Science.gov

Sample records for electron beam technique

  1. A Investigation of Radiotherapy Electron Beams Using Monte Carlo Techniques

    NASA Astrophysics Data System (ADS)

    Ding, George X.

    1995-01-01

    Radiotherapy electron beams are more complicated than photon beams due to variations in the beam production, the scattering of low-energy electrons, and the presence contaminant photons. The detailed knowledge of a radiotherapy beam is essential to an accurate calculation of dose distribution for a treatment planning system. This investigation aims to enhance our understanding of radiotherapy beams by focusing on electron beams used in radiotherapy. It starts with a description of the Monte Carlo simulation code, BEAM, and a detailed simulation of an accelerator head to obtain realistic radiotherapy beams. The simulation covers electron beams from various accelerators, including the NRC research accelerator, the NPL (UK), accelerator, A Varian Clinac 2100C, a Philips SL75-20, a Siemens KD2, an AECL Therac 20, and a Scanditronix MM50. The beam energies range from 4 to 50 MeV. The EGS4 user code, BEAM, is extensively benchmarked against experiment by comparing calculated dose distributions with measured dose distributions in water. The simulated beams are analyzed to obtain the characteristics of various electron beams from a variety of accelerators. The simulated beams are also used as inputs to calculate the following parameters: the mean electron energy, the most probable energy, the energy-range relationships, the depth-scaling factor to convert depths in plastic to water-equivalent depths, the water-to-air stopping-power ratios, and the electron fluence correction factors used to convert dose measured in plastics to dose in water. These parameters are essential for electron beam dosimetry. The results from this study can be applied in cancer clinics to improve the accuracy of the absolute dosimetry. The simulation also provides information about the backscatter into the beam monitor chamber, and predicts the influence on the beam output factors. This investigation presents comprehensive data on the clinical electron beams, and answers many questions which could

  2. Electro-optic techniques in electron beam diagnostics

    SciTech Connect

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  3. Carbon-nanotube electron-beam (C-beam) crystallization technique for silicon TFTs

    NASA Astrophysics Data System (ADS)

    Lee, Su Woong; Kang, Jung Su; Park, Kyu Chang

    2016-02-01

    We introduced a carbon-nanotube (CNT) electron beam (C-beam) for thin film crystallization and thin film transistor (TFT) applications. As a source of electron emission, a CNT emitter which had been grown on a silicon wafer with a resist-assisted patterning (RAP) process was used. By using the C-beam exposure, we successfully crystallized a silicon thin film that had nano-sized crystalline grains. The distribution of crystalline grain size was about 10 ˜ 30 nm. This nanocrystalline silicon thin film definitely had three crystalline directions which are (111), (220) and (311), respectively. The silicon TFTs crystallized by using a C-beam exposure showed a field effect mobility of 20 cm2/Vs and an on/off ratio of more than 107. The C-beam exposure can modify the bonding network of amorphous silicon with its proper energy.

  4. Facile electron-beam lithography technique for irregular and fragile substrates

    NASA Astrophysics Data System (ADS)

    Chang, Jiyoung; Zhou, Qin; Zettl, Alex

    2014-10-01

    A facile technique is presented which enables high-resolution electron beam lithography on irregularly-shaped, non-planar or fragile substrates such as the edges of a silicon chip, thin and narrow suspended beams and bridges, or small cylindrical wires. The method involves a spin-free dry-transfer of pre-formed uniform-thickness polymethyl methacrylate, followed by conventional electron beam writing, metal deposition, and lift-off. High-resolution patterning is demonstrated for challenging target substrates. The technique should find broad application in micro- and nano-technology research arenas.

  5. Facile electron-beam lithography technique for irregular and fragile substrates

    SciTech Connect

    Chang, Jiyoung; Zhou, Qin; Zettl, Alex

    2014-10-27

    A facile technique is presented which enables high-resolution electron beam lithography on irregularly-shaped, non-planar or fragile substrates such as the edges of a silicon chip, thin and narrow suspended beams and bridges, or small cylindrical wires. The method involves a spin-free dry-transfer of pre-formed uniform-thickness polymethyl methacrylate, followed by conventional electron beam writing, metal deposition, and lift-off. High-resolution patterning is demonstrated for challenging target substrates. The technique should find broad application in micro- and nano-technology research arenas.

  6. Group velocity delay spectroscopy technique for industrial monitoring of electron-beam-induced vapors

    NASA Astrophysics Data System (ADS)

    Benterou, Jerry J.; Berzins, Leon V.; Sharma, Manish N.

    1999-01-01

    Spectroscopic techniques are ideal for characterization and process control of electron beam generated beam generated vapor plumes. Absorption based techniques work well for a wide variety of applications, but are difficult to apply to optically dense or opaque vapor plumes. We describe an approach for monitoring optically dense vapor plumes that is based on measuring the group velocity delay of a laser beam near an optical transition to determine the vapor density. This technique has a larger dynamic range than absorption environment. Aluminum as chosen because of its prevalence in high performance aircraft alloys. In these applications, composition control of the alloy constituents is critical to the deposition process. Data is presented demonstrating the superior dynamic range of the measurement. In addition, preliminary data demonstrating aluminum vapor rate control in an electron beam evaporator is presented. Alternative applications where this technique could be useful are discussed.

  7. Essential reduction of stitching errors in electron-beam lithography using a multiple-exposure technique

    NASA Astrophysics Data System (ADS)

    Steingrueber, Ralf; Engel, Herbert; Lessle, Werner

    2001-08-01

    Electron-beam lithography is the technique of choice to generate in a flexible and accurate way structures and components in the micrometer region and below. Due to its particular exposure strategy, i.e. matching equidistant subfields to a complete pattern, electron-beam systems show typical displacement effects known as stitching errors. These errors can be of dramatic disturbance if they occur in high resolution patterns. This paper presents an exposure scheme which essentially reduces stitching errors by using a multiple exposure technique. The influence of this technique on the value of stitching errors and its interference with the process window as well as total processing time is reported.

  8. Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams

    SciTech Connect

    Piot, Philippe

    2015-12-01

    Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].

  9. Investigation of Ni-Cr-Si-Fe-B coatings produced by the electron beam cladding technique

    NASA Astrophysics Data System (ADS)

    Zimogliadova, T. A.; Drobyaz, E. A.; Golkovskii, M. G.; Bataev, V. A.; Durakov, V. G.; Cherkasova, N. Yu

    2016-11-01

    This paper presents the results of structural investigations and results of tribological and microhardness tests of the coating obtained by electron beam cladding of a Ni-Cr-Si-Fe-B self-fluxing alloy on low-carbon steel. After electron beam treatment high-quality dense layer with a thickness of 1.2-1.8 mm was obtained. The structure of the coating consisted of dendrite crystals based on y-Ni-solid solution and eutectic with complex composition. Microhardness of the coating achieves 370 HV. Wear-resistance of the coating obtained by electron-beam cladding technique was 1.6-fold higher than that of low-carbon carburized steel.

  10. Emittance and Energy Measurements of Low-Energy Electron Beam Using Optical Transition Radiation Techniques

    NASA Astrophysics Data System (ADS)

    Sakamoto, Fumito; Iijima, Hokuto; Dobashi, Katsuhiro; Imai, Takayuki; Ueda, Toru; Watanabe, Takahiro; Uesaka, Mitsuru

    2005-03-01

    Emittance and energy of an electron beam in the range of 8 to 22 MeV were measured via optical transition radiation (OTR) techniques. The beam divergence effect on observations of the far-field OTR image at low energies was studied by means of numerical analysis. The numerical analysis indicates that if the beam divergence is under 1.5 mrad, a simultaneous single-shot measurement of emittance and energy is possible. The results of the single-shot experiment agree with independent measurements conducted using the quadrupole scan method and an electron spectrometer. The experiments were performed with an S-band linac at the Nuclear Engineering Research Laboratory, The University of Tokyo (UTNL).

  11. Developments in OTR/ODR Imaging Techniques for 7-GeV Electron Beams at APS

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Yang, B. X.; Berg, W. J.; Rule, D. W.; Sereno, N. S.; Yao, C. Y.

    2006-11-01

    We have continued our investigations on imaging 7-GeV electron beams in a transport line at the Advanced Photon Source (APS) using optical transition radiation (OTR) and optical diffraction radiation (ODR) emitted from an Al blade. In our experiments appreciable visible wavelength ODR is emitted for impact parameters of 1 to 2 mm, values that are close to γλ/2π. We have now upgraded our imaging system to include an optical transport that provides either near-field or far-field imaging, and we have performed initial experiments. The OTR far-field images indicate that beam divergence effects at the 30-70 microrad regime are detectable, and these are some of the first recorded for this regime. An analytical model predicts beam-size sensitivity in the 20-50 micron regime, while beam position resolution to 10 microns with a smaller beam and higher optical magnification should be feasible with near-field ODR imaging. Although originally developed to support top-up operations at APS, the ODR imaging techniques for nonintercepting relative beam size and position monitoring should also be applicable to high-energy accelerator beams that drive x-ray FELs, energy-recovering linacs for light sources, and the proposed ILC.

  12. Temperature and density measurement by electron beam fluorescence technique in rocket experiment

    NASA Astrophysics Data System (ADS)

    Kurihara, J.; Oyama, K.-I.

    The Electron Beam Fluorescence (EBF) technique has been widely used in the field of rarefied gas dynamics for over 40 years and applied to measurements for a variety of gases and flow conditions in the laboratory experiment. The EBF technique uses a high-energy electron beam to excite a gas molecule by an inelastic collision with an electron. Spectrum of subsequent fluorescence by the excited molecule consists of many vibrational bands, and each band has a fine rotational structure. If the excitation-emission process is known precisely, the analysis of the vibrational-rotational band provides properties of the initial state of molecules. We applied the EBF technique to an in-situ measurement in the lower thermosphere and the vibrational temperature, the rotational temperature, and the number density of atmospheric molecular nitrogen between 100 - 150 km altitudes were observed by the sounding rocket experiment. Aerodynamic effects on the measurement caused by the rocket flight are corrected quantitatively using Direct Simulation Monte Carlo (DSMC) method. The great advantage of this type of instrument is that temperature and density are observed simultaneously and the consistency between the two measurements can be checked assuming hydrostatic equilibrium.

  13. Time-resolved measurement technique for pulsed electron beam envelope basing on framing and streaking principle

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Guo; Wang, Yuan; Yang, Zhi-Yong; Zhang, Huang; Wang, Yi

    2016-01-01

    The time-resolved electron beam envelope parameters, including cross sectional distribution and beam centroid position, are very important for the study of beam transmission characteristics in a magnetic field and for verifying the rationality of the magnetic field parameters employed. One kind of high time-resolved beam envelope measurement system has recently been developed, constituted of a high-speed framing camera and a streak camera. It can obtain three panoramic images of the beam and time continuous information along the given beam profile simultaneously. Recently obtained data has proved that several fast vibrations of the beam envelope along the diameter direction occur during the front and the tail parts of the electron beam. The vibration period is several nanoseconds. The effect of magnetic field on the electron beam is also observed and verified. Beam debugging experiments have proved that the existing beam transmission design is reasonable and viable. This beam envelope measurement system will establish a good foundation for beam physics research. Supported by National Natural Science Foundation of China (10675104, 11375162)

  14. Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique

    SciTech Connect

    Halavanau, Aliaksei; Edstrom, Dean; Gai, Wei; Ha, Gwanghui; Piot, Philippe; Power, John; Qiang, Gao; Ruan, Jinhao; Santucci, James; Wisniewski, Eric

    2016-06-01

    In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.

  15. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  16. Charge Breeding Techniques in an Electron Beam Ion Trap for High Precision Mass Spectrometry at TITAN

    NASA Astrophysics Data System (ADS)

    MacDonald, T. D.; Simon, M. C.; Bale, J. C.; Chowdhury, U.; Eibach, M.; Gallant, A. T.; Lennarz, A.; Simon, V. V.; Chaudhuri, A.; Grossheim, A.; Kwiatkowski, A. A.; Schultz, B. E.; Dilling, J.

    2012-10-01

    Penning trap mass spectrometry is the most accurate and precise method available for performing atomic mass measurements. TRIUMF's Ion Trap for Atomic and Nuclear science is currently the only facility to couple its Penning trap to a rare isotope facility and an electron beam ion trap (EBIT). The EBIT is a valuable tool for beam preparation: since the precision scales linearly with the charge state, it takes advantage of the precision gained by using highly charged ions. However, this precision gain is contingent on fast and efficient charge breeding. An optimization algorithm has been developed to identify the optimal conditions for running the EBIT. Taking only the mass number and half-life of the isotope of interest as inputs, the electron beam current density, charge breeding time, charge state, and electron beam energy are all specified to maximize this precision. An overview of the TITAN charge breeding program, and the results of charge breeding simulations will be presented.

  17. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  18. Fabrication of superconducting MgB2 nanostructures by an electron beam lithography-based technique

    NASA Astrophysics Data System (ADS)

    Portesi, C.; Borini, S.; Amato, G.; Monticone, E.

    2006-03-01

    In this work, we present the results obtained in fabrication and characterization of magnesium diboride nanowires realized by an electron beam lithography (EBL)-based method. For fabricating MgB2 thin films, an all in situ technique has been used, based on the coevaporation of B and Mg by means of an e-gun and a resistive heater, respectively. Since the high temperatures required for the fabrication of good quality MgB2 thin films do not allow the nanostructuring approach based on the lift-off technique, we structured the samples combining EBL, optical lithography, and Ar milling. In this way, reproducible nanowires 1 μm long have been obtained. To illustrate the impact of the MgB2 film processing on its superconducting properties, we measured the temperature dependence of the resistance on a nanowire and compared it to the original magnesium diboride film. The electrical properties of the films are not degraded as a consequence of the nanostructuring process, so that superconducting nanodevices may be obtained by this method.

  19. Electron Beam Freeform Fabrication

    NASA Video Gallery

    Electron Beam Freeform Fabrication (EBF3) is a process by which NASA hopes to build metal parts in zero gravity environments. It's a layer-additive process that uses an electron beam and a solid wi...

  20. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  1. Experimental generation of longitudinally-modulated electron beams using an emittance exchange technique

    SciTech Connect

    Sun, Y.-E; Piot, P.; Johnson, A.; Lumpkin, A.; Maxwell, T.; Ruan, J.; Thurman-Keup, R.; /FERMILAB

    2010-08-01

    We report our experimental demonstration of longitudinal phase space modulation using a transverse-to-longitudinal emittance exchange technique. The experiment is carried out at the A0 photoinjector at Fermi National Accelerator Lab. A vertical multi-slit plate is inserted into the beamline prior to the emittance exchange, thus introducing beam horizontal profile modulation. After the emittance exchange, the longitudinal phase space coordinates (energy and time structures) of the beam are modulated accordingly. This is a clear demonstration of the transverse-to-longitudinal phase space exchange. In this paper, we present our experimental results on the measurement of energy profile as well as numerical simulations of the experiment.

  2. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    PubMed Central

    Men, Kuo; Dai, Jian-Rong; Li, Ming-Hui; Chen, Xin-Yuan; Zhang, Ke; Tian, Yuan; Huang, Peng; Xu, Ying-Jie

    2015-01-01

    Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT) device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation. PMID:26346510

  3. Combined total body X-ray irradiation and total skin electron beam radiotherapy with an improved technique for mycosis fungoides

    SciTech Connect

    Halberg, F.E.; Fu, K.K.; Weaver, K.A.; Zackheim, H.S.; Epstein, E.H. Jr.; Wintroub, B.U.

    1989-08-01

    Twelve consecutive patients with advanced stage mycosis fungoides (MF) were treated with combined total body X ray irradiation (TBI) and total skin electron beam radiotherapy (EBRT). Six had generalized plaque disease and dermatopathic nodes, three had tumor stage disease and node biopsy positive for mycosis fungoides, and three had erythroderma/Sezary syndrome. The treatment regimen consisted of split course total body X ray irradiation, given in twice weekly 15 cGy fractions to 75 cGy, then total skin electron beam radiation therapy given in once weekly 400 cGy fractions to a total dose of 2400 cGy. Underdosed areas and areas of greatest initial involvement were boosted 400 cGy twice weekly for an additional 1200 cGy. This was followed by a second course of total body X ray irradiation, to a total dose of 150 cGy. The total skin electron beam radiotherapy technique is a modification of an established six position EBRT technique for mycosis fungoides. Measurements to characterize the beam with and without a lexan scattering plate, demonstrated that the combination of no-plate beams produced better dose uniformity with a much higher dose rate. This improved technique is particularly advantageous for elderly and/or frail patients. Nine (75%) of the 12 patients achieved complete response (CR). The other three had significant improvement with greater than 80% clearing of their disease and resolution of symptoms. All six patients with generalized plaque disease achieved complete response and remained free of disease from 2 to 16 months. Two of three node positive patients also achieved complete response; one, with massive biopsy-documented mycosis fungoides nodal disease and deep open tumors, remained relapse-free over 2 years. Only one of the three patients with erythroderma/Sezary syndrome achieved a complete response, which was short lived.

  4. (Pulsed electron beam precharger)

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    This report discusses the following topics on electron beam guns: Precharger Modification; Installation of Charge vs. Radius Apparatus; High Concentration Aerosol Generation; and Data Acquisition and Analysis System.

  5. Electron Beam Could Probe Recombination Centers

    NASA Technical Reports Server (NTRS)

    Vonroos, O.

    1983-01-01

    Electron beam probe technique estimate electron/hole capture cross sections in semiconductors with wide band gaps. Amplitude-modulated electron beam induces short-circuit current collected by ohmic contacts. Phase shift between this current and electron-beam current measured as function of frequency. Results of measurements used to ascertain recombination rates and energy levels.

  6. A study of density measurements in hypersonic helium tunnels using an electron beam fluorescence technique

    NASA Technical Reports Server (NTRS)

    Honaker, W. C.; Hunter, W. W., Jr.; Woods, W. C.

    1979-01-01

    A series of experiments have been conducted at Langley Research Center to determine the feasibility of using electron-beam fluorescence to measure the free-stream static density of gaseous helium flow over a wide range of conditions. These experiments were conducted in the Langley hypersonic helium tunnel facility and its 3-inch prototype. Measurements were made for a range of stagnation pressures and temperatures and produced free-stream number densities of 1.53 x 10 to the 23rd to 1.25 x 10 to the 24th molecules/cu m and static temperatures from 2 K to 80 K. The results showed the collision quenching cross section to be 4.4 x 10 to the -15th sq cm at 1 K and to have a weak temperature dependence of T to the 1/6. With knowledge of these two values, the free-stream number density can be measured quite accurately.

  7. Development of a Monte Carlo-Based Electron Beam Treatment Planning System: Clinical Application in Optimization of a Combined-Electron Technique for Treatment of Retinoblastoma.

    NASA Astrophysics Data System (ADS)

    Al-Beteri, Abdulkarim A.

    1990-06-01

    Development of a new three-dimensional Monte Carlo code for simulating electron transport in heterogeneous media for the purpose of electron-beam treatment planning is described. It involved the devising of improved mathematical representations for the probability distributions governing the processes of electron multiple-scattering and bremsstrahlung production. An efficient technique is used for random -sampling the probability distributions based on a modified acceptance-rejection sampling method that employs an envelope -type rejection function. In addition to predicting correct electron fluence differential in energy, angle, and both energy and angle at different depths in a variety of materials, the developed code is capable of predicting the following: (1) one-cubic-millimeter resolution electron absorbed-dose distributions in a heterogeneous phantom irradiated by electrons through circular, square, and rectangular fields at different SSD's; (2) perturbation patterns in the absorbed -dose distributions caused by the three most common perturbing agents encountered in the human body (body surface obliquity, bone heterogeneities, and air cavities); (3) dose enhancement anterior to a bone heterogeneity; (4) absorbed-dose perturbations caused by an air cavity adjacent to an irradiated volume but outside the radiation field. This study investigated the effect of heterogeneities on absorbed-dose distributions in phantoms irradiated by electron beams. Perturbation patterns are correctly predicted in depth-dose curves and in absorbed-dose distributions throughout an irradiated volume. For example, the code correctly predicts the doubling of the maximum absorbed dose along the beam central axis when a long narrow air cavity is centered in the field, and isodose level perturbations associated with surface obliquity and the presence of heterogeneities. The developed code is used in optimization of a combined-electron-beams irradiation technique for treatment of

  8. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    In this report, a short review of electron beam particle precharging using a pulsed electric field is presented in Section B-1. Section B-2 details the design and installation of a remote focusing gear train which will allow much greater control over the particle charge measurement capability of the charge vs. radius apparatus. Under Section B-3, progress on the electrical shielding of the rotating spark gap power supply using a large Faraday cage is described. Efforts to prevent RFI interference from adversely affecting the Climet particle counter and the MicroMac current measurement device using a variety of techniques are also presented in this section. The basic effort is to optimize the removal efficiency for fly ash particles. 13 figs.

  9. Electron beam polarimetry

    SciTech Connect

    Sinclair, C.K.

    1998-12-01

    Along with its well known charge and mass, the electron also carries an intrinsic angular momentum, or {ital spin}. The rules of quantum mechanics allow us to measure only the probability that the electron spin is in one of two allowed spin states. When a beam carries a net excess of electrons in one of these two allowed spin states, the beam is said to be {ital polarized}. The beam polarization may be measured by observing a sufficient number of electrons scattered by a spin-dependent interaction. For electrons, the useful scattering processes involve Coulomb scattering by heavy nuclei, or scattering from either polarized photons or other polarized electrons (known as Mott, Compton, and Mo/ller scattering, respectively). In this tutorial, we will briefly review how beam polarization is measured through a general scattering process, followed by a discussion of how the three scattering processes above are used to measure electron beam polarization. Descriptions of electron polarimeters based on the three scattering processes will be given. {copyright} {ital 1998 American Institute of Physics.}

  10. Electron beam polarimetry

    NASA Astrophysics Data System (ADS)

    Sinclair, Charles K.

    1998-12-01

    Along with its well known charge and mass, the electron also carries an intrinsic angular momentum, or spin. The rules of quantum mechanics allow us to measure only the probability that the electron spin is in one of two allowed spin states. When a beam carries a net excess of electrons in one of these two allowed spin states, the beam is said to be polarized. The beam polarization may be measured by observing a sufficient number of electrons scattered by a spin-dependent interaction. For electrons, the useful scattering processes involve Coulomb scattering by heavy nuclei, or scattering from either polarized photons or other polarized electrons (known as Mott, Compton, and Mo/ller scattering, respectively). In this tutorial, we will briefly review how beam polarization is measured through a general scattering process, followed by a discussion of how the three scattering processes above are used to measure electron beam polarization. Descriptions of electron polarimeters based on the three scattering processes will be given.

  11. Oberst beam test technique

    NASA Astrophysics Data System (ADS)

    Fasana, Alessandro; Garibaldi, Luigi; Giorcelli, Ermanno; Ruzzene, Massimo

    1998-06-01

    The definition of the mechanical properties of viscoelastic materials, i.e. the elastic modulus and the loss factor, is carried out, according to many national and international standards, with many different techniques, both of the resonant and non-resonant type. In this paper we focus our attention on the pros and cons of the resonant technique based on the classical Oberst beam method. When the damping material to be tested is not self-supporting, its properties are determined taking start from the measured modal frequencies and loss factors of a laminated beam, constituted by one or two metallic strips, ideally undamped, and one or two viscoelastic layers. The formulae specified on the standards hold valid under the assumptions of the theory developed by Kerwin, Ungar and Ross and we try in this paper to quantify witch deviation of the results should be expected when moving away from their ideal hypotheses.

  12. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  13. A TOMOGRAPHIC TECHNIQUE FOR MAGNETIZED BEAM MATCHING.

    SciTech Connect

    MONTAG,C.ET AL.

    2004-07-05

    To maintain low electron beam temperatures in the proposed RHIC electron cooler, careful matching of the magnetized beam from the source to the cooler solenoid is mandatory. We propose a tomographic technique to diagnose matching conditions. First simulation results will be presented.

  14. Electron beam dose calculations.

    PubMed

    Hogstrom, K R; Mills, M D; Almond, P R

    1981-05-01

    Electron beam dose distributions in the presence of inhomogeneous tissue are calculated by an algorithm that sums the dose distribution of individual pencil beams. The off-axis dependence of the pencil beam dose distribution is described by the Fermi-Eyges theory of thick-target multiple Coulomb scattering. Measured square-field depth-dose data serve as input for the calculations. Air gap corrections are incorporated and use data from'in-air' measurements in the penumbra of the beam. The effective depth, used to evaluate depth-dose, and the sigma of the off-axis Gaussian spread against depth are calculated by recursion relations from a CT data matrix for the material underlying individual pencil beams. The correlation of CT number with relative linear stopping power and relative linear scattering power for various tissues is shown. The results of calculations are verified by comparison with measurements in a 17 MeV electron beam from the Therac 20 linear accelerator. Calculated isodose lines agree nominally to within 2 mm of measurements in a water phantom. Similar agreement is observed in cork slabs simulating lung. Calculations beneath a bone substitute illustrate a weakness in the calculation. Finally a case of carcinoma in the maxillary antrum is studied. The theory suggests an alternative method for the calculation of depth-dose of rectangular fields.

  15. Creating electron vortex beams with light.

    PubMed

    Handali, Jonathan; Shakya, Pratistha; Barwick, Brett

    2015-02-23

    We propose an all-optical method of creating electron vortices utilizing the Kapitza-Dirac effect. This technique uses the transfer of orbital angular momentum from photons to free electrons creating electron vortex beams in the process. The laser intensities needed for this experiment can be obtained with available pulsed lasers and the resulting electron beams carrying orbital angular momentum will be particularly useful in the study of magnetic materials and chiral plasmonic structures in ultrafast electron microscopy.

  16. Electron beam generation in Tevatron electron lenses

    SciTech Connect

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  17. Measuring electron beam polarization

    NASA Astrophysics Data System (ADS)

    Napolitano, J.

    1992-12-01

    A two-hour discussion session was held on electron beam polarimetry including representatives from Halls A, B, and C. Presentations included a description of an existing Mo/ller polarimeter at the MIT-Bates laboratory, plans for Mo/ller polarimeters in Halls A and B, and a Compton (i.e., ``laser backscatter'') polarimeter planned for Hall A. This paper is a summary of those discussions.

  18. Towards demonstration of electron cooling with bunched electron beam

    SciTech Connect

    Fedotov, A.

    2012-01-11

    All electron cooling systems which were in operation so far employed electron beam generated with an electrostatic electron gun in DC operating mode, immersed in a longitudinal magnetic field. At low energies magnetic field is also being used to transport electron beam through the cooling section from the gun to the collector. At higher energies (few MeV), it was shown that one can have simpler electron beam transport without continuous magnetic field. Because of a rather weak magnetic field on the cathode and in the cooling section the latter approach was referred to as 'non-magnetized cooling', since there was no suppression of the transverse angular spread of the electron beam with the magnetic field in the cooling section. Such a cooler successfully operated at FNAL (2005-11) at electron beam energy of 4.3 MeV. Providing cooling at even higher energies would be easier with RF acceleration of electron beam, and thus using bunched electron beam for cooling. Significant efforts were devoted to explore various aspects of such bunched electron beam cooling as part of R and D of high-energy electron cooling for RHIC. However, experimental studies of such cooling are still lacking. Establishing this technique experimentally would be extremely useful for future high-energy applications. Presently there is an ongoing effort to build Proof-of-Principle (PoP) experiment of Coherent Electron Cooling (CEC) at RHIC, which promises to be superior to conventional electron cooling for high energies. Since the CEC experiment is based on bunched electron beam and it has sections where electron beam co-propagates with the ion beam at the same velocity, it also provides a unique opportunity to explore experimentally conventional electron cooling but for the first time with a bunched electron beam. As a result, it allows us to explore techniques needed for the high-energy electron cooling such as 'painting' with a short electron beam and control of ion beam distribution under

  19. Electron Beam Influence on Microcrystalline Cellulose

    NASA Astrophysics Data System (ADS)

    Nemţanu, Monica R.; Minea, R.; Mitru, Ecaterina

    2007-04-01

    Cellulose is a natural raw material used in great quantity as stabilizer, tabletting agent, anti-caking agent, flavor carrier, etc. Due to its structure it has limited uses exhibiting some disadvantages in certain applications. Irradiation technique is frequently used to change the polymeric materials. The purpose of the work is to discuss the action of accelerated electron beams (e-beams) on microcrystalline cellulose. The results of the study showed that some properties of cellulose can be improved by electron beam treatment.

  20. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  1. Compact electron beam focusing column

    SciTech Connect

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  2. Depressed collector for electron beams

    NASA Technical Reports Server (NTRS)

    Ives, R. Lawrence (Inventor)

    2005-01-01

    A depressed collector for recovery of spent beam energy from electromagnetic sources emitting sheet or large aspect ration annular electron beams operating aver a broad range of beam voltages and currents. The collector incorporates a trap for capturing and preventing the return of reflected and secondary electrons.

  3. Electron Beam Lithography Double Step Exposure Technique for Fabrication of Mushroom-Like Profile in Bilayer Resist System

    NASA Astrophysics Data System (ADS)

    Kornelia, Indykiewicz; Bogdan, Paszkiewicz; Tomasz, Szymański; Regina, Paszkiewicz

    2015-01-01

    The Hi/Lo bilayer resist system exposure in e-beam lithography (EBL) process, intended for mushroom-like profile fabrication, was studied. Different exposure parameters and theirs influence on the resist layers were simulated in CASINO software and the obtained results were compared with the experimental data. The AFM technique was used for the estimation of the e-beam penetration depth in the resist stack. Performed numerical and experimental results allow us to establish the useful ranges of the exposure parameters.

  4. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique.

    PubMed

    Hara, Daisuke; Nakashima, Yasuharu; Sato, Taishi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Yoshimoto, Kensei; Yoshihara, Yusuke; Nakamura, Akihiro; Nakao, Yumiko; Iwamoto, Yukihide

    2016-02-01

    The present study examined the bone bonding strength of diamond-structured porous titanium-alloy (Porous-Ti-alloy) manufactured using the electron beam-melting technique in comparison with fiber mesh-coated or rough-surfaced implants. Cylindrical implants with four different pore sizes (500, 640, 800, and 1000μm) of Porous-Ti-alloy, titanium fiber mesh (FM), and surfaces roughened by titanium arc spray (Ti-spray) were implanted into the distal femur of rabbits. Bone bonding strength and histological bone ingrowth were evaluated at 4 and 12weeks after implantation. The bone bonding strength of Porous-Ti-alloy implants (640μm pore size) increased over time from 541.4N at 4weeks to 704.6N at 12weeks and was comparable to that of FM and Ti-spray implants at both weeks. No breakage of the porous structure after mechanical testing was found with Porous-Ti-alloy implants. Histological bone ingrowth that increased with implantation time occurred along the inner structure of Porous-Ti-alloy implants. There was no difference in bone ingrowth in Porous-Ti-alloy implants with pore sizes among 500, 640, and 800μm; however, less bone ingrowth was observed with the 1000μm pore size. These results indicated Porous-Ti-alloy implants with pore size under 800μm provided biologically active and mechanically stable surface for implant fixation to bone, and had potential advantages for weight bearing orthopedic implants such as acetabular cups.

  5. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)

  6. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    SciTech Connect

    Seletskiy, Sergei M.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  7. Electrical characterization of electron beam induced damage on sub-10 nm n-channel MOS transistors using nano-probing technique

    NASA Astrophysics Data System (ADS)

    Kang, Jonghyuk; Lee, Sungho; Choi, Byoungdeog

    2016-11-01

    Electron beam induced damage on sub-10 nm n-channel MOS transistors was evaluated using an atomic force microscopy-based nano-probing technique. After electron beam irradiation, all the device parameters shifted including threshold voltage (V th), saturation current, sub-threshold slope and transistor leakage current. A negative shift in V th occurred at low electron beam acceleration voltage (V acc) because of the increase in oxide trapped holes generated by excited plasmons. At high V acc, however, a positive V th shift was observed because of an increased contribution of interface trap generation caused by the deeper electron penetration depth. In addition, interface trap generation not only degraded the sub-threshold slope due to the additional capacitance from the generated interface traps, but also increased transistor leakage current due to changes in junction characteristics. Our studies show that it is critical to avoid electron beam exposure before electrical characterization on sub-10 nm devices even in the range of less than 1.0 kV of V acc using nano-probe systems.

  8. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  9. Low Emittance Electron Beam Studies

    SciTech Connect

    Tikhoplav, Rodion

    2006-01-01

    We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*01 mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

  10. A Comparative High-Resolution Electron Microscope Study of Ag Clusters Produced by a Sputter-Gas Aggregation and Ion Cluster Beam Technique

    NASA Astrophysics Data System (ADS)

    Hohl, Georg-Friedrich; Hihara, Takehiko; Sakurai, Masaki; Oishi, Takashi; Wakoh, Kimio; Sumiyama, Kenji; Suzuki, Kenji

    1994-03-01

    Ag clusters were formed by a sputter-gas-aggregation process [H. Haberland et al..: J. Vac. Sci. Technol. A 10 (1992) 3266] and the ionized cluster beam (ICB) [T. Takagi: Ionized-Cluster Beam Deposition and Epitaxy (Noyes, Park Ridge, 1988)] technique. The Ag clusters deposited on collodion-coated microgrids were investigated by high-resolution transmission electron microscopy. The diameter of those clusters, d, ranges from 1 nm up to about 10 nm for specimens produced by the sputter-gas aggregation technique, depending on the sputter condition and the deposition time. Comparable times of the ICB deposition lead to a broader distribution up to d≈20 nm, suggesting the formation of islands with extremely flat shapes. High percentages of crystalline particles obtained by both techniques are either single crystals or multiple twins with clear lattice images.

  11. Central electron temperature estimations of TJ-II neutral beam injection heated plasmas based on the soft x ray multi-foil technique

    SciTech Connect

    Baiao, D.; Varandas, C.

    2012-05-15

    The core electron temperature (T{sub e0}) of neutral beam heated plasmas is determined in TJ-II stellarator by using soft x ray detectors with beryllium filters of different thickness, based on the method known as the foil absorption technique. T{sub e0} estimations are done with the impurity code IONEQ, making use of complementary information from the TJ-II soft x ray tomography and the VUV survey diagnostics. When considering the actual electron density and temperature profile shapes, an acceptable agreement is found with Thomson scattering measurements for 8 different magnetic configurations. The impact of the use of both neutral beam injectors on the T{sub e0} measurements is addressed. Also, the behaviour of T{sub e0} during spontaneous profile transitions is presented.

  12. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  13. Repetitively pumped electron beam device

    DOEpatents

    Schlitt, L.G.

    1979-07-24

    Disclosed is an apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired. 12 figs.

  14. Holographic generation of highly twisted electron beams.

    PubMed

    Grillo, Vincenzo; Gazzadi, Gian Carlo; Mafakheri, Erfan; Frabboni, Stefano; Karimi, Ebrahim; Boyd, Robert W

    2015-01-23

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wave front corresponding to the electron's wave function forms a helical structure with a number of twists given by the angular speed. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a conventional electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nanofabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200ℏ. Based on a novel technique the value of orbital angular momentum of the generated beam is measured and then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic moment along the propagation direction and, thus, may be used in the study of the magnetic properties of materials and for manipulating nanoparticles.

  15. Dual-Cathode Electron-Beam Source

    NASA Technical Reports Server (NTRS)

    Bradley, James G.; Conley, Joseph M.; Wittry, David B.

    1988-01-01

    Beam from either cathode electromagnetically aligned with exit port. Electron beam from either of two cathodes deflected by magnetic and electric fields to central axis. Mechanical alignment of beam easy because cathode axes, anode apertures, and electron trajectories coplanar. Applications where uninterrupted service needed: scanning electron microscopes, transmission electron microscopes, electron-beam lithography equipment, Auger instruments, and microfocused x-ray sources.

  16. Relativistic Electron Beams Above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Fullekrug, Martin; Roussel-Dupre, Robert; Symbalisty, Eugene; Chanrion, Olivier; van der Velde, Oscar; Soula, Serge; Odzimek, Anna; Bennett, Alec; Whitley, Toby; Neubert, Torsten

    2010-05-01

    It has recently been discovered that lightning discharges generate upward-directed relativistic electron beams above thunderclouds. This extends the phenomenon of relativistic runaway breakdown believed to occur inside thunderclouds to the atmosphere above thunderclouds. This marks a profound advance in our understanding of the atmosphere because we now know it acts as a giant, natural, particle accelerator. The accelerated electrons can reach significant relativistic energies of some MeV during their passage from the troposphere, through the middle atmosphere, into near-Earth space. These relativistic electron beams constitute a current above thunderclouds and effectively transfer energy from the troposphere to the middle atmosphere. This coupling process thereby forms a novel element of the global atmospheric electric circuit which links tropospheric thunderclouds to the atmosphere above. This contribution describes the radio remote sensing of upward electron beams to determine their occurrence frequency and to characterise their physical properites.

  17. Polarized electron beams at SLAC

    SciTech Connect

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e[plus]e[minus] collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point.

  18. Polarized electron beams at SLAC

    SciTech Connect

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e{plus}e{minus} collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point.

  19. Electron Beam Materials Irradiators

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.

    2012-06-01

    Radiation processing is a well established method for enhancing the properties of materials and commercial products by treating them with ionizing energy in the form of high-energy electrons, X-rays, and gamma rays. Beneficial effects include polymerizing, cross-linking, grafting and degrading plastics, sterilizing single-use medical devices, disinfecting and disinfesting fresh foods, purifying drinking water, treating wastewater and other toxic waste materials that harm the environment, and many other applications that are still being evaluated. Industrial electron accelerators of several types have been developed and are being used for these applications. More than 1800 electron accelerators are presently installed in facilities worldwide for these purposes.

  20. Electron beam ion source and electron beam ion trap (invited).

    PubMed

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  1. Beam Studies with Electron Columns

    SciTech Connect

    Shiltsev, V.; Valishev, A.; Kuznetsov, G.; Kamerdzhiev, V.; Romanov, A.; /Novosibirsk, IYF

    2009-04-01

    We report preliminary results of experimental studies of 'electron columns' in the Tevatron and in a specialized test setup. In the Tevatron, a beam of 150 GeV protons ionizes residual gas and ionization electrons are stored in an electrostatic trap immersed into strong longitudinal magnetic field. Shifts of proton betatron frequencies are observed. In the test setup, we observe effects pointing to accumulation and escape of ionization electrons.

  2. Combined photon-electron beams in the treatment of the supraclavicular lymph nodes in breast cancer: A novel technique that achieves adequate coverage while reducing lung dose.

    PubMed

    Salem, Ahmed; Mohamad, Issa; Dayyat, Abdulmajeed; Kanaa'n, Haitham; Sarhan, Nasim; Roujob, Ibrahim; Salem, Abdel-Fattah; Afifi, Shatha; Jaradat, Imad; Mubiden, Rasmi; Almousa, Abdelateif

    2015-01-01

    , photon-only plans demonstrated the highest target coverage and total lung V(20 Gy). The superiority of electron-only beams, in terms of decreasing lung dose, is set back by the dosimetric hotspots associated with such plans. Combined photon-electron treatment is a feasible technique for supraclavicular nodal irradiation and results in adequate target coverage, acceptable dosimetric hotspot volume, and slightly reduced lung dose.

  3. Combined photon-electron beams in the treatment of the supraclavicular lymph nodes in breast cancer: A novel technique that achieves adequate coverage while reducing lung dose

    SciTech Connect

    Salem, Ahmed; Mohamad, Issa; Dayyat, Abdulmajeed; Kanaa’n, Haitham; Sarhan, Nasim; Roujob, Ibrahim; Salem, Abdel-Fattah; Afifi, Shatha; Jaradat, Imad; Mubiden, Rasmi; Almousa, Abdelateif

    2015-10-01

    -only plans (mean = 16.2 ± 3%, p < 0.001). As expected, photon-only plans demonstrated the highest target coverage and total lung V{sub 20} {sub Gy}. The superiority of electron-only beams, in terms of decreasing lung dose, is set back by the dosimetric hotspots associated with such plans. Combined photon-electron treatment is a feasible technique for supraclavicular nodal irradiation and results in adequate target coverage, acceptable dosimetric hotspot volume, and slightly reduced lung dose.

  4. Longitudinal Diagnostics for Short Electron Beam Bunches

    SciTech Connect

    Loos, H.; /SLAC

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  5. Cylindrical electron beam diode

    DOEpatents

    Bolduc, Paul E.

    1976-01-01

    A diode discharge device may include a tubular anode concentrically encircled by and spaced from a tubular cathode electrode with ends intermediate the ends of said anode electrode, and a metal conductive housing having a tubular wall disposed around the cathode electrode with end walls connected to the anode electrode. High energy electron current coupling is through an opening in the housing tubular wall to a portion of the cathode electrode intermediate its ends. Suitable utilization means may be within the anode electrode at positions to be irradiated by electrons emitted from the cathode electrode and transmitted through the anode walls.

  6. Electron beam cutting

    DOEpatents

    Mochel, Margaret E.; Humphreys, Colin J.

    1985-04-02

    A method for the cutting of holes 20 Angstroms in diameter, or lines 20 Angstroms wide in a material having positive ionic conduction by the use of a focused electron probe is described. The holes and lines are stable under ambient conditions.

  7. Electron beam cutting

    DOEpatents

    Mochel, M.E.; Humphreys, C.J.

    1985-04-02

    A method for the cutting of holes 20 Angstroms in diameter, or lines 20 Angstroms wide in a material having positive ionic conduction by the use of a focused electron probe is described. The holes and lines are stable under ambient conditions. 2 figs.

  8. Optimization of combined electron and photon beams for breast cancer

    NASA Astrophysics Data System (ADS)

    Xiong, W.; Li, J.; Chen, L.; Price, R. A.; Freedman, G.; Ding, M.; Qin, L.; Yang, J.; Ma, C.-M.

    2004-05-01

    Recently, intensity-modulated radiation therapy and modulated electron radiotherapy have gathered a growing interest for the treatment of breast and head and neck tumours. In this work, we carried out a study to combine electron and photon beams to achieve differential dose distributions for multiple target volumes simultaneously. A Monte Carlo based treatment planning system was investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We compared breast treatment plans generated using this home-grown optimization and dose calculation software for different treatment techniques. Five different planning techniques have been developed for this study based on a standard photon beam whole breast treatment and an electron beam tumour bed cone down. Technique 1 includes two 6 MV tangential wedged photon beams followed by an anterior boost electron field. Technique 2 includes two 6 MV tangential intensity-modulated photon beams and the same boost electron field. Technique 3 optimizes two intensity-modulated photon beams based on a boost electron field. Technique 4 optimizes two intensity-modulated photon beams and the weight of the boost electron field. Technique 5 combines two intensity-modulated photon beams with an intensity-modulated electron field. Our results show that technique 2 can reduce hot spots both in the breast and the tumour bed compared to technique 1 (dose inhomogeneity is reduced from 34% to 28% for the target). Techniques 3, 4 and 5 can deliver a more homogeneous dose distribution to the target (with dose inhomogeneities for the target of 22%, 20% and 9%, respectively). In many cases techniques 3, 4 and 5 can reduce the dose to the lung and heart. It is concluded that combined photon and electron beam therapy may be advantageous for treating breast cancer compared to conventional treatment techniques using tangential wedged photon beams followed by a boost

  9. Shimmed electron beam welding process

    DOEpatents

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  10. Generation and application of bessel beams in electron microscopy.

    PubMed

    Grillo, Vincenzo; Harris, Jérémie; Gazzadi, Gian Carlo; Balboni, Roberto; Mafakheri, Erfan; Dennis, Mark R; Frabboni, Stefano; Boyd, Robert W; Karimi, Ebrahim

    2016-07-01

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process.

  11. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  12. Fabrication process of superconducting integrated circuits with submicron Nb/AlOx/Nb junctions using electron-beam direct writing technique

    NASA Astrophysics Data System (ADS)

    Aoyagi, Masahiro; Nakagawa, Hiroshi

    1997-07-01

    For enhancing operating speed of a superconducting integrated circuit (IC), the device size must be reduced into the submicron level. For this purpose, we have introduced electron beam (EB) direct writing technique into the fabrication process of a Nb/AlOx/Nb Josephson IC. A two-layer (PMMA/(alpha) M-CMS) resist method called the portable conformable mask (PCM) method was utilized for having a high aspect ratio. The electron cyclotron resonance (ECR) plasma etching technique was utilized. We have fabricated micron or submicron-size Nb/AlOx/Nb Josephson junctions, where the size of the junction was varied from 2 micrometer to 0.5 micrometer at 0.1 micrometer intervals. These junctions were designed for evaluating the spread of the junction critical current. We achieved minimum-to-maximum Ic spread of plus or minus 13% for 0.81-micrometer-square (plus or minus 16% for 0.67-micrometer-square) 100 junctions spreading in 130- micrometer-square area. The size deviation of 0.05 micrometer was estimated from the spread values. We have successfully demonstrated a small-scale logic IC with 0.9-micrometer-square junctions having a 50 4JL OR-gate chain, where 4JL means four junctions logic family. The circuit was designed for measuring the gate delay. We obtained a preliminary result of the OR- gate logic delay, where the minimum delay was 8.6 ps/gate.

  13. Intraoperative Localization of Tantalum Markers for Proton Beam Radiation of Choroidal Melanoma by an Opto-Electronic Navigation System: A Novel Technique

    SciTech Connect

    Amstutz, Christoph A.; Bechrakis, Nikolaos E.; Foerster, Michael H.; Heufelder, Jens; Kowal, Jens H.

    2012-03-15

    Purpose: External beam proton radiation therapy has been used since 1975 to treat choroidal melanoma. For tumor location determination during proton radiation treatment, surgical tantalum clips are registered with image data. This report introduces the intraoperative application of an opto-electronic navigation system to determine with high precision the position of the tantalum markers and their spatial relationship to the tumor and anatomical landmarks. The application of the technique in the first 4 patients is described. Methods and Materials: A navigated reference base was attached noninvasively to the eye, and a navigated pointer device was used to record the spatial position of the tantalum markers, the tumor, and anatomical landmarks. Measurement accuracy was assessed on ex vivo porcine eye specimen by repetitive recording of the tantalum marker positions. The method was applied intraoperatively on 4 patients undergoing routine tantalum clip surgery. The spatial position information delivered by the navigation system was compared to the geometric data generated by the EYEPLAN software. Results: In the ex vivo experiments, the maximum repetition error was 0.34 mm. For the intraoperative application, the root mean square error of paired-points matching of the marker positions from the navigation system and from the EYEPLAN software was 0.701-1.25 mm. Conclusions: Navigation systems are a feasible tool for accurate localization of tantalum markers and anatomic landmarks. They can provide additional geometric information, and therefore have the potential to increase the reliability and accuracy of external beam proton radiation therapy for choroidal melanoma.

  14. Electron Beam IEMP Simulation Development

    DTIC Science & Technology

    1975-08-01

    Effect of Injected Current Pulse Width Variation Upon Transmittfed Current Pulse 69 4.10 Open Shutter Photograph of Surface Flashover on Dielectric Tube...occurred, presumably by electrical breakdown In volume. However it was no+ observed In all cases. Surface flashover Is another electrical failure mode...early in the Injected pulse 71 TDIELECTRIC TUBE ELECTRON BEAM oil~ Flgu--e 4.10 Open Shutter Photograph of Surface Flashover on Dielectric Tube 7

  15. Practical Teaching about Electron Beams

    ERIC Educational Resources Information Center

    Strawson, R. J.

    2009-01-01

    If you have seen tubes like the ones we describe here in the back of a cupboard but have been reluctant to use them, now is the time to get them out. The aim of this article is to record the history of teaching about electron beams, particularly with Teltron equipment, and in doing so encourage those schools that are equipped with these tubes to…

  16. Electronic Packaging Techniques

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A characteristic of aerospace system design is that equipment size and weight must always be kept to a minimum, even in small components such as electronic packages. The dictates of spacecraft design have spawned a number of high-density packaging techniques, among them methods of connecting circuits in printed wiring boards by processes called stitchbond welding and parallel gap welding. These processes help designers compress more components into less space; they also afford weight savings and lower production costs.

  17. Practical Implications of Electron-Beam Surface Melting

    NASA Astrophysics Data System (ADS)

    Lewis, Brian G.; Strutt, Peter R.

    1982-11-01

    The use of laser/electron-beam techniques to glaze large surface areas is briefly reviewed. The properties thus obtained for a range of iron-based alloys is discussed. Recent results show that electron-beam glazing can extend the wear life of certain cemented carbide materials and preliminary results indicate that glazed tool steels show enhanced corrosion resistance.

  18. Laser wakefield acceleration of polarized electron beams

    NASA Astrophysics Data System (ADS)

    Pugacheva, D. V.; Andreev, N. E.; Cros, B.

    2016-11-01

    The acceleration of highly polarized electron beams are widely used in state-of-the-art high-energy physics experiments. In this work, a model for investigation of polarization dynamics of electron beams in the laser-plasma accelerator depending on the initial energy of electrons was developed and tested. To obtain the evolution of the trajectory and momentum of the electron for modeling its acceleration the wakefield structure was determined. The spin precession of the beam electron was described by Thomas-Bargman-Michel-Telegdi equations. The evolution of the electron beam polarization was investigated for zero-emittance beams with zero-energy spread.

  19. Electron beam stimulated spin reorientation

    NASA Astrophysics Data System (ADS)

    Monchesky, T. L.; Unguris, J.; Celotta, R. J.

    2003-05-01

    Using scanning electron microscopy with polarization analysis, we observed the electron beam induced switching of the magnetic state of epitaxial single-crystal Fe(110) films grown on atomically flat cleaved GaAs(110). For low film thickness the magnetization lies along the [-110] in-plane direction, while above a thickness of 19 monolayers, the ground state magnetization configuration switches to the [001] in-plane direction. If Fe films are grown to a thickness greater than the critical thickness of the reorientation, the magnetization is caught in a metastable state, oriented along [-110]. We discovered that we can locally switch the metastable state to the stable [001] direction by irradiating the metastable magnetic state with a suitable electron current density. The reversal proceeds by the nucleation and growth of lancet-shaped domains that move in discrete jumps between pinning sites. Our results show that there is a permanent reduction of the strength of defect sites without a permanent change in the overall anisotropy. We demonstrate how an electron beam can be used to locally control domain structure.

  20. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    SciTech Connect

    Wu, Q.

    2015-06-15

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics.

  1. Collimation Studies with Hollow Electron Beams

    SciTech Connect

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  2. Beam/seam alignment control for electron beam welding

    DOEpatents

    Burkhardt, Jr., James H.; Henry, J. James; Davenport, Clyde M.

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  3. Plasma diagnostic techniques using particle beam probes

    SciTech Connect

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  4. Nuclear astrophysics and electron beams

    SciTech Connect

    Schwenk, A.

    2013-11-07

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  5. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  6. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  7. Adjusting an electron beam for drilling

    NASA Technical Reports Server (NTRS)

    Childress, C. L.

    1980-01-01

    Reticle contains two concentric circles: inner circle insures beam circularity and outer circle is guide to prevent beam from cutting workpiece clamp. Precise measurement of beam and clamp are required with old reticle. New reticle speeds up electron-beam drilling process by eliminating need to rotate eyepiece to make measurements against reticle scale.

  8. Electron beam parallel X-ray generator

    NASA Technical Reports Server (NTRS)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  9. Definition of Beam Diameter for Electron Beam Welding

    SciTech Connect

    Burgardt, Paul; Pierce, Stanley W.; Dvornak, Matthew John

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  10. Measurement of the electron beam mode in earth's foreshock

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Holzworth, R. H.

    1990-01-01

    High frequency electric field measurements from the AMPTE IRM plasma wave receiver are used to identify three simultaneously excited electrostatic wave modes in the earth's foreshock region: the electron beam mode, the Langmuir mode, and the ion acoustic mode. A technique is developed which allows the rest frame frequecy and wave number of the electron beam waves to be determined. It is shown that the experimentally determined rest frame frequency and wave number agree well with the most unstable frequency and wave number predicted by linear homogeneous Vlasov theory for a plasma with Maxwellian background electrons and a Lorentzian electron beam. From a comparison of the experimentally determined and theoretical values, approximate limits are put on the electron foreshock beam temperatures. A possible generation mechanism for ion acoustic waves involving mode coupling between the electron beam and Langmuir modes is also discussed.

  11. Rippled beam free electron Laser Amplifier

    SciTech Connect

    Carlsten, Bruce E.

    1998-04-21

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a T{sub 0n} mode. A waveguide defines an axial centerline and . A solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  12. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  13. Microstructural investigation of the oxidation behavior of Cu in Ag-coated Cu films using a focused ion beam transmission electron microscopy technique

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hwan; Lee, Jong-Hyun

    2016-06-01

    With the aim of elucidating a detailed mechanism for the oxidation behavior in submicron Cu particles coated with a thin Ag layer, the dewetting of Ag and the oxidation behavior of Cu in Ag-coated Cu films upon heating were investigated with a focused ion beam transmission electron microscopy technique. A slight dewetting of the Ag layer began at approximately 200 °C and aggregates of Cu2O particles were formed on the Ag layer, indicating that the initial Cu2O phase was formed on the thin Ag layer. Voids were formed in the Cu layer because of Cu atoms diffusing through the thin Ag layer to be oxidized in the upper Cu2O aggregates. After being heated to 250 °C, the Ag layer became more irregular, and in some regions, it disappeared because of intensive dewetting. The number and average size of the voids also increased. At 300 °C, a hollow structure with a Cu2O shell was formed. Pillar-like structures of unoxidized Cu and large voids were found under the Cu2O layer.

  14. Beam rotation and shear in a large electron beam diode

    SciTech Connect

    Mansfield, C.R.; Oona, H.; Shurter, R.P.

    1990-01-01

    The time averaged electron beam current distribution of one of the electron guns of the Large Aperture Module (LAM) of the Aurora laser was measured as part of a larger set of experiments designed to study the electron beam transport to and energy deposition in the LAM laser chamber. The LAM laser chamber has a 1-m {times} 1-m aperture and is pumped from two sides along a 2-m length. A 10 ga. stainless steel sheet was placed inside the laser chamber and served multiple purposes. First, it was used to convert high energy electrons into X-rays in order to make radiograms of the electron beam. Second, the sheet was used as a Faraday cup to measure the total beam current. Third, individual Faraday cups were mounted on the plate to sample the time history of the electron beam at various positions. Each of the LAM electron gun diodes produces a beam of 750 kV electrons with a total current of about 500 kA which is relatively uniform over the cathode area of 1 m {times} 2 m. An applied magnetic field of about 1300 Gauss is used to prevent pinch of the beam during beam transport.

  15. Transverse Mode Electron Beam Microwave Generator

    NASA Technical Reports Server (NTRS)

    Wharton, Lawrence E.

    1994-01-01

    An electron beam microwave device having an evacuated interaction chamber to which are coupled a resonant cavity which has an opening between the resonant cavity and the evacuated interaction chamber and an electron gun which causes a narrow beam of electrons to traverse the evacuated interaction chamber. The device also contains a mechanism for feeding back a microwave electromagnetic field from the resonant cavity to the evacuated interaction chamber in such a way as to modulate the direction of propagation of the electron beam, thereby further amplifyjng the microwave electromagnetic field. Furthermore, provision is made for coupling the electromagnetic field out of the electron beam microwave device.

  16. Atomic Image Projection Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Bum

    2006-03-01

    While we are approaching to the nanotechnology era, as was proposed by Richard Feynman in 1959, our main concern still lies in how one can controllably manufacture and utilize nanometer scale features. The top-down approaches, most notably, lithography based techniques still have the problem of throughput although it has been successfully demonstrate to make features with the size less than 10 nm. The bottom-up approaches, either utilizing chemical vapor deposition process to make carbon nanotube or wet-chemical process to make size controllable quantum dots and rods, still have the limitation of extending it to many different types of materials and also delivering them on a wafer size substrate to make nanodevices. In this talk, we will propose a novel electron beam lithography technique to make nanometer scale features. The novelty of this process lies in the fact that one can utilize the crystalline lattice image commonly observed by the high resolution transmission electron microscopy as an ultimate mask to generate nanometer scale patterns. Using this technique, we demonstrate that down to 45 nm pitch size can be resolved on hydrogen silsesquioxine (HSQ) e-beam resist material. The patterns are formed on Si substarte with the dot size of about 30 nm and the line size of about 25 nm. This technique can be extend to define less than 10 nm size features only if the suitable resist is developed.

  17. Plasma lenses for focusing relativistic electron beams

    SciTech Connect

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-04-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n{sub p} much greater than electron beam density, n{sub b}) or underdense (n{sub p} less than 2 n{sub b}). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated.

  18. Electron beam effects in a UV FEL

    SciTech Connect

    Wong, R.K.; Blau, J.; Colson, W.B.

    1995-12-31

    At the Continuous Electron Beam Accelerator Facility (CEBAF), a free electron laser (FEL) is designed to produce ultraviolet (UV) light. A four-dimensional FEL simulation studies the effects of betatron oscillations, external focusing, and longitudinal pulse compression of the electron beam on the FEL performance.

  19. Rippled-beam free-electron laser

    SciTech Connect

    Carlsten, B.E.

    1997-10-01

    The authors describe a new microwave generation mechanism involving a scalloping annular electron beam. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. Due to nonlinearities in the orbit equation, the interaction can be made autoresonant, where the phase and amplitude of the gain is independent of the beam energy.

  20. The POSEIDON electron beam generator. Final report

    SciTech Connect

    Sethian, J.D.; Mora, F.

    1982-09-27

    The POSEIDON electron beam generator was designed to perform a series of experiments to produce a closed field line plasma confinement system with two rotating relativistic electron beams. Previous experimental studies have shown that a single rotating beam (generated by the TRITON electron beam generator) can produce a plasma in a reversed field configuration inside an initially field free metal tube. The magnetic fields were maintained with induced plasma currents rather than the beam electrons themselves. However, because the beam was injected from one end of the system, a net axial current persisted which precluded axial containment. To eliminate this current, it was proposed to inject a second rotating beam from the opposite end of the system.

  1. Application of optical beams to electrons in graphene

    SciTech Connect

    Matulis, A.; Masir, M. Ramezani; Peeters, F. M.

    2011-03-15

    The technique of beam optics is applied to the description of the wave function of Dirac electrons. This approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist, while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous discussed.

  2. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  3. Low energy electron magnetometer using a monoenergetic electron beam

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M.; Rayborn, G. H.; White, F. A. (Inventor)

    1983-01-01

    A low energy electron beam magnetometer utilizes near-monoenergetic electrons thereby reducing errors due to electron energy spread and electron nonuniform angular distribution. In a first embodiment, atoms in an atomic beam of an inert gas are excited to a Rydberg state and then electrons of near zero energy are detached from the Rydberg atoms. The near zero energy electrons are then accelerated by an electric field V(acc) to form the electron beam. In a second embodiment, a filament emits electrons into an electrostatic analyzer which selects electrons at a predetermined energy level within a very narrow range. These selected electrons make up the electron beam that is subjected to the magnetic field being measured.

  4. ADVANCED ELECTRONIC PACKAGING TECHNIQUES

    DTIC Science & Technology

    MICROMINIATURIZATION (ELECTRONICS), *PACKAGED CIRCUITS, CIRCUITS, EXPERIMENTAL DATA, MANUFACTURING, NONDESTRUCTIVE TESTING, RESISTANCE (ELECTRICAL), SEMICONDUCTORS, TESTS, THIN FILMS (STORAGE DEVICES), WELDING.

  5. Electron beam emittance monitor for the SSC

    SciTech Connect

    Tsyganov, E.; Meinke, R.; Nexsen, W.; Kauffmann, S.; Zinchenko, A.; Taratin, A.

    1993-05-01

    A nondestructive beam profile monitor for the Superconducting Super Collider (SSC) is presented using as a probe a low-energy electron beam interacting with the proton bunch charge. Results using a full Monte Carlo simulation code look promising for the transverse and longitudinal beam profile measurements.

  6. Redesigned Electron-Beam Furnace Boosts Productivity

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    1995-01-01

    Redesigned electron-beam furnace features carousel of greater capacity so more experiments conducted per loading, and time spent on reloading and vacuum pump-down reduced. Common mounting plate for electron source and carousel simplifies installation and reduces vibration.

  7. Energy measurement of electron beams by Compton scattering

    NASA Technical Reports Server (NTRS)

    Keppel, Cynthia

    1995-01-01

    A method has been proposed to utilize the well-known Compton scattering process as a tool to measure the centroid energy of a high energy electron beam at the 0.01% level. It is suggested to use the Compton scattering of an infrared laser off the electron beam, and then to measure the energy of the scattered gamma-rays very precisely using solid-state detectors. The technique proposed is applicable for electron beams with energies from 200 MeV to 16 GeV using presently available lasers. This technique was judged to be the most viable of all those proposed for beam energy measurements at the nearby Continuous Electron Beam Accelerator Facility (CEBAF). Plans for a prototype test of the technique are underway, where the main issues are the possible photon backgrounds associated with an electron accelerator and the electron and laser beam stabilities and diagnostics. The bulk of my ASEE summer research has been spent utilizing the expertise of the staff at the Aerospace Electronics Systems Division at LaRC to assist in the design of the test. Investigations were made regarding window and mirror transmission and radiation damage issues, remote movement of elements in ultra-high vacuum conditions, etc. The prototype test of the proposed laser backscattering method is planned for this December.

  8. Feasibility study for mega-electron-volt electron beam tomography

    SciTech Connect

    Hampel, U.; Baertling, Y.; Hoppe, D.; Kuksanov, N.; Fadeev, S.; Salimov, R.

    2012-09-15

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  9. Feasibility study for mega-electron-volt electron beam tomography.

    PubMed

    Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R

    2012-09-01

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  10. Patterned electrochemical deposition of copper using an electron beam

    SciTech Connect

    Heijer, Mark den; Shao, Ingrid; Reuter, Mark C.; Ross, Frances M.; Radisic, Alex

    2014-02-01

    We describe a technique for patterning clusters of metal using electrochemical deposition. By operating an electrochemical cell in the transmission electron microscope, we deposit Cu on Au under potentiostatic conditions. For acidified copper sulphate electrolytes, nucleation occurs uniformly over the electrode. However, when chloride ions are added there is a range of applied potentials over which nucleation occurs only in areas irradiated by the electron beam. By scanning the beam we control nucleation to form patterns of deposited copper. We discuss the mechanism for this effect in terms of electron beam-induced reactions with copper chloride, and consider possible applications.

  11. Ion-beam assisted, electron-beam physical vapor deposition

    SciTech Connect

    Singh, J.

    1996-12-01

    Electron beam-physical vapor deposition (EB-PVD) is a relatively new technology that has overcome some of the difficulties associated with chemical vapor deposition, physical vapor deposition, and thermal spray processes. In the EB-PVD process, focused high-energy electron beams generated from electron guns are directed to melt and evaporate ingots, as well as preheat the substrate inside a vacuum chamber. By adding the assistance of ion beams to the process, coating density and adhesion are improved, while costs are reduced. This article describes physical vapor deposition and ion-beam processes, explains the advantages of EB-PVD, shows how ion beams optimize the benefits of EB-PVD, and enumerates a variety of applications.

  12. Focused electron beam in pyroelectric electron probe microanalyzer.

    PubMed

    Imashuku, Susumu; Imanishi, Akira; Kawai, Jun

    2013-07-01

    We report a method to focus the electron beam generated using a pyroelectric crystal. An electron beam with a spot size of 100 μm was achieved by applying an electrical field to an electroconductive needle tip set on a pyroelectric crystal. When the focused electron beam bombarded a sample, characteristic X-rays of the sample were only detected due to the production of an electric field between the needle tip and the sample.

  13. Proximity correction for electron beam lithography

    NASA Astrophysics Data System (ADS)

    Marrian, Christie R.; Chang, Steven; Peckerar, Martin C.

    1996-09-01

    As the critical dimensions required in mask making and direct write by electron beam lithography become ever smaller, correction for proximity effects becomes increasingly important. Furthermore, the problem is beset by the fact that only a positive energy dose can be applied with an electron beam. We discuss techniques such as chopping and dose shifting, which have been proposed to meet the positivity requirement. An alternative approach is to treat proximity correction as an optimization problem. Two such methods, local area dose correction and optimization using a regularizer proportional to the informational entropy of the solution, are compared. A notable feature of the regularized proximity correction is the ability to correct for forward scattering by the generation of a 'firewall' set back from the edge of a feature. As the forward scattering width increases, the firewall is set back farther from the feature edge. The regularized optimization algorithm is computationally time consuming using conventional techniques. However, the algorithm lends itself to a microelectronics integrated circuit coprocessor implementation, which could perform the optimization faster than even the fastest work stations. Scaling the circuit to larger number of pixels is best approached with a hybrid serial/parallel digital architecture that would correct for proximity effects over 108 pixels in about 1 h. This time can be reduced by simply adding additional coprocessors.

  14. Wave excitation by inhomogeneous suprathermal electron beams

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Dillenburg, D.; Wu, C. S.

    1982-01-01

    Wave excitation by an inhomogeneous suprathermal electron beam in a homogeneous magnetized plasma is studied. Not only is the beam density nonuniform, but the beam electrons possess a sheared bulk velocity. The general dispersion equation encompassing both electrostatic and electromagnetic effects is derived. Particular attention is given to the whistler mode. It is established that the density-gradient and velocity-shear effects are important for waves with frequencies close to the lower-hybrid resonance frequency.

  15. Low electron beam energy CIVA analysis of passivated ICs

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.; Dodd, B.A.; Henderson, C.L.

    1994-08-01

    Low Energy Charge-Induced Voltage Alteration (LECIVA) is a new scanning electron microscopy technique developed to localize open conductors in passivated ICs. LECIVA takes advantage of recent experimental work showing that the dielectric surface equilibrium voltage has an electron flux density dependence at low electron beam energies ({le}1.0 keV). The equilibrium voltage changes from positive to negative as the electron flux density is increased. Like Charge-Induced Voltage Alteration (CIVA), LECIVA images are produced from the voltage fluctuations of a constant current power supply as an electron beam is scanned over the IC surface. LECIVA image contrast is generated only by the electrically open part of a conductor, yielding, the same high selectivity demonstrated by CIVA. Because LECIVA is performed at low beam energies, radiation damage by the primary electrons and x-rays to MOS structures is far less than that caused by CIVA. LECIVA may also be performed on commercial electron beam test systems that do not have high primary electron beam energy capabilities. The physics of LECIVA signal generation are described. LECIVA imaging examples illustrate its utility on both a standard scanning electron microscope (SEM) and a commercial electron beam test system.

  16. Purification of Niobium by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Sankar, M.; Mirji, K. V.; Prasad, V. V. Satya; Baligidad, R. G.; Gokhale, A. A.

    2016-06-01

    Pure niobium metal, produced by alumino-thermic reduction of niobium oxide, contains various impurities which need to be reduced to acceptable levels to obtain aerospace grade purity. In the present work, an attempt has been made to refine niobium metals by electron beam drip melting technique to achieve purity confirming to the ASTM standard. Input power to the electron gun and melt rate were varied to observe their combined effect on extend of refining and loss of niobium. Electron beam (EB) melting is shown to reduce alkali metals, trace elements and interstitial impurities well below the specified limits. The reduction in the impurities during EB melting is attributed to evaporation and degassing due to the combined effect of high vacuum and high melt surface temperature. The % removal of interstitial impurities is essentially a function of melt rate and input power. As the melt rate decreases or input power increases, the impurity levels in the solidified niobium ingot decrease. The EB refining process is also accompanied by considerable amount of niobium loss, which is attributed to evaporation of pure niobium and niobium sub-oxide. Like other impurities, Nb loss increases with decreasing melt rate or increase in input power.

  17. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  18. Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.

    2011-03-28

    Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.

  19. Focused electron beam induced deposition: A perspective

    PubMed Central

    Porrati, Fabrizio; Schwalb, Christian; Winhold, Marcel; Sachser, Roland; Dukic, Maja; Adams, Jonathan; Fantner, Georg

    2012-01-01

    Summary Background: Focused electron beam induced deposition (FEBID) is a direct-writing technique with nanometer resolution, which has received strongly increasing attention within the last decade. In FEBID a precursor previously adsorbed on a substrate surface is dissociated in the focus of an electron beam. After 20 years of continuous development FEBID has reached a stage at which this technique is now particularly attractive for several areas in both, basic and applied research. The present topical review addresses selected examples that highlight this development in the areas of charge-transport regimes in nanogranular metals close to an insulator-to-metal transition, the use of these materials for strain- and magnetic-field sensing, and the prospect of extending FEBID to multicomponent systems, such as binary alloys and intermetallic compounds with cooperative ground states. Results: After a brief introduction to the technique, recent work concerning FEBID of Pt–Si alloys and (hard-magnetic) Co–Pt intermetallic compounds on the nanometer scale is reviewed. The growth process in the presence of two precursors, whose flux is independently controlled, is analyzed within a continuum model of FEBID that employs rate equations. Predictions are made for the tunability of the composition of the Co–Pt system by simply changing the dwell time of the electron beam during the writing process. The charge-transport regimes of nanogranular metals are reviewed next with a focus on recent theoretical advancements in the field. As a case study the transport properties of Pt–C nanogranular FEBID structures are discussed. It is shown that by means of a post-growth electron-irradiation treatment the electronic intergrain-coupling strength can be continuously tuned over a wide range. This provides unique access to the transport properties of this material close to the insulator-to-metal transition. In the last part of the review, recent developments in mechanical strain

  20. Dual cathode system for electron beam instruments

    NASA Technical Reports Server (NTRS)

    Bradley, James G. (Inventor); Conley, Joseph M. (Inventor); Wittry, David B. (Inventor)

    1989-01-01

    An electron beam source having a single electron optical axis is provided with two coplanar cathodes equally spaced on opposite sides from the electron optical axis. A switch permits selecting either cathode, and a deflection system comprised of electromagnets, each with separate pole pieces equally spaced from the plane of the cathodes and electron optical axis, first deflects the electron beam from a selected cathode toward the electron optical axis, and then in an opposite direction into convergence with the electron optical axis. The result is that the electron beam from one selected cathode undergoes a sigmoid deflection in two opposite directions, like the letter S, with the sigmoid deflection of each being a mirror image of the other.

  1. Single electron beam rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  2. Digital retrospective motion-mode display and processing of electron beam cine-computed tomography and other cross-sectional cardiac imaging techniques

    NASA Astrophysics Data System (ADS)

    Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II

    1995-05-01

    Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These

  3. Ion beam analysis techniques in interdisciplinary applications

    SciTech Connect

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-11-16

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  4. Ion Beam Analysis Techniques in Interdisciplinary Applications

    SciTech Connect

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-12-31

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  5. The polarized electron beam at ELSA

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Drachenfels, W. V.; Frommberger, F.; Gowin, M.; Helbing, K.; Hillert, W.; Husmann, D.; Keil, J.; Michel, T.; Naumann, J.; Speckner, T.; Zeitler, G.

    2001-06-01

    The future medium energy physics program at the electron stretcher accelerator ELSA of Bonn University mainly relies on experiments using polarized electrons in the energy range from 1 to 3.2 GeV. To provide a polarized beam with high polarization and sufficient intensity a dedicated source has been developed and set into operation. To prevent depolarization during acceleration in the circular accelerators several depolarizing resonances have to be corrected for. Intrinsic resonances are compensated using two pulsed betatron tune jump quadrupoles. The influence of imperfection resonances is successfully reduced applying a dynamic closed orbit correction in combination with an empirical harmonic correction on the energy ramp. In order to minimize beam depolarization, both types of resonances and the correction techniques have been studied in detail. It turned out that the polarization in ELSA can be conserved up to 2.5 GeV and partially up to 3.2 GeV which is demonstrated by measurements using a Møller polarimeter installed in the external GDH1-beamline. .

  6. Equivalent beam modeling using numerical reduction techniques

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Shaw, F. H.

    1987-01-01

    Numerical procedures that can accomplish model reductions for space trusses were developed. Three techniques are presented that can be implemented using current capabilities within NASTRAN. The proposed techniques accomplish their model reductions numerically through use of NASTRAN structural analyses and as such are termed numerical in contrast to the previously developed analytical techniques. Numerical procedures are developed that permit reductions of large truss models containing full modeling detail of the truss and its joints. Three techniques are presented that accomplish these model reductions with various levels of structural accuracy. These numerical techniques are designated as equivalent beam, truss element reduction, and post-assembly reduction methods. These techniques are discussed in detail.

  7. Runaway electron beam control for longitudinally pumped metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  8. Electron beam irradiated silver nanowires for a highly transparent heater.

    PubMed

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-12-07

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters.

  9. A gas-jet transport and catcher technique for on-line production of radioactive ion beams using an electron cyclotron resonance ion-source.

    PubMed

    Naik, V; Chakrabarti, A; Bhattacharjee, M; Karmakar, P; Bandyopadhyay, A; Bhattacharjee, S; Dechoudhury, S; Mondal, M; Pandey, H K; Lavanyakumar, D; Mandi, T K; Dutta, D P; Kundu Roy, T; Bhowmick, D; Sanyal, D; Srivastava, S C L; Ray, A; Ali, Md S

    2013-03-01

    Radioactive ion beams (RIB) have been produced on-line, using a gas-jet recoil transport coupled Electron Cyclotron Resonance (ECR) ion-source at the VECC-RIB facility. Radioactive atoms∕molecules carried through the gas-jet were stopped in a catcher placed inside the ECR plasma chamber. A skimmer has been used to remove bulk of the carrier gas at the ECR entrance. The diffusion of atoms∕molecules through the catcher has been verified off-line using stable isotopes and on-line through transmission of radioactive reaction products. Beams of (14)O (71 s), (42)K (12.4 h), (43)K (22.2 h), and (41)Ar (1.8 h) have been produced by bombarding nitrogen and argon gas targets with proton and alpha particle beams from the K130 cyclotron at VECC. Typical measured intensity of RIB at the separator focal plane is found to be a few times 10(3) particles per second (pps). About 3.2 × 10(3) pps of 1.4 MeV (14)O RIB has been measured after acceleration through a radiofrequency quadrupole linac. The details of the gas-jet coupled ECR ion-source and RIB production experiments are presented along with the plans for the future.

  10. Electron Beam Scanning in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  11. Experimental Studies of Electrons in a Heavy-Ion Beam

    SciTech Connect

    Molvik, A W; Seidl, P A; Bieniosek, F M; Cohen, R H; Faltens, A; Friedman, A; Covo, M K; Lund, S M; Prost, L

    2004-06-23

    Electron cloud effects, ECEs, are normally a problem only in ring accelerators. However, heavy-ion induction linacs for inertial fusion energy have an economic incentive to fit beam tubes tightly to intense beams. This places them at risk from electron clouds produced by emission of electrons and gas from walls. We have measured electron and gas emission from 1 MeV K{sup +} impact on surfaces near grazing incidence on the High-Current Experiment (HCX) at LBNL. Electron emission coefficients reach *values of 130, whereas gas desorption coefficients are near 10{sup 4}. Mitigation techniques are being studied: A bead-blasted rough surface reduces electron emission by a factor of 10 and gas desorption by a factor of 2. Diagnostics are installed on HCX, between and within quadrupole magnets, to measure the beam halo loss, net charge and expelled ions, from which we infer gas density, electron trapping, and the effects of mitigation techniques. Here we discuss a new diagnostic technique that measures gas pressure and electron ionization rates within quadrupole magnets during the beam transit.

  12. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to

  13. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron`s relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  14. Non-Vacuum Electron Beam Welding

    SciTech Connect

    Hershcovitch, Ady

    2007-01-31

    Original objectives of CRADA number BNL-01-03 between BNL and Acceleron, Inc., were to further develop the Plasma Window concept (a BNL invention covered by US Patent number 5,578,831), mate the Plasma Window to an existing electron beam welder to perform in-air electron beam welding, and mount the novel nonvacuum electron beam welder on a robot arm. Except for the last objective, all other goals were met or exceeded. Plasma Window design and operation was enhanced during the project, and it was successfully mated to a conventional4 kW electron beam welder. Unprecedented high quality non-vacuum electron beam . welding was demonstrated. Additionally, a new invention the Plasma Shield (US Patent number 7,075,030) that chemically and thermally shields a target object was set forth. Great interest in the new technology was shown by a number of industries and three arcs were sold for experimental use. However, the welding industry requested demonstration of high speed welding, which requires 100 kW electron beam welders. The cost of such a welder involved the need for additional funding. Therefore, some of the effort was directed towards Plasma Shield development. Although relatively a small portion of the R&D effort was spent on the Plasma Shield, some very encouraging results were obtained. Inair Plasma Shield was demonstrated. With only a partial shield, enhanced vacuum separation and cleaner welds were realized. And, electron beam propagation in atmosphere improved by a factor of about 3. Benefits to industry are the introduction of two new technologies. BNL benefited from licensing fee cash, from partial payment for employee salary, and from a new patent In addition to financial benefits, a new technology for physics studies was developed. Recommendations for future work are to develop an under-water plasma shield, perform welding with high-power electron beam:s, carry out other plasma shielded electron beam and laser processes. Potential benefits from further R

  15. Development of High Power Electron Beam Measuring and Analyzing System for Microwave Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Ruan, C. J.; Wu, X. L.; Li, Q. S.; Li, C. S.

    The measurement and analysis of high power electron beam during its formation and transmission are the basic scientific problems and key techniques for the development of high performance microwave vacuum electron devices, which are widely used in the fields of military weapon, microwave system and scientific instruments. In this paper, the dynamic parameters measurement and analysis system being built in Institute of Electronics, Chinese Academy of Sciences (IECAS) recently are introduced. The instrument are designed to determine the cross-section, the current density, and the energy resolution of the high power electron beam during its formation and transmission process, which are available both for the electron gun and the electron optics system respectively. Then the three dimension trajectory images of the electron beam can be rebuilt and display with computer controlled data acquisition and processing system easily. Thus, much more complicated structures are considered and solved completely to achieve its detection and analysis, such as big chamber with 10-6 Pa high vacuum system, the controlled detector movement system in axis direction with distance of 600 mm inside the vacuum chamber, the electron beam energy analysis system with high resolution of 0.5%, and the electron beam cross-section and density detector using the YAG: Ce crystal and CCD imaging system et al. At present, the key parts of the instrument have been finished, the cross-section experiment of the electron beam have been performed successfully. Hereafter, the instrument will be used to measure and analyze the electron beam with the electron gun and electron optics system for the single beam and multiple beam klystron, gyrotron, sheet beam device, and traveling wave tube etc. thoroughly.

  16. Intense Relativistic Electron Beam Investigations

    DTIC Science & Technology

    1979-04-01

    flashover and other undetermined physical processes which create a plasma at the liner surface . The ions are drawn toward the Uiner axis by the...dielectric wall and causing surface flashover and the liberation of ions. These ions provide sufficient charge neutralization for the beam to propagate a...beam-induced surface flashover process which produces the ions to be accelerated. Alternative methods are proposed in Section III for next year’s

  17. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  18. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  19. Numerical simulation of electron beam welding with beam oscillations

    NASA Astrophysics Data System (ADS)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  20. Runaway electron beam in atmospheric pressure discharges

    NASA Astrophysics Data System (ADS)

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-11-01

    A numerical simulation was performed to study the formation of a runaway electron (RAE) beam from an individual emission zone in atmospheric pressure air discharges with a highly overvolted interelectrode gap. It is shown that the formation of a RAE beam in discharges at high overvoltages is much contributed by avalanche processes.

  1. Emittance growth from electron beam modulation

    SciTech Connect

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  2. Scrap uranium recycling via electron beam melting

    SciTech Connect

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  3. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2016-07-12

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  4. Photon-Electron Interaction and Condense Beams

    SciTech Connect

    Chattopadhyay, S.

    1998-11-01

    We discuss beams of charged particles and radiation from multiple perspectives. These include fundamental acceleration and radiation mechanisms, underlying electron-photon interaction, various classical and quantum phase-space concepts and fluctuational interpretations.

  5. Electron beam depolarization in a damping ring

    SciTech Connect

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms.

  6. Technical Seminar: Electron Beam Forming Fabrication

    NASA Video Gallery

    EBF³ uses a focused electron beam in a vacuum environment to create a molten pool on a metallic substrate. This layer-additive process enables fabrication of parts directly from CAD drawings. The ...

  7. The Electron Beam Ion Source (EBIS)

    SciTech Connect

    Brookhaven Lab

    2009-06-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  8. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  9. Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code

    SciTech Connect

    Stancari, Giulio; Moens, Vince; Redaelli, Stefano

    2014-07-01

    Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The design of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.

  10. Electron cloud density measurements in accelerator beam-pipe using resonant microwave excitation

    NASA Astrophysics Data System (ADS)

    Sikora, John P.; Carlson, Benjamin T.; Duggins, Danielle O.; Hammond, Kenneth C.; De Santis, Stefano; Tencate, Alister J.

    2014-08-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the phase of the transmitted signal. This paper describes a variation on this technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length with a greatly improved signal to noise ratio.

  11. Electron Cooling of Intense Ion Beam

    SciTech Connect

    Dietrich, J.; Kamerdjiev, V.; Maier, R.; Prasuhn, D.; Stein, J.; Stockhorst, H.; Korotaev, Yu.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2006-03-20

    Results of experimental studies of the electron cooling of a proton beam at COSY (Juelich, Germany) are presented. Intensity of the proton beam is limited by two general effects: particle loss directly after the injection and development of instability in a deep cooled ion beam. Results of the instability investigations performed at COSY during last years are presented in this report in comparison with previous results from HIMAC (Chiba, Japan) CELSIUS (Uppsala, Sweden) and LEAR (CERN). Methods of the instability suppression, which allow increasing the cooled beam intensity, are described. This work is supported by RFBR grant no. 05-02-16320 and INTAS grant no. 03-54-5584.

  12. A reflex electron beam discharge as a plasma source for electron beam generation

    SciTech Connect

    Murray, C.S.; Rocca, J.J.; Szapiro, B. )

    1988-10-01

    A reflex electron beam glow discharge has been used as a plasma source for the generation of broad-area electron beams. An electron current of 120 A (12 A/cm/sup 2/) was extracted from the plasma in 10 ..mu..s pulses and accelerated to energies greater than 1 keV in the gap between two grids. The scaling of the scheme for the generation of multikiloamp high-energy beams is discussed.

  13. Thermal response of ceramic components during electron beam brazing

    SciTech Connect

    Voth, T.E.; Gianoulakis, S.E.; Halbleib, J.A.

    1996-03-01

    Ceramics are being used increasingly in applications where high temperatures are encountered such as automobile and gas turbine engines. However, the use of ceramics is limited by a lack of methods capable of producing strong, high temperature joints. This is because most ceramic-ceramic joining techniques, such as brazing, require that the entire assembly be exposed to high temperatures in order to assure that the braze material melts. Alternatively, localized heating using high energy electron beams may be used to selectively heat the braze material. In this work, high energy electron beam brazing of a ceramic part is modeled numerically. The part considered consists of a ceramic cylinder and disk between which is sandwiched an annular washer of braze material. An electron beam impinges on the disk, melting the braze metal. The resulting coupled electron and thermal transport equations are solved using Monte Carlo and finite element techniques. Results indicate that increased electron beam current decreases time to melt as well as required cooling time. Vacuum furnace brazing was also simulated and predicted results indicate increased processing times relative to electron beam brazing.

  14. Control and Manipulation of Electron Beams

    SciTech Connect

    Piot, Philippe

    2009-01-22

    The concepts of the advanced accelerators and light source rely on the production of bright electron beams. The rms areas of the beam phase space often need to be tailored to the specific applications. Furthermore, a new class of the forefront research calls for detailed specific distribution such as the particle density in the time coordinate. Several groups are tackling these various challenges and in this report we attempt to give a review of the state-of-the-art of the control and manipulation of the electron beams.

  15. A conceptual design for an electron beam

    SciTech Connect

    Garcia, M

    1999-02-15

    This report is a brief description of a model electron beam, which is meant to serve as a pulsed heat source that vaporizes a metal fleck into an ''under-dense'' cloud. See Reference 1. The envelope of the electron beam is calculated from the paraxial ray equation, as stated in Reference 2. The examples shown here are for 5 A, 200 keV beams that focus to waists of under 0.4 mm diameter, within a cylindrical volume of 10 cm radius and length. The magnetic fields assumed in the examples are moderate, 0.11 T and 0.35 T, and can probably be created by permanent magnets.

  16. Control and manipulation of electron beams

    SciTech Connect

    Piot, Philippe; /NICADD, DeKalb /Northern Illinois U. /Fermilab

    2008-09-01

    The concepts of the advanced accelerators and light source rely on the production of bright electron beams. The rms areas of the beam phase space often need to be tailored to the specific applications. Furthermore, a new class of the forefront research calls for detailed specific distribution such as the particle density in the time coordinate. Several groups are tackling these various challenges and in this report we attempt to give a review of the state-of-the-art of the control and manipulation of the electron beams.

  17. Short rise time intense electron beam generator

    DOEpatents

    Olson, Craig L.

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  18. Short rise time intense electron beam generator

    DOEpatents

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  19. Laser-Bessel-Beam-Driven Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Li, Dazhi; Imasaki, Kazuo

    2005-08-01

    A vacuum-laser-driven acceleration scheme using a laser Bessel beam is presented. In contrast to the conventional Gaussian beam, the Bessel beam demonstrates diffraction-free propagation, which implies the possibility of extending the effective interaction distance for a laser-electron system. In this method, the Bessel beam is truncated by annular slits to realize a series of nonsuccessive dim regions along the path of laser propagation, where the amplitude of the laser field is reduced, making the electron slightly decelerate as it travels in the decelerating phase. We analyzed the propagation characteristics of the truncated Bessel beam with scalar diffraction theory, and then introduced this approach with careful investigation of a three-stage acceleration model.

  20. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  1. Patient radiation doses for electron beam CT

    SciTech Connect

    Castellano, Isabel A.; Dance, David R.; Skinner, Claire L.; Evans, Phil M.

    2005-08-15

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDI{sub vol}) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDI{sub vol} to an effective dose.

  2. Funneling electron beams from gallium arsenide photocathodes

    NASA Astrophysics Data System (ADS)

    Rahman, Omer Habib

    Gallium Arsenide (GaAs) is the most widely used source of polarized electrons around the world. Electrons are extracted from a GaAs surface, terminated by a cesium-oxygen layer. The electrons are accelerated to form a beam by a DC electric field. This beam can ionize residual gas in the chamber, and the DC field accelerates the resulting ions into the cathode surface, damaging the Cesium- Oxygen layer. This process, called Ion Back Bombardment, is the dominant mechanism for limiting photocathode lifetime. As a result, high average current operation yields charge lifetimes too low to be used in a collider design. One idea to extend the charge lifetime is to funnel the beams from multiple cathodes using a rotating magnetic field-if operation of one cathode does not affect the operation of another cathode in the same chamber, then the source's lifetime can be extended by simply adding more cathodes. This dissertation presents the design, construction and commissioning of a unique electron gun capable of operating twenty cathodes. Results of funneling two electron beams with a rotating magnetic field are also presented. For average currents at 175 nA and 350 nA, the charge lifetimes for individual cathodes and two-cathode operation were measured, showing that the charge lifetime for two beam funneling is the sum of the individual ion back bombardment charge lifetimes. The addition of charge lifetime implies that beam funneling can be used to increase charge lifetime by an order of magnitude.

  3. Electron beam direct write: shaped beam overcomes resolution concerns

    NASA Astrophysics Data System (ADS)

    Stolberg, Ines; Pain, Laurent; Kretz, Johannes; Boettcher, Monika; Doering, Hans-Joachim; Gramss, Juergen; Hahmann, Peter

    2007-02-01

    In semiconductor industry time to market is one of the key success factors. Therefore fast prototyping and low-volume production will become extremely important for developing process technologies that are well ahead of the current technological level. Electron Beam Lithography has been launched for industrial use as a direct write technology for these types of applications. However, limited throughput rates and high tool complexity have been seen as the major concerns restricting the industrial use of this technology. Nowadays this begins to change. Variable Shaped Beam (VSB) writers have been established in Electron Beam Direct Write (EBDW) on Si or GaAs. In the paper semiconductor industry requirements to EBDW will be outlined. Behind this background the Vistec SB3050 lithography system will be reviewed. The achieved resolution enhancement of the VSB system down to the 22nm node exposure capability will be discussed in detail; application examples will be given. Combining EBDW in a Mix and Match technology with optical lithography is one way to utilize the high flexibility advantage of this technology and to overcome existing throughput concerns. However, to some extend a common Single Electron Beam Technology (SBT) will always be limited in throughput. Therefore Vistec's approach of a system that is based on the massive parallelisation of beams (MBT), which was initially pursued in a European Project, will also be discussed.

  4. Correlation in a coherent electron beam

    SciTech Connect

    Kodama, Tetsuji; Osakabe, Nobuyuki; Tonomura, Akira

    2011-06-15

    Correlations between successive detections in beams of free electrons are studied with a transmission electron microscope. For incoherent illumination of the detectors, a certain random coincidence probability is observed, indicative for uncorrelated arrival times of the electrons. When the illumination is changed from incoherent to coherent, a reduction of the random coincidence probability is observed, indicative for antibunching in the arrival times of the electrons. However, the amount of reduction is larger than the theoretically expected value calculated from the Pauli principle, forbidding more than one identical fermion to occupy the same quantum state. For a certain coherent illumination of the detectors, where we use magnetic lenses in electron microscopes for magnifications of the coherence length, we find an enhanced coincidence probability, indicative for bunching in the arrival times of the electrons. This originates from correlations in beams of free electrons due to Coulomb interactions.

  5. Electron-beam induced synthesis of nanostructures: a review.

    PubMed

    Gonzalez-Martinez, I G; Bachmatiuk, A; Bezugly, V; Kunstmann, J; Gemming, T; Liu, Z; Cuniberti, G; Rümmeli, M H

    2016-06-02

    As the success of nanostructures grows in modern society so does the importance of our ability to control their synthesis in precise manners, often with atomic precision as this can directly affect the final properties of the nanostructures. Hence it is crucial to have both deep insight, ideally with real-time temporal resolution, and precise control during the fabrication of nanomaterials. Transmission electron microscopy offers these attributes potentially providing atomic resolution with near real time temporal resolution. In addition, one can fabricate nanostructures in situ in a TEM. This can be achieved with the use of environmental electron microscopes and/or specialized specimen holders. A rather simpler and rapidly growing approach is to take advantage of the imaging electron beam as a tool for in situ reactions. This is possible because there is a wealth of electron specimen interactions, which, when implemented under controlled conditions, enable different approaches to fabricate nanostructures. Moreover, when using the electron beam to drive reactions no specialized specimen holders or peripheral equipment is required. This review is dedicated to explore the body of work available on electron-beam induced synthesis techniques with in situ capabilities. Particular emphasis is placed on the electron beam-induced synthesis of nanostructures conducted inside a TEM, viz. the e-beam is the sole (or primary) agent triggering and driving the synthesis process.

  6. Ribbon electron beam formation by a forevacuum plasma electron source

    SciTech Connect

    Klimov, A. S. Burdovitsin, V. A.; Grishkov, A. A.; Oks, E. M.; Zenin, A. A.; Yushkov, Yu. G.

    2016-01-15

    Results of the numerical analysis and experimental research on ribbon electron beam generation based on hollow cathode discharge at forevacuum gas pressure are presented. Geometry of the accelerating gap has modified. It lets us focus the ribbon electron beam and to transport it on a distance of several tens of centimeters in the absence of an axial magnetic field. The results of numerical simulations are confirmed by the experiment.

  7. Modelling of electron beam induced nanowire attraction

    NASA Astrophysics Data System (ADS)

    Bitzer, Lucas A.; Speich, Claudia; Schäfer, David; Erni, Daniel; Prost, Werner; Tegude, Franz J.; Benson, Niels; Schmechel, Roland

    2016-04-01

    Scanning electron microscope (SEM) induced nanowire (NW) attraction or bundling is a well known effect, which is mainly ascribed to structural or material dependent properties. However, there have also been recent reports of electron beam induced nanowire bending by SEM imaging, which is not fully explained by the current models, especially when considering the electro-dynamic interaction between NWs. In this article, we contribute to the understanding of this phenomenon, by introducing an electro-dynamic model based on capacitor and Lorentz force interaction, where the active NW bending is stimulated by an electromagnetic force between individual wires. The model includes geometrical, electrical, and mechanical NW parameters, as well as the influence of the electron beam source parameters and is validated using in-situ observations of electron beam induced GaAs nanowire (NW) bending by SEM imaging.

  8. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    SciTech Connect

    Adeyemi, Adeleke H.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  9. Electron beam assisted field evaporation of insulating nanowires/tubes

    SciTech Connect

    Blanchard, N. P. Niguès, A.; Choueib, M.; Perisanu, S.; Ayari, A.; Poncharal, P.; Purcell, S. T.; Siria, A.; Vincent, P.

    2015-05-11

    We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.

  10. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect

    Pollock, Bradley Bolt

    2012-01-01

    limited, defined region. Using this technique a 460 MeV electron beam was produced with an energy spread of 5%. This technique is directly scalable to multi-GeV electron beam generation with sub-percent energy spreads.

  11. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  12. Ultrafast Time-Resolved Electron Diffraction with Megavolt Electron Beams

    SciTech Connect

    Hastings, J.B.; Rudakov, F.M.; Dowell, D.H.; Schmerge, J.F.; Cardoza, J.D.; Castro, J.M.; Gierman, S.M.; Loos, H.; Weber, P.M.; /Brown U.

    2006-10-24

    An rf photocathode electron gun is used as an electron source for ultrafast time-resolved pump-probe electron diffraction. We observed single-shot diffraction patterns from a 160 nm Al foil using the 5.4 MeV electron beam from the Gun Test Facility at the Stanford Linear Accelerator. Excellent agreement with simulations suggests that single-shot diffraction experiments with a time resolution approaching 100 fs are possible.

  13. Scaling of Electron Beam Switches

    DTIC Science & Technology

    1983-06-01

    BEAM CURRENT DENSITY (AFTER FOIL). N2 760 Torr N2+0.038Torr C3F8 ~15 N2+0. l’T orr C3F8 N2+0. 124Torr C2F6 Ql L L 310 \\ ~ \\\\ ~ 5 h...Time [sec] FIG 5. CURRENT DECAYS FOR NITROGEN AND NITROGEN WITH ADDED ATTACHING GASES. CH4 760 Torr CH4+0. lTorr C2F6 CH4+0. lTorr C3F8 CH4

  14. High Density Mastering Using Electron Beam

    NASA Astrophysics Data System (ADS)

    Kojima, Yoshiaki; Kitahara, Hiroaki; Kasono, Osamu; Katsumura, Masahiro; Wada, Yasumitsu

    1998-04-01

    A mastering system for the next-generation digital versatile disk (DVD) is required to have a higher resolution compared with the conventional mastering systems. We have developed an electron beam mastering machine which features a thermal field emitter and a vacuum sealed air spindle motor. Beam displacement caused by magnetic fluctuation with spindle rotation was about 60 nm(p-p) in both the radial and tangential directions. Considering the servo gain of a read-out system, it has little influence on the read-out signal in terms of tracking errors and jitters. The disk performance was evaluated by recording either the 8/16 modulation signal or a groove on the disk. The electron beam recording showed better jitter values from the disk playback than those from a laser beam recorder. The deviation of track pitch was 44 nm(p-p). We also confirmed the high density recording with a capacity reaching 30 GB.

  15. Electron beam-assisted healing of nanopores in magnesium alloys

    PubMed Central

    Zheng, He; Liu, Yu; Cao, Fan; Wu, Shujing; Jia, Shuangfeng; Cao, Ajing; Zhao, Dongshan; Wang, Jianbo

    2013-01-01

    Nanopore-based sensing has emerged as a promising candidate for affordable and powerful DNA sequencing technologies. Herein, we demonstrate that nanopores can be successfully fabricated in Mg alloys via focused electron beam (e-beam) technology. Employing in situ high-resolution transmission electron microscopy techniques, we obtained unambiguous evidence that layer-by-layer growth of atomic planes at the nanopore periphery occurs when the e-beam is spread out, leading to the shrinkage and eventual disappearance of nanopores. The proposed healing process was attributed to the e-beam-induced anisotropic diffusion of Mg atoms in the vicinity of nanopore edges. A plausible diffusion mechanism that describes the observed phenomena is discussed. Our results constitute the first experimental investigation of nanopores in Mg alloys. Direct evidence of the healing process has advanced our fundamental understanding of surface science, which is of great practical importance for many technological applications, including thin film deposition and surface nanopatterning. PMID:23719630

  16. Tomographic determination of the power distribution in electron beams

    DOEpatents

    Teruya, Alan T.; Elmer, John W.

    1996-01-01

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.

  17. Tomographic determination of the power distribution in electron beams

    DOEpatents

    Teruya, A.T.; Elmer, J.W.

    1996-12-10

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process. 4 figs.

  18. Compensation techniques in NIRS proton beam radiotherapy

    SciTech Connect

    Akanuma, A.; Majima, H.; Furukawa, S.

    1982-09-01

    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods.

  19. Channeling technique to make nanoscale ion beams

    NASA Astrophysics Data System (ADS)

    Biryukov, V. M.; Bellucci, S.; Guidi, V.

    2005-04-01

    Particle channeling in a bent crystal lattice has led to an efficient instrument for beam steering at accelerators [Biryukov et al., Crystal Channeling and its Application at High Energy Accelerators, Springer, Berlin, 1997], demonstrated from MeV to TeV energies. In particular, crystal focusing of high-energy protons to micron size has been demonstrated at IHEP with the results well in match with Lindhard (critical angle) prediction. Channeling in crystal microstructures has been proposed as a unique source of a microbeam of high-energy particles [Bellucci et al., Phys. Rev. ST Accel. Beams 6 (2003) 033502]. Channeling in nanostructures (single-wall and multi-wall nanotubes) offers the opportunities to produce ion beams on nanoscale. Particles channeled in a nanotube (with typical diameter of about 1 nm) are trapped in two dimensions and can be steered (deflected, focused) with the efficiency similar to that of crystal channeling or better. This technique has been a subject of computer simulations, with experimental efforts under way in several high-energy labs, including IHEP. We present the theoretical outlook for making channeling-based nanoscale ion beams and report the experience with crystal-focused microscale proton beams.

  20. Imaging techniques with refractive beam shaping optics

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-10-01

    Applying of the refractive beam shapers in real research optical setups as well as in industrial installations requires very often manipulation of a final laser spot size. In many cases this task can be easily solved by using various imaging optical layouts presuming creating an image of a beam shaper output aperture. Due to the unique features of the refractive beam shapers of field mapping type, like flat wave front and low divergence of the collimated resulting beam with flattop or another intensity profile, there is a freedom in building of various imaging systems with using ordinary optical components, including off-the-shelf ones. There will be considered optical layouts providing high, up to 1/200×, de-magnifying factors, combining of refractive beam shapers like πShaper with scanning systems, building of relay imaging systems with extended depth of field. These optical layouts are widely used in such laser technologies like drilling holes in PCB, welding, various micromachining techniques with galvo-mirror scanning, interferometry and holography, various SLM-based applications. Examples of real implementations and experimental results will be presented as well.

  1. Radiation damage in zircon by high-energy electron beams

    SciTech Connect

    Jiang Nan; Spence, John C. H.

    2009-06-15

    Radiation damage induced by high-energy (200 keV) electron irradiation in zircon has been studied thoroughly using imaging, diffraction, and electron energy-loss spectroscopy techniques in transmission electron microscopy. Both structural and compositional changes during the damage were measured using the above techniques in real time. It was found that the damage was mainly caused by the preferential sputtering of O. The loss of O occurred initially within small sporadic regions with dimension of several nanometers, resulting in the direct transformation of zircon into Zr{sub x}Si{sub y}. These isolated patches gradually connect each other and eventually cover the whole area of the electron beam. These differ from the previous observations either in the self-irradiated natural and synthetic zircon or in ion-beam irradiated thin zircon specimen.

  2. Shaping single walled nanotubes with an electron beam

    SciTech Connect

    Zobelli, A.; Gloter, A.; Colliex, C.; Ewels, C. P.

    2008-01-15

    We show that electron irradiation in a dedicated scanning transmission microscope can be used as a nano-electron-lithography technique allowing the controlled reshaping of single walled carbon and boron nitride nanotubes. The required irradiation conditions have been optimized on the basis of total knock-on cross sections calculated within density functional based methods. It is then possible to induce morphological modifications, such as a local change of the tube chirality, by sequentially removing several tens of atoms with a nanometrical spatial resolution. We show that electron beam heating effects are limited. Thus, electron beam induced vacancy migration and nucleation might be excluded. These irradiation techniques could open new opportunities for nanoengineering a large variety of nanostructured materials.

  3. Linac Coherent Light Source Electron Beam Collimation

    SciTech Connect

    Wu, J.; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Schmerge, J.F.; /SLAC

    2007-04-27

    This paper describes the design and simulation of the electron beam collimation system in the Linac Coherent Light Source (LCLS). Dark current is expected from the gun and some of the accelerating cavities. Particle tracking of the expected dark current through the entire LCLS linac, from gun through FEL undulator, is used to estimate final particle extent in the undulator as well as expected beam loss at each collimator or aperture restriction. A table of collimators and aperture restrictions is listed along with halo particle loss results, which includes an estimate of average continuous beam power lost. In addition, the transverse wakefield alignment tolerances are calculated for each collimator.

  4. Pulsed-electron-beam annealing of ion-implantation damage

    NASA Technical Reports Server (NTRS)

    Greenwald, A. C.; Kirkpatrick, A. R.; Little, R. G.; Minnucci, J. A.

    1979-01-01

    Short-duration high-intensity pulsed electron beams have been used to anneal ion-implantation damage in silicon and to electrically activate the dopant species. Lattice regrowth and dopant activation were determined using He(+)-4 backscattering, SEM, TEM, and device performance characteristics as diagnostic techniques. The annealing mechanism is believed to be liquid-phase epitaxial regrowth initiating from the substrate. The high-temperature transient pulse produced by the electron beam causes the dopant to diffuse rapidly in the region where the liquid state is achieved.

  5. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1983-01-01

    Electron beam experiments using rocket-borne instrumentation confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes were observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Of these, 102 echoes could unambiguously be identified with known accelerator operations at 2, 4 or 8 keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher energy electrons led the lower energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. The injection process is discussed as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection.

  6. Picosecond runaway electron beams in air

    SciTech Connect

    Mesyats, G. A.; Yalandin, M. I.; Reutova, A. G.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.

    2012-01-15

    Experimental data on the generation of picosecond runaway electron beams in an air gap with an inhomogeneous electric field at a cathode voltage of up to 500 kV are presented. The methods and equipment developed for these experiments made it possible to measure the beam characteristics with a time resolution of better than 10{sup -11} s, determine the voltage range and the beam formation time in the breakdown delay stage, and demonstrate the influence of the state of the cathode surface on the stability of runaway electron generation. It is demonstrated that the critical electron runaway field in air agrees with the classical concepts and that the accelerated beam can be compressed to {approx}20 ps. It is unlikely that, under these conditions, the beam duration is limited due to the transition of field emission from the cathode to a microexplosion of inhomogeneities. The maximum energy acquired by runaway electrons in the course of acceleration does not exceed the value corresponding to the electrode voltage.

  7. Microwave Emission from Relativistic Electron Beams

    DTIC Science & Technology

    1989-03-01

    crucial for the operation of short wavelength free-electron lasers. It mitigates the effects of diffraction and thereby allows the free electron...akin to the guiding properties of an optical fiber. Such "optical guiding" [5]-[10] would mitigate the effects of diffraction, and thereby allow the...beam aperture limits the size of the beam to rb/ 1, f 0.07, the wiggler field is close to that of an ideal wiggler. That is, the effects of the radial

  8. Electron beam induced growth of tin whiskers

    SciTech Connect

    Vasko, A. C.; Karpov, V. G.; Warrell, G. R.; Parsai, E. I.; Shvydka, Diana

    2015-09-28

    We have investigated the influence of electron irradiation on tin whisker growth. Sputtered tin samples exposed to electron beam of 6 MeV energy exhibited fast whisker growth, while control samples did not grow any whiskers. The statistics of e-beam induced whiskers was found to follow the log-normal distribution. The observed accelerated whisker growth is attributed to electrostatic effects due to charges trapped in an insulating substrate. These results offer promise for establishing whisker-related accelerated life testing protocols.

  9. LOW EMITTANCE ELECTRON BEAMS FOR THE RHIC ELECTRON COOLER

    SciTech Connect

    KEWISCH,J.; CHANG, X.

    2007-06-25

    An electron cooler, based on an Energy Recovery Linac (ERL) is under development for the Relativistic Heavy Ion Collider (RMIC) at Brookhaven National Laboratory. This will be the first electron cooler operating at high energy with bunched beams. In order to achieve sufficient cooling of the ion beams the electron have to have a charge of 5 nC and a normalized emittance less than 4 {mu}. This paper presents the progress in optimizing the injector and the emittance improvements from shaping the charge distribution in the bunch.

  10. Generation And Applications Of Electron-Beam Plasma Flows

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. N.; Tun Win, Aung

    2015-03-01

    Plasma flows generated by continuous or interrupted injection of an electron beam into subsonic or supersonic gaseous streams are considered. Liquid and powder spraying by the electron-beam plasma (EBP) flows is studied as a technique of the aerosol plasma generation. A number of experimental setups generating both free plasma jets and plasma flows in channels are described. Examples of the EBP flows applications for industrial and aerospace technologies are given. The applications are shown to be based on unique properties of the EBP and its stability within very wide ranges of the plasma generation conditions. Some applications of the Hybrid Plasma (HP) generated by combined action of the electron beam (EB) and intermittent gas discharge on flows of gaseous mixtures and aerosols are presented as well.

  11. Electron Beam Control of Combustion

    DTIC Science & Technology

    2006-11-01

    FA8655-03-D-0001, Delivery Order 0011 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Georgy Pozdnyakov 5d. PROJECT NUMBER 5d...and Applied Mechanics SB RAS Project Director Dr. Georgy A. Pozdnyakov Novosibirsk, 2006...of the reaction region in the field of wavelengths of about 310 nm, for the kerosene-oxygen mixture. The moment of electron gun connection almost

  12. Scattered electron beams shaped by a multileaf collimator

    NASA Astrophysics Data System (ADS)

    Moran, Jean Marie

    Recent developments in conformal radiation therapy have focused primarily on applying computer-controlled equipment and techniques to photon beams. Despite favorable characteristics of the dose fall-off with depth for electron beams, their application to conformal therapy has been limited. Factors such as geometrically limiting applicator systems, lack of automatic field shaping, and dose calculation model limitations must be addressed before routine clinical use of electron beams for conformal radiotherapy becomes common. This work evaluates dose characteristics and modeling of dose distributions and output factors for a system specifically designed for computer-controlled collimation of dual-foil scattered and scanned electron beams. Dose characteristics determined from measured depth dose curves and profiles were evaluated for multileaf- collimated and applicator-collimated beams produced by the dual-foil scattered gantry of a two-gantry racetrack microtron system. The resulting dose distributions and characteristics were used to evaluate and modify the existing 3-D electron pencil beam algorithm in UMPlan, the University of Michigan treatment planning system, to predict relative dose distributions for MLC-shaped fields. Output factors (dose of a field relative to that of a reference field) were measured, analyzed, and modeled for MLC-collimated rectangular and shaped fields. For output factor calculations, two models were evaluated: a pencil beam-derived model and an empirical edge model originally developed for photon dose calculations. The current work shows that the dosimetric characteristics of MLC and applicator-collimated beams of the racetrack microtron are similar once the collimation geometry is accounted for. The dosimetric characteristics are also consistent with those for other dual-foil scattered machines with applicator systems and earlier generation scanned beams collimated with trimmer bars. By accounting for collimation geometry, electron

  13. Electron beam irradiation of gemstone for color enhancement

    SciTech Connect

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-09-26

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  14. Electron beam irradiation of gemstone for color enhancement

    NASA Astrophysics Data System (ADS)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-09-01

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  15. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  16. Gamma Putty dosimetric studies in electron beam

    PubMed Central

    Gloi, Aime M.

    2016-01-01

    Traditionally, lead has been used for field shaping in megavoltage electron beams in radiation therapy. In this study, we analyze the dosimetric parameters of a nontoxic, high atomic number (Z = 83), bismuth-loaded material called Gamma Putty that is malleable and can be easily molded to any desired shape. First, we placed an ionization chamber at different depths in a solid water phantom under a Gamma Putty shield of thickness (t = 0, 3, 5, 10, 15, 20, and 25 mm, respectively) and measured the ionizing radiation on the central axis (CAX) for electron beam ranging in energies from 6 to 20 MeV. Next, we investigated the relationship between the relative ionization (RI) measured at a fixed depth for several Gamma Putty shield at different cutout diameters ranging from 2 to 5 cm for various beam energies and derived an exponential fitting equation for clinical purposes. The dose profiles along the CAX show that bremsstrahlung dominates for Gamma Putty thickness >15 mm. For high-energy beams (12–20 MeV) and all Gamma Putty thicknesses up to 25 mm, RI below 5% could not be achieved due to the strong bremsstrahlung component. However, Gamma Putty is a very suitable material for reducing the transmission factor below 5% and protecting underlying normal tissues for low-energy electron beams (6–9 MeV). PMID:27651563

  17. RHIC electron lens beam transport system design considerations

    SciTech Connect

    Luo, Y.; Heimerle, M.; Fischer, W.; Pikin, A.; Beebe, E.; Bruno, D.; Gassner, D.; Gu, X.; Gupta, R. C.; Hock, J.; Jain, A.; Lambiase, R.; Mapes, M.; Meng, W.; Montag, C.; Oerter, B.; Okamura, M.; Raparia, D.; Tan, Y.; Than, R.; Tuozzolo, J.; Zhang, W.

    2010-08-03

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP6 and IP8. Each electron lens has several sub-systems, including electron gun, electron collector, superconducting main solenoid (SM), diagnostics system and power supply system. In addition to these systems, beam transport system which can transport electron beam from electron gun side to collector side is also needed.

  18. Electron gun jitter effects on beam bunching

    SciTech Connect

    Liu, M. S.; Iqbal, M.

    2014-02-15

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  19. Precision fast kickers for kiloampere electron beams

    SciTech Connect

    Caporaso, G.J.; Chen, Y.J.; Weir, J.T.

    1999-10-06

    These kickers will be used to make fast dipoles and quadrupoles which are driven by sharp risetime pulsers to provide precision beam manipulations for high current kA electron beams. This technology will be used on the 2nd axis of the DARHT linac at LANL. It will be used to provide 4 micropulses of pulse width 20 to 120 nsec. selected from a 2 {micro}sec., 2kA, 20MeV macropulse. The fast pulsers will have amplitude modulation capability to compensate for beam-induced steering effects and other slow beam centroid motion to within the bandwidth of the kicker system. Scaling laws derived from theory will be presented along with extensive experimental data obtained on the test bed ETA-II.

  20. Young's Interference Experiment with Electron Beams Carrying Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yuya; Saitoh, Koh; Tanaka, Nobuo; Tanimura, Shogo; Uchida, Masaya

    2013-03-01

    A Young's-type double-slit experiment using electron beams carrying orbital angular momentum (OAM) is demonstrated in a transmission electron microscope. Each of the slits is replaced by a grating mask with a fork dislocation, which generates electron beams with OAM as diffracted beams. Interference fringes produced by two diffracted electron beams with OAM appear at the observation screen. The interference fringe patterns exhibit dislocation features depending on the topological charges of the two electron beams. The experimental results clearly show the wave nature of the electron beams with OAM and gives potential applications in electron physics and quantum mechanics.

  1. Auroral electron beams near the magnetic equator

    NASA Technical Reports Server (NTRS)

    Mcilwain, C. E.

    1975-01-01

    Intense beams of electrons traveling parallel to the local magnetic field have been observed at a magnetic latitude of 11 deg and a radial distance of 6.6 earth radii. The distribution function for electrons traveling within 8 deg of the field line direction is typically flat or slightly rising up to a break point beyond which it decreases as inversely as the 5-10th power of v. The energy corresponding to the break point velocity is usually between 0.1 and 10 keV. These beams are found to occur on closed field lines at the inner edge of the plasma sheet and thus at the root of the earth's magnetotail. Beams with break point energies greater than 2 keV seem to occur only within the first 10 minutes after the onset of hot plasma injection associated with a magnetospheric substorm.

  2. SLC polarized beam source electron optics design

    SciTech Connect

    Eppley, K.R.; Lavine, T.L.; Early, R.A.; Herrmannsfeldt, W.B.; Miller, R.H.; Schultz, D.C.; Spencer, C.M.; Yeremian, A.D.

    1991-05-01

    This paper describes the design of the beam-line from the polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10{sup {minus}11}-Torr-range pressure for adequate quantum efficiency and longevity. The photocathode is illuminated by 3-nsec-long laser pulses. The quality of the optics for the 160-kV beam is crucial since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line consists of a differential pumping region isolated by a pair of valves. Focusing is provided by a pair of Helmholtz coils and by several iron-encased solenoidal lenses. Our optics design is based on beam transport simulations using 2{1/2}-D particle-in-cell codes to model the gun and to solve the fully-relativistic time-dependent equations of motion in three dimensions for electrons in the presence of azimuthally symmetric electromagnetic fields. 6 refs., 6 figs.

  3. Electron Beam Applications in Chemical Processing

    NASA Astrophysics Data System (ADS)

    Martin, D.; Dragusin, M.; Radoiu, M.; Moraru, R.; Oproiu, C.; Cojocaru, G.; Margarit, C.

    1997-05-01

    Our recent results in the field of polymeric materials obtained by electron beam irradiation are presented. Two types of polymeric flocculants and three hydrogels are described. The effects of radiation absorbed dose and chemical composition of the irradiated solutions upon the polymeric materials characteristics are discussed. The required absorbed dose levels to produce the polymeric flocculants are in the range of 0.4 kGy to 1 kGy, and 4 kGy to 12 kGy for hydrogels. Experimental results obtained by testing polymeric flocculants with waste water from food industry are given. Plymeric materials processing was developed on a pilot small scale level with a 0.7 kW and 5.5 MeV linac built in Romania. A new facility for application of combined electron beam and microwave irradiation in the field of polymeric materials preparation is presently under investigation. Preliminary results have demonstrated that some polymeric flocculants characteristics, such as linearity, were improved by using combined electron beam and microwave irradiation. Also, the absorbed dose levels decreases in comparison with those required when only electron beam irradiation was used.

  4. Dielectric charging by an electron beam

    NASA Astrophysics Data System (ADS)

    Upatov, V. Y.

    1996-08-01

    Experimental discovery of a charge spot field effect (CSFE) has altered considerably our understanding of dielectric charging by an electron beam, under conditions typical for the operation of a large class of cathode ray tubes (CRT). Dielectric charging by an electron beam was studied using a specific pulse method for the measurement of the potential. The accuracy of this method is discussed. Measurements were made of the potential relief of a positively charged spot on muscovite mica (quartz, aluminum oxide). The potential at the spot center, under conditions described in the paper and at a relatively long charging time, was shown to be considerably lower than that of the collector. Potential dependence on charging time, determined under the same conditions, is shown for the charged spot center and a number of adjacent points. During creation of the charged spot charging current was measured. The results of the measurements are discussed. A new mechanism of dielectric charging by electron beam is proposed. A CSFE is formulated, and its significance for the operation of CRT is stated. Criticism is given of in-plane grid effect. The paper presents calculations of fields for grid target models determining the mechanism of dielectric charging by electron beam.

  5. The CMS Beam Halo Monitor electronics

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Dabrowski, A. E.; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D. P.; Stifter, K.

    2016-02-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data.

  6. Electron lenses for head-on beam-beam compensation in RHIC

    NASA Astrophysics Data System (ADS)

    Gu, X.; Fischer, W.; Altinbas, Z.; Anerella, M.; Bajon, E.; Bannon, M.; Bruno, D.; Costanzo, M.; Drees, A.; Gassner, D. M.; Gupta, R. C.; Hock, J.; Harvey, M.; Jain, A. K.; Jamilkowski, J. P.; Kankiya, P.; Lambiase, R.; Liu, C.; Luo, Y.; Mapes, M.; Marusic, A.; Mi, C.; Michnoff, R.; Miller, T. A.; Minty, M.; Nemesure, S.; Ng, W.; Phillips, D.; Pikin, A. I.; Rosas, P. J.; Robert-Demolaize, G.; Samms, T.; Sandberg, J.; Schoefer, V.; Shrey, T. C.; Tan, Y.; Than, R.; Theisen, C.; Thieberger, P.; Tuozzolo, J.; Wanderer, P.; Zhang, W.; White, S. M.

    2017-02-01

    Two electron lenses (e -lenses) have been in operation during the 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam-induced resonance-driving terms, the electron lenses reduced the beam-beam-induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detail the design considerations and verification of the electron beam parameters of the RHIC e -lenses. Longitudinal and transverse alignments with ion beams and the transverse beam transfer function measurement with head-on electron-proton beam are presented.

  7. Beam breakup growth and reduction experiments in long-pulse electron beam transport

    NASA Astrophysics Data System (ADS)

    Menge, P. R.; Gilgenbach, R. M.; Lau, Y. Y.; Bosch, R. A.

    1994-02-01

    The results of an experimental program whose sole objective is to investigate the cumulative beam breakup instability (BBU) in electron beam accelerators are presented. The BBU growth rate scalings are examined with regard to beam current, focusing field, cavity Q, and propagation distance. A microwave cavity array was designed and fabricated to excite and measure the cumulative BBU resulting from beam interactions with the deflecting TM110 cavity mode. One phase of this experiment used high Q(≊1000) cavities with relatively large frequency spread (Δf/f0≊0.1%). The observed TM110 mode microwave growth between an upstream (second) and a downstream (tenth) cavity indicated BBU growth of 26 dB for an electron beam of kinetic energy of 750 keV, 45 A, and focused by a 1.1 kG solenoidal field. At beam currents of less than 100 A the experiments agreed well with a two-dimensional continuum theory; the agreement was worse at higher beam currents (≳100 A) due to beam loading. The second-phase experiments used lower Q(≊200) cavities with relatively low frequency spread (Δf/f0≊0.03%). Theory and experiment agreed well for beam currents up to 220 A. Distance scaling experiments were also performed by doubling the propagation length. Instability growth reduction experiments using the technique of external cavity coupling resulted in a factor of four decrease in energy in BBU growth when seven internal beam cavities were coupled by microwave cable to seven identical external dummy cavities. A theory invoking power sharing between the internal beam cavities and the external dummy cavities was used to explain the experimental reduction with excellent agreement using an equivalent circuit model.

  8. CO2 remediation using high power electron beams

    NASA Astrophysics Data System (ADS)

    Petrova, Tzvetelina; Petrov, George; Apruzese, John; Wolford, Matthew

    2016-10-01

    To mitigate increasing CO2 concentrations in the atmosphere and alleviate global warming, we investigated a method of CO2 reduction using high-power electron beams. A series of experiments were conducted in which the reduction of CO2 is measured for different gas compositions and power deposition rates. Electron beam irradiation of gas containing 90% CO2 and 10% CH4 at beam energy density deposition of 4.2 J/cm3, reduced the CO2 concentration to 78%. Analogous experiments with a gas mixture containing 11.5% CO2, 11.5% CH4 and balance of Ar, reduced the CO2 concentration to below 11% with energy deposition 0.71 J/cm3. An electron beam deposition model computed the energy cost for breaking a CO2 molecule in flue gas (82% N2, 6% O2 and 12% CO2) to be 85 eV per molecule. Other techniques to enhance the removal of CO2 with pulsed electron beams are also explored, yielding new possible avenues of research.

  9. Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.

  10. An electron optical theory of beam blanking

    NASA Astrophysics Data System (ADS)

    Gesley, M.

    1993-11-01

    Trajectory equations are derived in closed form for electrons in time-dependent electric fields produced by beam blankers. Simple parallel plate and double-deflection blankers with transmission delay lines are evaluated. Lens imaging of the apparent beam motion is analyzed by developing the virtual electron trajectories obtained from linear extrapolation back into the blanker region. Lens excitation effects and conjugate blanking optics can then be described. The blanker voltage is represented by a damped exponential cosine term, which satisfies a typical circuit equation for the driver-amplifier. The form of the trajectory equation is written as a 3×3 matrix, which comprises a set of conditional solutions that are determined by blanker geometry. The optimum delay line length of any double-deflection blanker can then be determined. The blanker-induced beam jitter is shown to be significantly reduced by using this configuration. The effect of the blanker beam stop on the motion at the target plane is given by combining results on the real and apparent beam trajectories.

  11. New shielding materials for clinical electron beams.

    PubMed

    Tajiri, Minoru; Tokiya, Yuji; Uenishi, Jun; Sunaoka, Masayoshi; Watanabe, Kazuhiro

    2006-09-01

    Since lead has recently been recognized as a source of environmental pollution, we have investigated new electron shielding materials that do not contain lead. We compared the shielding thicknesses of a hard plate and a sheet composed of the new materials with that of lead for electron beams. The shielding thickness was evaluated as the thickness required for shielding primary electrons. The comparison revealed the shielding ability of the hard plate and sheet is approximately equivalent to 1.0 and 0.9 times that of lead, respectively. The thickness (in millimeters) required for shielding by the hard-plate, as well as the thickness of lead, is related to approximately half of the electron-beam energy (in MeV). The shielding ability of the sheet is also equivalent to that of Lipowitz alloy. Moreover these materials are environmentally friendly, and can be easily customized into arbitrary shapes. Therefore they can be used as lead substitutes for shielding against electron beams.

  12. MULTIPLE ELECTRON BEAM ION PUMP AND SOURCE

    DOEpatents

    Ellis, R.E.

    1962-02-27

    A vacuum pump is designed which operates by ionizing incoming air and by withdrawing the ions from the system by means of electrical fields. The apparatus comprises a cylindrical housing communicable with the vessel to be evacuated and having a thin wall section in one end. Suitable coils provide a longitudinal magnetic field within the cylinder. A broad cathode and an anode structure is provided to establish a plurality of adjacent electron beams which are parallel to the cylinder axis. Electron reflector means are provided so that each of the beams constitutes a PIG or reflex discharge. Such structure provides a large region in which incoming gas molecules may be ionized by electron bombardment. A charged electrode assembly accelerates the ions through the thin window, thereby removing the gas from the system. The invention may also be utilized as a highly efficient ion source. (AEC)

  13. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    SciTech Connect

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  14. A SIMPLE METHOD FOR MEASURING THE ELECTRON-BEAM MAGNETIZATION

    SciTech Connect

    Halavanau, A.; Qiang, G.; Wisniewski, E.; Ha, G.; Power, J.; Piot, P.

    2016-10-18

    There are a number of projects that require magnetized beams, such as electron cooling or aiding in “flat” beam transforms. Here we explore a simple technique to characterize the magnetization, observed through the angular momentum of magnetized beams. These beams are produced through photoemission. The generating drive laser first passes through microlens arrays (fly-eye light condensers) to form a transversely modulated pulse incident on the photocathode surface [1]. The resulting charge distribution is then accelerated from the photocathode. We explore the evolution of the pattern via the relative shearing of the beamlets, providing information about the angular momentum. This method is illustrated through numerical simulations and preliminary measurements carried out at the Argonne Wakefield Accelerator (AWA) facility are presented.

  15. Instrumental Asymmetry Reduction in Polarized Electron Beams

    NASA Astrophysics Data System (ADS)

    Fabrikant, M. I.; Trantham, K. W.; Gay, T. J.

    2008-05-01

    We report progress in the reduction of instrumental asymmetries (IAs) related to the photoemission of polarized electrons from GaAs caused by circularly-polarized diode laser beams [1]. Such asymmetries can mask true helicity-dependent interactions between the emitted electrons and chiral targets. Minimization of laser intensity IAs is achieved by chopping two spatially separated light beams with orthogonal polarizations which are recombined and passed through a quarter-wave plate to yield a single beam with rapidly flipping helicity. We have demonstrated the ability to reduce intensity IAs of the laser beam itself to less than 2 x 10-6 [2]. We have also investigated the IAs of the photemission current from the GaAs. At present, we are able to reduce the photoemission asymmetry to values that are comparable to the laser intensity asymmetry. Implications for experiments measuring effects due to electron circular dichroism [3] will be discussed. [1]Trantham K.W. et al J. Phys. B. 28 L543 (1995) [2] Fabrikant M.I. et al submitted to Appl. Opt. [3] Mayer S., Kessler J. Phys. Rev. Lett. 74, 4803 (1995) Funding for this project was provided by Undergraduate Creative Activities and Research Experiences (UCARE) and the National Science Foundation (PHY-0653379).

  16. Measuring the Fluence of Clinical Electron Beams

    NASA Astrophysics Data System (ADS)

    Zaini, Mehran

    1995-01-01

    The incident electron fluence on the patient is greatly affected by the various collimator components on the path of the beam. It is therefore important to measure and characterize these fluence perturbations, which alter the dose distributions. In addition, the incident fluence information is needed as input for the treatment planning algorithms, which are presently inferred from the dose measurements. The magnitude of electron fluence for patient treatments is very low and it is difficult to assess directly. Therefore, a specially designed fluence-meter is required. Of all the detection methods, an ion-implanted semiconductor detector with an ultra-thin depletion layer is the most suitable. We have shown that the energy deposited in an ultra-thin detector, with no window, is directly proportional to the incident fluence of clinical electron beams, including the small contribution of delta-rays. The main reasons for this concept are that (L/rho ) of silicon is essentially constant over the spectrum of any clinical beam and these beams are almost mono-energetic. Our detector is calibrated against a flat Faraday cup and can provide a measure of true electron fluence, with almost no energy and directional dependence. Calibrations are done in a vacuum chamber, where the chamber and the measuring electronics are connected to the accelerator ground. In the calibration setup, a pipe collimation system is used to create a mono-directional beam, so that Phi = Phi_{planar }. Geometrical calculations and films are used for making quantitative analysis of the beam impinging on the detector and the cup. The precision of the calibrations is below 1%. Since the calibration factors of the detector are the same on two different linacs, once a detector is calibrated, it can measure electron fluence on any clinical machine. Fluence output and profiles, and dphi /dtheta of a variety of cones and blocks are measured. The measured surface fluence values conform to the expected shape of

  17. Polarized electron beams at milliampere average current

    SciTech Connect

    Poelker, Matthew

    2013-11-01

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  18. Electron Accelerators for Radioactive Ion Beams

    SciTech Connect

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  19. High Efficiency Transverse D. C. Electron Beams.

    DTIC Science & Technology

    1984-10-01

    cathode er pressures is also possible, however, the electron beam be- materials. For example, copper beryllium has a high secon- comes poorly collimated as...50-50% by weight 0.6 acceptable Molybdenum-MgO 6. Graphite 0.1 low 7. Copper 0.05 very high .1 8. Copper- beryllium 98-2% 0.05 very high 9. Stainless...reached 10% of the initial value at a total energy of BEAM S HEET 725 J/cm2. Annealing of doped polysilicon and silicide films was also achieved. Fig

  20. Guided Radiation Beams in Free Electron Lasers.

    DTIC Science & Technology

    1988-05-19

    the electron beam in an FEL that the radiation beam will remain guided. 0 20 II. Refractive Index Associated with FELs In our model, the vector ...eIAw/ymOc(exp(ikwz) + c.c.) ex/2 , is the wiggle velocity, y is the Lorentz factor, Aw is the vector potential amplitude of the planar wiggler...Balboa Avenue Palo Alto, CA 94303 San Diego, CA 92123 38 Dr. S. Krinsky Nat. Synchrotron Light Source Dr. Michael Lavan Brookhaven National Laboratory U.S

  1. Installation Status of the Electron Beam Profiler for the Fermilab Main Injector

    SciTech Connect

    Thurman-Keup, R.; Alvarez, M.; Fitzgerald, J.; Lundberg, C.; Prieto, P.; Roberts, M.; Zagel, J.; Blokland, W.

    2015-11-06

    The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and the installation of a similar device is underway in the Main Injector at Fermilab. The present installation status of the electron beam profiler for the Main Injector will be discussed together with some simulations and test stand results.

  2. Beam Dynamics Considerations in Electron Ion Colliders

    NASA Astrophysics Data System (ADS)

    Krafft, Geoffrey

    2015-04-01

    The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  3. Electron beam throughput from raster to imaging

    NASA Astrophysics Data System (ADS)

    Zywno, Marek

    2016-12-01

    Two architectures of electron beam tools are presented: single beam MEBES Exara designed and built by Etec Systems for mask writing, and the Reflected E-Beam Lithography tool (REBL), designed and built by KLA-Tencor under a DARPA Agreement No. HR0011-07-9-0007. Both tools have implemented technologies not used before to achieve their goals. The MEBES X, renamed Exara for marketing purposes, used an air bearing stage running in vacuum to achieve smooth continuous scanning. The REBL used 2 dimensional imaging to distribute charge to a 4k pixel swath to achieve writing times on the order of 1 wafer per hour, scalable to throughput approaching optical projection tools. Three stage architectures were designed for continuous scanning of wafers: linear maglev, rotary maglev, and dual linear maglev.

  4. Disabling CNT Electronic Devices by Use of Electron Beams

    NASA Technical Reports Server (NTRS)

    Petkov, Mihail

    2008-01-01

    Bombardment with tightly focused electron beams has been suggested as a means of electrically disabling selected individual carbon-nanotubes (CNTs) in electronic devices. Evidence in support of the suggestion was obtained in an experiment in which a CNT field-effect transistor was disabled (see figure) by focusing a 1-keV electron beam on a CNT that served as the active channel of a field-effect transistor (FET). Such bombardment could be useful in the manufacture of nonvolatile-memory circuits containing CNT FETs. Ultimately, in order to obtain the best electronic performances in CNT FETs and other electronic devices, it will be necessary to fabricate the devices such that each one contains only a single CNT as an active element. At present, this is difficult because there is no way to grow a single CNT at a specific location and with a specific orientation. Instead, the common practice is to build CNTs into electronic devices by relying on spatial distribution to bridge contacts. This practice results in some devices containing no CNTs and some devices containing more than one CNT. Thus, CNT FETs have statistically distributed electronic characteristics (including switching voltages, gains, and mixtures of metallic and semiconducting CNTs). According to the suggestion, by using a 1-keV electron beam (e.g., a beam from a scanning electron microscope), a particular nanotube could be rendered electrically dysfunctional. This procedure could be repeated as many times as necessary on different CNTs in a device until all of the excess CNTs in the device had been disabled, leaving only one CNT as an active element (e.g., as FET channel). The physical mechanism through which a CNT becomes electrically disabled is not yet understood. On one hand, data in the literature show that electron kinetic energy >86 keV is needed to cause displacement damage in a CNT. On the other hand, inasmuch as a 1-keV beam focused on a small spot (typically a few tens of nanometers wide

  5. Compact two-beam push-pull free electron laser

    DOEpatents

    Hutton, Andrew

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  6. Advanced techniques for characterization of ion beam modified materials

    DOE PAGES

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; ...

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less

  7. Advanced techniques for characterization of ion beam modified materials

    SciTech Connect

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiation effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.

  8. Comparison study of the partial-breast irradiation techniques: Dosimetric analysis of three-dimensional conformal radiation therapy, electron beam therapy, and helical tomotherapy depending on various tumor locations

    SciTech Connect

    Kim, Min-Joo; Park, So-Hyun; Son, Seok-Hyun; Cheon, Keum-Seong; Choi, Byung-Ock; Suh, Tae-Suk

    2013-10-01

    The partial-breast irradiation (PBI) technique, an alternative to whole-breast irradiation, is a beam delivery method that uses a limited range of treatment volume. The present study was designed to determine the optimal PBI treatment modalities for 8 different tumor locations. Treatment planning was performed on computed tomography (CT) data sets of 6 patients who had received lumpectomy treatments. Tumor locations were classified into 8 subsections according to breast quadrant and depth. Three-dimensional conformal radiation therapy (3D-CRT), electron beam therapy (ET), and helical tomotherapy (H-TOMO) were utilized to evaluate the dosimetric effect for each tumor location. Conformation number (CN), radical dose homogeneity index (rDHI), and dose delivered to healthy tissue were estimated. The Kruskal-Wallis, Mann-Whitney U, and Bonferroni tests were used for statistical analysis. The ET approach showed good sparing effects and acceptable target coverage for the lower inner quadrant—superficial (LIQ-S) and lower inner quadrant—deep (LIQ-D) locations. The H-TOMO method was the least effective technique as no evaluation index achieved superiority for all tumor locations except CN. The ET method is advisable for treating LIQ-S and LIQ-D tumors, as opposed to 3D-CRT or H-TOMO, because of acceptable target coverage and much lower dose applied to surrounding tissue.

  9. Comparison study of the partial-breast irradiation techniques: dosimetric analysis of three-dimensional conformal radiation therapy, electron beam therapy, and helical tomotherapy depending on various tumor locations.

    PubMed

    Kim, Min-Joo; Park, So-Hyun; Son, Seok-Hyun; Cheon, Keum-Seong; Choi, Byung-Ock; Suh, Tae-Suk

    2013-01-01

    The partial-breast irradiation (PBI) technique, an alternative to whole-breast irradiation, is a beam delivery method that uses a limited range of treatment volume. The present study was designed to determine the optimal PBI treatment modalities for 8 different tumor locations. Treatment planning was performed on computed tomography (CT) data sets of 6 patients who had received lumpectomy treatments. Tumor locations were classified into 8 subsections according to breast quadrant and depth. Three-dimensional conformal radiation therapy (3D-CRT), electron beam therapy (ET), and helical tomotherapy (H-TOMO) were utilized to evaluate the dosimetric effect for each tumor location. Conformation number (CN), radical dose homogeneity index (rDHI), and dose delivered to healthy tissue were estimated. The Kruskal-Wallis, Mann-Whitney U, and Bonferroni tests were used for statistical analysis. The ET approach showed good sparing effects and acceptable target coverage for the lower inner quadrant-superficial (LIQ-S) and lower inner quadrant-deep (LIQ-D) locations. The H-TOMO method was the least effective technique as no evaluation index achieved superiority for all tumor locations except CN. The ET method is advisable for treating LIQ-S and LIQ-D tumors, as opposed to 3D-CRT or H-TOMO, because of acceptable target coverage and much lower dose applied to surrounding tissue.

  10. Dynamic two-dimensional beam-pattern steering technique

    NASA Astrophysics Data System (ADS)

    Zhou, Shaomin; Yeh, Pochi; Liu, Hua-Kuang

    1993-06-01

    A dynamic two-dimensional laser-beam-pattern steering technique using photorefractive holograms in conjunction with electrically addressed spatial light modulators is proposed and investigated. The experimental results demonstrate the dynamic steering of random combinations of basis beam patterns. The proposed method has the advantages of random beam-pattern combination, good beam intensity uniformity, and higher diffraction efficiency compared with conventional methods.

  11. Experimental Studies of Compensation of Beam-Beam Effects with Tevatron Electron Lenses

    SciTech Connect

    Shiltsev, V.; Alexahin, Yu.; Bishofberger, Kip; Kamerdzhiev, V.; Parkhomchuk, V.; Reva, V.; Solyak, N.; Wildman, D.; Zhang, X.-L.; Zimmermann, F.; /Fermilab /Los Alamos /Novosibirsk, IYF /CERN

    2008-02-01

    Applying the space-charge forces of a low-energy electron beam can lead to a significant improvement of the beam-particle lifetime limit arising from the beam-beam interaction in a high-energy collider [1]. In this article we present the results of various beam experiments with 'electron lenses', novel instruments developed for the beam-beam compensation at the Tevatron, which collides 980-GeV proton and antiproton beams. We study the dependencies of the particle betatron tunes on the electron beam current, energy and position; we explore the effects of electron-beam imperfections and noises; and we quantify the improvements of the high-energy beam intensity and the collider luminosity lifetime obtained by the action of the Tevatron Electron Lenses.

  12. Electron Beam Welding of Gear Wheels by Splitted Beam

    NASA Astrophysics Data System (ADS)

    Dřímal, Daniel

    2014-06-01

    This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max.. In case of common welding procedure, cracks were formed in the weld, initiated by spiking in the weld root. Crack formation was prevented by the use of an interlocking joint with a rounded recess and suitable welding parameters, eliminating crack initiation by spiking in the weld root. Minimisation of the welding distortions was achieved by the application of tack welding with simultaneous splitting of one beam into two parts in the opposite sections of circumferential face weld attained on the principle of a new system of controlled deflection with digital scanning of the beam. This welding procedure assured that the weldment temperature after welding would not be higher than 400 °C. Thus, this procedure allowed achieving the final run-outs in the critical point of gearwheels within the maximum range up to 0.04 mm, which is acceptable for the given application. Accurate optical measurements did not reveal any changes in the teeth dimensions.

  13. Electron-beam distillation of natural polymers

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Makarov, I. E.; Ershov, B. G.

    2014-01-01

    Pyrolysis of cellulose, lignin, and chitin may be upgraded by the use of an electron-beam irradiation. The radiation-thermal destruction mode does more probable production of liquid low-molecular-weight products instead of solid pyrolitic oligomers. Furans, methoxyphenols, and pyridines are dominant products of high-temperature radiolysis of cellulose, lignin, and chitin, respectively. The mechanism of chain destruction of natural polymers is considered.

  14. Electron-beam flow visualization - Applications in the definition of configuration aerothermal characteristics.

    NASA Technical Reports Server (NTRS)

    Woods, W. C.; Arrington, J. P.

    1972-01-01

    Comparisons between flow visualization systems using electron-beam fluorescence, schlieren, and shadowgraph techniques illustrate the advantages associated with the electron beam. Specific applications of this method as an aid in defining the origin of erosion on a heat-transfer model are cited. Results of combined electron-beam oil-flow studies on configurations illustrate that the simultaneous definition of the external flow field and its surface flow can be obtained. Comparisons between the electron-beam oil-flow visualization method and phase-change coating heat-transfer tests on a shuttle ascent configuration indicate the complementary nature of these two testing techniques. Potential methods for improving the electron-beam technique are included.

  15. Electron beam-switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

    1979-12-11

    A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  16. Susceptor heating device for electron beam brazing

    DOEpatents

    Antieau, Susan M.; Johnson, Robert G. R.

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  17. Beam-beam and electron cloud effects in CEPC/FCC-ee

    NASA Astrophysics Data System (ADS)

    Ohmi, Kazuhito

    2016-11-01

    We discuss beam dynamics issues in CEPC/FCC-ee, especially focusing on the beam-beam and electron cloud effects. Beamstrahlung is strong in extreme high energy collision such as Higgs and top factory. Beam-beam simulations considering beamstrahlung are now ready. Several points of beam-beam effects for FCC-ee are presented. Electron cloud effects are serious for high current positron machine, especially in Z factory that many bunches are stored. Analytical estimate for threshold of electron density and electron build-up for CEPC are presented.

  18. Recent Experience with Electron Lens Beam-Beam Compensation at the Tevatron

    SciTech Connect

    Kuznetsov, G.; Saewert, G.; Shiltsev, V.; Valishev, A.; Kamerdzhiev, V.; /Julich, Forschungszentrum

    2009-05-01

    Tevatron Electron Lenses (TEL) have reliably demonstrated correction of the bunch-to-bunch tune shift induced by long-range beam-beam interactions. With the commissioning of the new high voltage modulator that became operational in 2008, the electron beam can be pulsed on every bunch of the Tevatron beam. We report on the recent results of beam-beam compensation studies in the high luminosity regime.

  19. Electron beam coupling to a metamaterial structure

    SciTech Connect

    French, David M.; Shiffler, Don; Cartwright, Keith

    2013-08-15

    Microwave metamaterials have shown promise in numerous applications, ranging from strip lines and antennas to metamaterial-based electron beam driven devices. In general, metamaterials allow microwave designers to obtain electromagnetic characteristics not typically available in nature. High Power Microwave (HPM) sources have in the past drawn inspiration from work done in the conventional microwave source community. In this article, the use of metamaterials in an HPM application is considered by using an effective medium model to determine the coupling of an electron beam to a metamaterial structure in a geometry similar to that of a dielectric Cerenkov maser. Use of the effective medium model allows for the analysis of a wide range of parameter space, including the “mu-negative,”“epsilon-negative,” and “double negative” regimes of the metamaterial. The physics of such a system are modeled analytically and by utilizing the particle-in-cell code ICEPIC. For this geometry and effective medium representation, optimum coupling of the electron beam to the metamaterial, and thus the optimum microwave or RF production, occurs in the epsilon negative regime of the metamaterial. Given that HPM tubes have been proposed that utilize a metamaterial, this model provides a rapid method of characterizing a source geometry that can be used to quickly understand the basic physics of such an HPM device.

  20. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1985-01-01

    Electron beam experiments using rocketborne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes have been observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2-, 4-, or 8-keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher-energy electrons led the lower-energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. An alternative interpretation is briefly examined, and its relative merit in describing the observations is evaluated. The injection process is discussed in some detail as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection for both processes.

  1. Transverse profile imager for ultrabright electron beams

    NASA Astrophysics Data System (ADS)

    Ischebeck, Rasmus; Prat, Eduard; Thominet, Vincent; Ozkan Loch, Cigdem

    2015-08-01

    A transverse profile imager for ultrabright electron beams is presented, which overcomes resolution issues in present designs by observing the Scheimpflug imaging condition as well as the Snell-Descartes law of refraction in the scintillating crystal. Coherent optical transition radiation emitted by highly compressed electron bunches on the surface of the crystal is directed away from the camera, allowing to use the monitor for profile measurements of electron bunches suitable for X-ray free electron lasers. The optical design has been verified by ray tracing simulations, and the angular dependency of the resolution has been verified experimentally. An instrument according to the presented design principles has been used in the SwissFEL Injector Test Facility, and different scintillator materials have been tested. Measurements in conjunction with a transverse deflecting radiofrequency structure and an array of quadrupole magnets demonstrate a normalized slice emittance of 25 nm in the core of a 30 fC electron beam at a pulse length of 10 ps and a particle energy of 230 MeV.

  2. Electron beam tuning of carrier concentrations in oxide nanowires

    NASA Astrophysics Data System (ADS)

    Ji, Hyunjin; Choi, Jaewan; Cho, Youngseung; Hwang, In-Sung; Kim, Sun-Jung; Lee, Jong-Heun; Roth, Siegmar; Kim, Gyu-Tae

    2011-07-01

    In spite of the attractive electrical properties of metal oxide nanowires, it is difficult to tune their surface states, notably the ionic adsorbents and oxygen vacancies, both of which can cause instability, degradation, and the irreproducibility or unrepeatable changes of the electrical characteristics. In order to control the surface states of the nanowires, electron beams were locally irradiated onto the channels of metal oxide nanowire field effect transistors. This high energy electron beam irradiation changed the electrical properties of the individual metal oxide nanowires, due to the removal of the negative adsorbents (O2-, O-). The detachment of the ionic adsorbents changes the charge states of the nanowires, resulting in the enhancement of the electrical conductance in n-type nanowires (ZnO, SnO2) and the degradation of the conductance in p-type nanowires (CuO). By investigating the changes in the electrical properties of nanowire devices in air or vacuum, with or without exposure to electron beams, the roles of the physisorbed water molecules or chemisorbed oxygen molecules can be independently understood. Unlike the electron beam irradiation, the vacuum enhanced the conductance of both n-type (ZnO, SnO2) and p-type (CuO) nanowires, due to the release of charges caused by the detachment of the polarized water molecules that were screening them from the surface of the nanowires, irrespective of the major carrier type. The electron beam irradiation technique has the potential to locally modulate the charge carriers in electronic nanowire devices, and the changes could be maintained with proper passivation for the long-term preservation of the device characteristics.

  3. Optimizing the beam-beam alignment in an electron lens using bremsstrahlung

    SciTech Connect

    Montag, C.; Fischer, W.; Gassner, D.; Thieberger, P.; Haug, E.

    2010-05-23

    Installation of electron lenses for the purpose of head-on beam-beam compensation is foreseen at RHIC. To optimize the relative alignment of the electron lens beam with the circulating proton (or ion) beam, photon detectors will be installed to measure the bremsstrahlung generated by momentum transfer from protons to electrons. We present the detector layout and simulations of the bremsstrahlung signal as function of beam offset and crossing angle.

  4. RHIC electron lens beam transport system design considerations

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2010-10-01

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP10. Electron beam transport system is one of important subsystem, which is used to transport electron beam from electron gun side to collector side. This system should be able to change beam size inside superconducting magnet and control beam position with 5 mm in horizontal and vertical plane. Some other design considerations for this beam transport system are also reported in this paper. The head-on beam-beam effect is one of important nonlinear source in storage ring and linear colliders, which have limited the luminosity improvement of many colliders, such as SppS, Tevatron and RHIC. In order to enhance the performance of colliders, beam-beam effects can be compensated with direct space charge compensation, indirect space charge compensation or betatron phase cancellation scheme. Like other colliders, indirect space charge compensation scheme (Electron Lens) was also proposed for Relativistic Heavy Ion Collider (RHIC) beam-beam compensation at Brookhaven National Laboratory. The two similar electron lenses are located in IR10 between the DX magnets. One RHIC electron lens consists of one DC electron gun, one superconducting magnet, one electron collector and beam transport system.

  5. Initial Experimental Studies of Electron Accumulation in a Heavy Ion Beam

    SciTech Connect

    Molvik, A W; Baca, D; Bieniosek, F M; Cohen, R H; Friedman, A; Furman, M A; Lee, E P; Lund, S M; Prost, L; Sakumi, A; Seidl, P A; Vay, J L

    2003-05-01

    Accelerators for heavy-ion inertial fusion energy (HIF) have an economic incentive to fit beam tubes tightly to beams, putting them at risk from electron clouds produced by emission of electrons and gas from walls. Theory and PIC simulations suggest that the electrons will be radially trapped in the {approx}>1 kV ion-beam potential. We are beginning studies on the High-Current Experiment (HCX) with unique capabilities to characterize electron production and trapping, the effects on ion beams, and mitigation techniques. We are measuring the flux of electrons and gas evolved from a target, whose angle to the beam can be varied between 78 and 88 degrees from normal incidence. Quadrupole magnets are operating with a variety of internal charged particle diagnostics to measure the beam halo loss, net charge, electron ionization rate, and gas density.

  6. Initial experimental studies of electron accumulation in a heavy-ion beam

    SciTech Connect

    Molvik, A.W.; Baca, D.; Bieniosek, F.M.; Cohen, R.H.; Friedman, A.; Furman, M.A.; Lee, E.P.; Lund, S.M.; Prost, L.; Sakumi, A.; Seidl, P.A.; Vay, J-L.

    2003-05-01

    Accelerators for heavy-ion inertial fusion energy (HIF) have an economic incentive to fit beam tubes tightly to beams, putting them at risk from electron clouds produced by emission of electrons and gas from walls. Theory and PIC simulations suggest that the electrons will be radially trapped in the {ge}1 kV ion-beam potential. We are beginning studies on the High-Current Experiment (HCX) with unique capabilities to characterize electron production and trapping, the effects on ion beams, and mitigation techniques. We are measuring the flux of electrons and gas evolved from a target, whose angle to the beam can be varied between 78{sup o} and 88{sup o} from normal incidence. Quadrupole magnets are operating with a variety of internal charged particle diagnostics to measure the beam halo loss, net charge, electron ionization rate, and gas density.

  7. Miniature electron microscope beam column optics

    NASA Astrophysics Data System (ADS)

    Loyd, Jody Stuart

    This investigation is in the area of electrostatic lens design with the overarching goal of contributing to the creation of a miniaturized scanning electron microscope (SEM) for use in mineralogical analysis or detection of signs of life on the surface of Mars. Such an instrument could also have application in the exploration of Earth's moon, planetary moons, asteroids, or comets. Other embodiments could include tabletop or field portable SEMs for use on Earth. The scope of this research is in the design of a beam column that attains focusing, demagnification, and aberration control within the smallest achievable package. The goals of planetary exploration and of spaceflight in general impose severe constraints on the instrument's mass and electrical power consumption, while favoring a robust design of small size and high rigidity that is also simple to align. To meet these requirements a design using electrostatic lenses was favored because of the lower power requirement and mass of electrostatic versus magnetic lenses, their relatively simple construction, as well as inherently easier shielding from extraneous fields. In modeling the lens field, a hybrid of a Boundary Element Method (BEM) and a Fourier series solution was employed, whereby an initial solution from the BEM is used to derive the bounding potential of a cylindrical subdomain for the subsequent Fourier series solution. The approach is applicable to many problems in physics and combines the inherent precision of this series solution with the flexibility of BEM to describe practical, non-idealized electrode shapes. The resulting lens field in the Fourier series subdomain is of higher precision, thereby allowing smaller errors in subsequent calculations of electron ray paths. The effects of aberrations are thus easier to observe in tracing non-paraxial rays. A significant speed increase in tracing rays is also observed. The modeling technique has been validated by reproducing example ray-traces through

  8. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  9. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, George R.

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  10. Techniques for optimizing inerting in electron processors

    NASA Astrophysics Data System (ADS)

    Rangwalla, I. J.; Korn, D. J.; Nablo, S. V.

    1993-07-01

    The design of an "inert gas" distribution system in an electron processor must satisfy a number of requirements. The first of these is the elimination or control of beam produced ozone and NO x which can be transported from the process zone by the product into the work area. Since the tolerable levels for O 3 in occupied areas around the processor are <0.1 ppm, good control techniques are required involving either recombination of the O 3 in the beam heated process zone, or exhausting and dilution of the gas at the processor exit. The second requirement of the inerting system is to provide a suitable environment for completing efficient, free radical initiated addition polymerization. In this case, the competition between radical loss through de-excitation and that from O 2 quenching must be understood. This group has used gas chromatographic analysis of electron cured coatings to study the trade-offs of delivered dose, dose rate and O 2 concentrations in the process zone to determine the tolerable ranges of parameter excursions can be determined for production quality control purposes. These techniques are described for an ink:coating system on paperboard, where a broad range of process parameters have been studied (D, Ġ, O 2. It is then shown how the technique is used to optimize the use of higher purity (10-100 ppm O 2) nitrogen gas for inerting, in combination with lower purity (2-20, 000 ppm O 2) non-cryogenically produced gas, as from a membrane or pressure swing adsorption generators.

  11. Adapting High Brightness Relativistic Electron Beams for Ultrafast Science

    NASA Astrophysics Data System (ADS)

    Scoby, Cheyne Matthew

    blow-out regime.” When the beam charge is maintained low, ultrashort electron bunches can be obtained enabling novel applications such as single shot Femtosecond Relativistic Electron Diffraction (FRED). High precision temporal diagnostic and synchronization techniques are integral to the use of femtosecond electron bunches for ultrafast science. An x-band rf streak camera provides measurements of the longitudinal profiles of sub-ps electron bunches. Spatial encoded electro-optic timestamping is developed to overcome the inherent rf-laser synchronization errors in rf photoinjectors. The ultrafast electron beams generated with the RF photoenjector are employed in pump-probe experiments wherein a target is illuminated with an intense pump laser to induce a transient behavior in the sample. FRED is used to study the melting of gold after heating with an intense femtosecond laser pulse. In a first experiment we study the process by taking different single-shot diffraction patterns at varying delays between the pump an probe beams. In a second experiment a variation of the technique is employed using the rf streak camera to time-stretch the beam after it has diffraction from the sample in order to capture the full melting dynamics in a single shot. Finally, relativistic ultrashort electron bunches are used as a probe of plasma dynamics in electron radiography/shadowgraphy experiments. This technique is used to study photoemission with intense laser pulses and the evolution of electromagnetic fields in a photoinduced dense plasma. This experiment is also performed in two different modes: one where different pictures are acquired at different time delays, and the other where a single streak image is used to obtain visualization of the propagation electromagnetic fields with an unprecedented 35 femtosecond resolution.

  12. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  13. First test of BNL electron beam ion source with high current density electron beam

    NASA Astrophysics Data System (ADS)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  14. Use of beam deflection to control an electron beam wire deposition process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  15. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    SciTech Connect

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  16. Theory of Electron Beam Moiré

    PubMed Central

    Read, David T.; Dally, James W.

    1996-01-01

    When a specimen surface carrying a high-frequency line grating is examined under a scanning electron microscope (SEM), moiré fringes are observed at several different magnifications. The fringes are characterized by their spatial frequency, orientation, and contrast. These features of the moiré pattern depend on the spatial frequency mismatch between the specimen grating and the raster scan lines, the diameter of the electron beam, and the detailed topography of the lines on the specimen. A mathematical model of e-beam moiré is developed that expresses the spatial dependence of the SEM image brightness as a product of the local intensity of the scanning beam and the local scattering function from the specimen grating. Equations are derived that give the spatial frequency of the moiré fringes as functions of the microscope settings and the spatial frequency of the specimen grating. The model also describes the contrast of several different types of moiré fringes that are observed at different magnifications. We analyze the formation of these different fringe patterns, and divide them into different categories including natural fringes, fringes of multiplication, fringes of division, and fringes of rotation. PMID:27805092

  17. Prediction of electron beam output factors.

    PubMed

    Mills, M D; Hogstrom, K R; Almond, P R

    1982-01-01

    A method to predict square and rectangular field output factors from the measurement of selected fields of electron beams on the Therac 20 Saturne has been developed. A two parameter fit of the square field output factor data, based on the functional dependence as predicted by a pencil beam calculational model, has proven clinically acceptable. The pencil beam distributions are given by the Fermi-Eyges theory of multiple Coulomb scattering. For a rectangular field, the output factor can be calculated from the square root of the product of the two square field output factors wtih sides equal to those of the rectangular field. If however, there is a significant asymmetry between the X and Y collimator systems, then rectangular field output factors should be predicted from the product of the X and Y one-dimensional output factors. One-dimensional output factors are defined as output factors of rectangular fields where one side remains constant and equal to the side of the square reference field. Measured data indicate either of the two methods of determining rectangular field output factors to be clinically acceptable for the Therac 20, the use of one-dimensional output factors demonstrating greater accuracy. Data show agreement to within approximately 1.5% at electron energies of 6, 9, 13, and 17 MeV.

  18. Plasma wakefield diagnostics using probe electron beam and microchannel plates

    SciTech Connect

    Fainberg, Ya.B.; Balakirev, V.A.; Berezin, A.K.

    1996-12-31

    The analytical and numerical investigations of trajectories of the probe beam electrons in the two dimensional wakefield, excited in plasma by a dense bunch of relativistic electrons with Gauss longitudinal and transverse distribution of density is carried out. On basis of calculations of probe beam deviations the diagnostic instruments is developed for parameters of experiments conducted in NSC KIPT. The diagnostic instruments consist of an electron gun forming the electron beam with energy 10KeV, current 10{mu}A and diameter 2mm which passes through the chamber of interaction and falls on collector of diameter 10mm. Collector (screen) is placed in front of the first plate of microchannel amplifier which consists of three microchannel plates (MCP) with sizes 20 - 30mm, The voltage 3kV was applied to the each plate. Total amplification of MCP amplifier is 10{sup 4} - 10{sup 5} in dependence on quantity of particles, falling on the first plate. As a result the deviations of probe beam by excited wakefield the electrons fall on first plate of amplifier and are registered by anode of amplifier, located behind the third plates. Calculated probe beam deviations and obtained amplification of MCP amplifier permit to find out and to investigate the electrical wakefields, excited by the sequence of relativistic bunches (number of particles in bunch is 2x10{sup 9}, energy is 14MeV) in plasma of density 10{sup 11} - 10{sup 13} cm{sup {minus}3}. The maximal value of the fields registered by such technique is not less 2kv/cm.

  19. Methods of optical diagnostics of electron-positron beams and interaction between plasma and high-current electron beam

    NASA Astrophysics Data System (ADS)

    Vyacheslavov, L. N.; Ivantsivskii, M. V.; Meshkov, O. I.; Popov, S. S.; Smaluk, V. V.

    2012-03-01

    Optical diagnostics is widely used, both in plasma-physics experiments and in measuring parameters of electron and positron beams in accelerators. In doing so, the approaches with the same methodological base are often applied, which is explained by similarity of certain properties of objects under study despite the fact that these fields of physics are absolutely specific and require using the specialized techniques. The possibility of close contacts and cooperation among scientists concerned with similar problems in different fields of physics contributes to the fruitful exchange of ideas and helps to overcome these problems. It is especially characteristic of the Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, which is famous for pioneering works in the field of electron-positron colliders and controlled thermonuclear fusion. The first part of this paper presents a review of optical diagnostics of the stationary beam parameters in cyclic accelerators of electrons and positrons. The only techniques considered are those that became the recognized tools at colliders and storage rings of the latest generation, without which the routine operation of the facility is difficult to imagine. The second part of the paper describes optical diagnostics used in experiments of heating the plasma by a high-current electron beam.

  20. Electron vortex beams with high quanta of orbital angular momentum.

    PubMed

    McMorran, Benjamin J; Agrawal, Amit; Anderson, Ian M; Herzing, Andrew A; Lezec, Henri J; McClelland, Jabez J; Unguris, John

    2011-01-14

    Electron beams with helical wavefronts carrying orbital angular momentum are expected to provide new capabilities for electron microscopy and other applications. We used nanofabricated diffraction holograms in an electron microscope to produce multiple electron vortex beams with well-defined topological charge. Beams carrying quantized amounts of orbital angular momentum (up to 100ħ) per electron were observed. We describe how the electrons can exhibit such orbital motion in free space in the absence of any confining potential or external field, and discuss how these beams can be applied to improved electron microscopy of magnetic and biological specimens.

  1. Designing a beam transport system for RHIC's electron lens

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Raparia, D.

    2011-03-28

    We designed two electron lenses to apply head-on beam-beam compensation for RHIC; they will be installed near IP10. The electron-beam transport system is an important subsystem of the entire electron-lens system. Electrons are transported from the electron gun to the main solenoid and further to the collector. The system must allow for changes of the electron beam size inside the superconducting magnet, and for changes of the electron position by 5 mm in the horizontal- and vertical-planes.

  2. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  3. Polarized electron beams at milliampere average current

    SciTech Connect

    Poelker, M.

    2013-11-07

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today’s CEBAF polarized source operating at ∼ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  4. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  5. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  6. Intense Microsecond Electron Beam Interactions with Low-Pressure Gases

    DTIC Science & Technology

    1991-02-28

    Gilgenbach, J. E. Tucker, and C. L. Enloe, Laser and Particle Beams, 6 687 (1988). 4) "Undulation of a Magnetized Electron Beam by a Periodic Ion...Excitation by Relativistic Electrons: I. Collisions Cross Sections and Deposition Efficiencies", Laser and Particle Beams 8 493 (1990) 11) D.B...McGarrah and M.L. Brake, Argon Ion Excitation by Relativistic Electrons: II. Chemical Kinetics", Laser and Particle Beams 8 507 (1990) 9 T-PS/18/3//35709

  7. Generation of Ramped Current Profiles in Relativistic Electron Beams Using Wakefields in Dielectric Structures.

    PubMed

    Andonian, G; Barber, S; O'Shea, F H; Fedurin, M; Kusche, K; Swinson, C; Rosenzweig, J B

    2017-02-03

    Temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefield diagnostics and pulse profile reconstruction techniques.

  8. Generation of Ramped Current Profiles in Relativistic Electron Beams Using Wakefields in Dielectric Structures

    NASA Astrophysics Data System (ADS)

    Andonian, G.; Barber, S.; O'Shea, F. H.; Fedurin, M.; Kusche, K.; Swinson, C.; Rosenzweig, J. B.

    2017-02-01

    Temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefield diagnostics and pulse profile reconstruction techniques.

  9. Low-energy plasma focus device as an electron beam source.

    PubMed

    Khan, Muhammad Zubair; Ling, Yap Seong; Yaqoob, Ibrar; Kumar, Nitturi Naresh; Kuang, Lim Lian; San, Wong Chiow

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 10(16)/m(3), respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  10. Electron beam simulation from gun to collector: Towards a complete solution

    SciTech Connect

    Mertzig, R. Shornikov, A. Wenander, F.; Beebe, E.; Pikin, A.

    2015-01-09

    An electron-beam simulation technique for high-resolution complete EBIS/T modelling is presented. The technique was benchmarked on the high compression HEC{sup 2} test-stand with an electron beam current, current density and energy of 10 A, 10 kA/cm{sup 2} and 49.2 keV, and on the immersed electron beam at REXEBIS for electron beam characteristics of 0.4 A, 200 A/cm{sup 2} and 4.5 keV. In both Brillouin-like and immersed beams the electron-beam radius varies from several millimeters at the gun, through some hundreds of micrometers in the ionization region to a few centimeters at the collector over a total length of several meters. We report on our approach for finding optimal meshing parameters, based on the local beam properties such as magnetic field-strength, electron energy and beam radius. This approach combined with dividing the problem domain into sub-domains, and subsequent splicing of the local solutions allowed us to simulate the beam propagation in EBISes from the gun to the collector using a conventional PC in about 24–36 h. Brillouin-like electron beams propagated through the complete EBIS were used to analyze the beam behavior within the collector region. We checked whether elastically reflected paraxial electrons from a Brillouin-like beam will escape from the collector region and add to the loss current. We have also studied the power deposition profiles as function of applied potentials using two electrode geometries for a Brillouin-like beam including the effects of backscattered electrons.

  11. PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

  12. Limits to Electron Beam Emittance from Stochastic Coulomb Interactions

    SciTech Connect

    Coleman-Smith, Christopher; Padmore, Howard A.; Wan, Weishi

    2008-08-22

    Dense electron beams can now be generated on an ultrafast timescale using laser driven photo-cathodes and these are used for a range of applications from ultrafast electron defraction to free electron lasers. Here we determine a lower bound to the emittance of an electron beam limited by fundamental stochastic Coulomb interactions.

  13. Suprathermal electrons produced by beam-plasma-discharge

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.

    1982-01-01

    Experiments conducted with a low energy plasma lens, HARP, in the electron beam of the large vacuum chamber at Johnson Space Center indicate that an enhanced population of 50 to 300 volt electrons appear when the beam goes into the Beam-Plasma Discharge (BPD) mode. Below the BPD instability the electron distribution appears to be characterized as non-energized single particle scattering and energy loss. At 100 cm from the beam core in the BPD mode the fluxes parallel to the beam are reduced by a factor of 20 with respect to the fluxes at 25 cm. Some evidence for isotropy near the beam core is presented.

  14. Two-Beam Instability in Electron Cooling

    SciTech Connect

    Burov, Alexey V.; /Fermilab

    2006-04-01

    The drift motion of cooling electrons makes them able to respond to transverse perturbations of a cooled ion beam. This response may lead to dipole or quadrupole transverse instabilities at specific longitudinal wave numbers. While the dipole instabilities can be suppressed by a combination of the Landau damping, machine impedance, and the active damper, the quadrupole and higher order modes can lead to either emittance growth, or a lifetime degradation, or both. The growth rates of these instabilities are strongly determined by the machine x-y coupling. Thus, tuning out of the coupling resonance and/or reduction of the machine coupling can be an efficient remedy for these instabilities.

  15. Hierarchical multiple bit clusters and patterned media enabled by novel nanofabrication techniques -- High resolution electron beam lithography and block polymer self assembly

    NASA Astrophysics Data System (ADS)

    Xiao, Qijun

    This thesis discusses the full scope of a project exploring the physics of hierarchical clusters of interacting nanomagnets. These clusters may be relevant for novel applications such as multilevel data storage devices. The work can be grouped into three main activities: micromagnetic simulation, fabrication and characterization of proof-of-concept prototype devices, and efforts to scale down the structures by creating the hierarchical structures with the aid of diblock copolymer self assembly. Theoretical micromagnetic studies and simulations based on Landau-Lifshitz-Gilbert (LLG) equation were conducted on nanoscale single domain magnetic entities. For the simulated nanomagnet clusters with perpendicular uniaxial anisotropy, the simulation showed the switching field distributions, the stability of the magnetostatic states with distinctive total cluster perpendicular moments, and the stepwise magnetic switching curves. For simulated nanomagnet clusters with in-plane shape anisotropy, the simulation showed the stepwise switching behaviors governed by thermal agitation and cluster configurations. Proof-of-concept cluster devices with three interacting Co nanomagnets were fabricated by e-beam lithography (EBL) and pulse-reverse electrochemical deposition (PRECD). EBL patterning on a suspended 100 nm SiN membrane showed improved lateral lithography resolution to 30 nm. The Co nanomagnets deposited using the PRECD method showed perpendicular anisotropy. The switching experiments with external applied fields were able to switch the Co nanomagnets through the four magnetostatic states with distinctive total perpendicular cluster magnetization, and proved the feasibility of multilevel data storage devices based on the cluster concept. Shrinking the structures size was experimented by the aid of diblock copolymer. Thick poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer templates aligned with external electrical field were used to fabricate long Ni

  16. Investigation of the clinical potential of scattering foil free electron beams

    NASA Astrophysics Data System (ADS)

    Eldib, Ahmed; Jin, Lihui; Li, Jinsheng; Ma, C.-M. Charlie

    2014-02-01

    Electron beam therapy has been an important radiation therapy modality for many decades. Studies have been conducted recently for more efficient and advanced delivery of electron beam radiation therapy. X-ray contamination is a common problem that exists with all of the advanced electron beam therapy techniques such as Bolus Electron conformal therapy, segmented electron conformal therapy, and modulated electron arc therapy. X-ray contamination could add some limitations to the advancement and clinical utility of those electron modalities. It was previously shown in the literature that the scattering foil is one of the major accelerator parts contributing to the generation of bremsstrahlung photons. Thus, in this work we investigate the dosimetric characteristics of scattering foil free (SFF) electron beams and the feasibility of using those beams for breast cancer boosts. The SFF electron beams were modeled and simulated using the Monte Carlo method. CT scans of six previously treated breast patients were used for the treatment plan generation utilizing our in-house Monte Carlo-based treatment planning system. Electron boost plans with conventional beams and the SFF beams were generated, respectively, for all patients. A significant reduction of the photon component was observed with the removal of the primary scattering foil for beam energies higher than 12 MeV. Flatness was greatly affected but the difference in flatness between conventional and SFF beams was much reduced for small cone sizes, which were often used clinically for breast boosts. It was found that the SFF electron beams could deliver high-quality dose distributions as conventional electron beams for boost treatments of the breast with an added advantage of a further reduced dose to the lung and the heart.

  17. Investigation of the clinical potential of scattering foil free electron beams.

    PubMed

    Eldib, Ahmed; Jin, Lihui; Li, Jinsheng; Ma, C-M Charlie

    2014-02-21

    Electron beam therapy has been an important radiation therapy modality for many decades. Studies have been conducted recently for more efficient and advanced delivery of electron beam radiation therapy. X-ray contamination is a common problem that exists with all of the advanced electron beam therapy techniques such as Bolus Electron conformal therapy, segmented electron conformal therapy, and modulated electron arc therapy. X-ray contamination could add some limitations to the advancement and clinical utility of those electron modalities. It was previously shown in the literature that the scattering foil is one of the major accelerator parts contributing to the generation of bremsstrahlung photons. Thus, in this work we investigate the dosimetric characteristics of scattering foil free (SFF) electron beams and the feasibility of using those beams for breast cancer boosts. The SFF electron beams were modeled and simulated using the Monte Carlo method. CT scans of six previously treated breast patients were used for the treatment plan generation utilizing our in-house Monte Carlo-based treatment planning system. Electron boost plans with conventional beams and the SFF beams were generated, respectively, for all patients. A significant reduction of the photon component was observed with the removal of the primary scattering foil for beam energies higher than 12 MeV. Flatness was greatly affected but the difference in flatness between conventional and SFF beams was much reduced for small cone sizes, which were often used clinically for breast boosts. It was found that the SFF electron beams could deliver high-quality dose distributions as conventional electron beams for boost treatments of the breast with an added advantage of a further reduced dose to the lung and the heart.

  18. Graphene electronics for terahertz electron-beam radiation.

    PubMed

    Tantiwanichapan, Khwanchai; DiMaria, Jeff; Melo, Shayla N; Paiella, Roberto

    2013-09-20

    By virtue of their distinctive electronic properties (including linear energy dispersion, large velocity, and potentially ultra-high mobility even at room temperature), charge carriers in single-layer graphene are uniquely suited to radiation mechanisms that so far have been the primary domain of electron beams in vacuum-based systems. Here, we consider the use of sinusoidally corrugated graphene sheets for the generation of THz light based on a fundamentally new cyclotron-like radiation process, which does not require the application of any external magnetic field. Instead, periodic angular motion under bias is simply produced by the graphene mechanical corrugation, combined with its two-dimensional nature which ensures that the carrier trajectories perfectly conform to the corrugation. Numerical simulations indicate that technologically significant output power levels can correspondingly be obtained at geometrically tunable THz frequencies. This mechanism (as well as similar electron-beam radiation processes such as the Smith-Purcell and Cherenkov effects in periodic nanostructures) may open the way for a new family of THz optoelectronic devices based on graphene, including solid-state 'free-electron' lasers potentially capable of room-temperature operation.

  19. Space Charge Effect in the Sheet and Solid Electron Beam

    NASA Astrophysics Data System (ADS)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  20. The electron beam instability and turbulence theories

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Extensions and practical applications of recent observations of electron beam-plasma interactions are investigated for the range of turbulence theories, extending from quasi-linear to strong turbulence theory, which have been developed on the basis of the Langmuir-wave excitation model. Electron foreshock observations have indicated that linear instability theory must encompass the excitation of waves whose frequencies are substantially different from those of the plasma frequency; the point of departure for such extensions should be a quantitative test of existing theories, and particle simulations conducive to such testing are presented. A step-by-step addition of physical considerations is used in such simulation studies to differentiate among nonlinear turbulence effects.

  1. Electron Beam Technology for Environmental Pollution Control.

    PubMed

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs.

  2. Fundamental Proximity Effects in Focused electron Beam Induced Deposition

    SciTech Connect

    Plank, Harald; Smith, Daryl; Haber, Thomas; Rack, Philip D; Hofer, Ferdinand

    2012-01-01

    Fundamental proximity effects for electron beam induced deposition processes on nonflat surfaces were studied experimentally and via simulation. Two specific effects were elucidated and exploited to considerably increase the volumetric growth rate of this nanoscale direct write method: (1) increasing the scanning electron pitch to the scale of the lateral electron straggle increased the volumetric growth rate by 250% by enhancing the effective forward scattered, backscattered, and secondary electron coefficients as well as by strong recollection effects of adjacent features; and (2) strategic patterning sequences are introduced to reduce precursor depletion effects which increase volumetric growth rates by more than 90%, demonstrating the strong influence of patterning parameters on the final performance of this powerful direct write technique.

  3. An electron beam polarimeter based on scattering from a windowless, polarized hydrogen gas target

    NASA Astrophysics Data System (ADS)

    Bernauer, Jan; Milner, Richard

    2013-11-01

    Here we present the idea to develop a precision polarimeter for low energy, intense polarized electron beams using a windowless polarized hydrogen gas cell fed by an atomic beam source. This technique would use proven technology used successfully in both the electron scattering experiments: HERMES with 27 GeV electron and positron beams at DESY, and BLAST with 850 MeV electron beams at MIT-Bates. At 100 MeV beam energy, both spin-dependent Mo/ller and elastic electron-proton scattering processes have a high cross section and sizable spin asymmetries. The concept is described and estimates for realistic rates for elastic electron-proton scattering and Mo/ller scattering are presented. A number of important issues which affect the ultimate systematic uncertainty are identified.

  4. An electron beam polarimeter based on scattering from a windowless, polarized hydrogen gas target

    SciTech Connect

    Bernauer, Jan; Milner, Richard

    2013-11-07

    Here we present the idea to develop a precision polarimeter for low energy, intense polarized electron beams using a windowless polarized hydrogen gas cell fed by an atomic beam source. This technique would use proven technology used successfully in both the electron scattering experiments: HERMES with 27 GeV electron and positron beams at DESY, and BLAST with 850 MeV electron beams at MIT-Bates. At 100 MeV beam energy, both spin-dependent Mo/ller and elastic electron-proton scattering processes have a high cross section and sizable spin asymmetries. The concept is described and estimates for realistic rates for elastic electron-proton scattering and Mo/ller scattering are presented. A number of important issues which affect the ultimate systematic uncertainty are identified.

  5. Scintillation of lead tungstate crystal studied with single-electron beam from KUFEL

    SciTech Connect

    Rizwan, Mohamad Uozumi, Yusuke; Matsuo, Kazuki; Ohgaki, Hideaki; Kii, Toshiteru; Zen, Heishun; Tsamalaidze, Zviadi; Evtoukhovitch, Petr; Valentin, Samoilov

    2015-04-29

    Lead tungstate (PWO) crystal has a very fast response, high atomic density and high radiation hardness. Therefore, they are suitable to be used for high-energy nuclear data measurements under high-background circumstances. Although a good electron-ion separation with a pulse shape analysis technique is essential, scintillation pulse shapes have not been observed with electron beams of a wide energy range. A single-electron beam technique has been developed at Kyoto University Free Electron Laser (KUFEL), and electron beams of 4-38 MeV are available. During the experiments, single electron beams bombarded a PWO crystal. By using oscilloscope we observed scintillation pulses of a PWO crystal coupled with a photomultiplier tube. Measured spectra were compared with the simulation code of EGS5 to analyze scattering effects. As the result, the pulse amplitudes show good linearity and the pulse shapes are almost constant in the observed energy range.

  6. A critical literature review of focused electron beam induced deposition

    SciTech Connect

    Dorp, W. F. van; Hagen, C. W.

    2008-10-15

    , there is a limited understanding of the mechanism of electron induced precursor dissociation. In many cases, the deposit composition is not directly dependent on the stoichiometric composition of the precursor and the electron induced decomposition paths can be very different from those expected from calculations or thermal decomposition. The dissociation mechanism is one of the key factors determining the purity of the deposits and a better understanding of this process will help develop electron beam induced deposition into a viable nanofabrication technique00.

  7. Mask Fabrication Using Electron Beam Exposure System

    NASA Astrophysics Data System (ADS)

    Watakabe, Y.; Shigetomi, A.; Morimoto, H.; Kato, T.

    1981-07-01

    This study describes the results of feature size distribution, pattern location accuracy and level to level registration error on chrominum master masks fabricated by EeBES-40. This system has the capability of high speed electron beam blanking at 40MHz, the capacity for large size masks (with 6 inch mask cassette), and the automatic cassette handling system. OEBR-100(PGMA), as the electron beam negative resist, is used for 5 inch and 6 inch chrominum masks. The chrominum etching process is used for both wet and dry plasma technology. Test patterns and 64 K bit memory TEG, as the practical pattern, are used in this study. More than 40 measurements are taken, uniformly distributed over 96 to 112mm square, and the feature size distribution is measured by a laser interferometer X-Y measuring system. Pattern location accuracy and level to level registration error are obtained using EeBES-40 quality assurance programs called MARKET/PLOTMARKET. This program operates by scanning over the resist image of the test pattern, utilizing the normal fiducial mark location hardware. The followinc results are obtained; (1) Feature size distribution within 6 inch mask : -/+0.1 μm (2) Level-to-level registration error2 : less than 0.1 pm High quality masks with about 0.02 defects/cm2 , and rapid throughput of 6 hr./10 masks using the auto-matic 10-cassette handling system are obtained.

  8. Polarization of a stored electron beam

    SciTech Connect

    Chao, A.W.

    1981-07-01

    Synchrotron radiation by a point charge is a familiar subject in classical electrodynamics. Perhaps less familiar are some quantum mechanical corrections to the classical results. Some of those quantum aspects of synchrotron radiation are described. One of the quantum effects leads to the expectation that electrons in a storage ring will polarize themselves to 92% - a surprisingly high value. A semi-classical derivation of the quantum effects is given. An effort has been made to minimize the need of using quantum mechanics. Results are put together to derive a final expression of beam polarization. Conditions under which the expected 92% polarization is destroyed are found and attributed to depolarization resonances. The various depolarization mechanisms are first illustrated by an idealized example and then systematically treated by a matrix formalism. It is shown that the strength of depolarization is specified by a key quantity called the spin chromaticity. Finally as an application of the obtained results, an estimate of the achievable level of beam polarization for two existing electron storage rings, SPEAR and PEP, is given.

  9. Analysis of Beam-Beam Kink Instability in a Linac-Ring Electron-Ion Collider

    SciTech Connect

    V. Lebedev; J. Bisognano; R. Li; B. Yunn

    2001-06-01

    A linac-ring collision scheme was considered in recent proposals of electron-gold colliders (eRHIC) and polarized-electron light-ion colliders (EPIC). The advantages of using an energy-recovered linac for the electron beam is that it avoids the limitation of beam-beam tune shift inherent in a storage ring, pertains good beam quality and easy manipulation of polarization. However, the interaction of the ion beam in the storage ring with the electron beam from the linac acts analogously to a transverse impedance, and can induce unstable behavior of the ion beam similar to the strong head-tail instability. In this paper, this beam-beam kink instability with head-tail effect is analyzed using the linearized Vlasov equation, and the threshold of transverse mode coupling instability is obtained.

  10. Electron beam diagnostic for space charge measurement of an ion beam

    SciTech Connect

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2004-09-25

    A non-perturbing electron beam diagnostic system for measuring the charge distribution of an ion beam is developed for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the Neutralized Transport Experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.

  11. The effect of energy deposition on pattern resolution in electron beam lithography

    NASA Astrophysics Data System (ADS)

    Raghunathan, Ananthan

    Electron beam lithography is one of the most important tools for nanofabrication. Electron beam lithography has consistently been able to offer higher resolution, typically better than 10 nm or so, compared to other techniques. In this work the contribution of electron-substrate interaction to pattern resolution is investigated. In electron beam lithography the incident beam is scattered in the resist-substrate stack by a combination of elastic and inelastic events which is described by the point spread function. Using a Vistec VB300 Gaussian beam lithography tool operating at 100 keV the experimental point spread function is investigated by a technique called point exposure distribution measurements. The experimental results indicate that the scattering in the sub-100 nm range shows several orders of the magnitude difference with that obtained via Monte Carlo simulations. In high energy electron beam lithography where forward scattering in small, contribution of secondary electrons generated by the primary beam must be taken into account. The chemical change leading to resist exposure is through bond scission, which is typically a low energy event between 3 -- 5 eV. Compared to the primary beam, the secondary electrons have a significantly higher probability of scission due to their lower energy. These secondary electrons are also generated with large emission angles and can travel several nanometers, leading to an increase in observed line widths compared to the size of the beam. An analytical model developed here, that considers the energy deposited by the secondary electrons, is able to predict the dependence of dose on observed diameter to within a reasonable accuracy. This technique used in conjunction with the knowledge of resist contrast is also indicative of pattern resolution limits in high energy electron beam lithography. It is also found that for negative resists, backscatter effects and resist contrast significantly degrade the resolution for large

  12. Electron energy distribution produced by beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Gordeuk, J.; Jost, R. J.

    1982-01-01

    In an investigation of a beam-plasma discharge (BPD), the electron energy distribution of an electron beam moving through a partially ionized gas is analyzed. Among other results, it is found that the occurrence of BPD heats the initially cold electron beam from the accelerator. The directional intensity of electrons measured outside the beam core indicates that most particles suffer a single scattering in energy and pitch angle. At low currents this result is expected as beam particles collide with the neutral atmosphere, while in BPD the majority of particles is determined to still undergo a single scattering near the original beam core. The extended energy spectra at various beam currents show two rather distinct plasma populations, one centered at the initial beam energy (approximately 1500 eV) and the other at approximately 150 eV.

  13. 'Programming' Electron Beam Ion Traps To Produce Atomic Data Relevant To Plasma Physics

    SciTech Connect

    Currell, Fred; O'Rourke, Brian; Kavanagh, Anthony; Li Yueming; Nakamura, Nobuyuki; Ohtani, Shunsuke; Watanabe, Hirofumi

    2009-09-10

    After a brief review of the processes taking place in electron beam ions traps (EBITs), the means by which EBITs are used to make measurements of electron impact ionization cross-sections and dielectronic recombination resonance strengths are discussed. In particular, results from a study involving holmium ions extracted from an electron beam ion trap are used to illustrate a technique for studying dielectronic recombination in open-shell target ions.

  14. Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching.

    PubMed

    Liebes, Yael; Hadad, Binyamin; Ashkenasy, Nurit

    2011-07-15

    The fabrication of nanometric pores with controlled size is important for applications such as single molecule detection. We have recently suggested the use of focused electron beam induced etching (FEBIE) for the preparation of such nanopores in silicon nitride membranes. The use of a scanning probe microscope as the electron beam source makes this technique comparably accessible, opening the way to widespread fabrication of nanopores. Since the shape of the nanopores is critically important for their performance, in this work we focus on its analysis and study the dependence of the nanopore shape on the electron beam acceleration voltage. We show that the nanopore adopts a funnel-like shape, with a central pore penetrating the entire membrane, surrounded by an extended shallow-etched region at the top of the membrane. While the internal nanopore size was found to depend on the electron acceleration voltage, the nanopore edges extended beyond the primary electron beam spot size due to long-range effects, such as radiolysis and diffusion. Moreover, the size of the peripheral-etched region was found to be less dependent on the acceleration voltage. We also found that chemical etching is the rate-limiting step of the process and is only slightly dependent on the acceleration voltage. Furthermore, due to the chemical etch process the chemical composition of the nanopore rims was found to maintain the bulk membrane composition.

  15. Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching

    NASA Astrophysics Data System (ADS)

    Liebes, Yael; Hadad, Binyamin; Ashkenasy, Nurit

    2011-07-01

    The fabrication of nanometric pores with controlled size is important for applications such as single molecule detection. We have recently suggested the use of focused electron beam induced etching (FEBIE) for the preparation of such nanopores in silicon nitride membranes. The use of a scanning probe microscope as the electron beam source makes this technique comparably accessible, opening the way to widespread fabrication of nanopores. Since the shape of the nanopores is critically important for their performance, in this work we focus on its analysis and study the dependence of the nanopore shape on the electron beam acceleration voltage. We show that the nanopore adopts a funnel-like shape, with a central pore penetrating the entire membrane, surrounded by an extended shallow-etched region at the top of the membrane. While the internal nanopore size was found to depend on the electron acceleration voltage, the nanopore edges extended beyond the primary electron beam spot size due to long-range effects, such as radiolysis and diffusion. Moreover, the size of the peripheral-etched region was found to be less dependent on the acceleration voltage. We also found that chemical etching is the rate-limiting step of the process and is only slightly dependent on the acceleration voltage. Furthermore, due to the chemical etch process the chemical composition of the nanopore rims was found to maintain the bulk membrane composition.

  16. JINR test facility for studies FEL bunching technique for CLIC driving beam

    SciTech Connect

    Dolbilov, G.V.; Fateev, A.A.; Ivanov, I.N.

    1995-12-31

    SILUND-21 linear induction accelerator (energy up to 10 MeV, peak current about of 1 kA, pulse duration 50 - 70 ns) is constructed at JINR in the framework of experimental program to study free electron laser physics, a problem of two-beam acceleration and microwave electronics. In this paper we present project of an experiment to adopt the FEL bunching technique for generation of the CLIC driving beam.

  17. Fast character projection electron beam lithography for diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Harzendorf, Torsten; Fuchs, Frank; Banasch, Michael; Zeitner, Uwe D.

    2014-05-01

    Electron beam lithography becomes attractive also for the fabrication of large scale diffractive optical elements by the use of the character projection (CP) technique. Even in the comparable fast variable shaped beam (VSB) exposure approach for conventional electron beam writers optical nanostructures may require very long writing times exceeding 24 hours per wafer because of the high density of features, as required by e.g. sub-wavelength nanostructures. Using character projection, the writing time can be reduced by more than one order of magnitude, due to the simultaneous exposure of multiple features. The benefit of character projection increases with increasing complexity of the features and decreasing period. In this contribution we demonstrate the CP technique for a grating of hexagonal symmetry at 350nm period. The pattern is designed to provide antireflective (AR) properties, which can be adapted in their spectral and angular domain for applications from VIS to NIR by changing the feature size and the etching depth of the nanostructure. This AR nanostructure can be used on the backside of optical elements e.g. gratings, when an AR coating stack could not be applied for the reason of climatic conditions or wave front accuracy.

  18. Electron acceleration by a tightly focused cylindrical vector Gaussian beam

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Yang, Zhen-Jun; Li, Jian-Xing; Zang, Wei-Ping

    2017-02-01

    We have studied the electron acceleration by a tightly focused cylindrical vector Gaussian beam. Different from the Lax series field, cylindrical vector Gaussian beams are vector-beam solutions of Maxwell’s equations and its focusing property can be numerically analyzed by the Richards-Wolf vectorial diffraction theory. Field differences exist between the cylindrical vector Gaussian beam and the Lax series field. The cylindrical vector Gaussian beam increases the asymmetry of the electromagnetic fields, which is more beneficial to the electron acceleration. When the beam waist falls down to the order of the wavelength, the high laser intensity zone is more proper to define the reflection, capture and transmission conditions of the electrons. The injection energy and the injected angle of the electron and the initial phase of the laser beam play important roles for the electron to enter and be trapped by the high laser intensity zone.

  19. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    SciTech Connect

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally, we report on the measured performance of this profile monitor.

  20. Construction of the SCRIT electron scattering facility at the RIKEN RI Beam Factory

    NASA Astrophysics Data System (ADS)

    Wakasugi, M.; Ohnishi, T.; Wang, S.; Miyashita, Y.; Adachi, T.; Amagai, T.; Enokizono, A.; Enomoto, A.; Haraguchi, Y.; Hara, M.; Hori, T.; Ichikawa, S.; Kikuchi, T.; Kitazawa, R.; Koizumi, K.; Kurita, K.; Miyamoto, T.; Ogawara, R.; Shimakura, Y.; Takehara, H.; Tamae, T.; Tamaki, S.; Togasaki, M.; Yamaguchi, T.; Yanagi, K.; Suda, T.

    2013-12-01

    The SCRIT electron scattering facility, aiming at electron scattering off short-lived unstable nuclei, has been constructed at the RIKEN RI Beam Factory. This facility consists of a racetrack microtron (RTM), an electron storage ring (SR2) equipped with the SCRIT system, and a low-energy RI separator (ERIS). SCRIT (self-confining radioactive isotope ion targeting) is a novel technique to form internal targets in an electron storage ring. Experiments for evaluating performance of the SCRIT system have been carried out using the stable 133Cs1+ beam and the 132Xe1+ beam supplied from ERIS. Target ions were successfully trapped in the SCRIT system with 90% efficiency at a 250 mA electron beam current, and luminosity exceeding 1026/(cm2 s) was maintained for more than 1 s. Electrons elastically scattered from the target ions were successfully measured. Applicability of the SCRIT system to electron scattering for unstable nuclei has been established in experiments.

  1. Novel vortex generator and mode converter for electron beams.

    PubMed

    Schattschneider, P; Stöger-Pollach, M; Verbeeck, J

    2012-08-24

    A mode converter for electron vortex beams is described. Numerical simulations, confirmed by experiment, show that the converter transforms a vortex beam with a topological charge m=±1 into beams closely resembling Hermite-Gaussian HG(10) and HG(01) modes. The converter can be used as a mode discriminator or filter for electron vortex beams. Combining the converter with a phase plate turns a plane wave into modes with topological charge m=±1. This combination serves as a generator of electron vortex beams of high brilliance.

  2. Supporting soil remediation at Fernald by electron beam methods

    SciTech Connect

    Buck, E.C.; Brown, N.R.; Dietz, N.L.; Cunnane, J.C.

    1994-02-01

    Electron beam techniques have been used to characterize uranium-contaminated soils at the Fernald Site, Ohio. The major uranium phases have been identified by analytical electron microscopy (AEM) as uranyl phosphate (autunite), uranium oxide (uraninite), and uranium phosphite [U(PO{sub 3}){sub 4}]. Luminescence and X-ray absorption spectroscopy incorrectly identified uranium oxide hydrate (schoepite) as the major phase in Fernald soils. The solubilities of schoepite and autunite are very different, so a solubility-dependent remediation method selected for schoepite will not be effective for removing autunite. AEM is the only technique capable of precisely identifying unknown submicron phases. The uranium phosphite has been found predominantly at the incinerator site at Fernald. This phase has not been removed successfully by any of the chemical remediation technologies. We suggest that an alternative physical extraction procedure be applied to remove this phase.

  3. Experimental study of the stability of a neutralized electron beam

    SciTech Connect

    Kudelainen, V.I.; Parkhomchuk, V.V.; Pestrikov, D.V.

    1983-05-01

    Results are reported from measurements of the spectral properties of a long neutralized electron beam in the NAP-M proton storage ring. It is shown that when the number of secondary electrons is small, both the longitudinal and the transverse oscillations are strongly damped, so that beam instability is suppressed. The current density of the neutralized electron beam produced in the experiments was approx.10/sup 2/ times greater than the theoretical value determined from the instability threshold for nonaxisymmetric oscillations.

  4. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  5. Local zone wise elastic and plastic properties of electron beam welded Ti-6Al-4V alloy using digital image correlation technique: A comparative study between uniform stress and virtual fields method

    NASA Astrophysics Data System (ADS)

    Saranath, K. M.; Ramji, M.

    2015-05-01

    Joining of materials using welding results in the formation of material zones with varying microstructure across the weld. Extraction of the mechanical properties of those individual heterogeneous zones are important in designing components and structures comprised of welds. In this study, the zone wise local extraction of the elastic and plastic properties of an electron beam welded Ti-6Al-4V titanium alloy has been carried out using both the uniform stress method (USM) and the virtual fields method (VFM) involving digital image correlation (DIC) technique. The surface strain field obtained using DIC technique from a transverse weld specimen tensile testing is used for extracting the zone wise strain evolution. Initially, using uniform stress assumption, zone wise full range stress-strain curves are extracted. In USM methodology, the elastic and plastic material models are fitted to the zone wise stress-strain curves and required parameters are extracted from it. But inherent disadvantage is lot of images need to be processed for the parameter extraction. Recently, VFM is gaining lot of popularity in characterization domain as it is robust, accurate and faster. VFM is based on the principle of virtual work where, the weak form of local equilibrium equations and kinematically admissible virtual displacement fields are utilized for parameter extraction. Hollomon's power law is used here as the hardening rule. Young's modulus, Poisson's ratio, yield stress, strength coefficient and strain hardening exponent are the parameters extracted zone wise using both USM and VFM. A Vicker's microhardness measurement is also conducted across the weld zone towards mapping the strength behavior. Fusion zone has reported higher yield strength, strength coefficient and Poisson's ratio. Young's modulus value is found decreasing from base metal towards the fusion zone. The trend observed in parameter variation across the weld zone obtained by both USM and VFM compares very well. Due

  6. Electron beam radiation effects on UHMWPE: an EPR study.

    PubMed

    Brunella, Valentina; Paganini, Maria Cristina

    2011-09-01

    Electron paramagnetic resonance (EPR) technique has been employed to detect and characterise a series of different radical species generated in ultra-high molecular weight polyethylene (UHMWPE) via electron beam irradiation. Three different radical species have been found and assigned on the basis of their EPR spectra and of the related computer simulations. A secondary alkyl species, the prevalent one, is present immediately after irradiation, an allyl species appears only 24 h after irradiation when the alkyl species disappears.The third species, clearly visible at high microwave power only, has been observed for the first time and assigned to a tertiary alkyl carbon radical, whose formation is strictly connected with a Y-shape crosslink and a migration of the unpaired electron on a carbon atom localised in an adjacent position.

  7. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  8. Development of hollow electron beams for proton and ion collimation

    SciTech Connect

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.; /UC, San Diego

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  9. Effect of electron beam irradiation on PMMA films

    SciTech Connect

    Tiwari, Pragya; Srivastava, A. K.; Khattak, B. Q.; Verma, Suveer; Upadhyay, Anuj; Sinha, A. K.; Ganguli, Tapas; Lodha, G. S.; Deb, S. K.

    2012-06-05

    Polymethyl methacrylate (PMMA) is characterized for electron beam interactions in the resist layer in lithographic applications. PMMA thin films (free standing) were prepared by solvent casting method. These films were irradiated with 30keV electron beam at different doses. Structural and chemical properties of the films were studied by means of X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy The XRD results showed that the amorphization increases with electron beam irradiation dose. FTIR spectroscopic analysis reveals that electron beam irradiation promotes the scission of carbonyl group and depletes hydrogen and converts polymeric structure into hydrogen depleted carbon network.

  10. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  11. Effect of Electron Beam Irradiation on Tensile Strength of Polypropylene

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi; Ikeda, Masayuki; Shimbo, Minoru; Miyano, Yasushi

    In this paper, the effects of the intensity of electron beam and the variation with time after irradiation of electron beam on the tensile strength of the polypropylene (PP), which is widely used as medicine containers, were investigated. PP with and without colorants were used first and samples irradiated under various intensity of EB. A tensile test on the irradiated samples with elapsed time after the irradiation of the electron beam was carried out. The effects of those factors on the tensile strength were discussed. The following results were obtained (1) The tensile strength of PP decreased due to the influence of the electron beam irradiation, however the rate of the decrease in strength was small compared with the original one. Furthermore, the rate of the decrease in strength was very small owing to the variation with time after the EB irradiation. (2) The tensile rupture strength of PP increased and the rupture strain owing to the influence of the electron beam irradiation compared with the original one. In addition, these rupture strength increased and the rupture strain decreased along with time after the irradiation of the electron beam. (3) The tensile rupture strain energy of PP decreased owing to the influence of the electron beam irradiation compared with the original one. In addition, the strain energy decreases with time after the irradiation of the electron beam. Moreover, the strength characteristics of PP with colorants received greater influence of electron beam compared with the one without colorants.

  12. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  13. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  14. Electron-beam direct processing on living cell membrane

    SciTech Connect

    Hoshino, Takayuki; Morishima, Keisuke

    2011-10-24

    We demonstrated a direct processing on a living Hep G2 cell membrane in conventional cultivation conditions using an electron beam. Electron beam-induced deposition from liquid precursor 3,4-ethylenedioxythiophene and ablation was performed on the living cells. The 2.5-10 keV electron beam which was irradiated through a 100-nm-thick SiN nanomembrane could induce a deposition pattern and a ablation on a living cell membrane. This electron beam direct processing can provide simple in-situ cell surface modification for an analytical method of living cell membrane dynamic.

  15. Microbial Safety Improvement of Sea Buckthorn by Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Nemţanu, Monica R.; Minea, R.; Mazilu, Elena; Rǎdulescu, Nora

    2007-04-01

    The commercialization of medicinal plants and/or their products is highly increased in Romania lately. One of the most used herbs is sea buckthorn being well known for its quality with a large potential for curing some diseases. Sea buckthorn can be contaminated with undesirable microorganisms which may affect negatively its quality. The paper presents the results regarding the action of a non-conventional technology meaning electron beam technique on sea buckthorn in order to improve its microbiological quality. Our study revealed that the sea buckthorn microbial load has been improved after 3 kGy irradiation keeping its active principles.

  16. Microbial Safety Improvement of Sea Buckthorn by Electron Beam Irradiation

    SciTech Connect

    Nemtanu, Monica R.; Minea, R.; Mazilu, Elena; Radulescu, Nora

    2007-04-23

    The commercialization of medicinal plants and/or their products is highly increased in Romania lately. One of the most used herbs is sea buckthorn being well known for its quality with a large potential for curing some diseases. Sea buckthorn can be contaminated with undesirable microorganisms which may affect negatively its quality. The paper presents the results regarding the action of a non-conventional technology meaning electron beam technique on sea buckthorn in order to improve its microbiological quality. Our study revealed that the sea buckthorn microbial load has been improved after 3 kGy irradiation keeping its active principles.

  17. Electron capture acceleration channel in a slit laser beam

    SciTech Connect

    Wang, P. X.; Scheid, W.; Ho, Y. K.

    2007-03-12

    Using numerical simulations, the authors find that the electrons can be captured and accelerated to high energies (GeV) in a slit laser beam with an intensity of I{lambda}{sup 2}{approx}10{sup 20} W/cm{sup 2} {mu}m{sup 2}, where {lambda} is the laser wavelength in units of {mu}m. The range of the optimum incident energy is very wide, even up to GeV. These results are of interest for experiments because the relatively low intensity can be achieved with present chirped pulse amplification technique and a wide range of incident energies means that a multistage acceleration is possible.

  18. Emittance measurements of space-charge-dominated electron beam. Final report

    SciTech Connect

    Namkung, W.; Chojnacki, E.P.

    1985-06-01

    A diagnostic technique of the beam emittance is developed for electron beams with diverging envelopes under strong space-charge forces. Radial profiles of current density, local temperature, and divergence angle are measured by the slit-pinhole method for axisymmetric beams. The partical distribution function in transverse phase space is then constructed and the rms emittance is obtained by numerical integrations. A 5-kV, 200-mA, and 3-microsec electron beam is used in the comparison between theory and experiment on this diagnostic method.

  19. Patterning and imaging with electrons: assessing multi-beam SEM for e-beam structured CMOS samples

    NASA Astrophysics Data System (ADS)

    Garbowski, Tomasz; Panteleit, Friedhelm; Dellemann, Gregor; Gutsch, Manuela; Hohle, Christoph; Reich, Elke; Rudolph, Matthias; Steidel, Katja; Thrun, Xaver; Zeidler, Dirk

    2016-03-01

    Electron optics can assist in the fabrication of semiconductor devices in many challenges that arise from the ongoing decrease of structure size. Examples are augmenting optical lithography by electron beam direct write strategies and high-throughput imaging of patterned structures with multiple beam electron microscopes. We use multiple beam electron microscopy to image semiconductor wafers processed by electron beam lithography.

  20. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  1. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  2. Prevention of electron beam transmittance for biological cell imaging using electron beam excitation-assisted optical microscope

    NASA Astrophysics Data System (ADS)

    Fukuta, Masahiro; Nawa, Yasunori; Inami, Wataru; Kawata, Yoshimasa

    2016-12-01

    We demonstrated the high-spatial-resolution imaging of label-free biological cells using an electron beam excitation-assisted optical (EXA) microscope without irradiation damage by the electron beam. An EXA microscope can be used to observe a specimen with a nanometric light source excited in the Si3N4 membrane by an electron beam. The incident electron beam penetrates the Si3N4 membrane and damages the specimen. To suppress the irradiation damage of the specimen, we prevented the transmittance of the electron beam by coating the Si3N4 membrane with a gold thin film. To obtain an electron beam transmittance through the Si3N4 of 0%, a gold film of 15 nm thickness was required. By adding the gold layer, a label-free cellular structure was observed with 135-nm spatial resolution.

  3. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam.

    PubMed

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A; Vick, Andrew J

    2016-09-02

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices.

  4. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam

    NASA Astrophysics Data System (ADS)

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A.; Vick, Andrew J.

    2016-09-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices.

  5. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam

    PubMed Central

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A.; Vick, Andrew J.

    2016-01-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices. PMID:27586090

  6. Electron beam magnetic switch for a plurality of free electron lasers

    DOEpatents

    Schlitt, Leland G.

    1984-01-01

    Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.

  7. Development of mobile electron beam plant for environmental applications

    NASA Astrophysics Data System (ADS)

    Han, Bumsoo; Kim, Jinkyu; Kang, Wongu; Choi, Jang Seung; Jeong, Kwang-Young

    2016-07-01

    Due to the necessity of pilot scale test facility for continuous treatment of wastewater and gases on site, a mobile electron beam irradiation system mounted on a trailer has developed. This mobile electron beam irradiation system is designed for the individual field application with self-shielded structure of steel plate and lead block which will satisfy the required safety figures of International Commission on Radiological Protection (ICRP). Shielding of a mobile electron accelerator of 0.7 MeV, 30 mA has been designed and examined by Monte Carlo technique. Based on a 3-D model of electron accelerator shielding which is designed with steel and lead shield, radiation leakage was examined using the Monte Carlo N-Particle Transport (MCNP) Code. Simulations with two different versions (version 4c2 and version 5) of MCNP code showed agreements within statistical uncertainties, and the highest leakage expected is 5.5061×10-01 (1±0.0454) μSv/h, which is far below the tolerable radiation dose limit for occupational workers. This unit could treat up to 500 m3 of liquid waste per day at 2 kGy or 10,000 N m3 of gases per hour at 15 kGy.

  8. A novel comparison of Møller and Compton electron-beam polarimeters

    NASA Astrophysics Data System (ADS)

    Magee, J. A.; Narayan, A.; Jones, D.; Beminiwattha, R.; Cornejo, J. C.; Dalton, M. M.; Deconinck, W.; Dutta, D.; Gaskell, D.; Martin, J. W.; Paschke, K. D.; Tvaskis, V.; Asaturyan, A.; Benesch, J.; Cates, G.; Cavness, B. S.; . A. Dillon-Townes, L.; Hays, G.; Hoskins, J.; Ihloff, E.; Jones, R.; King, P. M.; Kowalski, S.; Kurchaninov, L.; Lee, L.; McCreary, A.; McDonald, M.; Micherdzinska, A.; Mkrtchyan, A.; Mkrtchyan, H.; Nelyubin, V.; Page, S.; Ramsay, W. D.; Solvignon, P.; Storey, D.; Tobias, W. A.; Urban, E.; Vidal, C.; Waidyawansa, B.; Wang, P.; Zhamkotchyan, S.

    2017-03-01

    We have performed a novel comparison between electron-beam polarimeters based on Møller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents (< 5 μA) during the Qweak experiment in Hall-C at Jefferson Lab. These low current measurements were bracketed by the regular high current (180 μA) operation of the Compton polarimeter. All measurements were found to be consistent within experimental uncertainties of 1% or less, demonstrating that electron polarization does not depend significantly on the beam current. This result lends confidence to the common practice of applying Møller measurements made at low beam currents to physics experiments performed at higher beam currents. The agreement between two polarimetry techniques based on independent physical processes sets an important benchmark for future precision asymmetry measurements that require sub-1% precision in polarimetry.

  9. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    PubMed

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  10. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    DOE PAGES

    Adli, E.; Gessner, S. J.; Corde, S.; ...

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally,more » we report on the measured performance of this profile monitor.« less

  11. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    SciTech Connect

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua Ferrando, Belen

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  12. Current understanding and issues on electron beam injection in space

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.; Szuszczewicz, E. P.

    1988-01-01

    The status of the physics understanding involved in electron beam injection in space is reviewed. The paper examines our understanding of beam plasma interactions and their associated wave and energized particle spectra of the processes involved in the beam plasma discharge, and of the vehicle charge neutralization. 'Strawman' models are presented for comparison with experimental observations.

  13. Monoenergetic collimated nano-Coulomb electron beams driven by crossed laser beams

    SciTech Connect

    Wang Jingwei; Murakami, M.; Weng, S. M.; Ruhl, H.; Luan Shixia; Yu Wei

    2013-07-08

    Monoenergetic collimated electron acceleration by two crossed laser beams is investigated through an analytical model and particle-in-cell simulations. Electron bunches with a total charge of order nano-Coulombs are accelerated by the axial electric field formed by the crossed laser beams to nearly 760 MeV with an energy spread of 2.7%. The transverse components of both electric and magnetic fields vanish along the axis, making the electron beam highly collimated. This acceleration scheme appears promising in producing high quality electron beams.

  14. Gridded Electron Guns and Modulation of Intense Beams

    SciTech Connect

    Harris, J R; O'Shea, P G

    2006-05-02

    Gridded guns are useful for producing modulated electron beams. This modulation is generally limited to simple gating of the beam, but may be used to apply structure to the beam pulse shape. In intense beams, this structure spawns space charge waves whose dynamics depend in part on the relative strengths of the velocity and density variations which comprise the initial current modulation. In this paper, we calculate the strengths of beam current and velocity modulation produced in a gridded electron gun, and show that under normal conditions the initial modulation is dominated by density variation rather than velocity variation.

  15. Quantum effects in electron beam pumped GaAs

    SciTech Connect

    Yahia, M. E.; Azzouz, I. M.; Moslem, W. M.

    2013-08-19

    Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.

  16. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  17. Annular-beam, 17 GHz free-electron maser experiment

    SciTech Connect

    Earley, L.M.; Carlsten, B.E.; Fazio, M.V.

    1997-06-01

    Experiments have been conducted on a 15-17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. The electron beam source was a 1 {mu}s, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacted with the TM{sub 02} and TM{sub 03} mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. This greatly reduced the kinetic energy loss caused by the beam potential depression associated with the space charge which was a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. The experiment was operated in a single shot mode with a large number of diagnostics to measure power, frequency and energy.

  18. Effect of electron beam pulse width on time-of-flight spectra

    NASA Technical Reports Server (NTRS)

    Misakian, M.; Mumma, M. J.

    1974-01-01

    A simple but useful formula describing the effect of electron gun pulse width on the time of flight (TOF) spectra measured in translational spectroscopy experiments is developed. An approximately monoenergetic pulsed electrostatically focused electron beam traverses a scattering cell filled with a Maxwellian gas. Inelastic electron collisions with the gas produce metastable particles, ions, scattered electrons, and photons which then pass through a collimating slit system at right angles to the electron beam. TOF techniques are used to separate the photon signal from the metastable particle signal and to measure the TOF distribution of the metastable species.

  19. Deposition of Thin Film Copper Nanostructures by Electron Beam Physical Vapor Deposition Technique on SiO2/p-TYPE Si(100) and Study of its Oxidation Behavior

    NASA Astrophysics Data System (ADS)

    Yeganeh, M.; Saremi, M.

    Electron beam physical vapor deposition (EBPVD) is being used in coating components for many applications such as for producing nanostructures and integrated circuits (ICs) coating in electronic industry. In this work, copper was deposited on the SiO2/p-type Si(100). Thin film characteristics are investigated by scanning electron microscopy and X-ray diffraction (XRD). Then oxidation behavior of deposits was evaluated by Dektak Surface Profiler and weight gain method at 200 and 300°C. Results showed that thin film copper deposited by EBPVD has better oxidation characteristics in comparison with copper foil.

  20. Quadrant-division technique for differential sensitivity optical beam measurement

    NASA Astrophysics Data System (ADS)

    Hii, K. U.

    2016-11-01

    A novel method for optical beam collimation measurement is presented. The collimating lens is utilized in four parts of quadrants with the beam aligned onto the first quadrant and configured to pass the subsequent quadrants. This allows the test beam to pass the collimating lens for four times. Subsequently, the test beam is reversed to achieve a total number of eight passes. Hence, for a defocus introduced, the collimation state of the test beam can be evaluated at the amplification of eight. The evaluation of the test beam is performed based on the approach of collimation testing using lateral shearing interferometer. The proposed technique provides a differential collimation sensitivity for accurate setting of a highly collimated beam.

  1. Intense electron beam propagation across a magnetic field

    SciTech Connect

    Zhang, X.; Striffler, C.D.; Yao, R.L.; Destler, W.W.; Reiser, M.P.

    1989-01-01

    In this paper we consider the propagation of an intense electron-ion beam across an applied magnetic field. In the absence of the applied field, the beam system is in a Bennett equilibrium state that involves electrons with both large axial and thermal velocities and a cold stationary space-charge neutralizing ion species. Typical parameters under consideration are V{sub o} {approximately} 1 MV, I {approximately} 5 kA, T{sub e} {approximately} 100 keV, and beam radii {approximately} 1 cm. We find that in the intense beam regime, the propagation is limited due to space-charge depression caused by the deflection of the electron beam by the transverse field. This critical field is of the order of the peak self-magnetic field of the electron beam which is substantially higher than the single particle cut-off field. 8 refs., 3 figs.

  2. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    SciTech Connect

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  3. Potential for Fabric Damage by Welding Electron Beam

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    Welding electron beam effects on Nextel AF-62 ceramic fabric enable a preliminary, tentative interpretation of electron beam fabric damage. Static surface charging does not protect fabric from beam penetration, but penetration occurs only after a delay time. The delay time is thought to be that required for the buildup of outgassing products at the fabric surface to a point where arcing occurs. Extra long delays are noted when the gun is close enough to the surface to be shut off by outgassing emissions. Penetration at long distances is limited by beam attenuation from electronic collisions with the chamber atmosphere.

  4. Nonlinear transmission line based electron beam driver

    SciTech Connect

    French, David M.; Hoff, Brad W.; Tang Wilkin; Heidger, Susan; Shiffler, Don; Allen-Flowers, Jordan

    2012-12-15

    Gated field emission cathodes can provide short electron pulses without the requirement of laser systems or cathode heating required by photoemission or thermionic cathodes. The large electric field requirement for field emission to take place can be achieved by using a high aspect ratio cathode with a large field enhancement factor which reduces the voltage requirement for emission. In this paper, a cathode gate driver based on the output pulse train from a nonlinear transmission line is experimentally demonstrated. The application of the pulse train to a tufted carbon fiber field emission cathode generates short electron pulses. The pulses are approximately 2 ns in duration with emission currents of several mA, and the train contains up to 6 pulses at a frequency of 100 MHz. Particle-in-cell simulation is used to predict the characteristic of the current pulse train generated from a single carbon fiber field emission cathode using the same technique.

  5. Storage-ring Electron Cooler for Relativistic Ion Beams

    SciTech Connect

    Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.; Guo, Jiquan; Johnson, Rolland P.; Krafft, Geoffrey A.; Morozov, Vasiliy; Zhang, Yuhong

    2016-05-01

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.

  6. NOx reduction by electron beam-produced nitrogen atom injection

    DOEpatents

    Penetrante, Bernardino M.

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  7. Electron Beam-Cure Polymer Matrix Composites: Processing and Properties

    NASA Technical Reports Server (NTRS)

    Wrenn, G.; Frame, B.; Jensen, B.; Nettles, A.

    2001-01-01

    Researchers from NASA and Oak Ridge National Laboratory are evaluating a series of electron beam curable composites for application in reusable launch vehicle airframe and propulsion systems. Objectives are to develop electron beam curable composites that are useful at cryogenic to elevated temperatures (-217 C to 200 C), validate key mechanical properties of these composites, and demonstrate cost-saving fabrication methods at the subcomponent level. Electron beam curing of polymer matrix composites is an enabling capability for production of aerospace structures in a non-autoclave process. Payoffs of this technology will be fabrication of composite structures at room temperature, reduced tooling cost and cure time, and improvements in component durability. This presentation covers the results of material property evaluations for electron beam-cured composites made with either unidirectional tape or woven fabric architectures. Resin systems have been evaluated for performance in ambient, cryogenic, and elevated temperature conditions. Results for electron beam composites and similar composites cured in conventional processes are reviewed for comparison. Fabrication demonstrations were also performed for electron beam-cured composite airframe and propulsion piping subcomponents. These parts have been built to validate manufacturing methods with electron beam composite materials, to evaluate electron beam curing processing parameters, and to demonstrate lightweight, low-cost tooling options.

  8. Electron Gun For Multiple Beam Klystron Using Magnetic Focusing

    DOEpatents

    Ives, R. Lawrence; Miram, George; Krasnykh, Anatoly

    2004-07-27

    An RF device comprising a plurality of drift tubes, each drift tube having a plurality of gaps defining resonant cavities, is immersed in an axial magnetic field. RF energy is introduced at an input RF port at one of these resonant cavities and collected at an output RF port at a different RF cavity. A plurality of electron beams passes through these drift tubes, and each electron beam has an individual magnetic shaping applied which enables confined beam transport through the drift tubes.

  9. Waves in relativistic electron beam in low-density plasma

    NASA Astrophysics Data System (ADS)

    Sheinman, I.; Sheinman (Chernenco, J.

    2016-11-01

    Waves in electron beam in low-density plasma are analyzed. The analysis is based on complete electrodynamics consideration. Dependencies of dispersion laws from system parameters are investigated. It is shown that when relativistic electron beam is passed through low-density plasma surface waves of two types may exist. The first type is a high frequency wave on a boundary between the beam and neutralization area and the second type wave is on the boundary between neutralization area and stationary plasma.

  10. Electron beam control using shock-induced density downramp injection

    NASA Astrophysics Data System (ADS)

    Swanson, K.; Tsai, H.-E.; Barber, S.; Lehe, R.; Mao, H.-S.; Steinke, S.; van Tilborg, J.; Geddes, C. G. R.; Leemans, W. P.

    2017-03-01

    In these experiments, we improve the quality of electrons injected along a shock-induced density downramp. We demonstrate that beam ellipticity and steering are influenced by the shock front tilt, and we present simple models to explain these effects. By adjusting the shock front angle, we minimize the beam's off-axis steering and ellipticity, producing high-quality electron beams over a tunable energy range.

  11. Electronic imaging system and technique

    DOEpatents

    Bolstad, J.O.

    1984-06-12

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  12. Electronic imaging system and technique

    DOEpatents

    Bolstad, Jon O.

    1987-01-01

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  13. Thermal effect on prebunched two-beam free electron laser

    NASA Astrophysics Data System (ADS)

    Mirian, N. S.; Maraghechi, B.

    2013-08-01

    A numerical simulation in one-dimension is conducted to study the two-beam free electron laser. The fundamental resonance of the fast electron beam coincides with the fifth harmonic of the slow electron beam in order to generate extreme ultraviolet radiation. Thermal effect in the form of the longitudinal velocity spread is included in the analysis. In order to reduce the length of the wiggler, prebunched slow electron beam is considered. The evaluation of the radiation power, bunching parameter, distribution function of energy, and the distribution function of the pondermotive phase is studied. Sensitivity of the power of the fifth harmonic to the jitter in the energy difference between the two beams is also studied. A phase space is presented that shows the trapped electrons at the saturation point.

  14. Spin-Polarizing Interferometric Beam Splitter for Free Electrons.

    PubMed

    Dellweg, Matthias M; Müller, Carsten

    2017-02-17

    A spin-polarizing electron beam splitter is described that relies on an arrangement of linearly polarized laser waves of nonrelativistic intensity. An incident electron beam is first coherently scattered off a bichromatic laser field, splitting the beam into two portions, with electron spin and momentum being entangled. Afterwards, the partial beams are coherently superposed in an interferometric setup formed by standing laser waves. As a result, the outgoing electron beam is separated into its spin components along the laser magnetic field, which is shown by both analytical and numerical solutions of Pauli's equation. The proposed laser field configuration thus exerts the same effect on free electrons as an ordinary Stern-Gerlach magnet does on atoms.

  15. Spin-Polarizing Interferometric Beam Splitter for Free Electrons

    NASA Astrophysics Data System (ADS)

    Dellweg, Matthias M.; Müller, Carsten

    2017-02-01

    A spin-polarizing electron beam splitter is described that relies on an arrangement of linearly polarized laser waves of nonrelativistic intensity. An incident electron beam is first coherently scattered off a bichromatic laser field, splitting the beam into two portions, with electron spin and momentum being entangled. Afterwards, the partial beams are coherently superposed in an interferometric setup formed by standing laser waves. As a result, the outgoing electron beam is separated into its spin components along the laser magnetic field, which is shown by both analytical and numerical solutions of Pauli's equation. The proposed laser field configuration thus exerts the same effect on free electrons as an ordinary Stern-Gerlach magnet does on atoms.

  16. Electron-Muon Ranger: Performance in the MICE muon beam

    SciTech Connect

    Adams, D.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. Lastly, the EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c.

  17. Electron-Muon Ranger: Performance in the MICE muon beam

    DOE PAGES

    Adams, D.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. Lastly, the EMR also proved to be a powerful tool for the reconstruction of muon momenta inmore » the range 100–280 MeV/c.« less

  18. Electron beam characterization of a combined diode rf electron gun

    NASA Astrophysics Data System (ADS)

    Ganter, R.; Beutner, B.; Binder, S.; Braun, H. H.; Garvey, T.; Gough, C.; Hauri, C.; Ischebeck, R.; Ivkovic, S.; Le Pimpec, F.; Li, K.; Paraliev, M. L.; Pedrozzi, M.; Schietinger, T.; Steffen, B.; Trisorio, A.; Wrulich, A.

    2010-09-01

    Experimental and simulation results of an electron gun test facility, based on pulsed diode acceleration followed by a two-cell rf cavity at 1.5 GHz, are presented here. The main features of this diode-rf combination are: a high peak gradient in the diode (up to 100MV/m) obtained without breakdown conditioning, a cathode shape providing an electrostatic focusing, and an in-vacuum pulsed solenoid to focus the electron beam between the diode and the rf cavity. Although the test stand was initially developed for testing field emitter arrays cathodes, it became also interesting to explore the limits of this electron gun with metallic photocathodes illuminated by laser pulses. The ultimate goal of this test facility is to fulfill the requirements of the SwissFEL project of Paul Scherrer Institute [B. D. Patterson , New J. Phys. 12, 035012 (2010)NJOPFM1367-263010.1088/1367-2630/12/3/035012]; a projected normalized emittance below 0.4μm for a charge of 200 pC and a bunch length of less than 10 ps (rms). A normalized projected emittance of 0.23μm with 13 pC has been measured at 5 MeV using a Gaussian laser longitudinal intensity distribution on the photocathode. Good agreements with simulations have been obtained for different electron bunch charge and diode geometries. Emittance measurements at a bunch charge below 1 pC were performed for different laser spot sizes in agreement with intrinsic emittance theory [e.g. 0.54μm/mm of laser spot size (rms) for Cu at 274 nm]. Finally, a projected emittance of 1.25+/-0.2μm was measured with 200 pC and 100MV/m diode gradient.

  19. Simulating Electron Cloud Effects in Heavy-Ion Beams

    SciTech Connect

    Cohen, R.H.; Friedman, A.; Lund, S.W.; Molvik, A.W.; Azevedo, T.; Vay, J.-L.; Stoltz, P.; Veitzer, S.

    2004-08-04

    Stray electrons can be introduced in heavy ion fusion accelerators as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We summarize here results from several studies of electron-cloud accumulation and effects: (1) Calculation of the electron cloud produced by electron desorption from computed beam ion loss; the importance of ion scattering is shown; (2) Simulation of the effect of specified electron cloud distributions on ion beam dynamics. We find electron cloud variations that are resonant with the breathing mode of the beam have the biggest impact on the beam (larger than other resonant and random variations), and that the ion beam is surprisingly robust, with an electron density several percent of the beam density required to produce significant beam degradation in a 200-quadrupole system. We identify a possible instability associated with desorption and resonance with the breathing mode. (3) Preliminary investigations of a long-timestep algorithm for electron dynamics in arbitrary magnetic fields.

  20. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    SciTech Connect

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F.; Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T.; Ban, G.; Celona, L.; Lunney, D.; Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O.; Kalvas, T.; and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  1. Total skin electron therapy technique for the canine patient.

    PubMed

    Rechner, Kerensa N; Weeks, Kenneth J; Pruitt, Amy F

    2011-01-01

    Cutaneous epitheliotropic T-cell lymphoma in canine patients is a radiation sensitive tumor but total skin electron therapy is used only rarely. Our purpose was to evaluate dose distribution from a total skin electron therapy technique using 6MeV electron beams. The treatment was comprised of 12 fields, with the dog in lateral recumbency in a stride position at an extended distance from the source. Uniformity, flatness and symmetry were determined for each beam. The composite percent depth dose profile for all beams was measured in solid water phantoms and skin dose was determined on a canine cadaver using thermoluminescent dosimeters. The resulting d(max) of the composite beams was 1mm and dose variation over the skin was 6.8%, with the extremities having the most uneven dose distribution. Dimensions of the fields were adequate to obtain an effective treatment profile for the entire thickness of canine epidermis and the technique was feasible for clinical application. Individual tailoring of the protocol to deal with hot and cold spots may be necessary and set up will likely involve a significant time commitment for the therapy team.

  2. Onorbit electron beam welding experiment definition

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The proposed experiment design calls for six panels to be welded, each having unique characteristics selected to yield specific results and information. The experiment is completely automated and the concept necessitated the design of a new, miniaturized, self-contained electron beam (EB) welding system, for which purpose a separate IR and D was funded by the contractor, Martin Marietta Corporation. Since future tasks beyond the proposed experiment might call for astronauts to perform hand-held EB gun repairs or for the gun to be interfaced with a dexterous robot such as the planned flight telerobotic servicer (FTS), the EB gun is designed to be dismountable from the automated system. In the experiment design, two separate, identical sets of weld panels will be welded, one on earth in a vacuum chamber and the other onorbit in the aft cargo bay of an orbiter. Since the main objective of the experiment is to demonstrate that high quality welds can be achieved under onorbit conditions, the welds produced will be subjected to a wide range of discriminating non-destructive Q.C. procedures and destructive physical tests. However, advantage will be taken of the availability of a fairly large quantity of welded material in the two series of welded specimens to widen the circle of investigative talent by providing material to academic and scientific institutions for examination.

  3. Heat shrinkage of electron beam modified EVA

    NASA Astrophysics Data System (ADS)

    Datta, Sujit K.; Chaki, T. K.; Tikku, V. K.; Pradhan, N. K.; Bhowmick, A. K.

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%.

  4. Transverse profile of the electron beam for the RHIC electron lenses

    NASA Astrophysics Data System (ADS)

    Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; Montag, C.; Pikin, A. I.

    2015-10-01

    The transverse profile of the electron beam plays a very important role in assuring the success of the electron lens beam-beam compensation, as well as its application in space charge compensation. To compensate for the beam-beam effect in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, we recently installed and commissioned two electron lenses. In this paper, we describe, via theory and simulations using the code Parmela, the evolution of the density of the electron beam with space charge within an electron lens from the gun to the main solenoid. Our theoretical analysis shows that the change in the beam transverse density is dominated by the effects of the space charge induced longitudinal velocity reduction, not by those of transverse Coulomb collisions. We detail the transverse profile of RHIC electron-lens beam, measured via the YAG screen and pinhole detector, and also describe its profile that we assessed from the signal of the electron-backscatter detector (eBSD) via scanning the electron beam with respect to the RHIC beam. We verified, in simulations and experiments, that the distribution of the transverse electron beam is Gaussian throughout its propagation in the RHIC electron lens.

  5. IBS in a CAM-Dominated Electron Beam

    SciTech Connect

    Burov, A.; Nagaitsev, S.; Shemyakin, A.; Gusachenko, I.

    2006-03-20

    Electron cooling of the 8.9 GeV/c antiprotons in the Recycler ring requires high-quality dc electron beam with the current of several hundred mA and the kinetic energy of 4.3 MeV. That high electron current is attained through beam recirculation (charge recovery). The primary current path is from the magnetized cathode at high voltage terminal to the ground, where the electron beam interacts with the antiproton beam and cooling takes place, and then to the collector in the terminal. The energy distribution function of the electron beam at the collector determines the required collector energy acceptance. Multiple and single intra-beam scattering as well as the dissipation of density micro-fluctuations during the beam transport are studied as factors forming a core and tails of the electron energy distribution. For parameters of the Fermilab electron cooler, the single intra-beam scattering (Touschek effect) is found to be of the most importance.

  6. Experimental observation of helical microbunching of a relativistic electron beam

    SciTech Connect

    Hemsing, E.; Knyazik, A.; O'Shea, F.; Marinelli, A.; Musumeci, P.; Williams, O.; Rosenzweig, J. B.; Tochitsky, S.

    2012-02-27

    Experimental observation of the microbunching of a relativistic electron beam at the second harmonic interaction frequency of a helical undulator is presented. The microbunching signal is observed from the coherent transition radiation of the electron beam and indicates experimental evidence of a dominantly helical electron beam density distribution. This result is in agreement with theoretical and numerical predictions and provides a proof-of-principle demonstration of proposed schemes designed to generate light with orbital angular momentum in high-gain free-electron lasers.

  7. A simple model of electron beam initiated dielectric breakdown

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Daniell, R. E.; Delmer, T. N.

    1985-01-01

    A steady state model that describes the internal charge distribution of a planar dielectric sample exposed to a uniform electron beam was developed. The model includes the effects of charge deposition and ionization of the beam, separate trap-modulated mobilities for electrons and holes, electron-hole recombination, and pair production by drifting thermal electrons. If the incident beam current is greater than a certain critical value (which depends on sample thickness as well as other sample properties), the steady state solution is non-physical.

  8. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    NASA Astrophysics Data System (ADS)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-05-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  9. Total skin electron beam therapy using an inclinable couch on motorized table and a compensating filter

    SciTech Connect

    Fuse, H.; Suzuki, K.; Shida, K.; Takahashi, H.; Kobayashi, D.; Seki, M.; Mori, Y.; Sakae, T.; Isobe, T.; Okumura, T.; Sakurai, H.

    2014-06-15

    Total skin electron beam is a specialized technique that involves irradiating the entire skin from the skin surface to only a few millimetres in depth. In the Stanford technique, the patient is in a standing position and six different directional positions are used during treatment. Our technique uses large electron beams in six directions with an inclinable couch on motorized table and a compensating filter was also used to spread the electron beam and move its intensity peak. Dose uniformity measurements were performed using Gafchromic films which indicated that the surface dose was 2.04 ± 0.05 Gy. This technique can ensure the dose reproducibility because the patient is fixed in place using an inclinable couch on a motorized table.

  10. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  11. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  12. System for tomographic determination of the power distribution in electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.

    1995-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  13. System for tomographic determination of the power distribution in electron beams

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O'Brien, D.W.

    1995-01-17

    A tomographic technique is disclosed for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0[degree] to 360[degree] and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figures.

  14. System for tomographic determination of the power distribution in electron beams

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1995-11-21

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  15. Diffractive optical elements on non-flat substrates using electron beam lithography

    NASA Technical Reports Server (NTRS)

    Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Wilson, Daniel W. (Inventor)

    2002-01-01

    The present disclosure describes a technique for creating diffraction gratings on curved surfaces with electron beam lithography. The curved surface can act as an optical element to produce flat and aberration-free images in imaging spectrometers. In addition, the fabrication technique can modify the power structure of the grating orders so that there is more energy in the first order than for a typical grating. The inventors noticed that by using electron-beam lithography techniques, a variety of convex gratings that are well-suited to the requirements of imaging spectrometers can be manufactured.

  16. Virtual mask digital electron beam lithography

    DOEpatents

    Baylor, Larry R.; Thomas, Clarence E.; Voelkl, Edgar; Moore, James A.; Simpson, Michael L.; Paulus, Michael J.

    1999-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  17. Virtual mask digital electron beam lithography

    DOEpatents

    Baylor, L.R.; Thomas, C.E.; Voelkl, E.; Moore, J.A.; Simpson, M.L.; Paulus, M.J.

    1999-04-06

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made. 5 figs.

  18. New techniques in hadrontherapy: intensity modulated proton beams.

    PubMed

    Cella, L; Lomax, A; Miralbell, R

    2001-01-01

    Inverse planning and intensity modulated (IM) X-ray beam treatment techniques can achieve significant improvements in dose distributions comparable to those obtained with forward planned proton beams. However, intensity modulation can also be applied to proton beams and further optimization in dose distribution can reasonably be expected. A comparative planning exercise between IM X-rays and IM proton beams was carried out on two different tumor cases: a pediatric rhabdomyosarcoma and a prostate cancer. Both IM X-rays and IM protons achieved equally homogenous coverage of the target volume in the two tumor sites. Predicted NTCPs were equally low for both treatment techniques. Nevertheless, a reduced low-to-medium dose to the organs at risk and a lesser integral non-target mean dose for IM protons in the two cases favored the use of IM proton beams.

  19. Electrical properties of irradiated PVA film by using ion/electron beam

    NASA Astrophysics Data System (ADS)

    Abdelrahman, M. M.; Osman, M.; Hashhash, A.

    2016-02-01

    Ion/electron beam bombardment has shown great potential for improving the surface properties of polymers. Low-energy charged (ion/electron) beam irradiation of polymers is a good technique to modify properties such as electrical conductivity, structural behavior, and their mechanical properties. This paper reports on the effect of nitrogen and electron beam irradiation on the electrical properties of polyvinyl alcohol (PVA) films. PVA films of 4 mm were exposed to a charged (ion/electron) beam for different treatment times (15, 30, and 60 minutes); the beam was produced from a dual beam source using nitrogen gas with the other ion/electron source parameters optimized. The dielectric loss tangent tan δ , electrical conductivity σ , and dielectric constant ɛ ^' } in the frequency range 100 Hz-100 kHz were measured at room temperature. The variation of dielectric constant and loss tangent as a function of frequency was also studied at room temperature. The dielectric constant was found to be strongly dependent on frequency for both ion and electron beam irradiation doses. The real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the dielectric constant decreased with frequency for all irradiated and non-irradiated samples. The AC conductivity showed an increase with frequency for all samples under the influence of both ion and electron irradiation for different times. Photoluminescence (PL) spectral changes were also studied. The formation of clusters and defects (which serve as non-radiative centers on the polymer surface) is confirmed by the decrease in the PL intensity.

  20. Interfacial Properties of Electron Beam Cured Composites

    SciTech Connect

    Eberle, C.C.

    1999-12-30

    The objectives of the CRADA are to: Confirm that fiber-resin adhesion is responsible for the observed poor shear properties; Determine the mechanism(s) responsible for poor adhesion between carbon fibers and epoxy resins after e-beam curing; Develop and evaluate resin systems and fiber treatments to improve the properties of e-beam cured, carbon-fiber-reinforced composites; and Develop refined methods for processing e-beam cured, carbon-fiber-reinforced composites.

  1. Fast wire scanner for intense electron beams

    NASA Astrophysics Data System (ADS)

    Moore, T.; Agladze, N. I.; Bazarov, I. V.; Bartnik, A.; Dobbins, J.; Dunham, B.; Full, S.; Li, Y.; Liu, X.; Savino, J.; Smolenski, K.

    2014-02-01

    We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20 m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell's high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  2. Dense plasma heating by crossing relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Ratan, N.; Sircombe, N. J.; Ceurvorst, L.; Sadler, J.; Kasim, M. F.; Holloway, J.; Levy, M. C.; Trines, R.; Bingham, R.; Norreys, P. A.

    2017-01-01

    Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local heating of a dense plasma by two crossing electron beams. Heating occurs as an instability of the electron beams drives Langmuir waves, which couple nonlinearly into damped ion-acoustic waves. Simulations show a factor 2.8 increase in electron kinetic energy with a coupling efficiency of 18%. Our results support applications to the production of warm dense matter and as a driver for inertial fusion plasmas.

  3. Dense plasma heating by crossing relativistic electron beams.

    PubMed

    Ratan, N; Sircombe, N J; Ceurvorst, L; Sadler, J; Kasim, M F; Holloway, J; Levy, M C; Trines, R; Bingham, R; Norreys, P A

    2017-01-01

    Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local heating of a dense plasma by two crossing electron beams. Heating occurs as an instability of the electron beams drives Langmuir waves, which couple nonlinearly into damped ion-acoustic waves. Simulations show a factor 2.8 increase in electron kinetic energy with a coupling efficiency of 18%. Our results support applications to the production of warm dense matter and as a driver for inertial fusion plasmas.

  4. Limiting current of intense electron beams in a decelerating gap

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.

    2016-02-01

    For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.

  5. Study of a high power hydrogen beam diagnostic based on secondary electron emission

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Panasenkov, A.; Veltri, P.; Serianni, G.; Pasqualotto, R.

    2016-11-01

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  6. Applications with Intense OTR Images II: Microbunched Electron Beams

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Dejus, R. J.; Rule, D. W.

    2004-12-01

    In this second application for intense images we take advantage of the coherent enhancement of optical transition radiation (OTR) due to self-amplified spontaneous emission (SASE) free-electron laser (FEL)-induced microbunching of the beam. A much smaller number of total particles is involved, but the microbunched fraction (NB) gives a NB2 enhancement. We report measurements on the z-dependent growth of the coherent OTR (COTR) and the effects of beam size and electron beam/photon beam coalignment in the COTR interferograms.

  7. Tracking on the joint during the electron beam welding

    NASA Astrophysics Data System (ADS)

    Braverman, V.; Bogdanov, V.; Belozertsev, V.; Uspenskiy, N.

    2016-11-01

    In the article the description of device, which provides automatic positioning of electron beam relative to joint of welded parts during welding, is given. Extremum seeking based on synchronous detection of sensor signal (X-ray or secondary emission) is realized in the device. Measurements are made when beam goes out of the channel following the welding direction. The application of synchronous detection is possible due to the fact that during joint scanning with electron beam harmonics, carrying data about beam position relative to the joint appear in the joint sensor signal spectrum.

  8. Beam-induced electron modulations observed during TSS 1R

    NASA Astrophysics Data System (ADS)

    Rubin, A. G.; Burke, W. J.; Gough, M. P.; Machuzak, J. S.; Gentile, L. C.; Huang, C. Y.; Hardy, D. A.; Thompson, D. C.; Raitt, W. J.

    1999-08-01

    We report on modulations of electron fluxes at megahertz frequencies measured by the Shuttle Potential and Return Electron Experiment (SPREE) during fast pulsed electron gun (FPEG) beam experiments conducted after the tether break event of the Tethered Satellite System Reflight. Six intervals of sustained modulations were identified while FPEG emitted a 100 mA beam of 1 kev electrons. During five events the beam pitch angle αB was near 90° and the modulations were near even or odd half harmonics of the electron gyrofrequency fce. In the sixth event with 60°>=αB>=45°, electron modulations were near estimated values of the electron plasma frequency fpe and 2fpe. Whenever SPREE detected beam electrons modulated at a given frequency, secondary electrons were also modulated at the same frequency over a broad range of energies. Occasionally, some secondary electrons were modulated simultaneously at a second frequency. Multiple frequencies were related as ratios of low integers. In one case the beam electrons were simultaneously modulated at 0.8 MHz and 1.25 kHz. SPREE measurements suggest that the beam electrons propagate in cylindrical shells whose inner edge is marked by steep spatial gradients in fluxes at 1 keV [Hardy et al., 1995]. Inside the shell, electron distribution functions have positive slopes ∂f/∂v⊥>0 at velocities near that of the beam. Velocity space gradients act as free-energy sources to drive cavity modes that alter the instantaneous guiding centers of electrons causing SPREE to sample alternating parts of the beam cylinder's inner edge. Associated time-varying electric fields also modulated the fluxes of secondary electrons reaching SPREE. Other cavity modes may be excited through nonlinear processes [Calvert, 1982]. With αB far from 90°, electrons in the beam cylinder evolved toward bump-on-tail distributions to excite large-amplitude Langmuir modulations at fpe and its harmonics [Klimas, 1983]. Low-frequency modulations are attributed

  9. EFFECT OF SOLENOID FIELD ERRORS ON ELECTRON BEAM TEMPERATURES IN THE RHIC ELECTRON COOLER.

    SciTech Connect

    MONTAG,C.KEWISCH,J.

    2003-05-12

    As part of a future upgrade to the Relativistic Heavy Ion Collider (RHIC), electron cooling is foreseen to decrease ion beam emittances. Within the electron cooling section, the ''hot'' ion beam is immersed in a ''cold'' electron beam. The cooling effect is further enhanced by a solenoid field in the cooling section, which forces the electrons to spiral around the field lines with a (Larmor) radius of 10 micrometers, reducing the effective transverse temperature by orders of magnitude. Studies of the effect of solenoid field errors on electron beam temperatures are reported.

  10. Electron Beam Freeform Fabrication: A Rapid Metal Deposition Process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Hafley, Robert A.

    2003-01-01

    Manufacturing of structural metal parts directly from computer aided design (CAD) data has been investigated by numerous researchers over the past decade. Researchers at NASA Langley REsearch Center are developing a new solid freeform fabrication process, electron beam freeform fabrication (EBF), as a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Thus far, this technique has been demonstrated on aluminum and titanium alloys of interest for aerospace structural applications nickel and ferrous based alloys are also planned. Deposits resulting from 2219 aluminum demonstrations have exhibited a range of grain morphologies depending upon the deposition parameters. These materials ave exhibited excellent tensile properties comparable to typical handbook data for wrought plate product after post-processing heat treatments. The EBF process is capable of bulk metal deposition at deposition rated in excess of 2500 cubic centimeters per hour (150 cubic inches per our) or finer detail at lower deposition rates, depending upon the desired application. This process offers the potential for rapidly adding structural details to simpler cast or forged structures rather than the conventional approach of machining large volumes of chips to produce a monolithic metallic structure. Selective addition of metal onto simpler blanks of material can have a significant effect on lead time reduction and lower material and machining costs.

  11. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.

    2011-05-15

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches {approx}5 Multiplication-Sign 10{sup 10} are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU{sub m}, where U{sub m} is the maximum gap voltage, is relatively small.

  12. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  13. DEVELOPMENT OF SHORT UNDULATORS FOR ELECTRON-BEAM-RADIATION INTERACTION STUDIES

    SciTech Connect

    Piot, P.; Andorf, M. B.; Fagerberg, G.; Figora, M.; Sturtz, A.

    2016-10-19

    Interaction of an electron beam with external field or its own radiation has widespread applications ranging from coherent-radiation generation, phase space cooling or formation of temporally-structured beams. An efficient coupling mechanism between an electron beam and radiation field relies on the use of a magnetic undulator. In this contribution we detail our plans to build short (11-period) undulators with 7-cm period refurbishing parts of the aladdin U3 undulator [1]. Possible use of these undulators at available test facilities to support experiments relevant to cooling techniques and radiation sources are outlined.

  14. 130 kV High-Resolution Electron Beam Lithography System for Sub-10-nm Nanofabrication

    NASA Astrophysics Data System (ADS)

    Okino, Teruaki; Kuba, Yukio; Shibata, Masahiro; Ohyi, Hideyuki

    2013-06-01

    An electron beam lithography (EBL) system, CABL-UH, with a 130 kV high acceleration voltage has been developed that succeeded in minimizing beam size by minimizing Coulomb blur. This system has a short single-stage electron beam (EB) gun with an alignment function of two extractor centers to minimize Coulomb blur. This gun has also succeeded in thoroughly avoiding microdischarges. By adopting this EB gun and many other techniques, high resolution and long-term high stability have been achieved and an extremely fine pattern (4 nm line) has been delineated.

  15. Focused ion beam scanning electron microscopy in biology.

    PubMed

    Kizilyaprak, C; Daraspe, J; Humbel, B M

    2014-06-01

    Since the end of the last millennium, the focused ion beam scanning electron microscopy (FIB-SEM) has progressively found use in biological research. This instrument is a scanning electron microscope (SEM) with an attached gallium ion column and the 2 beams, electrons and ions (FIB) are focused on one coincident point. The main application is the acquisition of three-dimensional data, FIB-SEM tomography. With the ion beam, some nanometres of the surface are removed and the remaining block-face is imaged with the electron beam in a repetitive manner. The instrument can also be used to cut open biological structures to get access to internal structures or to prepare thin lamella for imaging by (cryo-) transmission electron microscopy. Here, we will present an overview of the development of FIB-SEM and discuss a few points about sample preparation and imaging.

  16. Single-shot divergence measurements of a laser-generated relativistic electron beam

    SciTech Connect

    Perez, F.; Baton, S. D.; Koenig, M.; Chen, C. D.; Hey, D.; Key, M. H.; Le Pape, S.; Ma, T.; McLean, H. S.; MacPhee, A. G.; Patel, P. K.; Ping, Y.; Beg, F. N.; Higginson, D. P.; Murphy, C. W.; Sawada, H.; Westover, B.; Yabuuchi, T.; Akli, K. U.; Giraldez, E.

    2010-11-15

    The relativistic electron transport induced by an ultraintense picosecond laser is experimentally investigated using an x-ray two-dimensional imaging system. Previous studies of the electron beam divergence [R. B. Stephens et al. Phys. Rev. E 69, 066414 (2004), for instance] were based on an x-ray imaging of a fluorescence layer buried at different depths in the target along the propagation axis. This technique required several shots to be able to deduce the divergence of the beam. Other experiments produced single-shot images in a one-dimensional geometry. The present paper describes a new target design producing a single-shot, two-dimensional image of the electrons propagating in the target. Several characteristics of the electron beam are extracted and discussed and Monte Carlo simulations provide a good understanding of the observed beam shape. The proposed design has proven to be efficient, reliable, and promising for further similar studies.

  17. An Electron-Beam Profile Monitor Using Fresnel Zone Plates

    SciTech Connect

    Nakamura, Norio; Sakai, Hiroshi; Iida, Kensuke; Shinoe, Kenji; Takaki, Hiroyuki; Fujisawa, Masami; Hayano, Hitoshi; Muto, Toshiya; Nomura, Masaharu; Kamiya, Yukihide; Koseki, Tadashi; Amemiya, Yoshiyuki; Aoki, Nobutada; Nakayama, Koichi

    2004-05-12

    We have developed a beam profile monitor using two Fresnel zone plates (FZPs) at the KEK-ATF (Accelerator Test Facility) damping ring to measure small electron-beam sizes for low-emittance synchrotron radiation sources. The monitor has a structure of an X-ray microscope, where two FZPs constitute an X-ray imaging optics. In the monitor system, the synchrotron radiation from the electron beam at the bending magnet is monochromatized to 3.235-keV X-rays by a crystal monochromator and the transverse electron-beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. This monitor has the following advantages: (1) high spatial resolution, (2) non-destructive measurement, (3) real-time monitoring, and (4) direct electron-beam imaging. With the beam profile monitor, we have succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 {mu}m. The measured magnification of the imaging optics was in good agreement with the design value.

  18. Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster

    SciTech Connect

    Zhang, Zun; Tang, Haibin Kong, Mengdi; Zhang, Zhe; Ren, Junxue

    2015-02-15

    Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic “poly-tropic law” is more appropriate than the isothermal “barometric law” to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the “poly-tropic law” are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3.

  19. Nonlinear longitudinal space charge oscillations in relativistic electron beams.

    PubMed

    Musumeci, P; Li, R K; Marinelli, A

    2011-05-06

    In this Letter we study the evolution of an initial periodic modulation in the temporal profile of a relativistic electron beam under the effect of longitudinal space-charge forces. Linear theory predicts a periodic exchange of the modulation between the density and the energy profiles at the beam plasma frequency. For large enough initial modulations, wave breaking occurs after 1/2 period of plasma oscillation leading to the formation of short current spikes. We confirm this effect by direct measurements on a ps-modulated electron beam from an rf photoinjector. These results are useful for the generation of intense electron pulse trains for advanced accelerator applications.

  20. Nonlinear Longitudinal Space Charge Oscillations in Relativistic Electron Beams

    SciTech Connect

    Musumeci, P.; Li, R. K.; Marinelli, A.

    2011-05-06

    In this Letter we study the evolution of an initial periodic modulation in the temporal profile of a relativistic electron beam under the effect of longitudinal space-charge forces. Linear theory predicts a periodic exchange of the modulation between the density and the energy profiles at the beam plasma frequency. For large enough initial modulations, wave breaking occurs after 1/2 period of plasma oscillation leading to the formation of short current spikes. We confirm this effect by direct measurements on a ps-modulated electron beam from an rf photoinjector. These results are useful for the generation of intense electron pulse trains for advanced accelerator applications.

  1. Economics of electron beam accelerator facilities: Concept vs actual

    NASA Astrophysics Data System (ADS)

    Minbiole, Paul R.

    1995-02-01

    Electron beam accelerator facilities continue to demonstrate their ability to "add value" to a wide range of industrial products. The power, energy, and reliability of commercially available accelerators have increased steadily over the past several decades. The high throughput potential of modern electron beam facilities, together with the broad spectrum of commercial applications, result in the concept that an electron beam facility is an effective tool for adding economic value to industrial products. However, the high capital costs of such a facility (including hidden costs), together with practical limitations to high throughput (including several layers of inefficiencies), result in profit-and-loss economics which are more tenuous than expected after first analysis.

  2. Separating the Spin States of a Free Electron Beam

    NASA Astrophysics Data System (ADS)

    Rifkin, Neil

    2008-10-01

    In 1922 Otto Stern and Walther Gerlach set out to test the spacial quantization of the electron by passing a beam of neutral silver atoms through a transverse magnetic field. The interaction of the two projections of the electron's magnetic moment with the magnetic field resulted in a splitting of the beam. However, for some sixty years it was generally accepted that the spin of free electrons, and thus their magnetic moment, could not be measured with an experiment similar to that of Stern and Gerlach. The reason being that the lorentz force on charged particles is far greater than the force due to the magnetic moment of the electron, thus blurring any desired results. To reduce the lorentz force, the electrons could be passed through a magnetic field whose gradient is in the direction of the electrons' momentum. This longitudinal Stern-Gerlach device, with a superconducting magnet, could polarize the tails of a low energy electron beam.

  3. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  4. A compact, versatile low-energy electron beam ion source.

    PubMed

    Zschornack, G; König, J; Schmidt, M; Thorn, A

    2014-02-01

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  5. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  6. The use of electron beams for pasteurization of meats

    SciTech Connect

    Prestwich, K.R.; Kaye, R.J.; Turman, B.N.; Neau, E.L.

    1994-12-01

    Electron beam accelerators can be used for electronic pasteurization of meat products by: (1) using the electrons directly impacting the products, or (2) optimizing the conversion of electron energy to x-rays and treating the product with these x-rays. The choice of process depends on the configuration of the product when it is treated. For electron treatment, ten million electron volt (MeV) kinetic energy is the maximum allowed by international agreement. The depth of penetration of electrons with that energy into a product with density of meat is about five centimeters (cm). Two-sided treatment can be done on products up to 10 cm thick with a two-to-one ratio between minimum and maximum dose. Ground beef patties are about 1.25 cm (0.5 inch thick). Beams with 2.5 MeV electron energy could be used to treat these products. Our calculations show that maximum to minimum dose ratios less than 1.2 can be achieved with this energy if the transverse beam energy is small. If the product thickness is greater than 10 cm, x-rays can provide the needed dose uniformity. Uniform doses can be supplied for pallets with dimensions greater than 1.2 m on each side using x-rays from a 5 MeV electron beam. The efficiency of converting the electron beam to x-rays and configurations to achieve dose uniformity are discussed.

  7. How an Electron Beam (Eventually) Penetrates Ceramic Cloth

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Russell, C. K.; Zimmerman, F. R.; Fragomeni, J. M.

    1999-01-01

    In anticipation of the International Space Welding Experiment (ISWE) the effect of an electron beam was investigated on Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. It was anticipated that the cloth would take a static charge that would repel the beam and remain undamaged. It was found that after some seconds the impinging beam penetrated penetrated the cloth. Further, the penetration time went up significantly both at longer and at closer standoff distances. A tentative explanation appears to fit the observed facts. The electrons in the beam generate positive ions by collisions with the contaminant gas molecules in the vacuum chamber. The positive ions transfer a small but significant fraction of the beam power to the cloth. Under the impingement of the positive ions the cloth heats up until sufficient outgassing occurs to initiate arcing. Once arcing occurs the full beam power impinges on the cloth and, almost instantaneously, burns a hole.

  8. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    DOEpatents

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  9. Electron beam injection experiments - Replication of flight observations in a laboratory beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Bernstein, W.; Mcgarity, J. O.; Konradi, A.

    1983-01-01

    Recent electron beam injection experiments in the lower ionosphere have produced two perplexing results: (1) At altitudes from 140 km to 220 km, the beam associated 391.4 nm intensity is relatively independent of altitude despite the decreasing N2 abundance. (2) The radial extent of the perturbed region populated by beam associated energetic electrons significantly exceeds the nominal gyrodiameter for 90 deg injection. A series of laboratory measurements is described in which both of these flight results appear to have been closely reproduced. The laboratory results are reasonably consistent with the transition from a collision dominated to collisionless beam-plasma discharge configuration.

  10. Advanced accelerating structures and their interaction with electron beams.

    SciTech Connect

    Gai, W.; High Energy Physics

    2008-01-01

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  11. Advanced Accelerating Structures and Their Interaction with Electron Beams

    SciTech Connect

    Gai Wei

    2009-01-22

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  12. Intraoperative electron beam irradiation for patients with unresectable pancreatic carcinoma

    SciTech Connect

    Shipley, W.U.; Wood, W.C.; Tepper, J.E.; Warshaw, A.L.; Orlow, E.L.; Kaufman, S.D.; Battit, G.E.; Nardi, G.L.

    1984-09-01

    Since 1978 we have used electron beam intraoperative radiation therapy (IORT) to deliver higher radiation doses to pancreatic tumors than are possible with external beam techniques while minimizing the dose to the surrounding normal tissues. Twenty-nine patients with localized, unresectable, pancreatic carcinoma were treated by electron beam IORT in combination with conventional external radiation therapy (XRT). The primary tumor was located in the head of the pancreas in 20 patients, in the head and body in six patients, and in the body and tail in three. Adjuvant chemotherapy was given in 23 of the 29 patients. The last 13 patients have received misonidazole (3.5 mg/M2) just prior to IORT (20 Gy). At present 14 patients are alive and 11 are without evidence of disease from 3 to 41 months after IORT. The median survival is 16.5 months. Eight patients have failed locally in the IORT field and two others failed regionally. Twelve patients have developed distant metastases, including five who failed locally or regionally. We have seen no local recurrences in the 12 patients who have been treated with misonidazole and have completed IORT and XRT while 10 of 15 patients treated without misonidazole have recurred locally. Because of the shorter follow-up in the misonidazole group, this apparent improvement is not statistically significant. Fifteen patients (52%) have not had pain following treatment and 22 (76%) have had no upper gastrointestinal or biliary obstruction subsequent to their initial surgical bypasses and radiation treatments. Based on the good palliation generally obtained, the 16.5-month median survival, and the possible added benefit from misonidazole, we are encouraged to continue this approach.

  13. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  14. Double deflection system for an electron beam device

    DOEpatents

    Parker, Norman W.; Golladay, Steven D.; Crewe, Albert V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations.

  15. Collective microdynamics and noise suppression in dispersive electron beam transport

    SciTech Connect

    Gover, Avraham; Dyunin, Egor; Duchovni, Tamir; Nause, Ariel

    2011-12-15

    A general formulation is presented for deep collective interaction micro-dynamics in dispersive e-beam transport. In the regime of transversely coherent interaction, the formulation is applicable to both coherent and random temporal modulation of the electron beam. We demonstrate its use for determining the conditions for suppressing beam current noise below the classical shot-noise level by means of transport through a dispersive section with a small momentum compaction parameter.

  16. Pulsed Electric Discharge Laser Technology. Electron Beam Window Foil Material.

    DTIC Science & Technology

    1984-01-01

    6.0 INTERFEROMETRIC MEASUREMENT OF FOIL MOVEMENT A simple Michelson interferometer was used to measure foil movement on the test rig. Because the...TURNING BEAM MIRRORS BEAM DISPLAYFOCUEED IRIS AT FOOS. OPTICAL FIBRE * BUNDLE Figure 49. Schematic of interferometer . -98-7 reflected speckle. The...As a check on the pulse simulation, the actual movement of an electron-beam foil window was measured by interferometry. A speckle interferometer which

  17. Structured electron beams from nano-engineered cathodes

    NASA Astrophysics Data System (ADS)

    Lueangaramwong, A.; Mihalcea, D.; Andonian, G.; Piot, P.

    2017-03-01

    The ability to engineer cathodes at the nano-scale have opened new possibilities such as enhancing quantum efficiency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper, we present numerical investigations of the beam dynamics associated with this class of cathode in the weak- and strong-field regimes. We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  18. Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider

    SciTech Connect

    Wang, S.; Cai, Y.; /SLAC

    2006-02-10

    It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account. The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.

  19. Electron beam inactivation of Tulane virus on fresh produce, and mechanism of inactivation of human norovirus surrogates by electron beam irradiation.

    PubMed

    Predmore, Ashley; Sanglay, Gabriel C; DiCaprio, Erin; Li, Jianrong; Uribe, R M; Lee, Ken

    2015-04-02

    Ionizing radiation, whether by electron beams or gamma rays, is a non-thermal processing technique used to improve the microbial safety and shelf-life of many different food products. This technology is highly effective against bacterial pathogens, but data on its effect against foodborne viruses is limited. A mechanism of viral inactivation has been proposed with gamma irradiation, but no published study discloses a mechanism for electron beam (e-beam). This study had three distinct goals: 1) evaluate the sensitivity of a human norovirus surrogate, Tulane virus (TV), to e-beam irradiation in foods, 2) compare the difference in sensitivity of TV and murine norovirus (MNV-1) to e-beam irradiation, and 3) determine the mechanism of inactivation of these two viruses by e-beam irradiation. TV was reduced from 7 log10 units to undetectable levels at target doses of 16 kGy or higher in two food matrices (strawberries and lettuce). MNV-1 was more resistant to e-beam treatment than TV. At target doses of 4 kGy, e-beam provided a 1.6 and 1.2 log reduction of MNV-1 in phosphate buffered saline (PBS) and Dulbecco's Modified Eagle Medium (DMEM), compared to a 1.5 and 1.8 log reduction of TV in PBS and Opti-MEM, respectively. Transmission electron microscopy revealed that increased e-beam doses negatively affected the structure of both viruses. Analysis of viral proteins by SDS-PAGE found that irradiation also degraded viral proteins. Using RT-PCR, irradiation was shown to degrade viral genomic RNA. This suggests that the mechanism of inactivation of e-beam was likely the same as gamma irradiation as the damage to viral constituents led to inactivation.

  20. Prebunched-beam free electron maser

    NASA Astrophysics Data System (ADS)

    Arbel, M.; Ben-Chaim, D.; Cohen, M.; Draznin, M.; Eichenbaum, A.; Gover, Abraham; Kleinman, H.; Kugel, A.; Pinhasi, Yosef; Witman, S.; Yakover, Y. M.

    1994-05-01

    The development status of a prebunched FEM is described. We are developing a 70 KeV FEM to allow high gain wideband operation and to enable variation of the degree of prebunching. We intend to investigate its operation as an amplifier and as an oscillator. Effects of prebunching, frequency variation, linear and nonlinear effects, will be investigated. The prebuncher consists of a Pierce e-gun followed by a beam modulating section. The prebunched beam is accelerated to 70 KeV and injected into a planar wiggler containing a waveguide. The results obtained to date will be presented. These include: characterization of the e-gun, e-beam transport to and through the wiggler, use of field modifying permanent magnets near the entrance and along the wiggler to obtain good e-beam transport through the wiggler, waveguide selection and characterization.

  1. Isotope separation using tuned laser and electron beam

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor (Inventor)

    1987-01-01

    The apparatus comprises means for producing an atomic beam containing the isotope of interest and other isotopes. Means are provided for producing a magnetic field traversing the path of the atomic beam of an intensity sufficient to broaden the energy domain of the various individual magnetic sublevels of the isotope of interest and having the atomic beam passing therethrough. A laser beam is produced of a frequency and polarization selected to maximize the activation of only individual magnetic sublevels of the isotope of interest with the portion of its broadened energy domain most removed from other isotopes with the stream. The laser beam is directed so as to strike the atomic beam within the magnetic field and traverse the path of the atomic beam whereby only the isotope of interest is activated by the laser beam. The apparatus further includes means for producing a collimated and high intensity beam of electrons of narrow energy distribution within the magnetic field which is aimed so as to strike the atomic beam while the atomic beam is simultaneously struck by the laser beam and at an energy level selected to ionize the activated isotope of interest but not ground state species included therewith. Deflection means are disposed in the usual manner to collect the ions.

  2. New fast beam profile monitor for electron-positron colliders

    SciTech Connect

    Bogomyagkov, A. V.; Gurko, V. F.; Zhuravlev, A. N.; Zubarev, P. V.; Kiselev, V. A.; Meshkov, O. I.; Muchnoi, N. Yu.; Selivanov, A. N.; Smaluk, V. V.; Khilchenko, A. D.

    2007-04-15

    A new fast beam profile monitor has been developed at the Budker Institute of Nuclear Physics. This monitor is based on the Hamamatsu multianode photomultiplier with 16 anode strips and provides turn-by-turn measurement of the transverse beam profile. The device is equipped with an internal memory, which has enough capacity to store 131 072 samples of the beam profile. The dynamic range of the beam profile monitor allows us to study turn-by-turn beam dynamics within the bunch charge range from 1 pC up to 10 nC. Using this instrument, we have investigated at the VEPP-4M electron-positron collider a number of beam dynamics effects which cannot be observed by other beam diagnostics tools.

  3. Electron-beam lithography for micro and nano-optical applications

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W.; Muller, Richard E.; Echternach, Pierre M.

    2005-01-01

    Direct-write electron-beam lithography has proven to be a powerful technique for fabricating a variety of micro- and nano-optical devices. Binary E-beam lithography is the workhorse technique for fabricating optical devices that require complicated precision nano-scale features. We describe a bi-layer resist system and virtual-mark height measurement for improving the reliability of fabricating binary patterns. Analog E-beam lithography is a newer technique that has found significant application in the fabrication of diffractive optical elements. We describe our techniques for fabricating analog surface-relief profiles in E-beam resist, including some discussion regarding overcoming the problems of resist heating and charging. We also describe a multiple-field-size exposure scheme for suppression of field-stitch induced ghost diffraction orders produced by blazed diffraction gratings on non-flat substrates.

  4. Beam acceleration by plasma-loaded free-electron devices

    NASA Astrophysics Data System (ADS)

    Tsui, K. H.; Serbeto, A.; D'olival, J. B.

    1998-01-01

    The use of a plasma-filled wiggler free-electron laser device operating near the plasma cutoff to accelerate electron beams is examined. Near the cutoff, the group velocity of the microwave field in the plasma is much less than the beam velocity. This scheme, therefore, operates in the pulse mode to accelerate electron beam bunches much shorter than the wiggler length. Between one bunch and the other, the wiggler is reloaded with microwave field. During the loading period, the laser-wiggler-plasma (SWL) Raman interaction generates a Langmuir mode with the laser and the wiggler as the primary energy sources. When the wiggler plasma is fully loaded with microwave field, a short electron bunch is fired into the device. In this accelerating period, the Langmuir mode is coupled to the laser-wiggler-beam (SWB) free-electron-laser interaction. The condition that the Langmuir phase velocity matches the free-electron-laser resonant beam velocity assures the simultaneous interaction of the SWL and SWB parametric processes. Beam acceleration is accomplished fundamentally via the space charge field of the Langmuir mode and the electron phase in the ponderomotive potential. Linear energy gain regime is accomplished when the phase velocity of the Langmuir mode is exactly equal to the speed of light.

  5. Normal modes and mode transformation of pure electron vortex beams

    NASA Astrophysics Data System (ADS)

    Thirunavukkarasu, G.; Mousley, M.; Babiker, M.; Yuan, J.

    2017-02-01

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams. This article is part of the themed issue 'Optical orbital angular momentum'.

  6. Electron acoustic solitary waves in a magnetized plasma with nonthermal electrons and an electron beam

    NASA Astrophysics Data System (ADS)

    Singh, S. V.; Devanandhan, S.; Lakhina, G. S.; Bharuthram, R.

    2016-08-01

    A theoretical investigation is carried out to study the obliquely propagating electron acoustic solitary waves having nonthermal hot electrons, cold and beam electrons, and ions in a magnetized plasma. We have employed reductive perturbation theory to derive the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing the nonlinear evolution of these waves. The two-dimensional plane wave solution of KdV-ZK equation is analyzed to study the effects of nonthermal and beam electrons on the characteristics of the solitons. Theoretical results predict negative potential solitary structures. We emphasize that the inclusion of finite temperature effects reduces the soliton amplitudes and the width of the solitons increases by an increase in the obliquity of the wave propagation. The numerical analysis is presented for the parameters corresponding to the observations of "burst a" event by Viking satellite on the auroral field lines.

  7. Proton-beam technique dates fine wine

    NASA Astrophysics Data System (ADS)

    Dumé, Belle

    2008-10-01

    Nuclear physicists in France have invented a way to authenticate the vintage of rare wine without needing a sommelier's keen nose or even a corkscrew. The technique, which involves firing high-energy protons at wine bottles, can determine how old the bottles are and even where they come from. The new method could help unmask counterfeit wines - a growing problem in the fine-wine industry, where a bottle can sell for thousands of Euros.

  8. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  9. A Gridded Electron Gun for a Sheet Beam Klystron

    SciTech Connect

    Read, M.E.; Miram, G.; Ives, R.L.; Ivanov, V.; Krasnykh, A.; /SLAC

    2008-04-25

    This paper describes the development of an electron gun for a sheet beam klystron. Initially intended for accelerator applications, the gun can operate at a higher perveance than one with a cylindrically symmetric beam. Results of 2D and 3D simulations are discussed.

  10. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  11. Inactivation kinetics of Escherichia coli by pulsed electron beam.

    PubMed

    Chalise, P R; Hotta, E; Matak, K E; Jaczynski, J

    2007-09-01

    A novel and compact low-energy (keV) high-power pulsed electron beam (e-beam) that utilizes a secondary emission electron gun (SEEG) was designed and constructed. Escherichia coli JM 109 at a concentration of 10(6) CFU/mL was spread-plated on Luria-Bertani (LB) medium and subjected to the SEEG e-beam. The e-beam was administered as 1 or 5 pulses. The duration of a single pulse was constant at 5 micros, e-beam current density was constant at 25 mA/cm2, and e-beam energy varied between 60 and 82.5 keV. Following treatment with the SEEG e-beam, survivors of the irradiated E. coli samples were enumerated by a standard 10-fold dilution and spread-plated. The survivor curves were plotted on logarithmic scale as a function of e-beam dose. The D10-values were calculated as a negative reciprocal of the slope of the survivor curves. The D10-values for E. coli inactivated with 1- and 5-pulse SEEG e-beam were 0.0026 and 0.0217 Gy, respectively. These D10-values were considerably lower than published D10-values for E. coli inactivated with conventional high-energy continuous e-beam, likely due to shorter exposure time (t), greater current density (J), and a pulse mode of the SEEG e-beam. The SEEG e-beam showed promising results for microbial inactivation in a nonthermal manner; however, due to low energy of the SEEG e-beam, current applications are limited to surface decontamination. The SEEG e-beam may be an efficient processing step for surface inactivation of food-borne pathogens on ready-to-eat products, including fresh and leafy vegetables.

  12. Characterisation of the properties of a negative hydrogen ion beam by several beam diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Maurizio, R.; Fantz, U.; Bonomo, F.; Serianni, G.

    2016-06-01

    The beam properties of the BATMAN negative ion source, which is the prototype of one module of the source for the ITER neutral beam injection system, are characterised by means of three diagnostic techniques: beam emission spectroscopy (BES), the experimental calorimeter mini-STRIKE and a copper calorimeter. The main beam parameters—beam divergence, homogeneity and top-bottom asymmetries—are studied in different operational scenarios: with different magnetic filter field setups, source settings and with different gases (hydrogen or deuterium). Among all dependences, the influence of the magnetic field configuration on the beam and the evolution of the beam features during some conditioning days are investigated in detail. Data show that the stronger the filter field in the beam region, the higher the beam top-bottom asymmetry—likely a v× B effect. During the conditioning of the source, such vertical beam asymmetry increases as well, suggesting an inhomogeneous H -production at the first grid of the extraction system.

  13. Electron Beam Freeform Fabrication in the Space Environment

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.

    2007-01-01

    This viewgraph presentation describes the effect of microgravity on the fabrication of electron beam freeform (EBF) in aerospace environments. The contents include: 1) Electron Beam Freeform Fabrication (EBF3) Process Description; 2) Portable Electron Beam Freeform Fabrication System at NASA LaRC; 3) Electron Beam Freeform Fabrication in the Space Environment; 4) Effect of Gravity on Surface Tension; 5) Effect of Deposit Height on Cooling Path; 6) Microgravity Testing Aboard JSC's C-9; 7) Typical Test Flight Plates; 8) Direction and Height Trials for Process Control; 9) Effect of Wire Entry Direction into Molten Pool; 10) Microstructure of Single Layer EBF Deposits; 11) 0-g Deposit with Incorrect Standoff Distance; 12) Successful Demonstration of EBF in 0-g; and 13) Conclusion.

  14. Use of an Electron Beam for Stochastic Cooling

    SciTech Connect

    Yaroslave Derbenev

    2007-09-10

    Microwave instability of an electron beam can be used for a multiple increase in the collective response for the perturbation caused by a particle of a co-moving ion beam, i.e. for enhancement of friction force in electron cooling method. The low scale (hundreds GHz and higher frequency range) space charge or FEL type instabilities can be produced (depending on conditions) by introducing an alternating magnetic fields along the electron beam path. Beams’ optics and noise conditioning for obtaining a maximal cooling effect and related limitations will be discussed. The method promises to increase by a few orders of magnitude the cooling rate for heavy particle beams with a large emittance for a wide energy range with respect to either electron and conventional stochastic cooling.

  15. Commercial applications of electron beam advanced oxidation technology

    NASA Astrophysics Data System (ADS)

    Curry, Randy D.; Bosma, John T.

    1995-03-01

    Emerging commercial applications of electron-beam advanced oxidation technology offer a significant advancement in the treatment of waste steams. Both electron beam and X-ray (Brehmsstrahlung) advanced oxidation processes have been shown to be effective in the destruction of volatile and semivolatile organic compounds. Emerging commercial applications, however, far exceed in scope current applications of oxidation technologies for the destruction of simple semivolatile and volatile organic compounds in water. Emerging applications include direct treatment of contaminated soil, removal of metal ions from water and sterilization of water, sludges, and food. Application of electron beam advanced oxidation technologies are reviewed, along with electron- beam-generated X-ray (Brehmsstrahlung) advanced oxidation processes. Advantages of each technology are discussed along with advanced accelerator technologies which are applicable for commercial processing of waste streams. An overview of the U.S. companies and laboratories participating in this research area are included in this discussion.

  16. Inductive voltage adder (IVA) for submillimeter radius electron beam

    SciTech Connect

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    1996-12-31

    The authors have already demonstrated the utility of inductive voltage adder accelerators for production of small-size electron beams. In this approach, the inductive voltage adder drives a magnetically immersed foilless diode to produce high-energy (10--20 MeV), high-brightness pencil electron beams. This concept was first demonstrated with the successful experiments which converted the linear induction accelerator RADLAC II into an IVA fitted with a small 1-cm radius cathode magnetically immersed foilless diode (RADLAC II/SMILE). They present here first validations of extending this idea to mm-scale electron beams using the SABRE and HERMES-III inductive voltage adders as test beds. The SABRE experiments are already completed and have produced 30-kA, 9-MeV electron beams with envelope diameter of 1.5-mm FWHM. The HERMES-III experiments are currently underway.

  17. Electron Beam Pattern Writer For X-Ray Masks

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Wilson, A. D.; Lafuente, J.; Voelker, H.; Kern, A.

    1984-03-01

    This paper discusses the capabilities of a vector scan electron-beam system as an X-ray mask writer for pattern geometries at and below one-half micron. The noise level in the deflection system has been reduced to an RMS value of 150 A over a 0.5 mm deflection field, thus making our exposure system usable in the one-quarter micron regime. Pattern geometries below 2000 A have been fabricated on a thin membrane. Drift compensation techniques, implemented in software, have reduced placement errors over the entire mask to less than 700 A. Accomplishments in the areas of noise reduction, bandwidth error compensation, system resolution, and improvements in pattern placement accuracy are discussed.

  18. Resonant excitation of whistler waves by a helical electron beam

    NASA Astrophysics Data System (ADS)

    An, X.; Van Compernolle, B.; Bortnik, J.; Thorne, R. M.; Chen, L.; Li, W.

    2016-03-01

    Chorus-like whistler mode waves that are known to play a fundamental role in driving radiation belt dynamics are excited on the Large Plasma Device by the injection of a helical electron beam into a cold plasma. The mode structure of the excited whistler wave is identified using a phase correlation technique showing that the waves are excited through a combination of Landau resonance, cyclotron resonance, and anomalous cyclotron resonance. The dominant wave mode excited through cyclotron resonance is quasi-parallel propagating, whereas wave modes excited through Landau resonance and anomalous cyclotron resonance propagate at oblique angles that are close to the resonance cone. An analysis of the linear wave growth rates captures the major observations in the experiment. The results have important implications for the generation process of whistler waves in the Earth's inner magnetosphere.

  19. Production of a sub-10 fs electron beam with 107 electrons

    NASA Astrophysics Data System (ADS)

    Han, Jang-Hui

    2011-05-01

    We study the possibility to produce a 1.6 pC electron beam (107 electrons) with a bunch length of less than 10 fs and a beam energy of a few MeV. Such a short, relativistic beam will be useful for an electron diffraction experiment with a 10 fs time resolution. An electron beam with 107 electrons will allow a single-shot experiment with a laser pulse pump and an electron beam probe. In this design, an S-band photocathode gun is used for generating and accelerating a beam and a buncher consisting of two S-band four-cell cavities is used for temporally compressing the beam. Focusing solenoids control the beam transverse divergence and size at the sample. Numerical optimization is carried out to achieve a beam with a 4 fs full-width-at-half-maximum length, a 26 microradian root-mean-square divergence, and a 2 nm transverse coherence length at a 3.24 MeV beam energy. When state-of-the-art rf stability is considered, beam arrival time jitter at the sample is calculated to be about 10 fs.

  20. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC

    SciTech Connect

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-04-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields.

  1. Optical beam forming techniques for phased array antennas

    NASA Astrophysics Data System (ADS)

    Wu, Te-Kao; Chandler, C.

    Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid

  2. Optical beam forming techniques for phased array antennas

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Chandler, C.

    1993-01-01

    Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid

  3. Electron Cloud Effects in Intense, Ion Beam Linacs Theory and Experimental Planning for HIF

    SciTech Connect

    Molvik, A W; Cohen, R H; Lund, S M; Bieniosek, F M; Lee, E P; Prost, L R; Seidl, P A; Vay, P-A

    2002-05-23

    Heavy-ion accelerators for heavy-ion inertial fusion energy (HIF) will operate at high aperture-fill factors with high beam current and long durations. (Injected currents of order 1 A and 20 {micro}s at a few MeV for each of {approx}100 beams, will be compressed to the order of 100 A and 0.2 {micro}s, reaching GeV energies in a power plant driver.) This will be accompanied by beam ions impacting walls, liberating gas molecules and secondary electrons. Without special preparation, the {approx}10% electron population predicted for driver-scale experiments will affect beam transport; but wall conditioning and other mitigation techniques should result in substantial reduction. Theory and particle-in-cell simulations suggest that electrons, from ionization of residual and desorbed gas and secondary electrons from vacuum walls, will be radially trapped in the {approx}4 kV ion beam potential. Trapped electrons can modify the beam space charge, vacuum pressure, ion transport dynamics, and halo generation, and can potentially cause ion-electron instabilities. Within quadrupole (and dipole) magnets, the longitudinal electron velocity is limited to drift velocities (E x B and {del}B) and the electron density can vary azimuthally, radially, and longitudinally. These variations can cause centroid misalignment, emittance growth and halo growth. Diagnostics are being developed to measure the energy and flux of electrons and gas evolved from walls, and the net charge and gas density within magnetic quadrupoles. We will also measure the depth of trapping of electrons, their axial and radial transport, and the effects of electrons on the ion beam.

  4. Mixed feed and its ingredients electron beam decontamination

    NASA Astrophysics Data System (ADS)

    Bezuglov, V. V.; Bryazgin, A. A.; Vlasov, A. Yu; Voronin, L. A.; Ites, Yu V.; Korobeynikov, M. V.; Leonov, S. V.; Leonova, M. A.; Tkachenko, V. O.; Shtarklev, E. A.; Yuskov, Yu G.

    2017-01-01

    Electron beam treatment is used for food processing for decades to prevent or minimize food losses and prolong storage time. This process is also named cold pasteurization. Mixed feed ingredients supplied in Russia regularly occur to be contaminated. To reduce contamination level the contaminated mixed feed ingredients samples were treated by electron beam with doses from 2 to 12 kGy. The contamination levels were decreased to the level that ensuring storage time up to 1 year.

  5. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  6. An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakeman, Michael S.

    Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical

  7. New data on electron-beam purification of wastewater

    NASA Astrophysics Data System (ADS)

    Pikaev, A. K.

    2002-11-01

    Recent environmental applications of radiation technology, developed in the author's laboratory, are presented in this paper. They are electron-beam and coagulation purification of molasses distillery slops from distillery-produced ethyl alcohol by fermentation of plant materials, electron-beam purification of wastewater from carboxylic acids (for example, formic acid) and removal of petroleum products (diesel fuel, motor oil and residual fuel oil) from water by γ-irradiation.

  8. Nanopore integrated with Au clusters formed under electron beam irradiation for single molecule analysis

    NASA Astrophysics Data System (ADS)

    Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Kim, Sung In; Yoo, Jung Ho; Park, Kyung Jin; Park, Nam Kyou; Kim, Yong-Sang

    2016-02-01

    Recently the single molecules such as protein and deoxyribonucleic acid (DNA) have been successfully characterized using a solidstate nanopore with an electrical detection technique. However, the optical plasmonic nanopore has yet to be fabricated. The optical detection technique can be better utilized as next generation ultrafast geneome sequencing devices due to the possible utilization of the current optical technique for genome sequencing. In this report, we have investigated the Au nanopore formation under the electron beam irradiation on an Au aperture. The circular-type nanoopening with ~ 5 nm diameter on the diffused membrane is fabricated by using 2 keV electron beam irradiation by using field emission scanning electron microscopy (FESEM). We found the Au cluster on the periphery of the drilled aperture under a 2 keV electron beam irradiation. Immediately right after electron beam irradiation, no Au cluster and no Au crystal lattice structure on the diffused plane are observed. However, after the sample was kept for ~ 6 months under a room environment, the Au clusters are found on the diffused membrane and the Au crystal lattice structures on the diffused membrane are also found using high resolution transmission electron microscopy. These phenomena can be attributed to Ostwald ripening. In addition, the Au nano-hole on the 40 nm thick Au membrane was also drilled by using 200 keV scanning transmission electron microscopy.

  9. Characterization of electron contamination in megavoltage photon beams

    SciTech Connect

    Medina, Antonio Lopez; Teijeiro, Antonio; Garcia, Juan; Esperon, Jorge; Terron, J. Antonio; Ruiz, Diego P.; Carrion, Maria C.

    2005-05-01

    The purpose of the present study is to characterize electron contamination in photon beams in different clinical situations. Variations with field size, beam modifier (tray, shaping block) and source-surface distance (SSD) were studied. Percentage depth dose measurements with and without a purging magnet and replacing the air by helium were performed to identify the two electron sources that are clearly differentiated: air and treatment head. Previous analytical methods were used to fit the measured data, exploring the validity of these models. Electrons generated in the treatment head are more energetic and more important for larger field sizes, shorter SSD, and greater depths. This difference is much more noticeable for the 18 MV beam than for the 6 MV beam. If a tray is used as beam modifier, electron contamination increases, but the energy of these electrons is similar to that of electrons coming from the treatment head. Electron contamination could be fitted to a modified exponential curve. For machine modeling in a treatment planning system, setting SSD at 90 cm for input data could reduce errors for most isocentric treatments, because they will be delivered for SSD ranging from 80 to 100 cm. For very small field sizes, air-generated electrons must be considered independently, because of their different energetic spectrum and dosimetric influence.

  10. Characterization of electron contamination in megavoltage photon beams.

    PubMed

    Lopez Medina, Antonio; Teijeiro, Antonio; Garcia, Juan; Esperon, Jorge; Terron, J Antonio; Ruiz, Diego P; Carrion, Maria C

    2005-05-01

    The purpose of the present study is to characterize electron contamination in photon beams in different clinical situations. Variations with field size, beam modifier (tray, shaping block) and source-surface distance (SSD) were studied. Percentage depth dose measurements with and without a purging magnet and replacing the air by helium were performed to identify the two electron sources that are clearly differentiated: air and treatment head. Previous analytical methods were used to fit the measured data, exploring the validity of these models. Electrons generated in the treatment head are more energetic and more important for larger field sizes, shorter SSD, and greater depths. This difference is much more noticeable for the 18 MV beam than for the 6 MV beam. If a tray is used as beam modifier, electron contamination increases, but the energy of these electrons is similar to that of electrons coming from the treatment head. Electron contamination could be fitted to a modified exponential curve. For machine modeling in a treatment planning system, setting SSD at 90 cm for input data could reduce errors for most isocentric treatments, because they will be delivered for SSD ranging from 80 to 100 cm. For very small field sizes, air-generated electrons must be considered independently, because of their different energetic spectrum and dosimetric influence.

  11. Motion of ionized electrons under the intense electromagnetic field of the beam

    SciTech Connect

    Kamiya, Y.

    1983-09-01

    The motion of an electron ionized from residual gas by the beam becomes relativistic in the case of a high-density beam as in SLC, while the ions produced by the beam remain nonrelativistic. The ionized relativistic electron will be dragged by the beam, and will go away from the beam (electron beam) before the beam passes, even for the very short bunch of SLC. In this note, we discuss the motions of electrons ionized by the electron beam or by the positron beam. We assume that the density of the beam is uniform and the shape cylindrical (transversely round and longitudinally rectangular).

  12. Matching Electron Beams Without Secondary Collimation for Treatment of Extensive Recurrent Chest-Wall Carcinoma

    SciTech Connect

    Feygelman, Vladimir; Mandelzweig, Yuri; Baral, Ed

    2015-01-15

    Matching electron beams without secondary collimators (applicators) were used for treatment of extensive, recurrent chest-wall carcinoma. Due to the wide penumbra of such beams, the homogeneity of the dose distribution at and around the junction point is clinically acceptable and relatively insensitive to positional errors. Specifically, dose around the junction point is homogeneous to within ±4% as calculated from beam profiles, while the positional error of 1 cm leaves this number essentially unchanged. The experimental isodose distribution in an anthropomorphic phantom supports this conclusion. Two electron beams with wide penumbra were used to cover the desired treatment area with satisfactory dose homogeneity. The technique is relatively simple yet clinically useful and can be considered a viable alternative for treatment of extensive chest-wall disease. The steps are suggested to make this technique more universal.

  13. Microbunched electron cooling for high-energy hadron beams.

    PubMed

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  14. Electron-Cloud Effects on Heavy-Ion Beams

    SciTech Connect

    Azevedo, T; Friedman, A; Cohen, R; Vay, J

    2004-03-29

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We are developing a capability for self-consistent simulation of ion beams with the electron clouds they produce. We report on an ingredient in this capability, the effect of specified electron cloud distributions on the dynamics of a coasting ion beam. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also be effective. We identify a possible instability associated with resonance with the beam-envelope ''breathing'' mode. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations.

  15. Reinforcing multiwall carbon nanotubes by electron beam irradiation

    SciTech Connect

    Duchamp, Martial; Meunier, Richard; Smajda, Rita; Mionic, Marijana; Forro, Laszlo; Magrez, Arnaud; Seo, Jin Won; Song, Bo; Tomanek, David

    2010-10-15

    We study the effect of electron beam irradiation on the bending modulus of multiwall carbon nanotubes grown by chemical vapor deposition. Atomic force microscopy observations of the nanotube deflection in the suspended-beam geometry suggest an internal, reversible stick-slip motion prior to irradiation, indicating presence of extended defects. Upon electron beam irradiation, nanotubes with an initial bending modulus exceeding 10 GPa initially get stiffer, before softening at high doses. Highly defective nanotubes with smaller initial bending moduli do not exhibit the initial reinforcement. These data are explained by ab initio molecular dynamics calculations suggesting a spontaneous cross-linking of neighboring nanotube walls at extended vacancy defects created by the electron beam, in agreement with electron microscopy observations. At low defect concentration, depending on the edge morphology, the covalent bonds between neighboring nanotube walls cause reinforcement by resisting relative motion of neighboring walls. At high concentration of defects that are present initially or induced by high electron beam dose, the structural integrity of the entire system suffers from increasing electron beam damage.

  16. Characterisation of mega-voltage electron pencil beam dose distributions: viability of a measurement-based approach.

    PubMed

    Barnes, M P; Ebert, M A

    2008-03-01

    The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.

  17. X-ray mapping in electron-beam instruments.

    PubMed

    Friel, John J; Lyman, Charles E

    2006-02-01

    This review traces the development of X-ray mapping from its beginning 50 years ago through current analysis procedures that can reveal otherwise obscure elemental distributions and associations. X-ray mapping or compositional imaging of elemental distributions is one of the major capabilities of electron beam microanalysis because it frees the operator from the necessity of making decisions about which image features contain elements of interest. Elements in unexpected locations, or in unexpected association with other elements, may be found easily without operator bias as to where to locate the electron probe for data collection. X-ray mapping in the SEM or EPMA may be applied to bulk specimens at a spatial resolution of about 1 microm. X-ray mapping of thin specimens in the TEM or STEM may be accomplished at a spatial resolution ranging from 2 to 100 nm, depending on specimen thickness and the microscope. Although mapping has traditionally been considered a qualitative technique, recent developments demonstrate the quantitative capabilities of X-ray mapping techniques. Moreover, the long-desired ability to collect and store an entire spectrum at every pixel is now a reality, and methods for mining these data are rapidly being developed.

  18. Angular-momentum-dominated electron beams and flat-beam generation

    SciTech Connect

    Sun, Yin-e

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  19. Simulations of Electron Cloud Effects on the Beam Dynamics for theFNAL Main Injector Upgrade

    SciTech Connect

    Sonnad Kiran G.; Furman, Miguel; Vay, Jean-Luc; Venturini, Marco; Celata, Christine M.; Grote, David

    2006-04-15

    The Fermilab main injector (MI) is being considered for an upgrade as part of the high intensity neutrino source (HINS) effort. This upgrade will involve a significant increasing of the bunch intensity relative to its present value. Such an increase will place the MI in a regime in which electron-cloud effects are expected to become important. We have used the electrostatic particle-in-cell code WARP, recently augmented with new modeling capabilities and simulation techniques, to study the dynamics of beam-electron cloud interaction. This work in progress involves a systematic assessment of beam instabilities due to the presence of electron clouds.

  20. Electron beam driven lower hybrid waves in a dusty plasma

    SciTech Connect

    Prakash, Ved; Vijayshri; Sharma, Suresh C.; Gupta, Ruby

    2013-05-15

    An electron beam propagating through a magnetized dusty plasma drives electrostatic lower hybrid waves to instability via Cerenkov interaction. A dispersion relation and the growth rate of the instability for this process have been derived taking into account the dust charge fluctuations. The frequency and the growth rate of the unstable wave increase with the relative density of negatively charged dust grains. Moreover, the growth rate of the instability increases with beam density and scales as the one-third power of the beam density. In addition, the dependence of the growth rate on the beam velocity is also discussed.

  1. Noninvasive measurement of electron-beam size with diamagnetic loops

    SciTech Connect

    Ekdahl, Carl

    2001-07-01

    Diamagnetic loops can be used as a noninvasive method for measurements of beam size in electron beam accelerators that use solenoidal magnetic transport. A comprehensive theory for interpreting data from a diamagnetic loop is developed. It is shown that the change in flux through a diamagnetic loop can be simply related to the rms beam radius to high accuracy, regardless of the details of the current profile, when the ratio of beam current to Alfven current I{sub b}/I{sub A} is small. The difficulty in making this measurement lies in the fact that the diamagnetic-loop signal is also small to the same order.

  2. Electron Beam Lifetime in SPEAR3: Measurement and Simulation

    SciTech Connect

    Corbett, J.; Huang, X.; Lee, M.; Lui, P.; Sayyar-Rodsari, B.; /Pavilon Tech., Austin

    2007-12-19

    In this paper we report on electron beam lifetime measurements as a function of scraper position, RF voltage and bunch fill pattern in SPEAR3. We then outline development of an empirical, macroscopic model using the beam-loss rate equation. By identifying the dependence of loss coefficients on accelerator and beam parameters, a numerically-integrating simulator can be constructed to compute beam decay with time. In a companion paper, the simulator is used to train a parametric, non-linear dynamics model for the system [1].

  3. determination of current density distribution in an electron beam

    NASA Astrophysics Data System (ADS)

    Kandel, Yudhishthir Prasad

    Electron beams are useful in many applications because they can be focused down to a spot far exceeding the physical limit of focusing visible light or x-rays. Additionally, electron beams are useful in transferring concentrated amounts of energy to a very small well defined region of a target for a fixed duration. This has led to the development of both scanning electron microscopes (SEMs) and electron beam lithography. The goal of this work was to develop a general method that accurately and easily yields the best estimate of the electron current density distribution of a focused electron beam, known as point spread function (PSF). The method developed is fast, easy to use and accurate. Two specific areas of research have been addressed for PSF determination. The first is concerned with the monotonic response of EUV photoresist as a function of electron beam dose. An external metrology is used for mapping the change in thickness that is smaller than the beam spot size. The method developed in this study simultaneously gives the photo-resist thickness change as a function of electron dose and electron beam PSF. A second thrust of this research has been to develop set of PSF characterization approaches that apply to the SEM. Here a knowledge of the PSF offers many benefits including the ability to monitor and optimize SEM performance such as astigmatism control. Perhaps, even more importantly, a knowledge of the PSF combined with a series of well-defined experimental steps has led to the development of new methods for improving the resolution of SEM images through computational means rather than very costly and complex equipment modification.

  4. Imaging single electrons to enable the generation of ultrashort beams for single-shot femtosecond relativistic electron diffraction

    SciTech Connect

    Li, R. K.; Musumeci, P.; Bender, H. A.; Wilcox, N. S.; Wu, M.

    2011-10-01

    The generation and control of relativistic electron beams well suited for ultrafast electron diffraction application has rapidly advanced, greatly benefiting from the overlap in techniques and expertise with the accelerator community. However, imaging the diffracted MeV electrons with high detection efficiency has remained an under-explored area. In this paper, we report on a quantitative study of the imaging of MeV electrons using a detection system consisting of a phosphor screen, a lens-coupling optics, and a charge-coupled device camera. It is shown that every MeV electron in the beam yields a signal well above the camera noise. With this detection efficiency, only {approx}10{sup 5} electrons per pulse are needed to obtain a high quality single-shot diffraction pattern from a crystalline sample. We measured that such a low charge beam can be as short as 30 fs rms. Further, we discuss the possibility of compressing these electron beams to sub-5 fs rms bunch length by velocity bunching using a short high gradient rf accelerating structure scheduled to be installed next year at the UCLA Pegasus Laboratory. This opens the possibility of single-shot determinations of structural changes in many ultrafast physical processes like nonequilibrium phonon dynamics or relaxation pathways in systems with strong electron-phonon coupling.

  5. Imaging single electrons to enable the generation of ultrashort beams for single-shot femtosecond relativistic electron diffraction

    NASA Astrophysics Data System (ADS)

    Li, R. K.; Musumeci, P.; Bender, H. A.; Wilcox, N. S.; Wu, M.

    2011-10-01

    The generation and control of relativistic electron beams well suited for ultrafast electron diffraction application has rapidly advanced, greatly benefiting from the overlap in techniques and expertise with the accelerator community. However, imaging the diffracted MeV electrons with high detection efficiency has remained an under-explored area. In this paper, we report on a quantitative study of the imaging of MeV electrons using a detection system consisting of a phosphor screen, a lens-coupling optics, and a charge-coupled device camera. It is shown that every MeV electron in the beam yields a signal well above the camera noise. With this detection efficiency, only ˜105 electrons per pulse are needed to obtain a high quality single-shot diffraction pattern from a crystalline sample. We measured that such a low charge beam can be as short as 30 fs rms. Further, we discuss the possibility of compressing these electron beams to sub-5 fs rms bunch length by velocity bunching using a short high gradient rf accelerating structure scheduled to be installed next year at the UCLA Pegasus Laboratory. This opens the possibility of single-shot determinations of structural changes in many ultrafast physical processes like nonequilibrium phonon dynamics or relaxation pathways in systems with strong electron-phonon coupling.

  6. Chemical and structural stability of lithium-ion battery electrode materials under electron beam.

    PubMed

    Lin, Feng; Markus, Isaac M; Doeff, Marca M; Xin, Huolin L

    2014-07-16

    The investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. However, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi(0.4)Mn(0.4)Co(0.18)Ti(0.02)O2 particles, repeated electron beam irradiation induced a phase transition from an layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results.

  7. The use of artificial electron beams as probes of the distant magnetosphere

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1982-01-01

    Experiments are reported in which electron beams were injected into the magnetosphere (with up to 40 kev energy and at current up to 0.8 A) to diagnose the plasma processes at great distance by measurements made in the ionosphere. In some of the experiments, the conjugate region atmosphere was used to detect the electron beam; in others, conjugate echoes were detected near the injection region. The echoes were found to respond to changes in the convection fields and to reflect auroral zone activity. Theoretical and experimental echo patterns are discussed. Evidence for beam pitch angle scattering and altered mirror heights is presented. The use of the atmospheric response to electron beams in the loss cone as a detector has been achieved using optical, X-ray, and radar techniques.

  8. Mechanism of nanostructure movement under an electron beam and its application in patterning

    NASA Astrophysics Data System (ADS)

    Seminara, Agnese; Pokroy, Boaz; Kang, Sung H.; Brenner, Michael P.; Aizenberg, Joanna

    2011-06-01

    In electron microscopy, the motion of the sample features due to the interaction with the electron beam has been traditionally regarded as a detrimental effect. Uncontrolled feature displacement produces artifacts both in imaging and patterning, limiting the resolution and distorting precise nanoscale patterns. The mechanism of such motion remains largely unclear. We present an experimental study of e-beam-induced nanopost movement and offer a mechanistic theoretical model that quantitatively explains the physical phenomenon. We propose that e-beam bombardment produces an uneven distribution of electrons in the sample, and the resulting electrostatic interactions provide forces and torques sufficient to bend the nanoposts. We compare the theoretical predictions with a series of controlled experiments that support our model. We take advantage of this theoretical understanding to demonstrate how this generally undesirable effect can be turned into an unconventional e-beam writing technique to generate pseudo-three-dimensional structures.

  9. Power consumption and byproducts in electron beam and electrical discharge processing of volatile organic compounds

    SciTech Connect

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.

    1996-02-20

    Among the new methods being investigated for the post-process reduction of volatile organic compounds (VOCs) in atmospheric-pressure air streams are based on non-thermal plasmas. Electron beam, pulsed corona and dielectric-barrier discharge methods are among the more extensively investigated techniques for producing non-thermal plasmas. In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process. In this paper the authors present experimental results using a compact electron beam reactor, a pulsed corona and a dielectric-barrier discharge reactor. They have used these reactors to study the removal of a wide variety of VOCs. The effects of background gas composition and gas temperature on the decomposition chemistry have been studied. They present a description of the reactions that control the efficiency of the plasma process. They have found that pulsed corona and other types of electrical discharge reactors are most suitable only for processes requiring O radicals. For VOCs requiring copious amounts of electrons, ions, N atoms or OH radicals, the use of electron beam reactors is generally the best way of minimizing the electrical power consumption. Electron beam processing is remarkably more effective for all of the VOCs tested. For control of VOC emissions from dilute, large volume sources such as paint spray booths, cost analysis shows that the electron beam method is cost-competitive to thermal and catalytic methods that employ heat recovery or hybrid techniques.

  10. Note: Characteristic beam parameter for the line electron gun

    SciTech Connect

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-15

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm{sup 2} at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm{sup 2}), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  11. Electromagnetic beam modes driven by anisotropic electron streams

    NASA Technical Reports Server (NTRS)

    Goldman, Martin V.; Newman, David

    1987-01-01

    A theory is presented which provides an explanation for recent laboratory observations of a 'new electromagnetic' mode in a non-Maxwellian high-beta plasma' and suggests a likely relevance of these modes to space plasmas. Unstable parallel-propagating waves, which can be beam modes or whistlers, depending mainly on the degree of velocity anisotropy in a weak electron beam, are found. In the beam-mode limit relevant to the experiment, this is a kinetic Weibel instability, enhanced by a parallel magnetic field. The frequency of the mode can be above or below the electron cyclotron frequency.

  12. Whistler-mode radiation from the Spacelab 2 electron beam

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Steinberg, J. T.; Banks, P. M.; Bush, R. I.

    1986-01-01

    During the Spacelab 2 mission the Plasma Diagnostics Package (PDP) performed a fly-around of the Shuttle at distances of up to 300 meters while an electron beam was being ejected from the Shuttle. A magnetic conjunction of the Shuttle and the PDP while the electron gun was operating in a steady (DC) mode is discussed. During this conjunction, the PDP detected a clear funnel-shaped emission that is believed to be caused by whistler-mode emission from the beam. Ray-path calculations show that the shape of the funnel can be accounted for by whistler-mode waves propagating near the resonance cone. Because the beam and waves are propagating in the same direction, the radiation must be produced by a Landau interaction with the beam. Other types of waves generated by the beam are also described.

  13. Electron-beam induced recrystallization in amorphous apatite

    SciTech Connect

    Bae, In-Tae; Zhang, Yanwen; Weber, William J.; Higuchi, Mikio; Giannuzzi, Lucille

    2007-01-10

    Electron-beam-induced recrystallization of irradiation-induced amorphous Sr2Nd8(SiO4)6O2 is investigated in situ using transmission electron microscopy with 200 keV electrons at room temperature. Epitaxial recrystallization is observed from both the amorphous/crystalline interface and the surface, and the recrystallization is more pronounced with increasing electron-beam flux. Since the temperature increase induced by electron-beam irradiation is estimated to be less than 7 K and maximum energies transferred to target atoms are below the displacement energies, ionization-induced processes are considered to be the primary mechanisms for the solid-phase epitaxial recrystallization observed in the present study.

  14. An Electron Beam Profile Instrument Based on FBGs

    PubMed Central

    Sporea, Dan; Stăncălie, Andrei; Becherescu, Nicu; Becker, Martin; Rothhardt, Manfred

    2014-01-01

    Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs) was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application. PMID:25157554

  15. Compact electron-beam source for formation of neutral beams of very low vapor pressure materials

    NASA Technical Reports Server (NTRS)

    Rutherford, J. A.; Vroom, D. A.

    1978-01-01

    In order to form metal vapors for neutral beam studies, an electron-beam heater and a power supply have been designed. The source, which measures about 30 x 50 x 70 mm, consists of a filament, accelerating plate (defined by pole pieces), and a supported target. The electrons from the filament are focused by the field penetration through a 2 mm slit in the high-voltage cage. They are then accelerated to about 5 kV to a ground plate. The electrons then follow a path in the magnetic field and strike the sample to be heated on its front surface. The assembly is attached to a water-cooled base plate. The electron beam source has produced beams of Ta and C particles with densities of about 10 to the 8th power/cu cm.

  16. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    SciTech Connect

    Singh, N.; Conrad, J.R.; Schunk, R.W.

    1985-06-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves. 39 references.

  17. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    NASA Technical Reports Server (NTRS)

    Singh, N.; Conrad, J. R.; Schunk, R. W.

    1985-01-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves.

  18. Incident-beam effects in electron-stimulated Auger-electron diffraction

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Cao, Jianming

    1991-04-01

    We have examined incident-beam effects in electron-stimulated Auger-electron diffraction (AED) on a cleaved GaAs(110) surface. The results indicate that incident-beam diffraction is significant in an AED experiment, and that the dissipative nature of the incident beam in contributing to the Auger process must be accounted for. We have developed a qualitative model that describes the trend of the polar-angle dependence of the Auger intensity for both the incident and exit beams. In calculating the diffraction features, we used a zeroth-order approximation to simulate the dissipation of the incident beam, which is found to adequately describe the experimental data.

  19. Depletion region surface effects in electron beam induced current measurements

    PubMed Central

    Haney, Paul M.; Yoon, Heayoung P.; Gaury, Benoit; Zhitenev, Nikolai B.

    2016-01-01

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials. PMID:27881882

  20. Large areas elemental mapping by ion beam analysis techniques

    NASA Astrophysics Data System (ADS)

    Silva, T. F.; Rodrigues, C. L.; Curado, J. F.; Allegro, P.; Moro, M. V.; Campos, P. H. O. V.; Santos, S. B.; Kajiya, E. A. M.; Rizzutto, M. A.; Added, N.; Tabacniks, M. H.

    2015-07-01

    The external beam line of the Laboratory for Material Analysis with Ion Beams (LAMFI) is a versatile setup for multi-technique analysis. X-ray detectors for Particle Induced X-rays Emission (PIXE) measurements, a Gamma-ray detector for Particle Induced Gamma- ray Emission (PIGE), and a particle detector for scattering analysis, such as Rutherford Backscattering Spectrometry (RBS), were already installed. In this work, we present some results, using a large (60-cm range) XYZ computer controlled sample positioning system, completely developed and build in our laboratory. The XYZ stage was installed at the external beam line and its high spacial resolution (better than 5 μm over the full range) enables positioning the sample with high accuracy and high reproducibility. The combination of a sub-millimeter beam with the large range XYZ robotic stage is being used to produce elemental maps of large areas in samples like paintings, ceramics, stones, fossils, and all sort of samples. Due to its particular characteristics, this is a unique device in the sense of multi-technique analysis of large areas. With the continuous development of the external beam line at LAMFI, coupled to the robotic XYZ stage, it is becoming a robust and reliable option for regular analysis of trace elements (Z > 5) competing with the traditional in-vacuum ion-beam-analysis with the advantage of automatic rastering.

  1. Electron cyclotron beam measurement system in the Large Helical Device

    SciTech Connect

    Kamio, S. Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T.

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  2. Diffusion of Echo 7 electron beams during bounce motion

    SciTech Connect

    Nemzek, R.J.

    1992-01-01

    The Echo 7 sounding rocket experiment injected electron beams into the magnetosphere and detected them after one or more bounces along field lines near L = 6.5. Waves with equatorial amplitudes of a few mV/m diffused the beams so that only {approx}2O% of the initial current returned to the rocket altitude in the northern hemisphere. On successive bounces the electron flux continued to drop at the same rate. These results imply a lifetime of {approx}1.7 for 20 kev electrons just outside of the loss cone. comparison with other Echo flights shows that the beam return is dependent upon geomagnetic conditions: low activity causes there to be less scattering, while high activity can actually prevent detection of the returning beam.

  3. Diffusion of Echo 7 electron beams during bounce motion

    SciTech Connect

    Nemzek, R.J.

    1992-08-01

    The Echo 7 sounding rocket experiment injected electron beams into the magnetosphere and detected them after one or more bounces along field lines near L = 6.5. Waves with equatorial amplitudes of a few mV/m diffused the beams so that only {approx}2O% of the initial current returned to the rocket altitude in the northern hemisphere. On successive bounces the electron flux continued to drop at the same rate. These results imply a lifetime of {approx}1.7 for 20 kev electrons just outside of the loss cone. comparison with other Echo flights shows that the beam return is dependent upon geomagnetic conditions: low activity causes there to be less scattering, while high activity can actually prevent detection of the returning beam.

  4. Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite

    NASA Astrophysics Data System (ADS)

    Goldoff, B. A.; Webster, J. D.; Harlov, D. E.

    2010-12-01

    Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.

  5. Do Unpolarized Electrons Affect the Polarization of a Stored Beam?

    SciTech Connect

    Rathmann, Frank

    2009-08-04

    We present a short overview of the PAX physics case for polarized antiprotons. In order to progress towards a stored polarized antiproton beam, it is crucial to understand the interaction of polarized protons with unpolarized electrons. Therefore investigations that address in particular the contributions of electrons to the polarization buildup of a stored proton beam are presented here in more detail. The measurement of the depolarizing p-vectore cross section settled a long-standing controversy about the role of electrons in the polarization buildup of a stored beam by spin-filtering. Instead of studying the buildup of polarization in an initially unpolarized beam, here the inverse situation was investigated by observation of the depolarization of an initially polarized beam. For the first time, electrons in the electron cooler have been used as a target to study their depolarizing effect on a 49.3 MeV proton beam orbiting in COSY. The foreseen spin-filtering experiments at COSY-Juelich and at the AD of CERN are briefly discussed as well.

  6. Observations of ionospheric electron beams in the plasma sheet.

    PubMed

    Zheng, H; Fu, S Y; Zong, Q G; Pu, Z Y; Wang, Y F; Parks, G K

    2012-11-16

    Electrons streaming along the magnetic field direction are frequently observed in the plasma sheet of Earth's geomagnetic tail. The impact of these field-aligned electrons on the dynamics of the geomagnetic tail is however not well understood. Here we report the first detection of field-aligned electrons with fluxes increasing at ~1 keV forming a "cool" beam just prior to the dissipation of energy in the current sheet. These field-aligned beams at ~15 R(E) in the plasma sheet are nearly identical to those commonly observed at auroral altitudes, suggesting the beams are auroral electrons accelerated upward by electric fields parallel (E([parallel])) to the geomagnetic field. The density of the beams relative to the ambient electron density is δn(b)/n(e)~5-13% and the current carried by the beams is ~10(-8)-10(-7) A m(-2). These beams in high β plasmas with large density and temperature gradients appear to satisfy the Bohm criteria to initiate current driven instabilities.

  7. Transverse profile of the electron beam for the RHIC electron lenses

    SciTech Connect

    Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; Montag, C.; Pikin, A. I.

    2015-07-10

    To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for both the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.

  8. Transverse profile of the electron beam for the RHIC electron lenses

    DOE PAGES

    Gu, X.; Altinbas, Z.; Costanzo, M.; ...

    2015-07-10

    To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for bothmore » the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.« less

  9. Overview of Phase Space Manipulations of Relativistic Electron Beams

    SciTech Connect

    Xiang, Dao; /SLAC

    2012-08-31

    Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.

  10. SHEEBA: A spatial high energy electron beam analyzer

    NASA Astrophysics Data System (ADS)

    Galimberti, Marco; Giulietti, Antonio; Giulietti, Danilo; Gizzi, Leonida A.

    2005-05-01

    Electron bunches with large energy and angle spread are not easy to be analyzed with conventional spectrometers. In this article, a device for the detection of high energy electrons is presented. This detector, based on the traces left by electrons on a stack of dosimetric films, together with an original numerical algorithm for traces deconvolution, is able to characterize both angularly and spectrally (up to some mega-electron-volts) a broad-spectrum electron bunch. A numerical test was successfully performed with a virtual electron beam, which was in turn reconstructed using a Montecarlo code (based on the CERN library GEANT4). Due to its simplicity and small size, the spatial high energy electron beam analyzer (SHEEBA) detector is particularly suitable to be used in laser plasma acceleration experiments.

  11. Intial characterization fo a commerical electron gun for profiling high intensity proton beams in Project X

    SciTech Connect

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Thangaraj, J.C.T.; Zhang, D.; Blokland, W.; /Oak Ridge

    2011-03-01

    Measuring the profile of a high-intensity proton beam is problematic in that traditional invasive techniques such as flying wires don't survive the encounter with the beam. One alternative is the use of an electron beam as a probe of the charge distribution in the proton beam as was done at the Spallation Neutron Source at ORNL. Here we present an initial characterization of the beam from a commercial electron gun from Kimball Physics, intended for use in the Fermilab Main Injector for Project X. Despite the fact that the horizontal spot size is abnormally large in the high current measurement, the spot size at the downstream cross X2 is reasonable in the context of measuring the deflection. A thin foil OTR would help with the beam heating and should be tried. The next phase of this experiment is to simulate the proton beam with a pair of current carrying wires and to design and construct a fast deflector. Some of the remaining issues to be considered include determining the minimum beam current needed to observe the deflected beam for a given sweep time and the impact of longitudinal variations in the charge density of the bunch.

  12. Control of post-disruption runaway electron beams in DIII-D

    SciTech Connect

    Eidietis, N. W.; Humphreys, D. A.; Strait, E. J.; VanZeeland, M. A.; Wesley, J. C.; Commaux, N.; Jernigan, T. C.; Hollmann, E. M.; Moyer, R. A.; Yu, J. H.

    2012-05-15

    Recent experiments in the DIII-D tokamak have demonstrated real-time control and dissipation of post-disruption runaway electron (RE) beams. In the event that disruption avoidance, control, and mitigation schemes fail to avoid or suppress RE generation, active control of the RE beam may be an important line of defense to prevent the rapid, localized deposition of RE beam energy onto vulnerable vessel sections. During and immediately after the current quench, excessive radial compression of the runaway beams is avoided by a combination of techniques, improving the likelihood of the beams surviving this dynamic period without a fast termination. Once stabilized, the runaway beams are held in a steady state (out to the ohmic flux limit) with the application of active plasma current and position controls. Beam interaction with the vessel wall is minimized by avoiding distinct thresholds for enhanced wall interaction at small and large radii, corresponding to inner wall and outer limiter interaction, respectively. Staying within the 'safe zone' between those radial thresholds allows for the sustainment of long-lived, quiescent runaway beams. The total beam energy and runaway electron population are then dissipated gradually by a controlled ramp-down of the runaway current.

  13. Control of post-disruption runaway electron beams in DIII-D

    SciTech Connect

    Eidietis, N. W.; Commaux, Nicolas JC; Hollmann, E. M.; Humphrey, D. A.; Jernigan, T. C.; Moyer, R.A.; Strait, E. J.; Van Zeeland, M. A.; Wesley, J. C.

    2012-01-01

    Recent experiments in the DIII-D tokamak have demonstrated real-time control and dissipation of post-disruption runaway electron (RE) beams. In the event that disruption avoidance, control, and mitigation schemes fail to avoid or suppress RE generation, active control of the RE beam may be an important line of defense to prevent the rapid, localized deposition of RE beam energy onto vulnerable vessel sections. During and immediately after the current quench, excessive radial compression of the runaway beams is avoided by a combination of techniques, improving the likelihood of the beams surviving this dynamic period without a fast termination. Once stabilized, the runaway beams are held in a steady state (out to the ohmic flux limit) with the application of active plasma current and position controls. Beam interaction with the vessel wall is minimized by avoiding distinct thresholds for enhanced wall interaction at small and large radii, corresponding to inner wall and outer limiter interaction, respectively. Staying within the 'safe zone' between those radial thresholds allows for the sustainment of long-lived, quiescent runaway beams. The total beam energy and runaway electron population are then dissipated gradually by a controlled ramp-down of the runaway current.

  14. The applications of in situ electron energy loss spectroscopy to the study of electron beam nanofabrication.

    PubMed

    Chen, Shiahn J; Howitt, David G; Gierhart, Brian C; Smith, Rosemary L; Collins, Scott D

    2009-06-01

    An in situ electron energy loss spectroscopy (EELS) technique has been developed to investigate the dynamic processes associated with electron-beam nanofabrication on thin membranes. In this article, practical applications germane to e-beam nanofabrication are illustrated with a case study of the drilling of nanometer-sized pores in silicon nitride membranes. This technique involves successive acquisitions of the plasmon-loss and the core-level ionization-loss spectra in real time, both of which provide the information regarding the hole-drilling kinetics, including two respective rates for total mass loss, individual nitrogen and silicon element depletion, and the change of the atomic bonding environment. In addition, the in situ EELS also provides an alternative method for endpoint detection with a potentially higher time resolution than by imaging. On the basis of the time evolution of in situ EELS spectra, a qualitative working model combining knock-on sputtering, irradiation-induced mass transport, and phase separation can be proposed.

  15. Depolarization due to beam-beam interaction in electron-positron linear colliders

    SciTech Connect

    Yokoya, K. ); Chen, P. )

    1989-05-05

    We investigate two major mechanisms which induce depolarization of electron beams during beam-beam interaction in linear colliders. These are the classical spin precession under the collective field of the oncoming beam, and the spin-flip effect from beamstrahlung. Analytic formulas are derived for estimating these depolarization effects. As examples, we estimate the depolarization in the Stanford Linear Collider (SLC) and a possible future TeV linear collider (TLC). The effects are found to be negligibly small for SLC and not very large for TLC.

  16. Electron beam fluorescence measurements in the Boeing hypersonic shock tunnel

    NASA Technical Reports Server (NTRS)

    Price, Linwood L.; Williams, W. Dan; Powell, H. M.

    1992-01-01

    The Calspan electron beam fluorescence (EBF) measurement system is described along with the results of measurements made in hypersonic flow. Numerous self-emitting metallic species were identified, many of which may be associated with an aging/erosion process within the B30HST. Because there were only 16 tunnel runs, it was only possible to obtain spectral measurements over a limited range of wavelengths and time sampling periods. Many spectral features of the flow remain uninvestigated. Because flow self-emission is important to all optical diagnostic techniques, it is recommended that additional spectral studies by performed. The three electron beam-excited species that were identified are nitrogen, helium, and nitric oxide. The high metallic radiation background interfered with attempts to obtain the time-wise variation of N2 density and He radiation with the optical fiber/PMT channels. In the case of the N2 density measurements the result of interference was increased uncertainty. Unfortunately, the interference caused the time-wise He measurements to fail completely. It is recommended that the electron beam be modulated to provide discrimination against the background radiation in future N2 density measurements. Careful data reduction produced useful measurements of N2 vibrational temperature, even though the high background from metallic species significantly increased measurement uncertainty. Perhaps the recommended additional spectral studies would reveal N2(+) First Negative System band-pair regions having less background. Detection of the He arrival was easily accomplished with the spectrometer/array detector system. Because of this, it is recommended that this means of detecting He arrival be used in the future. With proper calibrations of the system an He number density could be obtained. Although the flow conditions were out of limits for the run in which the NO spectrum was recorded, the usefulness of the NO spectrum for determination of free

  17. Upgrade of the electron beam ion trap in Shanghai

    SciTech Connect

    Lu, D.; Yang, Y.; Xiao, J.; Shen, Y.; Fu, Y.; Wei, B.; Yao, K.; Hutton, R.; Zou, Y.

    2014-09-15

    Over the last few years the Shanghai electron beam ion trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Applied Physics, first produced an electron beam in 2005. It could be tuned with electron energies between 1 and 130 keV and beam current up to 160 mA. After several years of operation, it was found that several modifications for improvements were necessary to reach the goals of better electron optics, higher photon detection, and ion injection efficiencies, and more economical running costs. The upgraded Shanghai-EBIT is made almost entirely from Ti instead of stainless steel and achieves a vacuum of less than 10{sup −10} Torr, which helps to minimize the loss of highly changed ions through charge exchange. Meanwhile, a more compact structure and efficient cryogenic system, and excellent optical alignment have been of satisfactory. The magnetic field in the central trap region can reach up till 4.8 T with a uniformity of 2.77 × 10{sup −4}. So far the upgraded Shanghai-EBIT has been operated up to an electron energy of 151 keV and a beam current of up to 218 mA, although promotion to even higher energy is still in progress. Radiation from ions as highly charged as Xe{sup 53+,} {sup 54+} has been produced and the characterization of current density is estimated from the measured electron beam width.

  18. Dosimetry of small fields for Therac 20 electron beams.

    PubMed

    Sharma, S C; Wilson, D L; Jose, B

    1984-01-01

    The Therac 20 medical linear accelerator produces electron beams of 6, 9, 13, 17, and 20 MeV. We measured depth dose, isodose curves, and output factors for small electron fields using an ionization chamber, film, and thermoluminescent dosimeters. Tables and graphs were generated from these measurements for accurate treatment planning of various blocked and open fields.

  19. Design of Electron-Beam Controlled Switches.

    DTIC Science & Technology

    1982-11-24

    atomic physics, cumulative heating in the switch, and switch e-beam driver under repetitive, long conduction time (with respect to the load pulse ... surface flashover switch,𔃿 (3) the thyratron,’ŕ (4) the high pressure spark gap, (5) the magnetic switch,19 󈧘 and (6) the EBCS. The ongoing research...for both the low pressure gas and surface flashover closing switches has yielded some encouraging results. The technology appears to be simple. At

  20. Adjustable stiffness of individual piezoelectric nanofibers by electron beam polarization

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Li, Anton; Yao, Nan; Shi, Yong

    2011-11-01

    We present a method to adjust the stiffness of individual piezoelectric nanofiber by electron beam induced polarization under an in situ scanning electron microscopy. The lead zirconate titanate (PZT) nanofibers were fabricated by an electrospinning process. The Young's modulus was calculated from the resonant frequency excited by an oscillating electric field applied through a nanomanipulator. The stiffness can be adjusted up to 75% by induced polarization under the exposure of an electron beam to control the domain boundaries in single PZT nanofibers. Splitting effect of the resonant frequencies was observed due to anisotropic stiffness in polarized PZT nanofibers.