control system for electron beam processes

    NASA Astrophysics Data System (ADS)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  20. Incident-beam effects in electron-stimulated Auger-electron diffraction

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Cao, Jianming

    1991-04-01

    We have examined incident-beam effects in electron-stimulated Auger-electron diffraction (AED) on a cleaved GaAs(110) surface. The results indicate that incident-beam diffraction is significant in an AED experiment, and that the dissipative nature of the incident beam in contributing to the Auger process must be accounted for. We have developed a qualitative model that describes the trend of the polar-angle dependence of the Auger intensity for both the incident and exit beams. In calculating the diffraction features, we used a zeroth-order approximation to simulate the dissipation of the incident beam, which is found to adequately describe the experimental data.

  1. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    NASA Astrophysics Data System (ADS)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  2. Two-dimensional electron beam charging model for polymer films

    NASA Technical Reports Server (NTRS)

    Reeves, R. D.; Balmain, K. G.

    1981-01-01

    A two-dimensional model is developed to describe the charging of strips of thin polymer films above a grounded substrate exposed to a uniform mono-energetic electron beam. The study is motivated by the observed anomalous behavior of geosynchronous satellites, which has been attributed to differential charging of the satellite surfaces exposed to magnetospheric electrons. Surface and bulk electric fields are calcuated at steady state in order to identify regions of high electrical stress, with emphasis on behavior near the material's edge. The model is used to study the effects of some of the experimental parameters, notably beam energy, beam angle of incidence, beam current density, material thickness and material width. Also examined are the consequences of a central gap in the material and a discontinuity in the material thickness.

  3. Plasma interaction with emmissive surface with Debye-scale grooves

    NASA Astrophysics Data System (ADS)

    Schweigert, Irina; Burton, Thomas S.; Thompson, Gregory B.; Langendorf, Samuel; Walker, Mitchell L. R.; Keidar, Michael

    2018-04-01

    The sheath development over emissive grooved surface in dc discharge plasma controlled by an electron beam is studied in the experiment and in 2D kinetic simulations. Grooved hexagonal boron nitride surfaces with different aspect ratios, designed to mimic the erosion channels, were exposed to an argon plasma. The characteristic size of the grooves (1 mm and 5 mm) is about of the Debye length. The secondary electrons emission from the grooved surfaces is provided by the bombardment with energetic electrons originated from the heated powered cathode. The transition between a developed and a collapsed sheaths near emissive surface takes place with an increase of the beam electron energy. For grooved emissive surfaces, the sheath transition happens at essentially higher voltage compared to the planar one. This phenomenon is analyzed in the terms of the electron energy distribution function.

  4. Surface Flashover on Epoxy-Resin Printed Circuit Boards in Vacuum under Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Fujii, Haruhisa; Hasegawa, Taketoshi; Osuga, Hiroyuki; Matsui, Katsuaki

    This paper deals with the surface flashover characteristics of dielectric material in vacuum during electron beam irradiation in order to design adequately the conductive patterns on printed circuit boards used inside a spacecraft. The dielectric material, glass-fiber reinforced epoxy resin, and the electrodes printed on it were irradiated with electrons of the energy of 3-10 keV. DC high voltage was applied between the two electrodes during electron irradiation. The voltage was increased stepwise until the surface flashover occurred on the dielectric material. We obtained the results that the surface flashover voltage increased with the insulation distance between the electrodes but electron irradiation made the flashover voltage lower. The flashover voltage characteristics were obtained as parameters of the electrode distance and the energy of the electron beam.

  5. Diffractive optical elements on non-flat substrates using electron beam lithography

    NASA Technical Reports Server (NTRS)

    Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Wilson, Daniel W. (Inventor)

    2002-01-01

    The present disclosure describes a technique for creating diffraction gratings on curved surfaces with electron beam lithography. The curved surface can act as an optical element to produce flat and aberration-free images in imaging spectrometers. In addition, the fabrication technique can modify the power structure of the grating orders so that there is more energy in the first order than for a typical grating. The inventors noticed that by using electron-beam lithography techniques, a variety of convex gratings that are well-suited to the requirements of imaging spectrometers can be manufactured.

  6. ZnO sublimation using a polyenergetic pulsed electron beam source: numerical simulation and validation

    NASA Astrophysics Data System (ADS)

    Tricot, S.; Semmar, N.; Lebbah, L.; Boulmer-Leborgne, C.

    2010-02-01

    This paper details the electro-thermal study of the sublimation phase on a zinc oxide surface. This thermodynamic process occurs when a ZnO target is bombarded by a pulsed electron beam source composed of polyenergetic electrons. The source delivers short pulses of 180 ns of electrons with energies up to 16 keV. The beam total current reaches 800 A and is focused onto a spot area 2 mm in diameter. The Monte Carlo CASINO program is used to study the first stage of the interaction and to define the heat source space distribution inside the ZnO target. Simulation of the second stage of interaction is developed in a COMSOL multiphysics project. The simulated thermal field induced by space and time heat conduction is presented. Typically for a pulsed electron beam 2 mm in diameter of electrons having energies up to 16 keV, the surface temperature reaches a maximum of 7000 K. The calculations are supported by SEM pictures of the target irradiated by various beam energies and numbers of pulses.

  7. Empirical modeling of high-intensity electron beam interaction with materials

    NASA Astrophysics Data System (ADS)

    Koleva, E.; Tsonevska, Ts; Mladenov, G.

    2018-03-01

    The paper proposes an empirical modeling approach to the prediction followed by optimization of the exact shape of the cross-section of a welded seam, as obtained by electron beam welding. The approach takes into account the electron beam welding process parameters, namely, electron beam power, welding speed, and distances from the magnetic lens of the electron gun to the focus position of the beam and to the surface of the samples treated. The results are verified by comparison with experimental results for type 1H18NT stainless steel samples. The ranges considered of the beam power and the welding speed are 4.2 – 8.4 kW and 3.333 – 13.333 mm/s, respectively.

  8. Dynamic Pattern Formation in Electron-Beam-Induced Etching [Emergent formation of dynamic topographic patterns in electron beam induced etching

    DOE PAGES

    Martin, Aiden A.; Bahm, Alan; Bishop, James; ...

    2015-12-15

    Here, we report highly ordered topographic patterns that form on the surface of diamond, span multiple length scales, and have a symmetry controlled by the precursor gas species used in electron-beam-induced etching (EBIE). The pattern formation dynamics reveals an etch rate anisotropy and an electron energy transfer pathway that is overlooked by existing EBIE models. Therefore, we, modify established theory such that it explains our results and remains universally applicable to EBIE. Furthermore, the patterns can be exploited in controlled wetting, optical structuring, and other emerging applications that require nano- and microscale surface texturing of a wide band-gap material.

  9. Magneto-Optic Kerr Effect in a Magnetized Electron Gun

    NASA Astrophysics Data System (ADS)

    Hardy, Benjamin; Grames, Joseph; CenterInjectors; Sources Team

    2016-09-01

    Magnetized electron sources have the potential to improve ion beam cooling efficiency. At the Gun Test Stand at Jefferson Lab, a solenoid magnet will be installed adjacent to the photogun to magnetize the electron beam. Due to the photocathode operating in a vacuum chamber, measuring and monitoring the magnetic field at the beam source location with conventional probes is impractical. The Magneto-Optical Kerr Effect (MOKE) describes the change on polarized light by reflection from a magnetized surface. The reflection from the surface may alter the polarization direction, ellipticity, or intensity, and depends linearly upon the surface magnetization of the sample. By replacing the photocathode with a magnetized sample and reflecting polarized light from the sample surface, the magnetic field at the beam source is inferred. A controlled MOKE system has been assembled to test the magnetic field. Calibration of the solenoid magnet is performed by comparing the MOKE signal with magnetic field measurements. The apparatus will provide a description of the field at electron beam source. The report summarizes the method and results of controlled tests and calibration of the MOKE sample with the solenoid magnet field measurements. This work is supported by the National Science Foundation, Research Experience for Undergraduates Award 1359026 and the Department of Energy, Laboratory Directed Research and Development Contract DE-AC05-06OR23177.

  10. Microsecond Electron Beam Source with Electron Energy Up to 400 Kev and Plasma Anode

    NASA Astrophysics Data System (ADS)

    Abdullin, É. N.; Basov, G. F.; Shershnev, S.

    2017-12-01

    A new high-power source of electrons with plasma anode for producing high-current microsecond electron beams with electron energy up to 400 keV has been developed, manufactured, and put in operation. To increase the cross section and pulse current duration of the beam, a multipoint explosive emission cathode is used in the electron beam source, and the beam is formed in an applied external guiding magnetic field. The Marx generator with vacuum insulation is used as a high-voltage source. Electron beams with electron energy up to 300-400 keV, current of 5-15 kA, duration of 1.5-3 μs, energy up to 4 kJ, and cross section up to 150 cm2 have been produced. The operating modes of the electron beam source are realized in which the applied voltage is influenced weakly on the current. The possibility of source application for melting of metal surfaces is demonstrated.

  11. Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, Victor, E-mail: gromov@physics.sibsiu.ru; Kobzareva, Tatiana, E-mail: kobzarevatanya@mail.ru; Budovskikh, Evgeniy, E-mail: budovskih-ea@physics.sibsiu.ru

    2016-01-15

    By methods of modern physical metallurgy the analysis of structure phase states of titanium alloy VT6 is carried out after electric explosion alloying with boron carbide and subsequent irradiation by pulsed electron beam. The formation of an electro-explosive alloying zone of a thickness up to 50 µm, having a gradient structure, characterized by decrease in the concentration of carbon and boron with increasing distance to the treatable surface has been revealed. Subsequent electron-beam treatment of alloying zone leads to smoothing of the alloying area surface and is accompanied by the multilayer structure formation at the depth of 30 µm withmore » alternating layers with different alloying degrees having the structure of submicro - and nanoscale level.« less

  12. Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam

    DOE PAGES

    Lin, Feng; Markus, Isaac M.; Doeff, Marca M.; ...

    2014-07-16

    Our investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. But, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi 0.4Mn 0.4Co 0.18Ti 0.02O 2 particles, repeated electron beam irradiation induced a phase transition from an Rmore » $$\\bar{3}$$m layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from R$$\\bar{3}$$m 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, in using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results.« less

  13. Directed Vapor Deposition: Low Vacuum Materials Processing Technology

    DTIC Science & Technology

    2000-01-01

    constituent A Crucible with constituent B Electron beam AB Substrate Deposit Flux of A Flux of B Composition "Skull" melt Electron beam Coolant Copper ... crucible Evaporation target Evaporant material Vapor flux Fibrous Coating Surface a) b) sharp (0.5 mm) beam focussing. When used with multisource

  14. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    NASA Astrophysics Data System (ADS)

    Ali, Muddassir; Henda, Redhouane

    2017-02-01

    A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm2, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  15. Measurement of Electron Beam Emittance Using Optical Transition Radiation and Development of a Diffuse Screen Electron Beam Monitor

    DTIC Science & Technology

    1990-12-01

    Zerodur ,irror, 2" relfects light. 1OZ20BD.1; 20th wave zerodur mirror , 1" reflects light. LS-35; 3’ x 5’ optical breadboard; for mounting components...profile measurements using the diffuse screen were compared with measurements using a front surface mirror and a fluorescent screen. The 20 DISTRIBUTION...Beam current and profile measurements using the diffuse screen were compared with measurements using a front surface mirror and a fluorescent screen

  16. Two mechanisms of resonance overlapping in excitation of azimuthal surface waves by rotating relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred

    2018-05-01

    Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-filled metallic waveguides with a stationary axial magnetic field. These waves with extraordinary polarization can effectively interact with relativistic electron beams rotating along large Larmor orbits in the gap, which separates the plasma column from the waveguide wall. Both widening the layer and increasing the beam particle density are demonstrated to cause resonance overlapping seen from the perspective of the growth rate dependence on the effective wave number.

  17. Comment on "Propagation of a TE surface mode in a relativistic electron beam-quantum plasma system" [Phys. Lett. A 376 (2012) 169

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2016-07-01

    In a recent paper Abdel Aziz [Phys. Lett. A 376 (2012) 169] obtained the dispersion properties of TE surface modes propagating at the interface between a magnetized quantum plasma and vacuum in the Faraday configuration, where these TE surface waves are excited during the interaction of relativistic electron beam with magnetized quantum plasma. The present Comment points out that in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the TE surface waves cannot propagate on surface of the present system and the general dispersion relations for surface waves, derived by Abdel Aziz are incorrect.

  18. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    PubMed

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  19. Nonadiabatic Electron-Optical System of a Technological Gyrotron

    NASA Astrophysics Data System (ADS)

    Goldenberg, A. L.; Glyavin, M. Yu.; Leshcheva, K. A.; Manuilov, V. N.

    2017-10-01

    We consider a new version of the nonadiabatic system for the formation of a helical electron beam in a gyrotron, in which electrons acquire initial oscillatory velocities when a rectilinear beam is injected at an angle to the magnetic field. In such an electron gun, the influence of thermal electron velocities and roughness of the emitting surface can be decreased, as compared with the conventional electron-optical systems of gyrotrons. This makes it possible to increase significantly the system efficiency. The main factors affecting the quality of the formed beam are considered.

  20. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode.

    PubMed

    Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P

    2013-02-15

    We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.

  1. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  2. The use of an ion-beam source to alter the surface morphology of biological implant materials

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1978-01-01

    An electron bombardment, ion thruster was used as a neutralized-ion beam sputtering source to texture the surfaces of biological implant materials. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane were obtained.

  3. Improved Ion Resistance for III-V Photocathodes in High Current Guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulhollan, Gregory, A.

    2012-11-16

    The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studiesmore » was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.« less

  4. Accurate electron gun-positioning mechanism for electron beam-mapping of large cross-section magnetic surfaces

    NASA Astrophysics Data System (ADS)

    Anderson, F. S. B.; Middleton, F.; Colchin, R. J.; Million, D.

    1989-04-01

    A method of accurately supporting and positioning an electron source inside a large cross-sectional area magnetic field which provides very low electron beam occlusion is reported. The application of electrical discharge machining to the fabrication of a 1-m truss support structure has provided an extremely long, rigid and mechanically strong electron gun support. Reproducible electron gun positioning to within 1 mm has been achieved at any location within a 1×0.6-m2 area. The extremely thin sections of the support truss (≤1.5 mm) have kept the electron beam occlusion to less than 3 mm. The support and drive mechanism have been designed and fabricated at the University of Wisconsin for application to the mapping of the magnetic surface structure of the Advanced Toroidal Facility torsatron1 at the Oak Ridge National Laboratory.

  5. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes,more » which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.« less

  6. Structure Evolution and Distributions of Grain-Boundary Misorientainons in Submicrocrystalline Molybdenum Irradiated with a Pulsed Electron Beam

    NASA Astrophysics Data System (ADS)

    Stepanova, E. N.; Grabovetskaya, G. P.; Teresov, A. D.; Mishin, I. P.

    2018-05-01

    Using the methods of electron backscatter diffraction, electron microscopy and X-ray diffraction analysis, it is demonstrated that irradiation of the surface of a submicrocrystalline molybdenum specimen with a pulsed electron beam in a non-melt regime results in the formation of a gradient structure in its bulk. The irradiation temperature is shown to affect the density of defects, the value of stress, and the distributions of grain-boundary misorientations in the surface and bulk of the submicrocrystalline molybdenum specimens.

  7. Generation of light from free electrons.

    PubMed

    Salisbury, W W

    1966-10-21

    Experiments with the interaction of a rectangular cross- section beam of electrons which is brought into contact with a metallic diffraction grat e ng produce light variable in wavelength throughout the visible spectrum. Con tinuous variation of the beam thickness shows that light is produced by electrons hundreds of wavelengths from the grating, if the side of the beam near the grating is in contact with it. The results can be accounted for by periodic accelerations of the electrons passing over the surface of the grating. These accelerations are caused by electrostatic forces which in turn are due to the average spacecharge of sheets of elec trons reflected from the grating surface, so that in their space- charge structure the periodicity of the grating rulings is preserved.

  8. Surface-active element effects on the shape of GTA, laser, and electron-beam welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Roper, J.R.; Stagner, R.T.

    1983-03-01

    Laser and electron-beam welds were passed across selenium-doped zones in 21-6-9 stainless steel. The depth/width (d/w) ratio of a defocused laser weld with a weld pool shape similar to a GTA weld increased by over 200% in a zone where 66 ppm selenium had been added. Smaller increases were observed in selenium-doped zones for a moderately defocused electron beam weld with a higher d/w ratio in undoped base metal. When laser or electron beam weld penetration was by a keyhole mechanism, no change in d/w ratio occurred in selenium-doped zones. The results confirm the surface-tension-driven fluid-flow model for the effectmore » of minor elements on GTA weld pool shape. Other experimental evidence bearing on the effect of minor elements on GTA weld penetration is summarized.« less

  9. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    NASA Astrophysics Data System (ADS)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A.

    2015-08-01

    Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed.

  10. Two-dimensiosnal electron beam charging model for polymer films. M.S. Thesis; [spacecraft charging, geosynchronous satellites

    NASA Technical Reports Server (NTRS)

    Reeves, R. D.; Balmain, K. G.

    1981-01-01

    A two dimensional model was developed to describe the charging of thin polymer films exposed to a uniform mon-energetic electron beam. The study was motivated by observed anomalous behavior of geosynchronous satellites which was attributed to electrical discharges associated with the differential charging of satellite surfaces of magnetospheric electrons. Electric fields both internal and external to the irradiated specimen were calculated at steady state in order to identify regions of high electrical stress. Particular emphasis was placed on evaluating the charging characteristics near the material's edge. The model was used to identify and quantify the effects of some of the experimental parameters notably: beam energy; beam angle of incidence; beam current density; material thickness; and material width. Simulations of the following situations were also conducted: positive or negative precharging over part of the surface; a central gap in the material; and a discontinuity in the material's thickness.

  11. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    PubMed Central

    Thorman, Rachel M; Kumar T. P., Ragesh; Fairbrother, D Howard

    2015-01-01

    Summary Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate. These low-energy electrons are abundant both inside and outside the area of the primary electron beam and are associated with reactions causing incomplete ligand dissociation from FEBID precursors. As it is not possible to directly study the effects of secondary electrons in situ in FEBID, other means must be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface studies on adsorbed precursor molecules can provide information on surface speciation and identify species desorbing from a substrate during electron irradiation under conditions more representative of FEBID. Comparing gas phase and surface science studies allows for insight into the primary deposition mechanisms for individual precursors; ideally, this information can be used to design future FEBID precursors and optimize deposition conditions. In this review, we give a summary of different low-energy electron-induced fragmentation processes that can be initiated by the secondary electrons generated in FEBID, specifically, dissociative electron attachment, dissociative ionization, neutral dissociation, and dipolar dissociation, emphasizing the different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors. PMID:26665061

  12. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors.

    PubMed

    Thorman, Rachel M; Kumar T P, Ragesh; Fairbrother, D Howard; Ingólfsson, Oddur

    2015-01-01

    Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate. These low-energy electrons are abundant both inside and outside the area of the primary electron beam and are associated with reactions causing incomplete ligand dissociation from FEBID precursors. As it is not possible to directly study the effects of secondary electrons in situ in FEBID, other means must be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface studies on adsorbed precursor molecules can provide information on surface speciation and identify species desorbing from a substrate during electron irradiation under conditions more representative of FEBID. Comparing gas phase and surface science studies allows for insight into the primary deposition mechanisms for individual precursors; ideally, this information can be used to design future FEBID precursors and optimize deposition conditions. In this review, we give a summary of different low-energy electron-induced fragmentation processes that can be initiated by the secondary electrons generated in FEBID, specifically, dissociative electron attachment, dissociative ionization, neutral dissociation, and dipolar dissociation, emphasizing the different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  13. Energy modulation of nonrelativistic electrons with a CO2 laser using a metal microslit

    NASA Astrophysics Data System (ADS)

    Bae, Jongsuck; Ishikawa, Ryo; Okuyama, Sumio; Miyajima, Takashi; Akizuki, Taiji; Okamoto, Tatsuya; Mizuno, Koji

    2000-04-01

    A metal microslit has been used as an interaction circuit between a CO2 laser beam and nonrelativistic free electrons. Evanescent waves which are induced on the slit by illumination of the laser light modulate the energy of electrons passing close to the surface of the slit. The electron-energy change of more than ±5 eV for the 80 keV electron beam has been observed using the 7 kW laser beam at the wavelength of 10.6 μm.

  14. Formation of structure, phase composition and properties of electro explosion resistant coatings using electron-beam processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, Denis A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Sosnin, Kirill V., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Budovskikh, Evgenij A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru

    2014-11-14

    For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoCu, MoCCu, WCu, WCCu and TiB{sub 2}Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beammore » processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times.« less

  15. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than themore » size of the incident electron beam.« less

  16. Positron beam studies of solids and surfaces: A summary

    NASA Astrophysics Data System (ADS)

    Coleman, P. G.

    2006-02-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations.

  17. Fabrication of meso- and nano-scale structures on surfaces of chalcogenide semiconductors by surface hydrodynamic interference patterning

    NASA Astrophysics Data System (ADS)

    Bilanych, V.; Komanicky, V.; Lacková, M.; Feher, A.; Kuzma, V.; Rizak, V.

    2015-10-01

    We observe the change of surface relief on amorphous Ge-As-Se thin films after irradiation with an electron beam. The beam softens the glass and induces various topological surface changes in the irradiated area. The film relief change depends on the film thickness, deposited charge, and film composition. Various structures are formed: Gausian-like cones, extremely sharp Taylor cones, deep craters, and craters with large spires grown on the side. Our investigation shows that these effects can be at least partially a result of electro-hydrodynamic material flow, but the observed phenomena are likely more complex. When we irradiated structural patterns formed by the electron beam with a red laser beam, we could not only fully relax the produced patterns, but also form very complex and intricate superstructures. These organized meso- and nano-scale structures are formed by a combination of photo-induced structural relaxation, light interference on structures fabricated by the e-beam, and photo-induced material flow.

  18. Simulations of Gaussian electron guns for RHIC electron lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, A.

    Simulations of two versions of the electron gun for RHIC electron lens are presented. The electron guns have to generate an electron beam with Gaussian radial profile of the electron beam density. To achieve the Gaussian electron emission profile on the cathode we used a combination of the gun electrodes and shaping of the cathode surface. Dependence of electron gun performance parameters on the geometry of electrodes and the margins for electrodes positioning are presented.

  19. S3 targets monitoring with an electron gun

    NASA Astrophysics Data System (ADS)

    Kallunkathariyil, J.; Stodel, Ch.; Marry, C.; Frémont, G.; Bastin, B.; Piot, J.; Clément, E.; Le Moal, S.; Morel, V.; Thomas, J.-C.; Kamalou, O.; Spitaëls, C.; Savajols, H.; Vostinar, M.; Pellemoine, F.; Mittig, W.

    2018-05-01

    The monitoring of targets under irradiation was investigated using a 20 keV electron beam. An integrated and automated electron beam deflection was developed allowing a monitoring over the whole surface of target materials. Thus, local defects could be identified on-line during an experiment performed at GANIL involving different materials irradiated with a focused krypton beam at 10.5 MeV/u. Performances of this target monitoring system are presented in this paper.

  20. Silicon solar cell fabrication technology

    NASA Technical Reports Server (NTRS)

    Stafsudd, O. M.

    1979-01-01

    The laser cell scanner was used to characterize a number of solar cells made in various materials. An electron beam-induced current (EBIC) study was performed using a stereoscan scanning electron microscope. Planar p-n junctions were analyzed. A theory for the EBIC based on the analytical solution of the ambipolar diffusion equation under the influence of electron beam excitation parameter z (which is related to beam penetration), the junction depth Z sub j, the beam current and the surface recombination, was formulated and tested. The effect of a grain boundary was studied.

  1. Study of a high power hydrogen beam diagnostic based on secondary electron emission.

    PubMed

    Sartori, E; Panasenkov, A; Veltri, P; Serianni, G; Pasqualotto, R

    2016-11-01

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  2. The study of the modes of Ta-Zr powder mixture non-vacuum electron-beam cladding on the surface of the cp-titanium plates

    NASA Astrophysics Data System (ADS)

    Samoylenko, V. V.; Lozhkina, E. A.; Polyakov, I. A.; Lenivtseva, O. G.; Ivanchik, I. S.; Matts, O. E.

    2016-11-01

    The effect of the modes of non-vacuum electron-beam cladding of Ta-Zr powder mixtures on the structure and properties of the layers formed on the surface of cp-titanium were studied. The mode of the electron-beam alloying of titanium with zirconium and tantalum, which ensured the formation of a defect-free layer with a high content of alloying elements was selected. Metallographic examination indicated the presence of a dendritic- and plate-type structure of cladded layers. The microhardness of the layers, formed at the optimum mode, was not changed in the cross section and was equal to 450 HV.

  3. Atmospheric Electron-Induced X-Ray Spectrometer (AEXS) Development

    NASA Technical Reports Server (NTRS)

    Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; George, Thomas; Douglas, Susanne; Crisp, Joy

    2005-01-01

    This paper describes the progress in the development of the so-called Atmospheric Electron X-ray Spectrometer (AEXS) instrument in our laboratory at JPL. The AEXS is a novel miniature instrument concept based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam, for non-destructive evaluation of surfaces of samples in situ, in planetary ambient atmosphere. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum within the AEXS electron source from the outside ambient atmosphere. By using a focused electron beam, the impinging electrons on samples in the external atmosphere excite XRF spectra from the irradiated spots with high-to-medium spatial resolution. The XRF spectra are analyzed using an energy-dispersive detector to determine surface elemental composition. The use of high- intensity electron beam results in rapid spectrum acquisition (several minutes), and consequently low energy consumption (several tens of Joules) per acquired XRF spectrum in comparison to similar portable instruments.

  4. Electron beam induced deposition of silicon nanostructures from a liquid phase precursor.

    PubMed

    Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J

    2012-09-28

    This work demonstrates electron beam induced deposition of silicon from a SiCl(4) liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.

  5. Electron beam induced deposition of silicon nanostructures from a liquid phase precursor

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J.

    2012-09-01

    This work demonstrates electron beam induced deposition of silicon from a SiCl4 liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.

  6. A new e-beam application in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Sadat, Theo; Malcolm, Fiona

    2005-10-01

    The paper presents a new electron beam application in the pharmaceutical industry: an in-line self-shielded atropic transfer system using electron beam for surface decontamination of products entering a pharmaceutical filling line. The unit was developed by Linac Technologies in response to the specifications of a multi-national pharmaceutical company, to solve the risk of microbial contamination entering a filling line housed inside an isolator. In order to fit the sterilization unit inside the pharmaceutical plant, a "miniature" low-energy (200 keV) electron beam accelerator and e-beam tunnel were designed, all conforming to the pharmaceutical good manufacturing practice (GMP) regulations. Process validation using biological indicators is described, with reference to the regulations governing the pharmaceutical industry. Other industrial applications of a small-sized self-shielded electron beam sterilization unit are mentioned.

  7. Electron-beam Induced Processes and their Applicability to Mask Repair

    NASA Astrophysics Data System (ADS)

    Boegli, Volker A.; Koops, Hans W. P.; Budach, Michael; Edinger, Klaus; Hoinkis, Ottmar; Weyrauch, Bernd; Becker, Rainer; Schmidt, Rudolf; Kaya, Alexander; Reinhardt, Andreas; Braeuer, Stephan; Honold, Heinz; Bihr, Johannes; Greiser, Jens; Eisenmann, Michael

    2002-12-01

    The applicability of electron-beam induced chemical reactions to mask repair is investigated. To achieve deposition and chemical etching with a focused electron-beam system, it is required to disperse chemicals in a molecular beam to the area of interest with a well-defined amount of molecules and monolayers per second. For repair of opaque defects the precursor gas reacts with the absorber material of the mask and forms a volatile reaction product, which leaves the surface. In this way the surface atoms are removed layer by layer. For clear defect repair, additional material, which is light absorbing in the UV, is deposited onto the defect area. This material is rendered as a nanocrystalline deposit from metal containing precursors. An experimental electron-beam mask repair system is developed and used to perform exploratory work applicable to photo mask, EUV mask, EPL and LEEPL stencil mask repair. The tool is described and specific repair actions are demonstrated. Platinum deposited features with lateral dimensions down to 20 nm demonstrate the high resolution obtainable with electron beam induced processes, while AFM and AIMS measurements indicate, that specifications for mask repair at the 70 nm device node can be met. In addition, examples of etching quartz and TaN are given.

  8. Structured electron beams from nano-engineered cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lueangaramwong, A.; Mihalcea, D.; Andonian, G.

    The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  9. Electron beam therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, N.M.

    An observed clinical side effect of total skin surface electron beam therapy is the patient's inability to perspire. An evaluation of eccrine sweat gland function was performed, utilizing acetylcholine chloride and a silicone impression material. The patient's inability to sweat after therapy, and recovery within a three- to six-month period after therapy was demonstrated. This phenomenon should be appreciated by both the physician and the patient prior to electron beam therapy in order to avoid the potential complications of this condition.

  10. Secondary electron emission yield from high aspect ratio carbon velvet surfaces

    DOE PAGES

    Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny

    2017-11-01

    The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvetmore » samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. Furthermore, the results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.« less

  11. Secondary electron emission yield from high aspect ratio carbon velvet surfaces

    NASA Astrophysics Data System (ADS)

    Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny

    2017-11-01

    The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvet samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. The results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.

  12. Direct nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation.

    PubMed

    El Mel, Abdel-Aziz; Stephant, Nicolas; Gautier, Romain

    2016-10-06

    In this communication, we report on the growth, direct writing and nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation using a scanning electron microscope. The nanoblocks are produced by placing a droplet of an ethylene glycol solution containing silver nitrate and polyvinylpyrrolidone diluted in ethanol directly on a hot substrate heated up to 150 °C. Upon complete evaporation of the droplet, nanospheres, nano- and micro-triangles and nanoblocks made of silver-containing polymers, form over the substrate surface. Considering the nanoblocks as a model system, we demonstrate that such nanostructures are extremely sensitive to the e-beam extracted from the source of a scanning electron microscope operating at low acceleration voltages (between 5 and 7 kV). This sensitivity allows us to efficiently create various nanopatterns (e.g. arrays of holes, oblique slits and nanotrenches) in the material under e-beam irradiation. In addition to the possibility of writing, the nanoblocks revealed a self-healing ability allowing them to recover a relatively smooth surface after etching. Thanks to these properties, such nanomaterials can be used as a support for data writing and erasing on the nanoscale under low energy electron beam irradiation.

  13. Electron beam charging of insulators: A self-consistent flight-drift model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touzin, M.; Goeuriot, D.; Guerret-Piecourt, C.

    2006-06-01

    Electron beam irradiation and the self-consistent charge transport in bulk insulating samples are described by means of a new flight-drift model and an iterative computer simulation. Ballistic secondary electron and hole transport is followed by electron and hole drifts, their possible recombination and/or trapping in shallow and deep traps. The trap capture cross sections are the Poole-Frenkel-type temperature and field dependent. As a main result the spatial distributions of currents j(x,t), charges {rho}(x,t), the field F(x,t), and the potential slope V(x,t) are obtained in a self-consistent procedure as well as the time-dependent secondary electron emission rate {sigma}(t) and the surfacemore » potential V{sub 0}(t). For bulk insulating samples the time-dependent distributions approach the final stationary state with j(x,t)=const=0 and {sigma}=1. Especially for low electron beam energies E{sub 0}<4 keV the incorporation of mainly positive charges can be controlled by the potential V{sub G} of a vacuum grid in front of the target surface. For high beam energies E{sub 0}=10, 20, and 30 keV high negative surface potentials V{sub 0}=-4, -14, and -24 kV are obtained, respectively. Besides open nonconductive samples also positive ion-covered samples and targets with a conducting and grounded layer (metal or carbon) on the surface have been considered as used in environmental scanning electron microscopy and common SEM in order to prevent charging. Indeed, the potential distributions V(x) are considerably small in magnitude and do not affect the incident electron beam neither by retarding field effects in front of the surface nor within the bulk insulating sample. Thus the spatial scattering and excitation distributions are almost not affected.« less

  14. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.

    PubMed

    Xu, Shengyong; Tian, Mingliang; Wang, Jinguo; Xu, Jian; Redwing, Joan M; Chan, Moses H W

    2005-12-01

    We demonstrate that a high-intensity electron beam can be applied to create holes, gaps, and other patterns of atomic and nanometer dimensions on a single nanowire, to weld individual nanowires to form metal-metal or metal-semiconductor junctions, and to remove the oxide shell from a crystalline nanowire. In single-crystalline Si nanowires, the beam induces instant local vaporization and local amorphization. In metallic Au, Ag, Cu, and Sn nanowires, the beam induces rapid local surface melting and enhanced surface diffusion, in addition to local vaporization. These studies open up a novel approach for patterning and connecting nanomaterials in devices and circuits at the nanometer scale.

  15. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    NASA Astrophysics Data System (ADS)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  16. SEPAC data analysis in support of the environmental interaction program

    NASA Technical Reports Server (NTRS)

    Lin, Chin S.

    1990-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a two dimensional electrostatic particle code. The ionization effects of spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged space craft produced an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the space craft charging potential measured during the SEPAC experiments from Spacelab 1. A second paper is presented in which a two dimensional electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.

  17. Positrons in surface physics

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2016-12-01

    Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.

  18. Optical glow spectra arising from low-energy N2, N2(+) and electron bombardment of MgF2 surfaces

    NASA Technical Reports Server (NTRS)

    Qi, J.; Barnes, A. V.; Espy, S. L.; Riehl-Chudoba, M.; Sun, C.-N.; Albridge, R. G.; Tolk, N. H.

    1991-01-01

    Photon emission spectra resulting from the impact of N2, N2(+), and electron beams on magnesium fluoride in an ultrahigh vacuum environment were measured and compared for beam energies in the range 200-2000 eV. Unexpectedly, only the ion- and electron-induced spectra exhibited broad fluorescence. The observed data suggest that the broad fluorescence arising from low-energy ion bombardment is due primarily to the transfer of electronic energy to the surface by resonance or Auger neutralization. Since molecular nitrogen is a major constituent of the atmosphere at orbital altitudes, these measurements bear directly on radiation-induced glow and erosion processes on surfaces of spacecraft in low-earth orbit.

  19. Optical radiation from the interaction of energetic atoms, ions, electrons, and photons with surfaces

    NASA Technical Reports Server (NTRS)

    Tolk, N. H.; Albridge, R. G.; Haglund, R. F., Jr.; Mendenhall, M. H.

    1985-01-01

    Heavy particle, electron, and UV photon bombardment of solid surfaces has been recently observed to result in the emission of infrared, visible, and ultraviolet radiation. This effect occurs over a wide range of incident projectile energies. Line radiation arising from transitions between discrete atomic or molecular levels may be attributed to the decay of excited particles which have been sputtered or electronically/chemically desorbed from the surface. Broadband continuum radiation, which is also observed, is believed to arise either from fluorescence of the near surface bulk or from the radiative decay of desorbed excited clusters. Spacecraft, in the ambient near Earth environment, are subject to such bombardment. The dynamics of energetic particle and photon beam interactions with surfaces which lead to surface erosion and glow phenomena will be treated. In addition, projected experimental and theoretical studies of oxygen and nitrogen beam surface interactions on materials characteristic of spacecraft surfaces will be discussed.

  20. Method and apparatus for atomic imaging

    DOEpatents

    Saldin, Dilano K.; de Andres Rodriquez, Pedro L.

    1993-01-01

    A method and apparatus for three dimensional imaging of the atomic environment of disordered adsorbate atoms are disclosed. The method includes detecting and measuring the intensity of a diffuse low energy electron diffraction pattern formed by directing a beam of low energy electrons against the surface of a crystal. Data corresponding to reconstructed amplitudes of a wave form is generated by operating on the intensity data. The data corresponding to the reconstructed amplitudes is capable of being displayed as a three dimensional image of an adsorbate atom. The apparatus includes a source of a beam of low energy electrons and a detector for detecting the intensity distribution of a DLEED pattern formed at the detector when the beam of low energy electrons is directed onto the surface of a crystal. A device responsive to the intensity distribution generates a signal corresponding to the distribution which represents a reconstructed amplitude of a wave form and is capable of being converted into a three dimensional image of the atomic environment of an adsorbate atom on the crystal surface.

  1. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  2. Grafted Polystyrene Monolayer Brush as Both Negative and Positive Tone Electron Beam Resist.

    PubMed

    Aydinoglu, Ferhat; Yamada, Hirotaka; Dey, Ripon K; Cui, Bo

    2017-05-23

    Although spin coating is the most widely used electron-beam resist coating technique in nanolithography, it cannot typically be applied for nonflat or irregular surfaces. Here, we demonstrate that monolayer polystyrene brush can be grafted on substrates and used as both positive and negative electron-beam resist, which can be applied for such unconventional surfaces. Polystyrene is a popular negative resist when using solvent developer but solvent cannot be used for grafted polystyrene brush that is firmly bonded to the substrate. Instead, we employed two unconventional development methods to lead polystyrene brush to positive or negative tone behavior. Negative tone was achieved by thermal development at 300 °C because exposed thus cross-linked polystyrene brush is more thermally stable against vaporization than unexposed linear one. Surprisingly, positive tone behavior occurred when the brush was grafted onto an aluminum (Al) layer and the film stack was developed using diluted hydrofluoric acid (HF) that etched the underlying Al layer. By transferring the patterns into the silicon (Si) substrates using the thin Al layer as a sacrificial hard mask for dry etch, well-defined structures in Si were obtained in two different electron-beam resist tones as well as in nonflat surfaces.

  3. Electron acceleration by surface plasma waves in double metal surface structure

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.

    2007-12-01

    Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.

  4. Kaguya observations of the lunar wake in the terrestrial foreshock: Surface potential change by bow-shock reflected ions

    NASA Astrophysics Data System (ADS)

    Nishino, Masaki N.; Harada, Yuki; Saito, Yoshifumi; Tsunakawa, Hideo; Takahashi, Futoshi; Yokota, Shoichiro; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2017-09-01

    There forms a tenuous region called the wake behind the Moon in the solar wind, and plasma entry/refilling into the wake is a fundamental problem of the lunar plasma science. High-energy ions and electrons in the foreshock of the Earth's magnetosphere were detected at the lunar surface in the Apollo era, but their effects on the lunar night-side environment have never been studied. Here we show the first observation of bow-shock reflected protons by Kaguya (SELENE) spacecraft in orbit around the Moon, confirming that solar wind plasma reflected at the terrestrial bow shock can easily access the deepest lunar wake when the Moon stays in the foreshock (We name this mechanism 'type-3 entry'). In a continuous type-3 event, low-energy electron beams from the lunar night-side surface are not obvious even though the spacecraft location is magnetically connected to the lunar surface. On the other hand, in an intermittent type-3 entry event, the kinetic energy of upward-going field-aligned electron beams decreases from ∼ 80 eV to ∼ 20 eV or electron beams disappear as the bow-shock reflected ions come accompanied by enhanced downward electrons. According to theoretical treatment based on electric current balance at the lunar surface including secondary electron emission by incident electron and ion impact, we deduce that incident ions would be accompanied by a few to several times higher flux of an incident electron flux, which well fits observed downward fluxes. We conclude that impact by the bow-shock reflected ions and electrons raises the electrostatic potential of the lunar night-side surface.

  5. [Radiation load on the skin using a silicone-coated polyamide wound dressing during photon and electron radiotherapy].

    PubMed

    Thilmann, C; Adamietz, I A; Ramm, U; Mose, S; Saran, F; Böttcher, H D

    1996-05-01

    Silicone-coated polyamide wound dressing is frequently used for the supportive treatment in patients with radiation induced skin lesions. The use of this kind of dressing during radiotherapy with high energy beams shifts the dose built-up effect towards the skin surface. Thus the dose delivered to the skin increases. The present work quantifies changes of the skin dose by a commercial silicon-coated polyamide wound dressing. The dependence on the beam quality and on different treatment techniques is investigated. Measurements were performed with photon (60Co, 6 MV, 42 MV) and electron (7 MeV, 20 MeV, 40 MeV) beams using thin LiF thermoluminescence dosimeters (TLD) in a perspex phantom. The beams were directed perpendicularly to the phantom surface. For 60Co and 6 MV photon beams the skin dose was evaluated in vivo at different beam arrangements and at a given reference dose. For 60Co, 6 MV and 42 MV photon beams wound dressing caused a dose increase on the surface of the perspex phantom by a factor of 1.65, 1.39 and 1.33 respectively. Using oblique or rotational techniques for 60Co and 6 MV photon irradiation the wound dressing increased the skin dose but less compared to perpendicular beam direction. For electron beams the skin dose is relatively high (from 84% to 92%) and an increase by a dressing has no clinical relevance (factor 1.03 to 1.05). The silicone-coated polyamide wound dressing causes no relevant skin dose increase during radiation treatment with electron beams and can be left on the skin during irradiation. During radiation treatment with photon beams like 60Co and 6 MV the protective procedure should be adapted to skin changes, in case of strong skin reactions a removal during the time of irradiation should be considered.

  6. Satellite Spacecraft Charging Control Materials.

    DTIC Science & Technology

    1980-04-01

    Surface potential in terms of beam energy 923.4.4 Typical current recordings 92 3 - 5 Analysis III 3.5.1 Background ill 3.5.2 Silica fabric behaviour 114...3521 surface potentials, leakage and secondary electron emission currents 114 3521-1 variation with time 114I 3521-2 variation with the beam energy ...Irradiations 51 Figure 15 Silica Fabric - FEP - Aluminum Foil Composite 56 Figure 16 Electron Energy Spectrum After Scattering through and Aluminum Foil

  7. Transient fields produced by a cylindrical electron beam flowing through a plasma

    NASA Astrophysics Data System (ADS)

    Firpo, Marie-Christine

    2012-10-01

    Fast ignition schemes (FIS) for inertial confinement fusion should involve in their final stage the interaction of an ignition beam composed of MeV electrons laser generated at the critical density surface with a dense plasma target. In this study, the out-of-equilibrium situation in which an initially sharp-edged cylindrical electron beam, that could e.g. model electrons flowing within a wire [1], is injected into a plasma is considered. A detailed computation of the subsequently produced magnetic field is presented [2]. The control parameter of the problem is shown to be the ratio of the beam radius to the electron skin depth. Two alternative ways to address analytically the problem are considered: one uses the usual Laplace transform approach, the other one involves Riemann's method in which causality conditions manifest through some integrals of triple products of Bessel functions.[4pt] [1] J.S. Green et al., Surface heating of wire plasmas using laser-irradiated cone geometries, Nature Physics 3, 853--856 (2007).[0pt] [2] M.-C. Firpo, http://hal.archives-ouvertes.fr/hal-00695629, to be published (2012).

  8. High-power, high-brightness pseudospark-produced electron beam driven by improved pulse line accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junbino Zhu; Mingchang Wang; Zhijiang Wang

    1995-12-31

    A high power (200KV), intense current density, low emittance (71mmmrad), high brightness (8x10{sup 10}A/m rad) electron beam was generated in the 10cm long, high-voltage-resistive multi-gap hollow cathode pseudospark chamber filled with 15pa nitrogen and driven by an improved pulse line accelerator. The beam was ejected with the 1mm diameter, the 2.2KA beam current, and the 400ns pulse length, and could propagated 20cm in the drift tube. At a distance of 5cm from the anode it penetrated consecutively an acid-sensitive discoloring film and a 0.05mm-thick copper foil both stuck closely, left 0.6mm and 0.3mm holes on them, respectively. That 10 shotsmore » on an acid-sensitive film produced a hole of 1.6mm at 7cm downstream of anode showed its good repeatability. After 60 shots the pseudospark discharge chamber was disassembled and observed that almost no destructive damage traces left on the surfaces of its various electrodes and insulators. But on almost all the surfaces of changeable central hole parts installed on intermediate electrodes there are traces of electron emission from the sides facing the anode and of bombardment on the sides facing the cathode, in contrast with which on the front- and back-surfaces of hollow cathode no visible traces of electron emission from then was observed. In addition, there were different tints, strip-like regions on the side of anode facing the cathode. Another interesting phenomenon was that there were a set of concentric circular or elliptical ring pattern on the acid-sensitive discoloring film got at 5cm from the anode and observed tinder a metallograph. It seems that the pseudospark electron beam is Laminar beam i.e, being possessed of a multi-layer structure, at least in the case of multi-gap pseudospark discharge chamber. It was found experimentally that the quality of pseudospark electron beam is much better than that of the cold-cathode electron beam.« less

  9. An investigation into vascular prosthesis modified with an electron beam.

    PubMed

    Lowkis, B; Szymonowicz, M; Rutkowski, J

    1997-01-01

    The present paper shows the results of an investigation into the effect of implanted electric charge on blood platelet adhesion to woven surfaces of "Dallon" polyester vascular prosthesis. The electrets were formed using the electron beam method. The assessment of the electret effect on blood platelet adhesion was performed on the basis of microscopic studies. It was shown that an implanted negative electric charge remarkably suppresses thrombocyte adhesion to the prosthesis surface. The electret effect was found to play a significant role in the process of preparing nonthrombogenic surfaces.

  10. Delayed Shutters For Dual-Beam Molecular Epitaxy

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.; Liu, John L.; Hancock, Bruce

    1989-01-01

    System of shutters for dual-molecular-beam epitaxy apparatus delays start of one beam with respect to another. Used in pulsed-beam equipment for deposition of low-dislocation layers of InAs on GaAs substrates, system delays application of arsenic beam with respect to indium beam to assure proper stoichiometric proportions on newly forming InAs surface. Reflectance high-energy electron diffraction (RHEED) instrument used to monitor condition of evolving surface of deposit. RHEED signal used to time pulsing of molecular beams in way that minimizes density of defects and holds lattice constant of InAs to that of GaAs substrate.

  11. Study of a high power hydrogen beam diagnostic based on secondary electron emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza; Panasenkov, A.

    2016-11-15

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, wemore » developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.« less

  12. Trajectories of high energy electrons in a plasma focus

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    Measurements are made of high-energy electron trajectories in a plasma focus as functions of position, time, energy, and angle of emission. The spatial resolution of the X-ray emission shows that low-energy X-rays are emitted from the anode surface. It is also suggested that the highest energy X-rays originate from a small region on the axis. The so-called shadow technique shows that the electron beam is perpendicular to the anode surface. Polar diagrams of medium and high-energy X-rays agree with the bremsstrahlung emission from a relativistic electron beam, the current of which is several 100 A.

  13. Cherenkov imaging for Total Skin Electron Therapy (TSET)

    NASA Astrophysics Data System (ADS)

    Xie, Yunhe; Petroccia, Heather; Maity, Amit; Miao, Tianshun; Zhu, Yihua; Bruza, Petr; Pogue, Brian W.; Andreozzi, Jacqueline M.; Plastaras, John P.; Dong, Lei; Zhu, Timothy C.

    2018-03-01

    Total Skin Electron Therapy (TSET) utilizes high-energy electrons to treat cancers on the entire body surface. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high-energy electron beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to evaluate the dose uniformity on the surface of the patient in real-time. Each patient was also monitored during TSET via in-vivo detectors (IVD) in nine locations. Patients undergoing TSET in various conditions (whole body and half body) were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  14. Dual-beam focused ion beam/electron microscopy processing and metrology of redeposition during ion-surface 3D interactions, from micromachining to self-organized picostructures.

    PubMed

    Moberlychan, Warren J

    2009-06-03

    Focused ion beam (FIB) tools have become a mainstay for processing and metrology of small structures. In order to expand the understanding of an ion impinging a surface (Sigmund sputtering theory) to our processing of small structures, the significance of 3D boundary conditions must be realized. We consider ion erosion for patterning/lithography, and optimize yields using the angle of incidence and chemical enhancement, but we find that the critical 3D parameters are aspect ratio and redeposition. We consider focused ion beam sputtering for micromachining small holes through membranes, but we find that the critical 3D considerations are implantation and redeposition. We consider ion beam self-assembly of nanostructures, but we find that control of the redeposition by ion and/or electron beams enables the growth of nanostructures and picostructures.

  15. Measurement of the Positron Annihilation Induced Auger Electron Spectrum from Ag(100)

    NASA Astrophysics Data System (ADS)

    Joglekar, P.; Shastry, K.; Fazleev, N. G.; Weiss, A. H.

    2013-06-01

    Research has demonstrated that Positron Annihilation Induced Auger Spectroscopy (PAES) can be used to probe the top-most atomic layer of surfaces and to obtain Auger spectra that are completely free of beam-impact induced secondary background. The high degree of surface selectivity in PAES is a result of the fact that positrons implanted at low energies are trapped with high efficiency at an image-correlation potential well at the surface resulting in almost all of the positrons annihilating with atoms in the top-most layer. Secondary electrons associated with the impact of the incident positrons can be eliminated by a suitable choice of an incident beam energy. In this paper we present the results of measurements of the energy spectrum of electrons emitted as a result of positron annihilation induced Auger electron emission from a clean Ag(100) surface using a series of incident beam energies ranging from 20 eV down to 2 eV. A peak in the spectrum was observed at ~40 eV corresponding to the N2,3VV Auger transition in agreement with previous PAES studies. This peak was accompanied by an even larger low energy tail which persisted even at the lowest beam energies. Our results for Ag(100) are consistent with previous studies of Cu and Au and indicate that a significant fraction of electrons leaving the sample are emitted in the low energy tail and suggest a strong mechanism for energy sharing in the Auger process.

  16. SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, S; Asprinio, A; Lu, L

    2014-06-01

    Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. Allmore » phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.« less

  17. Cleaning techniques for applied-B ion diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, M.E.; Menge, P.R.; Hanson, D.L.

    Measurements and theoretical considerations indicate that the lithium-fluoride (LiF) lithium ion source operates by electron-assisted field-desorption, and provides a pure lithium beam for 10--20 ns. Evidence on both the SABRE (1 TW) and PBFA-II (20 TW) accelerators indicates that the lithium beam is replaced by a beam of protons, and carbon resulting from electron thermal desorption of hydrocarbon surface and bulk contamination with subsequent avalanche ionization. Appearance of contaminant ions in the beam is accompanied by rapid impedance collapse, possibly resulting from loss of magnetic insulation in the rapidly expanding and ionizing, neutral layer. Electrode surface and source substrate cleaningmore » techniques are being developed on the SABRE accelerator to reduce beam contamination, plasma formation, and impedance collapse. We have increased lithium current density a factor of 3 and lithium energy a factor of 5 through a combination of in-situ surface and substrate coatings, impermeable substrate coatings, and field profile modifications.« less

  18. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, E.I. Jr.; Peterson, K.A.; Barton, D.L.

    1998-07-14

    An electron beam apparatus and method for testing a circuit are disclosed. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 {micro}m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits. 7 figs.

  19. Expansion of Shockley stacking fault observed by scanning electron microscope and partial dislocation motion in 4H-SiC

    NASA Astrophysics Data System (ADS)

    Yamashita, Yoshifumi; Nakata, Ryu; Nishikawa, Takeshi; Hada, Masaki; Hayashi, Yasuhiko

    2018-04-01

    We studied the dynamics of the expansion of a Shockley-type stacking fault (SSF) with 30° Si(g) partial dislocations (PDs) using a scanning electron microscope. We observed SSFs as dark lines (DLs), which formed the contrast at the intersection between the surface and the SSF on the (0001) face inclined by 8° from the surface. We performed experiments at different electron-beam scanning speeds, observing magnifications, and irradiation areas. The results indicated that the elongation of a DL during one-frame scanning depended on the time for which the electron beam irradiated the PD segment in the frame of view. From these results, we derived a formula to express the velocity of the PD using the elongation rate of the corresponding DL during one-frame scanning. We also obtained the result that the elongation velocity of the DL was not influenced by changing the direction in which the electron beam irradiates the PD. From this result, we deduced that the geometrical kink motion of the PD was enhanced by diffusing carriers that were generated by the electron-beam irradiation.

  20. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, Jr., Edward I.; Peterson, Kenneth A.; Barton, Daniel L.

    1998-01-01

    An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 .mu.m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits.

  1. Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong

    2018-04-01

    The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.

  2. Evolution and Control of 2219 Aluminum Microstructural Features through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  3. Selective propagation and beam splitting of surface plasmons on metallic nanodisk chains.

    PubMed

    Hu, Yuhui; Zhao, Di; Wang, Zhenghan; Chen, Fei; Xiong, Xiang; Peng, Ruwen; Wang, Mu

    2017-05-01

    Manipulating the propagation of surface plasmons (SPs) on a nanoscale is a fundamental issue of nanophotonics. By using focused electron beam, SPs can be excited with high spatial accuracy. Here we report on the propagation of SPs on a chain of gold nanodisks with cathodoluminescence (CL) spectroscopy. Experimental evidence for the propagation of SPs excited by the focused electron beam is demonstrated. The wavelength of the transmitted SPs depends on the geometrical parameters of the nanodisk chain. Furthermore, we design and fabricate a beam splitter, which selectively transmits SPs of certain wavelengths to a specific direction. By scanning the sample surface point by point and collecting the CL spectra, we obtain the spectral mapping and identify that the chain of the smaller nanodisks can efficiently transport SPs at shorter wavelengths. This Letter provides a unique approach to manipulate in-plane propagation of SPs.

  4. Depletion region surface effects in electron beam induced current measurements.

    PubMed

    Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.

  5. Surface discharge related properties of fiberglass reinforced plastic insulator for use in neutral beam injector of JT-60U.

    PubMed

    Yamano, Y; Takahashi, M; Kobayashi, S; Hanada, M; Ikeda, Y

    2008-02-01

    Neutral beam injection (NBI) used for JT-60U is required to generate negative ions of 500 keV energies. To produce such high-energy ions, three-stage electrostatic accelerators consisting of three insulator rings made of fiberglass reinforced plastic (FRP) are applied. The surface discharges along FRP insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for FRP and alumina samples under vacuum condition. The results show that the fold-off voltages for FRP samples are inferior to those of alumina ceramics. In addition, measurement results of surface resistivity and volume resistivity under vacuum and atmospheric conditions, secondary electron emission characteristics, and cathodoluminescence under some keV electron beam irradiation are also reported. These are important parameters to analyze surface discharge of insulators in vacuum.

  6. Surface discharge related properties of fiberglass reinforced plastic insulator for use in neutral beam injector of JT-60Ua)

    NASA Astrophysics Data System (ADS)

    Yamano, Y.; Takahashi, M.; Kobayashi, S.; Hanada, M.; Ikeda, Y.

    2008-02-01

    Neutral beam injection (NBI) used for JT-60U is required to generate negative ions of 500keV energies. To produce such high-energy ions, three-stage electrostatic accelerators consisting of three insulator rings made of fiberglass reinforced plastic (FRP) are applied. The surface discharges along FRP insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for FRP and alumina samples under vacuum condition. The results show that the fold-off voltages for FRP samples are inferior to those of alumina ceramics. In addition, measurement results of surface resistivity and volume resistivity under vacuum and atmospheric conditions, secondary electron emission characteristics, and cathodoluminescence under some keV electron beam irradiation are also reported. These are important parameters to analyze surface discharge of insulators in vacuum.

  7. Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas

    DOEpatents

    Mulhollan, Gregory A; Bierman, John C

    2012-10-30

    A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.

  8. Strain localization parameters of AlCu4MgSi processed by high-energy electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunev, A. G., E-mail: agl@ispms.ru; Nadezhkin, M. V., E-mail: mvn@ispms.ru; National Research Tomsk Polytechnic University, Tomsk, 634050

    2015-10-27

    The influence of the electron beam surface treatment of AlCu4MgSi on the strain localization parameters and on the critical strain value of the Portevin–Le Chatelier effect has been considered. The strain localization parameters were measured using speckle imaging of the specimens subjected to the constant strain rate uniaxial tension at a room temperature. Impact of the surface treatment on the Portevin–Le Chatelier effect has been investigated.

  9. Multi-beam laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.

  10. STUDY BY AES AND EELS OF InP, InSb, InPO4 AND InxGa1-xAs SUBMITTED TO ELECTRON IRRADIATION

    NASA Astrophysics Data System (ADS)

    Ghaffour, M.; Abdellaoui, A.; Bouslama, M.; Ouerdane, A.; Al-Douri, Y.

    2012-02-01

    The surface of materials plays an important role in their technological applications. In the interest to study the stability of materials and their behavior, we irradiate them by the electrons by using the electron spectroscopy such as the Auger electron spectroscopy (AES) and the electron energy loss spectroscopy (EELS). These methods have proved their good sensitivity to study material surfaces. In this paper, we give some results about the effect of the electron beam irradiating the compounds InP, InSb, InPO4 and InxGa1-xAs. The III-V semiconductors InP and InSb seem to be sensitive to the electron irradiation. This breaks the chemical bonds between the element III and V which leads to an oxidation process at the surface. The AES and EELS spectroscopy are also used to characterize the oxide InPO4 whose thickness is about 10 Å grown on the substrate InP(100). The irradiation of the system InPO4/InP(100) by the electron beam of 5 keV energy leads to a structural change of the surface, so that there is breaking of chemical bonds between indium and phosphorus (In-P) and formation of new oxide other than InPO4. In this study we show an important result concerning the effect of the electron beam on the compound InxGa1-xAs by varying the parameter x to obtain In0.2Ga0.8As and In0.53Ga0.47As. It appears that the electron beam affects In0.2Ga0.8As too much in comparison with In0.53Ga0.47As. In the case of the irradiation of In0.2Ga0.8As, there is breaking of chemical bonds between indium and GaAs leading to formation of indium oxide associated to GaAs.

  11. Ion beam sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1976-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.

  12. Ion-beam-sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1977-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.

  13. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam

    PubMed Central

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-01-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516

  14. The effect of beamwidth on the analysis of electron-beam-induced current line scans

    NASA Astrophysics Data System (ADS)

    Luke, Keung L.

    1995-04-01

    A real electron beam has finite width, which has been almost universally ignored in electron-beam-induced current (EBIC) theories. Obvious examples are point-source-based EBIC analyses, which neglect both the finite volume of electron-hole carriers generated by an energetic electron beam of negligible width and the beamwidth when it is no longer negligible. Gaussian source-based analyses are more realistic but the beamwidth has not been included, partly because the generation volume is much larger than the beamwidth, but this is not always the case. In this article Donolato's Gaussian source-based EBIC equation is generalized to include the beamwidth of a Gaussian beam. This generalized equation is then used to study three problems: (1) the effect of beamwidth on EBIC line scans and on effective diffusion lengths and the results are applied to the analysis of the EBIC data of Dixon, Williams, Das, and Webb; (2) unresolved questions raised by others concerning the applicability of the Watanabe-Actor-Gatos method to real EBIC data to evaluate surface recombination velocity; (3) the effect of beamwidth on the methods proposed recently by the author to determine the surface recombination velocity and to discriminate between the Everhart-Hoff and Kanaya-Okayama ranges which is the correct one to use for analyzing EBIC line scans.

  15. Role of sublayers in mechanical response of pulsed electron beam irradiated surface layers to contact load

    NASA Astrophysics Data System (ADS)

    Konovalenko, Igor S.

    2017-12-01

    Here we develop the movable cellular automaton method based a numerical model of surface layers in a NiCr-TiC metal ceramic composite modified by pulsed electron beam irradiation in inert gas plasmas. The model explicitly takes into account the presence of several sublayers differing in structure and mechanical properties. The contribution of each sublayer to the mechanical response of the modified surface to contact loading is studied. It is shown that the maximum strength and fracture toughness are achieved in surface layers containing thin and stiff external sublayers and a more ductile thick internal sublayer.

  16. Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Meyer, M. L.; Ling, J. S.

    1977-01-01

    An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.

  17. Study by AES, EELS Spectroscopy of electron Irradiation on InP and InPO4/InP in comparison with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Lounis, Z.; Bouslama, M.; Hamaida, K.; Jardin, C.; Abdellaoui, A.; Ouerdane, A.; Ghaffour, M.; Berrouachedi, N.

    2012-02-01

    We give the great interest to characterise the InP and InPO4/InP submitted to electron beam irradiation owing to the Auger Electron Spectroscopy (AES) associated to both methods Electron Energy Loss Spectroscopy (EELS). The incident electron produces breaking of (In-P) chemical bonds. The electron beam even acts to stimulate oxidation of InP surface involving on the top layers. Other, the oxide InPO4 developed on InP does appear very sensitive to the irradiation due to electron beam shown by the monitoring of EELS spectra recorded versus the irradiated times of the surface. There appears a new oxide thought to be In2O3. We give the simulation methods Casino (Carlo simulation of electron trajectory in solids) for determination with accuracy the loss energy of backscattered electrons and compared with reports results have been obtained with EELS Spectroscopy. These techniques of spectroscopy alone do not be able to verify the affected depth during interaction process. So, using this simulation method, we determine the interaction of electrons in the matter.

  18. Synthesis of nanocrystalline ZnO thin films by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Bhattacharyya, V.

    2018-05-01

    Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.

  19. Monte Carlo study of si diode response in electron beams.

    PubMed

    Wang, Lilie L W; Rogers, David W O

    2007-05-01

    Silicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc. The results indicate that, for this particular diode model, the diode response per unit water dose (or water/diode dose ratio) in both 6 and 18 MeV electron beams is flat within 2% versus depth, from near the phantom surface to the depth of R50 (with calculation uncertainty <0.3%). This suggests that there must be some other correction factors for ion chambers that counter-balance the large wall correction factor at depth in electron beams. In addition, the beam quality and field-size dependence of the diode model are also calculated. The results show that the water/diode dose ratio remains constant within 2% over the electron energy range from 6 to 18 MeV. The water/diode dose ratio does not depend on field size as long as the incident electron beam is broad and the electron energy is high. However, for a very small beam size (1 X 1 cm(2)) and low electron energy (6 MeV), the water/diode dose ratio may decrease by more than 2% compared to that of a broad beam.

  20. ION-STABILIZED ELECTRON INDUCTION ACCELERATOR

    DOEpatents

    Finkelstein, D.

    1960-03-22

    A method and apparatus for establishing an ion-stabilized self-focusing relativistic electron beam from a plasma are reported. A plasma is introduced into a specially designed cavity by plasma guns, and a magnetic field satisfying betatron conditions is produced in the cavity by currents flowing in the highly conductive, non-magnetic surface of the cavity. This field forms the electron beam by induction from the plasma.

  1. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as anmore » absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.« less

  2. Nucleation and growth of chimney pores during electron-beam additive manufacturing

    DOE PAGES

    Cordero, Zachary C.; Dinwiddie, Ralph B.; Immel, David; ...

    2016-12-05

    The nucleation and growth of chimney pores during powder-bed, electron-beam additive manufacturing is investigated using in-situ infrared thermography as well as microcomputed tomography of as-printed parts. The pores are found to nucleate at dimples on the part s surface, clearly demonstrating how process parameters can affect surface roughness, which can in turn affect the internal defect structure in an additive manufactured part. Based on the results of this study, several strategies for suppressing the formation of chimney pores are discussed.

  3. WC/Co composite surface structure and nano graphite precipitate induced by high current pulsed electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Hao, S. Z.; Zhang, Y.; Xu, Y.; Gey, N.; Grosdidier, T.; Dong, C.

    2013-11-01

    High current pulsed electron beam (HCPEB) irradiation was conducted on a WC-6% Co hard alloy with accelerating voltage of 27 kV and pulse duration of 2.5 μs. The surface phase structure was examined by using glancing-angle X-ray diffraction (GAXRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) methods. The surface tribological properties were measured. It was found that after 20 pulses of HCPEB irradiation, the surface structure of WC/Co hard alloy was modified dramatically and composed of a mixture of nano-grained WC1-x, Co3W9C4, Co3W3C phases and graphite precipitate domains ˜50 nm. The friction coefficient of modified surface decreased to ˜0.38 from 0.6 of the initial state, and the wear rate reduced from 8.4 × 10-5 mm3/min to 6.3 × 10-6 mm3/min, showing a significant self-lubricating effect.

  4. Shielded capacitive electrode

    DOEpatents

    Kireeff Covo, Michel

    2013-07-09

    A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.

  5. In situ TEM observation of preferential amorphization in single crystal Si nanowire

    NASA Astrophysics Data System (ADS)

    Su, Jiangbin; Zhu, Xianfang

    2018-06-01

    The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.

  6. In situ TEM observation of preferential amorphization in single crystal Si nanowire.

    PubMed

    Su, Jiangbin; Zhu, Xianfang

    2018-06-08

    The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.

  7. Pulsed Electron Source with Grid Plasma Cathode and Longitudinal Magnetic Field for Modification of Material and Product Surfaces

    NASA Astrophysics Data System (ADS)

    Devyatkov, V. N.; Koval, N. N.

    2018-01-01

    The description and the main characteristics of the pulsed electron source "SOLO" developed on the basis of the plasma cathode with grid stabilization of the emission plasma boundary are presented. The emission plasma is generated by a low-pressure arc discharge, and that allows to form the dense low-energy electron beam with a wide range of independently adjustable parameters of beam current pulses (pulse duration of 20-250 μs, pulse repetition rate of 1-10 s-1, amplitude of beam current pulses of 20-300 A, and energy of beam electrons of 5-25 keV). The special features of generation of emission plasma by constricted low-pressure arc discharge in the grid plasma cathode partially dipped into a non-uniform magnetic field and of formation and transportation of the electron beam in a longitudinal magnetic field are considered. The application area of the electron source and technologies realized with its help are specified.

  8. THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure.

    PubMed

    Zhang, Yaxin; Zhou, Y; Dong, L

    2013-09-23

    Two electron-beams' interaction in a sandwich structure composed of a bi-grating and a sub-wavelength holes array is suggested to generate THz radiation in this paper. It shows that this system takes advantage of both bi-grating and sub-wavelength holes array structures. The results demonstrate that surface waves on a bi-grating can couple with mimicking surface plasmons of a sub-wavelength holes array so that the wave-coupling is strong and the field intensity is high in this structure. Moreover, compared with the interaction in the bi-grating structure and sub-wavelength holes array structure, respectively, it shows that in this composite system the two electron-beams' interaction is more efficient and the modulation depth and radiation intensity have been enhanced significantly. The modulation depth and efficiency can reach 22% and 4%, respectively, and the starting current density is only 12 A/cm². This radiation system may provide good opportunities for development of multi-electron beam-driven THz radiation sources.

  9. Investigations on the Influence of Parameters During Electron Beam Surface Hardening Using the Flash Technique

    NASA Astrophysics Data System (ADS)

    Grafe, S.; Hengst, P.; Buchwalder, A.; Zenker, R.

    2018-06-01

    The electron beam hardening (EBH) process is one of today’s most innovative industrial technologies. Due to the almost inertia-free deflection of the EB (up to 100 kHz), the energy transfer function can be adapted locally to the component geometry and/or loading conditions. The current state-of-the-art technology is that of EBH with continuous workpiece feed. Due to the large range of parameters, the potentials and limitations of EBH using the flash technique (without workpiece feed) have not been investigated sufficiently to date. The aim of this research was to generate surface isothermal energy transfer within the flash field. This paper examines the effects of selected process parameters on the EBH surface layer microstructure and the properties achieved when treating hardened and tempered C45E steel. When using constant point distribution within the flash field and a constant beam current, surface isothermal energy input was not generated. However, by increasing the deflection frequency, point density and beam current, a more homogeneous EBH surface layer microstructure could be achieved, along with higher surface hardness and greater surface hardening depths. Furthermore, using temperature-controlled power regulation, surface isothermal energy transfer could be realised over a larger area in the centre of the sample.

  10. Tandem-Mirror Ion Source

    NASA Technical Reports Server (NTRS)

    Biddle, A.; Stone, N.; Reasoner, D.; Chisholm, W.; Reynolds, J.

    1986-01-01

    Improved ion source produces beam of ions at any kinetic energy from 1 to 1,000 eV, with little spread in energy or angle. Such ion beams useful in studies of surface properties of materials, surface etching, deposition, and development of plasma-diagnostic instrumentation. Tandemmirror ion source uses electrostatic and magnetic fields to keep electrons in ionization chamber and assure uniform output ion beam having low divergence in energy and angle.

  11. Modification of polymeric surface for improved adhesion via electron beam exposure

    DOEpatents

    Kelber, Jeffry A.

    1989-01-01

    Treating polymer surfaces, e.g., Teflon, particularly very thin surfaces, e.g., 50-10,000 .ANG. with low energy electron radiation, e.g., 100-1000 eV, in a high vacuum environment, e.g., less than 10.sup.-6 Torr, to enhance the ability of the surface to be adhered to a variety of substrates.

  12. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy

    DOE PAGES

    Leenheer, Andrew Jay; Jungjohann, Katherine Leigh; Zavadil, Kevin Robert; ...

    2015-03-18

    Electrodeposited metallic lithium is an ideal negative battery electrode, but nonuniform microstructure evolution during cycling leads to degradation and safety issues. A better understanding of the Li plating and stripping processes is needed to enable practical Li-metal batteries. Here we use a custom microfabricated, sealed liquid cell for in situ scanning transmission electron microscopy (STEM) to image the first few cycles of lithium electrodeposition/dissolution in liquid aprotic electrolyte at submicron resolution. Cycling at current densities from 1 to 25 mA/cm 2 leads to variations in grain structure, with higher current densities giving a more needle-like, higher surface area deposit. Themore » effect of the electron beam was explored, and it was found that, even with minimal beam exposure, beam-induced surface film formation could alter the Li microstructure. The electrochemical dissolution was seen to initiate from isolated points on grains rather than uniformly across the Li surface, due to the stabilizing solid electrolyte interphase surface film. As a result, we discuss the implications for operando STEM liquid-cell imaging and Li-battery applications.« less

  13. Beam scrubbing of beam pipes during the first commissioning of SuperKEKB

    NASA Astrophysics Data System (ADS)

    Suetsugu, Y.; Shibata, K.; Ishibashi, T.; Kanazawa, K.; Shirai, M.; Terui, S.; Hisamatsu, H.

    2018-02-01

    The first (Phase-1) commissioning of SuperKEKB-an electron-positron collider with asymmetric energies located at KEK, in Tsukuba, Japan-started in February 2016, after more than five years of upgrading work on KEKB, and successfully ended in June of the same year. This paper describes one major task of Phase-1 commissioning: beam scrubbing the surface of the beam pipes, to prepare them for a sufficiently long beam lifetime and low background noise in the next commissioning, when a new particle detector will be installed. The pressure rises per unit beam current (dP/dI [Pa A-1]) were continuously monitored, and the coefficient of photon-stimulated desorption (PSD), η [molecules photon-1], was evaluated in the arc sections. The value of η decreased steadily with the beam dose, as expected. For arc sections in the positron ring, where most of the beam pipes were newly fabricated, the decrease in η against the photon dose (D) was similar to that previously reported; that is: η ∝ D-0.5 ∼ 0.8. At high storage beam currents, the evolution of η was affected by gas desorption resulting from the multipacting of electrons-that is, the electron cloud effect (ECE), which is a phenomenon particular to high-intensity positron rings. For the arc sections in the electron ring, η also decreased smoothly with the photon dose D, approximately as ∝ D-0.8. Given that most of these beam pipes were reused from KEKB, the value of η was much lower than that of the positron ring, and also lower than that of the electron ring of KEKB from the early stages of D. This implies that the surface of the reused beam pipes remembered the conditions in the KEKB, which is a known memory effect. The results obtained for η are compared with those obtained in various other accelerators.

  14. The use of an ion-beam source to alter the surface morphology of biological implant materials

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1978-01-01

    An electron-bombardment ion-thruster was used as a neutralized-ion-beam sputtering source to texture the surfaces of biological implant materials. The materials investigated included 316 stainless steel; titanium-6% aluminum, 4% vanadium; cobalt-20% chromium, 15% tungsten; cobalt-35% nickel, 20% chromium, 10% molybdenum; polytetrafluoroethylene; polyoxymethylene; silicone and polyurethane copolymer; 32%-carbon-impregnated polyolefin; segmented polyurethane; silicone rubber; and alumina. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion-texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion-textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion-textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane have been obtained.

  15. Anticorrelated Emission of High Harmonics and Fast Electron Beams From Plasma Mirrors.

    PubMed

    Bocoum, Maïmouna; Thévenet, Maxence; Böhle, Frederik; Beaurepaire, Benoît; Vernier, Aline; Jullien, Aurélie; Faure, Jérôme; Lopez-Martens, Rodrigo

    2016-05-06

    We report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry.

  16. SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, I; Andersen, A; Coutinho, L

    2015-06-15

    Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factormore » (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.« less

  17. Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment.

    PubMed

    Shiu, A S; Tung, S S; Gastorf, R J; Hogstrom, K R; Morrison, W H; Peters, L J

    1996-06-01

    The purpose of this study is to report that commercially available eye shields (designed for orthovoltage x-rays) are inadequate to protect the ocular structures from penetrating electrons for electron beam energies equal to or greater than 6 MeV. Therefore, a prototype medium size tungsten eye shield was designed and fabricated. The advantages of the tungsten eye shield over lead are discussed. Electron beams (6-9 MeV) are often used to irradiate eyelid tumors to curative doses. Eye shields can be placed under the eyelids to protect the globe. Film and thermoluminescent dosimeters (TLDs) were used within a specially constructed polystyrene eye phantom to determine the effectiveness of various commercially available internal eye shields (designed for orthovoltage x-rays). The same procedures were used to evaluate a prototype medium size tungsten eye shield (2.8 mm thick), which was designed and fabricated for protection of the globe from penetrating electrons for electron beam energy equal to 9 MeV. A mini-TLD was used to measure the dose enhancement due to electrons backscattered off the tungsten eye shield, both with or without a dental acrylic coating that is required to reduce discomfort, permit sterilization of the shield, and reduce the dose contribution from backscattered electrons. Transmission of a 6 MeV electron beam through a 1.7 mm thick lead eye shield was found to be 50% on the surface (cornea) of the phantom and 27% at a depth of 6 mm (lens). The thickness of lead required to stop 6-9 MeV electron beams is impractical. In place of lead, a prototype medium size tungsten eye shield was made. For 6 to 9 MeV electrons, the doses measured on the surface (cornea) and at 6 mm (lens) and 21 mm (retina) depths were all less than 5% of the maximum dose of the open field (4 x 4 cm). Electrons backscattered off a tungsten eye shield without acrylic coating increased the lid dose from 85 to 123% at 6 MeV and 87 to 119% at 9 MeV. For the tungsten eye shield coated with 2-3 mm of dental acrylic, the lid dose was increased from 85 to 98.5% at 6 MeV and 86 to 106% at 9 MeV. Commercially available eye shields were evaluated and found to be clearly inadequate to protect the ocular structures for electron beam energies equal to or greater than 6 MeV. A tungsten eye shield has been found to provide adequate protection for electrons up to 9 MeV. The increase in lid dose due to electrons backscattered off the tungsten eye shield should be considered in the dose prescription. A minimum thickness of 2 mm dental acrylic on the beam entrance surface of the tungsten eye shield was found to reduce the backscattered electron effect to acceptable levels.

  18. Stable topological insulators achieved using high energy electron beams

    PubMed Central

    Zhao, Lukas; Konczykowski, Marcin; Deng, Haiming; Korzhovska, Inna; Begliarbekov, Milan; Chen, Zhiyi; Papalazarou, Evangelos; Marsi, Marino; Perfetti, Luca; Hruban, Andrzej; Wołoś, Agnieszka; Krusin-Elbaum, Lia

    2016-01-01

    Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size. PMID:26961901

  19. Development of an apparatus for obtaining molecular beams in the energy range from 2 to 200 eV

    NASA Technical Reports Server (NTRS)

    Clapier, R.; Devienne, F. M.; Roustan, A.; Roustan, J. C.

    1985-01-01

    The formation and detection of molecular beams obtained by charge exchange from a low-energy ion source is discussed. Dispersion in energy of the ion source was measured and problems concerning detection of neutral beams were studied. Various methods were used, specifically secondary electron emissivity of a metallic surface and ionization of a gas target with a low ionization voltage. The intensities of neutral beams as low as 10 eV are measured by a tubular electron multiplier and a lock-in amplifier.

  20. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    NASA Astrophysics Data System (ADS)

    Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.

    2016-01-01

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  1. Comprehensive surface treatment of high-speed steel tool

    NASA Astrophysics Data System (ADS)

    Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.

    2018-03-01

    One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.

  2. The study of hard x-ray emission and electron beam generation in wire array Z-pinch and X-pinch plasmas at university-scale generators

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor Kumar

    The studies of hard x-ray (HXR) emission and electron beam generation in Z-pinch plasmas are very important for Inertial Confinement Fusion (ICF) research and HXR emission application for sources of K-shell and L-shell radiation. Energetic electron beams from Z-pinch plasmas are potentially a problem in the development of ICF. The electron beams and the accompanying HXR emission can preheat the fuel of a thermonuclear target, thereby preventing the fuel compression from reaching densities required for the ignition of a fusion reaction. The photons above 3-4 keV radiated from a Z pinch can provide detailed information about the high energy density plasmas produced at stagnation. Hence, the investigation of characteristics of hard x-rays and electron beams produced during implosions of wire array loads on university scale-generators may provide important data for future ICF, sources of K-shell and L-shell radiations and basic plasma research. This dissertation presents the results of experimental studies of HXR and electron beam generation in wire-array and X-pinch on the 1.7 MA, 100-ns current rise time Zebra generator at University of Nevada, Reno and 1-MA 100-ns current rise-time Cornell Beam Research Accelerator (COBRA) at Cornell University. The experimental study of characteristics of HXR produced by multi-planar wire arrays, compact cylindrical wire array (CCWA) and nested cylindrical wire array (NCWA) made from Al, Cu, Mo, Ag, W and Au were analyzed. The dependence of the HXR yield and power on geometry of the load, the wire material, and load mass was observed. The presence of aluminum wires in the load with the main material such as stainless steel, Cu, Mo, Ag, W or Au in combined wire array decreases HXR yield. The comparison of emission characteristics of HXR and generation of electron beams in CCWA and NCWA on both the high impedance Zebra generator and low impedance COBRA generator were investigated. Some of the "cold" K- shell spectral lines (0.7-2.3Á) and cold L-shell spectral lines (1-1.54Á) in the HXR region were observed only during the interaction of electron beam with load material and anode surface. These observations suggest that the mechanism of HXR emission should be associated with non-thermal mechanisms such as the interaction of the electron beam with the load material. In order to estimate the characteristics of the high-energetic electron beam in Z-pinch plasmas, a hard x-ray polarimeter (HXP) has been developed and used in experiments on the Zebra generator. The electron beams (energy more than 30keV) have been investigated with measurements of the polarization state of the emitted bremsstrahlung radiation from plasma. We also analyzed characteristics of energetic electron beams produced by implosions of multi-planar wire arrays, compact cylindrical and nested wire arrays as well as X-pinches. Direct indications of electron beams (electron cutoff energy EB from 42-250 keV) were obtained by using the measured current of a Faraday cup placed above the anode or mechanical damage observed in the anode surface. A comparison of total electron beam energy and the spatial and spectral analysis of the parameters of plasmas were investigated for different wire materials. The dependences of the total electron beam energy (E b) on the wire material and the geometry of the wire array load were studied.

  3. Single Layer Surface-Grafted PMMA as a Negative-Tone e-Beam Resist.

    PubMed

    Yamada, Hirotaka; Aydinoglu, Ferhat; Liu, Yaoze; Dey, Ripon K; Cui, Bo

    2017-12-05

    One of the important challenges in electron beam lithography is nanofabrication on nonflat or irregular surfaces. Although spin coating is the most popular technique for resist coating, it is not suitable for nonflat, irregular substrates because a uniform film cannot be achieved on those surfaces. Here, it is demonstrated that single layer surface-grafted PMMA can be used as a negative-tone e-beam resist, and it can be applied to nonflat, irregular surfaces as well as flat, conventional surfaces. Although it is well known that heavily exposed PMMA undergoes cross-linking and works as a negative-tone e-beam resist when developed by solvent, solvent does not work as a developer for negative-tone single-layer surface-grafted PMMA. Instead, thermal treatment at 360 °C for 1 min is used to develop PMMA.

  4. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies

    PubMed Central

    2011-01-01

    Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170–180 A/cm2 were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma. PMID:27502662

  5. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies.

    PubMed

    Liao, Qingliang; Qin, Zi; Zhang, Zheng; Qi, Junjie; Zhang, Yue; Huang, Yunhua; Liu, Liang

    2011-12-01

    Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170-180 A/cm(2) were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma.

  6. Characterization of the heavily doped emitter and junction regions of silicon solar cells using an electron beam

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Cheng, L.-J.

    1986-01-01

    Heavily doped emitter and junction regions of silicon solar cells are investigated by means of the electron-beam-induced-current (EBIC) technique. Although the experimental EBIC data are collected under three-dimensional conditions, it is analytically demonstrated with two numerical examples that the solutions obtained with one-dimensional numerical modeling are adequate. EBIC data for bare and oxide-covered emitter surfaces are compared with theory. The improvement in collection efficiency when an emitter surface is covered with a 100-A SiO2 film varies with beam energy; for a cell with a junction depth of 0.35 microns, the improvement is about 54 percent at 2 keV.

  7. A megawatt-level surface wave oscillator in Y-band with large oversized structure driven by annular relativistic electron beam.

    PubMed

    Wang, Jianguo; Wang, Guangqiang; Wang, Dongyang; Li, Shuang; Zeng, Peng

    2018-05-03

    High power vacuum electronic devices of millimeter wave to terahertz regime are attracting extensive interests due to their potential applications in science and technologies. In this paper, the design and experimental results of a powerful compact oversized surface wave oscillator (SWO) in Y-band are presented. The cylindrical slow wave structure (SWS) with rectangular corrugations and large diameter about 6.8 times the radiation wavelength is proposed to support the surface wave interacting with annular relativistic electron beam. By choosing appropriate beam parameters, the beam-wave interaction takes place near the π-point of TM 01 mode dispersion curve, giving high coupling impedance and temporal growth rate compared with higher TM 0n modes. The fundamental mode operation of the device is verified by the particle-in-cell (PIC) simulation results, which also indicate its capability of tens of megawatts power output in the Y-band. Finally, a compact experimental setup is completed to validate our design. Measurement results show that a terahertz pulse with frequency in the range of 0.319-0.349 THz, duration of about 2 ns and radiation power of about 2.1 MW has been generated.

  8. New Insights into Mechanism of Surface Reactions of ZnO Nanorods During Electrons Beam Irradiation.

    PubMed

    Cho, Youngseung; Ji, Hyunjin; Kim, Hyoungsub; Yoon, Jinsuop; Choi, Byoungdeog

    2018-09-01

    This study provides new insight into mechanisms of ionic reactions on the surface of ZnO nanorod networks, which could result in enhanced performance in optical or molecular sensors. The current- voltage characteristics of ZnO nanorod network devices exhibit typical nonlinear behavior in air, which implies the formation of a Schottky barrier when metals are used as contacts. The conductance of the device increased significantly in vacuum, which can be explained by the desorption of hydroxyl groups at very low pressure. While physisorbed water or oxygen-related ions can detach from the ZnO surface during evacuation, exposure to high energy in the electron beam is believed to detach the chemisorbed anions of O- and O-2 from the surface of ZnO nanorods, which releases more electrons into the channel. The increase in available electrons enhances the conductance of the ZnO nanorods. Slow initialization of the conductance under ambient conditions indicates that the ionic re-adsorption is inactive under these conditions. Thus, the electron irradiation process can be used to reset the surface ionic molecules on metal oxide nano-structures by tuning the surface potential prior to the passivation process.

  9. Summary of SLAC's SEY Measurement On Flat Accelerator Wall Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Pimpec, F.; /PSI, Villigen /SLAC

    The electron cloud effect (ECE) causes beam instabilities in accelerator structures with intense positively charged bunched beams. Reduction of the secondary electron yield (SEY) of the beam pipe inner wall is effective in controlling cloud formation. We summarize SEY results obtained from flat TiN, TiZrV and Al surfaces carried out in a laboratory environment. SEY was measured after thermal conditioning, as well as after low energy, less than 300 eV, particle exposure.

  10. Automated in-chamber specimen coating for serial block-face electron microscopy.

    PubMed

    Titze, B; Denk, W

    2013-05-01

    When imaging insulating specimens in a scanning electron microscope, negative charge accumulates locally ('sample charging'). The resulting electric fields distort signal amplitude, focus and image geometry, which can be avoided by coating the specimen with a conductive film prior to introducing it into the microscope chamber. This, however, is incompatible with serial block-face electron microscopy (SBEM), where imaging and surface removal cycles (by diamond knife or focused ion beam) alternate, with the sample remaining in place. Here we show that coating the sample after each cutting cycle with a 1-2 nm metallic film, using an electron beam evaporator that is integrated into the microscope chamber, eliminates charging effects for both backscattered (BSE) and secondary electron (SE) imaging. The reduction in signal-to-noise ratio (SNR) caused by the film is smaller than that caused by the widely used low-vacuum method. Sample surfaces as large as 12 mm across were coated and imaged without charging effects at beam currents as high as 25 nA. The coatings also enabled the use of beam deceleration for non-conducting samples, leading to substantial SNR gains for BSE contrast. We modified and automated the evaporator to enable the acquisition of SBEM stacks, and demonstrated the acquisition of stacks of over 1000 successive cut/coat/image cycles and of stacks using beam deceleration or SE contrast. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  11. Depletion region surface effects in electron beam induced current measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Paul M.; Zhitenev, Nikolai B.; Yoon, Heayoung P.

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and chargedmore » surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.« less

  12. Generation of attosecond electron packets via conical surface plasmon electron acceleration

    PubMed Central

    Greig, S. R.; Elezzabi, A. Y.

    2016-01-01

    We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129

  13. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study

    PubMed Central

    Sung, Wonmo; Park, Jong In; Kim, Jung-in; Carlson, Joel; Ye, Sung-Joon

    2017-01-01

    This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans. PMID:28493940

  14. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study.

    PubMed

    Sung, Wonmo; Park, Jong In; Kim, Jung-In; Carlson, Joel; Ye, Sung-Joon; Park, Jong Min

    2017-01-01

    This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.

  15. Fabrication of frequency selective surface for band stop IR-filter

    NASA Astrophysics Data System (ADS)

    Mishra, Akshita; Sudheer, Tiwari, P.; Mondal, P.; Bhatt, H.; Rai, V. N.; Srivastava, A. K.

    2016-05-01

    Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO2 on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infrared region.

  16. Elemental depth profiles and plasma etching rates of positive-tone electron beam resists after sequential infiltration synthesis of alumina

    NASA Astrophysics Data System (ADS)

    Ozaki, Yuki; Ito, Shunya; Hiroshiba, Nobuya; Nakamura, Takahiro; Nakagawa, Masaru

    2018-06-01

    By scanning transmission electron microscopy and energy dispersive X-ray spectroscopy (STEM–EDS), we investigated the elemental depth profiles of organic electron beam resist films after the sequential infiltration synthesis (SIS) of inorganic alumina. Although a 40-nm-thick poly(methyl methacrylate) (PMMA) film was entirely hybridized with alumina, an uneven distribution was observed near the interface between the substrate and the resist as well as near the resist surface. The uneven distribution was observed around the center of a 100-nm-thick PMMA film. The thicknesses of the PMMA and CSAR62 resist films decreased almost linearly as functions of plasma etching period. The comparison of etching rate among oxygen reactive ion etching, C3F8 reactive ion beam etching (RIBE), and Ar ion beam milling suggested that the SIS treatment enhanced the etching resistance of the electron beam resists to chemical reactions rather than to ion collisions. We proposed oxygen- and Ar-assisted C3F8 RIBE for the fabrication of silica imprint molds by electron beam lithography.

  17. SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Syh, J; Patel, B

    Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists ofmore » multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.« less

  18. Surface alloying of aluminum with molybdenum by high-current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Xia, Han; Zhang, Conglin; Lv, Peng; Cai, Jie; Jin, Yunxue; Guan, Qingfeng

    2018-02-01

    The surface alloying of pre-coated molybdenum (Mo) film on aluminum (Al) substrate by high-current pulsed electron beam (HCPEB) was investigated. The microstructure and phase analysis were conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Mo particles were dissolved into Al matrix to form alloying layer, which was composed of Mo, Al and acicular or equiaxed Al5Mo phases after surface alloying. Meanwhile, various structure defects such as dislocation loops, high-density dislocations and dislocation walls were observed in the alloying surface. The corrosion resistance was tested by using potentiodynamic polarization curves and electrochemical impedance spectra (EIS). Electrochemical results indicate that all the alloying samples had better corrosion resistance in 3.5 wt% NaCl solution compared to initial sample. The excellent corrosion resistance is mainly attributed to the combined effect of the structure defects and the addition of Mo element to form a more stable passive film.

  19. Angular distributions of reflected and refracted relativistic electron beams crossing a thin planar target at a small angle to its surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serov, A. V., E-mail: serov@x4u.lebedev.ru; Mamonov, I. A.; Kol’tsov, A. V., E-mail: koltsov@x4u.lebedev.ru

    2015-10-15

    The scattering of electrons by aluminum, copper, and lead foils, as well as by bimetallic aluminum-lead and aluminum-copper foils, has been studied experimentally. A microtron with an energy of particles of 7.4 MeV has been used as a source of electrons. The beam of particles incident on a target at small angles is split into particles reflected from the foil, which constitute a reflected beam, and particles crossing the foil, which constitute a refracted beam. The effect of the material and thickness of the foil, as well as the angle between the initial trajectory of the beam and the planemore » of the target, on the direction of motion and the angular divergence of the beam crossing the foil and the beam reflected from the foil has been analyzed. Furthermore, the effect of the sequence of metal layers in bimetallic films on the angles of refraction and reflection of the beam has been examined.« less

  20. Matching extended-SSD electron beams to multileaf collimated photon beams in the treatment of head and neck cancer.

    PubMed

    Steel, Jared; Stewart, Allan; Satory, Philip

    2009-09-01

    Matching the penumbra of a 6 MeV electron beam to the penumbra of a 6 MV photon beam is a dose optimization challenge, especially when the electron beam is applied from an extended source-to-surface distance (SSD), as in the case of some head and neck treatments. Traditionally low melting point alloy blocks have been used to define the photon beam shielding over the spinal cord region. However, these are inherently time consuming to construct and employ in the clinical situation. Multileaf collimators (MLCs) provide a fast and reproducible shielding option but generate geometrically nonconformal approximations to the desired beam edge definition. The effects of substituting Cerrobend for the MLC shielding mode in the context of beam matching with extended-SSD electron beams are the subject of this investigation. Relative dose beam data from a Varian EX 2100 linear accelerator were acquired in a water tank under the 6 MeV electron beam at both standard and extended-SSD and under the 6 MV photon beam defined by Cerrobend and a number of MLC stepping regimes. The effect of increasing the electron beam SSD on the beam penumbra was assessed. MLC stepping was also assessed in terms of the effects on both the mean photon beam penumbra and the intraleaf dose-profile nonuniformity relative to the MLC midleaf. Computational techniques were used to combine the beam data so as to simulate composite relative dosimetry in the water tank, allowing fine control of beam abutment gap variation. Idealized volumetric dosimetry was generated based on the percentage depth-dose data for the beam modes and the abutment geometries involved. Comparison was made between each composite dosimetry dataset and the relevant ideal dosimetry dataset by way of subtraction. Weighted dose-difference volume histograms (DDVHs) were produced, and these, in turn, summed to provide an overall dosimetry score for each abutment and shielding type/angle combination. Increasing the electron beam SSD increased the penumbra width (defined as the lateral distance of the 80% and 20% isodose contours) by 8-10 mm at the depths of 10-20 mm. Mean photon beam penumbra width increased with increased MLC stepping, and the mean MLC penumbra was approximately 1.5 times greater than that across the corresponding Cerrobend shielding. Intraleaf dose discrepancy in the direction orthogonal to the beam edge also increased with MLC stepping. The weighted DDVH comparison techniques allowed the composite dosimetry resulting from the interplay of the abovementioned variables to be ranked. The MLC dosimetry ranked as good or better than that resulting from beam matching with Cerrobend for all except large field overlaps (-2.5 mm gap). The results for the linear-weighted DDVH comparison suggest that optimal MLC abutment dosimetry results from an optical surface gap of around 1 +/- 0.5 mm. Furthermore, this appears reasonably lenient to abutment gap variation, such as that arising from uncertainty in beam markup or other setup errors.

  1. Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds

    NASA Astrophysics Data System (ADS)

    Fan, Xuetong; Sokorai, Kimberly; Weidauer, André; Gotzmann, Gaby; Rögner, Frank-Holm; Koch, Eckhard

    2017-01-01

    Sprouts have frequently been implicated in outbreaks of foodborne illnesses, mostly due to contaminated seeds. Intervention technologies to decontaminate seeds without affecting sprout yield are needed. In the present study, we compared gamma rays with electron beam in inactivating E. coli artificially inoculated on three seeds (fenugreek, clover and mung bean) that differed in size and surface morphology. Furthermore, the germination and growth of irradiated seeds were evaluated. Results showed that the D10 values (dose required to achieve 1 log reduction) for E. coli K12 on mung bean, clover, and fenugreek were 1.11, 1.21 and 1.40 kGy, respectively. To achieve a minimum 5-log reduction of E. coli, higher doses were needed on fenugreek than on mung bean or clover. Electron beam treatment at doses up to 12 kGy could not completely inactivate E. coli inoculated on all seeds even though most of the seeds were E. coli-free after 4-12 kGy irradiation. Gamma irradiation at doses up to 6 kGy did not significantly affect the germination rate of clover and fenugreek seeds but reduced the germination rate of mung bean seeds. Doses of 2 kGy gamma irradiation did not influence the growth of seeds while higher doses of gamma irradiation reduced the growth rate. Electron beam treatment at doses up to 12 kGy did not have any significant effect on germination or growth of the seeds. SEM imaging indicated there were differences in surface morphology among the three seeds, and E. coli resided in cracks and openings of seeds, making surface decontamination of seeds with low energy electron beam a challenge due to the low penetration ability. Overall, our results suggested that gamma rays and electron beam had different effects on E. coli inactivation and germination or growth of seeds. Future efforts should focus on optimization of electron bean parameters to increase penetration to inactivate E. coli without causing damage to the seeds.

  2. Spacecraft dielectric surface charging property determination

    NASA Technical Reports Server (NTRS)

    Williamson, W. S.

    1987-01-01

    The charging properties of 127 micron thick polyimide, (a commonly used spacecraft dielectric material) was measured under conditions of irradiation by a low-current-density electron beam with energy between 2 and 14 keV. The observed charging characteristics were consistent with predictions of the NASCAP computer model. The use of low electron current density results in a nonlinearity in the sample-potential versus beam-energy characteristic which is attributed to conduction leakage through the sample. Microdischarges were present at relatively low beam energies.

  3. Bolt-on source of spin-polarized electrons for inverse photoemission

    NASA Astrophysics Data System (ADS)

    Schedin, Fredrik; Warburton, Ranald; Thornton, Geoff

    1998-06-01

    We have developed a portable spin-polarized electron gun which can be bolted on to an ultrahigh vacuum chamber. The gun has been successfully operated with an electron gun to target distance of about 150 mm. This allows accommodation of other surface science equipment in the same vacuum system. The spin-polarized electrons are obtained via photoemission from a negative electron affinity GaAs(001) surface with circularly polarized light. A transversely polarized beam is achieved with a 90° electrostatic deflector. A set of two three-element electrostatic tube lenses are employed to transport and to focus the electrons onto a target. The measured transmission through the electron optics is >70% for electron energies in the range 7-20 eV. This is achieved by using large diameter electron transport lenses. The energy resolution of the electron beam is measured to be better than 0.27 eV and the polarization is determined to be 25±5%.

  4. Morphologies of Solid Surfaces Produced Far from Equilibrium

    DTIC Science & Technology

    1991-03-10

    common to all these applications is that thc surface preparation processes used are far from chemical equilibrium. Many of the processes involve an...energetic ion beam, plasma or gas that is used to modify a surface, either by etching or depositing material. The electrical, optical and mechanical...growth, a number of continuum models have been used in the materials science literature, in particular in the context of electron-beam etching of

  5. Amorphous layer formation in Al86.0Co7.6Ce6.4 glass-forming alloy by large-area electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Li, C. L.; Murray, J. W.; Voisey, K. T.; Clare, A. T.; McCartney, D. G.

    2013-09-01

    Amorphous Al-Co-Ce alloys are of interest because of their resistance to corrosion, but high cooling rates are generally required to suppress the formation of crystalline phases. In this study, the surface of a bulk crystalline Al-Co-Ce alloy of a glass-forming composition was treated using large area electron beam (LAEB) irradiation. Scanning electron microscopy shows that, compared to the microstructure of the original crystalline material, the treated surface exhibits greatly improved microstructural and compositional uniformity. Glancing angle X-ray diffraction conducted on the surface of treated samples indicates the formation of the amorphous phase following 25 and 50 pulses at 35 kV cathode voltage. However, when the samples are treated with 100 and 150 pulses at 35 kV cathode voltage of electron beam irradiation, the treated layer comprises localised crystalline regions in an amorphous matrix. In addition, the formation of cracks in the treated layer is found to be localised around the Al8Co2Ce phase in the bulk material. Overall, crack length per unit area had no clear change with an increase in the number of pulses.

  6. Bending fatigue of electron-beam-welded foils. Application to a hydrodynamic air bearing in the Chrysler/DOE upgraded automotive gas tubine engine

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1984-01-01

    A hydrodynamic air bearing with a compliment surface is used in the gas generator of an upgraded automotive gas turbine engine. In the prototype design, the compliant surface is a thin foil spot welded at one end to the bearing cartridge. During operation, the foil failed along the line of spot welds which acted as a series of stress concentrators. Because of its higher degree of geometric uniformity, electron beam welding of the foil was selected as an alternative to spot welding. Room temperature bending fatigue tests were conducted to determine the fatigue resistance of the electron beam welded foils. Equations were determined relating cycles to crack initiation and cycles to failure to nominal total strain range. A scaling procedure is presented for estimating the reduction in cyclic life when the foil is at its normal operating temperature of 260 C (500 F).

  7. New Insights on Subsurface Imaging of Carbon Nanotubes in Polymer Composites via Scanning Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.; hide

    2015-01-01

    Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.

  8. Influence on surface characteristics of electron beam melting process (EBM) by varying the process parameters

    NASA Astrophysics Data System (ADS)

    Dolimont, Adrien; Michotte, Sebastien; Rivière-Lorphèvre, Edouard; Ducobu, François; Vivès, Solange; Godet, Stéphane; Henkes, Tom; Filippi, Enrico

    2017-10-01

    The use of additive manufacturing processes keeps growing in aerospace and biomedical industry. Among the numerous existing technologies, the Electron Beam Melting process has advantages (good dimensional accuracy, fully dense parts) and disadvantages (powder handling, support structure, high surface roughness). Analyzes of the surface characteristics are interesting to get a better understanding of the EBM operations. But that kind of analyzes is not often found in the literature. The main goal of this study is to determine if it is possible to improve the surface roughness by modifying some parameters of the process (scan speed function, number of contours, order of contours, etc.) on samples with different thicknesses. The experimental work on the surface roughness leads to a statistical analysis of 586 measures of EBM simple geometry parts.

  9. Electron beam detection of a Nanotube Scanning Force Microscope.

    PubMed

    Siria, Alessandro; Niguès, Antoine

    2017-09-14

    Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.

  10. Surface modification of additive manufactured metal products by an intense electron beam

    NASA Astrophysics Data System (ADS)

    Teresov, A. D.; Koval, N. N.; Ivanov, Yu F.; Petrikova, E. A.; Krysina, O. V.

    2017-11-01

    On the example of VT6 titanium alloy it is shown that successive surface modification of additive manufactured metal specimens in vacuum at an argon pressure of 3.5·10-2 by ten pulses with 200 μs, 45 J/cm2 and then by three pulses with 50 μm, 20 J/cm2 provides a considerable decrease in their porosity and surface roughness (20 times for Ra) while their surface microhardness, friction coefficient, and wear level remain almost unchanged. After electron beam irradiation, the ultimate tensile strength of the material increases 1.33 times, and its tensile strain 1.18 times. For specimens obtained by conventional metallurgy and irradiated in the same modes, no such effects are observed.

  11. Minority carrier diffusion length and edge surface-recombination velocity in InP

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Bailey, Sheila G.

    1993-01-01

    A scanning electron microscope was used to obtain the electron-beam-induced current (EBIC) profiles in InP specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure the edge surface-recombination velocity. These values were used in a fit of the experimental EBIC data with a theoretical expression for normalized EBIC (Donolato, 1982) to obtain the electron (minority carrier) diffusion length.

  12. Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System

    NASA Astrophysics Data System (ADS)

    Louksha, O. I.; Trofimov, P. A.

    2018-04-01

    New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.

  13. Development of plasma cathode electron guns

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  14. Design and development of the 6-18 MeV electron beam system for medical and other applications

    NASA Astrophysics Data System (ADS)

    Shahzad, A.; Phatangare, A. B.; Bharud, V. D.; Bhadane, M. S.; Tahakik, C. D.; Patil, B. J.; Dahiwale, S. S.; Chavan, S. T.; Pethe, S. N.; Dhole, S. D.; Bhoraskar, V. N.

    2017-12-01

    A system for the electron and photon therapy has been designed and developed at SAMEER, IITB, Mumbai. All the components of the system such as the 270° beam bending electromagnet, trim coils, magnet chamber, electron scattering foil, slits, applicators, etc., were designed and fabricated indigenously. The electrons of 6, 8, 9, 12, 15 and 18 MeV energies were provided by a linear accelerator, indigenously designed and made at SAMEER, IITB campus, Mumbai. The electron beam from the LINAC enters the magnet chamber horizontally, and after deflection and focusing in the 270° bending magnet, comes out of the exit port, and travels a straight path vertically down. After passing through the beryllium and tantalum scattering foils, the electron beam gets scattered and turns into a solid cone shape such that the diameter increases with the travel distance. The simulation results indicate that at the exit port of the 270° beam bending magnet, the electron beam has a divergence angle of ≤ 3 mrad and diameter ∼2-3 mm, and remains constant over 6-18 MeV. Normally, 6-18 MeV electrons are used for the electron therapy of skin and malignant cancer near the skin surface. On a plane at a distance of 100 cm from the scattering foils, the size of the electron beam could be varied from 10 cm × 10 cm to 25 cm × 25 cm using suitable applicators and slits. Different types of applicators were therefore designed and fabricated to provide required beam profile and dose of electrons to a patient. The 6 MeV cyclic electron accelerator called Race-Track Microtron of S. P. Pune University, Pune, was extensively used for studying the performances of the scattering foils, electron beam uniformity and radiation dose measurement. Different types of thermoluminescent dosimetry dosimeters were developed to measure dose in the range of 1-10kGy.

  15. Experimental Measurements of the Secondary Electron Yield in the Experimental Measurement of the Secondary Electron Yield in the PEP-II Particle Accelerator Beam Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pivi, M.T.F.; Collet, G.; King, F.

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under themore » effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.« less

  16. Development of a high average current polarized electron source with long cathode operational lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and havemore » often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.« less

  17. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    NASA Astrophysics Data System (ADS)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  18. Comparison of Three E-Beam Techniques for Electric Field Imaging and Carrier Diffusion Length Measurement on the Same Nanowires.

    PubMed

    Donatini, F; de Luna Bugallo, Andres; Tchoulfian, Pierre; Chicot, Gauthier; Sartel, Corinne; Sallet, Vincent; Pernot, Julien

    2016-05-11

    Whereas nanowire (NW)-based devices offer numerous advantages compared to bulk ones, their performances are frequently limited by an incomplete understanding of their properties where surface effect should be carefully considered. Here, we demonstrate the ability to spatially map the electric field and determine the exciton diffusion length in NW by using an electron beam as the single excitation source. This approach is performed on numerous single ZnO NW Schottky diodes whose NW radius vary from 42.5 to 175 nm. The dominant impact of the surface on the NW properties is revealed through the comparison of three different physical quantities recorded on the same NW: electron-beam induced current, cathodoluminescence, and secondary electron signal. Indeed, the space charge region near the Schottky contact exhibits an unusual linear variation with reverse bias whatever the NW radius. On the contrary, the exciton diffusion length is shown to be controlled by the NW radius through surface recombination. This systematic comparison performed on a single ZnO NW demonstrates the power of these complementary techniques in understanding NW properties.

  19. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  20. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  1. Electron beam accelerator: A new tool for environmental preservation in Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashim, Siti Aiasah; Bakar, Khomsaton Abu; Othman, Mohd Nahar

    2012-09-26

    Electron beam accelerators are widely used for industrial applications such as surface curing, crosslinking of wires and cables and sterilization/ decontamination of pharmaceutical products. The energy of the electron beam determines the type of applications. This is due to the penetration power of the electron that is limited by the energy. In the last decade, more work has been carried out to utilize the energetic electron for remediation of environmental pollution. For this purposes, 1 MeV electron beam accelerator is sufficient to treat wastewater from textile industry and flue gases from fossil fuel combustions. In Nuclear Malaysia, a variable energymore » Cockroft Walton type accelerator has been utilized to initiate investigations in these two areas. An electron beam flue gas treatment test rig was built to treat emission from diesel combustion, where it was found that using EB parameters of 1MeV and 12mA can successfully remove at least 80% of nitric oxide in the emission. Wastewater from textile industries was treated using combination of biological treatment and EB. The initial findings indicated that the quality of water had improved based on the COD{sub Cr}, BOD{sub 5} indicators.« less

  2. Electron beam accelerator: A new tool for environmental preservation in Malaysia

    NASA Astrophysics Data System (ADS)

    Hashim, Siti Aiasah; Bakar, Khomsaton Abu; Othman, Mohd Nahar

    2012-09-01

    Electron beam accelerators are widely used for industrial applications such as surface curing, crosslinking of wires and cables and sterilization/ decontamination of pharmaceutical products. The energy of the electron beam determines the type of applications. This is due to the penetration power of the electron that is limited by the energy. In the last decade, more work has been carried out to utilize the energetic electron for remediation of environmental pollution. For this purposes, 1 MeV electron beam accelerator is sufficient to treat wastewater from textile industry and flue gases from fossil fuel combustions. In Nuclear Malaysia, a variable energy Cockroft Walton type accelerator has been utilized to initiate investigations in these two areas. An electron beam flue gas treatment test rig was built to treat emission from diesel combustion, where it was found that using EB parameters of 1MeV and 12mA can successfully remove at least 80% of nitric oxide in the emission. Wastewater from textile industries was treated using combination of biological treatment and EB. The initial findings indicated that the quality of water had improved based on the CODCr, BOD5 indicators.

  3. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  4. Economics of electron beam and electrical discharge processing for post-combustion NO(x) control in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Penetrante, B. M.

    1993-08-01

    The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

  5. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q.

    2015-07-15

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot andmore » its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.« less

  6. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    NASA Astrophysics Data System (ADS)

    Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.

    2015-07-01

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.

  7. Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields.

    PubMed

    Kar, S; Robinson, A P L; Carroll, D C; Lundh, O; Markey, K; McKenna, P; Norreys, P; Zepf, M

    2009-02-06

    Guided transport of a relativistic electron beam in solid is achieved experimentally by exploiting the strong magnetic fields created at the interface of two metals of different electrical resistivities. This is of substantial relevance to the Fast Ignitor approach to fusion energy production [M. Tabak, Phys. Plasmas 12, 057305 (2005)10.1063/1.1871246], since it allows the electron deposition to be spatially tailored-thus adding substantial design flexibility and preventing inefficiencies due to electron beam spreading. In the experiment, optical transition radiation and thermal emission from the target rear surface provide a clear signature of the electron confinement within a high resistivity tin layer sandwiched transversely between two low resistivity aluminum slabs. The experimental data are found to agree well with numerical simulations.

  8. PIC code modeling of spacecraft charging potential during electron beam injection into a background of neutral gas and plasma, part 1

    NASA Technical Reports Server (NTRS)

    Koga, J. K.; Lin, C. S.; Winglee, R. M.

    1989-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.

  9. Fabrication of frequency selective surface for band stop IR-filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Akshita, E-mail: akshitamishra27@gmail.com; Sudheer,; Tiwari, P.

    2016-05-23

    Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO{sub 2} on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infraredmore » region.« less

  10. Directional Auger Electron Spectroscopy — Physical Foundations and Applications

    NASA Astrophysics Data System (ADS)

    Mróz, S.

    Experimental data about the dependence of the Auger signal from crystalline samples on the primary beam direction are presented and discussed. It is shown that, for Auger electrons and elastically and inelastically backscattered electrons, maxima of the signal in its dependence on the polar and azimuth angles of the primary beam (in polar and azimuth profiles, respectively) appear when the primary beam is parallel either to one of the close-packed rows of atoms or to one of the densely packed atomic planes in the sample. This indicates that the diffraction of the primary electron beam is responsible for the dependence mentioned above. Mechanisms proposed for simple explanation of this dependence (channeling and forward focusing of primary electrons) are presented and results of their application are discussed. It is shown that both those mechanisms play an important role in the creation of the Auger signal contrast. The possibilities and limitations of the application of polar and azimuth Auger emission profiles in the determination of the surface layer crystalline structure (directional Auger electron spectroscopy — DAES) are presented and discussed. It is shown that the thickness of the investigated surface layer can be decreased up to a few monolayers. Results obtained with DAES are similar to those provided by X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED), but the DAES experimental equipment is simple and inexpensive and measurements are fast. Finally, experimental systems for DAES are described and examples of DAES applications are presented.

  11. Industrial ion source technology. [for ion beam etching, surface texturing, and deposition

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    Plasma probe surveys were conducted in a 30-cm source to verify that the uniformity in the ion beam is the result of a corresponding uniformity in the discharge-chamber plasma. A 15 cm permanent magnet multipole ion source was designed, fabricated, and demonstrated. Procedures were investigated for texturing a variety of seed and surface materials for controlling secondary electron emission, increasing electron absorption of light, and improved attachment of biological tissue for medical implants using argon and tetrafluoromethane as the working gases. The cross section for argon-argon elastic collisions in the ion-beam energy range was calculated from interaction potentials and permits calculation of beam interaction effects that can determine system pumping requirements. The data also indicate that different optimizations of ion-beam machines will be advantageous for long and short runs, with 1 mA-hr/cm being the rough dividing line for run length. The capacity to simultaneously optimize components in an ion-beam machine for a single application, a capacity that is not evident in competitive approaches such as diode sputtering is emphasized.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, L. L., E-mail: llm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru; National Research Tomsk State University, Tomsk, 634050

    This work comprises a study of the influence of the pulse number of low-energy high-current electron beam (LEHCEB) exposure on the value and character of distribution of residual elastic stresses, texturing effects and the relationship between structural-phase states and physical and mechanical properties of the modified surface layers of TiNi alloy. LEHCEB processing of the surface of TiNi samples was carried out using a RITM-SP [3] installation. Energy density of electron beam was constant at E{sub s} = 3.9 ± 0.5 J/cm{sup 2}; pulse duration was 2.8 ± 0.3 μs. The number of pulses in the series was changeable, (n =more » 2–128). It was shown that as the result of multiple LEHCEB processing of TiNi samples, hierarchically organized multilayer structure is formed in the surface layer. The residual stress field of planar type is formed in the modified surface layer as following: in the direction of the normal to the surface the strain component ε{sub ⊥} < 0 (compressing strain), and in a direction parallel to the surface, the strain component ε{sub ||} > 0 (tensile deformation). Texturing effects and the level of residual stresses after LEHCEB processing of TiNi samples with equal energy density of electron beam (∼3.8 J/cm{sup 2}) depend on the number of pulses and increase with the rise of n > 10.« less

  13. Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications

    NASA Astrophysics Data System (ADS)

    Kumar, Vinay; Mishra, Varun; Biggs, M. M.; Nagpure, I. M.; Ntwaeaborwa, O. M.; Terblans, J. J.; Swart, H. C.

    2010-01-01

    Green luminescence and degradation of Ce 3+ doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 μA electron beam in an O 2 environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 ± 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce 3+ nanocrystalline phosphors during electron bombardment in an O 2 environment. The effect of different oxygen pressures ranging from 1 × 10 -8 to 1 × 10 -6 Torr on the CL intensity was also investigated. A CaSO 4 layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 × 10 -6 Torr oxygen pressure after an electron dose of 50 C/cm 2. The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.

  14. Focused-ion-beam-inflicted surface amorphization and gallium implantation--new insights and removal by focused-electron-beam-induced etching.

    PubMed

    Roediger, P; Wanzenboeck, H D; Waid, S; Hochleitner, G; Bertagnolli, E

    2011-06-10

    Recently focused-electron-beam-induced etching of silicon using molecular chlorine (Cl(2)-FEBIE) has been developed as a reliable and reproducible process capable of damage-free, maskless and resistless removal of silicon. As any electron-beam-induced processing is considered non-destructive and implantation-free due to the absence of ion bombardment this approach is also a potential method for removing focused-ion-beam (FIB)-inflicted crystal damage and ion implantation. We show that Cl(2)-FEBIE is capable of removing FIB-induced amorphization and gallium ion implantation after processing of surfaces with a focused ion beam. TEM analysis proves that the method Cl(2)-FEBIE is non-destructive and therefore retains crystallinity. It is shown that Cl(2)-FEBIE of amorphous silicon when compared to crystalline silicon can be up to 25 times faster, depending on the degree of amorphization. Also, using this method it has become possible for the first time to directly investigate damage caused by FIB exposure in a top-down view utilizing a localized chemical reaction, i.e. without the need for TEM sample preparation. We show that gallium fluences above 4 × 10(15) cm(-2) result in altered material resulting from FIB-induced processes down to a depth of ∼ 250 nm. With increasing gallium fluences, due to a significant gallium concentration close beneath the surface, removal of the topmost layer by Cl(2)-FEBIE becomes difficult, indicating that gallium serves as an etch stop for Cl(2)-FEBIE.

  15. Non-Equilibrium Phenomena in High Power Beam Materials Processing

    NASA Astrophysics Data System (ADS)

    Tosto, Sebastiano

    2004-03-01

    The paper concerns some aspects of non-equilibrium materials processing with high power beams. Three examples show that the formation of metastable phases plays a crucial role to understand the effects of beam-matter interaction: (i) modeling of pulsed laser induced thermal sputtering; (ii) formation of metastable phases during solidification of the melt pool; (i) possibility of carrying out heat treatments by low power irradiation ``in situ''. The case (i) deals with surface evaporation and boiling processes in presence of superheating. A computer simulation model of thermal sputtering by vapor bubble nucleation in molten phase shows that non-equilibrium processing enables the rise of large surface temperature gradients in the boiling layer and the possibility of sub-surface temperature maximum. The case (ii) concerns the heterogeneous welding of Cu and AISI 304L stainless steel plates by electron beam irradiation. Microstructural investigation of the molten zone has shown that dwell times of the order of 10-1-10-3 s, consistent with moderate cooling rates in the range 10^3-10^5 K/s, entail the formation of metastable Cu-Fe phases. The case (iii) concerns electron beam welding and post-welding treatments of 2219 Al base alloy. Electron microscopy and positron annihilation have explained why post-weld heat transients induced by low power irradiation of specimens in the as welded condition enable ageing effects usually expected after some hours of treatment in furnace. The problem of microstructural instability is particularly significant for a correct design of components manufactured with high power beam technologies and subjected to severe acceptance standards to ensure advanced performances during service life.

  16. Experimental validation of a numerical model predicting the charging characteristics of Teflon and Kapton under electron beam irradiation

    NASA Technical Reports Server (NTRS)

    Hazelton, R. C.; Yadlowsky, E. J.; Churchill, R. J.; Parker, L. W.; Sellers, B.

    1981-01-01

    The effect differential charging of spacecraft thermal control surfaces is assessed by studying the dynamics of the charging process. A program to experimentally validate a computer model of the charging process was established. Time resolved measurements of the surface potential were obtained for samples of Kapton and Teflon irradiated with a monoenergetic electron beam. Results indicate that the computer model and experimental measurements agree well and that for Teflon, secondary emission is the governing factor. Experimental data indicate that bulk conductivities play a significant role in the charging of Kapton.

  17. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  18. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X. P.; Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024; Zhang, Z. C.

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, takingmore » into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.« less

  19. Electron beam collimation with a photon MLC for standard electron treatments

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Fix, M. K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M. F. M.; Manser, P.

    2018-01-01

    Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.

  20. Effects of Surface Treatments on Secondary Electron Emission from CVD Diamond Films

    NASA Technical Reports Server (NTRS)

    Mearini, G. T.; Krainsky, I. L.; Dayton, J. A., Jr.; Zorman, Christian; Wang, Yaxin; Lamouri, A.

    1995-01-01

    Secondary electron emission (SEE) properties of polycrystalline diamond films grown by chemical vapor deposition (CVD) were measured. The total secondary yield (sigma) from as-grown samples was observed to be as high as 20 at room temperature and 48 while heating at 700 K in vacuum. Electron-beam-activated, alkali-terminated diamond films have shown stable values of sigma as high as 60 when coated with CsI and similarly high values when coated with other alkali halides. Diamond coated with BaF2 had a stable sigma of 6, but no enhancement of the SEE properties was observed with coatings of Ti or Au. Hydrogen was identified to give rise to this effect in as-grown films. However, electron beam exposure led to a reduction in sigma values as low as 2. Exposure to a molecular hydrogen environment restored sigma to its original value after degradation, and enabled stable secondary emission during electron beam exposure. Atomic hydrogen and hydrogen plasma treatments were performed on diamond/Mo samples in an attempt to increase the near-surface hydrogen concentration which might lead to increased stability in the secondary emission. Raman scattering analysis, scanning electron microscopy, and Auger electron spectroscopy (AES) confirmed that hydrogen plasma and atomic hydrogen treatments improved the quality of the CVD diamond significantly. Elastic recoil detection (ERD) showed that heating as-grown diamond targets to 7OO K, which was correlated with an increase in sigma, removed contaminants from the surface but did not drive hydrogen from the diamond bulk. ERD showed that the hydrogen plasma treatment produced an increase in the hydrogen concentration in the near-surface region which did not decrease while heating in vacuum at 700 K, but no improvement in the SEE properties was observed.

  1. Effects of Electron Beam Irradiation and Thiol Molecule Treatment on the Properties of MoS2 Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Choi, Barbara Yuri; Cho, Kyungjune; Pak, Jinsu; Kim, Tae-Young; Kim, Jae-Keun; Shin, Jiwon; Seo, Junseok; Chung, Seungjun; Lee, Takhee

    2018-05-01

    We investigated the effects of the structural defects intentionally created by electron-beam irradiation with an energy of 30 keV on the electrical properties of monolayer MoS2 field effect transistors (FETs). We observed that the created defects by electron beam irradiation on the MoS2 surface working as trap sites deteriorated the carrier mobility and carrier concentration with increasing the subthreshold swing value and shifting the threshold voltage in MoS2 FETs. The electrical properties of electron-beam irradiated MoS2 FETs were slightly improved by treating the devices with thiol-terminated molecules which presumably passivated the structural defects of MoS2. The results of this study may enhance the understanding of the electrical properties of MoS2 FETs in terms of creating and passivating defect sites.

  2. Characterization of electrical discharges on Teflon dielectrics used as spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Yadlowsky, E. J.; Hazelton, R. C.; Churchill, R. J.

    1979-01-01

    The dual effects of system degradation and reduced life of synchronous-orbit satellites as a result of differential spacecraft charging underscore the need for a clearer understanding of the prevailing electrical discharge phenomena. In a laboratory simulation, the electrical discharge current, surface voltage, emitted particle fluxes, and photo-emission associated with discharge events on electron beam irradiated silver-backed Teflon samples were measured. Sample surface damage was examined with optical and electron beam microscopes. The results are suggestive of a model in which the entire sample surface is discharged by lateral sub-surface currents flowing from a charge deposition layer through a localized discharge channel to the back surface of the sample. The associated return current pulse appears to have a duration which may be a signature by which different discharge processes may be characterized.

  3. Fast crystallization of amorphous Gd{sub 2}Zr{sub 2}O{sub 7} induced by thermally activated electron-beam irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhangyi; Qi, Jianqi, E-mail: qijianqi@scu.edu.cn; Zhou, Li

    2015-12-07

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd{sub 2}Zr{sub 2}O{sub 7} synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd{sub 2}Zr{sub 2}O{sub 7} and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm{sup 2}). The crystallization occurred on the nanoscale upon ionizationmore » irradiation at 400 °C after a dose of less than 10{sup 17} electrons/cm{sup 2}. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.« less

  4. Evidence for the suppression of incident beam effects in Auger electron diffraction

    NASA Astrophysics Data System (ADS)

    Davoli, I.; Gunnella, R.; Bernardini, R.; De Crescenzi, M.

    1998-01-01

    Auger electron diffraction (AED) of the Cu(100) surface has been studied through the anisotropy of the elastic backdiffused beam electrons, the L 2,3M 4,5M 4,5 (LVV) and the M 2,3M 4,5M 4,5 (MVV) transitions in polar scan along the two main directions [001], [011] and in azimuth scan at normal emission. The intensity anisotropies of the low and high kinetic energy Auger lines are in antiphase to each other as in experiments in which these transitions are excited by X-ray photons. This behaviour has been exploited to single out the origin of the physical mechanisms accompanying the diffraction of the emitted electrons. Incident beam effects appear to be sizeable only when the collection of the AED spectra are made with an angle integrating electron analyser (cylindrical mirror analyser or low electron energy diffraction apparatus), but they appear negligible when electron collection is performed through a small solid-angle detector. The conclusions reached by our measurements are supported by good agreement with experimental and theoretical X-ray photoelectron diffraction data and demonstrate that, when the incident beam energy is sufficiently higher than the kinetic energy of the Auger electron detected, the influence of the incident beam on AED is negligible.

  5. Electron beam emission from a diamond-amplifier cathode.

    PubMed

    Chang, Xiangyun; Wu, Qiong; Ben-Zvi, Ilan; Burrill, Andrew; Kewisch, Jorg; Rao, Triveni; Smedley, John; Wang, Erdong; Muller, Erik M; Busby, Richard; Dimitrov, Dimitre

    2010-10-15

    The diamond amplifier (DA) is a new device for generating high-current, high-brightness electron beams. Our transmission-mode tests show that, with single-crystal, high-purity diamonds, the peak current density is greater than 400  mA/mm², while its average density can be more than 100  mA/mm². The gain of the primary electrons easily exceeds 200, and is independent of their density within the practical range of DA applications. We observed the electron emission. The maximum emission gain measured was 40, and the bunch charge was 50  pC/0.5  mm². There was a 35% probability of the emission of an electron from the hydrogenated surface in our tests. We identified a mechanism of slow charging of the diamond due to thermal ionization of surface states that cancels the applied field within it. We also demonstrated that a hydrogenated diamond is extremely robust.

  6. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-04-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  7. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  8. A tunable electronic beam splitter realized with crossed graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Brandimarte, Pedro; Engelund, Mads; Papior, Nick; Garcia-Lekue, Aran; Frederiksen, Thomas; Sánchez-Portal, Daniel

    2017-03-01

    Graphene nanoribbons (GNRs) are promising components in future nanoelectronics due to the large mobility of graphene electrons and their tunable electronic band gap in combination with recent experimental developments of on-surface chemistry strategies for their growth. Here, we explore a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, GNR width, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at θ =60° , electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50% and with almost negligible back-reflection. The split electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy with an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. We rationalize our findings with a simple model suggesting that electronic beam splitters can generally be realized with crossed GNRs.

  9. Ultrafast monoenergetic electron source by optical waveform control of surface plasmons.

    PubMed

    Dombi, Péter; Rácz, Péter

    2008-03-03

    We propose coherent control of photoelectron acceleration at metal surfaces mediated by surface plasmon polaritons. A high degree of spectral and spatial control of the emission process can be exercised by amplitude and phase controlling the optical waveform (including the carrier-envelope phase) of the plasmon generating few-cycle laser pulse. Numerical results show that the emitted electron beam is highly directional and monoenergetic suggesting applications in contemporary ultrafast methods where ultrashort, well-behaved electron pulses are required.

  10. Optical and electrical properties of ion beam textured Kapton and Teflon

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1977-01-01

    Results are given for ion beam texturing of polyimide (Kapton) and fluorinated ethylene propylene (Teflon) by means of a 30-cm diam electron bombardment argon ion source. Ion beam-textured Kapton and Teflon surfaces are evaluated for various beam energies, current densities, and exposure times. The optical properties and sheet resistance are measured after each exposure. Provided in the paper are optical spectral data, resistivity measurements, calculated absorptance and emittance measurements, and surface structure SEM micrographs for various exposures to argon ions. It is found that Kapton becomes conducting and Teflon nonconducting when ion beam-textured. Textured Kapton exhibits large changes in the transmittance and solar absorptance, but only slight changes in reflectance. Surface texturing of Teflon may allow better adherence of subsequent sputtered metallic films for a high absorptance value. The results are valuable in spacecraft charging applications.

  11. Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

    PubMed Central

    Bittencourt, Carla; Bals, Sara; Van Tendeloo, Gustaaf

    2013-01-01

    Summary Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature. PMID:23399584

  12. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device

    NASA Astrophysics Data System (ADS)

    Shamsian, Neda; Bidabadi, Babak Shirani; Pirjamadi, Hosein

    2017-07-01

    An indirect method is proposed for measuring the relative energy spectrum of the pulsed electron beam of a plasma focus device. The Bremsstrahlung x-ray, generated by the collision of electrons against the anode surface, was measured behind lead filters with various thicknesses using a radiographic film system. A matrix equation was considered in order to explain the relation between the x-ray dose and the spectral amplitudes of the electron beam. The electron spectrum of the device was measured at 0.6 mbar argon and 22 kV charging voltage, in four discrete energy intervals extending up to 500 keV. The results of the experiments show that most of the electrons are emitted in the 125-375 keV energy range and the spectral amplitude becomes negligible beyond 375 keV.

  13. Surface cleaning techniques and efficient B-field profiles for lithium ion sources on extraction ion diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, M.E.; Menge, P.R.; Hanson, D.L.

    Application of ion beams to Inertial Confinement Fusion requires efficient production, transport and focusing of an intense, low microdivergence beam of an appropriate range ion. At Sandia, the authors are studying the production of lithium ion beams in extraction applied-B ion diodes on the SABRE accelerator (5 MV, 250 kA). Evidence on both SABRE (1 TW) and PBFA-II (20 TW) indicates that the lithium beam turns off and is replaced by a beam of mostly protons and carbon, possibly due to electron thermal and stimulated desorption of hydrocarbon surface contamination with subsequent avalanche ionization. Turn-off of the lithium beam ismore » accompanied by rapid impedance collapse. Surface cleaning techniques are being developed to reduce beam contamination, increase the total lithium energy and reduce the rate of diode impedance collapse. Application of surface cleaning techniques has increased the production of lithium from passive LiF sources by a factor of 2. Improved diode electric and magnetic field profiles have increased the diode efficiency and production of lithium by a factor of 5, without surface cleaning. Work is ongoing to combine these two advances which are discussed here.« less

  14. Creating and Steering Highly Directional Electron Beams in Graphene.

    PubMed

    Liu, Ming-Hao; Gorini, Cosimo; Richter, Klaus

    2017-02-10

    We put forward a concept to create highly collimated, nondispersive electron beams in pseudorelativistic Dirac materials such as graphene or topological insulator surfaces. Combining negative refraction and Klein collimation at a parabolic pn junction, the proposed lens generates beams, as narrow as the focal length, that stay focused over scales of several microns and can be steered by a magnetic field without losing collimation. We demonstrate the lens capabilities by applying it to two paradigmatic settings of graphene electron optics: We propose a setup for observing high-resolution angle-dependent Klein tunneling, and, exploiting the intimate quantum-to-classical correspondence of these focused electron waves, we consider high-fidelity transverse magnetic focusing accompanied by simulations for current mapping through scanning gate microscopy. Our proposal opens up new perspectives for next-generation graphene electron optics experiments.

  15. Creating and Steering Highly Directional Electron Beams in Graphene

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Hao; Gorini, Cosimo; Richter, Klaus

    2017-02-01

    We put forward a concept to create highly collimated, nondispersive electron beams in pseudorelativistic Dirac materials such as graphene or topological insulator surfaces. Combining negative refraction and Klein collimation at a parabolic p n junction, the proposed lens generates beams, as narrow as the focal length, that stay focused over scales of several microns and can be steered by a magnetic field without losing collimation. We demonstrate the lens capabilities by applying it to two paradigmatic settings of graphene electron optics: We propose a setup for observing high-resolution angle-dependent Klein tunneling, and, exploiting the intimate quantum-to-classical correspondence of these focused electron waves, we consider high-fidelity transverse magnetic focusing accompanied by simulations for current mapping through scanning gate microscopy. Our proposal opens up new perspectives for next-generation graphene electron optics experiments.

  16. Changes in spectrochemical and catalytic properties of biopolymer anchored Cu(II) and Ni(II) catalysts by electron beam irradiation.

    PubMed

    Antony, R; Suja Pon Mini, P S; Theodore David Manickam, S; Sanjeev, Ganesh; Mitu, Liviu; Balakumar, S

    2015-01-01

    Chitosan (a biopolymer) anchored Cu(II) and Ni(II) Schiff base complexes, [M(OIAC)Cl2] (M: Cu/Ni and OIAC: ([2-oxo-1H-indol-3-ylidene]amino)chitosan) were electron beam irradiated by different doses (100 Gy, 1 kGy and 10 kGy). The electron beam has shown potential impact on biopolymer's support, in detail chain linking and chain scissoring, as evidenced by viscosity studies, FT-IR and X-ray diffraction spectroscopic techniques. Due to these structural changes, thermal properties of the complexes were found to be changed. The surface of these heterogeneous complexes was also effectually altered by electron beam. As a consequence, pores and holes were created as probed by SEM technique. The catalytic activity of both non-irradiated and irradiated complexes was investigated in the aerobic oxidation of cyclohexane using hydrogen peroxide oxidant. The catalytic ability of the complexes was enhanced significantly after irradiation as the result of surface changes. The reusability of the complexes was also greatly affected because of the structural variations in polymeric support. In terms of both better catalytic activity along with the reusability, 1 kGy is suggested as the best dose to attain adequate increase in catalytic activity and good reusability. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A Comparison of ARTEMIS Observations and Particle-in-cell Modeling of the Lunar Photoelectron Sheath in the Terrestrial Magnetotail

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.; Angelopoulos, V.; McFadden, J. P.; Bonnell, J. W.; Ergun, R. E.

    2012-01-01

    As an airless body in space with no global magnetic field, the Moon is exposed to both solar ultraviolet radiation and ambient plasmas. Photoemission from solar UV radiation and collection of ambient plasma are typically opposing charging currents and simple charging current balance predicts that the lunar dayside surface should charge positively; however, the two ARTEMIS probes have observed energydependent loss cones and high-energy, surface-originating electron beams above the dayside lunar surface for extended periods in the magnetosphere, which are indicative of negative surface potentials. In this paper, we compare observations by the ARTEMIS P1 spacecraft with a one dimensional particle-in-cell simulation and show that the energy-dependent loss cones and electron beams are due to the presence of stable, non-monotonic, negative potentials above the lunar surface. The simulations also show that while the magnitude of the non-monotonic potential is mainly driven by the incoming electron temperature, the incoming ion temperature can alter this magnitude, especially for periods in the plasma sheet when the ion temperature is more than twenty times the electron temperature. Finally, we note several other plasma phenomena associated with these non-monotonic potentials, such as broadband electrostatic noise and electron cyclotron harmonic emissions, and offer possible generation mechanisms for these phenomena.

  18. Nanoparticle Immobilization for Controllable Experiments in Liquid-Cell Transmission Electron Microscopy.

    PubMed

    Robertson, Alex W; Zhu, Guomin; Mehdi, B Layla; Jacobs, Robert M J; De Yoreo, James; Browning, Nigel D

    2018-06-22

    We demonstrate that silanization can control the adhesion of nanostructures to the SiN windows compatible with liquid-cell transmission electron microscopy (LC-TEM). Formation of an (3-aminopropyl)triethoxysilane (APTES) self-assembled monolayer on a SiN window, producing a surface decorated with amino groups, permits strong adhesion of Au nanoparticles to the window. Many of these nanoparticles remain static, undergoing minimal translation or rotation during LC-TEM up to high electron beam current densities due to the strong interaction between the APTES amino group and Au. We then use this technique to perform a direct comparative LC-TEM study on the behavior of ligand and nonligand-coated Au nanoparticles in a Au growth solution. While the ligand coated nanoparticles remain consistent even under high electron beam current densities, the naked nanoparticles acted as sites for secondary Au nucleation. These nucleated particles decorated the parent nanoparticle surface, forming consecutive monolayer assemblies of ∼2 nm diameter nanoparticles, which sinter into the parent particle when the electron beam was shut off. This method for facile immobilization of nanostructures for LC-TEM study will permit more sophisticated and controlled in situ experiments into the properties of solid-liquid interfaces in the future.

  19. A SIMPLE METHOD FOR MEASURING THE ELECTRON-BEAM MAGNETIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Qiang, G.; Wisniewski, E.

    2016-10-18

    There are a number of projects that require magnetized beams, such as electron cooling or aiding in “flat” beam transforms. Here we explore a simple technique to characterize the magnetization, observed through the angular momentum of magnetized beams. These beams are produced through photoemission. The generating drive laser first passes through microlens arrays (fly-eye light condensers) to form a transversely modulated pulse incident on the photocathode surface [1]. The resulting charge distribution is then accelerated from the photocathode. We explore the evolution of the pattern via the relative shearing of the beamlets, providing information about the angular momentum. This methodmore » is illustrated through numerical simulations and preliminary measurements carried out at the Argonne Wakefield Accelerator (AWA) facility are presented.« less

  20. Accurate determination of electronic transport properties of silicon wafers by nonlinear photocarrier radiometry with multiple pump beam sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@uestc.ac.cn

    2015-12-07

    In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtainedmore » by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.« less

  1. MBE growth and processing of III/V-nitride semiconductor thin film structures: Growth of gallium indium arsenic nitride and nano-machining with focused ion beam and electron beam

    NASA Astrophysics Data System (ADS)

    Park, Yeonjoon

    The advanced semiconductor material InGaAsN was grown with nitrogen plasma assisted Molecular Beam Epitaxy (MBE). The InGaAsN layers were characterized with High Resolution X-ray Diffraction (HRXDF), Atomic Fore Microscope (AFM), X-ray Photoemission Spectroscopy (XPS) and Photo-Luminescence (PL). The reduction of the band gap energy was observed with the incorporation of nitrogen and the lattice matched condition to the GaAs substrate was achieved with the additional incorporation of indium. A detailed investigation was made for the growth mode changes from planar layer-by-layer growth to 3D faceted growth with a higher concentration of nitrogen. A new X-ray diffraction analysis was developed and applied to the MBE growth on GaAs(111)B, which is one of the facet planes of InGaAsN. As an effort to enhance the processing tools for advanced semiconductor materials, gas assisted Focused Ion Beam (FIB) vertical milling was performed on GaN. The FIB processed area shows an atomically flat surface, which is good enough for the fabrication of Double Bragg Reflector (DBR) mirrors for the Blue GaN Vertical Cavity Surface Emitting Laser (VCSEL) Diodes. An in-situ electron beam system was developed to combine the enhanced lithographic processing capability with the atomic layer growth capability by MBE. The electron beam system has a compensation capability against substrate vibration and thermal drift. In-situ electron beam lithography was performed with the low pressure assisting gas. The advanced processing and characterization methods developed in this thesis will assist the development of superior semiconductor materials for the future.

  2. Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel

    NASA Astrophysics Data System (ADS)

    Gopi, D.; Rajeswari, D.; Ramya, S.; Sekar, M.; R, Pramod; Dwivedi, Jishnu; Kavitha, L.; Ramaseshan, R.

    2013-12-01

    The surface of 316L stainless steel (316L SS) is irradiated by high energy low current DC electron beam (HELCDEB) with energy of 500 keV and beam current of 1.5 mA followed by the electrodeposition of strontium hydroxyapatite (Sr-HAp) to enhance its corrosion resistance in physiological fluid. The coatings were characterised by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and High resolution scanning electron microscopy (HRSEM). The Sr-HAp coating on HELCDEB treated 316L SS exhibits micro-flower structure. Electrochemical results show that the Sr-HAp coating on HELCDEB treated 316L SS possesses maximum corrosion resistance in Ringer's solution.

  3. Simulation of therapeutic electron beam tracking through a non-uniform magnetic field using finite element method

    PubMed Central

    Tahmasebibirgani, Mohammad Javad; Maskani, Reza; Behrooz, Mohammad Ali; Zabihzadeh, Mansour; Shahbazian, Hojatollah; Fatahiasl, Jafar; Chegeni, Nahid

    2017-01-01

    Introduction In radiotherapy, megaelectron volt (MeV) electrons are employed for treatment of superficial cancers. Magnetic fields can be used for deflection and deformation of the electron flow. A magnetic field is composed of non-uniform permanent magnets. The primary electrons are not mono-energetic and completely parallel. Calculation of electron beam deflection requires using complex mathematical methods. In this study, a device was made to apply a magnetic field to an electron beam and the path of electrons was simulated in the magnetic field using finite element method. Methods A mini-applicator equipped with two neodymium permanent magnets was designed that enables tuning the distance between magnets. This device was placed in a standard applicator of Varian 2100 CD linear accelerator. The mini-applicator was simulated in CST Studio finite element software. Deflection angle and displacement of the electron beam was calculated after passing through the magnetic field. By determining a 2 to 5cm distance between two poles, various intensities of transverse magnetic field was created. The accelerator head was turned so that the deflected electrons became vertical to the water surface. To measure the displacement of the electron beam, EBT2 GafChromic films were employed. After being exposed, the films were scanned using HP G3010 reflection scanner and their optical density was extracted using programming in MATLAB environment. Displacement of the electron beam was compared with results of simulation after applying the magnetic field. Results Simulation results of the magnetic field showed good agreement with measured values. Maximum deflection angle for a 12 MeV beam was 32.9° and minimum deflection for 15 MeV was 12.1°. Measurement with the film showed precision of simulation in predicting the amount of displacement in the electron beam. Conclusion A magnetic mini-applicator was made and simulated using finite element method. Deflection angle and displacement of electron beam were calculated. With the method used in this study, a good prediction of the path of high-energy electrons was made before they entered the body. PMID:28607652

  4. Electron emission from ferroelectrics - a review

    NASA Astrophysics Data System (ADS)

    Riege, H.

    1994-02-01

    The strong pulsed emission of electrons from the surface of ferroelectric (FE) materials was discovered at CERN in 1987. Since then many aspects and properties of the method of generation and propagation of electron beams from FE have been studied experimentally. The method is based on macroscopic charge separation and self-emission of electrons under the influence of their own space-charge fields. Hence, this type of emission is not limited by the Langmuir-Child law as are conventional emission methods. Charge separation and electron emission can be achieved by rapid switching of the spontaneous, ferroelectric polarization. Polarization switching may be induced by application of electrical-field or mechanical-pressure pulses, as well as by thermal heating or laser illumination of the ferroelectric emitter. At higher emission intensities plasma formation assists the FE emission and leads to a strong growth of emitted current amplitude, which is no longer limited by the FE material and the surface properties. The most attractive features of FE emission are robustness and ease of manipulation of the emitter cathodes which can be transported through atmospheric air and used without any problems in vacuum, low-pressure gas or plasma environments. Large-area arrangements of multiple emitters, switched in interleaved mode, can produce electron beams of any shape, current amplitude or time structure. The successful application of FE emission in accelerator technology has been demonstrated experimentally in several cases, e.g. for triggering high-power gas switches, for photocathodes in electron guns, and for electron-beam generators intended to generate, neutralize and enhance ion beams in ion sources and ion linacs. Other applications can be envisaged in microwave power generators and in the fields of electronics and vacuum microelectronics.

  5. Observation of Electron-Beam-Induced Phase Evolution Mimicking the Effect of the Charge–Discharge Cycle in Li-Rich Layered Cathode Materials Used for Li Ion Batteries

    DOE PAGES

    Lu, Ping; Yan, Pengfei; Romero, Eric; ...

    2015-01-27

    Capacity loss, and voltage decrease upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[Li xMn yTM 1-x-y]O 2, TM = Ni, Co or Fe) have recently been attributed to the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li 0.2Ni 0.2Mn 0.6]O 2 (LNMO) particles, which are identical to those reported due to the charge-discharge cycle butmore » are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by electron dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LNMO is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. The observation through this study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.« less

  6. Magnetron sputtering system for coatings deposition with activation of working gas mixture by low-energy high-current electron beam

    NASA Astrophysics Data System (ADS)

    Gavrilov, N. V.; Kamenetskikh, A. S.; Men'shakov, A. I.; Bureyev, O. A.

    2015-11-01

    For the purposes of efficient decomposition and ionization of the gaseous mixtures in a system for coatings deposition using reactive magnetron sputtering, a low-energy (100-200 eV) high-current electron beam is generated by a grid-stabilized plasma electron source. The electron source utilizes both continuous (up to 20 A) and pulse-periodic mode of discharge with a self-heated hollow cathode (10-100 A; 0.2 ms; 10-1000 Hz). The conditions for initiation and stable burning of the high-current pulse discharge are studied along with the stable generation of a low-energy electron beam within the gas pressure range of 0.01 - 1 Pa. It is shown that the use of the electron beam with controllable parameters results in reduction of the threshold values both for the pressure of gaseous mixture and for the fluxes of molecular gases. Using such a beam also provides a wide range (0.1-10) of the flux density ratios of ions and sputtered atoms over the coating surface, enables an increase in the maximum pulse density of ion current from plasma up to 0.1 A, ensures an excellent adhesion, optimizes the coating structure, and imparts improved properties to the superhard nanocomposite coatings of (Ti,Al)N/a-Si3N4 and TiC/-a-C:H. Mass-spectrometric measurements of the beam-generated plasma composition proved to demonstrate a twofold increase in the average concentration of N+ ions in the Ar-N2 plasma generated by the high-current (100 A) pulsed electron beam, as compared to the dc electron beam.

  7. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu

    2015-05-15

    Purpose: To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. Methods: In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimatedmore » field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm{sup 2} were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R{sub 100}, R{sub 50}, R{sub p}, and R{sub p+} for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Results: Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R{sub 100}, R{sub 50}, and R{sub p} were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. Conclusions: We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated field sizes from 3 × 3 to 25 × 25 cm{sup 2} were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.« less

  8. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.

    PubMed

    Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen

    2015-05-01

    To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm(2) were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R100, R50, Rp, and Rp+ for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R100, R50, and Rp were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated field sizes from 3 × 3 to 25 × 25 cm(2) were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.

  9. Kinetics of electron-beam dispersion of fullerite C60

    NASA Astrophysics Data System (ADS)

    Razanau, Ihar; Mieno, Tetsu; Kazachenko, Victor

    2012-06-01

    Electron-beam dispersion of pressed fullerite C60 targets in vacuum leads to the deposition of thin films containing polymeric forms of C60. The aim of the present report is to analyze physical-chemical processes in the fullerite target during its electron-beam dispersion through the analysis of the kinetics of the radiation temperature of the target surface, the coating growth rate and the density of negative current on the substrate. It was shown that the induction stage of the process is determined by the negative charging and radiation-induced modification and heating of the target. The transitional stage is characterized by nonstationary sublimation of the target material through the pores in the modified surface layer and release of the accumulated negative charge. Stabilization of the process parameters owing to the convection cooling of the target by the sublimation products and the decrease in the pressure inside the microcavities beneath the pores leads to a quasi-stationary stage of target sublimation and deposition of a coating containing polymeric forms of C60.

  10. Watching adsorption and electron beam induced decomposition on the model system Mo(CO)6/Cu(1 1 1) by X-ray absorption and photoemission spectroscopies

    NASA Astrophysics Data System (ADS)

    Paufert, Pierre; Fonda, Emiliano; Li, Zheshen; Domenichini, Bruno; Bourgeois, Sylvie

    2013-11-01

    An in-depth study of the first steps of electron beam assisted growth of Mo from molybdenum hexacarbonyl on Cu(1 1 1) has been carried out exploiting the complementarity of X-ray photoemission and X-ray absorption spectroscopies. Frank van der Merwe (2D) growth mode has been observed for the completion of the two first monolayers of adsorbed molecules through a simple physisorption process. Irradiation of the Mo(CO)6 deposit by 1 keV electron beam induces a modification of molybdenum coordination, the average number of C-neighbors decreasing from 6 to 3. Decomposed molecules remain on the surface after annealing at 520 K and organize themselves, the molybdenum atoms moving in Cu(1 1 1) surface fcc hollow sites. After annealing at 670 K, metallic molybdenum growth begins, if the total amount of adsorbed Mo atoms exceeds 1.2 monolayers.

  11. Proceeding of the 18th Intl. Workshop on Inelastic Ion-Surface Collisions (IISC-18)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhold, Carlos O; Krstic, Predrag S; Meyer, Fred W

    2011-01-01

    The main topics of this proceedings were: (1) Energy loss of particles at surfaces; (2) Scattering of atoms, ions, molecules and clusters; (3) Charge exchange between particles and surfaces; (4) Ion induced desorption, electronic and kinetic sputtering; (5) Defect formation, surface modification and nanostructuring; (6) Electron, photon and secondary ion emission due to particle impact on surfaces; (7) Sputtering, fragmentation, cluster and ion formation in SIMS and SNMS; (8) Cluster/molecular and highly charged ion beams; and (9) Laser induced desorption.

  12. Curved grating fabrication techniques for concentric-circle grating, surface-emitting semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Jordan, Rebecca H.; King, Oliver; Wicks, Gary W.; Hall, Dennis G.; Anderson, Erik H.; Rooks, Michael J.

    1993-01-01

    We describe the fabrication and operational characteristics of a novel, surface-emitting semiconductor laser that makes use of a concentric-circle grating to both define its resonant cavity and to provide surface emission. A properly fabricated circular grating causes the laser to operate in radially inward- and outward-going circular waves in the waveguide, thus, introducing the circular symmetry needed for the laser to emit a beam with a circular cross-section. The basic circular-grating-resonator concept can be implemented in any materials system; an AlGaAs/GaAs graded-index, separate confinement heterostructure (GRINSCH), single-quantum-well (SQW) semiconductor laser, grown by molecular beam epitaxy (MBE), was used for the experiments discussed here. Each concentric-circle grating was fabricated on the surface of the AlGaAs/GaAs semiconductor laser. The circular pattern was first defined by electron-beam (e-beam) lithography in a layer of polymethylmethacrylate (PMMA) and subsequently etched into the semiconductor surface using chemically-assisted (chlorine) ion-beam etching (CAIBE). We consider issues that affect the fabrication and quality of the gratings. These issues include grating design requirements, data representation of the grating pattern, and e-beam scan method. We provide examples of how these techniques can be implemented and their impact on the resulting laser performance. A comparison is made of the results obtained using two fundamentally different electron-beam writing systems. Circular gratings with period lambda = 0.25 microns and overall diameters ranging from 80 microns to 500 microns were fabricated. We also report our successful demonstration of an optically pumped, concentric-circle grating, semiconductor laser that emits a beam with a far-field divergence angle that is less than one degree. The emission spectrum is quite narrow (less than 0.1 nm) and is centered at wavelength lambda = 0.8175 microns.

  13. Molecular beam epitaxial growth and structural characterization of ZnS on (001) GaAs

    NASA Technical Reports Server (NTRS)

    Benz, R. G., II; Huang, P. C.; Stock, S. R.; Summers, C. J.

    1988-01-01

    The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as assessed by X-ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces.

  14. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources.

    PubMed

    Pincelli, T; Petrov, V N; Brajnik, G; Ciprian, R; Lollobrigida, V; Torelli, P; Krizmancic, D; Salvador, F; De Luisa, A; Sergo, R; Gubertini, A; Cautero, G; Carrato, S; Rossi, G; Panaccione, G

    2016-03-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  15. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    NASA Astrophysics Data System (ADS)

    Pincelli, T.; Petrov, V. N.; Brajnik, G.; Ciprian, R.; Lollobrigida, V.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Sergo, R.; Gubertini, A.; Cautero, G.; Carrato, S.; Rossi, G.; Panaccione, G.

    2016-03-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  16. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pincelli, T., E-mail: pincelli@iom.cnr.it; Rossi, G.; Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, 34149 Trieste

    2016-03-15

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric andmore » magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).« less

  17. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    NASA Astrophysics Data System (ADS)

    de Filippo, E.; Lanzanó, G.; Amorini, F.; Cardella, G.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-12-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, D. T.; Maximov, A. V.; Short, R. W.

    The fraction of laser energy converted into hot electrons by the two-plasmon-decay instability is found to have different overlapped intensity thresholds for various configurations on the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997); J. H. Kelly et al., J. Phys. IV 133, 75 (2006)]. A factor-of-2 difference in the overlapped intensity threshold is observed between two- and four-beam configurations. The overlapped intensity threshold increases by a factor of 2 between the 4- and 18-beam configurations and by a factor of 3 between the 4- and 60-beam configurations. This is explained by a linear common-wavemore » model where multiple laser beams drive a common electron-plasma wave in a wavevector region that bisects the laser beams (resonant common-wave region in k-space). These experimental results indicate that the hot-electron threshold depends on the hydrodynamic parameters at the quarter-critical density surface, the configuration of the laser beams, and the sum of the intensity of the beams that share the same angle with the common-wave vector.« less

  19. Comptonization of thermal photons by relativistic electron beams

    NASA Technical Reports Server (NTRS)

    Daugherty, Joseph K.; Harding, Alice K.

    1989-01-01

    This paper presents a numerical calculation of gamma-ray emission produced by Compton scattering of relativistic electron beams on background thermal radiation, which includes spatial dependence of electron energy losses and cyclotron resonance scattering in a strong magnetic field. In the first version, the scattering is described by the fully relativistic Klein-Nishina cross section, but the magnetic field is neglected. In the second version, the scattering is described by the magnetic resonant cross section in the Thomson limit. It is found that when the magnetic field is not included, electron energy losses are important only at higher neutron star surface temperatures (T about 3,000,000 K). In the presence of a strong magnetic field, (10 to the 12th G), resonant scattering greatly increases electron energy losses, making scattering very efficient even at lower surface temperatures. Resulting photon and electron spectra for both cases ae discussed in relation to models for pulsar X-ray and gamma-ray emission.

  20. Electron beam gun with kinematic coupling for high power RF vacuum devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borchard, Philipp

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composedmore » of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.« less

  1. Investigation of structural-scale levels of spall fracture induced by a nanosecond relativistic high-current electron beam in ultrafine-grained Ti-Al-V-Mo alloy

    NASA Astrophysics Data System (ADS)

    Dudarev, E. F.; Markov, A. B.; Bakach, G. P.; Maletkina, T. Yu.; Belov, N. N.; Tabachenko, A. N.; Skosirskii, A. B.; Habibullin, M. V.; Yakovlev, E. V.

    2017-12-01

    The results of an experimental and theoretical study of shock-wave processes and spall fracture in an ultrafine-grained and coarse-grained (α + β) Ti-Al-V-Mo alloy under the action of a nanosecond relativistic high-current electron beam are reported. Mathematical modeling is performed to show that when an electron beam with a power density of 1.65 × 1010 W/cm2 impacts this alloy, a shock wave with a compression amplitude of 13 GPa appears and its reflection gives rise to a tensile wave. Its amplitude increases with decreasing target thickness. The calculated increase in the thickness of the spalled layer at the rear surface of the target corresponds to the experimental data. It is established experimentally that plastic deformation precedes the spall fracture sequentially at three structural-scale levels. At the beginning pores are formed and merge, then microcracks are formed at different angles to the back surface of the target between the pores, and then a macrocrack is formed. As a result, the macrocrack surface is not smooth but exhibits pits of ductile fracture.

  2. Correlation between surface properties and wettability of multi-scale structured biocompatible surfaces

    NASA Astrophysics Data System (ADS)

    Gorodzha, S. N.; Surmeneva, M. A.; Prymak, O.; Wittmar, A.; Ulbricht, M.; Epple, M.; Teresov, A.; Koval, N.; Surmenev, R. A.

    2015-11-01

    The influence of surface properties of radio-frequency (RF) magnetron deposited hydroxyapatite (HA) and Si-containing HA coatings on wettability was studied. The composition and morphology of the coatings fabricated on titanium (Ti) were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface wettability was studied using contact angle analysis. Different geometric parameters of acid-etched (AE) and pulse electron beam (PEB)-treated Ti substrates and silicate content in the HA films resulted in the different morphology of the coatings at micro- and nano- length scales. Water contact angles for the HA coated Ti samples were evaluated as a combined effect of micro roughness of the substrate and nano-roughness of the HA films resulting in higher water contact angles compared with acid-etched (AE) or pulse electron beam (PEB) treated Ti substrates.

  3. Thermal shock behavior of W-ZrC/Sc2O3 composites under two different transient events by electron and laser irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2018-02-01

    The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.

  4. Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions.

    PubMed

    Gutsche, Christoph; Niepelt, Raphael; Gnauck, Martin; Lysov, Andrey; Prost, Werner; Ronning, Carsten; Tegude, Franz-Josef

    2012-03-14

    Axial GaAs nanowire p-n diodes, possibly one of the core elements of future nanowire solar cells and light emitters, were grown via the Au-assisted vapor-liquid-solid mode, contacted by electron beam lithography, and investigated using electron beam induced current measurements. The minority carrier diffusion lengths and dynamics of both, electrons and holes, were determined directly at the vicinity of the p-n junction. The generated photocurrent shows an exponential decay on both sides of the junction and the extracted diffusion lengths are about 1 order of magnitude lower compared to bulk material due to surface recombination. Moreover, the observed strong diameter-dependence is well in line with the surface-to-volume ratio of semiconductor nanowires. Estimating the surface recombination velocities clearly indicates a nonabrupt p-n junction, which is in essential agreement with the model of delayed dopant incorporation in the Au-assisted vapor-liquid-solid mechanism. Surface passivation using ammonium sulfide effectively reduces the surface recombination and thus leads to higher minority carrier diffusion lengths. © 2012 American Chemical Society

  5. Evidence for a positron bound state on the surface of a topological insulator

    NASA Astrophysics Data System (ADS)

    Shastry, K.; Weiss, A. H.; Barbiellini, B.; Assaf, B. A.; Lim, Z. H.; Joglekar, P. V.; Heiman, D.

    2015-06-01

    We describe experiments aimed at probing the sticking of positrons to the surfaces of topological insulators using the Positron Annihilation induced Auger Electron Spectrometer (PAES). A magnetically guided beam was used to deposit positrons at the surface of Bi2Te2Se sample at energy of ∼2eV. Peaks observed in the energy spectra and intensities of electrons emitted as a result of positron annihilation showed peaks at energies corresponding to Auger peaks in Bi, Teand Se providing clear evidence of Auger emission associated with the annihilation of positrons in a surface bound state. Theoretical estimates of the binding energy of this state are compared with estimates obtained by measuring the incident beam energy threshold for secondary electron emission and the temperature dependence positronium(Ps) emission. The experiments provide strong evidence for the existence of a positron bound state at the surface of Bi2Te2Se and indicate the practicality of using positron annihilation to selectively probe the critically important top most layer of topological insulator system.

  6. Quasi-optical theory of relativistic surface-wave oscillators with one-dimensional and two-dimensional periodic planar structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S.; Zaslavsky, V. Yu.; Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950

    2013-11-15

    Within the framework of a quasi-optical approach, we develop 2D and 3D self-consistent theory of relativistic surface-wave oscillators. Presenting the radiation field as a sum of two counter-propagating wavebeams coupled on a shallow corrugated surface, we describe formation of an evanescent slow wave. Dispersion characteristics of the evanescent wave following from this method are in good compliance with those found from the direct cst simulations. Considering excitation of the slow wave by a sheet electron beam, we simulate linear and nonlinear stages of interaction, which allows us to determine oscillation threshold conditions, electron efficiency, and output coupling. The transition frommore » the model of surface-wave oscillator operating in the π-mode regime to the canonical model of relativistic backward wave oscillator is considered. We also described a modified scheme of planar relativistic surface-wave oscillators exploiting two-dimensional periodic gratings. Additional transverse propagating waves emerging on these gratings synchronize the emission from a wide sheet rectilinear electron beam allowing realization of a Cherenkov millimeter-wave oscillators with subgigawatt output power level.« less

  7. SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, B; Rogers, D

    2013-06-15

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber inmore » high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.« less

  8. Helicon plasma generator-assisted surface conversion ion source for the production of H- ion beams at the Los Alamos Neutron Science Centera)

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.

  9. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    PubMed

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  10. Electron beams in research and technology

    NASA Astrophysics Data System (ADS)

    Mehnert, R.

    1995-11-01

    Fast electrons lose their energy by inelastic collisions with electrons of target molecules forming secondary electrons and excited molecules. Coulomb interaction of secondary electrons with valence electrons of neighboring molecules leads to the formation of radical cations, thermalized electrons, excited molecular states and radicals. The primary reactive species initiate chemical reactions in the materials irradiated. Polymer modifications using accelerated electrons such as cross-linking of cable insulation, tubes, pipes and moldings, vulcanization of elastomers, grafting of polymer surfaces, processing of foamed plastics and heat shrinkable materials have gained wide industrial acceptance. A steadily growing electron beam technology is curing of paints, lacquers, printing inks and functional coatings. Electron beam processing offers high productivity, the possibility to treat the materials at normal temperature and pressure, excellent process control and clean production conditions. On an industrial scale the most important application of fast electrons is curing of 100% reactive monomer/prepolymer systems. Mainly acrylates and epoxides are used to formulate functional coatings on substrates such as paper, foil, wood, fibre board and high pressure laminates. A survey is given about the reaction mechanism of curing, the characterization of cured coatings, and of some industrial application.

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Wind profile recovery from intensity fluctuations of a laser beam reflected in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Banakh, V. A.; Marakasov, D. A.

    2008-04-01

    An algorithm for the wind profile recovery from spatiotemporal spectra of a laser beam reflected in a turbulent atmosphere is presented. The cases of a spherical wave incident on a diffuse reflector of finite size and a spatially limited beam reflected from an infinite random surface are considered.

  12. Commissioning a p-type silicon diode for use in clinical electron beams.

    PubMed

    Eveling, J N; Morgan, A M; Pitchford, W G

    1999-01-01

    Commissioning measurements were carried out on a p-type silicon diode detector for use in patient monitoring in high energy electron beams. Characteristics specific to the diode were examined. The variation in diode sensitivity with dose per pulse was found to be less than 1% over a range 0.069-0.237 mGy/pulse. The diode exhibited a sensitivity variation with accumulated dose of 10% per kGy and a sensitivity variation with surface temperature of 0.26%/degree C. The dependence of the diode response on the direction of the incident electron beam was investigated. Results were found to exceed the manufacturer's specifications. Output factors measured with the diode agree to within 1.5% of those measured with an NACP-02 air ionization chamber. The detector showed a variation in response with energy of 0.8% over the energy range 4-15 MeV. Prior to introducing the diode into clinical use, an assessment of beam perturbation directly behind the diode was made. The maximum reduction in local dose directly behind the diode at a depth of 1.0 cm below the surface was approximately 13% at 4 and 15 MeV.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Ludmila, E-mail: llm@ispms.tsc.ru; Meisner, Stanislav, E-mail: msn@ispms.tsc.ru; Mironov, Yurii, E-mail: myp@ispms.tsc.ru

    The paper considers the effects arising on X-ray diffraction patterns taken in different diffraction geometries and how these effects can be interpreted to judge structural states in NiTi near-surface regions after electron and ion beam treatment. It is shown that qualitative and quantitative analysis of phase composition, lattice parameters of main phases, elastic stress states, and their in-depth variation requires X-ray diffraction patterns in both symmetric Bragg–Brentano and asymmetric Lambot–Vassamilleta geometries with variation in X-ray wavelengths and imaging conditions (with and with no β-filter). These techniques of structural phase analysis are more efficient when the thickness of modified NiTi surfacemore » layers is 1–10 μm (after electron beam treatment) and requires special imaging conditions when the thickness of modified NiTi surface layers is no greater than 1 μm (after ion beam treatment)« less

  14. Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu,Q.

    2008-10-01

    The Diamond Amplified Photocathode (DAP) is a novel approach to generating electrons. By following the primary electron beam, which is generated by traditional electron sources, with an amplifier, the electron beam available to the eventual application is increased by 1 to 2 orders of magnitude in current. Diamond has a very wide band gap of 5.47eV which allows for a good negative electron affinity with simple hydrogenation, diamond can hold more than 2000MV/m field before breakdown. Diamond also provides the best rigidity among all materials. These two characters offer the capability of applying high voltage across very thin diamond filmmore » to achieve high SEY and desired emission phase. The diamond amplifier also is capable of handling a large heat load by conduction and sub-nanosecond pulse input. The preparation of the diamond amplifier includes thinning and polishing, cleaning with acid etching, metallization, and hydrogenation. The best mechanical polishing available can provide high purity single crystal diamond films with no less than 100 {micro}m thickness and <15 nm Ra surface roughness. The ideal thickness for 700MHz beam is {approx}30 {micro}m, which requires further thinning with RIE or laser ablation. RIE can achieve atomic layer removal precision and roughness eventually, but the time consumption for this procedure is very significant. Laser ablation proved that with <266nm ps laser beam, the ablation process on the diamond can easily achieve removing a few microns per hour from the surface and <100nm roughness. For amplifier application, laser ablation is an adequate and efficient process to make ultra thin diamond wafers following mechanical polishing. Hydrogenation will terminate the diamond surface with monolayer of hydrogen, and form NEA so that secondary electrons in the conduction band can escape into the vacuum. The method is using hydrogen cracker to strike hydrogen atoms onto the bare diamond surface to form H-C bonds. Two independent experiments were carried out to determine the transport of the electrons within the diamond and their emission at the surface. In transmission mode measurements, the diamond amplifier was coated with metal on both sides, so results simply depend only on the electron transport within the diamond. The SEY for this mode provides one secondary electron per 20eV energy, which gives the gain of more than 200 for 4.7keV (effective energy) primary electrons under 2MV/m. Laser detrapping can help the signal maintain the gain with lops pulse and duty cycle of 1.67 x 10{sup -7}. In emission mode measurements, in which the diamond is prepared as in the actual application, the SEY is {approx}20 for 700eV (effective energy) primary electrons under 1.21MV/m. The electric field applied and the primary electron energy is limited by the experiment setup, but the results show good trend toward large gain under high field. Thermal emittance of the diamond secondary emission is critical for the beam application. A careful design is setup to measure with very fine precision and accuracy of 0.01eV.« less

  15. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting

    PubMed Central

    Sin, Wai Jack; Nai, Mui Ling Sharon; Wei, Jun

    2017-01-01

    As one of the powder bed fusion additive manufacturing technologies, electron beam melting (EBM) is gaining more and more attention due to its near-net-shape production capacity with low residual stress and good mechanical properties. These characteristics also allow EBM built parts to be used as produced without post-processing. However, the as-built rough surface introduces a detrimental influence on the mechanical properties of metallic alloys. Thereafter, understanding the effects of processing parameters on the part’s surface roughness, in turn, becomes critical. This paper has focused on varying the processing parameters of two types of contouring scanning strategies namely, multispot and non-multispot, in EBM. The results suggest that the beam current and speed function are the most significant processing parameters for non-multispot contouring scanning strategy. While for multispot contouring scanning strategy, the number of spots, spot time, and spot overlap have greater effects than focus offset and beam current. The improved surface roughness has been obtained in both contouring scanning strategies. Furthermore, non-multispot contouring scanning strategy gives a lower surface roughness value and poorer geometrical accuracy than the multispot counterpart under the optimized conditions. These findings could be used as a guideline for selecting the contouring type used for specific industrial parts that are built using EBM. PMID:28937638

  16. Flatness metrology based on small-angle deflectometric procedures with electronic tiltmeters

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Laubach, S.; Schulz, M.

    2017-06-01

    The measurement of optical flats, e. g. synchrotron or XFEL mirrors, with single nanometer topography uncertainty is still challenging. At PTB, we apply for this task small-angle deflectometry in which the angle between the direction of the beam sent to the surface and the beam detected is small. Conventional deflectometric systems measure the surface angle with autocollimators whose light beam also represents the straightness reference. An advanced flatness metrology system was recently implemented at PTB that separates the straightness reference task from the angle detection task. We call it `Exact Autocollimation Deflectometric Scanning' because the specimen is slightly tilted in such a way that at every scanning position the specimen is `exactly' perpendicular to the reference light beam directed by a pentaprism to the surface under test. The tilt angle of the surface is then measured with an additional autocollimator. The advantage of the EADS method is that the two tasks (straightness reference and measurement of surface slope) are separated and each of these can be optimized independently. The idea presented in this paper is to replace this additional autocollimator by one or more electro-mechanical tiltmeters, which are typically faster and have a higher resolution than highly accurate commercially available autocollimators. We investigate the point stability and the linearity of a highly accurate electronic tiltmeter. The pros and cons of using tiltmeters in flatness metrology are discussed.

  17. Energy-filtered real- and k-space secondary and energy-loss electron imaging with Dual Emission Electron spectro-Microscope: Cs/Mo(110).

    PubMed

    Grzelakowski, Krzysztof P

    2016-05-01

    Since its introduction the importance of complementary k||-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800eV electron beam from an "in-lens" electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered kǁ-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ion beam technology applications study. [ion impact, implantation, and surface finishing

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Komatsu, G. K.

    1978-01-01

    Specific perceptions and possible ion beam technology applications were obtained as a result of a literature search and contact interviews with various institutions and individuals which took place over a 5-month period. The use of broad beam electron bombardment ion sources is assessed for materials deposition, removal, and alteration. Special techniques examined include: (1) cleaning, cutting, and texturing for surface treatment; (2) crosslinking of polymers, stress relief in deposited layers, and the creation of defect states in crystalline material by ion impact; and (3) ion implantation during epitaxial growth and the deposition of neutral materials sputtered by the ion beam. The aspects, advantages, and disadvantages of ion beam technology and the competitive role of alternative technologies are discussed.

  19. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  20. Evolution and Control of 2219 Aluminum Microstructural Features Through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  1. A reticle retrofit and dosimetric consideration for a linear accelerator.

    PubMed

    Krithivas, V

    1996-01-01

    An imperfect reticle system in an accelerator causes uncertainties in source-skin distance (SSD), off-axis distance (OAD), isocenter, and so forth. A reticle was designed and fabricated, and its implications on x-ray and electron beam dosimetry were investigated. A new reticle frame was dimensioned to fit snugly in the accelerator. The frame was fabricated to carry a pair of adjustable cross wires and to allow the machine operation in the photon and electron modes. The impact of the cross wires on 6 MV photon and 5-10 MeV electron beam parameters such as dose rate (Gy/monitor unit), beam uniformity, surface dose, and so forth, were studied using suitable ion chambers and phantoms. The retrofitted system offered long-term mechanical stability leading to precise SSD, OAD, and isocenter measurements. Changes introduced by the cross wires on the 6 MV photon and 5-10 MeV electron beams are presented. Long-term stability of a reticle in an accelerator is important for an accurate patient setup and for making reliable dosimetric measurements. Beam characteristrics have to be studied whenever modifications on a reticle system are made.

  2. Measurement of electron beam polarization produced by photoemission from bulk GaAs using twisted light

    NASA Astrophysics Data System (ADS)

    Clayburn, Nathan; Dreiling, Joan; McCarter, James; Ryan, Dominic; Poelker, Matt; Gay, Timothy

    2012-06-01

    GaAs photocathodes produce spin polarized electron beams when illuminated with circularly polarized light with photon energy approximately equal to the bandgap energy [1, 2]. A typical polarization value obtained with bulk GaAs and conventional circularly polarized light is 35%. This study investigated the spin polarization of electron beams emitted from GaAs illuminated with ``twisted light,'' an expression that describes a beam of light having orbital angular momentum (OAM). In the experiment, 790nm laser light was focused to a near diffraction-limited spot size on the surface of the GaAs photocathode to determine if OAM might couple to valence band electron spin mediated by the GaAs lattice. Our polarization measurements using a compact retarding-field micro-Mott polarimeter [3] have established an upper bound on the polarization of the emitted electron beam of 2.5%. [4pt] [1] D.T. Pierce, F. Meier, P. Zurcher, Appl. Phys. Lett. 26 670 (1975).[0pt] [2] C.K. Sinclair, et al., PRSTAB 10 023501 (2007).[0pt] [3] J.L. McCarter, M.L. Stutzman, K.W. Trantham, T.G. Anderson, A.M. Cook, and T.J. Gay Nucl. Instrum. and Meth. A (2010).

  3. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    DOE PAGES

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; ...

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less

  4. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.

    PubMed

    Zou, G Q; Lei, G J; Cao, J Y; Duan, X R

    2012-07-01

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  5. Nitriding of titanium and titanium: 8 percent aluminum, 1 percent molybdenum, 1 percent vanadium alloy with an ion-beam source

    NASA Technical Reports Server (NTRS)

    Gill, A.

    1983-01-01

    Titanium and Ti-8Al-1Mo-1V alloy were nitrided with an ion-beam source of nitrogen or argon and nitrogen at a total pressure of 2 x 10 to the minus 4th power to 10 x 10 to the minus 4th power torr. The treated surface was characterized by surface profilometry, X-ray diffractometry, Auger electron spectroscopy and microhardness measurements. The tetragonal Ti2N phase formed in pure titanium and Ti-8Al-1Mo-1V alloy with traces of AlN in the alloy. Two opposite processes competed during the ion-beam-nitriding process: (1) formation of nitrides in the surface layer and (2) sputtering of the nitrided layers by the ion beam. The highest surface hardnesses, about 500 kg/sq mm in titanium and 800 kg/sq mm in Ti-8Al-1Mo-1V, were obtained by ion nitriding with an ion beam of pure nitrogen at 4.2 x 10 to the minus 4th power torr at a beam voltage of 1000 V.

  6. Secondary emission electron gun using external primaries

    DOEpatents

    Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY

    2009-10-13

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  7. Secondary emission electron gun using external primaries

    DOEpatents

    Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY; Kewisch, Jorg [Wading River, NY; Chang, Xiangyun [Middle Island, NY

    2007-06-05

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  8. Digital retrospective motion-mode display and processing of electron beam cine-computed tomography and other cross-sectional cardiac imaging techniques

    NASA Astrophysics Data System (ADS)

    Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II

    1995-05-01

    Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These displays give the operator valuable feedback pertaining to the contiguity of the extracted surfaces. As with M-Mode echocardiography, the velocity of moving structures can be easily visualized and measured. However, many views inaccessible to standard transthoracic echocardiography are easily generated. These features have augmented the interpretability of cine electron beam computed tomography and have prompted the recent cloning of this system into an 'omni-directional M-Mode display' system for use in digital post-processing of echocardiographic parasternal short axis tomograms. This enhances the functional assessment in orthogonal views of the left ventricle, accounting for shape changes particularly in the asymmetric post-infarction ventricle. Conclusions: A new tool has been developed for analysis and visualization of cine electron beam computed tomography. It has been found to be very useful in verifying the consistency of myocardial surface definition with a semi-automated segmentation tool. By drawing on M-Mode echocardiography experience, electron beam tomography's interpretability has been enhanced. Use of this feature, in conjunction with the existing image processing tools, will enhance the presentations of data on regional systolic and diastolic functions to clinicians in a format that is familiar to most cardiologists. Additionally, this tool reinforces the advantages of electron beam tomography as a single imaging modality for the assessment of left and right ventricular size, shape, and regional functions.

  9. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.

    1984-07-31

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  10. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.

    1985-01-01

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  11. Investigation of dust transport on the lunar surface in laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Wang, X.; Horanyi, M.; Robertson, S. H.

    2009-12-01

    There has been much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces acting on small lunar dust particles that are charged by UV radiation and solar wind plasma. To learn about the basic physical process, we investigated the dynamics of dust grains on a conducting surface in laboratory plasmas. The first experiment was conducted with a dust pile (JSC-Mars-1) sitting on a negatively biased surface in plasma. The dust pile spread and formed a diffusing dust ring. Dust hopping was confirmed by noticing grains on protruding surfaces. The electrostatic potential distributions measured above the dust pile show an outward pointing electrostatic force and a non-monotonic sheath above the dust pile, indicating a localized upward electrostatic force responsible for lifting dust off the surface. The second experiment was conducted with a dust pile sitting on an electrically floating conducting surface in plasma with an electron beam. Potential measurements show a horizontal electric field at the dust/surface boundary and an enhanced vertical electric field in the sheath above the dust pile when the electron beam current is set to be comparable to the Bohm ion current. Secondary electrons emitted from the surfaces play an important role in this case.

  12. Electron-beam lithography for micro and nano-optical applications

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W.; Muller, Richard E.; Echternach, Pierre M.

    2005-01-01

    Direct-write electron-beam lithography has proven to be a powerful technique for fabricating a variety of micro- and nano-optical devices. Binary E-beam lithography is the workhorse technique for fabricating optical devices that require complicated precision nano-scale features. We describe a bi-layer resist system and virtual-mark height measurement for improving the reliability of fabricating binary patterns. Analog E-beam lithography is a newer technique that has found significant application in the fabrication of diffractive optical elements. We describe our techniques for fabricating analog surface-relief profiles in E-beam resist, including some discussion regarding overcoming the problems of resist heating and charging. We also describe a multiple-field-size exposure scheme for suppression of field-stitch induced ghost diffraction orders produced by blazed diffraction gratings on non-flat substrates.

  13. Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns

    NASA Technical Reports Server (NTRS)

    Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.

    2013-01-01

    Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.

  14. Reaction of Si(100) with NH3: Rate-limiting steps and reactivity enhancement via electronic excitation

    NASA Astrophysics Data System (ADS)

    Bozso, F.; Avouris, Ph.

    1986-09-01

    We report on the low-temperature reaction of ammonia with Si(100)-(2×1). The dangling bonds in the clean Si surface promote NH3 dissociation even at temperatures as low as 90 K. The N atoms thus produced occupy subsurface sites, while the H atoms bind to surface Si atoms, tie up the dangling bonds, and inactivate the surface. Thermal or electronic-excitation-induced hydrogen desorption restores the dangling bonds and the reactivity of the surface. Silicon nitride film growth is achieved at 90 K by simultaneous exposure of the Si surface to NH3 and an electron beam.

  15. The Influence of As-Built Surface Conditions on Mechanical Properties of Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Sun, Y. Y.; Gulizia, S.; Oh, C. H.; Fraser, D.; Leary, M.; Yang, Y. F.; Qian, M.

    2016-03-01

    Achieving a high surface finish is a major challenge for most current metal additive manufacturing processes. We report the first quantitative study of the influence of as-built surface conditions on the tensile properties of Ti-6Al-4V produced by selective electron beam melting (SEBM) in order to better understand the SEBM process. Tensile ductility was doubled along with noticeable improvements in tensile strengths after surface modification of the SEBM-fabricated Ti-6Al-4V by chemical etching. The fracture surfaces of tensile specimens with different surface conditions were characterised and correlated with the tensile properties obtained. The removal of a 650- μm-thick surface layer by chemical etching was shown to be necessary to eliminate the detrimental influence of surface defects on mechanical properties. The experimental results and analyses underline the necessity to modify the surfaces of SEBM-fabricated components for structural applications, particularly for those components which contain complex internal concave and convex surfaces and channels.

  16. Structural and emission characteristics of ion-irradiated Reticulated Vitreous Carbon

    NASA Astrophysics Data System (ADS)

    Chacon, Judith Rebecca

    Cathodes formed from Reticulated Vitreous Carbon (RVC) were treated under varying conditions of Argon-ion beam current, beam voltage and irradiation duration. Surface structures, such as balls, cones, nanowires, and nanowhiskers were formed in the RVC network through a series of ion-impact sputtering and self-diffusion reactions. Raman shifts to the D and E2g' peak suggest C=C bonding within the original RVC structure was converted to the lesser-bound C-C bonding structure. Cathodes demonstrating the most stable electronic configuration exhibited significant vertical growth to graphitic domains as determined by calculations based on XRD measurements. Carbon nanotubes at the surface were observed at the surface through micro-Raman techniques. The surface structures formed by argon-bombardment, are responsible for cathodes exhibiting lower field-emission extraction fields. The electric field required for the onset of electron emission was measured to change from 6.03 V/micron in non-irradiated RVC to 1.62V/micron for RVC irradiated for 15 minutes at a beam voltage of 1200V and beam current of 200mA (ion-beam current density 2.24mA/cm2). Treated surfaces were also responsible for increased stability in emission over time. For untreated RVC, the field required for emission dropped 25% over a 48 hour training period, whilst modestly treated RVC (15min, 1200V, 100mA, or 1.52mA/cm2) rose as little as 3%. Field-emissive RVC, is an inexpensively produced, mechanically robust cathode with potential applications in lighting, displays and microwave sources.

  17. Low-energy electron-beam treatment as alternative for on-site sterilization of highly functionalized medical products - A feasibility study

    NASA Astrophysics Data System (ADS)

    Gotzmann, G.; Portillo, J.; Wronski, S.; Kohl, Y.; Gorjup, E.; Schuck, H.; Rögner, F. H.; Müller, M.; Chaberny, I. F.; Schönfelder, J.; Wetzel, C.

    2018-09-01

    Over the last decades, the medical device industry has grown significantly. Complex and highly functionalized medical devices and implants are being developed to improve patient treatment and to enhance their health-related quality of life. However, medical devices from this new generation often cannot be sterilized by standard methods such as autoclaving or sterilizing gases, as they are temperature sensitive, containing electronic components like sensors and microchips, or consist of polymers. Gamma irradiation for sterilization of such products is also problematic due to long processing times under highly reactive conditions resulting in material degradation or loss of functionality. Low-energy electron-beam treatment could enable irradiation sterilization of medical surfaces within seconds. This method is very fast in comparison to gamma irradiation because of its high dose rate and therefore degradation processes of polymers can be reduced or even prevented. Additionally, electron penetration depth can be precisely controlled to prevent damage of sensitive components like electronics and semiconductors. The presented study focuses on two key aspects: 1.) Can new and highly functionalized medical products in future be sterilized using low-energy electron-beam irradiation; and 2.) Is the low-energy electron-beam technology suitable to be set up on-site to speed up sterilization processing or make it available "just-in-time". To address these questions, different test specimens were chosen with complex geometry or electronic functional parts to gather information about the limitations and chances for this new approach. The test specimens were inoculated with clinical relevant test organisms (Pseudomonas aeruginosa) as well as with approved radiation resistant organisms (Deinococcus radiodurans and Bacillus pumilus) to prove the suitability of low-energy electron-beam treatment for the above-mentioned medical products. The calculation of the D10 value for B. pumilus revealed equal efficacy when compared to standard high-energy irradiation sterilization. All of the above-mentioned germs were successfully inactivated by low-energy electron-beam treatment when test specimens were inoculated with a germ load > 10^6 CFU and treated with doses ≥ 10 kGy (for B. pumilus and P. aeruginosa) and > 300 kGy (for D. radiodurans) respectively. As an example, for specialized electronic components to be sterilized, an impedance sensor for cell culture applications was sterilized and unimpaired functionality was demonstrated even after five repeated sterilization cycles to a total dose of 50 kGy. To address the second aspect of on-site suitability of this technology, the product handling for low-energy electron-beam treatment had to be adapted to minimize the size of the electron-beam facility. Therefore, a mini electron-beam source was used and a specialized sample holder and 3D-handling regime were developed to allow reproducible surface treatment for complex product geometries. Inactivation of B. pumilus inoculated medical screws (> 10^6 CFU) was successful using the developed handling procedure. In addition, a packaging material (PET12/PE50) for medical products was investigated for its suitability for low-energy irradiation sterilization. Biocompatibility assessment revealed the material to be eligible for this application as even overdoses did not impair the biocompatibility of the material. With these results, the principal suitability of low-energy electron-beam treatment for sterilization of medical products containing electronics like sensors is demonstrated. The low-energy technology and the specialized 3D-handling regime allow the on-site setup of the technology in hospitals, medical practices or any other point of care.

  18. Anomalous X-Ray yields under surface wave resonance during reflection high energy electron diffraction and adatom site determination

    PubMed

    Yamanaka; Ino

    2000-05-08

    In L x-ray emissions from a Si(111)-sqrt[3]xsqrt[3]-In surface induced by electron beam irradiation were measured as functions of the incident glancing angle. Under surface wave resonance conditions, anomalous x-ray intensities were clearly observed. Using dynamical calculations, these intensities are well explained as changes in density of the electron wave field at adatom positions. From these intensities, the adatom site was analyzed, and it was found that the T4 model is better than the H3 model.

  19. Regarding the Possible Generation of a Lunar Nightside Exo-Ionosphere

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Halekas, J. S.; Stubbs, T. J.; Delory, G. T.; Killen, R. M.; Hartle, R. E.; Collier, M. R.

    2011-01-01

    The non-condensing neutral helium exosphere is at its most concentrated levels on the cold lunar nightside. We show herein that these He atoms are susceptible to impact ionization from primary and secondary electrons flowing in the vicinity of the negatively-charged nightside lunar surface. The secondary electron beams are a relatively recent discovery and are found to be emitted from the nightside surface at energies consistent with the negative surface potential. The effect is to create an electron impact-created ionosphere in nightside regions. possibly especially potent within polar craters.

  20. Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam.

    PubMed

    Reshmi, S; Akshaya, M V; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K

    2018-05-18

    Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS 2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS 2 . In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS 2 sheets.

  1. Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam

    NASA Astrophysics Data System (ADS)

    Reshmi, S.; Akshaya, M. V.; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K.

    2018-05-01

    Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS2. In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS2 sheets.

  2. SU-C-201-07: Towards Clinical Cherenkov Emission Dosimetry: Stopping Power-To-Cherenkov Power Ratios and Beam Quality Specification of Clinical Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlateva, Y; Seuntjens, J; El Naqa, I

    Purpose: We propose a Cherenkov emission (CE)-based reference dosimetry method, which in contrast to ionization chamber-based dosimetry, employs spectrum-averaged electron restricted mass collision stopping power-to-Cherenkov power ratios (SCRs), and we examine Monte Carlo-calculated SCRs and beam quality specification of clinical electron beams. Methods: The EGSnrc user code SPRRZnrc was modified to compute SCRs instead of stopping-power ratios (single medium: water; cut-off: CE threshold (observing Spencer-Attix conditions); CE power: Frank-Tamm). SCRs are calculated with BEAMnrc for realistic electron beams with nominal energies of 6–22 MeV from three Varian accelerators (TrueBeam Clinac 21EX, Clinac 2100C/D) and for mono-energetic beams of energies equalmore » to the mean electron energy at the water surface. Sources of deviation between clinical and mono-energetic SCRs are analyzed quantitatively. A universal fit for the beam-quality index R{sub 50} in terms of the depth of 50% CE C{sub 50} is carried out. Results: SCRs at reference depth are overestimated by mono-energetic values by up to 0.2% for a 6-MeV beam and underestimated by up to 2.3% for a 22-MeV beam. The variation is mainly due to the clinical beam spectrum and photon contamination. Beam angular spread has a small effect across all depths and energies. The influence of the electron spectrum becomes increasingly significant at large depths, while at shallow depths and high beam energies photon contamination is predominant (up to 2.0%). The universal data fit reveals a strong linear correlation between R{sub 50} and C{sub 50} (ρ > 0.99999). Conclusion: CE is inherent to radiotherapy beams and can be detected outside the beam with available optical technologies, which makes it an ideal candidate for out-of-beam high-resolution 3D dosimetry. Successful clinical implementation of CE dosimetry hinges on the development of robust protocols for converting measured CE to radiation dose. Our findings constitute a key step towards clinical CE dosimetry.« less

  3. Annular structures formed in a beam of ions during their collective acceleration in a system with dielectric anode

    NASA Astrophysics Data System (ADS)

    Lopatin, V. S.; Remnev, G. E.; Martynenko, A. A.

    2017-05-01

    We have studied the collective acceleration of protons and deuterons in an electron beam emitted from plasma formed at the surface of a dielectric anode insert. The experiments were performed with a pulsed electron accelerator operating at an accelerating voltage up to 1 MV, current amplitude up to 40 kA, and pulse duration of 50 ns. Reduction of the accelerating voltage pulse front width and optimization of the diode unit and drift region ensured the formation of several annular structures in the electron beam. As a result, up to 50% of the radioactivity induced in a copper target was concentrated in a ring with 4.5-cm diameter and 0.2-cm width. The formation of high energy density in these circular traces and the appearance of an axial component of the self-generated magnetic field of the electron beam are related with the increasing efficiency of acceleration of the most intense group of ions.

  4. Use of double-layer ITO films in reflective contacts for blue and near-UV LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavluchenko, A. S.

    2014-12-15

    The structural and optical properties of multilayer ITO/SiO{sub 2}/Ag composites are studied. In these composites, the ITO (indium-tin oxide) layer is produced by two different methods: electron-beam evaporation and a combined method including electron-beam evaporation and subsequent magnetron sputtering. It is shown that the reflectance of the composite based on the ITO film produced by electron-beam evaporation is substantially lower. This can be attributed to the strong absorption of light at both boundaries of the SiO{sub 2} layer, which results from the complex surface profile of ITO films deposited by electron-beam evaporation. Samples with a film deposited by the combinedmore » method have a reflectance of about 90% at normal light incidence, which, combined with their higher electrical conductivity, makes these samples advantageous for use as reflective contacts to the p-type region of AlInGaN light-emitting diodes of the flip-chip design.« less

  5. Analysis of the interaction of an electron beam with a solar cell. I. II

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1978-01-01

    The short-circuit current generated by the electron beam of a scanning electron microscope when it impinges on the N-P junction of a solar cell is known to be dependent on the configuration used to investigate the cell's response, and the situation for one specific configuration is analyzed. This configuration is the case in which the highly collimated electron beam strikes the edge of a planar junction a variable distance away from the edge of the depletion layer. An earlier treatment is generalized to encompass the ohmic contact at the back surface. The analysis employing Fourier and Wiener-Hopf techniques shows that it is impractical to determine the bulk diffusion length of a solar cell by a SEM used in the studied configuration unless the ohmic contact is partially removed.

  6. Boundary conditions on the plasma emitter surface in the presence of a particle counter flow: I. Ion emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astrelin, V. T., E-mail: V.T.Astrelin@inp.nsk.su; Kotelnikov, I. A.

    Emission of positively charged ions from a plasma emitter irradiated by a counterpropagating electron beam is studied theoretically. A bipolar diode with a plasma emitter in which the ion temperature is lower than the electron temperature and the counter electron flow is extracted from the ion collector is calculated in the one-dimensional model. An analog of Bohm’s criterion for ion emission in the presence of a counterpropagating electron beam is derived. The limiting density of the counterpropagating beam in a bipolar diode operating in the space-charge-limited-emission regime is calculated. The full set of boundary conditions on the plasma emitter surfacemore » that are required for operation of the high-current optics module in numerical codes used to simulate charged particle sources is formulated.« less

  7. Reversible wettability of electron-beam deposited indium-tin-oxide driven by ns-UV irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persano, Luana; Center for Biomolecular Nanotechnologies UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano-LE; Del Carro, Pompilio

    2012-04-09

    Indium tin oxide (ITO) is one of the most widely used semiconductor oxides in the field of organic optoelectronics, especially for the realization of anode contacts. Here the authors report on the control of the wettability properties of ITO films deposited by reactive electron beam deposition and irradiated by means of nanosecond-pulsed UV irradiation. The enhancement of the surface water wettability, with a reduction of the water contact angle larger than 50 deg., is achieved by few tens of seconds of irradiation. The analyzed photo-induced wettability change is fully reversible in agreement with a surface-defect model, and it can bemore » exploited to realize optically transparent, conductive surfaces with controllable wetting properties for sensors and microfluidic circuits.« less

  8. Solar Wind Electron Interaction with the Dayside Lunar Surface and Crustal Magnetic Fields: Evidence for Precursor Effects

    NASA Technical Reports Server (NTRS)

    Halekas, Jasper S.; Poppe, A.; Delory, G. T.; Farrell, W. M.; Horanyi, M.

    2012-01-01

    Electron distributions measured by Lunar Prospector above the dayside lunar surface in the solar wind often have an energy dependent loss cone, inconsistent with adiabatic magnetic reflection. Energy dependent reflection suggests the presence of downward parallel electric fields below the spacecraft, possibly indicating the presence of a standing electrostatic structure. Many electron distributions contain apparent low energy (<100 eV) upwardgoing conics (58% of the time) and beams (12% of the time), primarily in regions with non-zero crustal magnetic fields, implying the presence of parallel electric fields and/or wave-particle interactions below the spacecraft. Some, but not all, of the observed energy dependence comes from the energy gained during reflection from a moving obstacle; correctly characterizing electron reflection requires the use of the proper reference frame. Nonadiabatic reflection may also play a role, but cannot fully explain observations. In cases with upward-going beams, we observe partial isotropization of incoming solar wind electrons, possibly indicating streaming and/or whistler instabilities. The Moon may therefore influence solar wind plasma well upstream from its surface. Magnetic anomaly interactions and/or non-monotonic near surface potentials provide the most likely candidates to produce the observed precursor effects, which may help ensure quasi-neutrality upstream from the Moon.

  9. Laser-plasma interactions from thin tapes for high-energy electron accelerators and seeding compact FELs

    NASA Astrophysics Data System (ADS)

    Shaw, Brian Henry

    This thesis comprises a detailed investigation of the physics of using a plasma mirror (PM) from a tape by reflecting ultrashort pulses from a laser-triggered surface plasma. The tapes used in the characterization of the PM are VHS and computer data storage tape. The tapes are 6.6 m (computer storage tape) and 15 m (VHS) thick. Each tape is 0.5 inches wide, and 10s of meters of tape are spooled using a tape drive; providing thousands of shots on a single reel of tape. The amount of reflected energy of the PM was studied for different input intensities. The fluence was varied by translating the focus of the laser upstream and downstream of the tape, which changed the spot size on the tape surface and hence changed the fluence. This study measured reflectances from both sides of the two tapes, and for input light of both s and p-polarizations. Lastly, an analytic model was developed to understand the reflectance as a function of fluence for each tape material and polarization. Another application that benefits from the advancements of LPA technology is an LPAbased FEL. By sending a high quality electron bunch through an undulator (a periodic structure of positive and negative magnetic poles), the electrons oscillate transversely to the propagation axis and produce radiation. The 1.5 m THUNDER undulator at the BELLA Center has been commissioned using electron beams of 400MeV beams with broad energy spread (35%). To produce a coherent LPA-based FEL, the beam quality would need to improve to sub-percent level energy spread. A seed source could be used to help induce bunching of the electron beam within the undulator. This thesis described the experimental investigation of the physics of using solid-based surface high-harmonic generation (SHHG) from a thin tape as a possible seed source for an FEL. A thin tape placed within centimeters of the undulator's entrance could act as a harmonic generating source, while simultaneously transmitting an electron beam. This removes the need for transport optics for the XUV photons and the need for additional optics to overlap the seed beam with the electron beam at the undulator entrance. By operating at sub-relativistic laser strengths, harmonics up to the 17th order of 800 nm light are produced using an SHHG technique known as coherent wake emission (CWE). CWE pulse properties such as divergence, energy, conversion efficiency, and spectrum are measured for a wide range of tape materials and drive laser conditions. A clear correlation between surface roughness and harmonic beam divergence is found. The measured pulse properties for the 15th harmonic from VHS tape (conversion efficiency 6.5x10-7 and an rms divergence of 12 mrad), the 100 mJ-level, 40-50 fs-class drive laser, produces peak powers of several MW's of XUV pulses. The results of a 1D model indicate that these CWE pulses with MW level powers are sufficient for seed-induced FEL gain. (Abstract shortened by ProQuest.).

  10. Enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target

    NASA Astrophysics Data System (ADS)

    Ji, Yanling; Duan, Tao; Zhou, Weimin; Li, Boyuan; Wu, Fengjuan; Zhang, Zhimeng; Ye, Bin; Wang, Rong; Wu, Chunrong; Tang, Yongjian

    2018-02-01

    An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.

  11. Analysis of electron beam induced deposition (EBID) of residual hydrocarbons in electron microscopy

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; White, William B.; Fedorov, Andrei G.

    2007-03-01

    In this work we have developed a comprehensive dynamic model of electron beam induced deposition (EBID) of residual hydrocarbon coupling mass transport, electron transport and scattering, and species decomposition to predict the deposition of carbon nanopillars. The simulations predict the local species and electron density distributions, as well as the three-demensional morphology and the growth rate of the deposit. Since the process occurs in a high vacuum environment, surface diffusion is considered as the primary transport mode of surface-adsorbed hydrocarbon precursor. The governing surface transport equation (STE) of the adsorbed species is derived and solved numerically. The transport, scattering, and absorption of primary electron as well as secondary electron generation are treated using the Monte Carlo method. Low energy secondary electrons are the major contributors to hydrocarbon decomposition due to their energy range matching peak dissociation reaction cross section energies for precursor molecules. The deposit and substrate are treated as a continuous entity allowing the simulation of the growth of a realistically sized deposit rather than a large number of cells representing each individual atom as in previously published simulations [Mitsuishi et al., Ultramicroscopy 103, 17 (2005); Silvis-Cividjian, Ph.D. thesis, University of Delft, 2002]. Such formulation allows for simple coupling of the STE with the dynamic growth of the nanopillar. Three different growth regimes occurring in EBID are identified using scaling analysis, and simulations are used to describe the deposit morphology and precursor surface concentration specific for each growth regime.

  12. Low energy positron beam system for the investigation of 2D and porous materials

    NASA Astrophysics Data System (ADS)

    Chrysler, M. D.; Chirayath, V. A.; Mcdonald, A. D.; Gladen, R. W.; Fairchild, A. J.; Koymen, A. R.; Weiss, A. H.

    2017-01-01

    An advanced variable energy positron beam (~2 eV to 20 keV) has been designed, tested and utilized for coincidence Doppler broadening (CDB) measurements at the University of Texas at Arlington (UTA). A high efficiency solidified rare gas (Neon) moderator was used for the generation of a slow positron beam. The gamma rays produced as a result of the annihilation of positrons with the sample electrons are measured using a high purity Germanium (HPGe) detector in coincidence with a NaI(Tl) detector. Modifications to the system, currently underway, permits simultaneous measurements utilizing Positron annihilation induced Auger Electron Spectroscopy (PAES) and CDB. The tendency of positrons to become trapped in an image potential well at the surface will allow the new system to be used in measurements of the chemical structure of surfaces, internal or external and interfaces. The system will utilize a time of flight (TOF) technique for electron energy measurements. A 3m flight path from the sample to a micro-channel plate (MCP) in the new system will give it superior energy resolution at higher electron energies as compared to previous TOF systems utilizing shorter flight paths.

  13. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Han, Sang-Heon; Mauze, Akhil; Ahmadi, Elaheh; Mates, Tom; Oshima, Yuichi; Speck, James S.

    2018-04-01

    Ge and Sn as n-type dopants in (001) β-Ga2O3 films were investigated using plasma-assisted molecular beam epitaxy. The Ge concentration showed a strong dependence on the growth temperature, whereas the Sn concentration remains independent of the growth temperature. The maximum growth temperature at which a wide range of Ge concentrations (from 1017 to 1020 cm-3) could be achieved was 675 °C while the same range of Sn concentration could be achieved at growth temperature of 750 °C. Atomic force microscopy results revealed that higher growth temperature shows better surface morphology. Therefore, our study reveals a tradeoff between higher Ge doping concentration and high quality surface morphology on (001) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. The Ge doped films had an electron mobility of 26.3 cm2 V-1 s-1 at the electron concentration of 6.7 × 1017 cm-3 whereas the Sn doped films had an electron mobility of 25.3 cm2 V-1 s-1 at the electron concentration of 1.1 × 1018 cm-3.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smit, C; Plessis, F du

    Purpose: To extract the electron contamination energy spectra for an Elekta Precise Linac, based on pure photon and measured clinical beam percentage depth dose data. And to include this as an additional source in isource 4 in DOSXYZnrc. Methods: A pure photon beam was simulated for the Linac using isource 4 in the DOSXYZnrc Monte Carlo (MC) code. Percentage depth dose (PDD) data were extracted afterwards for a range of field sizes (FS). These simulated dose data were compared to actual measured dose PDD data, with the data normalized at 10 cm depth. The resulting PDD data resembled the electronmore » contamination depth dose. Since the dose fall-off is a strictly decreasing function, a method was adopted to derive the contamination electron spectrum. Afterwards this spectrum was used in a DOSXYZnrc MC simulation run to verify that the original electron depth dose could be replicated. Results: Various square aperture FS’s for 6, 8 and 15 megavolt (MV) photon beams were modeled, simulated and compared to their respective actual measured PDD data. As FS increased, simulated pure photon depth-dose profiles shifted deeper, thus requiring electron contamination to increase the surface dose. The percentage of electron weight increased with increase in FS. For a FS of 15×15 cm{sup 2}, the percentage electron weight is 0.1%, 0.2% and 0.4% for 6, 8 and 15 MV beams respectively. Conclusion: From the PDD results obtained, an additional electron contamination source was added to the photon source model so that simulation and measured PDD data could match within 2 % / 2 mm gamma-index criteria. The improved source model could assure more accurate simulations of surface doses. This research project was funded by the South African Medical Research Council (MRC) with funds from National Treasury under its Economic Competitiveness and Support package.« less

  15. A Novel Low Energy Electron Microscope for DNA Sequencing and Surface Analysis

    PubMed Central

    Mankos, M.; Shadman, K.; Persson, H.H.J.; N’Diaye, A.T.; Schmid, A.K.; Davis, R.W.

    2014-01-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of individual DNA bases in a sequence. PMID:24524867

  16. A novel low energy electron microscope for DNA sequencing and surface analysis.

    PubMed

    Mankos, M; Shadman, K; Persson, H H J; N'Diaye, A T; Schmid, A K; Davis, R W

    2014-10-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of individual DNA bases in a sequence. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A novel low energy electron microscope for DNA sequencing and surface analysis

    DOE PAGES

    Mankos, M.; Shadman, K.; Persson, H. H. J.; ...

    2014-01-31

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts.more » The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Finally, experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of individual DNA bases in a sequence.« less

  18. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis

    PubMed Central

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-01-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861

  19. Observation of Live Ticks (Haemaphysalis flava) by Scanning Electron Microscopy under High Vacuum Pressure

    PubMed Central

    Ishigaki, Yasuhito; Nakamura, Yuka; Oikawa, Yosaburo; Yano, Yasuhiro; Kuwabata, Susumu; Nakagawa, Hideaki; Tomosugi, Naohisa; Takegami, Tsutomu

    2012-01-01

    Scanning electron microscopes (SEM), which image sample surfaces by scanning with an electron beam, are widely used for steric observations of resting samples in basic and applied biology. Various conventional methods exist for SEM sample preparation. However, conventional SEM is not a good tool to observe living organisms because of the associated exposure to high vacuum pressure and electron beam radiation. Here we attempted SEM observations of live ticks. During 1.5×10−3 Pa vacuum pressure and electron beam irradiation with accelerated voltages (2–5 kV), many ticks remained alive and moved their legs. After 30-min observation, we removed the ticks from the SEM stage; they could walk actively under atmospheric pressure. When we tested 20 ticks (8 female adults and 12 nymphs), they survived for two days after SEM observation. These results indicate the resistance of ticks against SEM observation. Our second survival test showed that the electron beam, not vacuum conditions, results in tick death. Moreover, we describe the reaction of their legs to electron beam exposure. These findings open the new possibility of SEM observation of living organisms and showed the resistance of living ticks to vacuum condition in SEM. These data also indicate, for the first time, the usefulness of tick as a model system for biology under extreme condition. PMID:22431980

  20. Measurement of the spectra of low energy electrons resulting from Auger transitions induced by the annihilation of low energy positrons implanted at The Ag (100) surface

    NASA Astrophysics Data System (ADS)

    Shastry, Karthik; Joglekar, Prasad; Weiss, A. H.; Fazleev, N. G.

    2013-04-01

    A few percent of positrons bound to a solid surface annihilate with core electrons resulting in highly excited atoms containing core holes. These core holes may be filled in an auto-ionizing process in which a less tightly bound electron drops into the hole and the energy difference transferred to an outgoing "Auger electron." Because the core holes are created by annihilation and not impact it is possible to use very low energy positron beams to obtain annihilation induced Auger signals. The Auger signals so obtained have little or none of the large impact induced secondary electron background that interferes with measurements of the low energy Auger spectra obtained using the much higher incident energies necessary when using electron or photon beams. Here we present the results of measurements of the energy spectrum of low energy electrons emitted as a result of Positron Annihilation Induce Auger Electron Emission [1] from a clean Ag (100) surface. The measurements were performed using the University of Texas Arlington Time of Flight Positron Annihilation induced Auger Electron Spectrometer (T-O-F-PAES) System [2]. A strong double peak was observed at ˜35eV corresponding to the N2VV and N3VV Auger transitions in agreement with previous PAES studies [3].

  1. Microstructural characterization of Ti-6Al-4V metal chips by focused ion beam (FIB) and transmission electron microscopy (TEM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Judy; Dong, Lei; Howe, Jane Y

    2011-01-01

    The microstructure of the secondary deformation zone (SDZ) near the cutting surface in metal chips of Ti-6Al-4V formed during machining was investigated using focused ion beam (FIB) specimen preparation and transmission electron microscopy (TEM) imaging. Use of the FIB allowed precise extraction of the specimen across this region to reveal its inhomogeneous microstructure resulting from the non-uniform distribution of strain, strain rate, and temperature generated during the cutting process. Initial imaging from conventional TEM foil preparation revealed microstructures ranging from heavily textured to regions of fine grains. Using FIB preparation, the transverse microstructure could be interpreted as fine grains nearmore » the cutting surface which transitioned to coarse grains toward the free surface. At the cutting surface a 10 nm thick recrystallized layer was observed capping a 20 nm thick amorphous layer.« less

  2. Localized conductive patterning via focused electron beam reduction of graphene oxide

    NASA Astrophysics Data System (ADS)

    Kim, Songkil; Kulkarni, Dhaval D.; Henry, Mathias; Zackowski, Paul; Jang, Seung Soon; Tsukruk, Vladimir V.; Fedorov, Andrei G.

    2015-03-01

    We report on a method for "direct-write" conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.

  3. EDITORIAL: Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009 Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009

    NASA Astrophysics Data System (ADS)

    Bingham, Bob; Muggli, Patric

    2011-01-01

    The Laser and Plasma Accelerators Workshop 2009 was part of a very successful series of international workshops which were conceived at the 1985 Laser Acceleration of Particles Workshop in Malibu, California. Since its inception, the workshop has been held in Asia and in Europe (Kardamyli, Kyoto, Presqu'ile de Giens, Portovenere, Taipei and the Azores). The purpose of the workshops is to bring together the most recent results in laser wakefield acceleration, plasma wakefield acceleration, laser-driven ion acceleration, and radiation generation produced by plasma-based accelerator beams. The 2009 workshop was held on 22-26 June in Kardamyli, Greece, and brought together over 80 participants. (http://cfp.ist.utl.pt/lpaw09/). The workshop involved five main themes: • Laser plasma electron acceleration (experiment/theory/simulation) • Computational methods • Plasma wakefield acceleration (experiment/theory/simulation) • Laser-driven ion acceleration • Radiation generation and application. All of these themes are covered in this special issue of Plasma Physics and Controlled Fusion. The topic and application of plasma accelerators is one of the success stories in plasma physics, with laser wakefield acceleration of mono-energetic electrons to GeV energies, of ions to hundreds of MeV, and electron-beam-driven wakefield acceleration to 85 GeV. The accelerating electric field in the wake is of the order 1 GeV cm-1, or an accelerating gradient 1000 times greater than in conventional accelerators, possibly leading to an accelerator 1000 times smaller (and much more affordable) for the same energy. At the same time, the electron beams generated by laser wakefield accelerators have very good emittance with a correspondingly good energy spread of about a few percent. They also have the unique feature in being ultra-short in the femtosecond scale. This makes them attractive for a variety of applications, ranging from material science to ultra-fast time-resolved radiobiology or chemistry. Such laser-generated beams will form the basis of the fifth generation light sources and will be compact versions of the much more expensive fourth generation XFEL, such as LCLS light sources. Laser-driven ion acceleration is also making rapid headway; one of the goals in these experiments is to produce protons and carbon ions of hundreds of MeV for oncology. These experiments are carried out using solid-target-laser interactions. There is still a number of issues to be resolved in these experiments including the origin of light ions. The paper by Willingale et al addresses this issue and demonstrates that deuteron ions originating from the front surface can gain comparable energies as those from the rear surface. Furthermore, from two-dimensional simulations they show that a proton-rich contamination layer over the surface is detrimental to deuteron ion acceleration from the rear surface but not detrimental to the front surface acceleration mechanism. Studies of different laser polarizations on ion acceleration at the rear surface were reported by Antici et al. It was shown that no real enhancement using a particular polarization was found. At higher radiation intensities, especially with the multi-petawatt lasers being planned, radiation reaction becomes important. This was reported by Chen et al who found that radiation reaction effects on ion acceleration in laser-foil interactions impeded the backward moving electrons, which enhanced the ion acceleration. An interesting new development is the use of ultra-relativistic proton beams to drive plasma wakefields. This is similar to the SLAC electron-beam-driven wakefields. However, unlike the SLAC electron beam, which is of the order of 30 fs long and matches the period of the plasma wave necessary to create the blowout or bubble regime, the ion beam is very much longer. To create shorter ion beams a magnetic compression scheme is investigated in the paper by Caldwell et al, and results for proton beam self-modulation are presented, showing encouraging results for a first experiment using a compressed 24 GeV CERN PS beam. One of the main challenges with laser wakefields is the control of electron injection. In some experiments involving the bubble regime self-injection occurs naturally. Kneip et al show that the stability of the electron beam with energies close to 1 GeV is correlated with the pointing stability of the laser focal spot and depends on the target alignment. Theory and simulations of self-injection reported by Yi et al demonstrate that there is a minimal expansion rate for efficient self-injection. In contrast to solid target ion acceleration, the electron profile in the bubble regime was shown to be manipulated by rotating the laser polarization. Simulations of self-injection into an expanding bubble are reported by Kalmykov et al with the expanding bubble effectively trapping quiescent electrons. To increase the energy of electrons in the laser wakefield scheme, guiding and injection into plasma channels is important. Andreev et al have studied supershort electron bunches in channels with the view of understanding bunch injection. Modelling of electron acceleration in centimetre long capillary tubes is also necessary for future accelerators and is the main part of the paper by Ferrari et al. One of the applications of short-pulse electron beams is in radiation generation as reported by Karagodsky et al. This is an analogue of a technique pioneered in microwave physics where inverse Compton scattering from an optical Bragg structure generates x-rays with high efficiency. The next workshop will be held on 20-24 June 2011 in Wuzhen, Zhejiang Province of China and the scientific programme will be follow the same model as in 2009.

  4. Effects of Cathode Surface Roughness on the Quality of Electron Beams

    DTIC Science & Technology

    1986-09-12

    ignored. Thus, magnetic field effects are ignored altogether in the present study and the beam tranverse velocities are caused only by the electrostatic...in experiments. This depends on the resolving power and on the competing effects such as nonlinear space charge and thermal effects. Based on the

  5. (Surface engineering by high energy beams)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHargue, C.J.

    1989-10-23

    A paper entitled Structure-Mechanical Property relationships in Ion-Implanted Ceramics'' was presented at the 2nd International Seminar on Surface Engineering by High Energy Beams in Lisbon, Portugal. This seminar was sponsored by the International Federation of Heat Treatment and Surface Engineering and included discussions on surface modifications using laser, electron, and ion beams. The visit to the University of Lisbon and LNETI-Sacavem included discussions regarding collaborative research in which Professor J.C. Soares and Dr. M.F. da Silva would conduct perturbed angular correlation (PAC) studies on ion-implanted samples supplied by the traveler. The collaboration between researchers at ORNL and the University Claudemore » Bernard-Lyon 1 (France) continues. Data were analyzed during this visit, plans for further experiments were developed, and a paper was drafted for publication.« less

  6. Electron beam transport analysis of W-band sheet beam klystron

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Xun; Barnett, Larry R.; Luhmann, Neville C.; Shin, Young-Min; Humphries, Stanley

    2010-04-01

    The formation and transport of high-current density electron beams are of critical importance for the success of a number of millimeter wave and terahertz vacuum devices. To elucidate design issues and constraints, the electron gun and periodically cusped magnet stack of the original Stanford Linear Accelerator Center designed W-band sheet beam klystron circuit, which exhibited poor beam transmission (≤55%), have been carefully investigated through theoretical and numerical analyses taking advantage of three-dimensional particle tracking solvers. The re-designed transport system is predicted to exhibit 99.76% (cold) and 97.38% (thermal) beam transmission, respectively, under space-charge-limited emission simulations. The optimized design produces the required high aspect ratio (10:1) sheet beam with 3.2 A emission current with highly stable propagation. In the completely redesigned model containing all the circuit elements, more than 99% beam transmission is experimentally observed at the collector located about 160 mm distant from the cathode surface. Results are in agreement of the predictions of two ray-tracing simulators, CST PARTICLE STUDIO and OMNITRAK which also predict the observed poor transmission in the original design. The quantitative analysis presents practical factors in the modeling process to design a magnetic lens structure to stably transport the elliptical beam along the long drift tube.

  7. A multi-component evaporation model for beam melting processes

    NASA Astrophysics Data System (ADS)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  8. A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector.

    PubMed

    Asuni, G; Jensen, J M; McCurdy, B M C

    2011-02-21

    A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle(3) dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the contaminant electron source model of the Eclipse AAA dose algorithm. The off-axis coefficient in the Pinnacle(3) dose calculation algorithm decreases in the presence of TRD compared to without the device. The electron model parameters were modified to reflect the increase in electron contamination with the TRD, a necessary step for accurate beam modeling when using the device.

  9. Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams

    DOEpatents

    Hershkowitz, Noah [Madison, WI; Longmier, Benjamin [Madison, WI; Baalrud, Scott [Madison, WI

    2009-03-03

    An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

  10. Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams

    NASA Technical Reports Server (NTRS)

    Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)

    2011-01-01

    An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

  11. Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams

    NASA Technical Reports Server (NTRS)

    Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)

    2009-01-01

    An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

  12. Research and development of an electron beam focusing system for a high-brightness X-ray generator.

    PubMed

    Sakai, Takeshi; Ohsawa, Satoshi; Sakabe, Noriyoshi; Sugimura, Takashi; Ikeda, Mitsuo

    2011-01-01

    A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm(-2) (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new combined-function bending magnet, whose geometrical shape was determined by simulation using the Opera-3D, General Particle Tracer and CST-STUDIO codes. The result of the simulation clearly shows that the role of combined functions in both the bending and the steering magnets is important for focusing the beam to a small size. FWHM sizes of the beam are predicted by simulation to be 0.45 mm (horizontal) and 0.05 mm (vertical) for a 120 keV/75 mA beam, of which the effective brilliance is about 500 kW mm(-2) on the supposition of a two-dimensional Gaussian distribution. High-power tests have begun using a high-voltage 120 kV/75 mA power supply for the X-ray generator instead of 60 kV/100 mA. The beam focus size on the target will be verified in the experiments.

  13. Intregrating metallic wiring with three-dimensional polystyrene colloidal crystals using electron-beam lithography and three-dimensional laser lithography

    NASA Astrophysics Data System (ADS)

    Tian, Yaolan; Isotalo, Tero J.; Konttinen, Mikko P.; Li, Jiawei; Heiskanen, Samuli; Geng, Zhuoran; Maasilta, Ilari J.

    2017-02-01

    We demonstrate a method to fabricate narrow, down to a few micron wide metallic leads on top of a three-dimensional (3D) colloidal crystal self-assembled from polystyrene (PS) nanospheres of diameter 260 nm, using electron-beam lithography. This fabrication is not straightforward due to the fact that PS nanospheres cannot usually survive the harsh chemical treatments required in the development and lift-off steps of electron-beam lithography. We solve this problem by increasing the chemical resistance of the PS nanospheres using an additional electron-beam irradiation step, which allows the spheres to retain their shape and their self-assembled structure, even after baking to a temperature of 160 °C, the exposure to the resist developer and the exposure to acetone, all of which are required for the electron-beam lithography step. Moreover, we show that by depositing an aluminum oxide capping layer on top of the colloidal crystal after the e-beam irradiation, the surface is smooth enough so that continuous metal wiring can be deposited by the electron-beam lithography. Finally, we also demonstrate a way to self-assemble PS colloidal crystals into a microscale container, which was fabricated using direct-write 3D laser-lithography. Metallic wiring was also successfully integrated with the combination of a container structure and a PS colloidal crystal. Our goal is to make a device for studies of thermal transport in 3D phononic crystals, but other phononic or photonic crystal applications could also be envisioned.

  14. Electron-Beam Lithographic Grafting of Functional Polymer Structures from Fluoropolymer Substrates.

    PubMed

    Gajos, Katarzyna; Guzenko, Vitaliy A; Dübner, Matthias; Haberko, Jakub; Budkowski, Andrzej; Padeste, Celestino

    2016-10-07

    Well-defined submicrometer structures of poly(dimethylaminoethyl methacrylate) (PDMAEMA) were grafted from 100 μm thick films of poly(ethene-alt-tetrafluoroethene) after electron-beam lithographic exposure. To explore the possibilities and limits of the method under different exposure conditions, two different acceleration voltages (2.5 and 100 keV) were employed. First, the influence of electron energy and dose on the extent of grafting and on the structure's morphology was determined via atomic force microscopy. The surface grafting with PDMAEMA was confirmed by advanced surface analytical techniques such as time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Additionally, the possibility of effective postpolymerization modification of grafted structures was demonstrated by quaternization of the grafted PDMAEMA to the polycationic QPDMAEMA form and by exploiting electrostatic interactions to bind charged organic dyes and functional proteins.

  15. Dose properties of a laser accelerated electron beam and prospects for clinical application.

    PubMed

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D; Chiu, C; Fomytskyi, M; Raischel, F; Downer, M; Tajima, T

    2004-07-01

    Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25 x 25 cm2 field. An energy window (deltaE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to deltaE. However, since the falloff of the depth-dose curve (R10-R90) and the dose rate both increase with deltaE, a tradeoff between minimizing (R10-R90) and maximizing dose rate is implied. If deltaE is constrained so that R10-R90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min(-1) for a 9 MeV beam and 0.03 Gy min(-1) for a 15 MeV beam. It was concluded that current LWFA technology should allow a table-top terawatt (T3) laser to produce therapeutic electron beams that have acceptable flatness, penetration, and falloff of depth dose; however, the dose rate is still 1%-3% of that which would be acceptable, especially for higher-energy electron beams. Further progress in laser technology, e.g., increasing the pulse repetition rate or number of high energy electrons generated per pulse, is necessary to give dose rates acceptable for electron beams. Future measurements confirming dosimetric calculations are required to substantiate our results. In addition to achieving adequate dose rate, significant engineering developments are needed for this technology to compete with current electron acceleration technology. Also, the functional benefits of LWFA electron beams require further study and evaluation.

  16. Progress toward an aberration-corrected low energy electron microscope for DNA sequencing and surface analysis.

    PubMed

    Mankos, Marian; Shadman, Khashayar; N'diaye, Alpha T; Schmid, Andreas K; Persson, Henrik H J; Davis, Ronald W

    2012-11-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel imaging technique aimed at high resolution imaging of macromolecules, nanoparticles, and surfaces. MAD-LEEM combines three innovative electron-optical concepts in a single tool: a monochromator, a mirror aberration corrector, and dual electron beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector is needed to achieve subnanometer resolution at landing energies of a few hundred electronvolts. The dual flood illumination approach eliminates charging effects generated when a conventional, single-beam LEEM is used to image insulating specimens. The low landing energy of electrons in the range of 0 to a few hundred electronvolts is also critical for avoiding radiation damage, as high energy electrons with kilo-electron-volt kinetic energies cause irreversible damage to many specimens, in particular biological molecules. The performance of the key electron-optical components of MAD-LEEM, the aberration corrector combined with the objective lens and a magnetic beam separator, was simulated. Initial results indicate that an electrostatic electron mirror has negative spherical and chromatic aberration coefficients that can be tuned over a large parameter range. The negative aberrations generated by the electron mirror can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies and provide a path to achieving subnanometer spatial resolution. First experimental results on characterizing DNA molecules immobilized on Au substrates in a LEEM are presented. Images obtained in a spin-polarized LEEM demonstrate that high contrast is achievable at low electron energies in the range of 1-10 eV and show that small changes in landing energy have a strong impact on the achievable contrast. The MAD-LEEM approach promises to significantly improve the performance of a LEEM for a wide range of applications in the biosciences, material sciences, and nanotechnology where nanometer scale resolution and analytical capabilities are required. In particular, the microscope has the potential of delivering images of unlabeled DNA strands with nucleotide-specific contrast. This simplifies specimen preparation and significantly eases the computational complexity needed to assemble the DNA sequence from individual reads.

  17. Density Determination and Metallographic Surface Preparation of Electron Beam Melted Ti6Al4V

    DTIC Science & Technology

    2015-06-02

    Electron Microscopy SiC Silicon Carbide Ti6Al4V Titanium-6Aluminum-4Vanadium WRNMMC Walter Reed National Military Medical Center Wd Dry...polishing with silicon carbide ( SiC ) papers and colloidal silica suspension to produce samples with varying surface topographies. Surfaces were...manufacturing process. For titanium alloys, the grinding media typically used is silicon carbide ( SiC ) paper. Table 1 lists grades of SiC papers that are

  18. Surface modification of an aluminum alloy by electron beam introducing TiCN nanoparticles

    NASA Astrophysics Data System (ADS)

    Kolev, M.; Dimitrova, R.; Parshorov, St.; Valkov, St.; Lazarova, R.; Petrov, P.

    2018-03-01

    TiCN nanopowder deposited in an appropriate way on the surface of an AlSi12Cu2NiMg substrate was incorporated in the matrix using an electron beam technology. The samples were studied by means of light microscopy, SEM, and EDX; their microhardness was also determined. The formation was found of a uniform and dense coating with a thickness of 7 – 10 μgm with a good adherence to the substrate. A modified zone appeared under the coating with a thickness of 100 – 150 μgm containing dendrites of an α-solid solution and a fine eutectic between them, as well as primary silicon crystals. The microhardness of this modified zone was up to 2.4 times higher than that of the matrix. The results of SEM and EDX studies revealed unambiguously the presence of titanium in the coating and in the zones below it. Obviously, the electron beam treatment resulted in the TiCN nanoparticles penetrating into the coating and the substrate immediately below the coating.

  19. A description on plasma background effect in growth rate of THz waves in a metallic cylindrical waveguide, including a dielectric tube and two current sources

    NASA Astrophysics Data System (ADS)

    Hajijamali-Arani, Z.; Jazi, B.

    2018-04-01

    The propagation of slow waves in a dielectric tube surrounded by a long cylindrical metallic waveguide is investigated. The dielectric tube located in a background region of plasma under two different states A and B. In the A-state the dielectric tube hollow filled with the plasma and in the B-state the outer surface of dielectric tube has been covered by the plasma layer. There are two relativistic electron beams with opposite velocities injected in the waveguide as the energy sources. Using the fluid theory for the plasmas, the Cherenkov instability in the mentioned waveguide will be analyzed. The dispersion relations of E-mode waves for the states A, B have been obtained. The time growth rate of surface waves are compared with each other for two cases A and B. The effect of plasma region on time growth rate of the waves, will be investigated. In all cases it will be shown, while an electron beam is responsible for instability, another electron beam plays a stabilizing role.

  20. The response of Kodak EDR2 film in high-energy electron beams.

    PubMed

    Gerbi, Bruce J; Dimitroyannis, Dimitri A

    2003-10-01

    Kodak XV2 film has been a key dosimeter in radiation therapy for many years. The advantages of the recently introduced Kodak EDR2 film for photon beam dosimetry have been the focus of several IMRT verification dosimetry publications. However, no description of this film's response to electron beams exists in the literature. We initiated a study to characterize the response and utility of this film for electron beam dosimetry. We exposed a series of EDR2 films to 6, 9, 12, 16, and 20 MeV electrons in addition to 6 and 18 MV x rays to develop standard characteristic curves. The linac was first calibrated to ensure that the delivered dose was known accurately. All irradiations were done at dmax in polystyrene for both photons and electrons, all films were from the same batch, and were developed at the same time. We also exposed the EDR2 films in a solid water phantom to produce central axis depth dose curves. These data were compared against percent depth dose curves measured in a water phantom using an IC-10 ion chamber, Kodak XV2 film, and a PTW electron diode. The response of this film was the same for both 6 and 18 MV x rays, but showed an apparent energy-dependent enhancement for electron beams. The response of the film also increased with increasing electron energy. This caused the percent depth dose curves using film to be shifted toward the surface compared to the ion chamber data.

  1. Electron emission from surfaces resulting from low energy positron bombardment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Saurabh

    Measurements of the secondary electron energy spectra resulting from very low energy positron bombardment of a polycrystalline Au and Cu (100) surfaces are presented that provide evidence for a single step transition from an unbound scattering state to an image potential bound state. The primary positron energy threshold for secondary electron emission and energy cutoff of the positron induced secondary electron energy peak are consistent with an Auger like process in which an incident positron make a transition from a scattering state to a surface-image potential bound while transferring all of the energy difference to an outgoing secondary electron. We term this process: the Auger mediated quantum sticking effect (AQSE). The intensities of the positron induced secondary electron peak are used to estimate the probability of this process as a function of incident positron energy. Positron annihilation induced Auger spectra (PAES) of Cu and Au are presented that are free of all primary beam induced secondary electron background. This background was eliminated by setting the positron beam energy below AQSE threshold. The background free PAES spectra obtained include the first measurements of the low energy tail of CVV Auger transitions all the way down to zero kinetic energy. The integrated intensity of this tail is several times larger than Auger peak itself which provides strong evidence for multi-electron Auger processes.

  2. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    PubMed Central

    Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.

    2014-01-01

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care. PMID:24506635

  3. Mechanical and chemical effects of ion-texturing biomedical polymers

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Cenkus, M. A.

    1979-01-01

    To determine whether sputter etching may provide substantial polymer surface texturing with insignificant changes in chemical and mechanical properties, an 8 cm beam diameter, electron bombardment, argon ion source was used to sputter etch (ion-texture process) nine biomedical polymers. The materials included silicone rubber, 32% carbon impregnated polyolefin, polyoxymethylene, polytetrafluoroethylene, ultrahigh molecular weight (UHMW) polyethylene, UHMW polyethylene with carbon fibers (10%), and several polyurethanes (bioelectric, segmented, and cross linked). Ion textured microtensile specimens of each material except UHMW polyethylene and UHMW polyethylene with 10% carbon fibers were used to determine the effect of ion texturing on tensile properties. Scanning electron microscopy was used to determine surface morphology changes, and electron spectroscopy for chemical analysis was used to analyze the near surface chemical changes that result from ion texturing. Ion energies of 500 eV with beam current densities ranging from 0.08 to 0.19 mA/sq cm were used to ion texture the various materials. Standard microtensile specimens of seven polymers were exposed to a saline environment for 24 hours prior to and during the tensile testing. The surface chemical changes resulting from sputter etching are minimal in spite of the often significant changes in the surface morphology.

  4. Electron backscatter diffraction applied to lithium sheets prepared by broad ion beam milling.

    PubMed

    Brodusch, Nicolas; Zaghib, Karim; Gauvin, Raynald

    2015-01-01

    Due to its very low hardness and atomic number, pure lithium cannot be prepared by conventional methods prior to scanning electron microscopy analysis. Here, we report on the characterization of pure lithium metallic sheets used as base electrodes in the lithium-ion battery technology using electron backscatter diffraction (EBSD) and X-ray microanalysis using energy dispersive spectroscopy (EDS) after the sheet surface was polished by broad argon ion milling (IM). No grinding and polishing were necessary to achieve the sufficiently damage free necessary for surface analysis. Based on EDS results the impurities could be characterized and EBSD revealed the microsctructure and microtexture of this material with accuracy. The beam damage and oxidation/hydration resulting from the intensive use of IM and the transfer of the sample into the microscope chamber was estimated to be <50 nm. Despite the fact that the IM process generates an increase of temperature at the specimen surface, it was assumed that the milling parameters were sufficient to minimize the heating effect on the surface temperature. However, a cryo-stage should be used if available during milling to guaranty a heating artefact free surface after the milling process. © 2014 Wiley Periodicals, Inc.

  5. Focussed Ion Beam Milling and Scanning Electron Microscopy of Brain Tissue

    PubMed Central

    Knott, Graham; Rosset, Stéphanie; Cantoni, Marco

    2011-01-01

    This protocol describes how biological samples, like brain tissue, can be imaged in three dimensions using the focussed ion beam/scanning electron microscope (FIB/SEM). The samples are fixed with aldehydes, heavy metal stained using osmium tetroxide and uranyl acetate. They are then dehydrated with alcohol and infiltrated with resin, which is then hardened. Using a light microscope and ultramicrotome with glass knives, a small block containing the region interest close to the surface is made. The block is then placed inside the FIB/SEM, and the ion beam used to roughly mill a vertical face along one side of the block, close to this region. Using backscattered electrons to image the underlying structures, a smaller face is then milled with a finer ion beam and the surface scrutinised more closely to determine the exact area of the face to be imaged and milled. The parameters of the microscope are then set so that the face is repeatedly milled and imaged so that serial images are collected through a volume of the block. The image stack will typically contain isotropic voxels with dimenions as small a 4 nm in each direction. This image quality in any imaging plane enables the user to analyse cell ultrastructure at any viewing angle within the image stack. PMID:21775953

  6. Beam Tests of Diamond-Like Carbon Coating for Mitigation of Electron Cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffrey; Backfish, Michael; Kato, Shigeki

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Our results evaluate the efficacy of a diamond-like carbon (DLC) coating for the mitigation of electron in the Fermilab Main Injector. The interior surface of the beampipe conditions in response to electron bombardment from the electron cloud and we track the change in electron cloud flux over time in the DLC coated beampipe and uncoated stainless steel beampipe. The electron flux is measured by retarding field analyzers placed in a field-free region of the Mainmore » Injector. We find the DLC coating reduces the electron cloud signal to roughly 2\\% of that measured in the uncoated stainless steel beampipe.« less

  7. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  8. Preliminary fabrication and characterization of electron beam melted Ti-6Al-4V customized dental implant.

    PubMed

    Ramakrishnaiah, Ravikumar; Al Kheraif, Abdulaziz Abdullah; Mohammad, Ashfaq; Divakar, Darshan Devang; Kotha, Sunil Babu; Celur, Sree Lalita; Hashem, Mohamed I; Vallittu, Pekka K; Rehman, Ihtesham Ur

    2017-05-01

    The current study was aimed to fabricate customized root form dental implant using additive manufacturing technique for the replacement of missing teeth. The root form dental implant was designed using Geomagic™ and Magics™, the designed implant was directly manufactured by layering technique using ARCAM A2™ electron beam melting system by employing medical grade Ti-6Al-4V alloy powder. Furthermore, the fabricated implant was characterized in terms of certain clinically important parameters such as surface microstructure, surface topography, chemical purity and internal porosity. Results confirmed that, fabrication of customized dental implants using additive rapid manufacturing technology offers an attractive method to produce extremely pure form of customized titanium dental implants, the rough and porous surface texture obtained is expected to provide better initial implant stabilization and superior osseointegration.

  9. Atomic-Scale Insights into the Oxidation of Aluminum.

    PubMed

    Nguyen, Lan; Hashimoto, Teruo; Zakharov, Dmitri N; Stach, Eric A; Rooney, Aidan P; Berkels, Benjamin; Thompson, George E; Haigh, Sarah J; Burnett, Tim L

    2018-01-24

    The surface oxidation of aluminum is still poorly understood despite its vital role as an insulator in electronics, in aluminum-air batteries, and in protecting the metal against corrosion. Here we use atomic resolution imaging in an environmental transmission electron microscope (TEM) to investigate the mechanism of aluminum oxide formation. Harnessing electron beam sputtering we prepare a pristine, oxide-free metal surface in the TEM. This allows us to study, as a function of crystallographic orientation and oxygen gas pressure, the full oxide growth regime from the first oxide nucleation to a complete saturated, few-nanometers-thick surface film.

  10. Direct observation of spin-resolved full and empty electron states in ferromagnetic surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berti, G., E-mail: giulia.berti@polimi.it; Calloni, A.; Brambilla, A.

    2014-07-15

    We present a versatile apparatus for the study of ferromagnetic surfaces, which combines spin-polarized photoemission and inverse photoemission spectroscopies. Samples can be grown by molecular beam epitaxy and analyzed in situ. Spin-resolved photoemission spectroscopy analysis is done with a hemispherical electron analyzer coupled to a 25 kV-Mott detector. Inverse photoemission spectroscopy experiments are performed with GaAs crystals as spin-polarized electron sources and a UV bandpass photon detector. As an example, measurements on the oxygen passivated Fe(100)-p(1×1)O surface are presented.

  11. Atomic-Scale Insights into the Oxidation of Aluminum

    DOE PAGES

    Nguyen, Lan; Hashimoto, Teruo; Zakharov, Dmitri N.; ...

    2018-01-10

    Here, the surface oxidation of aluminum is still poorly understood despite its vital role as an insulator in electronics, in aluminum–air batteries, and in protecting the metal against corrosion. Here we use atomic resolution imaging in an environmental transmission electron microscope (TEM) to investigate the mechanism of aluminum oxide formation. Harnessing electron beam sputtering we prepare a pristine, oxide-free metal surface in the TEM. This allows us to study, as a function of crystallographic orientation and oxygen gas pressure, the full oxide growth regime from the first oxide nucleation to a complete anometers-thick surface film.

  12. Measurement of the minority carrier diffusion length and edge surface-recombination velocity in InP

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Hakimzadeh, Roshanak

    1993-01-01

    A scanning electron microscope (SEM) was used to measure the electron (minority carrier) diffusion length (L(sub n)) and the edge surface-recombination velocity (V(sub s)) in zinc-doped Czochralski-grown InP wafers. Electron-beam-induced current (EBIC) profiles were obtained in specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure V(sub s), and these values were used in a theoretical expression for normalized EBIC. A fit of the experimental data with this expression enabled us to determine L(sub n).

  13. Improving oxidation resistance and thermal insulation of thermal barrier coatings by intense pulsed electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Mei, Xianxiu; Liu, Xiaofei; Wang, Cunxia; Wang, Younian; Dong, Chuang

    2012-12-01

    In this paper, intense pulsed electron beam was used for the irradiation treatment of 6-8% Y2O3-stablized ZrO2 thermal barrier coating prepared by electron beam-physical vapor deposition to achieve the "sealing" of columnar crystals, thus improving their thermal insulation properties and high temperature oxidation resistance. The electron beam parameters used were: pulse duration 200 μs, electron voltage 15 kV, energy density 3, 5, 8, 15, 20 J/cm2, and pulsed numbers 30. 1050 °C cyclic oxidation and static oxidation experiments were used for the research on oxidation resistance of the coatings. When the energy density of the electron beam was larger than 8 J/cm2, ZrO2 ceramic coating surface was fully re-melted and became smooth, dense and shiny. The coating changed into a smooth polycrystalline structure, thus achieving the "sealing" effect of the columnar crystals. After irradiations with the energy density of 8-15 J/cm2, the thermally grown oxide coating thickness decreased significantly in comparison with non-irradiated coatings, showing that the re-melted coating improved the oxidation resistance of the coatings. The results of thermal diffusivity test by laser flash method showed that the thermal diffusion rate of the irradiated coating was lower than that of the coating without irradiation treatment, and the thermal insulation performance of irradiated coating was improved.

  14. Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications.

    PubMed

    Winkelmann, A; Nolze, G; Vespucci, S; Naresh-Kumar, G; Trager-Cowan, C; Vilalta-Clemente, A; Wilkinson, A J; Vos, M

    2017-09-01

    We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  15. Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition

    NASA Astrophysics Data System (ADS)

    Kim, S.; Russell, M.; Henry, M.; Kim, S. S.; Naik, R. R.; Voevodin, A. A.; Jang, S. S.; Tsukruk, V. V.; Fedorov, A. G.

    2015-09-01

    We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an ``n-p-n'' junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 1018 e- per cm2). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 1019 e- per cm2 results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, ``direct-write'' functional patterning of graphene-based electronic devices with potential for on-demand re-configurability.We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an ``n-p-n'' junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 1018 e- per cm2). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 1019 e- per cm2 results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, ``direct-write'' functional patterning of graphene-based electronic devices with potential for on-demand re-configurability. Electronic supplementary information (ESI) available: Optimization of a PMMA-mediated wet transfer method of graphene, transfer characteristics of all the channels, raw data of drain-source current measured by sweeping a backgate voltage and an AFM topography image and cross-sectional profiles of Fig. 4 and the corresponding electrical measurement along with an estimation of carbon diffusion coefficient. See DOI: 10.1039/c5nr04063a

  16. High throughput secondary electron imaging of organic residues on a graphene surface

    NASA Astrophysics Data System (ADS)

    Zhou, Yangbo; O'Connell, Robert; Maguire, Pierce; Zhang, Hongzhou

    2014-11-01

    Surface organic residues inhibit the extraordinary electronic properties of graphene, hindering the development of graphene electronics. However, fundamental understanding of the residue morphology is still absent due to a lack of high-throughput and high-resolution surface characterization methods. Here, we demonstrate that secondary electron (SE) imaging in the scanning electron microscope (SEM) and helium ion microscope (HIM) can provide sub-nanometer information of a graphene surface and reveal the morphology of surface contaminants. Nanoscale polymethyl methacrylate (PMMA) residues are visible in the SE imaging, but their contrast, i.e. the apparent lateral dimension, varies with the imaging conditions. We have demonstrated a quantitative approach to readily obtain the physical size of the surface features regardless of the contrast variation. The fidelity of SE imaging is ultimately determined by the probe size of the primary beam. HIM is thus evaluated to be a superior SE imaging technique in terms of surface sensitivity and image fidelity. A highly efficient method to reveal the residues on a graphene surface has therefore been established.

  17. Beam and tissue factors affecting Cherenkov image intensity for quantitative entrance and exit dosimetry on human tissue

    PubMed Central

    Zhang, Rongxiao; Glaser, Adam K.; Andreozzi, Jacqueline; Jiang, Shudong; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2017-01-01

    This study’s goal was to determine how Cherenkov radiation emission observed in radiotherapy is affected by predictable factors expected in patient imaging. Factors such as tissue optical properties, radiation beam properties, thickness of tissues, entrance/exit geometry, curved surface effects, curvature and imaging angles were investigated through Monte Carlo simulations. The largest physical cause of variation of the correlation factor between of Cherenkov emission and dose was the entrance/exit geometry (~50%). The largest human tissue effect was from different optical properties (~45%). Beyond these, clinical beam energy varies the correlation factor significantly (~20% for x-ray beams), followed by curved surfaces (~15% for x-ray beams and ~8% for electron beams), and finally, the effect of field size (~5% for x-ray beams). Other investigated factors which caused variations less than 5% were tissue thicknesses and source to surface distance. The effect of non-Lambertian emission was negligible for imaging angles smaller than 60 degrees. The spectrum of Cherenkov emission tends to blue-shift along the curved surface. A simple normalization approach based on the reflectance image was experimentally validated by imaging a range of tissue phantoms, as a first order correction for different tissue optical properties. PMID:27507213

  18. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields.

    PubMed

    Bailly-Grandvaux, M; Santos, J J; Bellei, C; Forestier-Colleoni, P; Fujioka, S; Giuffrida, L; Honrubia, J J; Batani, D; Bouillaud, R; Chevrot, M; Cross, J E; Crowston, R; Dorard, S; Dubois, J-L; Ehret, M; Gregori, G; Hulin, S; Kojima, S; Loyez, E; Marquès, J-R; Morace, A; Nicolaï, Ph; Roth, M; Sakata, S; Schaumann, G; Serres, F; Servel, J; Tikhonchuk, V T; Woolsey, N; Zhang, Z

    2018-01-09

    Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser-plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.

  19. Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Mahmood, R.; Johnson, D. L.

    1979-01-01

    A wide range of ion beam etch parameters capable of producing uniform homogeneous alignment of nematic liquid crystals on SiO2 films are discussed. The alignment surfaces were generated by obliquely incident (angles of 5 to 25 deg) argon ions with energies in the range of 0.5 to 2.0 KeV, ion current densities of 0.1 to 0.6 mA sq cm and etch times of 1 to 9 min. A smaller range of ion beam parameters (2.0 KeV, 0.2 mA sq cm, 5 to 10 deg and 1 to 5 min.) were also investigated with ZrO2 films and found suitable for homogeneous alignment. Extinction ratios were very high (1000), twist angles were small ( or = 3 deg) and tilt-bias angles very small ( or = 1 deg). Preliminary scanning electron microscopy results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment.

  20. Process For Patterning Dispenser-Cathode Surfaces

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Deininger, William D.

    1989-01-01

    Several microfabrication techniques combined into process cutting slots 100 micrometer long and 1 to 5 micrometer wide into tungsten dispenser cathodes for traveling-wave tubes. Patterned photoresist serves as mask for etching underlying aluminum. Chemically-assisted ion-beam etching with chlorine removes exposed parts of aluminum layer. Etching with fluorine or chlorine trifluoride removes tungsten not masked by aluminum layer. Slots enable more-uniform low-work function coating dispensed to electron-emitting surface. Emission of electrons therefore becomes more uniform over cathode surface.

  1. Monte Carlo study and design of system for implementation of Rotational Total Skin Electron Irradiation technique

    NASA Astrophysics Data System (ADS)

    Ansari, M.; Abbasi Davani, F.; Lamehi Rashti, M.; Monadi, Sh.; Emami, H.

    2018-05-01

    Total skin electron irradiation technique is used in treatment of the mycosis fungoid. The implementation of this technique requires non-standard measurements and complex dosimetry methods. Depending on the linear accelerator (Linac) type, bunker size, room dimensions and dosimetry equipment, the design of instruments for appropriate set up and implementation of TSEI in different radiation therapy centers varies. The studies which have been done in this article provide an introduction to the implementing of this method for the first time in Iran and its results can be used for the centers with similar specifications in the world. This article determined the electron beam characteristic of TSEI for the only electron accelerator, located at the radiation center of the Seyed Alshohada Hospital of Isfahan (NEPTUN 10PC), by performing Monte Carlo simulations and using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). For the best uniformity of the vertical profile, the optimal angle of gantry was defined at SSD=350 cm. The effect of the degrader plane that is located at a distance of 20 cm from the patient surface, was evaluated on the amount of energy reduction of the beam, the opening of the electron beam field and the homogeneity of the dose distribution. The transversal dose distribution from the whole treatment with Stanford technique (six dual fields) and Rotational technique was simulated in a CT-based anthropomorphic phantom. Also, the percentage depth dose in the head, neck, thorax, abdomen and legs was obtained for both methods. The simulation results show that the 20o angle between the horizontal and the beam central axis is optimal in order to provide the best vertical dose uniformity. The mean energy decreases from 6.1 MeV (the exit window) to 3 MeV (the treatment surface) by placing a degrader with 0.8 cm thickness in front of the treatment plane. FWHM of the angular distribution of the electron beam increased from 15o at SSD=100 cm to more than 30o on the treatment surface by traversing the PMMA degrader. The MC calculated percentage depth dose curves in different organs of anthropomorphic phantom for RTSEI indicates that the depth of maximum dose is on the surface of the phantom and Isodose curve of 80% is formed at a depth less than 4 mm. the results also show, with the degrader plane in front of the patient, the degree of homogeneity of the dose distribution for both Stanford and rotational techniques is the same.

  2. SU-E-T-279: A Novel Electron-Beam Combined with Magnetic Field Application for Radiotherapy.

    PubMed

    Alezra, D; Nardi, E; Koren, S; Bragilovski, D; Orion, I

    2012-06-01

    The new beam and delivery system consists of an electron accelerator and a system of magnets (one or more). Introducing a transverse magnetic field in and near the tumor, causes the electrons to spiral in this region, thereby producing an effective peak in the depth dose distribution, within the tumor volume. Although the basic idea is not new, we suggest here for the first time, a viable as well as a workable, magnetic field configuration, which in addition to focusing the beam does not interfere with its propagation to the target. The electron accelerator: can be a linear accelerator or any other type electron accelerator, capable of producing different electron energies for different depths and dose absorption accumulation. The Field size can be as small as a pencil beam and as big as any of the other standard field sizes that are used in radiotherapy. The scatter filter can be used or removed. The dose rate accumulation can be as higher as possible.The magnets are able to produce magnetic fields. The order, direction, width, place, shape and number of the magnetic fields define the shape and the Percentage Depth Dose (PDD) curve of the electron beam. Prototypes were successfully tested by means of computer simulation, using:COMSOL-Multiphsics for magnetic fields calculations. FLUKA package, for electron beam MC simulation. Our results suggest that by using an electron beam at different energies, combined with magnetic fields, we could modify the delivered dose. This is caused by manipulating the electron motion via the Lorentz force. The applied magnetic field, will focus the electron beam at a given depth and deposit the energy in a given volume and depth, where otherwise the electron energy will have spread deeper. The direction and magnitude of the magnetic fields will prevent the scattering of the electron beam and its absorption in remote volumes. In practice, we get a pseudo Bragg peak depth dose distribution, applying a relatively low cost system. The therapeutic efficiency induced by the system is of similar efficiency as the ion beam therapy techniques. Our novel concept demonstrates treatment that is almost similar to proton therapy and in some parameters even better performance.Unlike the current high-energy electron therapy, our system's beam deposit almost all of its energy on its target, with a low amount of radiation deposited in tissues from the surface of the skin to the front of tumor, and almost no "exit dose" beyond the tumor. This property will enables to hit tumors with higher, potentially more effective radiation doses, while being considerably less expensive. © 2012 American Association of Physicists in Medicine.

  3. The effect of beam pre-bunching on the excitation of terahertz plasmons in a parallel plane guiding system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Suresh C.; Malik, Pratibha

    2015-04-15

    The excitation of terahertz (THz) plasmons by a pre-bunched relativistic electron beam propagating in a parallel plane semiconducting guiding system is studied. It is found that the n-InSb semiconductor strongly supports the confined surface plasmons in the terahertz frequency range. The growth rate and efficiency of the THz surface plasmons increase linearly with modulation index and show the largest value as modulation index approaches unity. Moreover, the growth rate of the instability scales as one-third power of the beam density and inverse one-third power of the THz radiation frequency.

  4. Progress toward an aberration-corrected low energy electron microscope for DNA sequencing and surface analysis

    PubMed Central

    Mankos, Marian; Shadman, Khashayar; N'Diaye, Alpha T.; Schmid, Andreas K.; Persson, Henrik H. J.; Davis, Ronald W.

    2012-01-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel imaging technique aimed at high resolution imaging of macromolecules, nanoparticles, and surfaces. MAD-LEEM combines three innovative electron–optical concepts in a single tool: a monochromator, a mirror aberration corrector, and dual electron beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector is needed to achieve subnanometer resolution at landing energies of a few hundred electronvolts. The dual flood illumination approach eliminates charging effects generated when a conventional, single-beam LEEM is used to image insulating specimens. The low landing energy of electrons in the range of 0 to a few hundred electronvolts is also critical for avoiding radiation damage, as high energy electrons with kilo-electron-volt kinetic energies cause irreversible damage to many specimens, in particular biological molecules. The performance of the key electron–optical components of MAD-LEEM, the aberration corrector combined with the objective lens and a magnetic beam separator, was simulated. Initial results indicate that an electrostatic electron mirror has negative spherical and chromatic aberration coefficients that can be tuned over a large parameter range. The negative aberrations generated by the electron mirror can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies and provide a path to achieving subnanometer spatial resolution. First experimental results on characterizing DNA molecules immobilized on Au substrates in a LEEM are presented. Images obtained in a spin-polarized LEEM demonstrate that high contrast is achievable at low electron energies in the range of 1–10 eV and show that small changes in landing energy have a strong impact on the achievable contrast. The MAD-LEEM approach promises to significantly improve the performance of a LEEM for a wide range of applications in the biosciences, material sciences, and nanotechnology where nanometer scale resolution and analytical capabilities are required. In particular, the microscope has the potential of delivering images of unlabeled DNA strands with nucleotide-specific contrast. This simplifies specimen preparation and significantly eases the computational complexity needed to assemble the DNA sequence from individual reads. PMID:23847748

  5. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  6. Rheological properties of styrene-butadiene rubber filled with electron beam modified surface treated dual phase fillers

    NASA Astrophysics Data System (ADS)

    Shanmugharaj, A. M.; Bhowmick, Anil K.

    2004-01-01

    The rheological properties of styrene-butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s -1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.

  7. Materials and techniques for spacecraft static charge control

    NASA Technical Reports Server (NTRS)

    Amore, L. J.; Eagles, A. E.

    1977-01-01

    An overview of the design, development, fabrication, and testing of transparent conductive coatings and conductive lattices deposited or formed on high resistivity spacecraft dielectric materials to obtain control static charge buildup on spacecraft external surfaces is presented. Fabrication techniques for the deposition of indium/tin oxide coatings and copper grid networks on Kapton and FEP Teflon films and special frit coatings for OSR and solar cell cover glasses are discussed. The techniques include sputtering, photoetching, silkscreening, and mechanical processes. A facility designed and built to simulate the electron plasma at geosynchronous altitudes is described along with test procedures. The results of material characterizations as well as electron irradiation aging effects in this facility for spacecraft polymers treated to control static charge are presented. The data presents results for electron beam energies up to 30 kV and electron current densities of 30 nA/cm squared. Parameters measured include secondary emission, surface leakage, and through the sample currents as a function of primary beam energy and voltage.

  8. Molecular beam epitaxy growth of high electron mobility InAs/AlSb deep quantum well structure

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Guo-Wei; Xu, Ying-Qiang; Xing, Jun-Liang; Xiang, Wei; Tang, Bao; Zhu, Yan; Ren, Zheng-Wei; He, Zhen-Hong; Niu, Zhi-Chuan

    2013-07-01

    InAs/AlSb deep quantum well (QW) structures with high electron mobility were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs substrates. AlSb and Al0.75Ga0.25Sb buffer layers were grown to accommodate the lattice mismatch (7%) between the InAs/AlSb QW active region and GaAs substrate. Transmission electron microscopy shows abrupt interface and atomic force microscopy measurements display smooth surface morphology. Growth conditions of AlSb and Al0.75Ga0.25Sb buffer were optimized. Al0.75Ga0.25Sb is better than AlSb as a buffer layer as indicated. The sample with optimal Al0.75Ga0.25Sb buffer layer shows a smooth surface morphology with root-mean-square roughness of 6.67 Å. The electron mobility has reached as high as 27 000 cm2/Vs with a sheet density of 4.54 × 1011/cm2 at room temperature.

  9. Variation of relative intensities between surface and bulk plasmon losses due to crystal orientations for aluminium in low energy electron reflection loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Ichinokawa, T.; Le Gressus, C.; Mogami, A.; Pellerin, F.; Massignon, D.

    The contrast change of secondary electron images due to the crystal orientations is observed by the ultra high vacuum scanning electron microscope (UHV-SEM) for crystal grains of clean surface of polycrystalline Al in the primary energy Ep of 200 eV to 5 KeV. The low energy electron loss spectra are measured by the cylindrical mirror analyzer. The relative intensity ratio between surface and bulk plasmon loss spectra was dependent on the crystal orientations. The SEM images taken by the surface and bulk plasmon signals at Ep = 230 eV show the inverse contrast depending on the grains. The inversion of the relative intensities between the surface and bulk plasmon losses is explained qualitatively by taking into account of variation of the penetration depth of the incident beam caused by the electron channeling.

  10. Variation of relative intensities between surface and bulk plasmon losses due to crystal orientations for aluminium in low energy electron reflection loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Ichinokawa, T.; Le Gressus, C.; Mogami, A.; Pellerin, F.; Massignon, D.

    1981-10-01

    The contrast change of secondary electron images due to the crystal orientations is observed by the ultra high vacuum scanning electron microscope (UHV-SEM) for crystal grains of clean surface of polycrystalline Al in the primary energy Ep of 200 eV to 5 keV. The low energy electron loss spectra are measured by the cylindrical mirror analyzer. The relative intensity ratio between surface and bulk plasmon loss spectra was dependent on the crystal orientations. The SEM images taken by the surface and bulk plasmon signals at Ep = 230 eV show the inverse contrast depending on the grains. The inversion of the relative intensities between the surface and bulk plasmon losses is explained qualitatively by taking into account of variation of the penetration depth of the incident beam caused by the electron channeling.

  11. Monte Carlo based electron treatment planning and cutout output factor calculations

    NASA Astrophysics Data System (ADS)

    Mitrou, Ellis

    Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.

  12. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.

    PubMed

    Bellido, Edson P; Rossouw, David; Botton, Gianluigi A

    2014-06-01

    Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson-Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson-Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum.

  13. Electron microscopic observations of hydrogen implantation in ilmenites

    NASA Technical Reports Server (NTRS)

    Blanford, G. E.

    1983-01-01

    Hydrogen ion beams were found to form submicrometer, bumpy textures on the surface of ilmenite grains. From this effect, it is believed that similar bumpy textures seen on lunar ilmenite, pyroxene, and olivine grains are likely to be caused by solar wind irradiation. As a consequence, the concentration of bumpy textured grains may be a useful index of surface maturity for lunar soils. An attempt was made to search for grains with these bumpy textures in interplanetary dust and lunar and meteoritic regolith breccias in order to obtain information about the duration of their exposure to the solar wind. Solar wind irradiation was simulated on natural, terrestrial ilmenite. Hydrogen ion beams were directed at small grains and polished sections which were then examined by electron microscopy.

  14. Dynamics of alkali ions-neutral molecules reactions: Radio frequency-guided beam experimental cross-sections and direct quasiclassical trajectory studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar, J.; Andres, J. de; Lucas, J. M.

    2012-11-27

    Different reactive processes taking place in collisions between alkali ions and neutral i-C{sub 3}H{sub 7}Cl molecules in the low (center of mass frame) energy range have been studied using an octopole radiofrequency guided-ion-beam apparatus developed in our laboratory. Cross-section energy dependences for all these reactions have been obtained in absolute units. Ab initio electronic structure calculations for those colliding systems evolving on the ground single potential surface have given relevant information on the main topological features of the surfaces. For some of the reactions a dynamic study by 'on the fly' trajectories has complemented the available experimental and electronic structuremore » information.« less

  15. Surface recombination velocity and diffusion length of minority carriers in heavily doped silicon layers

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Watanabe, M.; Actor, G.

    1977-01-01

    Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.

  16. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  17. A comparison of TPS and different measurement techniques in small-field electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donmez Kesen, Nazmiye, E-mail: nazo94@gmail.com; Cakir, Aydin; Okutan, Murat

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with datamore » that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.« less

  18. Adsorption and diffusion of Ga and N adatoms on GaN surfaces: Comparing the effects of Ga coverage and electronic excitation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Noboru; Selloni, Annabella; Myers, T. H.; Doolittle, A.

    2005-09-01

    We present density-functional-theory calculations of the binding and diffusion of Ga and N adatoms on GaN (0001) and (000-1) surfaces under different conditions, including stoichiometric and Ga-rich surfaces, as well as in the presence of electron-hole (e-h) pairs induced by light- or electron-beam irradiation. We find that both Ga-rich conditions and electronic excitations cause a significant reduction of the adatom diffusion barriers, as required to improve the quality of the material. However, the two effects are nonadditive, as the influence of e-h pairs are found to be less important for the more metallic situations.

  19. Optical Johnson noise thermometry

    NASA Technical Reports Server (NTRS)

    Shepard, R. L.; Blalock, T. V.; Maxey, L. C.; Roberts, M. J.; Simpson, M. L.

    1989-01-01

    A concept is being explored that an optical analog of the electrical Johnson noise may be used to measure temperature independently of emissivity. The concept is that a laser beam may be modulated on reflection from a hot surface by interaction of the laser photons with the thermally agitated conduction electrons or the lattice phonons, thereby adding noise to the reflected laser beam. If the reflectance noise can be detected and quantified in a background of other noise in the optical and signal processing systems, the reflectance noise may provide a noncontact measurement of the absolute surface temperature and may be independent of the surface's emissivity.

  20. Population inversions in ablation plasmas generated by intense electron beams. Final report, 1 November 1985-31 October 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilgenbach, R.M.; Kammash, T.; Brake, M.L.

    1988-11-01

    Experiments during the past three years have concerned the generation and spectroscopic study of electron beam-driven carbon plasmas in order to explore the production of optical and ultraviolet radiation from nonequilibrium populations. The output of MELBA (Michigan Electron Long Beam Accelerator), has been connected to an electron-beam diode consisting of an aluminum (or brass) cathode stalk and a carbon anode. Magnetic-field coils were designed, procured, and utilized to focus the electron beam. A side viewing port permitted spectroscopic diagnostics to view across the surface of the anode. Spectroscopic diagnosis was performed using a 1-m spectrograph capable of operation from themore » vacuum-ultraviolet through the visible. This spectrograph is coupled to a 1024-channel optical multichannel analyzer. Spectra taken during the initial 400-ns period of the e-beam pulse showed a low effective-charge plasma with primarily molecular components (C/sub 2/, CH) as well as atomic hydrogen and singly ionized carbon (CII). When the generator pulse was crowbarred after the first 400 ns, the spectra revealed a continuation of the low-charge-state plasma. At times greater than 400 ns in non-crowbarred shots, the spectra revealed a highly ionized plasma with a very large intensity line at 2530 Angstroms due to CIV (5g-4f), and lower-intensity lines due to CIII and CII. This CIV line emission increased with time, peaking sharply between 750 and 900 ns, and decayed rapidly in less than 100 ns. Emission from these high ionization states may be due to electron beam-plasma instabilities, as this emission was accompanied by high levels of radio frequency and microwave emission.« less

  1. Thermal shock tests with beryllium coupons in the electron beam facility JUDITH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roedig, M.; Duwe, R.; Schuster, J.L.A.

    1995-09-01

    Several grades of American and Russian beryllium have been tested in high heat flux tests by means of an electron beam facility. For safety reasons, major modifications of the facility had to be fulfilled in advance to the tests. The influence of energy densities has been investigated in the range between 1 and 7 MJ/m{sup 2}. In addition the influence of an increasing number of shots at constant energy density has been studied. For all samples, surface profiles have been measured before and after the experiments. Additional information has been gained from scanning electron microscopy, and from metallography.

  2. Detection of a strongly negative surface potential at Saturn's moon Hyperion.

    PubMed

    Nordheim, T A; Jones, G H; Roussos, E; Leisner, J S; Coates, A J; Kurth, W S; Khurana, K K; Krupp, N; Dougherty, M K; Waite, J H

    2014-10-28

    On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.

  3. TU-H-BRC-06: Temperature Simulation of Tungsten and W25Re Targets to Deliver High Dose Rate 10 MV Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Trovati, S; Loo, B

    Purpose: To study the impact of electron beam size, target thickness, and target temperature on the ability of the flattening filter-free mode (FFF) treatment head to deliver high-dose-rate irradiations. Methods: The dose distribution and transient temperature of the X-ray target under 10 MeV electron beam with pulse length of 5 microseconds, and repetition rate of 1000 Hz was studied. A MCNP model was built to calculate the percentage depth dose (PPD) distribution in a water phantom at a distance of 100 cm. ANSYS software was used to run heat transfer simulations. The PPD and temperature for both tungsten and W25Remore » targets for different electron beam sizes (FHWM 0.2, 0.5, 1 and 2 mm) and target thickness (0.2 to 2 mm) were studied. Results: Decreasing the target thickness from 1 mm to 0.5 mm, caused a surface dose increase about 10 percent. For both target materials, the peak temperature was about 1.6 times higher for 0.5 mm electron beam compared to the 1 mm beam after reaching their equilibrium. For increasing target thicknesses, the temperature rise caused by the first pulse is similar for all thicknesses, however the temperature difference for subsequent pulses becomes larger until a constant ratio is reached. The target peak temperature after reaching equilibrium can be calculated by adding the steady state temperature and the amplitude of the temperature oscillation. Conclusion: This work indicates the potential to obtain high dose rate irradiation by selecting target material, geometry and electron beam parameters. W25Re may not outperformed tungsten when the target is thick due to its relatively low thermal conductivity. The electron beam size only affects the target temperature but not the PPD. Thin target is preferred to obtain high dose rate and low target temperature, however, the resulting high surface dose is a major concern. NIH funding:R21 EB015957-01; DOD funding:W81XWH-13-1-0165 BL, PM, PB, and RF are founders of TibaRay, Inc. BL is also a borad member. BL and PM have received research grants from Varian Medical System, Inc. and RaySearch Laboratory. RF is an employee of Siemens Healthcare GmbH.« less

  4. First results from negative ion beam extraction in ROBIN in surface mode

    NASA Astrophysics Data System (ADS)

    Pandya, Kaushal; Gahlaut, Agrajit; Yadav, Ratnakar K.; Bhuyan, Manas; Bandyopadhyay, Mainak; Das, B. K.; Bharathi, P.; Vupugalla, Mahesh; Parmar, K. G.; Tyagi, Himanshu; Patel, Kartik; Bhagora, Jignesh; Mistri, Hiren; Prajapati, Bhavesh; Pandey, Ravi; Chakraborty, Arun. K.

    2017-08-01

    ROBIN, the first step in the Indian R&D program on negative ion beams has reached an important milestone, with the production of negative ions in the surface conversion mode through Cesium (Cs) vapor injection into the source. In the present set-up, negative hydrogen ion beam extraction is effected through an extraction area of ˜73.38 cm2 (146 apertures of 8mm diameter). The three grid electrostatic accelerator system of ROBIN is fed by high voltage DC power supplies (Extraction Power Supply System: 11kV, 35A and Acceleration Power Supply System: 35kV, 15A). Though, a considerable reduction of co-extracted electron current is usually observed during surface mode operation, in order to increase the negative ion current, various other parameters such as plasma grid temperature, plasma grid bias, extraction to acceleration voltage ratio, impurity control and Cs recycling need to be optimized. In the present experiments, to control and to understand the impurity behavior, a Cryopump (14,000 l/s for Hydrogen) is installed along with a Residual Gas Analyzer (RGA). To characterize the source plasma, two sets of Langmuir probes are inserted through the diagnostic flange ports available at the extraction plane. To characterize the beam properties, thermal differential calorimeter, Doppler Shift Spectroscopy and electrical current measurements are implemented in ROBIN. In the present set up, all the negative ion beam extraction experiments have been performed by varying different experimental parameters e.g. RF power (30-70 kW), source operational pressure (0.3 - 0.6Pa), plasma grid bias voltage, extraction & acceleration voltage combination etc. The experiments in surface mode operation is resulted a reduction of co-extracted electron current having electron to ion ratio (e/i) ˜2 whereas the extracted negative ion current density was increased. However, further increase in negative ion current density is expected to be improved after a systematic optimization of the operational parameters and Cs conditioning of the source. It was also found out that a better performance of ROBIN is achieved in the pressure range: 0.5-0.6 Pa. In this paper, the preliminary results on parametric study of ROBIN operation and beam optimization in surface mode are discussed.

  5. The gradient structure of the NiTi surface layers subjected to tantalum ion beam alloying

    NASA Astrophysics Data System (ADS)

    Girsova, S. L.; Poletika, T. M.; Meisner, L. L.; Schmidt, E. Yu

    2017-05-01

    The NiTi shape memory alloy has been modified by ion implantation with Ta to improve the surface and biological properties. The elemental and phase composition and structure of the surface and near-surface layers of NiTi specimens after the Ta ion implantation with the fluency D = 3 × 1017 cm-2 and D = 6 × 1017 cm-2 are examined. The methods of Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and electron dispersion analysis (EDS) are used. It is found that a nonuniform distribution of elements along the depth of the surface layer after the ion implantation of NiTi specimens, regardless of the regime, is accompanied by the formation of a number of sublayer structures.

  6. Environmental TEM study of electron beam induced electro-chemistry of Pr₀̣₆₄Ca₀̣₃₆MnO₃ catalysts for oxygen evolution

    DOE PAGES

    Mildner, Stephanie; Beleggia, Marco; Mierwaldt, Daniel; ...

    2015-03-12

    Environmental Transmission Electron Microscopy (ETEM) studies offer great potential for gathering atomic scale information on the electronic state of electrodes in contact with reactants but also pose big challenges due to the impact of the high energy electron beam. In this article, we present an ETEM study of a Pr₀̣₆₄Ca₀̣₃₆MnO₃ (PCMO) thin film electro-catalyst for water splitting and oxygen evolution in contact with water vapor. We show by means of off-axis electron holography and electrostatic modeling that the electron beam gives rise to a positive electric sample potential due to secondary electron emission. The value of the electric potential dependsmore » on the primary electron flux, the sample -conductivity and grounding, and gas properties. We present evidence that two observed electro-chemical reactions are driven by a beam induced electrostatic potential of the order of a volt. The first reaction is an anodic electrochemical oxidation reaction of oxygen depleted amorphous PCMO which results in recrystallization of the perovskite structure. The second reaction is oxygen evolution which can be detected by the oxidation of a silane additive and formation of SiO 2–x at catalytically active surfaces. Recently published in-situ XANES observation of subsurface oxygen vacancy formation during oxygen evolution at a positive potential [³²] is confirmed in this work. The quantification of beam induced potentials is an important step for future controlled electro-chemical experiments in an ETEM.« less

  7. Near atomically smooth alkali antimonide photocathode thin films

    DOE PAGES

    Feng, Jun; Karkare, Siddharth; Nasiatka, James; ...

    2017-01-24

    Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.

  8. Near atomically smooth alkali antimonide photocathode thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Jun; Karkare, Siddharth; Nasiatka, James

    Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.

  9. Characterization of non-relativistic attosecond electron pulses by transition radiation from tilted surfaces

    NASA Astrophysics Data System (ADS)

    Tsarev, M. V.; Baum, P.

    2018-03-01

    We consider analytically and numerically the emission of coherent transition radiation by few-femtosecond and attosecond electron pulses. With optimized geometries based on tilted surfaces we avoid the influences of the beam diameter and velocity mismatch for sub-relativistic pulses. We predict the emission of visible and ultraviolet optical radiation that characterizes few-femtosecond or attosecond electron pulses in time. The total amount of radiation depends on the source’ repetition rate and number of electrons per macro/microbunch and is in many cases sufficient for pulse length characterization in the emerging experiments.

  10. Deterministic Nanopatterning of Diamond Using Electron Beams.

    PubMed

    Bishop, James; Fronzi, Marco; Elbadawi, Christopher; Nikam, Vikram; Pritchard, Joshua; Fröch, Johannes E; Duong, Ngoc My Hanh; Ford, Michael J; Aharonovich, Igor; Lobo, Charlene J; Toth, Milos

    2018-03-27

    Diamond is an ideal material for a broad range of current and emerging applications in tribology, quantum photonics, high-power electronics, and sensing. However, top-down processing is very challenging due to its extreme chemical and physical properties. Gas-mediated electron beam-induced etching (EBIE) has recently emerged as a minimally invasive, facile means to dry etch and pattern diamond at the nanoscale using oxidizing precursor gases such as O 2 and H 2 O. Here we explain the roles of oxygen and hydrogen in the etch process and show that oxygen gives rise to rapid, isotropic etching, while the addition of hydrogen gives rise to anisotropic etching and the formation of topographic surface patterns. We identify the etch reaction pathways and show that the anisotropy is caused by preferential passivation of specific crystal planes. The anisotropy can be controlled by the partial pressure of hydrogen and by using a remote RF plasma source to radicalize the precursor gas. It can be used to manipulate the geometries of topographic surface patterns as well as nano- and microstructures fabricated by EBIE. Our findings constitute a comprehensive explanation of the anisotropic etch process and advance present understanding of electron-surface interactions.

  11. Substrate Dependent Ad-Atom Migration on Graphene and the Impact on Electron-Beam Sculpting Functional Nanopores.

    PubMed

    Freedman, Kevin J; Goyal, Gaurav; Ahn, Chi Won; Kim, Min Jun

    2017-05-10

    The use of atomically thin graphene for molecular sensing has attracted tremendous attention over the years and, in some instances, could displace the use of classical thin films. For nanopore sensing, graphene must be suspended over an aperture so that a single pore can be formed in the free-standing region. Nanopores are typically drilled using an electron beam (e-beam) which is tightly focused until a desired pore size is obtained. E-beam sculpting of graphene however is not just dependent on the ability to displace atoms but also the ability to hinder the migration of ad-atoms on the surface of graphene. Using relatively lower e-beam fluxes from a thermionic electron source, the C-atom knockout rate seems to be comparable to the rate of carbon ad-atom attraction and accumulation at the e-beam/graphene interface (i.e., R knockout ≈ R accumulation ). Working at this unique regime has allowed the study of carbon ad-atom migration as well as the influence of various substrate materials on e-beam sculpting of graphene. We also show that this information was pivotal to fabricating functional graphene nanopores for studying DNA with increased spatial resolution which is attributed to atomically thin membranes.

  12. Extreme ultraviolet reflector

    DOEpatents

    Newnam, Brian E.

    1990-01-01

    A multi-faceted mirror forms a retroreflector for a resonator loop in a free electron laser (FEL) operating in the XUV (.lambda.=10-100 nm). The number of facets is determined by the angle-of-incidence needed to obtain total external reflectance (TER) from the facet surface and the angle through which the FEL beam is to be turned. Angles-of-incidence greater than the angle for TER may be used to increase the area of the beam incident on the surface and reduce energy absorption density. Suitable surface films having TER in the 10-100 nm range may be formed from a variety of materials, including Al, single-crystal Si, Ag, and Rh. One of the facets is formed as an off-axis conic section to collimate the output beam with minimum astigmatism.

  13. Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms

    PubMed Central

    Nedaie, H. A.; Mosleh-Shirazi, M. A.; Allahverdi, M.

    2013-01-01

    Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions. PMID:23533162

  14. Photoelectron linear accelerator for producing a low emittance polarized electron beam

    DOEpatents

    Yu, David U.; Clendenin, James E.; Kirby, Robert E.

    2004-06-01

    A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.

  15. Impact of nanosecond proton beam processing on nanoblocks of copper

    NASA Astrophysics Data System (ADS)

    Borodin, Y. V.; Mantina, A. Y.; Pak, V.; Zhang, X. X.

    2017-01-01

    X-ray studies in conjunction with the method of recoil nuclei and electron microscopy of irradiated plates polycrystalline Cu by nanosecond high power density proton beams (E = 120 keV; I = 80 A/cm2, t = 50 ns) showed nano block nature of the formation of structure in the surface layer target and condensed-formed film.

  16. Ultra-short wavelength x-ray system

    DOEpatents

    Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  17. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    NASA Technical Reports Server (NTRS)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  18. Additive manufacturing method for SRF components of various geometries

    DOEpatents

    Rimmer, Robert; Frigola, Pedro E; Murokh, Alex Y

    2015-05-05

    An additive manufacturing method for forming nearly monolithic SRF niobium cavities and end group components of arbitrary shape with features such as optimized wall thickness and integral stiffeners, greatly reducing the cost and technical variability of conventional cavity construction. The additive manufacturing method for forming an SRF cavity, includes atomizing niobium to form a niobium powder, feeding the niobium powder into an electron beam melter under a vacuum, melting the niobium powder under a vacuum in the electron beam melter to form an SRF cavity; and polishing the inside surface of the SRF cavity.

  19. Proton irradiation of beryllium deposits on different candidate materials to be used as a neutron production target for accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Gagetti, Leonardo; Anzorena, Manuel Suarez; Bertolo, Alma; del Grosso, Mariela; Kreiner, Andrés J.

    2017-12-01

    Thin Be targets for neutron production through Be(d,n) are produced and characterized. We improved and characterized the substrate surface, specifically the roughness, in order to achieve homogeneous and stable deposits. Once well bonded deposits were obtained, some of them were irradiated with a 150 keV proton beam and with a 1.45 MeV deuteron beam. Both deposits, pristine and irradiated, were characterized by profilometry, X-ray diffraction, scanning electron microscopy and electron probe microanalyzer.

  20. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    NASA Astrophysics Data System (ADS)

    Zhang, Daliang; Zhu, Yihan; Liu, Lingmei; Ying, Xiangrong; Hsiung, Chia-En; Sougrat, Rachid; Li, Kun; Han, Yu

    2018-02-01

    High-resolution imaging of electron beam–sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  1. The Experimental Study of Novel Pseudospark Hollow Cathode Plasma Electron Gun

    NASA Astrophysics Data System (ADS)

    Gu, Xiaowei; Meng, Lin; Sun, Yiqin; Yu, Xinhua

    2008-11-01

    The high-power microwave devices with plasma-filled have unique properties. One of the major problems associated with plasma-filled microwave sources is that ions from the plasma drift toward the gun regions of the tube. This bombardment is particularly dangerous for the gun, where high-energy ion impacts can damage the cathode surface and degrade its electron emission capabilities. One of the techniques investigated to mitigate this issue is to replace the material cathode with plasma cathode. Now, we study the novel electron gun (E-gun) that can be suitable for high power microwave device applications, adopting two forms of discharge channel, 1: a single hole channel, the structure can produce a solid electron beam; 2: porous holes channel, the structure can generate multiple electronic injection which is similar to the annular electron beam.

  2. Test results for electron beam charging of flexible insulators and composites. [solar array substrates, honeycomb panels, and thin dielectric films

    NASA Technical Reports Server (NTRS)

    Staskus, J. V.; Berkopec, F. D.

    1979-01-01

    Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.

  3. A direct method of extracting surface recombination velocity from an electron beam induced current line scan

    NASA Astrophysics Data System (ADS)

    Ong, Vincent K. S.

    1998-04-01

    The extraction of diffusion length and surface recombination velocity in a semiconductor with the use of an electron beam induced current line scan has traditionally been done by fitting the line scan into complicated theoretical equations. It was recently shown that a much simpler equation is sufficient for the extraction of diffusion length. The linearization coefficient is the only variable that is needed to be adjusted in the curve fitting process. However, complicated equations are still necessary for the extraction of surface recombination velocity. It is shown in this article that it is indeed possible to extract surface recombination velocity with a simple equation, using only one variable, the linearization coefficient. An intuitive feel for the reason behind the method was discussed. The accuracy of the method was verified with the use of three-dimensional computer simulation, and was found to be even slightly better than that of the best existing method.

  4. Electron-beam-induced-current and active secondary-electron voltage-contrast with aberration-corrected electron probes

    DOE PAGES

    Han, Myung-Geun; Garlow, Joseph A.; Marshall, Matthew S. J.; ...

    2017-03-23

    The ability to map out electrostatic potentials in materials is critical for the development and the design of nanoscale electronic and spintronic devices in modern industry. Electron holography has been an important tool for revealing electric and magnetic field distributions in microelectronics and magnetic-based memory devices, however, its utility is hindered by several practical constraints, such as charging artifacts and limitations in sensitivity and in field of view. In this article, we report electron-beam-induced-current (EBIC) and secondary-electron voltage-contrast (SE-VC) with an aberration-corrected electron probe in a transmission electron microscope (TEM), as complementary techniques to electron holography, to measure electric fieldsmore » and surface potentials, respectively. These two techniques were applied to ferroelectric thin films, multiferroic nanowires, and single crystals. Electrostatic potential maps obtained by off-axis electron holography were compared with EBIC and SE-VC to show that these techniques can be used as a complementary approach to validate quantitative results obtained from electron holography analysis.« less

  5. High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures

    DOE PAGES

    Hobbs, Richard G.; Manfrinato, Vitor R.; Yang, Yujia; ...

    2016-06-13

    In this paper, we use electron energy-loss spectroscopy to map the complete plasmonic spectrum of aluminum nanodisks with diameters ranging from 3 to 120 nm fabricated by high-resolution electron-beam lithography. Our nanopatterning approach allows us to produce localized surface plasmon resonances across a wide spectral range spanning 2–8 eV. Electromagnetic simulations using the finite element method support the existence of dipolar, quadrupolar, and hexapolar surface plasmon modes as well as centrosymmetric breathing modes depending on the location of the electron-beam excitation. In addition, we have developed an approach using nanolithography that is capable of meV control over the energy andmore » attosecond control over the lifetime of volume plasmons in these nanodisks. The precise measurement of volume plasmon lifetime may also provide an opportunity to probe and control the DC electrical conductivity of highly confined metallic nanostructures. Lastly, we show the strong influence of the nanodisk boundary in determining both the energy and lifetime of surface plasmons and volume plasmons locally across individual aluminum nanodisks, and we have compared these observations to similar effects produced by scaling the nanodisk diameter.« less

  6. Numerical modeling and experiments by forming electron beam for relativistic klystron on linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Furman, Edvin G.; Isakov, Petr Y.; Sulakshin, Alexander S.; Vasil'ev, Vasilii V.

    1995-09-01

    The results of numercial modeling and experimental investigations of the linear induction accelerator operation where relativistic clystron is applied as a load are presented. The electron gun with the dielectric emitter (DE) is employed as the injector for this system. As a result of this investigation, the electro-optical system has been successfully realized allowing us to form electron beams sufficiently homogeneous in cross-section with current level of no less than 150 A. Compression of the beam from DE at the first stage of moving is supported, essentially, due to a system of focusing electrodes, similar to Pierce optics. Then, compression of the beam to the size required for its free motion in the anode tract and clystron's drift tube occurs in increasing external magnetic field. In this purpose, the configuration of tracking magnetic field was calculated and suitable magnetic system has been made. The results obtained experimentally are in good agreement with calculated data. With emitting dielectric surface of 50mm in diameter the laminar electron beam of 8mm in diameter was obtained. At accelerating voltage of 400kV and pulse duration of 120ns, required for the excitation of the X-band clystron amplifier the value of current was of the order of 200 A. Prints of the beam on targets allow us to make the same findings.

  7. Localized variations in electronic structure of AlGaN/GaN heterostructures grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Smith, K. V.; Yu, E. T.; Elsass, C. R.; Heying, B.; Speck, J. S.

    2001-10-01

    Local electronic properties in a molecular-beam-epitaxy-grown AlxGa1-xN/GaN heterostructure field-effect transistor epitaxial layer structure are probed using depth-resolved scanning capacitance microscopy. Theoretical analysis of contrast observed in scanning capacitance images acquired over a range of bias voltages is used to assess the possible structural origins of local inhomogeneities in electronic structure, which are shown to be concentrated in areas where Ga droplets had formed on the surface during growth. Within these regions, there are significant variations in the local electronic structure that are attributed to variations in both AlxGa1-xN layer thickness and Al composition. Increased charge trapping is also observed in these regions.

  8. Fabrication of hydrophobic structures on coronary stent surface based on direct three-beam laser interference lithography

    NASA Astrophysics Data System (ADS)

    Gao, Long-yue; Zhou, Wei-qi; Wang, Yuan-bo; Wang, Si-qi; Bai, Chong; Li, Shi-ming; Liu, Bin; Wang, Jun-nan; Cui, Cheng-kun; Li, Yong-liang

    2016-05-01

    To solve the problems with coronary stent implantation, coronary artery stent surface was directly modified by three-beam laser interference lithography through imitating the water-repellent surface of lotus leaf, and uniform micro-nano structures with the controllable period were fabricated. The morphological properties and contact angle (CA) of the microstructure were measured by scanning electron microscope (SEM) and CA system. The water repellency of stent was also evaluated by the contact and then separation between the water drop and the stent. The results show that the close-packed concave structure with the period of about 12 μm can be fabricated on the stent surface with special parameters (incident angle of 3°, laser energy density of 2.2 J·cm-2 and exposure time of 80 s) by using the three-beam laser at 1 064 nm, and the structure has good water repellency with CA of 120°.

  9. AlGaAs growth by OMCVD using an excimer laser

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Wilt, David M.; Pouch, John J.; Aron, Paul R.

    1986-01-01

    AlGaAs has been grown on GaAs by laser assisted OMCVD using an excimer laser, wavelength 193 nm, and a Cambridge OMCVD reactor. Films were grown at temperatures of 450 and 500 C with the laser beam parallel to the surface and impinging onto the surface at 15 deg from parallel. The samples were heated by RF coils while the laser beam was perpendicular to the gas flow. Typical gas flow parameters are 12 slm of H2, 15 sccm of Ga(CH3)3, 13 sccm of Al(CH3)3, and a pressure of 250 mbar. The initial energy density of the beam at the surface was 40 mJ/sq cm, the pulse rate was 20 pps, and the growth time was 7 min. The films were analyzed by Auger electron spectroscopy for the aluminum concentration and by TEM for the surface morphology.

  10. Space and time resolved emission of hard X-rays from a plasma focus

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The X-ray emission from focused plasmas was observed with an image converter camera in the streak and framing modes. Use of a very high gain image intensifier enabled weak hard X-ray emission (above 25 keV) to be recorded. The use of an admixture of higher atomic number into the deuterium was avoided, and the role of the vapor from the anode surface could be discerned. The recorded bremsstrahlung emission seemed to be from a metallic plasma of copper released from the anode surface by bombardment from an intense electron beam. The intensity of emission was determined by the density of copper and the density and energy of the electron beam. The main emission recorded occurred several 100 nsec after the focus was over, which implies that the electric fields driving the beam existed for this duration. It is suggested that the fields were created by annihilation of magnetic flux for a time much longer than the focus duration.

  11. An electron linac-based system for BNCT of shallow tumors

    NASA Astrophysics Data System (ADS)

    Farhad Masoudi, S.; Ghiasi, Hedieh; Harif, Maryam; Rasouli, Fatemeh S.

    2018-07-01

    Although BNCT has been in existence since the 1950s, it continues to be of special significant and interest for wide groups of researchers. Recent studies, focused on investigating appropriate neutron sources as alternatives for nuclear reactors, revealed the high potential of electron linac-based facilities to improve the efficiency of this treatment method. The present simulation study has been devoted to both designing an optimized and geometrically simple target to be used as a photoneutron source based on an electron linac and designing a configuration composed of arrangement of materials to generate an appropriate beam for BNCT of shallow tumors considering the widely accepted criteria for pre-clinical survey. It has been found that the behavior of photoneutrons' current and their average energy on the surface of the target is independent of the incident energy. Accordingly, we managed to present a formula to predict the average energy of photoneutrons knowing the electron energy to an acceptable approximation avoiding Monte Carlo simulations. Considering the conflict between the beam intensity and its purity in the whole beam designing process, an optimized beam shaping assembly for electron linac of 18 MeV/ mA has been proposed. These results in essence confirm the ability of these sources for BNCT of shallow tumors and are therefore encouraging for further studies. Furthermore, the results show that this configuration, which the corresponding beam fulfills all the medical requirements, is also usable for electron linacs of other energies. This can be of high importance in practical point of view.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostapenko, Marina G., E-mail: artifakt@ispms.tsc.ru; Meisner, Ludmila L., E-mail: llm@ispms.tsc.ru; Lotkov, Aleksandr I., E-mail: lotkov@ispms.tsc.ru, E-mail: egu@ispms.tsc.ru

    In the work, we study the mechanisms of structural phase state formation in NiTi surface layers after low-energy pulsed electron beam irradiation depending on the electron beam energy density. It is revealed that after electron beam treatment of the NiTi specimens at energy densities E{sub 1} = 15 J/cm{sup 2}, E{sub 2} = 20 J/cm{sup 2}, and E{sub 3} = 30 J/cm{sup 2}, a series of effects is observed: the absence of the Ti2Ni phase and the presence of new peaks correspond to the B19′ martensite phase with monoclinic structure. Estimation of the relative volume content of the B2 andmore » B19′ phases from the total intensity of their peaks shows that the percentage of the martensite phase increases from ∼5 vol.% in the NiTi specimen irradiated at E{sub 1} = 15 J/cm{sup 2} to ∼80 vol.% in the NiTi specimen irradiated at E{sub 3} = 30 J/cm{sup 2}. It is found that in the NiTi specimens irradiated at E ≤ 20 J/cm{sup 2}, the layer that contains a martensite phase resides not on the surface but at some depth from it.« less

  13. Diffraction efficiency of plasmonic gratings fabricated by electron beam lithography using a silver halide film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer,, E-mail: sudheer@rrcat.gov.in, E-mail: sudheer.rrcat@gmail.com; Tiwari, P.; Srivastava, Himanshu

    2016-07-28

    The silver nanoparticle surface relief gratings of ∼10 μm period are fabricated using electron beam lithography on the silver halide film substrate. Morphological characterization of the gratings shows that the period, the shape, and the relief depth in the gratings are mainly dependent on the number of lines per frame, the spot size, and the accelerating voltage of electron beam raster in the SEM. Optical absorption of the silver nanoparticle gratings provides a broad localized surface plasmon resonance peak in the visible region, whereas the intensity of the peaks depends on the number density of silver nanoparticles in the gratings. Themore » maximum efficiency of ∼7.2% for first order diffraction is observed for the grating fabricated at 15 keV. The efficiency is peaking at 560 nm with ∼380 nm bandwidth. The measured profiles of the diffraction efficiency for the gratings are found in close agreement with the Raman-Nath diffraction theory. This technique provides a simple and efficient method for the fabrication of plasmonic nanoparticle grating structures with high diffraction efficiency having broad wavelength tuning.« less

  14. Multilayer coating of optical substrates by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Daniel, M. V.; Demmler, M.

    2017-10-01

    Ion beam sputtering is well established in research and industry, despite its relatively low deposition rates compared to electron beam evaporation. Typical applications are coatings of precision optics, like filters, mirrors and beam splitter. Anti-reflective or high-reflective multilayer stacks benefit from the high mobility of the sputtered particles on the substrate surface and the good mechanical characteristics of the layers. This work gives the basic route from single layer optimization of reactive ion beam sputtered Ta2O5 and SiO2 thin films towards complex multilayer stacks for high-reflective mirrors and anti-reflective coatings. Therefore films were deposited using different oxygen flow into the deposition chamber Afterwards, mechanical (density, stress, surface morphology, crystalline phases) and optical properties (reflectivity, absorption and refractive index) were characterized. These knowledge was used to deposit a multilayer coating for a high reflective mirror.

  15. A large area high resolution imaging detector for fast atom diffraction

    NASA Astrophysics Data System (ADS)

    Lupone, Sylvain; Soulisse, Pierre; Roncin, Philippe

    2018-07-01

    We describe a high resolution imaging detector based on a single 80 mm micro-channel-plate (MCP) and a phosphor screen mounted on a UHV flange of only 100 mm inner diameter. It relies on standard components and we describe its performance with one or two MCPs. A resolution of 80 μm rms is observed on the beam profile. At low count rate, individual impact can be pinpointed with few μm accuracy but the resolution is probably limited by the MCP channel diameter. The detector has been used to record the diffraction of fast atoms at grazing incidence on crystal surfaces (GIFAD), a technique probing the electronic density of the topmost layer only. The detector was also used to record the scattering profile during azimuthal scan of the crystal to produce triangulation curves revealing the surface crystallographic directions of molecular layers. It should also be compatible with reflection high energy electron (RHEED) experiment when fragile surfaces require a low exposure to the electron beam. The discussions on the mode of operation specific to diffraction experiments apply also to commercial detectors.

  16. Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuanyuan; Wei, Yanyu; Jiang, Xuebing

    We present an analysis of a Cherenkov free-electron laser based on a single slab made from negative-index materials. In this system, a flat electron beam with finite thickness travelling close to the surface of the slab interacts with the copropagating electromagnetic surface mode. The dispersion equation for a finitely thick slab is worked out and solved numerically to study the dispersion relation of surface modes supported by negative-index materials, and the calculations are in good agreement with the simulation results from a finite difference time domain code. We find that under suitable conditions there is inherent feedback in such amore » scheme due to the characteristics of negative-index materials, which means that the system can oscillate without external reflectors when the beam current exceeds a threshold value, i.e., start current. Using the hydrodynamic approach, we setup coupled equations for this system, and solve these equations analytically in the small signal regime to obtain formulas for the spatial growth rate and start current.« less

  17. Experimental study on secondary electron emission characteristics of Cu

    NASA Astrophysics Data System (ADS)

    Liu, Shenghua; Liu, Yudong; Wang, Pengcheng; Liu, Weibin; Pei, Guoxi; Zeng, Lei; Sun, Xiaoyang

    2018-02-01

    Secondary electron emission (SEE) of a surface is the origin of the multipacting effect which could seriously deteriorate beam quality and even perturb the normal operation of particle accelerators. Experimental measurements on secondary electron yield (SEY) for different materials and coatings have been developed in many accelerator laboratories. In fact, the SEY is just one parameter of secondary electron emission characteristics which include spatial and energy distribution of emitted electrons. A novel experimental apparatus was set up in China Spallation Neutron Source, and an innovative method was applied to obtain the whole characteristics of SEE. Taking Cu as the sample, secondary electron yield, its dependence on beam injection angle, and the spatial and energy distribution of secondary electrons were achieved with this measurement device. The method for spatial distribution measurement was first proposed and verified experimentally. This contribution also tries to give all the experimental results a reasonable theoretical analysis and explanation.

  18. High Power Particle Beams and Pulsed Power for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Bluhm, Hansjoachim; An, Wladimir; Engelko, Wladimir; Giese, Harald; Frey, Wolfgang; Heinzel, Annette; Hoppé, Peter; Mueller, Georg; Schultheiss, Christoph; Singer, Josef; Strässner, Ralf; Strauß, Dirk; Weisenburger, Alfons; Zimmermann, Fritz

    2002-12-01

    Several industrial scale projects with economic and ecologic potential are presently emanating from research and development in the fields of high power particle beams and pulsed power in Europe. Material surface modifications with large area pulsed electron beams are used to protect high temperature gas turbine blades and steel structures in Pb/Bi cooled accelerator driven nuclear reactor systems against oxidation and corrosion respectively. Channel spark electron beams are applied to deposit bio-compatible or bio-active layers on medical implants. Cell membranes are perforated with strong pulsed electric fields to extract nutritive substances or raw materials from the cells and to kill bacteria for sterilization of liquids. Eletrodynamic fragmentation devices are developed to reutilize concrete aggregates for the production of high quality secondary concrete. All activities have a large potential to contribute to a more sustainable economy.

  19. Dose computation for therapeutic electron beams

    NASA Astrophysics Data System (ADS)

    Glegg, Martin Mackenzie

    The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).

  20. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  1. Creating nanostructures on silicon using ion blistering and electron beam lithography

    NASA Astrophysics Data System (ADS)

    Giguère, Alexandre; Beerens, Jean; Terreault, Bernard

    2006-01-01

    We have investigated the patterning of silicon surfaces using ion blistering in conjunction with e-beam lithography. Variable width (150-5000 nm) trenches were first written in 500 nm thick PMMA resist spin coated on silicon, using an electron beam. Next, 10 keV H2+ ions were implanted to various fluences through the masks. The resist was then removed and the samples were rapidly thermally annealed at 900 °C. The resulting surface morphologies were investigated by atomic force microscopy. In the wider trenches, round blisters with 600-900 nm diameter are observed, which are similar to those observed on unmasked surfaces. In submicron trenches, there is a transition in morphology, caused by the proximity to the border. The blisters are smaller and they are densely aligned along the trench direction ('string of pearls' pattern). Unusual blister geometries are observed in the narrowest trenches (150 nm) at higher H doses (>=1 × 1017 H cm-2)—such as tubular blisters aligned along the trench. It was also found that for H doses of >=6 × 1016 H cm-2 the surface swells uniformly, which has implications for the blistering mechanism. The prospects for accomplishing ion cutting, layer transfer and bonding of finely delineated patterns of silicon onto another material are discussed in the light of the above results.

  2. Silicone intraocular lens surface calcification in a patient with asteroid hyalosis.

    PubMed

    Matsumura, Kazuhiro; Takano, Masahiko; Shimizu, Kimiya; Nemoto, Noriko

    2012-07-01

    To confirm a substance presence on the posterior intraocular lens (IOL) surface in a patient with asteroid hyalosis. An 80-year-old man had IOLs for approximately 12 years. Opacities and neodymium-doped yttrium aluminum garnet pits were observed on the posterior surface of the right IOL. Asteroid hyalosis and an epiretinal membrane were observed OD. An IOL exchange was performed on 24 March 2008, and the explanted IOL was analyzed using a light microscope and a transmission electron microscope with a scanning electron micrograph and an energy-dispersive X-ray spectrometer for elemental analysis. To confirm asteroid hyalosis, asteroid bodies were examined with the ionic liquid (EtMeIm+ BF4-) method using a field emission scanning electron microscope (FE-SEM) with digital beam control RGB mapping. X-ray spectrometry of the deposits revealed high calcium and phosphorus peaks. Spectrometry revealed that the posterior IOL surface opacity was due to a calcium-phosphorus compound. Examination of the asteroid bodies using FE-SEM with digital beam control RGB mapping confirmed calcium and phosphorus as the main components. Calcium hydrogen phosphate dihydrate deposits were probably responsible for the posterior IOL surface opacity. Furthermore, analysis of the asteroid bodies demonstrated that calcium and phosphorus were its main components.

  3. Optimization of ion-atomic beam source for deposition of GaN ultrathin films.

    PubMed

    Mach, Jindřich; Šamořil, Tomáš; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš

    2014-08-01

    We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20-200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm(2)). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

  4. A novel approach for preparation and in situ tensile testing of silica glass membranes in the TEM

    NASA Astrophysics Data System (ADS)

    Mačković, Mirza; Przybilla, Thomas; Dieker, Christel; Herre, Patrick; Romeis, Stefan; Stara, Hana; Schrenker, Nadine; Peukert, Wolfgang; Spiecker, Erdmann

    2017-04-01

    The mechanical behavior of glasses in the micro- and/or nanometer regime increasingly gains importance in nowadays modern technology. However, suitable small scale preparation and mechanical testing approaches for a reliable assessment of the mechanical properties of glasses still remain a big challenge. In the present work, a novel approach for site-specific preparation and quantitative in situ tensile testing of thin silica glass membranes in the transmission electron microscope is presented. Thereby, advanced focused ion beam techniques are used for the preparation of nanoscale dog bone shaped silica glass specimens suitable for in situ tensile testing. Small amounts of gallium are detected on the surface of the membranes resulting from redeposition effects during the focused ion beam preparation procedure. Possible structural changes of silica glass upon irradiation with electrons and gallium ions are investigated by controlled irradiation experiments, followed by a structural analysis using Raman spectroscopy. While moderate electron beam irradiation does not alter the structure of silica glass, ion beam irradiation results in minor densification of the silica glass membranes. In situ tensile testing of membranes under electron beam irradiation results in distinctive elongations without fracture confirming the phenomenon of superplasticity. In contrast, in situ tensile testing in the absence of the electron beam reveals an elastic/plastic deformation behavior, and finally leads to fracture of the membranes. The Young’s moduli of the glass membranes pulled at beam off conditions in the TEM are comparable with values known for bulk fused silica, while the tensile strength is in the range of values reported for silica glass fibers with comparable dimensions. The impact of electron beam irradiation on the mechanical properties of silica glass membranes is further discussed. The results of the present work open new avenues for dedicated preparation and nanomechanical characterization of silica glasses, and further contribute to a fundamental understanding of the mechanical behavior of such glasses when being scaled down to the nanometer regime.

  5. Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing

    NASA Astrophysics Data System (ADS)

    Rajabifar, Bahram; Kim, Sanha; Slinker, Keith; Ehlert, Gregory J.; Hart, A. John; Maschmann, Matthew R.

    2015-10-01

    We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, and CNT orientation. Milled cuts with depths between 0-100 microns are generated, corresponding to a material removal rate of up to 20.1 μm3/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries.

  6. Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajabifar, Bahram; Maschmann, Matthew R., E-mail: MaschmannM@missouri.edu; Kim, Sanha

    2015-10-05

    We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, andmore » CNT orientation. Milled cuts with depths between 0–100 microns are generated, corresponding to a material removal rate of up to 20.1 μm{sup 3}/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries.« less

  7. Controlled growth-reversal of catalytic carbon nanotubes under electron-beam irradiation.

    PubMed

    Stolojan, Vlad; Tison, Yann; Chen, Guan Yow; Silva, Ravi

    2006-09-01

    The growth of carbon nanotubes from Ni catalysts is reversed and observed in real time in a transmission electron microscope, at room temperature. The Ni catalyst is found to be Ni3C and remains attached to the nanotube throughout the irradiation sequence, indicating that C most likely diffuses on the surface of the catalyst to form nanotubes. We calculate the energy barrier for saturating the Ni3C (2-13) surface with C to be 0.14 eV, thus providing a low-energy surface for the formation of graphene planes.

  8. Surface-and bulk-properties of EPDM rubber modified by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Majumder, Papiya Sen; Bhowmick, Anil K.

    1999-01-01

    Electron beam initiated grafting of trimethylol propane triacrylate (TMPTA) onto ethylene propylene diene monomer (EPDM) has been carried out over a wide range of irradiation doses (0-200 kGy) using a fixed concentration (10%) of TMPTA. The samples have been both surface and bulk modified. Infrared (IR) studies indicate increased peak absorbances at 1730, 1260, 1120 and 1019 cm -1 upto 50 kGy and hence increased CO and C-O-C concentrations. The results are further supported by X-ray photoelectron spectroscopy (XPS) studies. The surface energy of EPDM increases from 46.5 to 60.7 mJ/m 2 on irradiation of the surface modified samples to 50 kGy dose, due to increased contribution of γSAB and γS(-). The results have been explained with the help of IR and XPS data. The values of tensile strength of the surface modified samples have not changed very significantly, while the moduli values have increased at the cost of the elongation at break. DMTA studies have shown changes in Tg and tan δmax on modification of the surface. The surface morphology of the modified and irradiated samples reveals acrylate flow marks at high magnification.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A. A.; Hesjedal, T.; Diamond Light Source, Didcot OX11 0DE

    We present a miniaturized molecular beam epitaxy (miniMBE) system with an outer diameter of 206 mm, optimized for flexible and high-throughput operation. The three-chamber system, used here for oxide growth, consists of a sample loading chamber, a storage chamber, and a growth chamber. The growth chamber is equipped with eight identical effusion cell ports with linear shutters, one larger port for either a multi-pocket electron beam evaporator or an oxygen plasma source, an integrated cryoshroud, retractable beam-flux monitor or quartz-crystal microbalance, reflection high energy electron diffraction, substrate manipulator, main shutter, and quadrupole mass spectrometer. The system can be combined withmore » ultrahigh vacuum (UHV) end stations on synchrotron and neutron beamlines, or equivalently with other complex surface analysis systems, including low-temperature scanning probe microscopy systems. Substrate handling is compatible with most UHV surface characterization systems, as the miniMBE can accommodate standard surface science sample holders. We introduce the design of the system, and its specific capabilities and operational parameters, and we demonstrate the epitaxial thin film growth of magnetoelectric Cr{sub 2}O{sub 3} on c-plane sapphire and ferrimagnetic Fe{sub 3}O{sub 4} on MgO (001)« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ping; Yan, Pengfei; Romero, Eric

    Capacity loss, and voltage decrease upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[Li xMn yTM 1-x-y]O 2, TM = Ni, Co or Fe) have recently been attributed to the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li 0.2Ni 0.2Mn 0.6]O 2 (LNMO) particles, which are identical to those reported due to the charge-discharge cycle butmore » are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by electron dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LNMO is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. The observation through this study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.« less

  11. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru

    2015-10-27

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to anmore » enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.« less

  12. Thomson scattering diagnostic for the measurement of ion species fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J S; Park, H S; Amendt, A

    2012-05-01

    Simultaneous Thomson scattering measurements of collective electron-plasma and ion-acoustic fluctuations have been utilized to determine ion species fraction from laser produced CH plasmas. The CH{sub 2} foil is heated with 10 laser beams, 500 J per beam, at the Omega Laser facility. Thomson scattering measurements are made 4 mm from the foil surface using a 30 J 2{omega} probe laser with a 1 ns pulse length. Using a series of target shots the plasma evolution is measured from 2.5 ns to 9 ns after the rise of the heater beams. Measuring the electron density and temperature from the electron-plasma fluctuationsmore » constrains the fit of the two-ion species theoretical form factor for the ion feature such that the ion temperature, plasma flow velocity and ion species fraction are determined. The ion species fraction is determined to an accuracy of {+-}0.06 in species fraction.« less

  13. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  14. Evolutionary computation applied to the reconstruction of 3-D surface topography in the SEM.

    PubMed

    Kodama, Tetsuji; Li, Xiaoyuan; Nakahira, Kenji; Ito, Dai

    2005-10-01

    A genetic algorithm has been applied to the line profile reconstruction from the signals of the standard secondary electron (SE) and/or backscattered electron detectors in a scanning electron microscope. This method solves the topographical surface reconstruction problem as one of combinatorial optimization. To extend this optimization approach for three-dimensional (3-D) surface topography, this paper considers the use of a string coding where a 3-D surface topography is represented by a set of coordinates of vertices. We introduce the Delaunay triangulation, which attains the minimum roughness for any set of height data to capture the fundamental features of the surface being probed by an electron beam. With this coding, the strings are processed with a class of hybrid optimization algorithms that combine genetic algorithms and simulated annealing algorithms. Experimental results on SE images are presented.

  15. Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction

    NASA Astrophysics Data System (ADS)

    Talbi, A.; Petit, A.; Melhem, A.; Stolz, A.; Boulmer-Leborgne, C.; Gautier, G.; Defforge, T.; Semmar, N.

    2016-06-01

    In this study, laser induced periodic surface structures were formed on mesoporous silicon by irradiation of Nd:YAG picosecond pulsed laser beam at 266 nm wavelength at 1 Hz repetition rate and with 42 ps pulse duration. The effects of laser processing parameters as laser beam fluence and laser pulse number on the formation of ripples were investigated. Scanning electron microscopy and atomic force microscopy were used to image the surface morphologies and the cross section of samples after laser irradiation. At relatively low fluence ∼20 mJ/cm2, ripples with period close to the laser beam wavelength (266 nm) and with an always controlled orientation (perpendicular to the polarization of ps laser beam) appeared after a large laser pulse number of 12,000. It has been found that an initial random distribution of SiOx nanoparticles is periodically structured with an increase of the laser pulse number. Finally, it is experimentally demonstrated that we formed a 100 nm liquid phase under the protusion zones including the pores in the picosecond regime.

  16. Performance of the K+ ion diode in the 2 MV injector for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.

    2002-02-01

    Heavy ion beam inertial fusion driver concepts depend on the availability and performance of high-brightness high-current ion sources. Surface ionization sources have relatively low current density but high brightness because of the low temperature of the emitted ions. We have measured the beam profiles at the exit of the injector diode, and compared the measured profiles with EGUN and WARP-3D predictions. Spherical aberrations are significant in this large aspect ratio diode. We discuss the measured and calculated beam size and beam profiles, the effect of aberrations, quality of vacuum, and secondary electron distributions on the beam profile.

  17. Electron beam diagnostic system using computed tomography and an annular sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less

  18. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  19. Electronics and Algorithms for HOM Based Beam Diagnostics

    NASA Astrophysics Data System (ADS)

    Frisch, Josef; Baboi, Nicoleta; Eddy, Nathan; Nagaitsev, Sergei; Hensler, Olaf; McCormick, Douglas; May, Justin; Molloy, Stephen; Napoly, Olivier; Paparella, Rita; Petrosyan, Lyudvig; Ross, Marc; Simon, Claire; Smith, Tonee

    2006-11-01

    The signals from the Higher Order Mode (HOM) ports on superconducting cavities can be used as beam position monitors and to do survey structure alignment. A HOM-based diagnostic system has been installed to instrument both couplers on each of the 40 cryogenic accelerating structures in the DESY TTF2 Linac. The electronics uses a single stage down conversion from the 1.7 GHz HOM spectral line to a 20MHz IF which has been digitized. The electronics is based on low cost surface mount components suitable for large scale production. The analysis of the HOM data is based on Singular Value Decomposition. The response of the OM modes is calibrated using conventional BPMs.

  20. Induced charging of shuttle orbiter by high electron-beam currents

    NASA Technical Reports Server (NTRS)

    Liemohn, H. B.

    1977-01-01

    Emission of high-current electron beams that was proposed for some Spacelab payloads required substantial return currents to the orbiter skin in order to neutralize the beam charge. Since the outer skin of the vehicle was covered with approximately 1200 sq m of thermal insulation which has the dielectric quality of air and an electrical conductivity that was estimated by NASA at 10 to the -9 power to 10 to the -10 power mhos/m, considerable transient charging and local potential differences were anticipated across the insulation. The theory for induced charging of spacecraft due to operation of electron guns was only developed for spherical metal vehicles and constant emission currents, which were not directly applicable to the orbiter situation. Field-aligned collection of electron return current from the ambient ionosphere at orbiter altitudes provides up to approximately 150 mA on the conducting surfaces and approximately 2.4 A on the dielectric thermal insulation. Local ionization of the neutral atmosphere by energetic electron bombardment or electrical breakdown may provide somewhat more return current.

  1. Back-bombardment compensation in microwave thermionic electron guns

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Jeremy M. D.; Madey, John M. J.

    2014-12-01

    The development of capable, reliable, and cost-effective compact electron beam sources remains a long-standing objective of the efforts to develop the accelerator systems needed for on-site research and industrial applications ranging from electron beam welding to high performance x-ray and gamma ray light sources for element-resolved microanalysis and national security. The need in these applications for simplicity, reliability, and low cost has emphasized solutions compatible with the use of the long established and commercially available pulsed microwave rf sources and L-, S- or X-band linear accelerators. Thermionic microwave electron guns have proven to be one successful approach to the development of the electron sources for these systems providing high macropulse average current beams with picosecond pulse lengths and good emittance out to macropulse lengths of 4-5 microseconds. But longer macropulse lengths are now needed for use in inverse-Compton x-ray sources and other emerging applications. We describe in this paper our approach to extending the usable macropulse current and pulse length of these guns through the use of thermal diffusion to compensate for the increase in cathode surface temperature due to back-bombardment.

  2. A Monochromatic, Aberration-Corrected, Dual-Beam Low Energy Electron Microscope

    PubMed Central

    Mankos, Marian; Shadman, Khashayar

    2013-01-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. PMID:23582636

  3. A monochromatic, aberration-corrected, dual-beam low energy electron microscope.

    PubMed

    Mankos, Marian; Shadman, Khashayar

    2013-07-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Atomic Beam Scattering Methods to Study Overlayer Structures and H-Surface Interaction Relevant to Astrophysics

    NASA Astrophysics Data System (ADS)

    Lin, Jingsu

    In this thesis we present results of experimental methods for studying surface structures of ultra-thin films and describe a new apparatus to study the recombination of atomic hydrogen on well characterized low temperature surface using atomic and molecular beam methods. We have used atomic beam scattering (ABS) to characterize the growth of mercury and lead overlayers on Cu(001) surface. The structures of ordered phases have been identified using ABS and low-energy electron diffraction (LEED). A model to analyze diffraction data from these phases is presented. The new apparatus we are going to describe includes a high performance atomic hydrogen source using radio-frequency (RF) dissociation. The dissociation efficiency can be as high as 90% in the optimized pressure range. An atomic hydrogen beam line has been added to our ultra-high vacuum (UHV) scattering apparatus. We have also designed and constructed a low temperature sample manipulator for experiments at liquid helium temperatures. The manipulator has one degree of freedom of rotation and the capability of heating the sample to 700K and cooling down to 12K. The first sample studied was a single graphite surface. We have used a He beam to characterize the sample surface and to monitor deposition of H on the sample surface in real time. A series of "adsorption curves" have been obtained at different temperature and doses. We found that at temperatures below 16K, both H and H_2 have formed a partial layer on the surface. From adsorption curve, we deduce that the initial sticking coefficient for H is about 0.06 when surface at 16K. When the H beam is interrupted, the He specularly reflected beam recovers partially, indicating that hydrogen atoms desorb, while others remain on the surface. The residual coverage of H is estimated to be about 2% of a monolayer.

  5. Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoze; Song, Wei; Tan, Weibing

    2016-07-15

    A high efficiency relativistic backward wave oscillator working at a low guiding magnetic field is designed and simulated. A trapezoidal resonant reflector is used to reduce the modulation field in the resonant reflector to avoid overmodulation of the electron beam which will lead to a large momentum spread and then low conversion efficiency. The envelope of the inner radius of the slow wave structure (SWS) increases stepwise to keep conformal to the trajectory of the electron beam which will alleviate the bombardment of the electron on the surface of the SWS. The length of period of the SWS is reducedmore » gradually to make a better match between phase velocity and electron beam, which decelerates continually and improves the RF current distribution. Meanwhile the modulation field is reduced by the introduction of nonuniform SWS also. The particle in cell simulation results reveal that a microwave with a power of 1.8 GW and a frequency of 14.7 GHz is generated with an efficiency of 47% when the diode voltage is 620 kV, the beam current 6.1 kA, and the guiding magnetic field 0.95 T.« less

  6. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    DOEpatents

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  7. Electron gun controlled smart structure

    DOEpatents

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  8. Surface microstructure and high temperature corrosion resistance of arc-sprayed FeCrAl coating irradiated by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Hao, Shengzhi; Zhao, Limin; He, Dongyun

    2013-10-01

    The surface microstructure of arc-sprayed FeCrAl coating irradiated by high current pulsed electron beam (HCPEB) with long pulse duration of 200 μs was characterized by using optical microscopy, scanning electron microscopy and X-ray diffractometry. The distribution of chemical composition in modified surface layer was measured with electron probe micro-analyzer. The high temperature corrosion resistance of FeCrAl coating was tested in a saturated Na2SO4 and K2SO4 solution at 650 °C. After HCPEB irradiation, the coarse surface of arc-sprayed coating was changed as discrete bulged nodules with smooth and compact appearance. When using low energy density of 20 J/cm2, the surface modified layer was continuous entirely with an average melting depth of ˜30 μm. In the surface remelted layer, Fe and Cr elements gave a uniform distribution, while Al and O elements agglomerated particularly at the concave part between nodule structures to form α-Al2O3 phase. After high temperature corrosion tests, the FeCrAl coating treated with HCPEB of 20 J/cm2 remained a glossy surface with weight increment of ˜51 mg/cm2, decreased by 20% as compared to the initial sample. With the increasing energy density of HCPEB irradiation, the integrity of surface modified layer got segmented due to the formation of larger bulged nodules and cracks at the concave parts. For the HCPEB irradiation of 40 J/cm2, the high temperature corrosion resistance of FeCrAl coating was deteriorated drastically.

  9. Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Zutz, Amelia Marie

    Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.

  10. Complete elimination of the secondary electron background in Auger spectra using Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Kalaskar, Sushant; Satyal, Suman; Lim, L.; Weiss, Alexander

    2010-03-01

    Time of flight- positron annihilation induced Auger electron spectroscopy (TOF-PAES) is a surface analysis technique with high surface selectivity. Almost 95% of the TOF-PAES signal emerges from the topmost layer of the sample due to the trapping of positrons in an image-potential-well before annihilation. In this poster we will present new results that demonstrate how very low energy positron beams can be used together with the time of Flight (TOF) technique developed at The University of Texas at Arlington to obtain Auger spectra that are completely free of secondary electron background.

  11. Damping Ring R&D at CESR-TA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, David L.

    2015-01-23

    Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams ofmore » electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring, and that an instability associated with residual gas in the beam pipe would limit the intensity of the electron ring. It was also not clear whether the required very small beam size could be achieved. The results of this study are important contributions to the design of both the electron and positron damping rings in which all of those challenges are addressed and overcome. Our findings are documented in the ILC Technical Design Report, a document that represents the work of an international collaboration of scientists. Our contributions include design of the beam magnetic optics for the 3 km circumference damping rings, the vacuum system and surface treatments for electron cloud mitigation, the design of the guide field magnets, design of the superconducting damping wigglers, and new detectors for precision measurement of beam properties. Our study informed the specification of the basic design parameters for the damping rings, including alignment tolerances, magnetic field errors, and instrumentation. We developed electron cloud modelling tools and simulations to aid in the interpretation of the measurements that we carried out in the Cornell Electron-positron Storage Ring (CESR). The simulations provide a means for systematic extrapolation of our measurements at CESR to the proposed ILC damping rings, and ultimately to specify how the beam pipes should be fabricated in order to minimize the effects of the electron cloud. With the conclusion of this study, the design of the essential components of the damping rings is complete, including the development and characterization (with computer simulations) of the beam optics, specification of techniques for minimizing beam size, design of damping ring instrumentation, R&D into electron cloud suppression methods, tests of long term durability of electron cloud coatings, and design of damping ring vacuum system components.« less

  12. Electron beam controlled covalent attachment of small organic molecules to graphene

    NASA Astrophysics Data System (ADS)

    Markevich, Alexander; Kurasch, Simon; Lehtinen, Ossi; Reimer, Oliver; Feng, Xinliang; Müllen, Klaus; Turchanin, Andrey; Khlobystov, Andrei N.; Kaiser, Ute; Besley, Elena

    2016-01-01

    The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography.The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography. Electronic supplementary information (ESI) available: A table showing the calculated binding energies and magnetic moments for all studied molecular radicals; details of samples preparation and characterization; time series of TEM images showing transformations of a C24Cl12 molecule on graphene under electron irradiation. See DOI: 10.1039/c5nr07539d

  13. Electron reversal ionizer for detection of trace species using a spherical cathode

    NASA Technical Reports Server (NTRS)

    Boumsellek, Said (Inventor); Chutjian, Ara (Inventor)

    1994-01-01

    A reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region employs an indirectly heated cathode having a concave emitting surface of width of W less than 2r, where r is the radius of curvature and preferably a ratio of width to radius approximately equal to one for optimum high current for a given cathode width.

  14. Dynamical calculations for RHEED intensity oscillations

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2005-03-01

    A practical computing algorithm working in real time has been developed for calculating the reflection high-energy electron diffraction from the molecular beam epitaxy growing surface. The calculations are based on the use of a dynamical diffraction theory in which the electrons are taken to be diffracted by a potential, which is periodic in the dimension perpendicular to the surface. The results of the calculations are presented in the form of rocking curves to illustrate how the diffracted beam intensities depend on the glancing angle of the incident beam. Program summaryTitle of program: RHEED Catalogue identifier:ADUY Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Pentium-based PC Operating systems or monitors under which the program has been tested: Windows 9x, XP, NT, Linux Programming language used: Borland C++ Memory required to execute with typical data: more than 1 MB Number of bits in a word: 64 bits Number of processors used: 1 Distribution format:tar.gz Number of lines in distributed program, including test data, etc.:982 Number of bytes in distributed program, including test data, etc.: 126 051 Nature of physical problem: Reflection high-energy electron diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared by the molecular beam epitaxy (MBE). Nowadays, RHEED is used in many laboratories all over the world where researchers deal with the growth of materials by MBE. The RHEED technique can reveal, almost instantaneously, changes either in the coverage of the sample surface by adsorbates or in the surface structure of a thin film. In most cases the interpretation of experimental results is based on the use of dynamical diffraction approaches. Such approaches are said to be quite useful in qualitative and quantitative analysis of RHEED experimental data. Method of solution: RHEED intensities are calculated within the framework of the general matrix formulation of Peng and Whelan [Surf. Sci. Lett. 238 (1990) L446] under the one-beam condition. The dynamical diffraction calculations presented in this paper utilize the systematic reflection case in RHEED, in which the atomic potential in the planes parallel to the surface are projected on the surface normal, so that the results are insensitive to the atomic arrangement in the layers parallel to the surface. This model shows a systematic approximation in calculating dynamical RHEED intensities, and only a layer coverage factor for the nth layer was taken into account in calculating the interaction potential between the fast electron and that layer. Typical running time: The typical running time is machine and user-parameters dependent. Unusual features of the program: The program is presented in the form of a basic unit RHEED.cpp and should be compiled using C++ compilers, including C++ Builder and g++.

  15. Structural, optical and compositional stability of MoS2 multi-layer flakes under high dose electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Rotunno, E.; Fabbri, F.; Cinquanta, E.; Kaplan, D.; Longo, M.; Lazzarini, L.; Molle, A.; Swaminathan, V.; Salviati, G.

    2016-06-01

    MoS2 multi-layer flakes, exfoliated from geological molybdenite, have been exposed to high dose electron irradiation showing clear evidence of crystal lattice and stoichiometry modifications. A massive surface sulfur depletion is induced together with the consequent formation of molybdenum nanoislands. It is found that a nanometric amorphous carbon layer, unwillingly deposited during the transmission electron microscope experiments, prevents the formation of the nanoislands. In the absence of the carbon layer, the formation of molybdenum grains proceeds both on the top and bottom surfaces of the flake. If carbon is present on both the surfaces then the formation of Mo grains is completely prevented.

  16. A comparison of TPS and different measurement techniques in small-field electron beams.

    PubMed

    Donmez Kesen, Nazmiye; Cakir, Aydin; Okutan, Murat; Bilge, Hatice

    2015-01-01

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5cm and smaller, for nominal energies of 6, 9, and 15MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15MeV and 32% for 9MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  17. Response under low-energy electron irradiation of a thin film of a potential copper precursor for focused electron beam induced deposition (FEBID)

    PubMed Central

    Sala, Leo; Szymańska, Iwona B; Dablemont, Céline; Lafosse, Anne

    2018-01-01

    Background: Focused electron beam induced deposition (FEBID) allows for the deposition of free standing material within nanometre sizes. The improvement of the technique needs a combination of new precursors and optimized irradiation strategies to achieve a controlled fragmentation of the precursor for leaving deposited material of desired composition. Here a new class of copper precursors is studied following an approach that probes some surface processes involved in the fragmentation of precursors. We use complexes of copper(II) with amines and perfluorinated carboxylate ligands that are solid and stable under ambient conditions. They are directly deposited on the surface for studying the fragmentation with surface science tools. Results: Infrared spectroscopy and high-resolution electron energy loss spectroscopy (HREELS) are combined to show that the precursor is able to spontaneously lose amine ligands under vacuum. This loss can be enhanced by mild heating. The combination of mass spectrometry and low-energy electron irradiation (0–15 eV) shows that full amine ligands can be released upon irradiation, and that fragmentation of the perfluorinated ligands is induced by electrons of energy as low as 1.5 eV. Finally, the cross section for this process is estimated from the temporal evolution in the experiments on electron-stimulated desorption (ESD). Conclusion: The release of full ligands under high vacuum and by electron irradiation, and the cross section measured here for ligands fragmentation allow one to envisage the use of the two precursors for FEBID studies. PMID:29379701

  18. Electrostatic Propulsion Beam Divergence Effects on Spacecraft Surfaces. Volume 2, Addendum 1: Ion Time-of-flight Determinations of Doubly to Singly Ionized Mercury Ion Ratios from a Mercury Electron Bombardment Discharge

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Kemp, R. F.; Hall, D. F.

    1973-01-01

    The analysis of ion exhaust beam current flow for multiply charged ion species and the application to propellant utilization for the thruster are discussed. The ion engine in use in the experiments is a twenty centimeter diameter electromagnet electron bombardment engine. The experimental technique to determine the multiply charged ion abundance ratios using ion time of flight is described. An analytical treatment of the discharge action in producing various ion species has been carried out.

  19. Control of target-normal-sheath-accelerated protons from a guiding cone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, D. B.; Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225; Zhuo, H. B., E-mail: hongbin.zhuo@gmail.com

    2015-06-15

    It is demonstrated through particle-in-cell simulations that target-normal-sheath-accelerated protons can be well controlled by using a guiding cone. Compared to a conventional planar target, both the collimation and number density of proton beams are substantially improved, giving a high-quality proton beam which maintained for a longer distance without degradation. The effect is attributed to the radial electric field resulting from the charge due to the hot target electrons propagating along the cone surface. This electric field can effectively suppress the spatial spread of the protons after the expansion of the hot electrons.

  20. Impact of chemical polishing on surface roughness and dimensional quality of electron beam melting process (EBM) parts

    NASA Astrophysics Data System (ADS)

    Dolimont, Adrien; Rivière-Lorphèvre, Edouard; Ducobu, François; Backaert, Stéphane

    2018-05-01

    Additive manufacturing is growing faster and faster. This leads us to study the functionalization of the parts that are produced by these processes. Electron Beam melting (EBM) is one of these technologies. It is a powder based additive manufacturing (AM) method. With this process, it is possible to manufacture high-density metal parts with complex topology. One of the big problems with these technologies is the surface finish. To improve the quality of the surface, some finishing operations are needed. In this study, the focus is set on chemical polishing. The goal is to determine how the chemical etching impacts the dimensional accuracy and the surface roughness of EBM parts. To this end, an experimental campaign was carried out on the most widely used material in EBM, Ti6Al4V. Different exposure times were tested. The impact of these times on surface quality was evaluated. To help predicting the excess thickness to be provided, the dimensional impact of chemical polishing on EBM parts was estimated. 15 parts were measured before and after chemical machining. The improvement of surface quality was also evaluated after each treatment.

Top