Sample records for electron capture cross-sections

  1. Scaling of cross sections for K-electron capture by high-energy protons and alpha-particles from the multielectron atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1976-01-01

    Electron capture by protons from H, He, and the K-shell of Ar, and alpha particles from He are considered. It is shown that when a certain function of the experimental cross sections is plotted versus the inverse of the collision energy, at high energies the function falls on a straight line. At lower energies the function concaves up or down, depending on the charge of the projectile, the effective charge and the ionization potential of the electron that is being captured. The plot can be used to predict cross sections where experimental data are not available, and as a guide in future experiments. High energy scaling formulas for K-electron capture by low-charge projectiles are given.

  2. Eikonal approximation for proton-helium electron-capture processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, K.; Toshima, N.; Ishihara, T.

    1985-09-01

    We calculate the capture cross sections for H/sup +/+He..-->..H+He/sup +/, treating the passive electron explicitly in a distorted-wave formalism based on the eikonal approximation. It is found that the shape of the differential cross sections is influenced considerably by the interaction between the passive electron and the incident proton, while the integrated cross sections are much less sensitive to that. The differential cross section at 293 keV agrees well with the experimental data except at extremely small scattering angles. The forward peak is reproduced well at higher energies. The integrated cross sections are in excellent agreement with experiments for themore » incident energy above 250 keV.« less

  3. Electron capture from circular Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Lundsgaard, M. F. V.; Chen, Z.; Lin, C. D.; Toshima, N.

    1995-02-01

    Electron capture cross sections from circular Rydberg states as a function of the angle cphi between the ion velocity and the angular momentum of the circular orbital have been reported recently by Hansen et al. [Phys. Rev. Lett. 71, 1522 (1993)]. We show that the observed cphi dependence can be explained in terms of the propensity rule that governs the dependence of electron capture cross sections on the magnetic quantum numbers of the initial excited states. We also carried out close-coupling calculations to show that electron capture from the circular H(3d,4f,5g) states by protons at the same scaled velocity has nearly the same cphi dependence.

  4. Theoretical studies of dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1985-01-01

    The calculation of dissociative recombination rates and cross sections over a wide temperature range by theoretical quantum chemical techniques is described. Model calculations on electron capture by diatomic ions are reported which illustrate the dependence of the rates and cross sections on electron energy, electron temperature, and vibrational temperature for three model crossings of neutral and ionic potential curves. It is shown that cross sections for recombination to the lowest vibrational level of the ion can vary by several orders of magnitude depending upon the position of the neutral and ionic potential curve crossing within the turning points of the v = 1 vibrational level. A new approach for calculating electron capture widths is reported. Ab initio calculations are described for recombination of O2(+) leading to excited O atoms.

  5. Image charge effects on electron capture by dust grains in dusty plasmas.

    PubMed

    Jung, Y D; Tawara, H

    2001-07-01

    Electron-capture processes by negatively charged dust grains from hydrogenic ions in dusty plasmas are investigated in accordance with the classical Bohr-Lindhard model. The attractive interaction between the electron in a hydrogenic ion and its own image charge inside the dust grain is included to obtain the total interaction energy between the electron and the dust grain. The electron-capture radius is determined by the total interaction energy and the kinetic energy of the released electron in the frame of the projectile dust grain. The classical straight-line trajectory approximation is applied to the motion of the ion in order to visualize the electron-capture cross section as a function of the impact parameter, kinetic energy of the projectile ion, and dust charge. It is found that the image charge inside the dust grain plays a significant role in the electron-capture process near the surface of the dust grain. The electron-capture cross section is found to be quite sensitive to the collision energy and dust charge.

  6. Electron capture in collisions of Al2+ ions with He atoms at intermediate energies

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Sato, H.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Kimura, M.

    2001-09-01

    Electron capture resulting from collisions of Al2+ ions with He atoms from 0.15 to 1000 keV/u is investigated using a molecular-orbital representation within a semiclassical frame. Molecular electronic states and corresponding couplings are determined by the ALCHEMY program. Sixteen molecular states all connecting to single-electron-capture processes are included, and hence radial and rotational couplings among these channels are fully considered. The trajectory effect arising from the straight-line, Coulomb, and ground-state potential trajectories for electron-capture and excitation processes is carefully assessed. The electron-capture cross section by ground-state Al2+(2S) ions slowly increases before it reaches a maximum of 1.3×10-16 cm2 at 100 keV/u. Those for metastable Al2+(2P) ions sharply increase with increasing energy, and reach a peak at 1 keV/u with a value of 1.5×10-16 cm2. The earlier experimental data are found to be larger by an order of magnitude although their energy dependence is in good accord with the present result. Excitation cross sections for both the ground and metastable states are found to be much larger by a factor of 2-3 than corresponding capture cross sections above 1 keV/u although they become comparable below this energy.

  7. Electron removal from H and He atoms in collisions with C q+ , O q+ ions

    NASA Astrophysics Data System (ADS)

    Janev, R. K.; McDowell, M. R. C.

    1984-06-01

    Cross sections for electron capture and ionisation in collision of partially and completely stripped C q+ , N q+ and O q+ ions with hydrogen and helium atoms have been calculated at selected energies. The classical trajectory Monte Carlo method was used with a variable-charge pseudopotential to describe the interaction of the active electron with the projectile ion. A scalling relationship has been derived for the electron removal (capture and ionisation) cross section which allows a unifield representation of the data.

  8. Electron capture cross sections by O+ from atomic He

    NASA Astrophysics Data System (ADS)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2009-11-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  9. Absolute emission cross sections for electron capture reactions of C2+, N3+, N4+ and O3+ ions in collisions with Li(2s) atoms

    NASA Astrophysics Data System (ADS)

    Rieger, G.; Pinnington, E. H.; Ciubotariu, C.

    2000-12-01

    Absolute photon emission cross sections following electron capture reactions have been measured for C2+, N3+, N4+ and O3+ ions colliding with Li(2s) atoms at keV energies. The results are compared with calculations using the extended classical over-the-barrier model by Niehaus. We explore the limits of our experimental method and present a detailed discussion of experimental errors.

  10. Application of PIXE in the determination of the production cross section of a radionuclide decaying by electron capture

    NASA Astrophysics Data System (ADS)

    Morales, J. R.; Chesta, M. A.; Cancino, S. A.; Miranda, P. A.; Dinator, M. I.; Avila, M. J.

    2005-01-01

    Proton induced X-ray emission (PIXE) has been applied to the measurement of the production cross section of a radionuclide decaying by electron capture. By performing a PIXE type experiment on the daughter nuclide important advantages are obtained. The determination of some factors with usually large uncertainties, like solid angle and detector efficiency were avoided. The method was applied to the determination of cross section of the reaction 63Cu(d, p)64Cu at 2.4 MeV for 64Cu production. This result is in full agreement with that obtained through the decay of the 1346 keV gamma ray of 64Cu.

  11. Density functional calculations of multiphonon capture cross sections at defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Barmparis, Georgios D.; Puzyrev, Yevgeniy S.; Zhang, X.-G.; Pantelides, Sokrates T.

    2014-03-01

    The theory of electron capture cross sections by multiphonon processes in semiconductors has a long and controversial history. Here we present a comprehensive theory and describe its implementation for realistic calculations. The Born-Oppenheimer and the Frank-Condon approximations are employed. The transition probability of an incoming electron is written as a product of an instantaneous electronic transition in the initial defect configuration and the line shape function (LSF) that describes the multiphonon processes that lead to lattice relaxation. The electronic matrix elements are calculated using the Projector Augmented Wave (PAW) method which yields the true wave functions while still employing a plane-wave basis. The LSF is calculated by employing a Monte Carlo method and the real phonon modes of the defect, calculated using density functional theory in the PAW scheme. Initial results of the capture cross section for a prototype system, namely a triply hydrogenated vacancy in Si are presented. The results are relevant for modeling device degradation by hot electron effects. This work is supported in part by the Samsung Advanced Institute of Technology (SAIT)'s Global Research Outreach (GRO) Program and by the LDRD program at ORNL.

  12. Electron capture and excitation processes in H+-H collisions in dense quantum plasmas

    NASA Astrophysics Data System (ADS)

    Jakimovski, D.; Markovska, N.; Janev, R. K.

    2016-10-01

    Electron capture and excitation processes in proton-hydrogen atom collisions taking place in dense quantum plasmas are studied by employing the two-centre atomic orbital close-coupling (TC-AOCC) method. The Debye-Hückel cosine (DHC) potential is used to describe the plasma screening effects on the Coulomb interaction between charged particles. The properties of a hydrogen atom with DHC potential are investigated as a function of the screening strength of the potential. It is found that the decrease in binding energy of nl levels with increasing screening strength is considerably faster than in the case of the Debye-Hückel (DH) screening potential, appropriate for description of charged particle interactions in weakly coupled classical plasmas. This results in a reduction in the number of bound states in the DHC potential with respect to that in the DH potential for the same plasma screening strength, and is reflected in the dynamics of excitation and electron capture processes for the two screened potentials. The TC-AOCC cross sections for total and state-selective electron capture and excitation cross sections with the DHC potential are calculated for a number of representative screening strengths in the 1-300 keV energy range and compared with those for the DH and pure Coulomb potential. The total capture cross sections for a selected number of screening strengths are compared with the available results from classical trajectory Monte Carlo calculations.

  13. Effect of nuclear shielding in collision of positive charged helium ions with helium atoms

    NASA Astrophysics Data System (ADS)

    Ghavaminia, Hoda; Ghavaminia, Shirin

    2018-03-01

    Differential in angle and absolute cross sections in energy of the scattered particles are obtained for single charge exchange in ^3He^+-^4He collisions by means of the four body boundary-corrected first Born approximation (CB1-4B). The quantum-mechanical post and prior transition amplitudes are derived in terms of two-dimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The effect of the dynamic electron correlation through the complete perturbation potential and the nuclear-screening influence of the passive electrons on the electron capture process is investigated. The results obtained in the CB1-4B method are compared with the available experimental data. For differential cross sections, the present results are in better agreement with experimental data than other theoretical data at extreme forward scattering angles. The integral cross sections are in excellent agreement with the experiment. Also, total cross sections for single electron capture, has been investigated using the classical trajectory Monte Carlo method. The present calculated results are found to be in an excellent agreement with the experimental data.

  14. A screened independent atom model for the description of ion collisions from atomic and molecular clusters

    NASA Astrophysics Data System (ADS)

    Lüdde, Hans Jürgen; Horbatsch, Marko; Kirchner, Tom

    2018-05-01

    We apply a recently introduced model for an independent-atom-like calculation of ion-impact electron transfer and ionization cross sections to proton collisions from water, neon, and carbon clusters. The model is based on a geometrical interpretation of the cluster cross section as an effective area composed of overlapping circular disks that are representative of the atomic contributions. The latter are calculated using a time-dependent density-functional-theory-based single-particle description with accurate exchange-only ground-state potentials. We find that the net capture and ionization cross sections in p-X n collisions are proportional to n α with 2/3 ≤ α ≤ 1. For capture from water clusters at 100 keV impact energy α is close to one, which is substantially different from the value α = 2/3 predicted by a previous theoretical work based on the simplest-level electron nuclear dynamics method. For ionization at 100 keV and for capture at lower energies we find smaller α values than for capture at 100 keV. This can be understood by considering the magnitude of the atomic cross sections and the resulting overlaps of the circular disks that make up the cluster cross section in our model. Results for neon and carbon clusters confirm these trends. Simple parametrizations are found which fit the cross sections remarkably well and suggest that they depend on the relevant bond lengths.

  15. Strong-potential Born calculations for 1s-1s electron capture from atoms by protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, J.H.; Kletke, R.E.; Sil, N.C.

    1985-08-01

    The strong-potential Born (SPB) approximation is examined by comparing various SPB calculations of high-velocity 1s-1s electron capture cross sections with one another and with experimental data. Above about 1 MeV, calculations using the SPB method of McGuire and Sil (SPMS) (Phys. Rev. A 28, 3679 (1983)) are in good agreement with total-cross-section observations for protons on H, He, C, Ne, and Ar as expected. For p+H and p+He, the SPB full-peaking (SPB-FP) approximation of Macek and Alston (Phys. Rev. A 26, 250 (1982)) and the SPB transverse-peaking (SPB-TP) approximation of Alston (Phys. Rev. A 27, 2342 (1982)) differ from ourmore » SPMS total cross sections by typically a factor of 2, as expected from general validity criteria. However, the differential cross sections at very forward angles (well within the Thomas angle) are the same in SPMS, SPB-FP, and SPB-TP methods in all cases. Below 1 MeV, cross sections obtained with use of various SPB methods differ considerably from one another, placing a limit of validity for these SPB calculations. We also suggest that in the gap between those energies where continuum intermediate states simply dominate, and above those energies where bound intermediate states simply dominate, detailed conceptual understanding of electron capture is incomplete.« less

  16. Fe L-shell Excitation Cross Section Measurements on EBIT-I

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.

    2006-09-01

    We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.

  17. Charge equilibrium and radiation of low-energy cosmic rays passing through interstellar medium

    NASA Technical Reports Server (NTRS)

    Rule, D. W.; Omidvar, K.

    1979-01-01

    The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, are considered. Electron loss of the beam has been taken into account by means of the first Born approximation, allowing for the target atom to remain unexcited or to be excited to all possible states. Electron-capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms and capture into all excited states of the projectile. The capture and loss cross sections are found to be within 20%-30% of the existing experimental values for most of the cases considered. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation, and collisional inner-shell ionization, taking into account the fluorescence yield of the ions, has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated, and error estimates made for the results.

  18. Importance of Thomas single-electron transfer in fast p-He collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.; Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1 D-69126; Gudmundsson, M.

    We report experimental angular differential cross sections for nonradiative single-electron capture in p-He collisions (p+ He -> H + He{sup +}) with a separate peak at the 0.47 mrad Thomas scattering angle for energies in the 1.3-12.5 MeV range. We find that the intensity of this peak scales with the projectile velocity as v{sub P}{sup -11}. This constitutes the first experimental test of the prediction from 1927 by L. H. Thomas [Proc. R. Soc. 114, 561 (1927)]. At our highest energy, the peak at the Thomas angle contributes with 13.5% to the total integrated nonradiative single-electron capture cross section.

  19. Formation of negative hydrogen ion: polarization electron capture and nonthermal shielding.

    PubMed

    Ki, Dae-Han; Jung, Young-Dae

    2012-09-07

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H(-)) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  20. A Semiempirical Formula for Single-Electron-Capture Cross Sections of Multiply Charged Ions Colliding with H, H2 and He

    NASA Astrophysics Data System (ADS)

    Nakai, Yohta; Shirai, Toshizo; Tabata, Tatsuo; Ito, Rinsuke

    1989-01-01

    A universal analytic formula is given for the total cross sections of single-electron capture by multiply-charged ions colliding with H, H2 or He. Values of constants in the formula have been determined by least-squares fit to experimental data collected from the literature. The formula is applicable to ions of almost all atomic species with charge q greater than 4 (for the H and H2 targets) or 5 (for the He target) in the energy region from about 1 to 107 eV amu-1. The root-mean-square deviation of the data from the formula is 29%. The formula shows that the cross sections are proportional to q1.07 at low energies and to q2.86 at high energies. Other trends of the cross sections that can be derived from the formula are also discussed.

  1. Electron emission from transfer ionization reaction in 30 keV amu‑1 He 2+ on Ar collision

    NASA Astrophysics Data System (ADS)

    Amaya-Tapia, A.; Antillón, A.; Estrada, C. D.

    2018-06-01

    A model is presented that describes the transfer ionization process in H{e}2++Ar collision at a projectile energy of 30 keV amu‑1. It is based on a semiclassical independent-particle close-coupling method that yields a reasonable agreement between calculated and experimental values of the total single-ionization and single-capture cross sections. It is found that the transfer ionization reaction is predominantly carried out through simultaneous capture and ionization, rather than by sequential processes. The transfer-ionization differential cross section in energy that is obtained satisfactorily reproduces the global behavior of the experimental data. Additionally, the probabilities of capture and ionization as function of the impact parameter for H{e}2++A{r}+ and H{e}++A{r}+ collisions are calculated, as far as we know, for the first time. The results suggest that the model captures essential elements that describe the two-electron transfer ionization process and could be applied to systems and processes of two electrons.

  2. Electron capture in collisions of Si3+ ions with atomic hydrogen from low to intermediate energies

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Liu, L.; Wang, J. G.

    2014-07-01

    The electron capture process for the Si3+(3s) + H(1s) collisions is investigated by the quantum-mechanical molecular orbital close-coupling (MOCC) method and by the two-center atomic orbital close-coupling (AOCC) method in the energy range of 10-5-10 keV/u and 0.8-200 keV/u, respectively. Total and state-selective cross sections are presented and compared with the available theoretical and experimental results. The present MOCC and AOCC results agree well with the experimental measurements, but show some discrepancy with the calculations of Wang et al. [Phys. Rev. A 74, 052709 (2006), 10.1103/PhysRevA.74.052709] at E > 40 eV/u because of the inclusion of rotational couplings, which play important roles in the electron capture process. At lower energies, the present results are about three to five times smaller than those of Wang et al. due to the difference in the molecular data at large internuclear distances. The energy behaviors of the electron capture cross sections are discussed on the basis of identified reaction mechanisms.

  3. Dissociative recombination of O2(+), NO(+) and N2(+)

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1983-01-01

    A new L(2) approach for the calculation of the threshold molecular capture width needed for the determination of DR cross sections was developed. The widths are calculated with Fermi's golden rule by substituting Rydberg orbitals for the free electron continuum coulomb orbital. It is shown that the calculated width converges exponentially as the effective principal quantum number of the Rydberg orbital increases. The threshold capture width is then easily obtained. Since atmospheric recombination involves very low energy electrons, the threshold capture widths are essential to the calculation of DR cross sections for the atmospheric species studied here. The approach described makes use of bound state computer codes already in use. A program that collects width matrix elements over CI wavefunctions for the initial and final states is described.

  4. The formation of excited atoms during charge exchange between hydrogen ions and alkali atoms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nieman, R. A.

    1971-01-01

    The charge exchange cross sections for protons and various alkali atoms are calculated using the classical approximation of Gryzinski. It is assumed that the hydrogen atoms resulting from charge exchange exist in all possible excited states. Charge transfer collisions between protons and potassium as well as protons and sodium atoms are studied. The energy range investigated is between 4 and 30 keV. The theoretical calculations of the capture cross section and the cross section for the creation of metastable 2S hydrogen are compared to experimental values. Good quantitative agreement is found for the capture cross section but only qualitative agreement for the metastable cross section. Analysis of the Lyman alpha window in molecular oxygen suggests that measured values of the metastable cross section may be in error. Thick alkali target data are also presented. This allows the determination of the total electron loss cross section. Finally, some work was done with H2(+).

  5. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    NASA Astrophysics Data System (ADS)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  6. Electron Capture in Slow Collision of He^2++H : Revisited

    NASA Astrophysics Data System (ADS)

    Krstic, Ps

    2003-05-01

    Very early experimental data (Fite et al. al., Proc. R. Soc. A 268, 527 (1962)) for He^2++H, recent ORNL measurements for Ne^2+ + H and our theoretical estimates suggest that the electron capture cross sections for these strongly exoergic collision systems drop slower toward low collision energies than expected from previous theories. We perform a theoretical study to establish and understand the true nature of this controversy. The calculations are based on the Hidden Crossings MOCC method, augmented with rotational and turning point effects.

  7. Large electron capture-cross-section of the major nonradiative recombination centers in Mg-doped GaN epilayers grown on a GaN substrate

    NASA Astrophysics Data System (ADS)

    Chichibu, S. F.; Shima, K.; Kojima, K.; Takashima, S.; Edo, M.; Ueno, K.; Ishibashi, S.; Uedono, A.

    2018-05-01

    Complementary time-resolved photoluminescence and positron annihilation measurements were carried out at room temperature on Mg-doped p-type GaN homoepitaxial films for identifying the origin and estimating the electron capture-cross-section ( σ n ) of the major nonradiative recombination centers (NRCs). To eliminate any influence by threading dislocations, free-standing GaN substrates were used. In Mg-doped p-type GaN, defect complexes composed of a Ga-vacancy (VGa) and multiple N-vacancies (VNs), namely, VGa(VN)2 [or even VGa(VN)3], are identified as the major intrinsic NRCs. Different from the case of 4H-SiC, atomic structures of intrinsic NRCs in p-type and n-type GaN are different: VGaVN divacancies are the major NRCs in n-type GaN. The σ n value approximately the middle of 10-13 cm2 is obtained for VGa(VN)n, which is larger than the hole capture-cross-section (σp = 7 × 10-14 cm2) of VGaVN in n-type GaN. Combined with larger thermal velocity of an electron, minority carrier lifetime in Mg-doped GaN becomes much shorter than that of n-type GaN.

  8. Isotope separation by photoselective dissociative electron capture

    DOEpatents

    Stevens, C.G.

    1978-08-29

    Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

  9. Isotope separation by photoselective dissociative electron capture

    DOEpatents

    Stevens, Charles G. [Pleasanton, CA

    1978-08-29

    A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

  10. Single ionization and capture cross sections from biological molecules by bare projectile impact*

    NASA Astrophysics Data System (ADS)

    Quinto, Michele A.; Monti, Juan M.; Montenegro, Pablo D.; Fojón, Omar A.; Champion, Christophe; Rivarola, Roberto D.

    2017-02-01

    We report calculations on single differential and total cross sections for single ionization and single electron capture from biological targets, namely, vapor water and DNA nucleobasese molecules, by bare projectile impact: H+, He2+, and C6+. They are performed within the Continuum Distorted Wave - Eikonal Initial State approximation and compared to several existing experimental data. This study is oriented to the obtention of a reliable set of theoretical data to be used as input in a Monte Carlo code destined to micro- and nano- dosimetry.

  11. Protonium Formation in Collisions of Antiprotons with Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Cohen, James S.

    1997-04-01

    The first full-dynamics calculation of barp capture by the H2 molecule has been performed using the quasiclassical Kirschbaum-Wilets method with modifications for accurate treatment of the molecular structure. It had been speculated in calculations of heavy-negative-particle (μ^-) capture by the H atom(J. S. Cohen, R. L. Martin, and W. R. Wadt, Phys. Rev. A 27), 1821 (1983). that the capture cross section for the H2 molecule might be smaller than that for the atom at very low energies (based on the absence of adiabatic ionization for the molecule) but larger at higher energies (based on the molecule having two electrons and a higher ionization potential). This speculation seemed to be borne out by a diabatic-states calculation,(G. Ya. Korenman and V. P. Popov, AIP Conference Proceedings 181, p. 145 (1989).) which showed the two cross sections crossing at a center-of-mass energy of ~8 eV. However, both the qualitative argument and that calculation neglected the molecular vibrational and rotational dynamics. The present calculations show that the molecular degrees of freedom of the target are important and that the molecular capture cross section is always larger and extends to a higher collision energy ( ~80 eV vs. ~25 eV) than the atomic cross section. The distribution of n and l quantum numbers of the captured barp will also be presented.

  12. Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.

    1980-01-01

    The defect responsible for reverse annealing in 2 ohm/cm n(+)/p silicon solar cells was identified. This defect, with energy level at e sub v + 0.30 eV was tentatively identified as a boron oxygen-vacancy complex. Results indicate that its removal could result in significant annealing for 2 ohm/cm and lower resistivity cells at temperatures as low as 200 C. These results were obtained by use of an expression derived from the Shockley-Read-Hall recombination theory which relates measured diffusion length ratios to relative defect concentrations and electron capture cross sections. The relative defect concentrations and one of the required capture cross sections are obtained from Deep Level Transient Spectroscopy. Four additional capture cross sections are obtained using diffusion length data and data from temperature dependent lifetime studied. These calculated results are in reasonable agreement with experimental data.

  13. Negative ion productions in high velocity collision between small carbon clusters and Helium atom target

    NASA Astrophysics Data System (ADS)

    M, Chabot; K, Béroff; T, Pino; G, Féraud; N, Dothi; Padellec A, Le; G, Martinet; S, Bouneau; Y, Carpentier

    2012-11-01

    We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn-*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.

  14. Numerical calculation of charge exchange cross sections for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Mendez, Luis

    2016-09-01

    The diagnostics of impurity density and temperature in the plasma core in tokamak plasmas is carried out by applying the charge exchange recombination spectroscopy (CXRS) technique, where a fast beam of H atoms collides with the plasma particles leading to electron capture reactions with the impurity ions. The diagnostics is based on the emission of the excited ions formed in the electron capture. The application of the CXRS requires the knowledge of accurate state-selective cross sections, which in general are not accessible experimentally, and the calculation of cross sections for the high n capture levels, required for the diagnostics in the intermediate energy domain of the probe beam, is particularly difficult. In this work, we present a lattice numerical method to solve the time dependent Schrödinger equation. The method is based on the GridTDSE package, it is applicable in the wide energy range 1 - 500 keV/u and can be used to assess the accuracy of previous calculations. The application of the method will be illustrated with calculations for collisions of multiply charged ions with H. Work partially supported by project ENE2014-52432-R (Secretaria de Estado de I+D+i, Spain).

  15. Molecular processes in a high temperature shock layer

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1985-01-01

    The development of techniques for the calculation of electron capture widths, electronic wave functions, cross sections and rates needed for the description of the dissociative recombination (DR) of molecular ions with electrons were described. The cross sections and rates were calculated by using harmonic oscillator wave functions for the ion and a delta function approximation for the continuum vibrational wave function in the repulsive dissociative channel. In order to obtain DR cross sections of quantitative accuracy, a computer program which solves the one dimensional nuclear motion wave equation was revised to calculate the cross sections and rates. The program and the new results are described. Included is a discussion of large windows found in the dissociative recombination cross sections from excited ion vibrational levels. These windows have not been previously reported in the literature. The magnitude of the DR cross sections for several dissociative routes are sensitive to the location of the crossing of the neutral and ion potential curves. Studies of the effects of basis set and CI wave function size on vertical excitation energies are described. Preliminary studies on N2 and O2 using large scale wave functions are also reported.

  16. Semiclassical analysis of angular differential cross sections for single-electron capture in 250-eV H++H collisions

    NASA Astrophysics Data System (ADS)

    Frémont, F.

    2015-05-01

    A classical model based on the resolution of Hamilton equations of motion is used to determine the angular distribution of H projectiles following single-electron capture in H++H collisions at an incident projectile energy of 250 eV. At such low energies, the experimental charge-exchange probability and angular differential cross sections exhibit oscillatory structures that are classically related to the number of swaps the electron experiences between the target and the projectile during the collision. These oscillations are well reproduced by models based on quantum mechanics. In the present paper, the angular distribution of H projectiles is determined classically, at angles varying from 0.1° up to 7°. The variation in intensity due to interferences caused by the indiscernibility between different trajectories is calculated, and the role of these interferences is discussed.

  17. Charge-equilibrium and radiation of low-energy cosmic rays passing through interstellar medium

    NASA Technical Reports Server (NTRS)

    Rule, D. W.; Omidvar, K.

    1977-01-01

    The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, is considered. Electron loss of the beam has been taken into account by means of the First Born approximation allowing for the target atom to remain unexcited, or to be excited to all possible states. Electron capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation and collisional inner-shell ionization of the ions has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated.

  18. Electron-electron interaction in ion-atom collisions studied by projectile state-resolved Auger-electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohyung Lee.

    This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KKL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O{sup q+} and F{sup q+} incident on H{sub 2} and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system, was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionizedmore » by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180{degree} Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross section of the electron-electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron-electron ionization (eeI) were determined. Projectile 2l capture with 1s {yields} 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory.« less

  19. Ion dipole capture cross sections at low ion and rotational energies - Comparison of integrated capture cross sections with reaction cross sections for NH3 and H2O parent-ion collisions.

    NASA Technical Reports Server (NTRS)

    Dugan, J. V., Jr.; Canright, R. B., Jr.

    1972-01-01

    The numerical capture cross section is calculated from the capture ratio, defined as the fraction of trajectories reaching a prescribed minimum separation of 3 A. The calculated capture cross sections for a rotational temperature of 77 K suggest large reaction cross sections in 80 K experiments for the large dipole-moment target, methyl cyanide.

  20. General features of the dissociative recombination of polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, S. T.; Jungen, Ch.; Schneider, I. F.

    We discuss some aspects of a simple expression for the low-energy dissociative recombination cross section that applies when the recombination process is dominated by the indirect mechanism. In most previous applications, this expression has been applied to capture into vibrationally excited Rydberg states with the assumption that capture is always followed by prompt dissociation. Here we consider the dissociative recombination of larger polyatomic ions and electrons. More specifically, we consider capture into electronically core-excited Rydberg states, and begin to assess its potential importance for larger systems.

  1. General features of the dissociative recombination of polyatomic molecules

    DOE PAGES

    Pratt, S. T.; Jungen, Ch.; Schneider, I. F.; ...

    2015-01-29

    We discuss some aspects of a simple expression for the low-energy dissociative recombination cross section that applies when the recombination process is dominated by the indirect mechanism. In most previous applications, this expression has been applied to capture into vibrationally excited Rydberg states with the assumption that capture is always followed by prompt dissociation. Here we consider the dissociative recombination of larger polyatomic ions and electrons. More specifically, we consider capture into electronically core-excited Rydberg states, and begin to assess its potential importance for larger systems.

  2. Charge exchange cross sections in slow collisions of Si3+ with Hydrogen atom

    NASA Astrophysics Data System (ADS)

    Joseph, Dwayne; Quashie, Edwin; Saha, Bidhan

    2011-05-01

    In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. Work supported by NSF CREST project (grant #0630370).

  3. Kuang's Semi-Classical Formalism for Calculating Electron Capture Cross Sections: A Space- Physics Application

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2014-01-01

    Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.

  4. Electron capture in collisions of S4+ with helium

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Stancil, P. C.; Zygelman, B.

    2002-07-01

    Charge transfer due to collisions of ground-state S4+(3s2 1S) ions with helium is investigated for energies between 0.1 meV u-1 and 10 MeV u-1. Total and state-selective single electron capture (SEC) cross sections and rate coefficients are obtained utilizing the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling (AOCC), classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Previous data are limited to a calculation of the total SEC rate coefficient using the Landau-Zener model that is, in comparison to the results presented here, three orders of magnitude smaller. The MOCC SEC cross sections at low energy reveal a multichannel interference effect. True double capture is also investigated with the AOCC and CTMC approaches while autoionizing double capture and transfer ionization (TI) is explored with CTMC. SEC is found to be the dominant process except for E>200 keV u-1 when TI becomes the primary capture channel. Astrophysical implications are briefly discussed.

  5. Theory of electron capture from a hydrogen-like ion by a bare ion with extensions to inner-shell capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alston, S.G.

    1982-01-01

    A complete systematic derivation is given of a new approximation for the calculation of the cross section for electron capture from a hydrogen-like ion of large nuclear charge Z/sub T/e by a bare ion of charge Z/sub p/e moving with speed v. The amplitude in the wave treatment is obtained through consistent expansion in the small parameters Z/sub p//Z/sub T/ and Z/sub p/e/sup 2//hv; however, the ratio Z/sub T/e/sup 2//hv is not assumed small. Electron-target nucleus interactions are included to all orders and electron-projectile interactions were included consistently to first order so that the theory is called the strong potentialmore » Born (SPB). Following a careful analysis of the approach to the energy shell, an off-shell factor is seen to arise which does not appear in the impulse approximation (IA). The effects of this factor on the capture amplitude are explored. It is shown that, in comparison with the IA, the correct weighting of the target spectrum of intermediate states in the SPB significantly alters the 1s ..-->.. ns cross section and at the same time makes peaking approximations to the amplitude more realistic, even for intermediate velocity Z/sub p/e/sup 2//h<« less

  6. Analysis of microscopic parameters of surface charging in polymer caused by defocused electron beam irradiation.

    PubMed

    Liu, Jing; Zhang, Hai-Bo

    2014-12-01

    The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Absolute cross sections for electronic excitation of condensed tetrahydrofuran (THF) by 11-16 eV electrons.

    PubMed

    Lemelin, V; Bass, A D; Cloutier, P; Sanche, L

    2016-11-07

    Absolute cross section (CS) data on the interaction of low energy electrons with DNA and its molecular constituents are required as input parameters in Monte-Carlo type simulations, for several radiobiological applications. Previously [V. Lemelin et al., J. Chem. Phys. 144, 074701 (2016)], we measured absolute vibrational CSs for low-energy electron scattering from condensed tetrahydrofuran, a convenient surrogate for the deoxyribose. Here we report absolute electronic CSs for energy losses of between 6 and 11.5 eV, by electrons with energies between 11 and 16 eV. The variation of these CSs with incident electron energy shows no evidence of transient anion states, consistent with theoretical and other experimental results, indicating that initial electron capture leading to DNA strand breaks occurs primarily on DNA bases or the phosphate group.

  8. Angular Distributions of Differential Electron Capture Cross Sections in Collisions Between Low-Velocity Highly-Charged Ions and Neutral Targets.

    NASA Astrophysics Data System (ADS)

    Waggoner, William Tracy

    1990-01-01

    Experimental capture cross sections d sigma / dtheta versus theta , are presented for various ions incident on neutral targets. First, distributions are presented for Ar ^{rm 8+} ions incident on H_{rm 2}, D _{rm 2}, and Ar targets. Energy gain studies indicate that capture occurs to primarily a 5d,f final state of Ar^{rm 7+} with some contributions from transfer ionization (T.I.) channels. Angular distribution spectra for all three targets are similar, with spectra having a main peak located at forward angles which is attributed to single capture events, and a secondary structure occurring at large angles which is attributed to T.I. contributions. A series of Ar^{rm 8+} on Ar spectra were collected using a retarding grid system as a low resolution energy spectrometer to resolve single capture events from T.I. events. The resulting single capture and T.I. angular distributions are presented. Results are discussed in terms of a classical deflection function employing a simple two state curve crossing model. Angular distributions for electron capture from He by C, N, O, F, and Ne ions with charge states from 5 ^+-8^+ are presented for projectile energies between 1.2 and 2.0 kV. Distributions for the same charge state but different ion species are simlar, but not identical with distributions for the 5 ^+ and 7^+ ions being strongly forward peaked, the 6^+ distributions are much less forward peaked with the O^{6+} distributions showing structure, the Ne^{8+} ion distribution appears to be an intermediate case between forward peaking and large angle scattering. These results are discussed in terms of classical deflection functions which utilize two state Coulomb diabatic curve crossing models. Finally, angular distributions are presented for electron capture from He by Ar^{rm 6+} ions at energies between 1287 eV and 296 eV. At large projectile energies the distribution is broad. As the energy decreases below 523 eV, distributions shift to forward angles with a second peak appearing outside the Coulomb angle, theta_{c} = Q/2E, which continues to grow in magnitude as the projectile energy decreases further. Results are compared with a model calculation employing a two state diabatic Coulomb curve crossing model and the classical deflection function.

  9. Electron capture to the continuum manifestation in fully differential cross sections for ion impact single ionization

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Fojón, O. A.; Rivarola, R. D.

    2018-04-01

    We present theoretical calculations of single ionization of He atoms by protons and multiply charged ions. The kinematical conditions are deliberately chosen in such a way that the ejected electron velocity matches the projectile impact velocity. The computed fully differential cross sections (FDCS) in the scattering plane using the continuum-distorted wave-eikonal initial state show a distinct peaked structure for a polar electron emission angle θ k = 0°. This element is absent when a first order theory is employed. Consequently, we can argue that this peak is a clear manifestation of a three-body effect, not observed before in FDCS. We discuss a possible interpretation of this new feature.

  10. Isomer depletion as experimental evidence of nuclear excitation by electron capture

    NASA Astrophysics Data System (ADS)

    Chiara, C. J.; Carroll, J. J.; Carpenter, M. P.; Greene, J. P.; Hartley, D. J.; Janssens, R. V. F.; Lane, G. J.; Marsh, J. C.; Matters, D. A.; Polasik, M.; Rzadkiewicz, J.; Seweryniak, D.; Zhu, S.; Bottoni, S.; Hayes, A. B.; Karamian, S. A.

    2018-02-01

    The atomic nucleus and its electrons are often thought of as independent systems that are held together in the atom by their mutual attraction. Their interaction, however, leads to other important effects, such as providing an additional decay mode for excited nuclear states, whereby the nucleus releases energy by ejecting an atomic electron instead of by emitting a γ-ray. This ‘internal conversion’ has been known for about a hundred years and can be used to study nuclei and their interaction with their electrons. In the inverse process—nuclear excitation by electron capture (NEEC)—a free electron is captured into an atomic vacancy and can excite the nucleus to a higher-energy state, provided that the kinetic energy of the free electron plus the magnitude of its binding energy once captured matches the nuclear energy difference between the two states. NEEC was predicted in 1976 and has not hitherto been observed. Here we report evidence of NEEC in molybdenum-93 and determine the probability and cross-section for the process in a beam-based experimental scenario. Our results provide a standard for the assessment of theoretical models relevant to NEEC, which predict cross-sections that span many orders of magnitude. The greatest practical effect of the NEEC process may be on the survival of nuclei in stellar environments, in which it could excite isomers (that is, long-lived nuclear states) to shorter-lived states. Such excitations may reduce the abundance of the isotope after its production. This is an example of ‘isomer depletion’, which has been investigated previously through other reactions, but is used here to obtain evidence for NEEC.

  11. Electron Capture in Proton Collisions with CO.

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Schultz, D. R.; Kimura, M.; Gu, J.-P.; Hirsch, G.; Buenker, R. J.; Li, Y.

    1999-10-01

    Electron capture by protons following collisions with carbon monoxide is studied with a variety of theoretical approaches including quantal and semiclassical molecular-orbital close-coupling (MOCC) and classical trajectory Monte Carlo (CTMC) techniques. The MOCC treatments utilize potential surfaces and couplings computed for a range of H^+-CO orientation angles and C-O separations. Results including integral, differential, electronic state-selective, and vibrational state-selective cross sections will be presented for low- to intermediate-energies. Comparison with experiment will be made where possible and the relevance of the reaction in astrophysics and atmospheric physics will be discussed.

  12. ERCS08: A FORTRAN program equipped with a Windows graphics user interface that calculates ECPSSR cross sections for the removal of atomic electrons

    NASA Astrophysics Data System (ADS)

    Horvat, Vladimir

    2009-06-01

    ERCS08 is a program for computing the atomic electron removal cross sections. It is written in FORTRAN in order to make it more portable and easier to customize by a large community of physicists, but it also comes with a separate windows graphics user interface control application ERCS08w that makes it easy to quickly prepare the input file, run the program, as well as view and analyze the output. The calculations are based on the ECPSSR theory for direct (Coulomb) ionization and non-radiative electron capture. With versatility in mind, the program allows for selective inclusion or exclusion of individual contributions to the cross sections from effects such as projectile energy loss, Coulomb deflection of the projectile, perturbation of electron's stationary state (polarization and binding), as well as relativity. This makes it straightforward to assess the importance of each effect in a given collision regime. The control application also makes it easy to setup for calculations in inverse kinematics (i.e. ionization of projectile ions by target atoms or ions). Program summaryProgram title: ERCS08 Catalogue identifier: AECU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12 832 No. of bytes in distributed program, including test data, etc.: 318 420 Distribution format: tar.gz Programming language: Once the input file is prepared (using a text editor or ERCS08w), all the calculations are done in FORTRAN using double precision. Computer: see "Operating system" below Operating system: The main program (ERCS08) can run on any computer equipped with a FORTRAN compiler. Its pre-compiled executable file (supplied) runs under DOS or Windows. The supplied graphics user interface control application (ERCS08w) requires a Windows operating system. ERCS08w is designed to be used along with a text editor. Any editor can be used, including the one that comes with the operating system (for example, Edit for DOS or Notepad for Windows). Classification: 16.7, 16.8 Nature of problem: ECPSSR has become a typical tag word for a theory that goes beyond the standard plane wave Born approximation (PWBA) in order to predict the cross sections for direct (Coulomb) ionization of atomic electrons by projectile ions, taking into account the energy loss (E) and Coulomb deflection (C) of the projectile, as well as the perturbed stationary state (PSS) and relativistic nature (R) of the target electron. Its treatment of non-radiative electron capture to the projectile goes beyond the Oppenheimer-Brinkman-Kramers approximation (OBK) to include the effects of C, PSS, and R. PSS is described in terms of increased target electron binding (B) due to the presence of the projectile in the vicinity of the target nucleus, and (for direct ionization only) polarization of the target electron cloud (P) while projectile is outside the electron's shell radius. Several modifications of the theory have been recently suggested or endorsed by one of its authors (Lapicki). These modifications are sometimes explicit in the tag word (for example, eCPSSR, eCUSR, ReCPSShsR, etc.) A cross section for the ionization of a target electron is assumed to equal the sum of the cross sections for direct ionization (DI) and electron capture (EC). Solution method: The calculations are based on the ECPSSR theory for direct (Coulomb) ionization and non-radiative electron capture. With versatility in mind, the program allows for selective inclusion or exclusion of individual contributions to the cross sections from effects such as projectile energy loss, Coulomb deflection of the projectile, perturbation of electron's stationary state (polarization and binding), as well as relativity. This makes it straightforward to assess the importance of each effect in a given collision regime. The control application also makes it easy to setup for calculations in inverse kinematics (i.e. ionization of projectile ions by target atoms or ions). Restrictions: The program is restricted to the ionization of K, L, and M electrons. The theory is non-relativistic, which effectively limits its applicability to projectile energies up to about 50 MeV/amu. However, the theory is extended to apply to relativistic light projectiles. Radiative electron capture is not taken into account, since its contribution is found to be negligible in the collision regimes covered by the ECPSSR theory. Unusual features: Windows graphics user interface along with a FORTRAN code for calculations, selective inclusion or exclusion of specific corrections, inclusion of the extension to relativistic light projectiles, inclusion of non-radiative electron capture. Running time: Running the program using the input data provided with the distribution only takes a few seconds.

  13. Electron capture by Ne3+ ions from atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Rejoub, R.; Bannister, M. E.; Havener, C. C.; Savin, D. W.; Verzani, C. J.; Wang, J. G.; Stancil, P. C.

    2004-05-01

    Using the Oak Ridge National Laboratory ion-atom merged-beam apparatus, absolute total electron-capture cross sections have been measured for collisions of Ne3+ ions with hydrogen (deuterium) atoms at energies between 0.07 and 826 eV/u . Comparison to previous measurements shows large discrepancies between 50 and 400 eV/u . Previously published molecular-orbital close-coupling (MOCC) calculations were performed over limited energy ranges, but show good agreement with the present measurements. Here MOCC calculations are presented for energies between 0.01 and 1000 eV/u for collisions with both H and D. For energies below ˜1 eV/u , an enhancement in the magnitude of both the experimental and theoretical cross sections is observed which is attributed to the ion-induced dipole attraction between the reactants. Below ˜4 eV/u , the present calculations show a significant target isotope effect.

  14. Studying Electron-Capture on ^64Zn in Supernovae with the (t,^3He) Charge-Exchange Reaction

    NASA Astrophysics Data System (ADS)

    Hitt, G. W.; Austin, Sam M.; Bazin, D.; Gade, A.; Guess, C. J.; Galaviz-Redondo, D.; Shimbara, Y.; Tur, C.; Zegers, R. G. T.; Horoi, M.; Howard, M. E.; Smith, E. E.

    2008-10-01

    A secondary, 115 MeV/u triton beam has been developed at NSCL for use in (t,^3He) charge-exchange(CE) reaction studies. This (n,p)-type CE reaction is useful for extracting the full Gamow-Teller (GT) response of the nucleus, overcoming Q-value restrictions present in conventional beta-decay studies. The strength (B(GT)) in ^64Cu has been determined from the absolute cross section measurement of ^64Zn(t,^3He) near zero-degrees, exploiting an empirical proportionality between cross section and B(GT). The detailed features of the B(GT) distribution in a nucleus has an important impact on electron-capture (EC) rates in Type Ia and Core-Collapse supernovae. The measured B(GT) in ^64Cu is directly compared with the results of modern shell model interactions which are used to calculate the GT contribution to EC on nuclei in supernova simulations.

  15. Measurements of 67Ga production cross section induced by protons on natZn in the low energy range from 1.678 to 2.444 MeV

    NASA Astrophysics Data System (ADS)

    Wachter, J. A.; Miranda, P. A.; Morales, J. R.; Cancino, S. A.; Correa, R.

    2015-02-01

    The experimental production cross section for the reaction natZn(p,x)67Ga has been measured in the energy range from 1.678 to 2.444 MeV. The methodology used in this work is based on characteristic X-ray emitted after irradiation by the daughter nuclei that decays by electron capture (EC) and the use of a complementary PIXE experiment. By doing so, expressions needed to determine cross section values are simplified since experimental factors such as geometric setup and an detector efficiency are avoided. 67Ga is a radionuclide particularly suited for this method since it decays by electron capture in 100% and the subsequent characteristic X-ray emission is easily detected. Natural zinc targets were fabricated by PVD technique and afterwards their thicknesses were determined by Rutherford Backscattering Spectrometry. Cross sections measurements were carried out by using the Van de Graaff accelerator located at Faculty of Sciences, University of Chile. It was found that our data for the natZn(p,x)67Ga reaction are, in general, in good agreement when compared to existing experimental data and to those calculated ALICE/ASH nuclear code. On the other hand, values predicted by Talys-1.6 are showing systematically lower magnitudes than our measured data.

  16. Single and double capture in F9+ + Ar collisions: Comparison of total capture with capture occurring from the Ar K shell

    NASA Astrophysics Data System (ADS)

    La Mantia, David; Kumara, Nuwan; Kayani, Asghar; Simon, Anna; Tanis, John

    2016-05-01

    Total cross sections for single and double capture, as well as the corresponding cross sections for capture resulting in the emission of an Ar K x ray, were measured. This work was performed at Western Michigan University with the use of the tandem Van de Graaff accelerator. A 45 MeV beam of fully-stripped fluorine ions was collided with argon gas molecules in a differentially pumped cell. Surface barrier detectors were used to observe the charge changed projectiles and a Si(Li) x-ray detector, placed at 90o to the incident beam, were used to measure coincidences with Ar K x rays. The total capture cross sections are compared to previously measured cross sections in the existing literature. The coincidence cross sections, considerably smaller than the total cross sections, are found to be nearly equal for single and double capture in contrast to the total cross sections, which vary by about an order of magnitude. Possible reasons for this behavior are discussed. Supported in part by the NSF.

  17. Coupled-Sturmian and perturbative treatments of electron transfer and ionization in high-energy p-He+ collisions

    NASA Astrophysics Data System (ADS)

    Winter, Thomas G.; Alston, Steven G.

    1992-02-01

    Cross sections have been determined for electron transfer and ionization in collisions between protons and He+ ions at proton energies from several hundred kilo-electron-volts to 2 MeV. A coupled-Sturmian approach is taken, extending the work of Winter [Phys. Rev. A 35, 3799 (1987)] and Stodden et al. [Phys. Rev. A 41, 1281 (1990)] to high energies where perturbative approaches are expected to be valid. An explicit connection is made with the first-order Born approximation for ionization and the impulse version of the distorted, strong-potential Born approximation for electron transfer. The capture cross section is shown to be affected by the presence of target basis functions of positive energy near v2/2, corresponding to the Thomas mechanism.

  18. M-shell electron capture and direct ionization of gold by 25-MeV carbon and 32-MeV oxygen ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.

    1984-01-01

    M-shell x-ray production cross sections have been measured for thin solid targets of Au for 25 MeV /sup 12/C/sup q+/ (q = 4, 5, 6) and for 32 MeV /sup 16/O/sup q+/ (q = 5, 7, 8). The microscopic cross sections were determined from measurements made with targets ranging in thickness from 0.5 to 100 ..mu..g/cm/sup 2/. For projectiles with one or two K-shell vacancies, the M-shell x-ray production cross sections are found to be enhanced over those by projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) and electron capture (EC) to the L,more » M, N ... shells and EC to the K-shell of the projectile have been extracted from the data. The results are compared to the predictions of first Born theories i.e. PWBA for DI and OBK of Nikolaev for EC and the ECPSSR approach that accounts for energy loss, Coulomb deflection and relativistic effects in the perturbed stationary state theory. 25 references, 3 figures, 1 table.« less

  19. Factors influencing photoluminescence and photocarrier lifetime in CdSeTe/CdMgTe double heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, Craig H.; Zaunbrecher, K. N.; Sohal, S.

    2016-10-28

    CdSeTe/CdMgTe double heterostructures were produced with both n-type and unintentionally doped absorber layers. Measurements of the dependence of photoluminescence intensity on excitation intensity were carried out, as well as measurements of time-resolved photoluminescence decay after an excitation pulse. It was found that decay times under very low photon injection conditions are dominated by a non-radiative Shockley-Read-Hall process described using a recombination center with an asymmetric capture cross section, where the cross section for holes is larger than that for electrons. As a result of the asymmetry, the center effectively extends photoluminescence decay by a hole trapping phenomenon. A reduction inmore » electron capture cross section appeared at doping densities over 10 16cm -3. An analysis of the excitation intensity dependence of room temperature photoluminescence revealed a strong relationship with doping concentration. Here, this allows estimates of the carrier concentration to be made through a non-destructive optical method. Iodine was found to be an effective n-type dopant for CdTe, allowing controllable carrier concentrations without an increased rate of non-radiative recombination.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhioev, Alan A., E-mail: dzhioev@theor.jinr.ru; Vdovin, A. I., E-mail: vdovin@theor.jinr.ru; Stoyanov, Ch., E-mail: stoyanov@inrne.bas.bg

    We combine the thermal QRPA approach with the Skyrme energy density functional theory (Skyrme–TQRPA) for modelling the process of electron capture on nuclei in supernova environment. For a sample nucleus, {sup 56}Fe, the Skyrme–TQRPA approach is applied to analyze thermal effects on the strength function of GT{sub +} transitions which dominate electron capture at E{sub e} ≤ 30 MeV. Several Skyrme interactions are used in order to verify the sensitivity of the obtained results to the Skyrme force parameters. Finite-temperature cross sections are calculated and the results are comparedwith those of the other model calculations.

  1. Dark matter in the Sun: scattering off electrons vs nucleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garani, Raghuveer; Palomares-Ruiz, Sergio, E-mail: garani@th.physik.uni-bonn.de, E-mail: sergiopr@ific.uv.es

    The annihilation of dark matter (DM) particles accumulated in the Sun could produce a flux of neutrinos, which is potentially detectable with neutrino detectors/telescopes and the DM elastic scattering cross section can be constrained. Although the process of DM capture in astrophysical objects like the Sun is commonly assumed to be due to interactions only with nucleons, there are scenarios in which tree-level DM couplings to quarks are absent, and even if loop-induced interactions with nucleons are allowed, scatterings off electrons could be the dominant capture mechanism. We consider this possibility and study in detail all the ingredients necessary tomore » compute the neutrino production rates from DM annihilations in the Sun (capture, annihilation and evaporation rates) for velocity-independent and isotropic, velocity-dependent and isotropic and momentum-dependent scattering cross sections for DM interactions with electrons and compare them with the results obtained for the case of interactions with nucleons. Moreover, we improve the usual calculations in a number of ways and provide analytical expressions in three appendices. Interestingly, we find that the evaporation mass in the case of interactions with electrons could be below the GeV range, depending on the high-velocity tail of the DM distribution in the Sun, which would open a new mass window for searching for this type of scenarios.« less

  2. Capture cross sections on unstable nuclei

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  3. Topics in electron capture by fast ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsin, S.H.

    1987-01-01

    The post-collision interaction (PCI) model was applied, together with the eikonal approximation, to study the (n = 2,3) capture cross sections in p + H(ls) collisions. The results indeed improve the previous eikonal calculations for l = 0 cases, and agree quite well with present experimental data. Calculations using the strong-potential Born (SPB) approximation, with the Sil and McGuire technique, for capture into the np, nd levels are also presented. While these cross sections are smaller than cross sections for capture into the ns levels at high velocities, nevertheless the Thomas peak is clearly evident in both the absolute valuemore » m = 2, absolute value m = 1 and m = 0 magnetic substates in p + H(ls) collisions. Also calculated were corrections to the SPB using the Distorted-Wave Born formalism of Taulbjerg and Briggs. In the sense of a plane-wave Born expansion, all terms of the third Born approximation and all single switching fourth Born terms are included, but a peaking approximation is needed to reduce the calculation to tractable form. Effects of the higher terms are most visible in the valley between the Thomas peak and the forward peak. The Thomas peak is visible in the correction term, even though it includes no second Born contributions.« less

  4. Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of Cs-133 and I-127

    NASA Astrophysics Data System (ADS)

    Umezawa, Seigo; Igashira, Masayuki; Katabuchi, Tatuya; Dominic, Moraru; Yanagida, Shotaro; Okamiya, Tomohiro

    2017-09-01

    The neutron capture cross sections and the capture gamma-ray spectra of 127I and 133Cs at incident neutron energies from 15 to 100 keV have been measured by the time-of-flight method. Capture gamma-rays were detected with an anti-Compton NaI(Tl) spectrometer, and the pulse-height weighting technique was applied to derive capture yields. The capture cross sections of 127I and 133Cs were determined using the standard capture cross section of 197Au. The total errors of the cross sections were 3.8-5.1%. The obtained cross sections were compared with evaluated values in JENDL-4.0 and ENDF/B-VII.1. For 127I, the energy dependence is different between the present results and the evaluations. For 133Cs, the evaluated values in JENDL-4.0 agree with the present results but the evaluated values in ENDF/B-VII.1 are smaller than the present results by 14%-18%. The capture gamma-ray spectra of 133Cs and 127I were derived by unfolding the pulse height spectra with detector response functions.

  5. Technique for evaluation of the strong potential Born approximation for electron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sil, N.C.; McGuire, J.H.

    1985-04-01

    A technique is presented for evaluating differential cross sections in the strong potential Born (SPB) approximation. Our final expression is expressed as a finite sum of one-dimensional integrals, expressible as a finite sum of derivatives of hypergeometric functions.

  6. Low-energy-electron scattering by CH3CN

    NASA Astrophysics Data System (ADS)

    Maioli, Leticia S.; Bettega, Márcio H. F.

    2017-12-01

    We report integral and differential cross sections for the elastic scattering of low-energy electrons by methyl cyanide (CH3CN), also known as acetonitrile. The cross sections were computed using the Schwinger multichannel method implemented with pseudopotentials. The fixed-nuclei scattering calculations were performed in the static-exchange and static-exchange plus polarization approximations for energies up to 15 eV. In our calculations with polarization effects, we found a π* shape resonance at around 2.22 eV and a broad structure associated to a σ* shape resonance at around 7 eV. The low-lying resonance was assigned to the electron capture by the two-fold degenerate π* orbital of the E symmetry of C3v group; the second was assigned to a σ* shape resonance in the A1 symmetry. We compared our cross sections with theoretical results and experimental data available in the literature, and in general we found good agreement for the positions of the two resonances. Contribution to the Topical Issue: "Low Energy Positron and Electron Interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.

  7. Capture cross sections on unstable nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.

    2017-09-13

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photonmore » beams. Here, challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.« less

  8. Electron capture in collisions of ? with H and ? with C

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Gu, J.-P.; Havener, C. C.; Krstic, P. S.; Schultz, D. R.; Kimura, M.; Zygelman, B.; Hirsch, G.; Buenker, R. J.; Bannister, M. E.

    1998-08-01

    A comprehensive theoretical and experimental study of electron capture in collisions of 0953-4075/31/16/017/img15 with H and 0953-4075/31/16/017/img16 with C extending over the energy range 0953-4075/31/16/017/img17 to 0953-4075/31/16/017/img18 is presented. A variety of theoretical approaches were used including those based on quantal molecular-orbital close-coupling (MOCC), multielectron hidden crossings (MEHC), quantal decay and classical trajectory Monte Carlo techniques. Radiative charge transfer cross sections were computed using the optical potential/distorted wave (OPDW) and fully quantal (FQ) approaches. The MOCC, OPDW and FQ calculations incorporated ab initio potentials, nonadiabatic coupling matrix elements and transition moments computed at the configuration-interaction level. Ab initio potential surfaces in the plane of complex internuclear distance were obtained for the MEHC calculations. Merged-beam measurements were performed between 0953-4075/31/16/017/img19 and 0953-4075/31/16/017/img20 for the 0953-4075/31/16/017/img21 collision system. Diagnostics of the 0953-4075/31/16/017/img15 beam with a crossed electron beam could find no presence of a 0953-4075/31/16/017/img15 metastable component. The current results, in conjunction with previous measurements, are used to deduce a set of recommended cross sections.

  9. Simple, empirical approach to predict neutron capture cross sections from nuclear masses

    NASA Astrophysics Data System (ADS)

    Couture, A.; Casten, R. F.; Cakirli, R. B.

    2017-12-01

    Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of neutron capture cross sections, extending far from stability, including for nuclei of the highest sensitivity to r -process nucleosynthesis.

  10. An analysis of point defects induced by In, Al, Ni, and Sn dopants in Bridgman-grown CdZnTe detectors and their influence on trapping of charge carriers

    DOE PAGES

    Gul, R.; Roy, U. N.; James, R. B.

    2017-03-15

    In this paper, we studied point defects induced in Bridgman-grown CdZnTe detectors doped with Indium (In), Aluminium (Al), Nickel (Ni), and Tin (Sn). Point defects associated with different dopants were observed, and these defects were analyzed in detail for their contributions to electron/hole (e/h) trapping. We also explored the correlations between the nature and abundance of the point defects with their influence on the resistivity, electron mobility-lifetime (μτ e) product, and electron trapping time. We used current-deep level transient spectroscopy to determine the energy, capture cross-section, and concentration of each trap. Furthermore, we used the data to determine the trappingmore » and de-trapping times for the charge carriers. In In-doped CdZnTe detectors, uncompensated Cd vacancies (V Cd -) were identified as a dominant trap. The V Cd - were almost compensated in detectors doped with Al, Ni, and Sn, in addition to co-doping with In. Dominant traps related to the dopant were found at E v + 0.36 eV and E v + 1.1 eV, E c + 76 meV and E v + 0.61 eV, E v + 36 meV and E v + 0.86 eV, E v + 0.52 eV and E c + 0.83 eV in CZT:In, CZT:In + Al, CZT:In + Ni, and CZT:In + Sn, respectively. Results indicate that the addition of other dopants with In affects the type, nature, concentration (N t), and capture cross-section (σ) and hence trapping (t t) and de-trapping (t dt) times. Finally, the dopant-induced traps, their corresponding concentrations, and charge capture cross-section play an important role in the performance of radiation detectors, especially for devices that rely solely on electron transport.« less

  11. An analysis of point defects induced by In, Al, Ni, and Sn dopants in Bridgman-grown CdZnTe detectors and their influence on trapping of charge carriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gul, R.; Roy, U. N.; James, R. B.

    In this paper, we studied point defects induced in Bridgman-grown CdZnTe detectors doped with Indium (In), Aluminium (Al), Nickel (Ni), and Tin (Sn). Point defects associated with different dopants were observed, and these defects were analyzed in detail for their contributions to electron/hole (e/h) trapping. We also explored the correlations between the nature and abundance of the point defects with their influence on the resistivity, electron mobility-lifetime (μτ e) product, and electron trapping time. We used current-deep level transient spectroscopy to determine the energy, capture cross-section, and concentration of each trap. Furthermore, we used the data to determine the trappingmore » and de-trapping times for the charge carriers. In In-doped CdZnTe detectors, uncompensated Cd vacancies (V Cd -) were identified as a dominant trap. The V Cd - were almost compensated in detectors doped with Al, Ni, and Sn, in addition to co-doping with In. Dominant traps related to the dopant were found at E v + 0.36 eV and E v + 1.1 eV, E c + 76 meV and E v + 0.61 eV, E v + 36 meV and E v + 0.86 eV, E v + 0.52 eV and E c + 0.83 eV in CZT:In, CZT:In + Al, CZT:In + Ni, and CZT:In + Sn, respectively. Results indicate that the addition of other dopants with In affects the type, nature, concentration (N t), and capture cross-section (σ) and hence trapping (t t) and de-trapping (t dt) times. Finally, the dopant-induced traps, their corresponding concentrations, and charge capture cross-section play an important role in the performance of radiation detectors, especially for devices that rely solely on electron transport.« less

  12. Negative-ion formation in the explosives RDX, PETN, and TNT using the Reversal Electron Attachment Detection (READ) technique

    NASA Technical Reports Server (NTRS)

    Chutijian, Ara; Boumsellek, S.; Alajajian, S. H.

    1992-01-01

    In the search for high sensitivity and direct atmospheric sampling of trace species, techniques have been developed such as atmospheric-sampling, glow-discharge ionization (ASGDI), corona discharge, atmospheric pressure ionization (API), electron-capture detection (ECD), and negative-ion chemical ionization (NICI) that are capable of detecting parts-per-billion to parts-per-trillion concentrations of trace species. These techniques are based on positive- or negative-ion formation via charge-transfer to the target, or electron capture under multiple-collision conditions in a Maxwellian distribution of electron energies at the source temperature. One drawback of the high-pressure, corona- or glow-discharge devices is that they are susceptible to interferences either through indistinguishable product masses, or through undesired ion-molecule reactions. The ASGDI technique is relatively immune from such interferences, since at target concentrations of less than 1 ppm the majority of negative ions arises via electron capture rather than through ion-molecule chemistry. A drawback of the conventional ECD, and possibly of the ASGDI, is that they exhibit vanishingly small densities of electrons with energies in the range 0-10 millielectron volts (meV), as can be seen from a typical Maxwellian electron energy distribution function at T = 300 K. Slowing the electrons to these subthermal (less than 10 meV) energies is crucial, since the cross section for attachment of several large classes of molecules is known to increase to values larger than 10(exp -12) sq cm at near-zero electron energies. In the limit of zero energy these cross sections are predicted to diverge as epsilon(exp -1/2), where epsilon is the electron energy. In order to provide a better 'match' between the electron energy distribution function and attachment cross section, a new concept of attachment in an electrostatic mirror was developed. In this scheme, electrons are brought to a momentary halt by reversing their direction with electrostatic fields. At this turning point the electrons have zero or near-zero energy. A beam of target molecules is introduced, and the resultant negative ions extracted. This basic idea has been recently improved to allow for better reversal geometry, higher electron currents, lower backgrounds, and increased negative-ion extraction efficiency. We present herein application of the so-called reversal electron attachment detector (READ) to the study of negative-ion formation in the explosives molecules RDX, PETN, and TNT under single-collision conditions.

  13. Radiative-emission analysis in charge-exchange collisions of O6 + with argon, water, and methane

    NASA Astrophysics Data System (ADS)

    Leung, Anthony C. K.; Kirchner, Tom

    2017-04-01

    Processes of electron capture followed by Auger and radiative decay were investigated in slow ion-atom and -molecule collisions. A quantum-mechanical analysis which utilizes the basis generator method within an independent electron model was carried out for collisions of O 6 + with Ar, H2O , and CH4 at impact energies of 1.17 and 2.33 keV/amu. At these impact energies, a closure approximation in the spectral representation of the Hamiltonian for molecules was found to be necessary to yield reliable results. Total single-, double-, and triple-electron-capture cross sections obtained show good agreement with previous measurements and calculations using the classical trajectory Monte Carlo method. The corresponding emission spectra from single capture for each collision system are in satisfactory agreement with previous calculations.

  14. Dynamics of the cascade capture of electrons by charged donors in GaAs and InP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleshkin, V. Ya., E-mail: aleshkin@ipmras.ru; Gavrilenko, L. V.

    2016-08-15

    The times for the cascade capture of an electron by a charged impurity have been calculated for pulsed and stationary excitations of impurity photoconductivity in GaAs and InP. The characteristic capture times under pulsed and continuous excitations are shown to differ noticeably both from each other and from the value given by the Abakumov–Perel–Yassievich formula for a charged impurity concentration greater than 10{sup 10} cm{sup –3}. The cause of this difference has been established. The Abakumov–Perel–Yassievich formula for the cascade capture cross section in the case of stationary excitation has been generalized. The dependences of the cascade capture rate onmore » the charged impurity concentration in GaAs and InP have been found for three temperatures in the case of pulsed excitation.« less

  15. Neutron capture reactions at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredeweg, T. A.

    2008-05-12

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4{pi} BaF{sub 2} array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (> or approx.100 {mu}g) and/or radioactive (< or approx. 100 mCi) species. The measurements made possible with this array will be useful in answering outstanding questions in the areas of national security, threat reduction, nuclear astrophysics, advanced reactor design and accelerator transmutation of waste. Since the commissioning of DANCE we have performed neutron capture cross section measurements on a wide array of medium tomore » heavy mass nuclides. Measurements to date include neutron capture cross sections on {sup 241,243}Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio ({alpha} = {sigma}{sub {gamma}}/{sigma}{sub f}) for {sup 235}U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.« less

  16. Quasiclassical treatment of the Auger effect in slow ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Frémont, F.

    2017-09-01

    A quasiclassical model based on the resolution of Hamilton equations of motion is used to get evidence for Auger electron emission following double-electron capture in 150-keV N e10 ++He collisions. Electron-electron interaction is taken into account during the collision by using pure Coulombic potential. To make sure that the helium target is stable before the collision, phenomenological potentials for the electron-nucleus interactions that simulate the Heisenberg principle are included in addition to the Coulombic potential. First, single- and double-electron captures are determined and compared with previous experiments and theories. Then, integration time evolution is calculated for autoionizing and nonautoionizing double capture. In contrast with single capture, the number of electrons originating from autoionization slowly increases with integration time. A fit of the calculated cross sections by means of an exponential function indicates that the average lifetime is 4.4 ×10-3a .u . , in very good agreement with the average lifetime deduced from experiments and a classical model introduced to calculate individual angular momentum distributions. The present calculation demonstrates the ability of classical models to treat the Auger effect, which is a pure quantum effect.

  17. Radiative neutron capture cross sections on 176Lu at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  18. Compound-nuclear Reactions with Unstable Isotopes: Constraining Capture Cross Sections with Indirect Data and Theory

    NASA Astrophysics Data System (ADS)

    Escher, Jutta

    2016-09-01

    Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Several indirect methods have recently been proposed to determine neutron capture cross sections for unstable isotopes. These methods aim at constraining statistical calculations of capture cross sections with data obtained from the decay of the compound nucleus relevant to the desired reaction. Each method produces this compound nucleus in a different manner (via a light-ion reaction, a photon-induced reaction, or β decay) and requires additional ingredients to yield the sought-after cross section. This contribution focuses on the process of determining capture cross sections from inelastic scattering and transfer experiments. Specifically, theoretical descriptions of the (p,d) transfer reaction have been developed to complement recent measurements in the Zr-Y region. The procedure for obtaining constraints for unknown capture cross sections is illustrated. The main advantages and challenges of this approach are compared to those of the proposed alternatives. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Differential cross sections for electron capture in p + H2 collisions

    NASA Astrophysics Data System (ADS)

    Igarashi, Akinori; Gulyás, Laszlo; Ohsaki, Akihiko

    2017-11-01

    Projectile angular distributions for electron capture in p + H2 collisions at 25 and 75 keV impact energies, measured by Sharma et al. [Phys. Rev. A 86, 022706 (2012)], are calculated using the CDW-EIS and eikonal approximations. Angular distributions evaluated in the CDW-EIS approximation are in good agreement with the experimental data measured for coherent projectile beams. Incoherent projectile scatterings are also considered by folding the coherent angular distributions over the transverse momentum distribution of the projectile wave-packet. Reasonable agreements with the measurements are obtained only with coherence parameters very different from those reported in the experiments.

  20. Survival-mediated capture and fusion cross sections for heavy-element synthesis

    NASA Astrophysics Data System (ADS)

    Yao, L.; Loveland, W.

    2018-01-01

    The cross section for producing a heavy evaporation residue σEVR in a fusion reaction can be written as a product of three nonseparable factors, i.e., the capture cross section, the fusion probability PCN, and the survival probability Wsur. Each of these factors is dependent on the spin. However, one must remember that the Wsur term is zero or very small for higher spin values, thus effectively limiting the capture and fusion terms. For a series of ˜287 reactions leading to heavy evaporation residues with ZCN≤110 , we point out the implications of this fact for capture cross sections for heavy element formation reactions. From a comparison of calculated and measured evaporation residue cross sections we deduce values of the fusion probability PCN for some of these reactions.

  1. Using 171,173Yb(d,p) to benchmark a surrogate reaction for neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatarik, R; Bersntein, L; Burke, J

    2008-08-08

    Neutron capture cross sections on unstable nuclei are important for many applications in nuclear structure and astrophysics. Measuring these cross sections directly is a major challenge and often impossible. An indirect approach for measuring these cross sections is the surrogate reaction method, which makes it possible to relate the desired cross section to a cross section of an alternate reaction that proceeds through the same compound nucleus. To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured with the goal to reproduce the known [1] neutron capture cross section ratiosmore » of these nuclei.« less

  2. Exploring incomplete fusion fraction in 6,7Li induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Parkar, V. V.; Jha, V.; Kailas, S.

    2017-11-01

    We have included breakup effects explicitly to simultaneously calculate the measured cross-sections of the complete fusion, incomplete fusion, and total fusion for 6,7Li projectiles on various targets using the Continuum Discretized Coupled Channels method. The breakup absorption cross-sections obtained with different choices of short range imaginary potentials are utilized to evaluate the individual α-capture and d/t-capture cross-sections and compare with the measured data. It is interesting to note, while in case of 7Li projectile the cross-sections for triton-ICF/triton-capture is far more dominant than α-ICF/α-capture at all energies, similar behavior is not observed in case of 6Li projectile for the deuteron-ICF/deuteron-capture and α-ICF/α-capture. Both these observations are also corroborated by the experimental data for all the systems studied.

  3. Measurement of the 169Tm (n ,3 n ) 167Tm cross section and the associated branching ratios in the decay of 167Tm

    NASA Astrophysics Data System (ADS)

    Champine, B.; Gooden, M. E.; Krishichayan, Norman, E. B.; Scielzo, N. D.; Stoyer, M. A.; Thomas, K. J.; Tonchev, A. P.; Tornow, W.; Wang, B. S.

    2016-01-01

    The cross section for the 169Tm(n ,3 n ) 167Tm reaction was measured from 17 to 22 MeV using quasimonoenergetic neutrons produced by the 2H(d ,n ) 3He reaction. This energy range was studied to resolve the discrepancy between previous (n ,3 n ) cross-section measurements. In addition, the absolute γ -ray branching ratios following the electron-capture decay of 167Tm were measured. These results provide more reliable nuclear data for an important diagnostic that is used at the National Ignition Facility to estimate the yield of reaction-in-flight neutrons produced via the inertial-confinement-fusion plasma in deuterium-tritium capsules.

  4. Cross-Section Measurement of the 169Tm(n,3n)167Tm Reaction and Constraining the Branching Ratio of 167Tm

    NASA Astrophysics Data System (ADS)

    Champine, Brian; Gooden, Matthew; Thomas, Keenan; Krishichayan, F.; Norman, Eric; Scielzo, Nick; Tonchev, Anton; Tornow, Werner

    2015-10-01

    The cross section of the 169Tm(n,3n)167Tm reaction has been measured from 17.5 to 21.5 MeV using activation technique. This energy region was chosen to resolve the two different trends of the previous (n,3n) cross section measurements on 169Tm. In addition, the branching ratio of the 207.8 keV γ-ray line stemming from electron capture of 167Tm was measured to be 0.419(16). The result of these measurements provide more accurate diagnostic estimation of the so called reaction-in-flight neutrons produced via the internal confinement fusion plasma in deuterium-tritium capsules at the National Ignition Facility.

  5. Minority Carrier Electron Traps in CZTSSe Solar Cells Characterized by DLTS and DLOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheraj, V.; Lund, E. A.; Caruso, A. E.

    2016-11-21

    We report observations of minority carrier interactions with deep levels in 6-8% efficient Cu2ZnSn(S, Se)4 (CZTSSe) devices using conventional and minority deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS). Directly observing defect interactions with minority carriers is critical to understanding the recombination impact of deep levels. In devices with Cu2ZnSn(S, Se)4 nanoparticle ink absorber layers we identify a mid-gap state capturing and emitting minority electrons. It is 590+/-50 meV from the conduction band mobility edge, has a concentration near 1015/cm3, and has an apparent electron capture cross section ~10-14 cm2. We conclude that, while energetically positioned nearly-ideallymore » to be a recombination center, these defects instead act as electron traps because of a smaller hole cross-section. In CZTSe devices produced using coevaporation, we used minority carrier DLTS on traditional samples as well as ones with transparent Ohmic back contacts. These experiments demonstrate methods for unambiguously probing minority carrier/defect interactions in solar cells in order to establish direct links between defect energy level observations and minority carrier lifetimes. Furthermore, we demonstrate the use of steady-state device simulation to aid in the interpretation of DLTS results e.g. to put bounds on the complimentary carrier cross section even in the absence its direct measurement. This combined experimental and theoretical approach establishes rigorous bounds on the impact on carrier lifetime and Voc of defects observed with DLTS as opposed to, for example, assuming that all deep states act as strong recombination centers.« less

  6. Cross sections of relativistic radiative electron capture by use of the strong-potential Born calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hino, K.; Watanabe, T.

    1987-07-15

    The relativistically extended strong-potential Born (SPB) formalism is applied to the radiative electron capture process caused by the bombardment of a heavy and highly stripped charged particle with relativistically high velocity. The results are compared with those by use of nonrelativistic SPB calculations and with those by use of the relativistic Born calculation (Sauter's formula), which includes no distortion effects between a heavy projectile ion and an active electron. Even if the strong distortion effects are taken into consideration, the shapes of photon angular distributions in the laboratory frame still nearly depend on sin/sup 2/theta/sub L/(theta/sub L/ is the anglemore » of the emitted photon) in the vicinity of the angle of 90/sup 0/, which is the same as the results by use of Sauter's formula. The higher the charge of a projectile ion becomes, however, the greater the discrepancy between the angular shape of our results and that of Sauter's becomes at both smaller and larger angles than at 90/sup 0/. As is expected, the magnitudes of the differential and the total cross sections are drastically influenced by the distortion effects ascribable to a large charge of a heavy projectile ion such as U/sup 92+/. Our results are in good agreement with recent experiments. In addition, the Coulomb off-shell factor introduced by the SPB theory is found playing important roles in the case of the relativistic radiative electron capture process because the results calculated by using the relativistic impulse approximation are too underestimated.« less

  7. Measurement of the 169Tm(n,3n) 167Tm cross section and the associated branching ratios in the decay of 167Tm [Measurement of the 169Tm(n,3n) 167Tm cross section and the branching ratios in the decay of 167Tm

    DOE PAGES

    Champine, B.; Gooden, M. E.; Krishichayan, .; ...

    2016-01-14

    The cross section for the 169Tm(n,3n) 167Tm reaction was measured from 17 to 22 MeV using quasimonoenergetic neutrons produced by the 2H(d,n) 3He reaction. This energy range was studied to resolve the discrepancy between previous (n,3n) cross-section measurements. In addition, the absolute γ-ray branching ratios following the electron-capture decay of 167Tm were measured. Furthermore, these results provide more reliable nuclear data for an important diagnostic that is used at the National Ignition Facility to estimate the yield of reaction-in-flight neutrons produced via the inertial-confinement-fusion plasma in deuterium-tritium capsules.

  8. New Neutron Cross-Section Measurements at ORELA for Improved Nuclear Data Calculations

    NASA Astrophysics Data System (ADS)

    Guber, K. H.; Leal, L. C.; Sayer, R. O.; Koehler, P. E.; Valentine, T. E.; Derrien, H.; Harvey, J. A.

    2005-05-01

    Many older neutron cross-section evaluations from libraries such as ENDF/B-VI or JENDL-3.2 exhibit deficiencies or do not cover energy ranges that are important for criticality safety applications. These deficiencies may occur in the resolved and unresolved-resonance regions. Consequently, these evaluated data may not be adequate for nuclear criticality calculations where effects such as self-shielding, multiple scattering, or Doppler broadening are important. To support the Nuclear Criticality Predictability Program, neutron cross-section measurements have been initiated at the Oak Ridge Electron Linear Accelerator (ORELA). ORELA is the only high-power white neutron source with excellent time resolution still operating in the United States. It is ideally suited to measure fission, neutron total, and capture cross sections in the energy range from 1 eV to ˜600 keV, which is important for many nuclear criticality safety applications.

  9. Neutron capture cross section of {sup 14}C of astrophysical interest studied by Coulomb breakup of {sup 15}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T.; Fukuda, N.; Aoi, N.

    2009-03-15

    The neutron capture reaction on {sup 14}C leading to the {sup 15}C ground state, which plays an important role in various nucleosynthesis processes, has been studied using the Coulomb breakup of {sup 15}C on a Pb target at 68 MeV/nucleon. The breakup cross section has been converted into the energy-dependent neutron capture cross section using the principle of detailed balance. The energy spectrum shows typical p-wave neutron capture characteristics, which is explained by the fact that the ground state of {sup 15}C possesses a strong single-particle s-wave component and a moderate-sized neutron halo structure. The capture cross section for themore » {sup 14}C(n,{gamma}){sup 15}C reaction derived from the present experiment has been found to be consistent with the most recent data, directly measured using a {sup 14}C target. This result assures the validity of the Coulomb breakup method in deriving the neutron capture cross section for neutron-rich nuclei.« less

  10. Precision measurement of the 238 Pu ( n , γ ) cross section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A.; Wu, C. Y.; Kwan, E.

    2013-10-14

    Here, the neutron-capture cross section for 238Pu was measured by using the detector for advanced neutron-capture experiments (DANCE) array, which is a highly segmented and highly efficient 4π γ-ray calorimeter. The neutron-capture events were recognized by the total γ-ray energy deposited in DANCE, which is equal to the reaction Q value plus the incident neutron energy. The absolute neutron-capture cross section was derived as a function of incident neutron energy from thermal to about 30 keV. The measured cross section for incident neutron energy below 18 eV was performed for the first time by using the direct method and doesmore » not support the most recently adopted changes in endf/b-vii.1 where the neutron-capture cross section was lowered by as much as a factor of ~3 in the neighborhood of 0.3 eV from those evaluated in ENDF/B-VII.0.« less

  11. Statistical Features of the Thermal Neutron Capture Cross Sections

    DOE PAGES

    Hussein, M. S.; Carlson, B. V.; Kerman, A. K.

    2016-02-01

    In this paper, we discuss the existence of huge thermal neutron capture cross sections in several nuclei. The values of the cross sections are several orders of magnitude bigger than expected at these very low energies. We lend support to the idea that this phenomenon is random in nature and is similar to what we have learned from the study of parity violation in the actinide region. The idea of statistical doorways is advanced as a unified concept in the delineation of large numbers in the nuclear world. The average number of maxima per unit mass, < n A >more » in the capture cross section is calculated and related to the underlying cross section correlation function and found to be < n A > = 3/(π√2γ A), where γ A is a characteristic mass correlation width which designates the degree of remnant coherence in the system. Finally, we trace this coherence to nucleosynthesis which produced the nuclei whose neutron capture cross sections are considered here.« less

  12. Statistical Features of the Thermal Neutron Capture Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussein, M. S.; Carlson, B. V.; Kerman, A. K.

    In this paper, we discuss the existence of huge thermal neutron capture cross sections in several nuclei. The values of the cross sections are several orders of magnitude bigger than expected at these very low energies. We lend support to the idea that this phenomenon is random in nature and is similar to what we have learned from the study of parity violation in the actinide region. The idea of statistical doorways is advanced as a unified concept in the delineation of large numbers in the nuclear world. The average number of maxima per unit mass, < n A >more » in the capture cross section is calculated and related to the underlying cross section correlation function and found to be < n A > = 3/(π√2γ A), where γ A is a characteristic mass correlation width which designates the degree of remnant coherence in the system. Finally, we trace this coherence to nucleosynthesis which produced the nuclei whose neutron capture cross sections are considered here.« less

  13. Measuring and Validating Neutron Capture Cross Sections Using a Lead Slowing-Down Spectrometer

    NASA Astrophysics Data System (ADS)

    Thompson, Nicholas

    Accurate nuclear data is essential for the modeling, design, and operation of nuclear systems. In this work, the Rensselaer Polytechnic Institute (RPI) Lead Slowing-Down Spectrometer (LSDS) at the Gaerttner Linear Accelerator Center (LINAC) was used to measure neutron capture cross sections and validate capture cross sections in cross section libraries. The RPI LINAC was used to create a fast burst of neutrons in the center of the LSDS, a large cube of high purity lead. A sample and YAP:Ce scintillator were placed in the LSDS, and as neutrons lost energy through scattering interactions with the lead, the scintillator detected capture gammas resulting from neutron capture events in the sample. Samples of silver, gold, cobalt, iron, indium, molybdenum, niobium, nickel, tin, tantalum, and zirconium were measured. Data was collected as a function of time after neutron pulse, or slowing-down time, which is correlated to average neutron energy. An analog and a digital data acquisition system collected data simultaneously, allowing for collection of pulse shape information as well as timing. Collection of digital data allowed for pulse shape analysis after the experiment. This data was then analyzed and compared to Monte Carlo simulations to validate the accuracy of neutron capture cross section libraries. These measurements represent the first time that neutron capture cross sections have been measured using an LSDS in the United States, and the first time tools such as coincidence measurements and pulse height weighting have been applied to measurements of neutron capture cross sections using an LSDS. Significant differences between measurement results and simulation results were found in multiple materials, and some errors in nuclear data libraries have already been identified due to these measurements.

  14. Density Functional Theory Calculations of Activation Energies for Non-radiative Carrier Capture by Deep Defect Levels in Semiconductors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modine, Normand Arthur; Wright, Alan F.; Lee, Stephen R.

    Carrier recombination due to defects can have a major impact on device performance. The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Kohn-Sham density functional theory (DFT) has been widely and successfully used to predict defect levels in semiconductors and insulators, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry worked out the fundamental theory of carrier-capture cross-sections in the 1970s and showed that, in most cases, room temperature carrier-capture cross-sections differ between defects primarily due to differences in the carrier capture activationmore » energies. Here, we present an approach to using DFT to calculate carrier capture activation energies that does not depend on perturbation theory or an assumed configuration coordinate, and we demonstrate this approach for the -3/-2 level of the Ga vacancy in wurtzite GaN.« less

  15. Theoretical investigation of the electron capture and loss processes in the collisions of He2+ + Ne.

    PubMed

    Hong, Xuhai; Wang, Feng; Jiao, Yalong; Su, Wenyong; Wang, Jianguo; Gou, Bingcong

    2013-08-28

    Based on the time-dependent density functional theory, a method is developed to study ion-atom collision dynamics, which self-consistently couples the quantum mechanical description of electron dynamics with the classical treatment of the ion motion. Employing real-time and real-space method, the coordinate space translation technique is introduced to allow one to focus on the region of target or projectile depending on the actual concerned process. The benchmark calculations are performed for the collisions of He(2+) + Ne, and the time evolution of electron density distribution is monitored, which provides interesting details of the interaction dynamics between the electrons and ion cores. The cross sections of single and many electron capture and loss have been calculated in the energy range of 1-1000 keV/amu, and the results show a good agreement with the available experiments over a wide range of impact energies.

  16. Charge Exchange in Slow Collisions of O+ with He

    NASA Astrophysics Data System (ADS)

    Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Lebermann, H. P.; Funke, P.; Buenker, R. J.

    2009-03-01

    A comparative study is reported for the charge transfer in collisions of O^+ with He using the fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. The electron capture processes O^+(^4S^o, ^2D^o, ^2P^o) + He -> O(^3P) + He^+ are recalculated. The semiclassical MOCC approach was examined by a detailed comparision of cross sections and transition probabilities from both the fully quantal and semiclassical MOCC approaches. The discrepancies reported previously between the semiclassical and the quantal MOCC cross sections may be attributed due to the insufficient step-size resolution of the semiclassical calculations. Our results are also compared with the experimental cross sections and found good agreements. This work is supported by NSF, CREST program (Grant#0630370).

  17. FY07 LDRD Final Report Neutron Capture Cross-Section Measurements at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, W; Agvaanluvsan, U; Wilk, P

    2008-02-08

    We have measured neutron capture cross sections intended to address defense science problems including mix and the Quantification of Margins and Uncertainties (QMU), and provide details about statistical decay of excited nuclei. A major part of this project included developing the ability to produce radioactive targets. The cross-section measurements were made using the white neutron source at the Los Alamos Neutron Science Center, the detector array called DANCE (The Detector for Advanced Neutron Capture Experiments) and targets important for astrophysics and stockpile stewardship. DANCE is at the leading edge of neutron capture physics and represents a major leap forward inmore » capability. The detector array was recently built with LDRD money. Our measurements are a significant part of the early results from the new experimental DANCE facility. Neutron capture reactions are important for basic nuclear science, including astrophysics and the statistics of the {gamma}-ray cascades, and for applied science, including stockpile science and technology. We were most interested in neutron capture with neutron energies in the range between 1 eV and a few hundred keV, with targets important to basic science, and the s-process in particular. Of particular interest were neutron capture cross-section measurements of rare isotopes, especially radioactive isotopes. A strong collaboration between universities and Los Alamos due to the Academic Alliance was in place at the start of our project. Our project gave Livermore leverage in focusing on Livermore interests. The Lawrence Livermore Laboratory did not have a resident expert in cross-section measurements; this project allowed us to develop this expertise. For many radionuclides, the cross sections for destruction, especially (n,{gamma}), are not well known, and there is no adequate model that describes neutron capture. The modeling problem is significant because, at low energies where capture reactions are important, the neutron reaction cross sections show resonance behavior or follow 1/v of the incident neutrons. In the case of odd-odd nuclei, the modeling problem is particularly difficult because degenerate states (rotational bands) present in even-even nuclei have separated in energy. Our work included interpretation of the {gamma}-ray spectra to compare with the Statistical Model and provides information on level density and statistical decay. Neutron capture cross sections are of programmatic interest to defense sciences because many elements were added to nuclear devices in order to determine various details of the nuclear detonation, including fission yields, fusion yields, and mix. Both product nuclei created by (n,2n) reactions and reactant nuclei are transmuted by neutron capture during the explosion. Very few of the (n,{gamma}) cross sections for reactions that create products measured by radiochemists have ever been experimentally determined; most are calculated by radiochemical equivalences. Our new experimentally measured capture cross sections directly impact our knowledge about the uncertainties in device performances, which enhances our capability of carrying out our stockpile stewardship program. Europium and gadolinium cross sections are important for both astrophysics and defense programs. Measurements made prior to this project on stable europium targets differ by 30-40%, which was considered to be significantly disparate. Of the gadolinium isotopes, {sup 151}Gd is important for stockpile stewardship, and {sup 153}Gd is of high interest to astrophysics, and nether of these (radioactive) gadolinium (n,{gamma}) cross sections have been measured. Additional stable gadolinium isotopes, including {sup 157,160}Gd are of interest to astrophysics. Historical measurements of gadolinium isotopes, including {sup 152,154}Gd, had disagreements similar to the 30-40% disagreements found in the historical europium data. Actinide capture cross section measurements are important for both Stockpile Stewardship and for nuclear forensics. We focused on the {sup 242m}Am(n,{gamma}) measurement, as there was no existing capture measurement for this isotope. The cross-section measurements (cross section vs. E{sub n}) were made at the Detector for Advanced Neutron Capture Experiments. DANCE is comprised of a highly segmented array of barium fluoride (BaF{sub 2}) crystals specifically designed for neutron capture-gamma measurements, using small radioactive targets (less than one milligram). A picture of half the array, along with a photo of one crystal, is shown in Fig. 1. DANCE provides the world's leading capability for measurements of neutron capture cross sections with radioactive targets. The DANCE is a 4{pi} calorimeter and uses the intense spallation neutron source the Lujan Center at the Los Alamos National Laboratory. The detector array consists of 159 barium fluoride crystals arranged in a sphere around the target.« less

  18. Electron attachment to the SF{sub 6} molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com; Kosarim, A. V.

    Various models for transition between electron and nuclear subsystems are compared in the case of electron attachment to the SF{sub 6} molecule. Experimental data, including the cross section of electron attachment to this molecule as a function of the electron energy and vibrational temperature, the rate constants of this process in swarm experiments, and the rates of the chemionization process involving Rydberg atoms and the SF{sub 6} molecule, are collected and treated. Based on the data and on the resonant character of electron capture into an autodetachment ion state in accordance with the Breit–Wigner formula, we find that intersection ofmore » the molecule and negative ion electron terms proceeds above the potential well bottom of the molecule with the barrier height 0.05–0.1 eV, and the transition between these electron terms has both the tunnel and abovebarrier character. The limit of small electron energies e for the electron attachment cross section at room vibrational temperature takes place at ε ≪ 2 meV, while in the range 2 meV ≪ ε ≪ 80 meV, the cross section is inversely proportional to ε. In considering the attachment process as a result of the interaction between the electron and vibrational degrees of freedom, we find the coupling factor f between them to be f = aT at low vibrational temperatures T with a ≈ 3 × 10{sup −4} K{sup −1}. The coupling factor is independent of the temperature at T > 400 K.« less

  19. Measurements of neutron capture cross sections on 70Zn at 0.96 and 1.69 MeV

    NASA Astrophysics Data System (ADS)

    Punte, L. R. M.; Lalremruata, B.; Otuka, N.; Suryanarayana, S. V.; Iwamoto, Y.; Pachuau, Rebecca; Satheesh, B.; Thanga, H. H.; Danu, L. S.; Desai, V. V.; Hlondo, L. R.; Kailas, S.; Ganesan, S.; Nayak, B. K.; Saxena, A.

    2017-02-01

    The cross sections of the 70Zn(n ,γ )Zn71m (T1 /2=3.96 ±0.05 -h ) reaction have been measured relative to the 197Au(n ,γ )198Au cross sections at 0.96 and 1.69 MeV using a 7Li(p ,n )7Be neutron source and activation technique. The cross section of this reaction has been measured for the first time in the MeV region. The new experimental cross sections have been compared with the theoretical prediction by talys-1.6 with various level-density models and γ -ray strength functions as well as the tendl-2015 library. The talys-1.6 calculation with the generalized superfluid level-density model and Kopecky-Uhl generalized Lorentzian γ -ray strength function predicted the new experimental cross sections at both incident energies. The 70Zn(n ,γ ) g+m 71Zn total capture cross sections have also been derived by applying the evaluated isomeric ratios in the tendl-2015 library to the measured partial capture cross sections. The spectrum averaged total capture cross sections derived in the present paper agree well with the jendl-4.0 library at 0.96 MeV, whereas it lies between the tendl-2015 and the jendl-4.0 libraries at 1.69 MeV.

  20. Neutron capture cross sections of Kr

    NASA Astrophysics Data System (ADS)

    Fiebiger, Stefan; Baramsai, Bayarbadrakh; Couture, Aaron; Krtička, Milan; Mosby, Shea; Reifarth, René; O'Donnell, John; Rusev, Gencho; Ullmann, John; Weigand, Mario; Wolf, Clemens

    2018-01-01

    Neutron capture and β- -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL) using the Detector for Advanced Neutron Capture Experiments (DANCE). 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  1. 242Pu absolute neutron-capture cross section measurement

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.

    2017-09-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ) cross section could be set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ) cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ) En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ) cross section.

  2. Electron capture strength for Ni60,62 and Ni58,60,62,64(p, n)Cu58,60,62,64 reactions at 134.3 MeV

    NASA Astrophysics Data System (ADS)

    Anantaraman, N.; Austin, Sam M.; Brown, B. A.; Crawley, G. M.; Galonsky, A.; Zegers, R. G. T.; Anderson, B. D.; Baldwin, A. R.; Flanders, B. S.; Madey, R.; Watson, J. W.; Foster, C. C.

    2008-12-01

    Background: The strength of electron capture for medium mass nuclei has a significant effect on the evolution of supernovae. There is insufficient knowledge of these strengths and very little data for important radioactive nuclei. Purpose: Determine whether it is feasible to obtain EC strength from studies of To+1 excitations in (p, n) reactions, and whether this might yield information for radioactive nuclei. Methods: Cross sections for the Ni58,60,62,64(p, n)Cu58,60,62,64 reactions were measured over the angular range of 0.3∘ to 11.6∘ at 134.3 MeV using the IUCF neutron time-of-flight facility. Results: The To+1 excitations in Ni60,62 were identified by comparison with inelastic proton scattering spectra, their B(GT) were extracted, and the corresponding electron capture rates in supernovae were calculated. Data from the TRIUMF (n, p) experiments at 198 MeV were reanalyzed; the electron capture rates for the reanalyzed data are in moderately good agreement with the higher resolution (p, n) results, but differ in detail. The possibility of future measurements with radioactive nuclei was considered. Conclusions: It may be possible to obtain low-lying electron capture strength for radioactive nuclei by studying (p, n) reactions in inverse kinematics.

  3. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  4. Fragmentation of D- and L-enantiomers of amino acids through interaction with 3He2+ ions

    NASA Astrophysics Data System (ADS)

    Smirnov, O. V.; Basalaev, A. A.; Boitsov, V. M.; Vyaz'min, S. Yu.; Orbeli, A. L.; Dubina, M. V.

    2014-11-01

    The relative cross section of processes attendant on the capture of an electron by 12-keV 3He2+ ions are measured by time-of-flight mass spectrometry for leucine (C6H13NO2), methionine (C5H11NO2S), and glutmic acid (C5H9NO4) molecules. No differences between the formation relative cross sections of different fragment ions for the D- and L-enantiomeric forms of the amino acids are revealed. The spectrum of glutamic acid fragments taken at temperatures above 110°C is explained by decomposition of the acid with the formation of pyroglutamic acid (C5H7NO3) and water. The results are compared with published data on fragmentation of the same molecules via electron-impact ionization.

  5. Finite Forward Acceptance Angles for Single Electron Capture by ^3He^2+ Ions in He and H_2

    NASA Astrophysics Data System (ADS)

    Mawhorter, Rj; Greenwood, J.; Smith; Chutjian, A.

    2004-05-01

    Perhaps surprisingly, electron capture scattering angles of a few degrees or more are observed for slow ions impacting light targets. Gas cells must be designed with this in mind. Indeed the difference between small acceptance angle results(W.L. Nutt, et al., J. Phys. B 8), 1457 (1978) and the larger acceptance-angle studies of both Kusakabe, et al.(T. Kusakabe, et al., J. Phys. Soc. Japan 59), 1218 (1990) and our group at JPL (presented here; energy range 0.33-4.67 keV/amu) for ^3He^2+ in H2 can be ascribed to this effect. Olson and Kimura(R. E. Olson and M. Kimura, J. Phys. B 15), 4231 (1982) have modeled the problem theoretically. We use existing differential cross section data(D. Bordenave-Montesquieu and R. Dagnac, J. Phys. B 27), 543 1994) for both H_2/ D2 and ^4He targets to calculate realistic acceptance angles. The resulting small total cross section corrections provide reliable absolute results for these benchmark systems. This work was carried out at JPL/Caltech, and was supported through agreement with NASA.

  6. Capture Cross-section Measurement of 241Am(n,γ) at J-PARC/MLF/ANNRI

    NASA Astrophysics Data System (ADS)

    Harada, H.; Ohta, M.; Kimura, A.; Furutaka, K.; Hirose, K.; Hara, K. Y.; Kin, T.; Kitatani, F.; Koizumi, M.; Nakamura, S.; Oshima, M.; Toh, Y.; Igashira, M.; Katabuchi, T.; Mizumoto, M.; Kino, K.; Kiyanagi, Y.; Fujii, T.; Fukutani, S.; Hori, J.; Takamiya, K.

    2014-05-01

    The 241Am(n, γ) 242Am cross sections have been measured for neutron energies between 0.01 and 10 eV using the Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) installed at the Materials and Life-science experimental Facility (MLF) in J-PARC. ANNRI combines the strongest neutron-pulsed beam and a high energy resolution γ-ray spectrometer, making possible accurate measurements of neutron capture cross sections for highly radioactive samples. From the measured cross section, the Westcott neutron capture factor and strength of the first three resonances in 241Am are deduced. These results with precision less than 0.5 % are compared with those derived from JENDL-4.0.

  7. Collision cross sections of N2 by H+ impact at keV energies within time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Yu, W.; Gao, C.-Z.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Wei, B.

    2018-03-01

    We calculate electron capture and ionization cross sections of N2 impacted by the H+ projectile at keV energies. To this end, we employ the time-dependent density-functional theory coupled nonadiabatically to molecular dynamics. To avoid the explicit treatment of the complex density matrix in the calculation of cross sections, we propose an approximate method based on the assumption of constant ionization rate over the period of the projectile passing the absorbing boundary. Our results agree reasonably well with experimental data and semi-empirical results within the measurement uncertainties in the considered energy range. The discrepancies are mainly attributed to the inadequate description of exchange-correlation functional and the crude approximation for constant ionization rate. Although the present approach does not predict the experiments quantitatively for collision energies below 10 keV, it is still helpful to calculate total cross sections of ion-molecule collisions within a certain energy range.

  8. Charge Exchange of Ne^9+ for X-ray Emission

    NASA Astrophysics Data System (ADS)

    Lyons, David

    2016-01-01

    Using the molecular-orbital close-coupling (MOCC) method, single electron capture (SEC) cross sections were computed for Ne^9+ colliding with H.Potential energies and nonadiabatic couplings were calculated and used to obtain the MOCC cross sections which are final-quantum-state-resolved including a separation of singlet and triplet states. Atomic-orbital close-coupling, classical trajectory Monte Carlo, and multichannel Landau-Zener (MCLZ) calculations are also performed. Cross sections for more complicated targets including He, H2, N2, H2O, CO, and CO2, were obtained with the MCLZ method. The SEC results are compared with experimental and other theoretical data, where available. The SEC cross sections are being used in cascade models to predict X-ray emission spectra relevant to solar systemand astrophysical environments.D. Lyons, R. S. Cumbee, P. D. Mullen, P. C. Stancil (UGA), D. R. Schultz (UNT), P. Liebermann (Wuppertal Univ.),R. Buenker (NCSU).This work was partially supported by NASA grant NNX09AC46G.

  9. Dipole strength in 80Se below the neutron-separation energy for the nuclear transmutation of 79Se

    NASA Astrophysics Data System (ADS)

    Makinaga, Ayano; Massarczyk, Ralph; Beard, Mary; Schwengner, Ronald; Otsu, Hideaki; Müller, Stefan; Röder, Marko; Schmidt, Konrad; Wagner, Andreas

    2017-09-01

    The γ-ray strength function (γSF) in 80Se is an important parameter to estimate the neutron-capture cross section of 79Se which is one of the long-lived fission products (LLFPs). Until now, the γSF method was applied for 80Se only above the neutron-separation energy (Sn) and the evaluated 79Se(n,γ) cross section has an instability caused by the GSF below Sn. We studied the dipole-strength distribution of 80Se in a photon-scattering experiment using bremsstrahlung produced by an electron beam of an energy of 11.5 MeV at the linear accelerator ELBE at HZDR. The present photoabsorption cross section of 80Se was combined with results of (γ,n) experiments and are compared with predictions usinmg the TALYS code. We also estimated the 79Se(n,γ) cross sections and compare them with TALYS predictionms and earlier work by other groups.

  10. Signatures of the electron saddle swaps mechanism in the photon spectra following charge-exchange collisions

    NASA Astrophysics Data System (ADS)

    Otranto, Sebastian

    2014-10-01

    During the last few years, several experimental and theoretical studies have focused on state selective charge exchange processes between charged ions and alkali metals. These data are of particular importance for the tokamak nuclear fusion reactor program, since diagnostics on the plasma usually rely on charge-exchange spectroscopy. In this sense, alkali metals, have been proposed as potential alternatives to excited hydrogen/deuterium for which laboratory experiments are not feasible at present. In this talk, we present our recent work involving ion collisions with alkali metals. Oscillatory structures in the angular differential charge-exchange cross sections obtained using the MOTRIMS technique are correctly described by classical trajectory Monte Carlo simulations. These oscillations are found to originate from the number of swaps the electron undergoes around the projectile-target potential saddle before capture takes place and are very prominent at impact energies below 10 keV/amu. Moreover, cross sections of higher order of differentiability also indicate that the swaps leave distinctive signatures in the (n,l)-state selective cross sections and in the photon line emission cross sections. Oscillatory structures for the x-ray hardness ratio parameter are also predicted. In collaboration with Ronnie Hoekstra, Zernike Institute for Advanced Materials, University of Groningen and Ronald Olson, Department of Physics, Missouri University of Science and Technology.

  11. Quantum treatment of the capture of an atom by a fast nucleus incident on a molecule

    NASA Astrophysics Data System (ADS)

    Shakeshaft, Robin; Spruch, Larry

    1980-04-01

    The classical double-scattering model of Thomas for the capture of electrons from atoms by fast ions yields a cross section σ which dominates over the single scattering contribution for sufficiently fast ions. The magnitude of the classical double-scattering σ differs, however, from its quantum-mechanical (second-Born) analog by an order of magnitude. Further, a "fast ion" means an ion of some MeV, and at those energies the cross sections are very low. On the other hand, as noted by Bates, Cook, and Smith, the double-scattering cross section for the capture of atoms from molecules by fast ions dominates over the single-scattering contribution for incident ions of very much lower energy; roughly, one must have the velocity of the incident projectile much larger than a characteristic internal velocity of the particles in the target. It follows that we are in the asymptotic domain not at about 10 MeV but at about 100 eV. For the reaction H+ + CH4-->H+2 + CH3 with incident proton energies of 70 to 150 eV, the peak in the angular distribution as determined experimentally is at almost precisely the value predicted by the classical model, but the theoretical total cross section is about 30 times too large. Using a quantum version of the classical model, which involves the same kinematics and therefore preserves the agreement with the angular distribution, we obtain somewhat better agreement with the experimental total cross section, by a factor of about 5. (To obtain very good agreement, one may have to perform a really accurate calculation of large-angle elastic scattering of protons and H atoms by CH3, and take into account interference effects.) In the center-of-mass frame, for sufficiently high incident energy, the first of the two scatterings involves the scattering of H+ by H through an angle of very close to 90°, and it follows that the nuclei of the emergent H+2 ion will almost all be in the singlet state. We have also calculated the cross section for the reaction D+ + CH4-->(HD)+ + CH3.

  12. Measurement of the Am 242 m neutron-induced reaction cross sections

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2017-02-17

    The neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known 242mAm(n,f) cross section. The (n,γ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 tomore » set the absolute scale, and it agreed well with the (n,f) cross section from thermal energy to 1 keV. Lastly, the average absolute capture-to-fission ratio was determined from thermal energy to E n = 0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19% from the ENDF/B-VII.1 evaluation.« less

  13. The S-Process Branching-Point at 205PB

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2017-09-01

    Accurate neutron-capture cross sections for radioactive nuclei near the line of beta stability are crucial for understanding s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. We consider photon scattering using monoenergetic and 100% linearly polarized photon beams to obtain the photoabsorption cross section on 206Pb below the neutron separation energy. This observable becomes an essential ingredient in the Hauser-Feshbach statistical model for calculations of capture cross sections on 205Pb. The newly obtained photoabsorption information is also used to estimate the Maxwellian-averaged radiative cross section of 205Pb(n,g)206Pb at 30 keV. The astrophysical impact of this measurement on s-process nucleosynthesis will be discussed. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344.

  14. Is e+e- pair emission important in the determination of the 3He+4He S factor?

    NASA Astrophysics Data System (ADS)

    Snover, K. A.; Hurd, A. E.

    2003-05-01

    We show that the cross section for direct E0 pair emission is related to the cross section for direct E2 photon emission, and is a negligible contribution to the total capture cross section for 3He+4He→7Be. E0 resonance emission, E1 pair emission, and internal conversion are also negligible. Thus there cannot be significant contributions to the 3He+4He→7Be capture cross section at low energies from electromagnetic emission processes other than single photon emission.

  15. Comparative study of quantal and semiclassical treatments of charge transfer between O+ and He

    NASA Astrophysics Data System (ADS)

    Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.

    2009-03-01

    A comparative study for the electron capture process O+(S40,D20,P20)+He→O(P3)+He+ is reported. The cross sections are calculated using fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. Detailed comparison of transition probabilities and cross sections is made from both MOCC approaches and displays close agreement above ˜125eV/u . The remarkable discrepancies between the earlier semiclassical and quantal MOCC approaches may be attributed to the insufficient step-size resolution in their semiclassical calculation [M. Kimura , Phys. Rev. A 50, 4854 (1994)]. Our results have also been compared with experiment and found to be in good agreement.

  16. First observation of RDEC for gas (N2) targets with F9+

    NASA Astrophysics Data System (ADS)

    Kumara, P. N. S.; La Mantia, D. S.; Simon, A.; Kayani, A.; Tanis, J. A.

    2017-10-01

    Radiative double electron capture (RDEC) is a fundamental atomic process predicted to occur in ion-atom collisions. Several attempts were made to show experimental evidence for RDEC after it was introduced theoretically in 1987. The first successful measurements were done for O8+ ions colliding with a thin carbon foil in 2010, followed by measurements for F9+ projectiles incident on carbon. The works reported here are the first observations giving preliminary results for RDEC in collisions of F9+ projectiles with gas (N2) targets. X-rays were observed in the region of interest and an estimation of RDEC cross section was calculated. These cross sections are compared with recent theoretical calculations.

  17. Resonant transfer excitation in collisions of F6+ and Mg9+ with H2

    NASA Astrophysics Data System (ADS)

    Bernstein, E. M.; Kamal, A.; Zaharakis, K. E.; Clark, M. W.; Tanis, J. A.; Ferguson, S. M.; Badnell, N. R.

    1991-10-01

    Experimental and theoretical investigations of resonant transfer excitation (RTE) for F6++H2 and Mg9++H2 collisions have been made. For both collision systems good agreement is obtained between the measured cross sections for K-shell x-ray emission coincident with electron-capture and theoretical RTE calculations. For F6+ the present calculations are about 10% lower than previous results of Bhalla and Karim [Phys. Rev. A 39, 6060 (1989); 41, 4097(E) (1990]; the measured cross sections are a factor of 2.3 larger than earlier measurements of Schulz et al. [Phys. Rev. A 38, 5454 (1988)]. The previous disagreement between experiment and theory for F6+ is removed.

  18. Cobalt related defect levels in silicon analyzed by temperature- and injection-dependent lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Diez, S.; Rein, S.; Roth, T.; Glunz, S. W.

    2007-02-01

    Temperature- and injection-dependent lifetime spectroscopy (TIDLS) as a method to characterize point defects in silicon with several energy levels is demonstrated. An intentionally cobalt-contaminated p-type wafer was investigated by means of lifetime measurements performed at different temperatures up to 151°C. Two defect energy levels were required to model the lifetime curves on basis of the Shockley-Read-Hall statistics. The detailed analysis is based on the determination of the recently introduced defect parameter solution surface (DPSS) in order to extract the underlying defect parameters. A unique solution has been found for a deep defect level located in the upper band gap half with an energy depth of EC-Et=0.38±0.01eV, with a corresponding ratio of capture cross sections k =σn/σp=0.16 within the interval of uncertainty of 0.06-0.69. Additionally, a deep donor level in the lower band gap half known from the literature could be assigned to a second energy level within the DPSS analysis at Et-EV=0.41±0.02eV with a corresponding ratio of capture cross sections k =σn/σp=16±3. An investigation of the temperature dependence of the capture cross section for electrons suggests that the underlying recombination process of the defect in the lower band gap half is driven by a two stage cascade capture with an activation energy of ΔE =52±2meV. These results show that TIDLS in combination with DPSS analysis is a powerful method to characterize even multiple defect levels that are affecting carrier recombination lifetime in parallel.

  19. Constraining the calculation of U 234 , 236 , 238 ( n , γ ) cross sections with measurements of the γ -ray spectra at the DANCE facility

    DOE PAGES

    Ullmann, J. L.; Kawano, T.; Baramsai, B.; ...

    2017-08-31

    The cross section for neutron capture in the continuum region has been difficult to calculate accurately. Previous results for 238 U show that including an M 1 scissors-mode contribution to the photon strength function resulted in very good agreement between calculation and measurement. Our paper extends that analysis to 234 , 236 U by using γ -ray spectra measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center to constrain the photon strength function used to calculate the capture cross section. Calculations using a strong scissors-mode contribution reproduced the measured γ -ray spectramore » and were in excellent agreement with the reported cross sections for all three isotopes.« less

  20. Constraining the calculation of 234,236,238U (n ,γ ) cross sections with measurements of the γ -ray spectra at the DANCE facility

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Kawano, T.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Krtička, M.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Mitchell, G. E.

    2017-08-01

    The cross section for neutron capture in the continuum region has been difficult to calculate accurately. Previous results for 238U show that including an M 1 scissors-mode contribution to the photon strength function resulted in very good agreement between calculation and measurement. This paper extends that analysis to U,236234 by using γ -ray spectra measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center to constrain the photon strength function used to calculate the capture cross section. Calculations using a strong scissors-mode contribution reproduced the measured γ -ray spectra and were in excellent agreement with the reported cross sections for all three isotopes.

  1. Simple, empirical approach to predict neutron capture cross sections from nuclear masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, Aaron Joseph; Casten, Richard F.; Cakirli, R. B.

    Here, neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40%, and has limited predictive power, with predictions from different models rapidly differing by an order ofmore » magnitude a few nucleons from the last measurement.« less

  2. Simple, empirical approach to predict neutron capture cross sections from nuclear masses

    DOE PAGES

    Couture, Aaron Joseph; Casten, Richard F.; Cakirli, R. B.

    2017-12-20

    Here, neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40%, and has limited predictive power, with predictions from different models rapidly differing by an order ofmore » magnitude a few nucleons from the last measurement.« less

  3. Critical Assessment of Theoretical Methods for Li3+ Collisions with He at Intermediate and High Impact Energies

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad; Mančev, Ivan; Milojevićb, Nenad

    2013-09-01

    The total cross sections for the various processes for Li3+-He collisions at intermediate-to-high impact energies are compared with the corresponding theories. The possible reasons for the discrepancies among various theoretical predictions are thoroughly discussed. Special attention has been paid to single and double electron capture, simultaneous transfer and ionization, as well as to single and double ionization.

  4. Insight into the Near-Conduction Band States at the Crystallized Interface between GaN and SiN x Grown by Low-Pressure Chemical Vapor Deposition.

    PubMed

    Liu, Xinyu; Wang, Xinhua; Zhang, Yange; Wei, Ke; Zheng, Yingkui; Kang, Xuanwu; Jiang, Haojie; Li, Junfeng; Wang, Wenwu; Wu, Xuebang; Wang, Xianping; Huang, Sen

    2018-06-12

    Constant-capacitance deep-level transient Fourier spectroscopy is utilized to characterize the interface between a GaN epitaxial layer and a SiN x passivation layer grown by low-pressure chemical vapor deposition (LPCVD). A near-conduction band (NCB) state E LP ( E C - E T = 60 meV) featuring a very small capture cross section of 1.5 × 10 -20 cm -2 was detected at 70 K at the LPCVD-SiN x /GaN interface. A partially crystallized Si 2 N 2 O thin layer was detected at the interface by high-resolution transmission electron microscopy. Based on first-principles calculations of crystallized Si 2 N 2 O/GaN slabs, it was confirmed that the NCB state E LP mainly originates from the strong interactions between the dangling bonds of gallium and its vicinal atoms near the interface. The partially crystallized Si 2 N 2 O interfacial layer might also give rise to the very small capture cross section of the E LP owing to the smaller lattice mismatch between the Si 2 N 2 O and GaN epitaxial layer and a larger mean free path of the electron in the crystallized portion compared with an amorphous interfacial layer.

  5. Investigation of charge stripping scheme for uranium ions at 1-20 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Kuboki, Hironori; Harada, Hiroyuki; Saha, Pranab K.

    2018-05-01

    We investigated a possibility to obtain charge distributions of uranium ions under the conditions to meet the requirements of the booster synchrotron proposed for heavy ion acceleration at J-PARC. The charge distribution is expected to have a width as narrow as possible to realize multi-charge acceleration. The main candidate of stripping material is a carbon foil because we can obtain narrower distributions than gas stripper and a lot of data is available. Besides that, the thickness of the stripping material should be less than 142 μg cm-2 because the energy loss in the stripping material would be compensated by an auxiliary accelerating cavity in the synchrotron ring. We studied the impact energy with which the charge distribution attains equilibrium within this thickness and has the narrowest width. The width is estimated over 1-20 MeV/nucleon by the calculation using the ionization and electron capture cross sections. Scaling factors are introduced to reproduce the experimental data and are determined to be 2.0 and 0.08 for the cross sections of ionization and electron capture, respectively. We concluded that the narrowest width can be obtained at 5.5 MeV/nucleon with a 109-μg cm-2-thick carbon foil.

  6. Study of photon emission by electron capture during solar nuclei acceleration, 1: Temperature-dependent cross section for charge changing processes

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.

    1985-01-01

    The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.

  7. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  8. Survival Mediated Heavy Element Capture Cross Sections

    NASA Astrophysics Data System (ADS)

    Loveland, Walter; Yao, Larry

    2017-11-01

    Formally, the cross section for producing a heavy evaporation residue, σEVR, in a fusion reaction can be written as where E is the center of mass energy, and T is the probability of the colliding nuclei to overcome the potential barrier in the entrance channel and reach the contact point. PCN is the probability that the projectile-target system will evolve from the contact point to the compound nucleus. Wsur is the probability that the compound nucleus will decay to produce an evaporation residue rather than fissioning. However, one must remember that the Wsur term effectively sets the allowed values of the spin, which in turn, restricts the values of the capture and fusion cross sections. We point out the implications of this fact for capture cross sections for heavy element formation reactions.

  9. 56Fe capture cross section experiments at the RPI LINAC Center

    NASA Astrophysics Data System (ADS)

    McDermott, Brian; Blain, Ezekiel; Thompson, Nicholas; Weltz, Adam; Youmans, Amanda; Danon, Yaron; Barry, Devin; Block, Robert; Daskalakis, Adam; Epping, Brian; Leinweber, Gregory; Rapp, Michael

    2017-09-01

    A new array of C6D6 detectors installed at the RPI LINAC Center has enabled the capability to measure neutron capture cross sections above the 847 keV inelastic scattering threshold of 56Fe through the use of digital post-processing filters and pulse-integral discriminators, without sacrificing the statistical quality of data at lower incident neutron energies where such filtering is unnecessary. The C6D6 detectors were used to perform time-of-flight capture cross section measurements on a sample 99.87% enriched iron-56. The total-energy method, combined with the pulse height weighting technique, were then applied to the raw data to determine the energy-dependent capture yield. Above the inelastic threshold, the data were analyzed with a pulse-integral filter to reveal the capture signal, extending the the full data set to 2 MeV.

  10. Thermal neutron capture cross section for 56Fe(n ,γ )

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Belgya, T.; Krtička, M.; Bečvář, F.; Szentmikloṡi, L.; Tomandl, I.

    2017-01-01

    The 56Fe(n ,γ ) thermal neutron capture cross section and the 57Fe level scheme populated by this reaction have been investigated in this work. Singles γ -ray spectra were measured with an isotopically enriched 56Fe target using the guided cold neutron beam at the Budapest Reactor, and γ γ -coincidence data were measured with a natural Fe target at the LWR-15 research reactor in Řež, Czech Republic. A detailed level scheme consisting of 448 γ rays populating/depopulating 97 levels and the capture state in 57Fe has been constructed, and ≈99 % of the total transition intensity has been placed. The transition probability of the 352-keV γ ray was determined to be Pγ(352 ) =11.90 ±0.07 per 100 neutron captures. The 57Fe level scheme is substantially revised from earlier work and ≈33 previously assigned levels could not be confirmed while a comparable number of new levels were added. The 57Feγ -ray cross sections were internally calibrated with respect to 1H and 32Sγ -ray cross section standards using iron(III) acetylacetonate (C15H21FeO6) and iron pyrite (FeS2) targets. The thermal neutron cross section for production of the 352-keV γ -ray cross section was determined to be σγ(352 ) =0.2849 ±0.015 b. The total 56Fe(n ,γ ) thermal radiative neutron cross section is derived from the 352-keV γ -ray cross section and transition probability as σ0=2.394 ±0.019 b. A least-squares fit of the γ rays to the level scheme gives the 57Fe neutron separation energy Sn=7646.183 ±0.018 keV.

  11. Interference effect between neutron direct and resonance capture reactions for neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Minato, Futoshi; Fukui, Tokuro

    2017-11-01

    Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential model. The interference effect is tested for neutron-rich 82Ge and 134Sn nuclei relevant to r-process and light nucleus 13C which is neutron poison in the s-process and produces long-lived radioactive nucleus 14C (T1/2 = 5700 y). The interference effects in those nuclei are significant around resonances, and low energy region if s-wave neutron direct capture is possible. Maxwellian averaged cross sections at kT = 30 and 300 keV are also calculated, and the interference effect changes the Maxwellian averaged capture cross section largely depending on resonance position.

  12. Comparative analysis of characteristic electron energy loss spectra and inelastic scattering cross-section spectra of Fe

    NASA Astrophysics Data System (ADS)

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2016-05-01

    The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.

  13. Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes

    NASA Astrophysics Data System (ADS)

    Wisshak, K.; Voss, F.; Käppeler, F.; Kazakov, L.; Krtička, M.

    2005-05-01

    The neutron capture cross sections of 175,176Lu and 176,177,178,179,180Hf have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced by the 7Li(p,n)7Be reaction and capture events were detected by the Karlsruhe 4πBaF2 detector. The cross section ratios could be determined with uncertainties between 0.9 and 1.8% about a factor of five more accurate than previous data. A strong population of isomeric states was found in neutron capture of the Hf isotopes, which are only partially explained by CASINO/GEANT simulations based on the known level schemes. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 keV and 100 keV. Severe differences up to40% were found to the data of a recent evaluation based on existing experimental results. The new data allow for a much more reliable analysis of the important branching in the s-process synthesis path at 176Lu which can be interpreted as an s-process thermometer.

  14. Single-level resonance parameters fit nuclear cross-sections

    NASA Technical Reports Server (NTRS)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  15. Improving nuclear data accuracy of 241Am and 237Np capture cross sections

    NASA Astrophysics Data System (ADS)

    Žerovnik, Gašper; Schillebeeckx, Peter; Cano-Ott, Daniel; Jandel, Marian; Hori, Jun-ichi; Kimura, Atsushi; Rossbach, Matthias; Letourneau, Alain; Noguere, Gilles; Leconte, Pierre; Sano, Tadafumi; Kellett, Mark A.; Iwamoto, Osamu; Ignatyuk, Anatoly V.; Cabellos, Oscar; Genreith, Christoph; Harada, Hideo

    2017-09-01

    In the framework of the OECD/NEA WPEC subgroup 41, ways to improve neutron induced capture cross sections for 241Am and 237Np are being sought. Decay data, energy dependent cross section data and neutron spectrum averaged data are important for that purpose and were investigated. New time-of-flight measurements were performed and analyzed, and considerable effort was put into development of methods for analysis of spectrum averaged data and re-analysis of existing experimental data.

  16. Measurement of neutron-induced reactions on 242mAm

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C.-Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2016-09-01

    Neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined relative to a simultaneous measurement of the well-known 242mAm(n,f) cross section. The (n, γ) cross section was measured from thermal to an incident energy of 1 eV. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 and agreed well with the (n,f) cross section reported in the literature from thermal energy to 1 keV. The capture-to-fission ratio was determined from thermal energy to En = 0.1 eV, and it was found to be (n, γ)/(n,f) = 26(4)% compared to 19% from ENDF/B-VII.1. Our latest results will be reported. US Department of Energy by Lawrence Livermore National Security, LLC Contract DE-AC52-07NA27344 and Los Alamos National Security, LLC Contract DE-AC52-06NA25396 and U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development.

  17. L2 Milestone: Neutron Capture Cross Sections from Surrogate (p, d) Measurements: Determination of the Unknown 87Y(n, g) Cross Section and Assessment of the Method Via the 90Zr(n, g) Benchmark Case: Theory Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escher, J. E.

    Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Here we describe a method for extracting cross sections for neutron-capture on unstable isotopes from indirect (surrogate) measurements. The surrogate reaction, which produces the compound nucleus of interest, has to be described and the decay of the nucleus has to be modeled. We outline the approach for one-neutron pickup and report on the determination of the 90Zr(n, γ ) reaction from surrogate 92Zr(p,d) data, which is compared to the directly-measured capture cross section and thus provides a benchmark for themore » method. We then apply the method to determine the 87Y(n, γ ) cross section, which has not been measured directly. The work was carried out in the context of an LLNL L2 Milestone. This report addresses the theory aspects of the milestone. A complementary document summarizes the experimental efforts [1].« less

  18. Temperature-tuned Maxwell-Boltzmann neutron spectra for kT ranging from 30 up to 50 keV for nuclear astrophysics studies.

    PubMed

    Martín-Hernández, G; Mastinu, P F; Praena, J; Dzysiuk, N; Capote Noy, R; Pignatari, M

    2012-08-01

    The need of neutron capture cross section measurements for astrophysics motivates present work, where calculations to generate stellar neutron spectra at different temperatures are performed. The accelerator-based (7)Li(p,n)(7)Be reaction is used. Shaping the proton beam energy and the sample covering a specific solid angle, neutron activation for measuring stellar-averaged capture cross section can be done. High-quality Maxwell-Boltzmann neutron spectra are predicted. Assuming a general behavior of the neutron capture cross section a weighted fit of the spectrum to Maxwell-Boltzmann distributions is successfully introduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, J. L.; Kawano, T.; Baramsai, B.

    The cross section for neutron capture in the continuum region has been difficult to calculate accurately. Previous results for 238 U show that including an M 1 scissors-mode contribution to the photon strength function resulted in very good agreement between calculation and measurement. Our paper extends that analysis to 234 , 236 U by using γ -ray spectra measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center to constrain the photon strength function used to calculate the capture cross section. Calculations using a strong scissors-mode contribution reproduced the measured γ -ray spectramore » and were in excellent agreement with the reported cross sections for all three isotopes.« less

  20. Simultaneous measurement of (n,{gamma}) and (n,fission) cross sections with the DANCE 4{pi} BaF2 array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.

    2006-03-13

    Neutron capture cross section measurements on many of the actinides are complicated by low-energy neutron-induced fission, which competes with neutron capture to varying degrees depending on the nuclide of interest. Measurements of neutron capture on 235U using the Detector for Advanced Neutron Capture Experiments (DANCE) have shown that we can partially resolve capture from fission events based on total photon calorimetry (i.e. total {gamma}-ray energy and {gamma}-ray multiplicity per event). The addition of a fission-tagging detector to the DANCE array will greatly improve our ability to separate these two competing processes so that improved neutron capture and (n,{gamma})/(n,fission) cross sectionmore » ratio measurements can be obtained. The addition of a fission-tagging detector to the DANCE array will also provide a means to study several important issues associated with neutron-induced fission, including (n,fission) cross sections as a function of incident neutron energy, and total energy and multiplicity of prompt fission photons. We have focused on two detector designs with complementary capabilities, a parallel-plate avalanche counter and an array of solar cells.« less

  1. Phenomenological theory of laser-plasma interaction in ``bubble'' regime

    NASA Astrophysics Data System (ADS)

    Kostyukov, I.; Pukhov, A.; Kiselev, S.

    2004-11-01

    The electron trapping in the "bubble" regime of laser-plasma interaction as proposed by Pukhov and Meyer-ter-Vehn [A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002)] is studied. In this regime the laser pulse generates a solitary plasma electron cavity: the bubble. It is free from the cold plasma electrons and runs with nearly light velocity. The present work discusses the form of the bubble and the spatial distribution of electromagnetic fields within the cavity. We extend the one-dimensional electron capture theory to the three-dimensional case. It is shown that the bubble can trap plasma electrons. The trapping condition is derived and the trapping cross section is estimated. Electron motion in the self-generated electron bunch is investigated. Estimates for the maximum of electron bunch energy and the bunch density are provided.

  2. New measurement of the 242Pu(n,γ) cross section at n_TOF

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Guerrero, C.; Cortés-Giraldo, M. A.; Quesada, J. M.; Mendoza, E.; Cano-Ott, D.; Eberhardt, K.; Junghans, A.

    2016-03-01

    The use of MOX fuel (mixed-oxide fuel made of UO2 and PuO2) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. With the use of such new fuel composition rich in Pu, a better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United States (ENDF) nuclear data agencies. For the case of 242Pu, the two only neutron capture time-of-flight measurements available, from 1973 and 1976, are not consistent with each other, which calls for a new time-of flight capture cross section measurement. In order to contribute to a new evaluation, we have perfomed a neutron capture cross section measurement at the n_TOF-EAR1 facility at CERN using four C6D6 detectors, using a high purity target of 95 mg. The preliminary results assessing the quality and limitations (background, statistics and γ-flash effects) of this new experimental data are presented and discussed, taking into account that the aimed accuracy of the measurement ranges between 7% and 12% depending on the neutron energy region.

  3. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  4. Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1982-01-01

    Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.

  5. Fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems

    NASA Astrophysics Data System (ADS)

    Atta, Debasis; Basu, D. N.

    2014-12-01

    Existing data on near-barrier fusion excitation functions of medium and heavy nucleus-nucleus systems have been analyzed by using a simple diffused-barrier formula derived assuming the Gaussian shape of the barrier-height distributions. The fusion cross section is obtained by folding the Gaussian barrier distribution with the classical expression for the fusion cross section for a fixed barrier. The energy dependence of the fusion cross section, thus obtained, provides good description to the existing data on near-barrier fusion and capture excitation functions for medium and heavy nucleus-nucleus systems. The theoretical values for the parameters of the barrier distribution are estimated which can be used for fusion or capture cross-section predictions that are especially important for planning experiments for synthesizing new superheavy elements.

  6. Reaction dynamics near the barrier

    NASA Astrophysics Data System (ADS)

    Loveland, W.

    2011-10-01

    The availability of modest intensity (103-107 p/s) radioactive nuclear beams has had a significant impact on the study of nuclear reactions near the interaction barrier. The role of isospin in capture reactions is a case in point. Using heavy elements as a laboratory to explore these effects, we note that the cross section for producing an evaporation residue is σEVR(Ec . m .) = ∑ J = 0 JmaxσCN(Ec . m . , J) Wsur(Ec . m . , J) where σCN is the complete fusion cross section and Wsur is the survival probability of the completely fused system. The complete fusion cross section can be written as, σCN(Ec . m .) = ∑ J = 0 Jmaxσcapture(Ec . m .) PCN(Ec . m . , J) where σcapture(Ec.m.,J) is the ``capture'' cross section at center-of mass energy Ec.m. and spin J and PCN is the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than re-separating (quasi-fission). The systematics of the isospin dependence of the capture cross sections has been developed and the deduced interaction barriers for all known studies of capture cross sections with radioactive beams are in good agreement with recent predictions of an improved QMD model and semi-empirical models. The deduced barriers for these n-rich systems are lower than one would expect from the Bass or proximity potentials. In addition to the barrier lowering, there is an enhanced sub-barrier cross section in these n-rich systems that is of advantage in the synthesis of new heavy nuclei. Recent studies of the ``inverse fission'' of uranium (124,132Sn + 100Mo) have yielded unexpectedly low upper limits for this process due apparently to low values of the fusion probability, PCN. The fusion of halo nuclei, like 11Li with heavy nuclei, like 208Pb, promises to give new information about these and related nuclei and has led/may lead to unusual reaction mechanisms. This work was sponsored, in part, by the USDOE Office of Nuclear Physics.

  7. Multiple electron processes of He and Ne by proton impact

    NASA Astrophysics Data System (ADS)

    Terekhin, Pavel Nikolaevich; Montenegro, Pablo; Quinto, Michele; Monti, Juan; Fojon, Omar; Rivarola, Roberto

    2016-05-01

    A detailed investigation of multiple electron processes (single and multiple ionization, single capture, transfer-ionization) of He and Ne is presented for proton impact at intermediate and high collision energies. Exclusive absolute cross sections for these processes have been obtained by calculation of transition probabilities in the independent electron and independent event models as a function of impact parameter in the framework of the continuum distorted wave-eikonal initial state theory. A binomial analysis is employed to calculate exclusive probabilities. The comparison with available theoretical and experimental results shows that exclusive probabilities are needed for a reliable description of the experimental data. The developed approach can be used for obtaining the input database for modeling multiple electron processes of charged particles passing through the matter.

  8. Chapter 6 Quantum Mechanical Methods for Loss-Excitation and Loss-Ionization in Fast Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Belkic, Dzevad

    Inelastic collisions between bare nuclei and hydrogen-like atomic systems are characterized by three main channels: electron capture, excitation, and ionization. Capture dominates at lower energies, whereas excitation and ionization prevail at higher impact energies. At intermediate energies and in the region of resonant scattering near the Massey peak, all three channels become competitive. For dressed or clothed nuclei possessing electrons, such as hydrogen-like ions, several additional channels open up, including electron loss (projectile ionization or stripping). The most important aspect of electron loss is the competition between one- and two-electron processes. Here, in a typical one-electron process, the projectile emits an electron, whereas the target final and initial states are the same. A prototype of double-electron transitions in loss processes is projectile ionization accompanied with an alteration of the target state. In such a two-electron process, the target could be excited or ionized. The relative importance of these loss channels with single- and double-electron transitions involving collisions of dressed projectiles with atomic systems is also strongly dependent on the value of the impact energy. Moreover, impact energies determine which theoretical method is likely to be more appropriate to use for predictions of cross sections. At low energies, an expansion of total scattering wave functions in terms of molecular orbitals is adequate. This is because the projectile spends considerable time in the vicinity of the target, and as a result, a compound system comprised of the projectile and the target can be formed in a metastable molecular state which is prone to decay. At high energies, a perturbation series expansion is more appropriate in terms of powers of interaction potentials. In the intermediate energy region, atomic orbitals are often used with success while expanding the total scattering wave functions. The present work is focused on quantum mechanical perturbation theories applied to electron loss collisions involving two hydrogen-like atoms. Both the one- and two-electron transitions (target unaffected by collision, as well as loss-ionization) are thoroughly examined in various intervals of impact energies varying from the threshold via the Massey peak to the Bethe asymptotic region. Systematics are established for the fast, simple, and accurate computations of cross sections for loss-excitation and loss-ionization accounting for the entire spectra of all four particles, including two free electrons and two free protons. The expounded algorithmic strategy of quantum mechanical methodologies is of great importance for wide applications to particle transport physics, especially in fusion research and hadron radiotherapy. This should advantageously replace the current overwhelming tendency in these fields for using phenomenological modeling with artificial functions extracted from fitting the existing experimental/theoretical data bases for cross sections.

  9. Atomic Scale Dynamics of Contact Formation in the Cross-Section of InGaAs Nanowire Channels

    DOE PAGES

    Chen, Renjie; Jungjohann, Katherine L.; Mook, William M.; ...

    2017-03-23

    In the alloyed and compound contacts between metal and semiconductor transistor channels we see that they enable self-aligned gate processes which play a significant role in transistor scaling. At nanoscale dimensions and for nanowire channels, prior experiments focused on reactions along the channel length, but the early stage of reaction in their cross sections remains unknown. We report on the dynamics of the solid-state reaction between metal (Ni) and semiconductor (In 0.53Ga 0.47As), along the cross-section of nanowires that are 15 nm in width. Unlike planar structures where crystalline nickelide readily forms at conventional, low alloying temperatures, nanowires exhibit amore » solid-state amorphization step that can undergo a crystal regrowth step at elevated temperatures. Here, we capture the layer-by-layer reaction mechanism and growth rate anisotropy using in situ transmission electron microscopy (TEM). Our kinetic model depicts this new, in-plane contact formation which could pave the way for engineered nanoscale transistors.« less

  10. X-ray and gamma-ray line production by nonthermal ions

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Omidvar, K.; Ramaty, R.

    1977-01-01

    X-ray production was calculated at approximately 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation. A refinement of the OBK approximation was used to obtain an improved charge exchange cross section. This, and the corresponding ionization cross section were used to determine equilibrium charge fractions for iron ions as functions of their energy. The effective X-ray line production cross section was found to be sharply peaked in energy at about 8 to 12 MeV/amu. Because fast ions of similar energies can also excite nuclear levels, the ratio of selected strong gamma ray line emissivities to the X-ray line emissivity was also calculated. Limits set by this method on the intensity of gamma ray line emission from the galactic center and the radio galaxy Centaurus A are generally lower than those reported in the literature.

  11. FAST TRACK COMMUNICATION: Oscillation structures in elastic and electron capture cross sections for H+-H collisions in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, J. G.; Krstic, P. S.; Janev, R. K.

    2010-10-01

    We find that the number of vibrational states in the ground potential of a H2+ molecular ion embedded in the Debye plasma and the number of Regge oscillations in the resonant charge transfer cross section of the H+ + H collision system in the plasma are quasi-conserved when the Debye radius D is larger than 1.4a0. The elastic and resonant charge transfer processes in the H+ + H collision have been studied in the 0.1 meV-100 eV collision energy range for a wide range of Debye radii using a highly accurate calculation based on the modified ab initio multireference configuration interaction code. Remarkable plasma screening effects have been found in both the molecular structure and the collision dynamics of this system. Shape resonances, Regge and glory oscillations have been found in the integral cross sections in the considered energy range even for strong interaction screening, showing their ubiquitous nature.

  12. Characteristics of a heavy water photoneutron source in boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Danial, Salehi; Dariush, Sardari; M. Salehi, Jozani

    2013-07-01

    Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head, patient's body, and treatment room ambient. Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons, the energy spectrum of which shows an end point equal to the electron beam energy. By varying the target thickness, an optimum thickness exists for which, at the given electron energy, maximum photon flux is achievable. If a source of high-energy photons i.e. bremsstrahlung, is conveniently directed to a suitable D2O target, a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible. This study consists of two parts. 1. Comparison and assessment of deuterium photonuclear cross section data. 2. Evaluation of the heavy water photonuclear source.

  13. Electron capture by U(91+) and U(92+) and ionization of U(90+) and U(91+)

    NASA Technical Reports Server (NTRS)

    Gould, H.; Greiner, D.; Lindstrom, P.; Symons, T. J. M.; Crawford, H.

    1984-01-01

    U(92+)/U(91+) and U(91+)/U(90+) electron-capture and ionization cross sections and equilibrium charge-state distributions are measured experimentally in mylar, Cu and Ta of varying thickness. Relativistic U(68+) ions at 437 or 962 MeV/nucleon are produced by a heavy-ion linear accelerator and synchrotron in tandem and passed through the target material into a magnetic specrometer and position-sensitive proportional counter for evaluation of charge states. The results are presented graphically and discussed. At 962 MeV/nucleon, beams containing 85 percent bare U(92+) nuclei are obtained using 150-mg/sq cm Cu or 85-mg/sq cm Ta; at 437 MeV/nucleon, 50 percent bare U(92+) nuclei are obtained with 90-mg/sq cm Cu. The techniques decribed can be applied to produce beams of bare U nuclei for acceleration to ultrarelativistic speeds or beams of few-electron U for atomic-physics experiments on quantum electrodynamics.

  14. CEPXS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-19

    CEPXS is a multigroup-Legendre cross-section generating code. The cross sections produced by CEPXS enable coupled electron-photon transport calculations to be performed with multigroup radiation transport codes, e.g. MITS and SCEPTRE. CEPXS generates multigroup-Legendre cross sections for photons, electrons and positrons over the energy range from 100 MeV to 1.0 keV. The continuous slowing-down approximation is used for those electron interactions that result in small-energy losses. The extended transport correction is applied to the forward-peaked elastic scattering cross section for electrons. A standard multigroup-Legendre treatment is used for the other coupled electron-photon cross sections. CEPXS extracts electron cross-section information from themore » DATAPAC data set and photon cross-section information from Biggs-Lighthill data. The model that is used for ionization/relaxation in CEPXS is essentially the same as that employed in ITS.« less

  15. Radiative double electron capture in collisions of fully-stripped fluorine ions with thin carbon foils

    NASA Astrophysics Data System (ADS)

    Elkafrawy, Tamer Mohammad Samy

    Radiative double electron capture (RDEC) is a one-step process in ion-atom collisions occurring when two target electrons are captured to a bound state of the projectile simultaneously with the emission of a single photon. The emitted photon has approximately double the energy of the photon emitted due to radiative electron capture (REC), which occurs when a target electron is captured to a projectile bound state with simultaneous emission of a photon. REC and RDEC can be treated as time-reversed photoionization (PI) and double photoionization (DPI), respectively, if loosely-bound target electrons are captured. This concept can be formulated with the principle of detailed balance, in which the processes of our interest can be described in terms of their time-reversed ones. Fully-stripped ions were used as projectiles in the performed RDEC experiments, providing a recipient system free of electron-related Coulomb fields. This allows the target electrons to be transferred without interaction with any of the projectile electrons, enabling accurate investigation of the electron-electron interaction in the vicinity of electromagnetic field. In this dissertation, RDEC was investigated during the collision of fully-stripped fluorine ions with a thin carbon foil and the results are compared with the recent experimental and theoretical studies. In the current work, x rays associated with projectile charge-changing by single and double electron capture and no charge change by F9+ ions were observed and compared with recent work for O8+ ions and with theory. Both the F 9+ and O8+ ions had energies in the ˜MeV/u range. REC, in turn, was investigated as a means to compare with the theoretical predictions of the RDEC/REC cross section ratio. The most significant background processes including various mechanisms of x-ray emission that may interfere with the energy region of interest are addressed in detail. This enables isolation of the contributions of REC and RDEC from the entire continuous spectrum of x-ray emission or at least ensures that the background processes have negligible contribution to the energy range of interest. Special emphasis is given to showing how the data analysis was carried out by the subtraction of the x rays due to contamination lines.

  16. Two-Centre Convergent Close-Coupling Approach to Ion-Atom Collisions: Current Progress

    NASA Astrophysics Data System (ADS)

    Kadyrov, Alisher; Abdurakhmanov, Ilkhom; Bailey, Jackson; Bray, Igor

    2016-09-01

    There are two versions of the convergent close-coupling (CCC) approach to ion-atom collisions: quantum-mechanical (QM-CCC) and semi-classical (SC-CCC). Recently, both implementations have been extended to include electron-transfer channels. The SC-CCC approach has been applied to study the excitation and the electron-capture processes in proton-hydrogen collisions. The integral alignment parameter A20 for polarization of Lyman- α emission and the cross sections for excitation and electron-capture into the lowest excited states have been calculated for a wide range of the proton impact energies. It has been established that for convergence of the results a very wide range of impact parameters (typically, 0-50 a.u.) is required due to extremely long tails of transition probabilities for transitions into the 2 p states at high energies. The QM-CCC approach allowed to obtain an accurate solution of proton-hydrogen scattering problem including all underlying processes, namely, direct scattering and ionisation, and electron capture into bound and continuum states of the projectile. In this presentation we give a general overview of current progress in applications of the two-centre CCC approach to ion-atom and atom-atom collisions. The work is supported by the Australian Research Council.

  17. An overview of DANCE: a 4II BaF[2] detector for neutron capture measurements at LANSCE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, J. L.

    2004-01-01

    The Detector for Advanced Neutron Capture experiments (DANCE) is a 162-element, 4{pi} BaF{sub 2} array designed to make neutron capture cross-section measurements on rare or radioactive targets with masses as little as 1 mg. Accurate capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. These cross sections are difficult to calculate accurately and must be measured. Up to now, except for a few long-lived nuclides there are essentially no differential capture measurements on radioactive nuclei. The DANCE array is located at the Lujan Neutron Scattering Center atmore » LANSCE, which is a continuous-spectrum neutron source with useable energies from below thermal to about 100 keV. Data acquisition is done with 320 fast waveform digitizers. The design and initial performance results, including background minimization, will be discussed.« less

  18. Systematics of capture and fusion dynamics in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wen, Kai; Zhao, Wei-Juan; Zhao, En-Guang; Zhou, Shan-Gui

    2017-03-01

    We perform a systematic study of capture excitation functions by using an empirical coupled-channel (ECC) model. In this model, a barrier distribution is used to take effectively into account the effects of couplings between the relative motion and intrinsic degrees of freedom. The shape of the barrier distribution is of an asymmetric Gaussian form. The effect of neutron transfer channels is also included in the barrier distribution. Based on the interaction potential between the projectile and the target, empirical formulas are proposed to determine the parameters of the barrier distribution. Theoretical estimates for barrier distributions and calculated capture cross sections together with experimental cross sections of 220 reaction systems with 182 ⩽ZPZT ⩽ 1640 are tabulated. The results show that the ECC model together with the empirical formulas for parameters of the barrier distribution work quite well in the energy region around the Coulomb barrier. This ECC model can provide prediction of capture cross sections for the synthesis of superheavy nuclei as well as valuable information on capture and fusion dynamics.

  19. Measurement of 173Lu(n,γ) Cross Sections at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Theroine, C.; Ebran, A.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Nortier, F. M.; O'Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Vieira, D. J.

    2014-05-01

    A highly gamma-radioactive target, 3.7 GBq, of 173Lu isotope was placed inside the DANCE array (Detector for Advanced Neutron Capture Experiments) at Los Alamos to study the radiative neutron capture on an unstable isotope. The 173Lu element was produced by naturalHf(p,xn) reactions following by beta-decays at the Isotope Production Facility (IPF). Measurements of radiative neutron capture cross section on 173Lu were achieved at the Los Alamos Neutron Science Center (LANSCE) spallation neutron source facility over the neutron energy range from thermal up to 1 keV. A special configuration was necessary to perform the experiment using the DANCE [1] array due to the high gamma activity of the target. We will report on the target production, the experiment and the results obtained for the radiative neutron capture on 173Lu. The radiative capture cross section was obtained for the first time on this unstable nucleus. Some resonances have been characterized. A comparison with a recent data evaluation is presented.

  20. Neutron Capture Cross Sections and Gamma Emission Spectra from Neutron Capture on 234,236,238U Measured with DANCE

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Mosby, S.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C.-Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2014-05-01

    A new measurement of the 238U(n, γ) cross section using a thin 48 mg/cm2 target was made using the DANCE detector at LANSCE over the energy range from 10 eV to 500 keV. The results confirm earlier measurements. Measurements of the gamma-ray emission spectra were also made for 238U(n, γ) as well as 234,236U(n, γ). These measurements help to constrain the radiative strength function used in the cross-section calculations.

  1. Radiative neutron capture on 242Pu in the resonance region at the CERN n_TOF-EAR1 facility

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Guerrero, C.; Mendoza, E.; Quesada, J. M.; Eberhardt, K.; Junghans, A. R.; Krtička, M.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Göbel, K.; García, A. R.; Gawlik, A.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, J. I.; Praena, J.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.; n TOF Collaboration

    2018-02-01

    The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of 242Pu there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluated with JEFF-3.1 indicate an overestimation of 14% in the capture cross section in the fast neutron energy region. In this context, the Nuclear Energy Agency (NEA) requested an accuracy of 8% in this cross section in the energy region between 500 meV and 500 keV. This paper presents a new time-of-flight capture measurement on 242Pu carried out at n_TOF-EAR1 (CERN), focusing on the analysis and statistical properties of the resonance region, below 4 keV. The 242Pu(n ,γ ) reaction on a sample containing 95(4) mg enriched to 99.959% was measured with an array of four C6D6 detectors and applying the total energy detection technique. The high neutron energy resolution of n_TOF-EAR1 and the good statistics accumulated have allowed us to extend the resonance analysis up to 4 keV, obtaining new individual and average resonance parameters from a capture cross section featuring a systematic uncertainty of 5%, fulfilling the request of the NEA.

  2. Neutron capture cross section of ^243Am

    NASA Astrophysics Data System (ADS)

    Jandel, M.

    2009-10-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^243Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following neutron capture. DANCE is located on the 20.26 m neutron flight path 14 (FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The methods and techniques established in [1] were used for the determination of the ^243Am neutron capture cross section. The cross sections were obtained in the range of neutron energies from 0.02 eV to 400 keV. The resonance region was analyzed using SAMMY7 and resonance parameters were extracted. The results will be compared to existing evaluations and calculations. Work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory by the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. [4pt] [1] M. Jandel et al., Phys. Rev. C78, 034609 (2008)

  3. Unifying measurement of Pu 239 ( n , γ ) in the keV to MeV energy regime

    DOE PAGES

    Mosby, S.; Bredeweg, T. A.; Couture, A.; ...

    2018-04-23

    A single, unifying measurement of the 239Pu capture cross section from 1 keV to 1.3 MeV has been performed for the first time using the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center (LANSCE). The experimental method combines a prior experiment's characterization of prompt fission γ rays in conjunction with a fission tagging detector with a separate experiment using a thick 239Pu sample to extract the neutron capture cross section in ratio to 239Pu (n, f). We have made new predictions of the capture cross section taking into account recent results for the M1more » scissors mode present in other actinides. The results show deviations from current evaluations which are 30% higher at the highest energies, and will be used to improve calculations relevant for several applications.« less

  4. Unifying measurement of 239Pu(n ,γ ) in the keV to MeV energy regime

    NASA Astrophysics Data System (ADS)

    Mosby, S.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Kawano, T.; Ullmann, J. L.; Henderson, R. A.; Wu, C. Y.

    2018-04-01

    A single, unifying measurement of the 239Pu capture cross section from 1 keV to 1.3 MeV has been performed for the first time using the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center (LANSCE). The experimental method combines a prior experiment's characterization of prompt fission γ rays in conjunction with a fission tagging detector with a separate experiment using a thick 239Pu sample to extract the neutron capture cross section in ratio to 239Pu(n ,f ) . We have made new predictions of the capture cross section taking into account recent results for the M 1 scissors mode present in other actinides. The results show deviations from current evaluations which are 30% higher at the highest energies, and will be used to improve calculations relevant for several applications.

  5. Stellar neutron capture cross sections of 41K and 45Sc

    NASA Astrophysics Data System (ADS)

    Heil, M.; Plag, R.; Uberseder, E.; Bisterzo, S.; Käppeler, F.; Mengoni, A.; Pignatari, M.

    2016-05-01

    The neutron capture cross sections of light nuclei (A <56 ) are important for s -process scenarios since they act as neutron poisons. We report on measurements of the neutron capture cross sections of 41K and 45Sc, which were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator via the activation method in a quasistellar neutron spectrum corresponding to a thermal energy of k T =25 keV. Systematic effects were controlled by repeated irradiations, resulting in overall uncertainties of less than 3%. The measured spectrum-averaged data have been used to normalize the energy-dependent (n ,γ ) cross sections from the main data libraries JEFF-3.2, JENDL-4.0, and ENDF/B-VII.1, and a set of Maxwellian averaged cross sections was calculated for improving the s -process nucleosynthesis yields in AGB stars and in massive stars. At k T =30 keV, the new Maxwellian averaged cross sections of 41K and 45Sc are 19.2 ±0.6 mb and 61.3 ±1.8 mb, respectively. Both values are 20% lower than previously recommended. The effect of neutron poisons is discussed for nuclei with A <56 in general and for the investigated isotopes in particular.

  6. Simplified model to describe the dissociative recombination of linear polyatomic ions of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Douguet, N.; Fonseca dos Santos, S.; Kokoouline, V.; Orel, A. E.

    2015-01-01

    We present results of a theoretical study on dissociative recombination of the HCNH+, HCO+ and N2H+ linear polyatomic ions at low energies using a simple theoretical model. In the present study, the indirect mechanism for recombination proceeds through the capture of the incoming electron in excited vibrational Rydberg states attached to the degenerate transverse modes of the linear ions. The strength of the non-adiabatic coupling responsible for dissociative recombination is determined directly from the near-threshold scattering matrix obtained numerically using the complex Kohn variational method. The final cross sections for the process are compared with available experimental data. It is demonstrated that at low collision energies, the major contribution to the dissociative recombination cross section is due to the indirect mechanism.

  7. Density Functional Theory Calculations of Activation Energies for Carrier Capture by Defects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Modine, Normand; Wright, Alan; Lee, Stephen

    2015-03-01

    Carrier recombination due to defects can have a major impact on device performance. The rate of defect-induced recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry worked out the fundamental theory of carrier-capture by multiphonon emission in the 1970s and showed that, above the Debye temperature, carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for the -3/-2 level of the Ga vacancy in wurtzite GaN. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Density Functional Theory Calculations of Activation Energies for Carrier Capture by Defects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Modine, N. A.; Wright, A. F.; Lee, S. R.

    The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry developed the theory of carrier-capture by multiphonon emission in the 1970s and showed that carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for intrinisic defects in GaAs and GaN and discuss how our results depend on the choice of exchange-correlation functional and the treatment of spin polarization. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  9. Effective Elastic and Neutron Capture Cross Section Calculations Corresponding to Simulated Fluid Properties from CO2 Push-Pull Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chugunov, Nikita; Altundas, Bilgin

    The submission contains a .xls files consisting of 10 excel sheets, which contain combined list of pressure, saturation, salinity, temperature profiles from the simulation of CO2 push-pull using Brady reservoir model and the corresponding effective compressional and shear velocity, bulk density, and fluid and time-lapse neutron capture cross section profiles of rock at times 0 day (baseline) through 14 days. First 9 sheets (each named after the corresponding CO2 push-pull simulation time) contains simulated pressure, saturation, temperature, salinity profiles and the corresponding effective elastic and neutron capture cross section profiles of rock matrix at the time of CO2 injection. Eachmore » sheet contains two sets of effective compressional velocity profiles of the rock, one based on Gassmann and the other based on Patchy saturation model. Effective neutron capture cross section calculations are done using a proprietary neutron cross-section simulator (SNUPAR) whereas for the thermodynamic properties of CO2 and bulk density of rock matrix filled with fluid, a standalone fluid substitution tool by Schlumberger is used. Last sheet in the file contains the bulk modulus of solid rock, which is inverted from the rock properties (porosity, sound speed etc) based on Gassmann model. Bulk modulus of solid rock in turn is used in the fluid substitution.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, John Leonard; Couture, Aaron Joseph; Koehler, Paul E.

    An accurate knowledge of the neutron capture cross section is important for many applications. Experimental measurements are important since theoretical calculations of capture have been notoriously difficult, with the ratio of measured to calculated cross sections often a factor of 2 or more in the 10 keV to 1 MeV region. However, a direct measurement of capture cannot be made on many interesting radioactive nuclides because of their short half-life or backgrounds caused by their nuclear decay. On the other hand, neutron transmission measurements of the total cross section are feasible for a wide range of radioactive nuclides since themore » detectors are far from the sample, and often are less sensitive to decay radiation. The parameters extracted from a total cross section measurement, which include the average resonance spacing, the neutron strength function, and the average total radiation width, (Γ γ), provide tight constraints on the calculation of the capture cross section, and when applied produce much more accurate results. These measurements can be made using the intense epithermal neutron flux at the Lujan Center on relatively small quantities of target material. It was the purpose of this project to investigate and develop the capability to make these measurements. A great deal of progress was made towards establishing this capability during 2016, including setting up the flight path and obtaining preliminary results, but more work remains to be done.« less

  11. Investigation of complete and incomplete fusion in the 7Li+124Sn reaction near Coulomb barrier energies

    NASA Astrophysics Data System (ADS)

    Parkar, V. V.; Sharma, Sushil K.; Palit, R.; Upadhyaya, S.; Shrivastava, A.; Pandit, S. K.; Mahata, K.; Jha, V.; Santra, S.; Ramachandran, K.; Nag, T. N.; Rath, P. K.; Kanagalekar, Bhushan; Trivedi, T.

    2018-01-01

    The complete and incomplete fusion cross sections for the 7Li+124Sn reaction were measured using online and offline characteristic γ -ray detection techniques. The complete fusion (CF) cross sections at energies above the Coulomb barrier were found to be suppressed by ˜26 % compared to the coupled channel calculations. This suppression observed in complete fusion cross sections is found to be commensurate with the measured total incomplete fusion (ICF) cross sections. There is a distinct feature observed in the ICF cross sections, i.e., t capture is found to be dominant compared to α capture at all the measured energies. A simultaneous explanation of complete, incomplete, and total fusion (TF) data was also obtained from the calculations based on the continuum discretized coupled channel method with short range imaginary potentials. The cross section ratios of CF/TF and ICF/TF obtained from the data as well as the calculations showed the dominance of ICF at below-barrier energies and CF at above-barrier energies.

  12. Measurement of 208Pb(n ,γ )209Pb Maxwellian averaged neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Weissman, L.; Tessler, M.; Arenshtam, A.; Eliyahu, I.; Halfon, S.; Guerrero, C.; Kaizer, B.; Kijel, D.; Kreisel, A.; Palchan, T.; Paul, M.; Perry, A.; Schimel, G.; Silverman, I.; Shor, A.; Tamim, N.; Vaintraub, S.

    2017-07-01

    The doubly magic 208Pb nucleus is a bottleneck at the termination of the s -process path due to its very low neutron capture cross section. This cross section is also important for the decomposition of s , r processes and U/Th radiogenic decay contributions to the Pb-Bi solar abundances. The 208Pb(n ,γ )209Pb cross section was measured at the Soreq Applied Research Accelerator Facility Phase I using an intense quasi-Maxwellian neutron source produced by irradiation of the liquid-lithium target with a 1.5-mA continuous-wave proton beam at 1.94 MeV. The cross section was measured by counting the β activity from the irradiated lead target. The measurement allowed us to evaluate the Maxwellian averaged cross section (MACS) at 30 keV obtaining a value of 0.33(2) mb. This has been compared with the earlier activation and time-of-flight measurements found in the literature. The MACS cross-sectional value of the 63Cu(n ,γ )64Cu reaction was determined in the same experiment and is compared to a recent published value.

  13. Neutron capture cross section measurement of 151Sm at the CERN neutron time of flight facility (n_TOF).

    PubMed

    Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Becvár, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Cortina, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Duran, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Furman, W; Goncalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, A; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stephan, C; Tagliente, G; Tain, J; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2004-10-15

    The151Sm(n,gamma)152Sm cross section has been measured at the spallation neutron facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The new facility combines excellent resolution in neutron time-of-flight, low repetition rates, and an unsurpassed instantaneous luminosity, resulting in rather favorable signal/background ratios. The 151Sm cross section is of importance for characterizing neutron capture nucleosynthesis in asymptotic giant branch stars. At a thermal energy of kT=30 keV the Maxwellian averaged cross section of this unstable isotope (t(1/2)=93 yr) was determined to be 3100+/-160 mb, significantly larger than theoretical predictions.

  14. Study of BenW (n = 1-12) clusters: An electron collision perspective

    NASA Astrophysics Data System (ADS)

    Modak, Paresh; Kaur, Jaspreet; Antony, Bobby

    2017-08-01

    This article explores electron scattering cross sections by Beryllium-Tungsten clusters (BenW). Beryllium and tungsten are important elements for plasma facing wall components, especially for the deuterium/tritium phase of ITER and in the recently installed JET. The present study focuses on different electron impact interactions in terms of elastic cross section (Qel), inelastic cross section (Qinel), ionization cross section (Qion), and momentum transfer cross section (Qmtcs) for the first twelve clusters belonging to the BenW family. It also predicts the evolution of the cross section with the size of the cluster. These cross sections are used as an input to model processes in plasma. The ionization cross section presented here is compared with the available reported data. This is the first comprehensive report on cross section data for all the above-mentioned scattering channels, to the best of our knowledge. Such broad analysis of cross section data gives vital insight into the study of local chemistry of electron interactions with BenW (n = 1-12) clusters in plasma.

  15. Time-dependent spin-density-functional-theory description of He+-He collisions

    NASA Astrophysics Data System (ADS)

    Baxter, Matthew; Kirchner, Tom; Engel, Eberhard

    2017-09-01

    Theoretical total cross-section results for all ionization and capture processes in the He+-He collision system are presented in the approximate impact energy range of 10-1000 keV/amu. Calculations were performed within the framework of time-dependent spin-density functional theory. The Krieger-Li-Iafrate approximation was used to determine an accurate exchange-correlation potential in the exchange-only limit. The results of two models, one where electron translation factors in the orbitals used to calculate the potential are ignored and another where partial electron translation factors are included, are compared with available experimental data as well as a selection of previous theoretical calculations.

  16. Triple differential study of ionization of H2 by proton impact for varying electron ejection geometries

    NASA Astrophysics Data System (ADS)

    Hasan, A.; Sharma, S.; Arthanayaka, T. P.; Lamichhane, B. R.; Remolina, J.; Akula, S.; Madison, D. H.; Schulz, M.

    2014-11-01

    We have performed a kinematically complete experiment on ionization of H2 by 75 keV proton impact. The triple differential cross sections (TDCS) extracted from the measurement were compared to a molecular 3-body distorted wave (M3DW) calculation for three different electron ejection geometries. Overall, the agreement between experiment and theory is better than in the case of a helium target for the same projectile. Nevertheless, significant quantitative discrepancies remain, which probably result from the capture channel, which may be strongly coupled to the ionization channel. Therefore, improved agreement could be expected from a non-perturbative coupled-channel approach.

  17. Electron transfer in proton-hydrogen collisions under dense quantum plasma

    NASA Astrophysics Data System (ADS)

    Nayek, Sujay; Bhattacharya, Arka; Kamali, Mohd Zahurin Mohamed; Ghoshal, Arijit; Ratnavelu, Kurunathan

    2017-09-01

    The effects of dense quantum plasma on 1 s → nlm charge transfer, for arbitrary n,l,m, in proton-hydrogen collisions have been studied by employing a distorted wave approximation. The interactions among the charged particles in the plasma have been represented by modified Debye-Huckel potentials. A detailed study has been made to explore the effects of background plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range 10-1000 keV. For the unscreened case, our results agree well with some of the most accurate results available in the literature.

  18. Investigation of large α production in reactions involving weakly bound 7Li

    NASA Astrophysics Data System (ADS)

    Pandit, S. K.; Shrivastava, A.; Mahata, K.; Parkar, V. V.; Palit, R.; Keeley, N.; Rout, P. C.; Kumar, A.; Ramachandran, K.; Bhattacharyya, S.; Nanal, V.; Palshetkar, C. S.; Nag, T. N.; Gupta, Shilpi; Biswas, S.; Saha, S.; Sethi, J.; Singh, P.; Chatterjee, A.; Kailas, S.

    2017-10-01

    The origin of the large α -particle production cross sections in systems involving weakly bound 7Li projectiles has been investigated by measuring the cross sections of all possible fragment-capture as well as complete fusion using the particle-γ coincidence, in-beam, and off-beam γ -ray counting techniques for the 7Li+93Nb system at near Coulomb barrier energies. Almost all of the inclusive α -particle yield has been accounted for. While the t -capture mechanism is found to be dominant (˜70 % ), compound nuclear evaporation and breakup processes contribute ˜15 % each to the inclusive α -particle production in the measured energy range. Systematic behavior of the t capture and inclusive α cross sections for reactions involving 7Li over a wide mass range is also reported.

  19. Evaluation of neutron total and capture cross sections on 99Tc in the unresolved resonance region

    NASA Astrophysics Data System (ADS)

    Iwamoto, Nobuyuki; Katabuchi, Tatsuya

    2017-09-01

    Long-lived fission product Technetium-99 is one of the most important radioisotopes for nuclear transmutation. The reliable nuclear data are indispensable for a wide energy range up to a few MeV, in order to develop environmental load reducing technology. The statistical analyses of resolved resonances were performed by using the truncated Porter-Thomas distribution, coupled-channels optical model, nuclear level density model and Bayes' theorem on conditional probability. The total and capture cross sections were calculated by a nuclear reaction model code CCONE. The resulting cross sections have statistical consistency between the resolved and unresolved resonance regions. The evaluated capture data reproduce those recently measured at ANNRI of J-PARC/MLF above resolved resonance region up to 800 keV.

  20. The electron trap parameter extraction-based investigation of the relationship between charge trapping and activation energy in IGZO TFTs under positive bias temperature stress

    NASA Astrophysics Data System (ADS)

    Rhee, Jihyun; Choi, Sungju; Kang, Hara; Kim, Jae-Young; Ko, Daehyun; Ahn, Geumho; Jung, Haesun; Choi, Sung-Jin; Myong Kim, Dong; Kim, Dae Hwan

    2018-02-01

    Experimental extraction of the electron trap parameters which are associated with charge trapping into gate insulators under the positive bias temperature stress (PBTS) is proposed and demonstrated for the first time in amorphous indium-gallium-zinc-oxide thin-film transistors. This was done by combining the PBTS/recovery time-evolution of the experimentally decomposed threshold voltage shift (ΔVT) and the technology computer-aided design (TCAD)-based charge trapping simulation. The extracted parameters were the trap density (NOT) = 2.6 × 1018 cm-3, the trap energy level (ΔET) = 0.6 eV, and the capture cross section (σ0) = 3 × 10-19 cm2. Furthermore, based on the established TCAD framework, the relationship between the electron trap parameters and the activation energy (Ea) is comprehensively investigated. It is found that Ea increases with an increase in σ0, whereas Ea is independent of NOT. In addition, as ΔET increases, Ea decreases in the electron trapping-dominant regime (low ΔET) and increases again in the Poole-Frenkel (PF) emission/hopping-dominant regime (high ΔET). Moreover, our results suggest that the cross-over ΔET point originates from the complicated temperature-dependent competition between the capture rate and the emission rate. The PBTS bias dependence of the relationship between Ea and ΔET suggests that the electric field dependence of the PF emission-based electron hopping is stronger than that of the thermionic field emission-based electron trapping.

  1. Electron capture in collisions of N^+ with H and H^+ with N

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Stancil, P. C.; Gu, J. P.; Buenker, R. J.; Kimura, M.

    2004-05-01

    Charge transfer processes due to collisions of N^+ with atomic hydrogen and H^+ with atomic nitrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potential curves and nonadiabatic radial and rotational coupling matrix elements obtained with the multireference single- and double-excitation configuration interaction approach. Total and state-selective cross sections for the energy range 0.1-500 eV/u will be presented and compared with existing experimental and theoretical data.

  2. Characterization of an Atomic Hydrogen Source for Charge Exchange Experiments

    NASA Technical Reports Server (NTRS)

    Leutenegger, M. A.; Beierdorfer, P.; Betancourt-Martinez, G. L.; Brown, G. V.; Hell, N; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; Porter, F. S.

    2016-01-01

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source byinjecting the mixed atomic and molecular output of the source into an electron beam ion trapcontaining highly charged ions and recording the x-ray spectrum generated by charge exchangeusing a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchangestate-selective capture cross sections are very different for atomic and molecular hydrogen incidenton the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  3. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the gas chromatographic-electron capture method prescribed in paragraph (c)(3) of this section. If..._locations.html. (3) The gas chromatographic-electron capture method for testing fatty acids for chick-edema...

  4. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the gas chromatographic-electron capture method prescribed in paragraph (c)(3) of this section. If..._locations.html. (3) The gas chromatographic-electron capture method for testing fatty acids for chick-edema...

  5. Large-amplitude nuclear motion formulated in terms of dissipation of quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Kuzyakin, R. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2017-01-01

    The potential-barrier penetrability and quasi-stationary thermal-decay rate of a metastable state are formulated in terms of microscopic quantum diffusion. Apart from linear coupling in momentum between the collective and internal subsystems, the formalism embraces the more general case of linear couplings in both the momentum and the coordinates. The developed formalism is then used for describing the process of projectile-nucleus capture by a target nucleus at incident energies near and below the Coulomb barrier. The capture partial probability, which determines the cross section for formation of a dinuclear system, is derived in analytical form. The total and partial capture cross sections, mean and root-mean-square angular momenta of the formed dinuclear system, astrophysical -factors, logarithmic derivatives, and barrier distributions are derived for various reactions. Also investigated are the effects of nuclear static deformation and neutron transfer between the interacting nuclei on the capture cross section and its isotopic dependence, and the entrance-channel effects on the capture process. The results of calculations for reactions involving both spherical and deformed nuclei are in good agreement with available experimental data.

  6. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at E n,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of themore » cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the E n,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at E n ≈ 1 keV and are approximately 2σ away from the previous measurement at E n ≈ 20 keV.« less

  7. Cross section and γ-ray spectra for U238(n,γ) measured with the DANCE detector array at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.

    2014-03-01

    Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.

  8. Variable pressure ionization detector for gas chromatography

    DOEpatents

    Buchanan, Michelle V.; Wise, Marcus B.

    1988-01-01

    Method and apparatus for differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated at pressures ranging from atmospheric to less than 1 torr. Through variation of the pressure within the ECD cell, the organic compounds are induced to either capture or emit electrons. Differentiation of isomeric compounds can be obtianed when, at a given pressure, one isomer is in the emission mode and the other is in the capture mode. Output of the ECD is recorded by chromatogram. The invention also includes a method for obtaining the zero-crossing pressure of a compound, defined as the pressure at which the competing emission and capture reactions are balanced and which may be correlated to the electron affinity of a compound.

  9. Quantum tunneling resonant electron transfer process in Lorentzian plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunnelingmore » resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.« less

  10. Resonant transfer excitation in collisions of F sup 6+ and Mg sup 9+ with H sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, E.M.; Kamal, A.; Zaharakis, K.E.

    1991-10-01

    Experimental and theoretical investigations of resonant transfer excitation (RTE) for F{sup 6+}+H{sub 2} and Mg{sup 9+}+H{sub 2} collisions have been made. For both collision systems good agreement is obtained between the measured cross sections for {ital K}-shell x-ray emission coincident with electron-capture and theoretical RTE calculations. For F{sup 6+} the present calculations are about 10% lower than previous results of Bhalla and Karim (Phys. Rev. A 39, 6060 (1989); 41, 4097(E) (1990)); the measured cross sections are a factor of 2.3 larger than earlier measurements of Schulz {ital et} {ital al}. (Phys. Rev. A 38, 5454 (1988)). The previous disagreementmore » between experiment and theory for F{sup 6+} is removed.« less

  11. Influence of nuclear exchange on nonadiabatic electron processes in H(+)+H2 collisions.

    PubMed

    Errea, L F; Illescas, Clara; Macías, A; Méndez, L; Pons, B; Rabadán, I; Riera, A

    2010-12-28

    H(+)+H(2) collisions are studied by means of a semiclassical approach that explicitly accounts for nuclear rearrangement channels in nonadiabatic electron processes. A set of classical trajectories is used to describe the nuclear motion, while the electronic degrees of freedom are treated quantum mechanically in terms of a three-state expansion of the collision wavefunction. We describe electron capture and vibrational excitation, which can also involve nuclear exchange and dissociation, in the E = 2-1000 eV impact energy range. We compare dynamical results obtained with two parametrizations of the potential energy surface of H(3)(+) ground electronic state. Total cross sections for E > 10 eV agree with previous results using a vibronic close-coupling expansion, and with experimental data for E < 10 eV. Additionally, some prototypical features of both nuclear and electron dynamics at low E are discussed.

  12. Charge Exchange of Highly Charged Ne and Mg Ions with H and He

    NASA Astrophysics Data System (ADS)

    Lyons, D.; Cumbee, R. S.; Stancil, P. C.

    2017-10-01

    Cross sections for single electron capture (SEC), or charge exchange (CX), in collisions of Ne(8-10)+ and Mg(8-12)+ with H and He, are computed using an approximate multichannel Landau-Zener (MCLZ) formalism. Final-state-resolved cross sections for the principal (n), orbital angular momentum (ℓ), and where appropriate, total spin angular momentum (S) quantum numbers are explicitly computed, except for the incident bare ions Ne10+ and Mg12+. In the latter two cases, n{\\ell }-resolution is obtained from analytical ℓ-distribution functions applied to n-resolved MCLZ cross sections. In all cases, the cross sections are computed over the collision energy range 1 meV/u to 50 keV/u with LZ parameters estimated from atomic energies obtained from experiment, theory, or, in the case of high-lying Rydberg levels, estimated with a quantum defect approach. Errors in the energy differences in the adiabatic potentials at the avoided crossing distances give the largest contribution to the uncertainties in the cross sections, which are expected to increase with decreasing cross section magnitude. The energy differences are deduced here with the Olson-Salop-Tauljberg radial coupling model. Proper selection of an ℓ-distribution function for bare ion collisions introduces another level of uncertainty into the results. Comparison is made to existing experimental or theoretical results when available, but such data are absent for most considered collision systems. The n{\\ell }S-resolved SEC cross sections are used in an optically thin cascade simulation to predict X-ray spectra and line ratios that will aid in modeling the X-ray emission in environments where CX is an important mechanism. Details on a MCLZ computational package, Stueckelberg, are also provided.

  13. Evaluation of neutron capture cross section on 205Pb with photonuclear data

    NASA Astrophysics Data System (ADS)

    Iwamoto, Nobuyuki; Shizuma, Toshiyuki

    2018-05-01

    The neutron capture cross section of long-lived radioactive 205Pb is derived by using the nuclear reaction calculation code CCONE, based on photonuclear data. The present result is smaller than that of TENDL-2015 by a factor of 4. The derived Maxwellian averaged capture cross section (MACS) is the smallest compared to the existing data. The produced amount of 205Pb is explored with a simulated neutron flux in the Pb-Bi eutectic (LBE) target. The continuous use of the system in 25 years creates 205Pb with about 6 kg at maximum in the LBE (including natural Pb of 103 kg). The impact of the derived MACS on the stellar nucleosynthesis is investigated. It is found that the abundance of Tl is slightly enhanced due to the increase in the remaining abundance of 205Pb.

  14. α -induced reactions on 115In: Cross section measurements and statistical model analysis

    NASA Astrophysics Data System (ADS)

    Kiss, G. G.; Szücs, T.; Mohr, P.; Török, Zs.; Huszánk, R.; Gyürky, Gy.; Fülöp, Zs.

    2018-05-01

    Background: α -nucleus optical potentials are basic ingredients of statistical model calculations used in nucleosynthesis simulations. While the nucleon+nucleus optical potential is fairly well known, for the α +nucleus optical potential several different parameter sets exist and large deviations, reaching sometimes even an order of magnitude, are found between the cross section predictions calculated using different parameter sets. Purpose: A measurement of the radiative α -capture and the α -induced reaction cross sections on the nucleus 115In at low energies allows a stringent test of statistical model predictions. Since experimental data are scarce in this mass region, this measurement can be an important input to test the global applicability of α +nucleus optical model potentials and further ingredients of the statistical model. Methods: The reaction cross sections were measured by means of the activation method. The produced activities were determined by off-line detection of the γ rays and characteristic x rays emitted during the electron capture decay of the produced Sb isotopes. The 115In(α ,γ )119Sb and 115In(α ,n )Sb118m reaction cross sections were measured between Ec .m .=8.83 and 15.58 MeV, and the 115In(α ,n )Sb118g reaction was studied between Ec .m .=11.10 and 15.58 MeV. The theoretical analysis was performed within the statistical model. Results: The simultaneous measurement of the (α ,γ ) and (α ,n ) cross sections allowed us to determine a best-fit combination of all parameters for the statistical model. The α +nucleus optical potential is identified as the most important input for the statistical model. The best fit is obtained for the new Atomki-V1 potential, and good reproduction of the experimental data is also achieved for the first version of the Demetriou potentials and the simple McFadden-Satchler potential. The nucleon optical potential, the γ -ray strength function, and the level density parametrization are also constrained by the data although there is no unique best-fit combination. Conclusions: The best-fit calculations allow us to extrapolate the low-energy (α ,γ ) cross section of 115In to the astrophysical Gamow window with reasonable uncertainties. However, still further improvements of the α -nucleus potential are required for a global description of elastic (α ,α ) scattering and α -induced reactions in a wide range of masses and energies.

  15. Fusion and quasifission studies for the 40Ca+186W,192Os reactions

    NASA Astrophysics Data System (ADS)

    Prasad, E.; Hinde, D. J.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.; Ramachandran, K.; Simenel, C.; Wakhle, A.

    2017-09-01

    Background: All elements above atomic number 113 have been synthesized using hot fusion reactions with calcium beams on statically deformed actinide target nuclei. Quasifission and fusion-fission are the two major mechanisms responsible for the very low production cross sections of superheavy elements. Purpose: To achieve a quantitative measurement of capture and quasifission characteristics as a function of beam energy in reactions forming heavy compound systems using calcium beams as projectiles. Methods: Fission fragment mass-angle distributions were measured for the two reactions 40Ca+186W and 40C+192Os, populating 226Pu and 232Cm compound nuclei, respectively, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Mass ratio distributions, angular distributions, and total fission cross sections were obtained from the experimental data. Simulations to match the features of the experimental mass-angle distributions were performed using a classical phenomenological approach. Results: Both 40Ca+186W and 40C+192Os reactions show strong mass-angle correlations at all energies measured. A maximum fusion probability of 60 -70 % is estimated for the two reactions in the energy range of the present study. Coupled-channels calculations assuming standard Woods-Saxon potential parameters overpredict the capture cross sections. Large nuclear potential diffuseness parameters ˜1.5 fm are required to fit the total capture cross sections. The presence of a weak mass-asymmetric quasifission component attributed to the higher angular momentum events can be reproduced with a shorter average sticking time but longer mass-equilibration time constant. Conclusions: The deduced above-barrier capture cross sections suggest that the dissipative processes are already occurring outside the capture barrier. The mass-angle correlations indicate that a compact shape is not achieved for deformation aligned collisions with lower capture barriers. The average sticking time of fast quasifission events is 10-20 s.

  16. Study of inelastic processes in Li+-Ar, K+-Ar, and Na+-He collisions in the energy range 0.5-10 keV

    NASA Astrophysics Data System (ADS)

    Lomsadze, Ramaz A.; Gochitashvili, Malkhaz R.; Kezerashvili, Roman Ya; Schulz, Michael

    2017-11-01

    Absolute cross sections are measured for charge-exchange, ionization, and excitation processes within the same experimental setup for the Li{}+-Ar, K{}+-Ar, and Na{}+-He collisions in the ion energy range of 0.5-10 keV. The results of the measurements and schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. The experimental results show that the charge-exchange processes occur with high probabilities and electrons are predominantly captured in ground states. The contributions of various partial inelastic channels to the total ionization cross section are estimated, and a primary mechanism for the process is identified. In addition, the energy-loss spectrum is applied in order to estimate the relative contribution of different inelastic channels, and to determine the mechanisms for the ionization and for some excitation processes of Ar resonance lines for the {{{K}}}+-Ar collision system. The excitation cross sections for the helium and for the sodium doublet lines for the Na{}+-He collision system both reveal some unexpected features. A mechanism to explain this observation is suggested.

  17. Calculations of the displacement damage and short-circuit current degradation in proton irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Yeh, C. S.; Li, S. S.; Loo, R. Y.

    1987-01-01

    A theoretical model for computing the displacement damage defect density and the short-circuit current (I sub sc) degradation in proton-irradiated (AlGa)As-GaAs p-n junction solar cells is presented. Assumptions were made with justification that the radiation induced displacement defects form an effective recombination center which controls the electron and hole lifetimes in the junction space charge region and in the n-GaAs active layer of the irradiated GaAs p-n junction cells. The degradation of I sub sc in the (AlGa)As layer was found to be negligible compared to the total degradation. In order to determine the I sub sc degradation, the displacement defect density, path length, range, reduced energy after penetrating a distance x, and the average number of displacements formed by one proton scattering event were first calculated. The I sub sc degradation was calculated by using the electron capture cross section in the p-diffused layer and the hole capture cross section in the n-base layer as well as the wavelength dependent absorption coefficients. Excellent agreement was found between the researchers calculated values and the measured I sub sc in the proton irradiated GaAs solar cells for proton energies of 100 KeV to 10 MeV and fluences from 10 to the 10th power p/square cm to 10 to the 12th power p/square cm.

  18. Total cross section of furfural by electron impact: Experiment and theory.

    PubMed

    Traoré Dubuis, A; Verkhovtsev, A; Ellis-Gibbings, L; Krupa, K; Blanco, F; Jones, D B; Brunger, M J; García, G

    2017-08-07

    We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.

  19. Total cross section of furfural by electron impact: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Traoré Dubuis, A.; Verkhovtsev, A.; Ellis-Gibbings, L.; Krupa, K.; Blanco, F.; Jones, D. B.; Brunger, M. J.; García, G.

    2017-08-01

    We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.

  20. Double differential cross sections for proton induced electron emission from molecular analogues of DNA constituents for energies in the Bragg peak region

    NASA Astrophysics Data System (ADS)

    Rudek, Benedikt; Bennett, Daniel; Bug, Marion U.; Wang, Mingjie; Baek, Woon Yong; Buhr, Ticia; Hilgers, Gerhard; Champion, Christophe; Rabus, Hans

    2016-09-01

    For track structure simulations in the Bragg peak region, measured electron emission cross sections of DNA constituents are required as input for developing parameterized model functions representing the scattering probabilities. In the present work, double differential cross sections were measured for the electron emission from vapor-phase pyrimidine, tetrahydrofuran, and trimethyl phosphate that are structural analogues to the base, the sugar, and the phosphate residue of the DNA, respectively. The range of proton energies was from 75 keV to 135 keV, the angles ranged from 15° to 135°, and the electron energies were measured from 10 eV to 200 eV. Single differential and total electron emission cross sections are derived by integration over angle and electron energy and compared to the semi-empirical Hansen-Kocbach-Stolterfoht (HKS) model and a quantum mechanical calculation employing the first Born approximation with corrected boundary conditions (CB1). The CB1 provides the best prediction of double and single differential cross section, while total cross sections can be fitted with semi-empirical models. The cross sections of the three samples are proportional to their total number of valence electrons.

  1. Electron-capture Isotopes Could Constrain Cosmic-Ray Propagation Models

    NASA Astrophysics Data System (ADS)

    Benyamin, David; Shaviv, Nir J.; Piran, Tsvi

    2017-12-01

    Electron capture (EC) isotopes are known to provide constraints on the low-energy behavior of cosmic rays (CRs), such as reacceleration. Here, we study the EC isotopes within the framework of the dynamic spiral-arms CR propagation model in which most of the CR sources reside in the galactic spiral arms. The model was previously used to explain the B/C and sub-Fe/Fe ratios. We show that the known inconsistency between the 49Ti/49V and 51V/51Cr ratios remains also in the spiral-arms model. On the other hand, unlike the general wisdom that says the isotope ratios depend primarily on reacceleration, we find here that the ratio also depends on the halo size (Z h) and, in spiral-arms models, also on the time since the last spiral-arm passage ({τ }{arm}). Namely, EC isotopes can, in principle, provide interesting constraints on the diffusion geometry. However, with the present uncertainties in the lab measurements of both the electron attachment rate and the fragmentation cross sections, no meaningful constraint can be placed.

  2. Neutron capture cross-section measurements for 238U between 0.4 and 1.4 MeV

    NASA Astrophysics Data System (ADS)

    Krishichayan, Fnu; Finch, S. W.; Howell, C. R.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Neutron-induced radiative-capture cross-section data of 238U are crucial for fundamental nuclear physics as well as for Stewardship Science, for advanced-fuel-cycle calculations, and for nuclear astrophysics. Based on different techniques, there are a large number of 238U(n, γ) 239U cross-section data available in the literature. However, there is a lack of systematic and consistent measurements in the 0.1 to 3.0 MeV energy range. The goal of the neutron-capture project at TUNL is to provide accurate 238U(n, γ) 239U cross-section data in this energy range. The 238U samples, sandwiched between gold foils of the same size, were irradiated for 8-14 hours with monoenergetic neutrons. To avoid any contribution from thermal neutrons, the 238U and 197Au targets were placed inside of a thin-walled pill-box made of 238U. Finally, the whole pill-box was wrapped in a gold foil as well. After irradiation, the samples were gamma-counted at the TUNL's low-background counting facility using high-efficient HPGe detectors. The 197Au monitor foils were used to calculate the neutron flux. The experimental technique and 238U(n, γ) 239U cross-section results at 6 energies will be discussed during the meeting.

  3. Cross sections for H(-) and Cl(-) production from HCl by dissociative electron attachment

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Srivastava, S. K.

    1985-01-01

    A crossed target beam-electron beam collision geometry and a quadrupole mass spectrometer have been used to conduct dissociative electron attachment cross section measurements for the case of H(-) and Cl(-) production from HCl. The relative flow technique is used to determine the absolute values of cross sections. A tabulation is given of the attachment energies corresponding to various cross section maxima. Error sources contributing to total errors are also estimated.

  4. Determination of differential cross sections for electron-impact excitation of electronic states of molecular oxygen

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Green, M. A.; Brunger, M. J.; Teubner, P. J.; Cartwright, D. C.

    2000-02-01

    The development and initial results of a method for the determination of differential cross sections for electron scattering by molecular oxygen are described. The method has been incorporated into an existing package of computer programs which, given spectroscopic factors, dissociation energies and an energy-loss spectrum for electron-impact excitation, determine the differential cross sections for each electronic state relative to that of the elastic peak. Enhancements of the original code were made to deal with particular aspects of electron scattering from O2, such as the overlap of vibrational levels of the ground state with transitions to excited states, and transitions to levels close to and above the dissocation energy in the Herzberg and Schumann-Runge continua. The utility of the code is specifically demonstrated for the ``6-eV states'' of O2, where we report absolute differential cross sections for their excitation by 15-eV electrons. In addition an integral cross section, derived from the differential cross section measurements, is also reported for this excitation process and compared against available theoretical results. The present differential and integral cross sections for excitation of the ``6-eV states'' of O2 are the first to be reported in the literature for electron-impact energies below 20 eV.

  5. A Gamma Polarimeter for Neutron Polarization Measurement in a Liquid Deuterium Target for Parity Violation in Polarized Neutron Capture on Deuterium.

    PubMed

    Komives, A; Sint, A K; Bowers, M; Snow, M

    2005-01-01

    A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter.

  6. Resonance region measurements of dysprosium and rhenium

    NASA Astrophysics Data System (ADS)

    Leinweber, Gregory; Block, Robert C.; Epping, Brian E.; Barry, Devin P.; Rapp, Michael J.; Danon, Yaron; Donovan, Timothy J.; Landsberger, Sheldon; Burke, John A.; Bishop, Mary C.; Youmans, Amanda; Kim, Guinyun N.; Kang, yeong-rok; Lee, Man Woo; Drindak, Noel J.

    2017-09-01

    Neutron capture and transmission measurements have been performed, and resonance parameter analysis has been completed for dysprosium, Dy, and rhenium, Re. The 60 MeV electron accelerator at RPI Gaerttner LINAC Center produced neutrons in the thermal and epithermal energy regions for these measurements. Transmission measurements were made using 6Li glass scintillation detectors. The neutron capture measurements were made with a 16-segment NaI multiplicity detector. The detectors for all experiments were located at ≈25 m except for thermal transmission, which was done at ≈15 m. The dysprosium samples included one highly enriched 164Dy metal, 6 liquid solutions of enriched 164Dy, two natural Dy metals. The Re samples were natural metals. Their capture yield normalizations were corrected for their high gamma attenuation. The multi-level R-matrix Bayesian computer code SAMMY was used to extract the resonance parameters from the data. 164Dy resonance data were analyzed up to 550 eV, other Dy isotopes up to 17 eV, and Re resonance data up to 1 keV. Uncertainties due to resolution function, flight path, burst width, sample thickness, normalization, background, and zero time were estimated and propagated using SAMMY. An additional check of sample-to-sample consistency is presented as an estimate of uncertainty. The thermal total cross sections and neutron capture resonance integrals of 164Dy and Re were determined from the resonance parameters. The NJOY and INTER codes were used to process and integrate the cross sections. Plots of the data, fits, and calculations using ENDF/B-VII.1 resonance parameters are presented.

  7. Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O

    NASA Astrophysics Data System (ADS)

    Anzai, K.; Kato, H.; Hoshino, M.; Tanaka, H.; Itikawa, Y.; Campbell, L.; Brunger, M. J.; Buckman, S. J.; Cho, H.; Blanco, F.; Garcia, G.; Limão-Vieira, P.; Ingólfsson, O.

    2012-02-01

    We review earlier cross section data sets for electron-collisions with H2, O2, CO, CO2, H2O and N2O, updated here by experimental results for their electronic states. Based on our recent measurements of differential cross sections for the electronic states of those molecules, integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis and then assessed against theory (BE f-scaling [Y.-K. Kim, J. Chem. Phys. 126, 064305 (2007)]). As they now represent benchmark electronic state cross sections, those ICSs for the above molecules are added into the original cross section sets taken from the data reviews for H2, O2, CO2 and H2O (the Itikawa group), and for CO and N2O (the Zecca group).

  8. Resonant electron capture by orotic acid molecules

    NASA Astrophysics Data System (ADS)

    Muftakhov, M. V.; Shchukin, P. V.; Khatymov, R. V.

    2017-09-01

    Resonant electron attachment by orotic acid molecules (6-COOH-uracil) are studied in the energy range of 0-14 eV via negative ion mass spectrometry. Molecular ions, whose lifetimes relative to electron autodetachment are found to be 300 μs are recorded in the region of thermal electron energies; they form in the valence state through a vibration-excited resonance mechanism. Unlike unsubstituted uracil, most dissociative processes occur in the low-energy region of <4 eV and are due to carboxylic anions. An absolute cross section of 2.4 × 10-17 cm2 is found for the most intense fragment ions [M-H]- at an output energy of 1.33 eV. The kinetics of decarboxylation is considered for these ions. This could be a model reaction for the last stage of uridine monophosphate biosynthesis.

  9. Dissociative electron attachment studies on acetone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhudesai, Vaibhav S., E-mail: vaibhav@tifr.res.in; Tadsare, Vishvesh; Ghosh, Sanat

    Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0–20 eV. H{sup −} is found to be the most dominant fragment followed by O{sup −} and OH{sup −} with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H{sup −} and O{sup −} fragments suggest a many body break-up for the lone resonance observed. Themore » ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.« less

  10. Electrical properties of grain boundaries and dislocations in crystalline silicon: Influence of impurity incorporation and hydrogenation

    NASA Astrophysics Data System (ADS)

    Park, Yongkook

    This thesis examines the electrical properties of grain boundaries (GBs) and dislocations in crystalline silicon. The influence of impurity incorporation and hydrogenation on the electrical properties of grain boundaries , as well as the electrical activity of impurity decorated dislocations and the retention of impurities at dislocations at high temperatures have been investigated. The electrical properties of Si GB were examined by C-V, J-V , and capacitance transient methods using aluminum/Si(100)/Si(001) junctions. First, the density of states and the carrier capture cross-sections of the clean GB were evaluated by C-V/J-V analyses. The density of GB states was determined as 4.0x1012 cm-2eV -1. It was found that the states close to the valance band edge have relatively smaller hole capture cross sections than those at higher energy position, and electron capture cross sections are at least two or three orders larger than the corresponding hole capture cross sections. Secondly, the influence of iron contamination and hydrogenation following iron contamination on the electrical properties of (110)/(001) Si GB was characterized by a capacitance transient technique. Compared with the clean sample, iron contamination increased both the density of states by at least three times and the zero-bias barrier height by 70 meV, while reducing by two orders of magnitude the electron/hole capture cross-section ratio. Hydrogenation following iron contamination led to the reduction of the density of Fe-decorated GB states, which was increased to over 2x1013 cm-2eV-1 after iron contamination, to ˜1x1013 cm-2 eV-1 after hydrogenation treatment. The increased zero-bias GB energy barrier due to iron contamination was reversed as well by hydrogen treatment. The density of GB states before and after hydrogenation was evaluated by J-V, C-V and capacitance transient methods using gold/direct-silicon-bonded (DSB) (110) thin silicon top layer/(100) silicon substrate junctions. The GB potential energy barrier in thermal equilibrium was reduced by 70 meV. Whereas the clean sample had a density of GB states of ˜6x1012 cm-2eV-1 in the range of Ev+0.54˜0.64 eV, hydrogenation reduced the density of GB states to ˜9x1011 cm-2eV -1 in the range of Ev+0.56˜0.61 eV, which is about a seven-fold reduction from that of the clean sample. Segregation and thermal dissociation kinetics of hydrogen at a large-angle general GB in crystalline silicon have been investigated using deuterium as a readily identifiable isotope which duplicates hydrogen chemistry. Segregation or trapping of deuterium (hydrogen) introduced was found to take place at (110)/(001) Si GB. The segregation coefficient (k) of deuterium (hydrogen) at GB was determined as k≈24+/-3 at 100°C. Thermal dissociation of deuterium (hydrogen) from GB obeyed first-order kinetics with an activation energy of ˜1.62 eV. The electrical activities of dislocations in a SiGe/Si heterostructure were examined by deep level transient spectroscopy (DLTS) after iron contamination and phosphorous diffusion gettering. DLTS of iron contaminated samples revealed a peak at 210 K, which was assigned to individual iron atoms or very small (<2 nm) precipitates decorated along dislocations. Arrhenius plot of the 210 K peak yielded a hole capture cross section of 2.4x10-14 cm2 and an energy level of 0.42 eV above the valance band. DLTS of the iron contaminated sample revealed that 6x10 14 cm-3 of boron can more effectively trap interstitial iron at room temperature than the strain field/defect sites at 107 ˜108 cm-2 dislocations. Phosphorous diffusion experiments revealed that the gettering efficiency of iron impurities depends on the dislocation density. For regions of high dislocation density, phosphorous diffusion cannot remove all iron impurities decorated at dislocations, suggesting a strong binding of iron impurities at dislocation core defects.

  11. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2016-07-01

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  12. 63Ni (n ,γ ) cross sections measured with DANCE

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Bredeweg, T. A.; Couture, A.; Göbel, K.; Heftrich, T.; Jandel, M.; Käppeler, F.; Lederer, C.; Kivel, N.; Korschinek, G.; Krtička, M.; O'Donnell, J. M.; Ostermöller, J.; Plag, R.; Reifarth, R.; Schumann, D.; Ullmann, J. L.; Wallner, A.

    2015-10-01

    The neutron capture cross section of the s -process branch nucleus 63Ni affects the abundances of other nuclei in its region, especially 63Cu and 64Zn. In order to determine the energy-dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4 π BaF2 array DANCE. The (n ,γ ) cross section of 63Ni has been determined relative to the well-known 197Au standard with uncertainties below 15%. Various 63Ni resonances have been identified based on the Q value. Furthermore, the s -process sensitivity of the new values was analyzed with the new network calculation tool NETZ.

  13. Constraining Nuclear Weak Interactions in Astrophysics and New Many-Core Algorithms for Neuroevolution

    NASA Astrophysics Data System (ADS)

    Sullivan, Christopher James

    Weak interactions involving atomic nuclei are critical components in a broad range of as- trophysical phenomenon. As allowed Gamow-Teller transitions are the primary path through which weak interactions in nuclei operate in astrophysical contexts, the constraint of these nuclear transitions is an important goal of nuclear astrophysics. In this work, the charged current nuclear weak interaction known as electron capture is studied in the context of stellar core-collapse supernovae (CCSNe). Specifically, the sensitivity of the core-collapse and early post-bounce phases of CCSNe to nuclear electron capture rates are examined. Electron capture rates are adjusted by factors consistent with uncer- tainties indicated by comparing theoretical rates to those deduced from charge-exchange and beta-decay measurements. With the aide of such sensitivity studies, the diverse role of electron capture on thousands of nuclear species is constrained to a few tens of nuclei near N 50 and A 80 which dictate the primary response of CCSNe to nuclear electron capture. As electron capture is shown to be a leading order uncertainty during the core-collapse phase of CCSNe, future experimental and theoretical efforts should seek to constrain the rates of nuclei in this region. Furthermore, neutral current neutrino-nuclear interactions in the tens-of-MeV energy range are important in a variety of astrophysical environments including core-collapse super- novae as well as in the synthesis of some of the solar systems rarest elements. Estimates for inelastic neutrino scattering on nuclei are also important for neutrino detector construction aimed at the detection of astrophysical neutrinos. Due to the small cross sections involved, direct measurements are rare and have only been performed on a few nuclei. For this rea- son, indirect measurements provide a unique opportunity to constrain the nuclear transition strength needed to infer inelastic neutrino-nucleus cross sections. Herein the (6Li, 6Li‧) inelastic scattering reaction at 100 MeV/u is shown to indirectly select the relevant transitions for inelastic neutrino-nucleus scattering. Specifically, the probes unique selectivity of isovector- spin transfer excitations (Delta S = 1, DeltaT = 1, DeltaTz = 0) is demonstrated, thereby allowing the extraction of Gamow-Teller transition strength in the inelastic channel. Finally, the development and performance of a newly established technique for the sub- field of artificial intelligence known as neuroevolution is described. While separate from the physics that is discussed, these algorithmic advancements seek to improve the adoption of machine learning in the scientific domain by enabling neuroevolution to take advantage of modern heterogeneous compute architectures. Because the evolution of neural network pop- ulations offloads the choice of specific details about the neural networks to an evolutionary search algorithm, neuroevolution can increase the accessibility of machine learning. However, the evolution of neural networks through parameter and structural space presents a novel di- vergence problem when mapping the evaluation of these networks to many-core architectures. The principal focus of the algorithm optimizations described herein are on improving the feed-forward evaluation time when tens-to-hundreds of thousands of heterogeneous neural networks are evaluated concurrently.

  14. Cross sections for electron collisions with nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itikawa, Yukikazu, E-mail: yukitikawa@nifty.com

    Cross section data are reviewed for electron collisions with nitric oxide. Collision processes considered are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational, and electronic states, ionization, and dissociative electron attachment. After a survey of the literature (up to the end of 2015), recommended values of the cross section are determined, as far as possible.

  15. Analysis of photogenerated random telegraph signal in single electron detector (photo-SET).

    PubMed

    Troudi, M; Sghaier, Na; Kalboussi, A; Souifi, A

    2010-01-04

    In this paper, we analyzed slow single traps, situated inside the tunnel oxide of small area single electron photo-detector (photo-SET or nanopixel). The relationship between excitation signal (photons) and random-telegraph-signal (RTS) was evidenced. We demonstrated that photoinduced RTS observed on a photo-detector is due to the interaction between single photogenerated charges that tunnel from dot to dot and current path. Based on RTS analysis for various temperatures, gate bias and optical power we determined the characteristics of these single photogenerated traps: the energy position within the silicon bandgap, capture cross section and the position within the Si/SiO(x = 1.5) interfaces.

  16. Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-11-01

    Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C5H5N5) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45∘ parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15∘ to 165∘. Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.

  17. Nanoheteroepitaxy of gallium arsenide on strain-compliant silicon-germanium nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Hock-Chun; Gong, Xiao; Yeo, Yee-Chia

    Heterogeneous integration of high-quality GaAs on Si-based substrates using a selective migration-enhanced epitaxy (MEE) of GaAs on strain-compliant SiGe nanowires was demonstrated for the first time. The physics of compliance in nanoscale heterostructures was captured and studied using finite-element simulation. It is shown that nanostructures can provide additional substrate compliance for strain relief and therefore contribute to the formation of defect-free GaAs on SiGe. Extensive characterization using scanning electron microscopy and cross-sectional transmission electron microscopy was performed to illustrate the successful growth of GaAs on SiGe nanowire. Raman and Auger electron spectroscopy measurements further confirmed the quality of the GaAsmore » grown and the high growth selectivity of the MEE process.« less

  18. Thermal neutron capture cross sections for 16,171,18O and 2H

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Revay, Zs.

    2016-04-01

    Thermal neutron capture γ -ray spectra for 16,17,18O and 2H have been measured with guided cold neutron beams from the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) reactor and the Budapest Research Reactor (BRR) on natural and O,1817 enriched D2O targets. Complete neutron capture γ -ray decay schemes for the 16,17,18O(n ,γ ) reactions were measured. Absolute transition probabilities were determined for each reaction by a least-squares fit of the γ -ray intensities to the decay schemes after accounting for the contribution from internal conversion. The transition probability for the 870.76-keV γ ray from 16O(n ,γ ) was measured as Pγ(871 )=96.6 ±0.5 % and the thermal neutron cross section for this γ ray was determined as 0.164 ±0.003 mb by internal standardization with multiple targets containing oxygen and stoichiometric quantities of hydrogen, nitrogen, and carbon whose γ -ray cross sections were previously standardized. The γ -ray cross sections for the O,1817(n ,γ ) and 2H(n ,γ ) reactions were then determined relative to the 870.76-keV γ -ray cross section after accounting for the isotopic abundances in the targets. We determined the following total radiative thermal neutron cross sections for each isotope from the γ -ray cross sections and transition probabilities; σ0(16O )=0.170 ±0.003 mb; σ0(17O )=0.67 ±0.07 mb; σ0(18O )=0.141 ±0.006 mb; and σ0(2H )=0.489 ±0.006 mb.

  19. Cross sections for direct and dissociative ionization of NH3 and CS2 by electron impact

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Srivastava, S. K.

    1991-01-01

    A crossed electron beam-molecular beam collision geometry is used to measure cross sections for the production of positive ions by electron impact on NH3 and CS2. Ionization cross-section data for NH3 and the values of various cross sections are presented, as well as ionization efficiency curves for CS2. Considerable differences are found between the various results on NH3. The present values are close to the data of Djuric et al. (1981). The semiempirical calculations of Hare and Meath (1987) differ considerably in the absolute values of cross sections. Discrepancies were observed in comparisons of cross sections of other fragment ions resulting from the ionization and dissociate ionization of NH3.

  20. High-intensity polarized H- ion source for the RHIC SPIN physics

    NASA Astrophysics Data System (ADS)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Kolmogorov, A.; Davydenko, V.

    2017-08-01

    A novel polarization technique had been successfully implemented for the RHIC polarized H- ion source upgrade to higher intensity and polarization. In this technique a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gas ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically-pumped Rb vapour. The use of high-brightness primary beam and large cross-sections of charge-exchange cross-sections resulted in production of high intensity H- ion beam of 85% polarization. High beam brightness and polarization resulted in 75% polarization at 23 GeV out of AGS and 60-65% beam polarization at 100-250 GeV colliding beams in RHIC. The status of un-polarized magnetron type (Cs-vapour loaded) BNL source is also discussed.

  1. Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Mishra, S. K.; Pandey, S. P.; Lakshmi Mishra, Kshama

    2018-02-01

    Thermoluminescence studies were performed of ZnSe:Tb and ZnSe:(Mn, Tb) phosphors. A method of preparation for ZnSe phosphors doped with Tb and (Mn, Tb) has been discussed. The thermoluminescence (TL) properties of these phosphors have been studied from 100 to 370 K temperature after exciting by UV radiation (365 nm) at three uniform heating rates 0.4, 0.6 and 0.9 K/s. The trapping parameters like trap depth, lifetime of electrons and capture cross-section have also been determined using various methods.

  2. Characterization of an atomic hydrogen source for charge exchange experiments

    DOE PAGES

    Leutenegger, M. A.; Beiersdorfer, P.; Betancourt-Martinez, G. L.; ...

    2016-07-02

    Here, we characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  3. Deep levels in H-irradiated GaAs1-xNx (x < 0.01) grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Shafi, M.; Mari, R. H.; Khatab, A.; Henini, M.; Polimeni, A.; Capizzi, M.; Hopkinson, M.

    2011-12-01

    Dilute nitride GaAs1-xNx layers have been grown by molecular beam epitaxy with nitrogen concentration ranging from 0.2% to 0.8%. These samples have been studied before and after hydrogen irradiation by using standard deep level transient spectroscopy (DLTS) and high resolution Laplace DLTS techniques. The activation energy, capture cross section and density of the electron traps have been estimated and compared with results obtained in N-free as-grown and H-irradiated bulk GaAs.

  4. Calculation of total electron excitation cross-sections and partial electron ionization cross-sections for the elements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Green, T. J.

    1973-01-01

    Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.

  5. Neutron Capture Cross Section of Unstable Ni63: Implications for Stellar Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Lederer, C.; Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.

    2013-01-01

    The Ni63(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from kT=5-100keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of Cu63, Ni64, and Zn64 in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.

  6. Cross Section Measurements of the Radioactive 107Pd and Stable 105,108Pd Nuclei at J-PARC/MLF/ANNRI

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Kimura, A.; Kitatani, F.; Ohta, M.; Furutaka, K.; Goko, S.; Hara, K. Y.; Harada, H.; Hirose, K.; Kin, T.; Koizumi, M.; Oshima, M.; Toh, Y.; Kino, K.; Hiraga, F.; Kamiyama, T.; Kiyanagi, Y.; Katabuchi, T.; Mizumoto, M.; Igashira, M.; Hori, J.; Fujii, T.; Fukutani, S.; Takamiya, K.

    2014-05-01

    The measurements of the neutron-capture cross sections were performed for the radioactive 107Pd and stable 105,108Pd nuclei by the time-of flight method using an apparatus called “Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI)” installed at the neutron Beam Line No.4 of the Materials and Life science experimental Facility (MLF) in the J-PARC. The neutron-capture cross sections of 107Pd and 105,108Pd have been measured in the low energy region from the thermal to a few hundreds eV. From the measurements, new information was obtained for some resonances of these Pd nuclei.

  7. Precursor anion states in dissociative electron attachment to chlorophenol isomers.

    PubMed

    Kossoski, F; Varella, M T do N

    2016-07-28

    We report a theoretical study on low-energy (<10 eV) elastic electron scattering from chlorophenol isomers, namely, para-chlorophenol (pCP), meta-chlorophenol (mCP), and ortho-chlorophenol (oCP). The calculations were performed with the Schwinger multichannel method with pseudopotentials, and analysis of the computed integral cross sections and virtual orbitals revealed one σCCl (∗), one σOH (∗), and three π(∗) shape resonances. We show that electron capture into the two lower lying π(∗) orbitals initiates dissociative processes that lead to the elimination of the chloride ion, accounting for the two overlapping peaks where this fragment was observed. Despite the relatively small differences on the energetics of the π(∗) resonances, a major isomeric effect was found on their corresponding autodetachment lifetimes, which accounts for the observed increasing cross sections in the progression pCP < mCP < oCP. In particular, dissociation from the π1 (∗) anion of pCP is largely suppressed because of the unfavorable mixing with the σCCl (∗) state. We found the intramolecular hydrogen bond present in oCP to have the opposite effects of stabilizing the σCCl (∗) resonance and destabilizing the σOH (∗) resonance. We also suggest that the hydrogen abstraction observed in chlorophenols and phenol actually takes place by a mechanism in which the incoming electron is directly attached to the dissociative σOH (∗) orbital.

  8. Precursor anion states in dissociative electron attachment to chlorophenol isomers

    NASA Astrophysics Data System (ADS)

    Kossoski, F.; Varella, M. T. do N.

    2016-07-01

    We report a theoretical study on low-energy (<10 eV) elastic electron scattering from chlorophenol isomers, namely, para-chlorophenol (pCP), meta-chlorophenol (mCP), and ortho-chlorophenol (oCP). The calculations were performed with the Schwinger multichannel method with pseudopotentials, and analysis of the computed integral cross sections and virtual orbitals revealed one σCCl ∗ , one σOH ∗ , and three π∗ shape resonances. We show that electron capture into the two lower lying π∗ orbitals initiates dissociative processes that lead to the elimination of the chloride ion, accounting for the two overlapping peaks where this fragment was observed. Despite the relatively small differences on the energetics of the π∗ resonances, a major isomeric effect was found on their corresponding autodetachment lifetimes, which accounts for the observed increasing cross sections in the progression pCP < mCP < oCP. In particular, dissociation from the π1 ∗ anion of pCP is largely suppressed because of the unfavorable mixing with the σCCl ∗ state. We found the intramolecular hydrogen bond present in oCP to have the opposite effects of stabilizing the σCCl ∗ resonance and destabilizing the σOH ∗ resonance. We also suggest that the hydrogen abstraction observed in chlorophenols and phenol actually takes place by a mechanism in which the incoming electron is directly attached to the dissociative σOH ∗ orbital.

  9. Are anesthesia start and end times randomly distributed? The influence of electronic records.

    PubMed

    Deal, Litisha G; Nyland, Michael E; Gravenstein, Nikolaus; Tighe, Patrick

    2014-06-01

    To perform a frequency analysis of start minute digits (SMD) and end minute digits (EMD) taken from the electronic, computer-assisted, and manual anesthesia billing-record systems. Retrospective cross-sectional review. University medical center. This cross-sectional review was conducted on billing records from a single healthcare institution over a 15-month period. A total of 30,738 cases were analyzed. For each record, the start time and end time were recorded. Distributions of SMD and EMD were tested against the null hypothesis of a frequency distribution equivalently spread between zero and nine. SMD and EMD aggregate distributions each differed from equivalency (P < 0.0001). When stratified by type of anesthetic record, no differences were found between the recorded and expected equivalent distribution patterns for electronic anesthesia records for start minute (P < 0.98) or end minute (P < 0.55). Manual and computer-assisted records maintained nonequivalent distribution patterns for SMD and EMD (P < 0.0001 for each comparison). Comparison of cumulative distributions between SMD and EMD distributions suggested a significant difference between the two patterns (P < 0.0001). An electronic anesthesia record system, with automated time capture of events verified by the user, produces a more unified distribution of billing times than do more traditional methods of entering billing times. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Determination of the effective sample thickness via radiative capture

    DOE PAGES

    Hurst, A. M.; Summers, N. C.; Szentmiklosi, L.; ...

    2015-09-14

    Our procedure for determining the effective thickness of non-uniform irregular-shaped samples via radiative capture is described. In this technique, partial γ-ray production cross sections of a compound nucleus produced in a neutron-capture reaction are measured using Prompt Gamma Activation Analysis and compared to their corresponding standardized absolute values. For the low-energy transitions, the measured cross sections are lower than their standard values due to significant photoelectric absorption of the γ rays within the bulk-sample volume itself. Using standard theoretical techniques, the amount of γ-ray self absorption and neutron self shielding can then be calculated by iteratively varying the sample thicknessmore » until the observed cross sections converge with the known standards. The overall attenuation provides a measure of the effective sample thickness illuminated by the neutron beam. This procedure is illustrated through radiative neutron capture using powdered oxide samples comprising enriched 186W and 182W from which their tungsten-equivalent effective thicknesses are deduced to be 0.077(3) mm and 0.042(8) mm, respectively.« less

  11. Measurement of the radiative capture cross section of the s-process branching points 204Tl and 171Tm at the n_TOF facility (CERN)

    NASA Astrophysics Data System (ADS)

    Casanovas, A.; Domingo-Pardo, C.; Guerrero, C.; Lerendegui-Marco, J.; Calviño, F.; Tarifeño-Saldivia, A.; Dressler, R.; Heinitz, S.; Kivel, N.; Quesada, J. M.; Schumann, D.; Aberle, O.; Alcayne, V.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Barbagallo, M.; Bečvář, F.; Bellia, G.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Busso, M.; Caamaño, M.; Caballero-Ontanaya, L.; Calviani, M.; Cano-Ott, D.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Cristallo, S.; Damone, L. A.; Diakaki, M.; Dietz, M.; Dupont, E.; Durán, I.; Eleme, Z.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Göbel, K.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Gunsing, F.; Heyse, J.; Jenkins, D. G.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kimura, A.; Kokkoris, M.; Kopatch, Y.; Krtička, M.; Kurtulgil, D.; Ladarescu, I.; Lederer-Woods, C.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Michalopoulou, V.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Ogállar, F.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Persanti, L.; Porras, I.; Praena, J.; Radeck, D.; Ramos, D.; Rauscher, T.; Reifarth, R.; Rochman, D.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Simone, S.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Talip, T.; Tassan-Got, L.; Tsinganis, A.; Ulrich, J.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Woods, P. J.; Wright, T.; Žugec, P.; Köster, U.

    2018-05-01

    The neutron capture cross section of some unstable nuclei is especially relevant for s-process nucleosynthesis studies. This magnitude is crucial to determine the local abundance pattern, which can yield valuable information of the s-process stellar environment. In this work we describe the neutron capture (n,γ) measurement on two of these nuclei of interest, 204Tl and 171Tm, from target production to the final measurement, performed successfully at the n_TOF facility at CERN in 2014 and 2015. Preliminary results on the ongoing experimental data analysis will also be shown. These results include the first ever experimental observation of capture resonances for these two nuclei.

  12. Radiative neutron capture cross section from 236U

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Roman, A. R.; Rusev, G.; Walker, C. L.; Couture, A.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Kawano, T.

    2017-08-01

    The 236U(n ,γ ) reaction cross section has been measured for the incident neutron energy range from 10 eV to 800 keV by using the Detector for Advanced Neutron Capture Experiments (DANCE) γ -ray calorimeter at the Los Alamos Neutron Science Center. The cross section was determined with the ratio method, which is a technique that uses the 235U(n ,f ) reaction as a reference. The results of the experiment are reported in the resolved and unresolved resonance energy regions. Individual neutron resonance parameters were obtained below 1 keV incident energy by using the R -matrix code sammy. The cross section in the unresolved resonance region is determined with improved experimental uncertainty. It agrees with both ENDF/B-VII.1 and JEFF-3.2 nuclear data libraries. The results above 10 keV agree better with the JEFF-3.2 library.

  13. Phonon-assisted changes in charge states of deep level defects in germanium

    NASA Astrophysics Data System (ADS)

    Markevich, A. V.; Litvinov, V. V.; Emtsev, V. V.; Markevich, V. P.; Peaker, A. R.

    2006-04-01

    Electronic processes associated with changes in the charge states of the vacancy-oxygen center (VO or A center) and vacancy-group-V-impurity atom (P, As, Sb or Bi) pairs (E centers) in irradiated germanium crystals have been studied using deep level transient spectroscopy (DLTS), high-resolution Laplace DLTS and Hall effect measurements. It is found that the electron emission and capture processes related to transitions between the doubly and the singly negatively charged states of the A center and the E centers in Ge are phonon-assisted, i.e., they are accompanied by significant vibrations and re-arrangements of atoms in the vicinity of the defects. Manifestations of the phonon involvements are: (i) temperature-dependent electron capture cross-sections which are well described in the frame of the multi-phonon-assisted capture model; (ii) large changes in entropy related to the ionization of the defects and, associated with these, temperature-dependent positions of energy levels; and (iii) electron emission via phonon-assisted tunneling upon the application of electric field. These effects have been considered in detail for the vacancy-oxygen and the vacancy-donor complexes. On the basis of a combined analysis of the electronic processes a configuration-coordinate diagram of the acceptor states of the A and E centers is plotted. It is found that changes in the entropy of ionization and the energy for electron emission for these traps follow the empirical Meyer-Neldel rule. A model based on multi-phonon-assisted carrier emission from defects is adapted for the explanation of the origin of this rule for the case of electronic processes in Ge.

  14. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Blanco, F.; Brunger, M. J.

    2015-12-01

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  15. Isotope production and target preparation for nuclear astrophysics data

    NASA Astrophysics Data System (ADS)

    Schumann, Dorothea; Dressler, Rugard; Maugeri, Emilio Andrea; Heinitz, Stephan

    2017-09-01

    Targets are in many cases an indispensable ingredient for successful experiments aimed to produce nuclear data. With the recently observed shift to study nuclear reactions on radioactive targets, this task can become extremely challenging. Concerted actions of a certain number of laboratories able to produce isotopes and manufacture radioactive targets are urgently needed. We present here some examples of successful isotope and target production at PSI, in particular the production of 60Fe samples used for half-life measurements and neutron capture cross section experiments, the chemical processing and fabrication of lanthanide targets for capture cross section experiments at n_TOF (European Organization for Nuclear Research (CERN), Switzerland) as well as the recently performed manufacturing of highly-radioactive 7Be targets for the measurement of the 7Be(n,α)4He cross section in the energy range of interest for the Big-Bang nucleosynthesis contributing to the solving of the cosmological Li-problem. The two future projects: "Determination of the half-life and experiments on neutron capture cross sections of 53Mn" and "32Si - a new chronometer for nuclear dating" are briefly described. Moreover, we propose to work on the establishment of a dedicated network on isotope and target producing laboratories.

  16. Neutron radiative capture reactions on nuclei of relevance to 0νββ, dark matter and neutrino/antineutrino searches

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Bhike, Megha

    2015-05-01

    A program is underway at the Triangle Universities Nuclear Laboratory (TUNL) to measure the neutron capture cross section in the 0.5 to 15 MeV energy range on nuclei whose radioactive daughters could potentially create backgrounds in searches for rare events. Here, we refer to neutrino-less double-beta decay and dark-matter searches, and to detectors built for neutrino and/or antineutrino studies. Neutron capture cross-section data obtained by using the activation method are reported for 40Ar, 74,76Ge, 128,130Te and 136Xe and compared to model calculations and evaluations.

  17. New fit of thermal neutron constants (TNC) for 233,235U, 239,241Pu and 252Cf(sf): Microscopic vs. maxwellian data

    NASA Astrophysics Data System (ADS)

    Pronyaev, Vladimir G.; Capote, Roberto; Trkov, Andrej; Noguere, Gilles; Wallner, Anton

    2017-09-01

    An IAEA project to update the Neutron Standards is near completion. Traditionally, the Thermal Neutron Constants (TNC) evaluated data by Axton for thermal-neutron scattering, capture and fission on four fissile nuclei and the total nu-bar of 252Cf(sf) are used as input in the combined least-square fit with neutron cross section standards. The evaluation by Axton (1986) was based on a least-square fit of both thermal-spectrum averaged cross sections (Maxwellian data) and microscopic cross sections at 2200 m/s. There is a second Axton evaluation based exclusively on measured microscopic cross sections at 2200 m/s (excluding Maxwellian data). Both evaluations disagree within quoted uncertainties for fission and capture cross sections and total multiplicities of uranium isotopes. There are two factors, which may lead to such difference: Westcott g-factors with estimated 0.2% uncertainties used in the Axton's fit, and deviation of the thermal spectra from Maxwellian shape. To exclude or mitigate the impact of these factors, a new combined GMA fit of standards was undertaken with Axton's TNC evaluation based on 2200 m/s data used as a prior. New microscopic data at the thermal point, available since 1986, were added to the combined fit. Additionally, an independent evaluation of TNC was undertaken using CONRAD code. Both GMA and CONRAD results are consistent within quoted uncertainties. New evaluation shows a small increase of fission and capture thermal cross sections, and a corresponding decrease in evaluated thermal nubar for uranium isotopes and 239Pu.

  18. s-wave threshold in electron attachment - Observations and cross sections in CCl4 and SF6 at ultralow electron energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.

    1985-01-01

    The threshold photoionization method was used to study low-energy electron attachment phenomena in and cross sections of CCl4 and SF6 compounds, which have applications in the design of gaseous dielectrics and diffuse discharge opening switches. Measurements were made at electron energies from below threshold to 140 meV at resolutions of 6 and 8 meV. A narrow resolution-limited structure was observed in electron attachment to CCl4 and SF6 at electron energies below 10 meV, which is attributed to the divergence of the attachment cross section in the limit epsilon, l approaches zero. The results are compared with experimental collisional-ionization results, electron-swarm unfolded cross sections, and earlier threshold photoionization data.

  19. Electron-impact excitation of the low-lying electronic states of HCN

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Tanaka, H.; Srivastava, S. K.; Wicke, B. G.

    1977-01-01

    The first study of the low-energy electron-impact excitation of low-lying electronic transitions in the HCN molecule is reported. Measurements were made at incident electron energies of 11.6 and 21.6 eV in the energy-loss range of 3-10 eV, and at scattering angles of 20-130 deg. Inelastic scattering spectra were placed on the absolute cross-section scale by determining first the ratio of inelastic-to-elastic scattering cross sections, and then separately measuring the absolute elastic scattering cross section. Several new electronic transitions are observed which are intrinsically overlapped in the molecule itself. Assignments of these electronic transitions are suggested. These assignments are based on present spectroscopic and cross-sections measurements, high-energy electron scattering spectra, optical absorption spectra, and ab initio molecular orbital calculations.

  20. Measurement of the neutron-capture cross section of 76Ge and 74Ge below 15 MeV and its relevance to 0 νββ decay searches of 76Ge

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Fallin, B.; Krishichayan; Tornow, W.

    2015-02-01

    The neutron radiative-capture cross section of 76Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of ∼ 86%76Ge and ∼ 14%74Ge used in the 0 νββ searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the 3H (p , n)3He, 2H (d , n)3He and 3H (d , n)4He reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for 74Ge at neutron energies below 8 MeV. Indium and gold foils were irradiated simultaneously for neutron fluence determination. High-resolution γ-ray spectroscopy was used to determine the γ-ray activity of the daughter nuclei of interest. For the 76Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the 74Ge (n , γ)75Ge reaction, the present data are about a factor of two larger than predicted. It was found that the 74Ge (n , γ)75Ge yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the 76Ge (n , γ)77Ge yield due to the larger cross section of the former reaction.

  1. Measurement of the neutron-capture cross section of ⁷⁶Ge and ⁷⁴Ge below 15 MeV and its relevance to 0νββ decay searches of ⁷⁶Ge

    DOE PAGES

    Bhike, Megha; Fallin, B.; Krishichayan, none; ...

    2015-02-01

    The neutron radiative-capture cross section of ⁷⁶Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of ~86% ⁷⁶Ge and ~14% ⁷⁴Ge used in the 0νββ searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the ³H(p,n)³He, ²H(d,n)³He and ³H(d,n)⁴He reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for ⁷⁴Ge at neutron energies below 8 MeV. Indium and gold foils were irradiated simultaneously for neutron fluence determination. High-resolution γ-ray spectroscopy wasmore » used to determine the γ-ray activity of the daughter nuclei of interest. For the ⁷⁶Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the ⁷⁴Ge(n,γ)⁷⁵Ge reaction, the present data are about a factor of two larger than predicted. It was found that the ⁷⁴Ge(n,γ)⁷⁵Ge yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the ⁷⁶Ge(n,γ)⁷⁷Ge yield due to the larger cross section of the former reaction.« less

  2. Measurement of the neutron-capture cross section of ⁷⁶Ge and ⁷⁴Ge below 15 MeV and its relevance to 0νββ decay searches of ⁷⁶Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhike, Megha; Fallin, B.; Krishichayan, none

    The neutron radiative-capture cross section of ⁷⁶Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of ~86% ⁷⁶Ge and ~14% ⁷⁴Ge used in the 0νββ searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the ³H(p,n)³He, ²H(d,n)³He and ³H(d,n)⁴He reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for ⁷⁴Ge at neutron energies below 8 MeV. Indium and gold foils were irradiated simultaneously for neutron fluence determination. High-resolution γ-ray spectroscopy wasmore » used to determine the γ-ray activity of the daughter nuclei of interest. For the ⁷⁶Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the ⁷⁴Ge(n,γ)⁷⁵Ge reaction, the present data are about a factor of two larger than predicted. It was found that the ⁷⁴Ge(n,γ)⁷⁵Ge yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the ⁷⁶Ge(n,γ)⁷⁷Ge yield due to the larger cross section of the former reaction.« less

  3. Electron scattering by highly polar molecules. III - CsCl

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Srivastava, S. K.

    1981-01-01

    Utilizing a crossed electron-beam-molecular-beam scattering geometry, relative values of differential electron scattering cross sections for cesium chloride at 5 and 20 eV electron impact energies and at scattering angles between 10 and 120 deg have been measured. These relative cross sections have been normalized to the cross section at 15 deg scattering angle calculated by the hybrid S-matrix technique. In the angular range between 0 and 10 deg and between 120 and 180 deg extrapolations have been made to obtain integral and momentum transfer cross sections. An energy-loss spectrum is also presented which gives various spectral features lying between the 4 and 10 eV regions in CsCl.

  4. Cross-sectional TEM specimen preparation for W/B{sub 4}C multilayer sample using FIB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Puspen, E-mail: puspen@rrcat.gov.in; Pradhan, P. C.; Tiwari, Pragya

    2016-05-23

    A recent emergence of a cross-beam scanning electron microscopy (SEM)/focused-ion-beam (FIB) system have given choice to fabricate cross-sectional transmission electron microscopy (TEM) specimen of thin film multilayer sample. A 300 layer pair thin film multilayer sample of W/B{sub 4}C was used to demonstrate the specimen lift-out technique in very short time as compared to conventional cross-sectional sample preparation technique. To get large area electron transparent sample, sample prepared by FIB is followed by Ar{sup +} ion polishing at 2 kV with grazing incident. The prepared cross-sectional sample was characterized by transmission electron microscope.

  5. Dependence of weak interaction rates on the nuclear composition during stellar core collapse

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Kato, Chinami; Yamada, Shoichi

    2017-02-01

    We investigate the influences of the nuclear composition on the weak interaction rates of heavy nuclei during the core collapse of massive stars. The nuclear abundances in nuclear statistical equilibrium (NSE) are calculated by some equation of state (EOS) models including in-medium effects on nuclear masses. We systematically examine the sensitivities of electron capture and neutrino-nucleus scattering on heavy nuclei to the nuclear shell effects and the single-nucleus approximation. We find that the washout of the shell effect at high temperatures brings significant change to weak rates by smoothing the nuclear abundance distribution: the electron capture rate decreases by ˜20 % in the early phase and increases by ˜40 % in the late phase at most, while the cross section for neutrino-nucleus scattering is reduced by ˜15 % . This is because the open-shell nuclei become abundant instead of those with closed neutron shells as the shell effects disappear. We also find that the single-nucleus description based on the average values leads to underestimations of weak rates. Electron captures and neutrino coherent scattering on heavy nuclei are reduced by ˜80 % in the early phase and by ˜5 % in the late phase, respectively. These results indicate that NSE like EOS accounting for shell washout is indispensable for the reliable estimation of weak interaction rates in simulations of core-collapse supernovae.

  6. Measurement of the 241Am neutron capture cross section at the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Mendoza, E.; Cano-Ott, D.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Balibrea, J.; Bécares, V.; Barbagallo, M.; Bečvář, F.; Belloni, F.; Berthier, B.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviño, F.; Calviani, M.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Dillmann, I.; Domingo-Pardo, C.; Durán, I.; Dzysiuk, N.; Eleftheriadis, C.; Fernández-Ordóñez, M.; Ferrari, A.; Fraval, K.; Furman, V.; Gómez-Hornillos, M. B.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Katabuchi, T.; Ketlerov, V.; Khryachkov, V.; Koehler, P.; Kokkoris, M.; Kroll, J.; Krtička, M.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Lerendegui-Marco, J.; Licata, M.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A. J. M.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Roman, F.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiss, C.; Wright, T.; Žugec, P.

    2017-09-01

    New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241Am(n,γ) cross section at the n_TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental and evaluated data published before. Our results also indicate that the 241Am(n,γ) cross section is underestimated in the present evaluated libraries between 20 eV and 2 keV by 25%, on average, and up to 35% for certain evaluations and energy ranges.

  7. Fundamental Studies of the Silicon Carbide MOS Interface

    NASA Astrophysics Data System (ADS)

    Swandono, Steven

    Climate change has placed a spotlight on renewable energy. Power electronics are essential to minimize energy loss when electricity is converted to a form used on the power grid. With silicon devices now approaching performance limits, SiC MOSFET can deliver power electronics to greater heights. However, the power capability of SiC MOSFETs is constrained by having low interface carrier mobility. It was coincidentally discovered that MOSFETs with oxide grown in alumina tubes have significantly higher mobility. We believe that the large surface potential fluctuations in SiC MOS interface results in percolation transport, and sodium ions from the alumina tubes reduces these percolative effects. Fabrication of SiC MOSFETs with different oxide thickness can vary the surface potential fluctuations and is used to verify the impact of percolation transport on SiC interface mobility. Characterization techniques on SiC devices are adopted from their silicon counterparts. Many characterization techniques are not tailored to the specification of SiC materials and hence, result in conflicting results during comparison of data among different research groups. The later chapters discussed the inaccuracies in the MOS AC conductance technique caused by the non-linear surface potential - gate voltage relationship and an energy-dependent interface state density. Using an exact model, we quantify errors in the extraction of interface state density, capture cross section, and position of the surface Fermi level when analyzed using the standard Nicollian-Goetzberger equations. We show that the exponential dependence of capture cross section on energy near the band edges is an artifact of the data analysis.

  8. Measurements of the 40Ar(n, γ)41Ar radiative-capture cross section between 0.4 and 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Fallin, B.; Tornow, W.

    2014-09-01

    The 40Ar(n, γ)41Ar neutron capture cross section has been measured between 0.4 and 14.8 MeV neutron energy using the activation technique. The data are important for estimating backgrounds in argon-based neutrino and dark-matter detectors and in the neutrino-less double-beta decay search GERDA, which uses liquid argon as cooling and shielding medium. For the first time the 40Ar(n, γ)41Ar cross section has been measured for neutron energies above 1 MeV. Our results are compared to the evaluation ENDF/B-VII.1 and the calculated prediction TENDL-2013. The latter agrees very well with the present results.

  9. Electron collisions with ethylene

    NASA Astrophysics Data System (ADS)

    Panajotovic, R.; Kitajima, M.; Tanaka, H.; Jelisavcic, M.; Lower, J.; Campbell, L.; Brunger, M. J.; Buckman, S. J.

    2003-04-01

    We have measured absolute elastic scattering and vibrational excitation cross sections for electron impact on ethylene. The experimental data have been obtained on two different crossed-beam electron spectrometers and they cover the energy range from 1 to 100 eV and scattering angles between 10° and 130°. Both differential (in angle) and energy-dependent cross sections have been measured. The differential cross sections have also been analysed using a molecular phase shift analysis technique in order to derive the integral elastic and elastic momentum transfer cross sections. Comparison is made with earlier data, where available, and also with a number of recent theoretical calculations.

  10. Electronic and transformation properties of a metastable defect introduced in epitaxially grown boron-doped p-type Si by alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Mamor, M.; Auret, F. D.; Goodman, S. A.; Meyer, W. E.; Myburg, G.

    1998-06-01

    Titanium (Ti) Schottky barrier diodes on epitaxially grown boron-doped p-type Si films with a free carrier density of 6-8×1016cm-3 were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radio nuclide. We report the electronic and transformation characteristics of an α-particle irradiation-induced defect Hα2 in epitaxially grown p-Si with metastable properties. The energy level and apparent capture cross section, as determined by deep-level transient spectroscopy, are Ev+0.43 eV and 1.4×10-15 cm2, respectively. This defect can be removed and re-introduced using a conventional bias-on/off cooling technique.

  11. Electron impact cross sections for the 2,2P state excitation of lithium

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.; Register, D. F.

    1982-01-01

    Electron impact excitation of the 2p 2P state of Li was studied at 10, 20, 60, 100, 150 and 200 eV. Relative differential cross sections in the angular range 3-120 deg were measured and then normalized to the absolute scale by using the optical f value. Integral and momentum transfer cross sections were obtained by extrapolating the differential cross sections to 0 deg and to 180 deg. The question of normalizing electron-metal-atom collision cross sections in general was examined and the method of normalization to optical f values in particular was investigated in detail. It has been concluded that the extrapolation of the apparent generalized oscillator strength (obtained from the measured differential cross sections) to the zero momentum transfer limit with an expression using even powers of the momentum transfer and normalization of the limit to the optical f value yields reliable absolute cross sections.

  12. L-shell x-ray production cross sections of Ni, Cu, Ge, As, Rb, Sr, Y, Zr, and Pd by (0. 25--2. 5)-MeV protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duggan, J.L.; Kocur, P.M.; Price, J.L.

    1985-10-01

    L-shell x-ray production cross sections by /sub 1//sup 1/H/sup +/ ions are reported. The data are compared to the first Born approximation (plane-wave Born approximation for direct ionization and Oppenheimer-Brinkman-Kramers approximation for electron capture) and to the ECPSSR (energy-loss and Coulomb-deflection effects, perturbed stationary-state approximation with relativistic correction) theory. The energy of the protons ranged from 0.25 to 2.5 MeV in steps of 0.25 MeV. The targets used in these measurements were /sub 28/Ni, /sub 29/Cu, /sub 32/Ge, /sub 33/As, /sub 37/Rb, /sub 38/Sr, /sub 39/Y, /sub 40/Zr, and /sub 46/Pd. The first Born theory generally agrees with the datamore » found in the literature at high energies and overpredicts them below 1.5 MeV. The ECPSSR predictions are in better agreement with experimental cross sections. At 0.25 MeV our data, however, are underestimated by this theory and tend to agree with the first Born approximation.« less

  13. Neutron capture and stellar synthesis of heavy elements.

    PubMed

    Gibbons, J H; Macklin, R L

    1967-05-26

    The neutron buildup processes of heavy-element synthesis in stars have left us a number of tantalizing nuclear clues to the early history of solarsystem material. Considerable illumination of our past history has been achieved through studying the correlations between abundance and neutroncapture cross section. Measurement of these cross sections required the development of new techniques for measuring time of flight of pulsed neutron beams. A clear conclusion is that many of our heavy elements were produced inside stars, which can be thought of as giant fast reactors. Extensions of these capture studies have given a clearer picture of additional. violent processes which produced some heavy elements, particularly thorium and uranium. In addition, the correlations have been used for obtaining an independent measure of the time that has elapsed since the solar-system material was synthesized. Finally, data on capture cross section relative to abundance will enable us to determine rather accurately the solar-system abundances of gaseous, volatile, and highly segregated elements.

  14. New developments in electron microscopy for serial image acquisition of neuronal profiles.

    PubMed

    Kubota, Yoshiyuki

    2015-02-01

    Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Measurement of the 242Pu neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  16. Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Foram M., E-mail: foram29@gmail.com; Joshipura, K. N., E-mail: knjoshipura22@gmail.com; Chaudhari, Asha S., E-mail: ashaschaudhari@gmail.com

    2016-05-06

    Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Q{sub ion} and the summed-electronic excitation cross section ΣQ{sub exc} in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incidentmore » electron energy along with available comparisons.« less

  17. Cross sections for the dissociative attachment of electrons to NO

    NASA Technical Reports Server (NTRS)

    Krishnakumar, E.; Srivastava, S. K.

    1988-01-01

    Cross sections for the production of O(-) by electron attachment to NO are reported. It is found that the maximum value of the cross section is about 52 percent higher than the measurement of Rapp and Briglia (1965). Cross sections for the process of polar dissociation, e + NO yields N(+) + O(_), have also been measured, and the threshold energy for this process has been obtained.

  18. Evaluation of prompt gamma-ray data and nuclear structure of niobium-94 with statistical model calculations

    NASA Astrophysics Data System (ADS)

    Turkoglu, Danyal

    Precise knowledge of prompt gamma-ray intensities following neutron capture is critical for elemental and isotopic analyses, homeland security, modeling nuclear reactors, etc. A recently-developed database of prompt gamma-ray production cross sections and nuclear structure information in the form of a decay scheme, called the Evaluated Gamma-ray Activation File (EGAF), is under revision. Statistical model calculations are useful for checking the consistency of the decay scheme, providing insight on its completeness and accuracy. Furthermore, these statistical model calculations are necessary to estimate the contribution of continuum gamma-rays, which cannot be experimentally resolved due to the high density of excited states in medium- and heavy-mass nuclei. Decay-scheme improvements in EGAF lead to improvements to other databases (Evaluated Nuclear Structure Data File, Reference Input Parameter Library) that are ultimately used in nuclear-reaction models to generate the Evaluated Nuclear Data File (ENDF). Gamma-ray transitions following neutron capture in 93Nb have been studied at the cold-neutron beam facility at the Budapest Research Reactor. Measurements have been performed using a coaxial HPGe detector with Compton suppression. Partial gamma-ray production capture cross sections at a neutron velocity of 2200 m/s have been deduced relative to that of the 255.9-keV transition after cold-neutron capture by 93Nb. With the measurement of a niobium chloride target, this partial cross section was internally standardized to the cross section for the 1951-keV transition after cold-neutron capture by 35Cl. The resulting (0.1377 +/- 0.0018) barn (b) partial cross section produced a calibration factor that was 23% lower than previously measured for the EGAF database. The thermal-neutron cross sections were deduced for the 93Nb(n,gamma ) 94mNb and 93Nb(n,gamma) 94gNb reactions by summing the experimentally-measured partial gamma-ray production cross sections associated with the ground-state transitions below the 396-keV level and combining that summation with the contribution to the ground state from the quasi-continuum above 396 keV, determined with Monte Carlo statistical model calculations using the DICEBOX computer code. These values, sigmam and sigma 0, were (0.83 +/- 0.05) b and (1.16 +/- 0.11) b, respectively, and found to be in agreement with literature values. Comparison of the modeled population and experimental depopulation of individual levels confirmed tentative spin assignments and suggested changes where imbalances existed.

  19. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    DOE PAGES

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; ...

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm 2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  20. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  1. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Clementz, Stefan, E-mail: emb@kth.se, E-mail: scl@kth.se

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles andmore » anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.« less

  3. Electron-exchange and quantum screening effects on the Thomson scattering process in quantum Fermi plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gyeong Won; Jung, Young-Dae; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590

    2013-06-15

    The influence of the electron-exchange and quantum screening on the Thomson scattering process is investigated in degenerate quantum Fermi plasmas. The Thomson scattering cross section in quantum plasmas is obtained by the plasma dielectric function and fluctuation-dissipation theorem as a function of the electron-exchange parameter, Fermi energy, plasmon energy, and wave number. It is shown that the electron-exchange effect enhances the Thomson scattering cross section in quantum plasmas. It is also shown that the differential Thomson scattering cross section has a minimum at the scattering angle Θ=π/2. It is also found that the Thomson scattering cross section increases with anmore » increase of the Fermi energy. In addition, the Thomson scattering cross section is found to be decreased with increasing plasmon energy.« less

  4. SU-E-I-43: Photoelectric Cross Section Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, A; Nakagawa, K; Kotoku, J

    2015-06-15

    Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (boundmore » electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock potential for K-shell electrons, the difference from XCOM database was limited: 1% to 8% for low-Z elements in 10keV-1MeV energy ranges. This work was partly supported by the JSPS Core-to-Core Program (No. 23003)« less

  5. Cross Section Measurements of the Reaction 23Na(p, γ)24Mg

    NASA Astrophysics Data System (ADS)

    Boeltzig, Axel; Deboer, Richard James; Macon, Kevin; Wiescher, Michael; Best, Andreas; Imbriani, Gianluca; Gyürky, György; Strieder, Frank

    2017-09-01

    The reaction 23Na(p, γ)24Mg can provide a link from the NeNa to the MgAl cycle in stellar burning and is therefore of interest in nuclear astrophysics. To determine the reaction rates at stellar temperatures, new cross section measurements at low proton energies have been performed recently, and further experiments are underway. The current cross section data implies that the reaction rate up to temperatures of 1 GK is determined by a few narrow resonances and direct capture. Complementary to these experimental efforts at low proton energies, cross section measurements at higher energies can help to constrain the direct capture and broad resonance contributions to the cross section and reduce the uncertainty of the extrapolation towards stellar energies. In this paper we report an experiment to measure the 23Na(p, γ)24Mg cross section with a solid target setup at the St. ANA 5U accelerator at the University of Notre Dame. The experiment and the current status of data analysis will be described. This work benefited from support by the National Science Foundation under Grant No. PHY-1430152 (JINA-CEE), the Nuclear Science Laboratory (NSL), the Istituto Nazionale di Fisica Nucleare (INFN), and the Gran Sasso Science Institute (GSSI).

  6. Communication: Electron ionization of DNA bases.

    PubMed

    Rahman, M A; Krishnakumar, E

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  7. Photon scattering cross sections of H2 and He measured with synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Ice, G. E.

    1977-01-01

    Total (elastic + inelastic) differential photon scattering cross sections have been measured for H2 gas and He, using an X-ray beam. Absolute measured cross sections agree with theory within the probable errors. Relative cross sections (normalized to theory at large S) agree to better than one percent with theoretical values calculated from wave functions that include the effect of electron-electron Coulomb correlation, but the data deviate significantly from theoretical independent-particle (e.g., Hartree-Fock) results. The ratios of measured absolute He cross sections to those of H2, at any given S, also agree to better than one percent with theoretical He-to-H2 cross-section ratios computed from correlated wave functions. It appears that photon scattering constitutes a very promising tool for probing electron correlation in light atoms and molecules.

  8. Electron impact ionisation cross section for organoplatinum compounds

    NASA Astrophysics Data System (ADS)

    Mahato, Dibyendu; Naghma, Rahla; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby

    2016-11-01

    This article reports electron impact ionisation cross sections for platinum-based drugs viz., cisplatin (H6N2Cl2Pt), carboplatin (C6H12N2O4Pt), oxaliplatin (C8H14N2O4Pt), nedaplatin (C2H8N2O3Pt) and satraplatin (C10H22ClN2O4Pt) complexes used in the cancer chemotherapy. The multi-scattering centre spherical complex optical potential formalism is used to obtain the inelastic cross section for these large molecules upon electron impact. The ionisation cross section is derived from the inelastic cross section employing complex scattering potential-ionisation contribution method. Comparison is made with previous results, where ever available and overall a reasonable agreement is observed. This is the first attempt to report total ionisation cross sections for nedaplatin and satraplatin complexes.

  9. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5-18 eV) electron interactions with DNA.

    PubMed

    Rezaee, Mohammad; Hunting, Darel J; Sanche, Léon

    2014-07-01

    The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Absorbed dose and stopping cross section for the Auger electrons of 5-18 eV emitted by(125)I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure-response curves for induction of DNA strand breaks. For a single decay of(125)I within DNA, the Auger electrons of 5-18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm(3) volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide.

  10. Characterisation of Cs ion implanted GaN by DLTS

    NASA Astrophysics Data System (ADS)

    Ngoepe, P. N. M.; Meyer, W. E.; Auret, F. D.; Omotoso, E.; Hlatshwayo, T. T.; Diale, M.

    2018-04-01

    Deep level transient spectroscopy (DLTS) was used to characterise Cs implanted GaN grown by hydride vapour phase epitaxy (HVPE). This implantation was done at room temperature using energy of 360 keV to a fluence of 10-11 cm-2. A defect with activation energy of 0.19 eV below the conduction band and an apparent capture cross section of 1.1 × 10-15 cm2 was induced. This defect has previously been observed after rare earth element (Eu, Er and Pr) implantation. It has also been reported after electron, proton and He ion implantation.

  11. Absolute cross-section measurements of inner-shell ionization

    NASA Astrophysics Data System (ADS)

    Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer

    1994-12-01

    Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.

  12. Sensitivity analysis of TRX-2 lattice parameters with emphasis on epithermal /sup 238/U capture. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomlinson, E.T.; deSaussure, G.; Weisbin, C.R.

    1977-03-01

    The main purpose of the study is the determination of the sensitivity of TRX-2 thermal lattice performance parameters to nuclear cross section data, particularly the epithermal resonance capture cross section of /sup 238/U. An energy-dependent sensitivity profile was generated for each of the performance parameters, to the most important cross sections of the various isotopes in the lattice. Uncertainties in the calculated values of the performance parameters due to estimated uncertainties in the basic nuclear data, deduced in this study, were shown to be small compared to the uncertainties in the measured values of the performance parameter and compared tomore » differences among calculations based upon the same data but with different methodologies.« less

  13. Gaseous insulators for high voltage electrical equipment

    DOEpatents

    Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.

    1979-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  14. Gaseous insulators for high voltage electrical equipment

    DOEpatents

    Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.

    1981-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  15. Electron-impact excitation of the BΣ1u+ and CΠ1u electronic states of H2

    NASA Astrophysics Data System (ADS)

    Kato, H.; Kawahara, H.; Hoshino, M.; Tanaka, H.; Campbell, L.; Brunger, M. J.

    2008-06-01

    Differential and integral cross sections for electron-impact excitation of the dipole-allowed BΣ1u+ and CΠ1u electronic states of molecular hydrogen have been measured. The differential cross sections were determined by analysis of normalized energy-loss spectra obtained using a crossed-beam apparatus at the electron-impact energies of 40, 100, and 200 eV. Integral cross sections were subsequently derived from these data. The present work was undertaken in order to investigate some ambiguities between earlier experimental data and recent BEf-scaled cross sections as defined and calculated by Kim [J. Chem. Phys. 126, 064305 (2007)] and also to extend the energy range of the available data. Optical oscillator strengths, also determined as a part of the present investigation, were found to be in fair accordance with previous measurements and some calculations.

  16. Electron Impact Multiple Ionization Cross Sections for Solar Physics

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Savin, D. W.; Mueller, A.

    2017-12-01

    We have compiled a set of electron-impact multiple ionization (EIMI) cross sections for astrophysically relevant ions. EIMI can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature, as in solar flares or in nanoflare coronal heating. EIMI is also likely to be significant when the electron energy distribution is non-thermal, such as if the electrons follow a kappa distribution. Cross sections for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to the available experimental EIMI cross section data. Based on this comparison, we have interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for thousands of EIMI cross sections. We also highlight some outstanding issues that remain to be resolved.

  17. Experimental and theoretical electron-scattering cross-section data for dichloromethane

    NASA Astrophysics Data System (ADS)

    Krupa, K.; Lange, E.; Blanco, F.; Barbosa, A. S.; Pastega, D. F.; Sanchez, S. d'A.; Bettega, M. H. F.; García, G.; Limão-Vieira, P.; Ferreira da Silva, F.

    2018-04-01

    We report on a combination of experimental and theoretical investigations into the elastic differential cross sections (DCSs) and integral cross sections for electron interactions with dichloromethane, C H2C l2 , in the incident electron energy over the 7.0-30 eV range. Elastic electron-scattering cross-section calculations have been performed within the framework of the Schwinger multichannel method implemented with pseudopotentials (SMCPP), and the independent-atom model with screening-corrected additivity rule including interference-effects correction (IAM-SCAR+I). The present elastic DCSs have been found to agree reasonably well with the results of IAM-SCAR+I calculations above 20 eV and also with the SMC calculations below 30 eV. Although some discrepancies were found for 7 eV, the agreement between the two theoretical methodologies is remarkable as the electron-impact energy increases. Calculated elastic DCSs are also reported up to 10000 eV for scattering angles from 0° to 180° together with total cross section within the IAM-SCAR+I framework.

  18. Donor and double-donor transitions of the carbon vacancy related EH{sub 6∕7} deep level in 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, I. D., E-mail: ianbo@ifm.liu.se; Janzén, E., E-mail: erija@ifm.liu.se; Son, N. T.

    Using medium- and high-resolution multi-spectra fitting of deep level transient spectroscopy (DLTS), minority carrier transient spectroscopy (MCTS), optical O-DLTS and optical-electrical (OE)-MCTS measurements, we show that the EH{sub 6∕7} deep level in 4H-SiC is composed of two strongly overlapping, two electron emission processes with thermal activation energies of 1.49 eV and 1.58 eV for EH{sub 6} and 1.48 eV and 1.66 eV for EH{sub 7}. The electron emission peaks of EH{sub 7} completely overlap while the emission peaks of EH{sub 6} occur offset at slightly different temperatures in the spectra. OE-MCTS measurements of the hole capture cross section σ{sub p0}(T) in p-type samples revealmore » a trap-Auger process, whereby hole capture into the defect occupied by two electrons leads to a recombination event and the ejection of the second electron into the conduction band. Values of the hole and electron capture cross sections σ{sub n}(T) and σ{sub p}(T) differ strongly due to the donor like nature of the deep levels and while all σ{sub n}(T) have a negative temperature dependence, the σ{sub p}(T) appear to be temperature independent. Average values at the DLTS measurement temperature (∼600 K) are σ{sub n2+}(T) ≈ 1 × 10{sup −14} cm{sup 2}, σ{sub n+}(T) ≈ 1 × 10{sup −14} cm{sup 2}, and σ{sub p0}(T) ≈ 9 × 10{sup −18} cm{sup 2} for EH{sub 6} and σ{sub n2+}(T) ≈ 2 × 10{sup −14} cm{sup 2}, σ{sub n+}(T) ≈ 2 × 10{sup −14} cm{sup 2}, σ{sub p0}(T) ≈ 1 × 10{sup −20} cm{sup 2} for EH{sub 7}. Since EH{sub 7} has already been identified as a donor transition of the carbon vacancy, we propose that the EH{sub 6∕7} center in total represents the overlapping first and second donor transitions of the carbon vacancy defects on both inequivalent lattice sites.« less

  19. Asymmetric capture of Dirac dark matter by the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Clementz, Stefan

    2015-08-18

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles andmore » anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observationsmore » for all the targets reported here, especially for the total cross section.« less

  1. Cross sections for ionization of tetrahydrofuran by protons at energies between 300 and 3000 keV

    NASA Astrophysics Data System (ADS)

    Wang, Mingjie; Rudek, Benedikt; Bennett, Daniel; de Vera, Pablo; Bug, Marion; Buhr, Ticia; Baek, Woon Yong; Hilgers, Gerhard; Rabus, Hans

    2016-05-01

    Double-differential cross sections for ionization of tetrahydrofuran by protons with energies from 300 to 3000 keV were measured at the Physikalisch-Technische Bundesanstalt ion accelerator facility. The electrons emitted at angles between 15∘ and 150∘ relative to the ion-beam direction were detected with an electrostatic hemispherical electron spectrometer. Single-differential and total ionization cross sections have been derived by integration. The experimental results are compared to the semiempirical Hansen-Kocbach-Stolterfoht model as well as to the recently reported method based on the dielectric formalism. The comparison to the latter showed good agreement with experimental data in a broad range of emission angles and energies of secondary electrons. The scaling property of ionization cross sections for tetrahydrofuran was also investigated. Compared to molecules of different size, the ionization cross sections of tetrahydrofuran were found to scale with the number of valence electrons at large impact parameters.

  2. Electron-impact Multiple-ionization Cross Sections for Atoms and Ions of Helium through Zinc

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Müller, A.; Savin, D. W.

    2017-12-01

    We compiled a set of electron-impact multiple-ionization (EIMI) cross section for astrophysically relevant ions. EIMIs can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature or if there is a non-thermal electron energy distribution, such as a kappa distribution. Cross section for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to available experimental EIMI cross-section data. Based on this comparison, we interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for 3466 EIMI cross sections and the associated Maxwellian plasma rate coefficients. We also highlight some outstanding issues that remain to be resolved.

  3. Electron-impact excitation of Rydberg and valence electronic states of nitric oxide: II. Integral cross sections

    NASA Astrophysics Data System (ADS)

    Brunger, M. J.; Campbell, L.; Cartwright, D. C.; Middleton, A. G.; Mojarrabi, B.; Teubner, P. J. O.

    2000-02-01

    Integral cross sections (ICSs) for the excitation of 18 excited electronic states, and four composite excited electronic states, in nitric oxide (NO) have been determined for incident electron energies of 15, 20, 30, 40 and 50 eV. These ICSs were derived by extrapolating the respective measured differential cross sections (M J Brunger et al 2000 J. Phys. B: At. Mol. Opt. Phys. 33 783) to 0° and 180° and by performing the appropriate integration. Comparison of the present ICSs with the results of those determined in earlier optical emission measurements, and from theoretical calculations is made. At each incident energy considered, the current ICSs are also summed along with the corresponding elastic and rovibrational excitation ICSs from B Mojarrabi et al (1995 J. Phys. B: At. Mol. Opt. Phys. 28 487) and the ionization cross sections from Rapp and Englander-Golden (1965 J. Chem. Phys. 43 1464), to derive an estimate of the grand total cross sections (GTSs) for e- + NO scattering. The GTSs derived in this manner are compared with the results from independent linear transmission experiments and are found to be entirely consistent with them. The present excited electronic state ICS, and those for elastic and rovibrational excitation from Mojarrabi et al , appear to represent the first set of self-consistent cross sections for electron impact scattering from NO.

  4. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-04-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  5. Activities of the DOE Nuclear Criticality Safety Program (NCSP) at the Oak Ridge Electron Linear Accelerator (ORELA)

    NASA Astrophysics Data System (ADS)

    Valentine, Timothy E.; Leal, Luiz C.; Guber, Klaus H.

    2002-12-01

    The Department of Energy established the Nuclear Criticality Safety Program (NCSP) in response to the Recommendation 97-2 by the Defense Nuclear Facilities Safety Board. The NCSP consists of seven elements of which nuclear data measurements and evaluations is a key component. The intent of the nuclear data activities is to provide high resolution nuclear data measurements that are evaluated, validated, and formatted for use by the nuclear criticality safety community to provide improved and reliable calculations for nuclear criticality safety evaluations. High resolution capture, fission, and transmission measurements are performed at the Oak Ridge Electron Linear Accelerator (ORELA) to address the needs of the criticality safety community and to address known deficiencies in nuclear data evaluations. The activities at ORELA include measurements on both light and heavy nuclei and have been used to identify improvements in measurement techniques that greatly improve the measurement of small capture cross sections. The measurement activities at ORELA provide precise and reliable high-resolution nuclear data for the nuclear criticality safety community.

  6. Neuroinformatics Software Applications Supporting Electronic Data Capture, Management, and Sharing for the Neuroimaging Community

    PubMed Central

    Nichols, B. Nolan; Pohl, Kilian M.

    2017-01-01

    Accelerating insight into the relation between brain and behavior entails conducting small and large-scale research endeavors that lead to reproducible results. Consensus is emerging between funding agencies, publishers, and the research community that data sharing is a fundamental requirement to ensure all such endeavors foster data reuse and fuel reproducible discoveries. Funding agency and publisher mandates to share data are bolstered by a growing number of data sharing efforts that demonstrate how information technologies can enable meaningful data reuse. Neuroinformatics evaluates scientific needs and develops solutions to facilitate the use of data across the cognitive and neurosciences. For example, electronic data capture and management tools designed to facilitate human neurocognitive research can decrease the setup time of studies, improve quality control, and streamline the process of harmonizing, curating, and sharing data across data repositories. In this article we outline the advantages and disadvantages of adopting software applications that support these features by reviewing the tools available and then presenting two contrasting neuroimaging study scenarios in the context of conducting a cross-sectional and a multisite longitudinal study. PMID:26267019

  7. Evidence for room-temperature in-diffusion of nickel into silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarykin, Nikolai, E-mail: nay@iptm.ru; Weber, Jörg

    2016-09-05

    Interstitial nickel in crystalline Si is shown to be a fast diffuser at room temperature. In this study, Ni is incorporated in Si by wet chemical etching in nickel-contaminated alkaline solutions. Nickel in-diffusion is observed by means of detecting the electrically active NiVO defect, which is formed due to Ni capture to the vacancy–oxygen complex in electron-irradiated Si. The depth profiles of the NiVO concentration measured by the deep-level transient spectroscopy technique extend to ∼15 μm in the samples doped with Ni at 35 °C for 30 min. This allows us to get a lower estimate for the nickel diffusivity at this temperaturemore » as 10{sup −9} cm{sup 2}/s. The activation energy for electron emission from the NiVO level and the apparent capture cross section are equal to 371 meV and 3 × 10{sup −15} cm{sup 2}, respectively. The NiVO complex dissociates at 300 °C reestablishing the initial concentration of the VO centers.« less

  8. Communication: Electron ionization of DNA bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve themore » existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.« less

  9. Titanium in silicon as a deep level impurity

    NASA Technical Reports Server (NTRS)

    Chen, J.-W.; Milnes, A. G.; Rohatgi, A.

    1979-01-01

    Titanium inserted in silicon by diffusion or during Czochralski ingot growth is electrically active to a concentration level of about 4 x 10 to the 14th per cu cm. It is reported that Hall measurements after diffusion show conversion of lightly doped p-type Si to n-type due to a Ti donor level at E sub c -0.22 eV. In addition, in DLTS measurements of n(+)p structures this level shows as an electron (minority carrier) trap at E sub c -0.26 eV with an electron capture cross section of about 3 x 10 to the -15th per sq cm at 300 K. Finally, a Ti electrically active concentration of about 1.35 x 10 to the 13th per cu cm in p type Si results in a minority carrier (electron) lifetime of 50 nsec at 300 K.

  10. Oxygen in GaAs - Direct and indirect effects

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Skowronski, M.; Pawlowicz, L.; Lagowski, J.

    1984-01-01

    Oxygen has profound effects on the key electronic properties and point defects of GaAs crystals. Thus, when added in the growth system, it decreases the free electron concentration and enhances the concentration of deep donors in the resulting crystals. Both of these effects are highly beneficial for achieving semi-insulating material and have been utilized for that purpose. They have been attributed to the tendency of oxygen to getter silicon impurities during crystal growth. Only recently, it has been found that oxygen in GaAs introduces also a midgap level, ELO, with essentially the same activation energy as EL2 but with four times greater electron capture cross section. The present report reassesses the electrical and optical properties of the midgap levels in GaAs crystals grown by the horizontal Bridgman (HB) and the Czochralski-LEC techniques. Emphasis is placed on the identification of the specific effects of ELO.

  11. Detection of explosives, nerve agents, and illicit substances by zero-energy electron attachment

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Darrach, M. R.

    2000-01-01

    The Reversal Electron Attachment Detection (READ) method, developed at JPL/Caltech, has been used to detect a variety of substances which have electron-attachment resonances at low and intermediate electron energies. In the case of zero-energy resonances, the cross section (hence attachment probability and instrument sensitivity) is mediated by the so-called s-wave phenomenon, in which the cross sections vary as the inverse of the electron velocity. Hence this is, in the limit of zero electron energy or velocity, one of the rare cases in atomic and molecular physics where one carries out detection via infinite cross sections.

  12. Analysis of Data on the Cross Sections for Electron-Impact Ionization and Excitation of Electronic States of Atomic Hydrogen (Review)

    NASA Astrophysics Data System (ADS)

    Shakhatov, V. A.; Lebedev, Yu. A.

    2018-01-01

    A review is given of experimental and theoretical data on the cross sections for ionization, excitation, and deexcitation of atomic hydrogen. The set of the cross sections required to calculate the electron energy distribution function and find the level-to-level rate coefficients needed to solve balance equations for the densities of neutral and charged particles in hydrogen plasma is determined.

  13. Electron impact excitation of the 1{sup 1}{ital S}{r_arrow}3{sup 1}{ital P} transition in helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakoo, M.A.; Roundy, D.; Rugamas, F.

    1995-07-03

    In the first direct application of the electron-photon coincidence technique for differential cross-section measurements, experimentally determined ratios of the differential cross sections for the electron impact excitation of the 1{sup 1}{ital S}{r_arrow}2{sup 1}{ital P} to the 1{sup 1}{ital S}{r_arrow}3{sup 1}{ital P} transitions are presented at 30 and 40 eV incident electron energies. Differential cross sections for the 1{sup 1}{ital S}{r_arrow}3{sup 1}{ital P} transitions are derived by normalizing these ratios to available experimental differential cross sections for the 1{sup 1}{ital S}{r_arrow}2{sup 1}{ital P} transition.

  14. Electron-neutrino charged-current quasi-elastic scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Wolcott, Jeremy

    2014-03-01

    The electron-neutrino charged-current quasi-elastic (CCQE) cross-section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino CCQE cross-section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino CCQE cross-section, but to date there has been no precise experimental verification of these estimates at an energy scale appropriate to such experiments. We present the current status of a direct measurement of the electron neutrino CCQE differential cross-section as a function of the squared four-momentum transfer to the nucleus, Q2, in MINERvA. This talk will discuss event selection, background constraints, and the flux prediction used in the calculation.

  15. Integral cross sections for electron impact excitation of the 1Σ+u and 1Πu electronic states in CO2

    NASA Astrophysics Data System (ADS)

    Kawahara, H.; Kato, H.; Hoshino, M.; Tanaka, H.; Campbell, L.; Brunger, M. J.

    2008-04-01

    We apply the method of Kim (2007 J. Chem. Phys. 126 064305) in order to derive integral cross sections for the 1Σ+u and 1Πu states of CO2, from our corresponding earlier differential cross section measurements (Green et al 2002 J. Phys. B: At. Mol. Opt. Phys. 35 567). The energy range of this work is 20 200 eV. In addition, the BEf-scaling approach is used to calculate integral cross sections for these same states, from their respective thresholds to 5000 eV. In general, good agreement is found between the experimental integral cross sections and those calculated within the BEf-scaling paradigm, over the entire common energy range. Finally, we employ our calculated integral cross sections to determine the electron energy transfer rates for these states, for a thermal electron energy distribution. Such transfer rates are in principle important for understanding the phenomena in atmospheres where CO2 is a dominant constituent, such as on Mars and Venus.

  16. Topics in Astrophysical X-Ray and Gamma Ray Spectroscopy. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.

    1978-01-01

    A number of topics relating to astrophysical observations that have already been made or are currently planned of spectral features, mostly emission lines, in the X-ray and gamma ray region of the electromagnetic spectrum are investigated. These topics include: the production of characteristic X-ray and gamma ray lines by nonthermal ions, spectral features induced by processes occurring in strong magnetic fields, and the positron annihilation line at 0.5 MeV. The rate of X-ray production at 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation is calculated. The cross section for electron-ion Coulomb collisions in strong fields is also calculated.

  17. Charge transfer and ionization in collisions of Si3+ with H from low to high energy

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; He, B.; Ning, Y.; Liu, C. L.; Yan, J.; Stancil, P. C.; Schultz, D. R.

    2006-11-01

    Charge transfer processes due to collisions of ground state Si3+(3sS1) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) and classical-trajectory Monte Carlo (CTMC) methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained from Herrero [J. Phys. B 29, 5583 (1996)] which were calculated with a full configuration-interaction method. Total and state-selective single-electron capture cross sections are obtained for collision energies from 0.01eV/u to 1MeV/u . Total and state-selective rate coefficients are also presented for temperatures from 2×103K to 107K . Comparison with existing data reveals that the total CTMC cross sections are in good agreement with the experimental measurements at the higher considered energies and that previous Landau-Zener calculations underestimate the total rate coefficients by a factor of up to two. The CTMC calculations of target ionization are presented for high energies.

  18. Electron scattering by highly polar molecules. II - LiF

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Srivastavas, S. K.; Trajmar, S.

    1978-01-01

    The crossed electron-beam - molecular-beam scattering technique has been used to measure relative values of differential 'elastic' scattering cross sections at electron impact energies of 5.4 and 20 eV for the angular range from 20 to 130 deg. The absolute values of these cross sections have been obtained by normalization to the classical perturbation theory of Dickinson (1977) at a scattering angle of 40 deg. These differential cross sections have then been used to calculate the integral and momentum-transfer cross sections. An energy-loss spectrum at 100 eV electron impact energy and 15 deg scattering angle has also been obtained. Two weak features at the energy losses of 6.74 and 8.82 eV appear. Their energy positions are compared with the recent calculations of Kahn et al. (1974).

  19. Elastic electron scattering from formamide

    NASA Astrophysics Data System (ADS)

    Buk, M. V.; Bardela, F. P.; da Silva, L. A.; Iga, I.; Homem, M. G. P.

    2018-05-01

    Differential cross sections for elastic electron scattering by formamide (NH2CHO) were measured in the 30–800 eV and 10°–120° ranges. The angular distribution of scattered electrons was obtained using a crossed electron beam-molecular beam geometry. The relative flow technique was applied to normalize our data. Integral and momentum-transfer cross sections were derived from the measured differential cross sections. Theoretical results in the framework of the independent-atom model at the static-exchange-polarization plus absorption level of approximation are also given. The present measured and calculated results are compared with those available in the literature showing a generally good agreement.

  20. Production of negative ions by dissociative electron attachment to SO2

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Srivastava, S. K.

    1983-01-01

    Dissociative electron attachment cross section measurements for the production of O(-), S(-), and SO(-) have been performed utilizing a crossed target SO2 molecule beam-electron beam geometry. The relative flow technique is employed to determine the absolute values of cross sections. The attachment energies corresponding to various cross section maxima are: 4.30 and 7.1 eV for O(-)/SO2; 4.0, 7.5, and 8.9 eV for S(-)/SO2, and 4.7 and 7.5 eV for SO(-)/SO2.

  1. Electron Bremsstrahlung Cross Sections at 25 and 50 keV from Xe and Kr

    NASA Astrophysics Data System (ADS)

    Portillo, Salvador; Quarles, C. A.

    2002-05-01

    Absolute doubly differential bremsstrahlung cross sections for radiation at 90 from 25 and 50 keV electron bombardment of Kr and Xe of will be presented. The electrons were accelerated by a Cockcroft - Walton accelerator into an Al chamber through a .06" Al collimator. Thick target bremsstrahlung background was minimized by having Al nipples and fixtures and by the addition of a carbon lined nipple placed at 180 to the SiLi detector. A comparison of the doubly differential cross sections will be made with current bremsstrahlung theories. The ratio of the Kr and Xe cross sections will also be compared with the theoretical cross section ratios. The ratio provides a more sensitive test of the contribution, if any, of polarization bremsstrahlung.

  2. Total Electron-Impact Ionization Cross-Sections of CFx and NFx (x = 1 - 3)

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Tarnovsky, Vladimir; Becker, Kurt H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The discrepancy between experimental and theoretical total electron-impact ionization cross sections for a group of fluorides, CFx, and NFx, (x = 1 - 3), is attributed to the inadequacies in previous theoretical models. Cross-sections calculated using a recently developed siBED (simulation Binary-Encounter-Dipole) model that takes into account the shielding of the long-range dipole potential between the scattering electron and target are in agreement with experimentation. The present study also carefully reanalyzed the previously reported experimental data to account for the possibility of incomplete collection of fragment ions and the presence of ion-pair formation channels. For NF3, our experimental and theoretical cross-sections compare well with the total ionization cross-sections recently reported by Haaland et al. in the region below dication formation.

  3. Low energy scattering cross section ratios of 14N(p ,p ) 14N

    NASA Astrophysics Data System (ADS)

    deBoer, R. J.; Bardayan, D. W.; Görres, J.; LeBlanc, P. J.; Manukyan, K. V.; Moran, M. T.; Smith, K.; Tan, W.; Uberseder, E.; Wiescher, M.; Bertone, P. F.; Champagne, A. E.; Islam, M. S.

    2015-04-01

    Background: The slowest reaction in the first CNO cycle is 14N(p ,γ ) 15O , therefore its rate determines the overall energy production efficiency of the entire cycle. The cross section presents several strong resonance contributions, especially for the ground-state transition. Some of the properties of the corresponding levels in the 15O compound nucleus remain uncertain, which affects the uncertainty in extrapolating the capture cross section to the low energy range of astrophysical interest. Purpose: The 14N(p ,γ ) 15O cross section can be described by using the phenomenological R matrix. Over the energy range of interest, only the proton and γ -ray channels are open. Since resonance capture makes significant contributions to the 14N(p ,γ ) 15O cross section, resonant proton scattering data can be used to provide additional constraints on the R -matrix fit of the capture data. Methods: A 4 MV KN Van de Graaff accelerator was used to bombard protons onto a windowless gas target containing enriched 14N gas over the proton energy range from Ep=1.0 to 3.0 MeV. Scattered protons were detected at θlab=90 , 120∘, 135∘, 150∘, and 160∘ using ruggedized silicon detectors. In addition, a 10 MV FN Tandem Van de Graaff accelerator was used to accelerate protons onto a solid Adenine (C5H5N5 ) target, of natural isotopic abundance, evaporated onto a thin self-supporting carbon backing, over the energy range from Ep=1.8 to 4.0 MeV. Scattered protons were detected at 28 angles between θlab=30 .4∘ and 167 .7∘ by using silicon photodiode detectors. Results: Relative cross sections were extracted from both measurements. While the relative cross sections do not provide as much constraint as absolute measurements, they greatly reduce the dependence of the data on otherwise significant systematic uncertainties, which are more difficult to quantify. The data are fit simultaneously using an R -matrix analysis and level energies and proton widths are extracted. Even with relative measurements, the statistics and large angular coverage of the measurements result in more confident values for the energies and proton widths of several levels; in particular, the broad resonance at Ec.m.=2.21 MeV, which corresponds to the 3 /2+ level at Ex=9.51 MeV in 15O . In particular, the s - and d -wave angular-momentum channels are separated. Conclusion: The relative cross sections provide a consistent set of data that can be used to better constrain a full multichannel R -matrix extrapolation of the capture data. It has been demonstrated how the scattering data reduce the uncertainty through a preliminary Monte Carlo uncertainty analysis, but several other issues remain that make large contributions to the uncertainty, which must be addressed by further capture and lifetime measurements.

  4. Experimental electron energy-loss spectra and cross sections for the 4/2/S - 4/2/P transition in Zn II

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Newell, W. R.

    1982-01-01

    Electron energy-loss spectra and differential cross sections are reported for inelastic scattering from Zn II. Measurements were carried out in a crossed electron beam-ion beam apparatus, at incident electron energies of 30, 40, 50, 60, 75, 85, and 100 eV, and at a scattering angle of 14 deg. The present results are the first reported measurements of inelastic electron scattering from an ion.

  5. Electron impact scattering study of hypohalous acids HOX (X = F, Cl, Br, I)

    NASA Astrophysics Data System (ADS)

    Yadav, Hitesh; Bhutadia, Harshad; Prajapati, Dinesh; Desai, Hardik; Vinodkumar, Minaxi; Vinodkumar, P. C.

    2018-05-01

    In this article we aim to report total cross sections (TCS) QT, total elastic cross sections (Qel), total inelastic cross sections (Qinel) i.e. (total ionizations cross sections (Qion)+total electronic excitation cross sections (Qexc)) from threshold of the target to 5000 eV energy range. We have used a well-defined theoretical methodology Spherical Complex Optical Potential (SCOP) to compute QT, Qel and Qinel and Complex Scattering Potential - ionization contribution (CSP - ic) method to report the (Qion). The cross-sectional data reported here for the Hypohalous Acids is for the first time and the present data can become a guideline for the experimentalist to study these targets.

  6. Electron-impact excitation cross sections for the b /sup 3/. sigma. /sub u//sup +/ state of H/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakoo, M.A.; Trajmar, S.; McAdams, R.

    1987-04-01

    Differential and integral cross sections for electron-impact excitation of the b /sup 3/..sigma../sub u//sup +/ state of H/sub 2/ have been determined in the 20--100-eV impact energy region. The calibration of the cross sections was achieved through the H/sub 2/ elastic scattering cross sections, which in turn were normalized to absolute He elastic scattering cross sections. Comparison is made with available experimental data and with theoretical results applying Born-Ochkur-Rudge, distorted-wave, and close-coupling approximations.

  7. Electron-Impact Total Ionization Cross Sections of CH and C2H2

    PubMed Central

    Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene

    1997-01-01

    Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116

  8. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I withinmore » DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide.« less

  9. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    PubMed Central

    Rezaee, Mohammad; Hunting, Darel J.; Sanche, Léon

    2015-01-01

    Purpose The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by 125I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results For a single decay of 125I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm3 volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide. PMID:24989405

  10. Dissociative excitation of the manganese atom quartet levels by collisions e-MnBr2

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu M.

    2017-04-01

    Dissociative excitation of quartet levels of the manganese atom was studied in collisions of electrons with manganese dibromide molecules. Eighty-two cross-sections for transitions originating at odd levels and eleven cross-sections for transitions originating at even levels have been measured at an incident electron energy of 100 eV. An optical excitation function has been recorded in the electron energy range of 0-100 eV for transitions originating from 3d 64p z 4 F° levels. For the majority of transitions, a comparison of the resulting cross-section values to cross-sections produced by direct excitation is provided.

  11. Electron transport parameters in NF3

    NASA Astrophysics Data System (ADS)

    Lisovskiy, V.; Yegorenkov, V.; Ogloblina, P.; Booth, J.-P.; Martins, S.; Landry, K.; Douai, D.; Cassagne, V.

    2014-03-01

    We present electron transport parameters (the first Townsend coefficient, the dissociative attachment coefficient, the fraction of electron energy lost by collisions with NF3 molecules, the average and characteristic electron energy, the electron mobility and the drift velocity) in NF3 gas calculated from published elastic and inelastic electron-NF3 collision cross-sections using the BOLSIG+ code. Calculations were performed for the combined RB (Rescigno 1995 Phys. Rev. E 52 329, Boesten et al 1996 J. Phys. B: At. Mol. Opt. Phys. 29 5475) momentum-transfer cross-section, as well as for the JB (Joucoski and Bettega 2002 J. Phys. B: At. Mol. Opt. Phys. 35 783) momentum-transfer cross-section. In addition, we have measured the radio frequency (rf) breakdown curves for various inter-electrode gaps and rfs, and from these we have determined the electron drift velocity in NF3 from the location of the turning point in these curves. These drift velocity values are in satisfactory agreement with those calculated by the BOLSIG+ code employing the JB momentum-transfer cross-section.

  12. Measurement of gamma-ray production from thermal neutron capture on gadolinium for neutrino experiments

    NASA Astrophysics Data System (ADS)

    Yano, Takatomi; 2012B0025 Collaboration; 2014B0126 Collaboration

    2017-02-01

    Recently, several scientific applications of gadolinium are found in neutrino physics experiments. Gadolinium-157 is the nucleus, which has the largest thermal neutron capture cross-section among all stable nuclei. Gadolinium-155 also has the large cross-section. These neutron capture reactions provide the gamma-ray cascade with the total energy of about 8 MeV. This reaction is applied for several neutrino experiments, e.g. reactor neutrino experiments and Gd doped large water Cherenkov detector experiments, to recognize inverse-beta-decay reaction. A good Gd(n,γ) simulation model is needed to evaluate the detection efficiency of the neutron capture reaction, i.e. the efficiency of IBD detection. In this presentation, we will report the development and study status of a Gd(n,γ) calculation model and comparison with our experimental data taken at ANNRI/MLF beam line, J-PARC.

  13. Status of the Neutron Capture Measurement on 237Np with the DANCE Array at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esch, E.-I.; Bond, E.M.; Bredeweg, T. A.

    2005-05-24

    Neptunium-237 is a major constituent of spent nuclear fuel. Estimates place the amount of 237Np bound for the Yucca Mountain high-level waste repository at 40 metric tons. The Department of Energy's Advanced Fuel Cycle Initiative program is evaluating methods for transmuting the actinide waste that will be generated by future operation of commercial nuclear power plants. The critical parameter that defines the transmutation efficiency of actinide isotopes is the neutron fission-to-capture ratio for the particular isotope in a given neutron spectrum. The calculation of transmutation efficiency therefore requires accurate fission and capture cross sections. Current 237Np evaluations available for transmutermore » system studies show significant discrepancies in both the fission and capture cross sections in the energy regions of interest. Herein we report on 237Np (n,{gamma}) measurements using the recently commissioned DANCE array.« less

  14. Gyroscopic effect in low-energy classical capture of a rotating quadrupolar diatom by an ion.

    PubMed

    Dashevskaya, Elena; Litvin, Iliya; Nikitin, Evgueni

    2006-03-09

    The low-energy capture of homonuclear diatoms by ions is due mainly to the long-range part of the interpartner potential with leading terms that correspond to charge-quadrupole interaction and charge-induced dipole interaction. The capture dynamics is described by the perturbed-rotor adiabatic potentials and the Coriolis interaction between manifold of states that belong to a given value of the intrinsic angular momentum. When the latter is large enough, it can noticeably affect the capture cross section calculated in the adiabatic channel approximation due to the gyroscopic property of a rotating diatom. This paper presents the low-energy (low-temperature) state-selected partial and mean capture cross sections (rate coefficients) for the charge-quadrupole interaction that include the gyroscopic effect (decoupling of intrinsic angular momentum from the collision axis), quantum correction for the diatom rotation, and the correction for the charge-induced dipole interaction. These results complement recent studies on the gyroscopic effect in the quantum regime of diatom-ion capture (Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe, J. J. Chem. Phys. 2004, 120, 9989-9997).

  15. Electron-neutrino scattering off nuclei from two different theoretical perspectives

    NASA Astrophysics Data System (ADS)

    Martini, M.; Jachowicz, N.; Ericson, M.; Pandey, V.; Van Cuyck, T.; Van Dessel, N.

    2016-07-01

    We analyze charged-current electron-neutrino cross sections on carbon. We consider two different theoretical approaches, on one hand the continuum random phase approximation (CRPA) which allows a description of giant resonances and quasielastic excitations, on the other hand the RPA-based calculations which are able to describe multinucleon emission and coherent and incoherent pion production as well as quasielastic excitations. We compare the two approaches in the genuine quasielastic channel, and find a satisfactory agreement between them at large energies while at low energies the collective giant resonances show up only in the CRPA approach. We also compare electron-neutrino cross sections with the corresponding muon-neutrino ones in order to investigate the impact of the different charged-lepton masses. Finally, restricting to the RPA-based approach, we compare the sum of quasielastic, multinucleon emission, coherent, and incoherent one-pion production cross sections (folded with the electron-neutrino T2K flux) with the charged-current inclusive electron-neutrino differential cross sections on carbon measured by T2K. We find a good agreement with the data. The multinucleon component is needed in order to reproduce the T2K electron-neutrino inclusive cross sections.

  16. Theoretical and experimental study on electron interactions with chlorobenzene: Shape resonances and differential cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa, Alessandra Souza; Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica; Varella, Márcio T. do N.

    2016-08-28

    In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in themore » high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7{sup ∘} to 110{sup ∘}. From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene.« less

  17. Electron-Impact Cross Sections for Dipole- and Spin-Allowed Excitations of Hydrogen, Helium, and Lithium.

    PubMed

    Stone, Philip M; Kim, Yong-Ki; Desclaux, J P

    2002-01-01

    Electron-impact excitation cross sections are presented for the dipole- and spin allowed transitions from the ground states to the np (2)P states for hydrogen and lithium, and to the 1snp (1)P states for helium, n = 2 through 10. Two scaling formulas developed earlier by Kim [Phys. Rev. A 64, 032713 (2001)] for plane-wave Born cross sections are used. The scaled Born cross sections are in excellent agreement with available theoretical and experimental data.

  18. Neutron capture cross sections of 69Ga and 71Ga at 25 keV and Epeak = 90 keV

    NASA Astrophysics Data System (ADS)

    Göbel, Kathrin; Beinrucker, Clemens; Erbacher, Philipp; Fiebiger, Stefan; Fonseca, Micaela; Heftrich, Michael; Heftrich, Tanja; Käppeler, Franz; Krása, Antonin; Lederer-Woods, Claudia; Plag, Ralf; Plompen, Arjan; Reifarth, René; Schmidt, Stefan; Sonnabend, Kerstin; Weigand, Mario

    2017-09-01

    We measured the neutron capture cross sections of 69Ga and 71Ga for a quasi-stellar spectrum at kBT = 25 keV and a spectrum with a peak energy at 90 keV by the activation technique at the Joint Research Centre (JRC) in Geel, Belgium. Protons were provided by an electrostatic Van de Graaff accelerator to produce neutrons via the reaction 7Li(p,n). The produced activity was measured via the γ emission of the product nuclei by high-purity germanium detectors. We present preliminary results.

  19. Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1982-01-01

    The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.

  20. Cross sections for electron impact excitation of the C 1Π and D 1Σ+ electronic states in N2O

    NASA Astrophysics Data System (ADS)

    Kawahara, H.; Suzuki, D.; Kato, H.; Hoshino, M.; Tanaka, H.; Ingólfsson, O.; Campbell, L.; Brunger, M. J.

    2009-09-01

    Differential and integral cross sections for electron-impact excitation of the dipole-allowed C Π1 and D Σ1+ electronic states of nitrous oxide have been measured. The differential cross sections were determined by analysis of normalized energy-loss spectra obtained using a crossed-beam apparatus at six electron energies in the range 15-200 eV. Integral cross sections were subsequently derived from these data. The present work was undertaken in order to check both the validity of the only other comprehensive experimental study into these excitation processes [Marinković et al., J. Phys. B 32, 1949 (1998)] and to extend the energy range of those data. Agreement with the earlier data, particularly at the lower common energies, was typically found to be fair. In addition, the BEf-scaling approach [Kim, J. Chem. Phys. 126, 064305 (2007)] is used to calculate integral cross sections for the C Π1 and D Σ1+ states, from their respective thresholds to 5000 eV. In general, good agreement is found between the experimental integral cross sections and those calculated within the BEf-scaling paradigm, the only exception being at the lowest energies of this study. Finally, optical oscillator strengths, also determined as a part of the present investigations, were found to be in fair accordance with previous corresponding determinations.

  1. Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion

    NASA Astrophysics Data System (ADS)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Wilson, L. A.; Ansell, S.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Notley, M.; Raspino, D.; Rusby, D. R.; Borghesi, M.; Rhodes, N. J.; McKenna, P.; Neely, D.; Brenner, C. M.; Kar, S.

    2016-10-01

    An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.

  2. Electron transport in furfural: dependence of the electron ranges on the cross sections and the energy loss distribution functions

    NASA Astrophysics Data System (ADS)

    Ellis-Gibbings, L.; Krupa, K.; Colmenares, R.; Blanco, F.; Muńoz, A.; Mendes, M.; Ferreira da Silva, F.; Limá Vieira, P.; Jones, D. B.; Brunger, M. J.; García, G.

    2016-09-01

    Recent theoretical and experimental studies have provided a complete set of differential and integral electron scattering cross section data from furfural over a broad energy range. The energy loss distribution functions have been determined in this study by averaging electron energy loss spectra for different incident energies and scattering angles. All these data have been used as input parameters for an event by event Monte Carlo simulation procedure to obtain the electron energy deposition patterns and electron ranges in liquid furfural. The dependence of these results on the input cross sections is then analysed to determine the uncertainty of the simulated values.

  3. Electron-impact electronic-state excitation of para-benzoquinone

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; da Costa, R. F.; Kossoski, F.; Varella, M. T. do N.; Bettega, M. H. F.; Ferreira da Silva, F.; Limão-Vieira, P.; García, G.; Lima, M. A. P.; White, R. D.; Brunger, M. J.

    2018-03-01

    Angle resolved electron energy loss spectra (EELS) for para-benzoquinone (C6H4O2) have been recorded for incident electron energies of 20, 30, and 40 eV. Measured differential cross sections (DCSs) for electronic band features, composed of a combination of energetically unresolved electronic states, are subsequently derived from those EELS. Where possible, the obtained DCSs are compared with those calculated using the Schwinger multichannel method with pseudopotentials. These calculations were performed using a minimum orbital basis single configuration interaction framework at the static exchange plus polarisation level. Here, quite reasonable agreement between the experimental cross sections and the theoretical cross sections for the summation of unresolved states was observed.

  4. Total Born approximation cross sections for single electron loss by atoms and ions colliding with atoms

    NASA Technical Reports Server (NTRS)

    Rule, D. W.

    1977-01-01

    The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.

  5. A Survey of Electron Impact Cross-Sections for Halogens and Halogen Compounds of Interest to Plasma Processing

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Published electron impact cross section data on halogens Cl2, F2, and halogen containing compounds such as Cx Fy, HCl, Cx Cly Fz are reviewed and critically evaluated based on the information provided by various researchers. The present work reports data on electron impact excitation, ionization, dissociation, electron attachment, electron detachment, and photo detachment. Elastic scattering cross sections and data on bulk properties such as diffusion coefficients in various background gases are also evaluated. Since some of the cross sectional data is derived from indirect measurements such as drift velocity, care has been taken to reconcile the differences among the reported data with due attention to the measurement technique. In conclusion, the processes with no or very limited amount of data and questionable set of data are identified and recommendation for further research direction is made.

  6. L-shell x-ray production cross sections in Nd, Gd, Ho, Yb, Au and Pb for 25-MeV carbon and 32-MeV oxygen ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.

    1984-01-01

    L-shell x-ray production cross sections in /sub 60/Nd, /sub 64/Gd, /sub 67/Ho, /sub 70/Yb, /sub 79/Au and /sub 82/Pb have been measured for incident 25 MeV /sub 6//sup 12/C/sup +q/(q = 4,5,6) and 32 MeV /sub 8//sup 16/O/sup +q/(q = 5,7,8) ions. Measurements were made on targets ranging in thickness from 1 to 100 ..mu..g/cm/sup 2/. Echancement in the L-shell x-ray production cross section for projectiles with one or two K-shell vacancies over those for projectiles with no K-shell vacancies is observed. The sum of direct ionization to the continuum (DI) plus electron capture (EC) to the L,M,N ... shellsmore » and EC to the K-shell of the projectile have been extracted from the data. Calculations in the first Born approximation are approx. 10 times larger than the data. Predictions of the ECPSSR theory that accounts for the energy-loss, Coulomb deflection, perturbed-stationary state, and relativistic effects are in good agreement with the data for both ions.« less

  7. Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-12-01

    The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ˜1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged current cross section on carbon is measured to be ⟨σ ⟩ϕ =1.11 ±0.10 (stat)±0.18 (syst)×1 0-38 cm2/nucleon . The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23 ×1 0-38 cm2/nucleon and the GENIE prediction is 1.08 ×1 0-38 cm2/nucleon . The total νe charged current cross-section result is also in agreement with data from the Gargamelle experiment.

  8. Low-energy electron-impact single ionization of helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Pindzola, M. S.; Childers, G.

    2006-04-15

    A study is made of low-energy electron-impact single ionization of ground-state helium. The time-dependent close-coupling method is used to calculate total integral, single differential, double differential, and triple differential ionization cross sections for impact electron energies ranging from 32 to 45 eV. For all quantities, the calculated cross sections are found to be in very good agreement with experiment, and for the triple differential cross sections, good agreement is also found with calculations made using the convergent close-coupling technique.

  9. Cross sections for the production of energetic cations by electron impact on N2 and CO2

    NASA Technical Reports Server (NTRS)

    Iga, I.; Srivastava, S. K.; Rao, M. V. V. S.; Katayama, D. H.

    1995-01-01

    Dissociative ionization cross sections for the production of singly charged energetic ions by electron impact on N2 and CO2 have been measured. The ions were divided into two groups: one with energies less than 1 eV and the other with energies greater than 1 eV. The ions detected were N+ from N2 and C+, O+, and CO+ from CO2. The electron impact energy range, and cross section data on ions is given.

  10. Neutron-capture cross-section measurements of 74Ge and 76Ge in the energy region 0.4-14.8 MeV for neutrinoless double β decay applications

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, Werner

    2013-10-01

    Fast neutron capture cross sections for the reactions 74Ge(n, γ)75Ge and 76Ge(n, γ)77Ge have been measured in the neutron energy region 0.4-14.8 MeV with the activation method. The results are important to identify backgrounds in the neutrinoless double- β decay experiments GERDA and MAJORANA, which use germanium as both source and detector. Isotopically enriched targets which consisted of 86% of 76Ge and 14% of 74Ge were irradiated with mono-energetic neutrons produced via 3H(p,n)3He, 2H(d,n)3He and 3H(d,n)4He reactions. The cross sections were determined relative to 197Au(n, γ)198Au, 115In(n,n')115mIn and 197Au(n,2n)196Au standard cross sections. The activities of the products were measured using high-resolution γ-ray spctroscopy. The present results are compared with the evaluated data from ENDF/B-VII.1 and TALYS.

  11. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code.

    PubMed

    Champion, C; Le Loirec, C

    2006-04-07

    When biological matter is irradiated by charged particles, a wide variety of interactions occur, which lead to a deep modification of the cellular environment. To understand the fine structure of the microscopic distribution of energy deposits, Monte Carlo event-by-event simulations are particularly suitable. However, the development of these track-structure codes needs accurate interaction cross sections for all the electronic processes: ionization, excitation, positronium formation and even elastic scattering. Under these conditions, we have recently developed a Monte Carlo code for positrons in water, the latter being commonly used to simulate the biological medium. All the processes are studied in detail via theoretical differential and total cross-section calculations performed by using partial wave methods. Comparisons with existing theoretical and experimental data in terms of stopping powers, mean energy transfers and ranges show very good agreements. Moreover, thanks to the theoretical description of positronium formation, we have access, for the first time, to the complete kinematics of the electron capture process. Then, the present Monte Carlo code is able to describe the detailed positronium history, which will provide useful information for medical imaging (like positron emission tomography) where improvements are needed to define with the best accuracy the tumoural volumes.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doukas, S.; Madesis, I.; Dimitriou, A.

    We present SIMION 8.1 Monte Carlo type simulations of the response function and detection solid angle for long lived Auger states (lifetime τ ∼ 10{sup −9} − 10{sup −5} s) recorded by a hemispherical spectrograph with injection lens and position sensitive detector used for high resolution Auger spectroscopy of ion beams. Also included in these simulations for the first time are kinematic effects particular to Auger emission from fast moving projectile ions such as line broadening and solid angle limitations allowing for a more accurate and realistic line shape modeling. Our results are found to be in excellent agreement withmore » measured electron line shapes of both long lived 1s2s2p{sup 4}P and prompt Auger projectile states formed by electron capture in collisions of 25.3 MeV F{sup 7+} with H{sub 2} and 12.0 MeV C{sup 4+} with Ne recorded at 0{sup ∘} to the beam direction. These results are important for the accurate evaluation of the 1s2s2p {sup 4}P/{sup 2}P ratio of K-Auger cross sections whose observed non-statistical production by electron capture into He-like ions, recently a field of interesting interpretations, awaits further resolution.« less

  13. Positronium formation in e+ plus H- collisions

    NASA Technical Reports Server (NTRS)

    Straton, Jack C.; Drachman, Richard J.

    1990-01-01

    Cross sections for positronium formation by capture from the negative hydrogen ion are given. Orthogonalization corrections to the Coulomb (First) Born Approximation (CBA) differential and total cross sections are calculated using approximate H- wave functions of both Lowdin and Chandrasekhar. Various methods of orthogonalizing the unbound projectile to the possible bound states are considered. It is found that treating the atomic nuclei as if they were isotopic spin projections of a single type of nucleon gives cross sections that are an improvement over the CBA.

  14. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  15. Electron Capture in Slow Collisions of Si4+ With Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Joseph, D. C.; Gu, J. P.; Saha, B. C.

    2009-10-01

    In recent years the charge transfer involving Si4+ and H at low energies has drawn considerable attention both theoretically and experimentally due to its importance not only in astronomical environments but also in modern semiconductor industries. Accurate information regarding its molecular structures and interactions are essential to understand the low energy collision dynamics. Ab initio calculations are performed using the multireference single- and double-excitation configuration-interaction (MRD-CI) method to evaluate potential energies. State selective cross sections are calculate using fully quantum and semi-classical molecular-orbital close coupling (MOCC) methods in the adiabatic representation. Detail results will be presented in the conference.

  16. Identification of oxygen-related midgap level in GaAs

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Lin, D. G.; Gatos, H. C.; Aoyama, T.

    1984-01-01

    An oxygen-related deep level ELO was identified in GaAs employing Bridgman-grown crystals with controlled oxygen doping. The activation energy of ELO is almost the same as that of the dominant midgap level: EL2. This fact impedes the identification of ELO by standard deep level transient spectroscopy. However, it was found that the electron capture cross section of ELO is about four times greater than that of EL2. This characteristic served as the basis for the separation and quantitative investigation of ELO employing detailed capacitance transient measurements in conjunction with reference measurements on crystals grown without oxygen doping and containing only EL2.

  17. Neutron Capture Cross Sections of the s-Process Branching Points 147Pm, 171Tm, and 204Tl

    NASA Astrophysics Data System (ADS)

    Guerrero, Carlos; Domingo-Pardo, Cesar; Lerendegui-Marco, Jorge; Casanovas, Adria; Cortes-Giraldo, Miguel A.; Dressler, Rugard; Halfon, Shlomi; Heinitz, Stephan; Kivel, Niko; Köster, Ulli; Paul, Michael; Quesada-Molina, Jose Manuel; Schumann, Dorothea; Tarifeño-Saldivia, Ariel; Tessler, Moshe; Weissman, Leo

    The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n, γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm, 171Tm, and 204Tl have been produced by irradiation of stable isotopes (146Nd, 170Er, and 203Tl) at the Institut Laue-Langevin (ILL) high flux reactor. After breeding in the reactor and a certain cooling period, the resulting mixed 204Tl/203Tl sample was used directly while 147Pm and 171Tm were radiochemically separated in non-carrier-added quality at the Paul Scherrer Institut (PSI), then prepared as targets. A set of theses samples has been used for time-of-flight measurements at the CERN n_TOF facility using the 19 and 185 m beam lines, during 2014 and 2015. The capture cascades were detected with a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross sections of 147Pm, 171Tm, and 204Tl. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity quasi-Maxwellian flux of neutrons have been performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The experimental setups are here described together with the first, preliminary results of the n_TOF measurement.

  18. Integral cross sections for electron impact excitation of electronic states of N2

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.; Nolan, A. M.; Kelly, L. J.; Wedding, A. B.; Harrison, J.; Teubner, P. J. O.; Cartwright, D. C.; McLaughlin, B.

    2001-04-01

    We report integral cross sections (ICSs) for electron impact excitation of the A 3Σ+u, B 3Πg, W 3Δu, B' 3Σ-u, a' 1Σ-u, a 1Πg, ω1Δu, C 3Πu, E 3Σ+g and a'' 1Σ+g electronic states of N2. The present data, for each state, were derived at five incident electron energies in the range 15-50 eV, from the earlier crossed-beam differential cross section (DCS) measurements of our group. This was facilitated by using a molecular phase shift analysis technique to extrapolate the measured DCSs to 0° and 180°, before performing the integration. A comprehensive comparison of the present ICSs with the results of earlier experimental studies, both crossed beam and electron swarm, and theoretical calculations is provided. This comparison clearly indicates that some of the previous estimates for these excited electronic-state cross sections need to be reassessed. In addition, we have used the present ICSs in a Monte Carlo simulation for modelling the behaviour of an electron swarm in the bulk of a low current N2 discharge. The macroscopic transport parameters determined from this simulation are compared against those measured from independent swarm-based experiments and the self-consistency of our ICSs evaluated.

  19. The Impact of Updated Zr Neutron-capture Cross Sections and New Asymptotic Giant Branch Models on our Understanding of the s process and the origin of stardust

    DOE PAGES

    Lugaro, M.; Tagliente, Giuseppe; Karakas, Amanda I.; ...

    2013-12-13

    We present model predictions for the Zr isotopic ratios produced by slow neutron captures in C-rich asymptotic giant branch (AGB) stars of masses 1.25-4 M-circle dot and metallicities Z = 0.01-0.03, and compare them to data from single meteoritic stardust silicon carbide (SiC) and high-density graphite grains that condensed in the outflows of these stars. We compare predictions produced using the Zr neutron-capture cross sections from Bao et al. and from n_TOF experiments at CERN, and present a new evaluation for the neutron-capture cross section of the unstable isotope Zr-95, the branching point leading to the production of Zr-96. Themore » new cross sections generally present an improved match with the observational data, except for the Zr-92/Zr-94 ratios, which are on average still substantially higher than predicted. The Zr-96/Zr-94 ratios can be explained using our range of initial stellar masses, with the most Zr-96-depleted grains originating from AGB stars of masses 1.8-3 M-circle dot and the others from either lower or higher masses. The Zr-90,Zr-91/Zr-94 variations measured in the grains are well reproduced by the range of stellar metallicities considered here, which is the same needed to cover the Si composition of the grains produced by the chemical evolution of the Galaxy. The Zr-92/Zr-94 versus Si-29/Si-28 positive correlation observed in the available data suggests that stellar metallicity rather than rotation plays the major role in covering the Zr-90,Zr-91,Zr-92/Zr-94 spread« less

  20. Proposed re-evaluation of the 154Eu thermal ( n, γ) capture cross-section based on spent fuel benchmarking studies

    DOE PAGES

    Skutnik, Steven E.

    2016-09-22

    154Eu is a nuclide of considerable importance to both non-destructive measurements of used nuclear fuel assembly burnup as well as for calculating the radiation source term for used fuel storage and transportation. But, recent evidence from code validation studies of spent fuel benchmarks have revealed evidence of a systemic bias in predicted 154Eu inventories when using ENDF/B-VII.0 and ENDF/B-VII.1 nuclear data libraries, wherein Eu-154 is consistently over-predicted on the order of 10% or more. Further, this bias is found to correlate with sample burnup, resulting in a larger departure from experimental measurements for higher sample burnups. Here, the bias in Eu-154 is characterized across eleven spent fuel destructive assay benchmarks from five different assemblies. Based on these studies, possible amendments to the ENDF/B-VII.0 and VII.1 evaluations of the 154Eu (n,γ) 155Eu are explored. By amending the location of the first resolved resonance for the 154Eu radiative capture cross-section (centered at 0.195 eV in ENDF/B-VII.0 and VII.1) to 0.188 eV and adjusting the neutron capture width proportional tomore » $$\\sqrt1/E$$, the amended cross-section evaluation was found to reduce the bias in predicted 154Eu inventories by approximately 5–7%. And while the amended capture cross-section still results in a residual over-prediction of 154Eu (ranging from 2% to 9%), the effect is substantially attenuated compared with the nominal ENDF/B-VII.0 and VII.1 evaluations.« less

  1. Proposed re-evaluation of the 154Eu thermal ( n, γ) capture cross-section based on spent fuel benchmarking studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skutnik, Steven E.

    154Eu is a nuclide of considerable importance to both non-destructive measurements of used nuclear fuel assembly burnup as well as for calculating the radiation source term for used fuel storage and transportation. But, recent evidence from code validation studies of spent fuel benchmarks have revealed evidence of a systemic bias in predicted 154Eu inventories when using ENDF/B-VII.0 and ENDF/B-VII.1 nuclear data libraries, wherein Eu-154 is consistently over-predicted on the order of 10% or more. Further, this bias is found to correlate with sample burnup, resulting in a larger departure from experimental measurements for higher sample burnups. Here, the bias in Eu-154 is characterized across eleven spent fuel destructive assay benchmarks from five different assemblies. Based on these studies, possible amendments to the ENDF/B-VII.0 and VII.1 evaluations of the 154Eu (n,γ) 155Eu are explored. By amending the location of the first resolved resonance for the 154Eu radiative capture cross-section (centered at 0.195 eV in ENDF/B-VII.0 and VII.1) to 0.188 eV and adjusting the neutron capture width proportional tomore » $$\\sqrt1/E$$, the amended cross-section evaluation was found to reduce the bias in predicted 154Eu inventories by approximately 5–7%. And while the amended capture cross-section still results in a residual over-prediction of 154Eu (ranging from 2% to 9%), the effect is substantially attenuated compared with the nominal ENDF/B-VII.0 and VII.1 evaluations.« less

  2. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    NASA Astrophysics Data System (ADS)

    Tan, V. H.; Son, P. N.

    2016-06-01

    The thermal neutron radiative capture cross section for 186W(n, γ)187W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of Rcd = 420 and peak energy En = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197Au(n, γ)198Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations.

  3. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, D. B.; Costa, R. F. da; Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, Espírito Santo

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arisemore » due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.« less

  4. Atom Optics for Bose-Einstein Condensates (BEC)

    DTIC Science & Technology

    2012-04-25

    Electron Micrograph of the Top View of Test Chip A .......................................29 11. A Scanning Electron Micrograph of the Cross...Sectional View of Test Chip A .....................29 12. A Scanning Electron Micrograph of the Top View of Test Chip B...30 13. A Scanning Electron Micrograph of the Cross Sectional View of Test Chip B .....................30 14. Toner Masks for Etching

  5. s-wave threshold in electron attachment - Results in 2-C4F6 and CFCl3 at ultra-low electron energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.; Ajello, J. M.; Orient, O. J.

    1984-01-01

    Electron attachment lineshapes and cross sections are reported for the processes 2-C4F6(-)/2-C4F6 and Cl(-)/CFCl3 at electron energies of 0-120 and 0-140 meV, and at resolutions of 6 and 7 meV (FWHM), respectively. As in previous measurements in CCl4 and SF6, the results show resolution-limited narrow structure in the cross section at electron energies below 15 meV. This structure arises from the divergence of the s-wave cross section in the limit of zero electron energy. Comparisons are given with swarm-measured results, and with collisional ionization (high-Rydberg attachment) data in this energy range.

  6. Use of the Bethe equation for inner-shell ionization by electron impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc

    2016-05-14

    We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L{sub 3}-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections andmore » available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232–276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.« less

  7. Thickness dependence of scattering cross-sections in quantitative scanning transmission electron microscopy.

    PubMed

    Martinez, G T; van den Bos, K H W; Alania, M; Nellist, P D; Van Aert, S

    2018-04-01

    In quantitative scanning transmission electron microscopy (STEM), scattering cross-sections have been shown to be very sensitive to the number of atoms in a column and its composition. They correspond to the integrated intensity over the atomic column and they outperform other measures. As compared to atomic column peak intensities, which saturate at a given thickness, scattering cross-sections increase monotonically. A study of the electron wave propagation is presented to explain the sensitivity of the scattering cross-sections. Based on the multislice algorithm, we analyse the wave propagation inside the crystal and its link to the scattered signal for the different probe positions contained in the scattering cross-section for detector collection in the low-, middle- and high-angle regimes. The influence to the signal from scattering of neighbouring columns is also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field

    NASA Astrophysics Data System (ADS)

    Iqraoun, E.; Sali, A.; Rezzouk, A.; Feddi, E.; Dujardin, F.; Mora-Ramos, M. E.; Duque, C. A.

    2017-06-01

    The donor impurity-related electron states in GaAs cone-like quantum dots under the influence of an externally applied static electric field are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The uncorrelated Schrödinger-like electron states are obtained in quasi-analytical form and the entire electron-impurity correlated states are used to calculate the photoionisation cross section. Results for the electron state energies and the photoionisation cross section are reported as functions of the main geometrical parameters of the cone-like structures as well as of the electric field strength.

  9. Determination of 20Ne(p ,γ )21Na cross sections from Ep=500 -2000 keV

    NASA Astrophysics Data System (ADS)

    Lyons, S.; Görres, J.; deBoer, R. J.; Stech, E.; Chen, Y.; Gilardy, G.; Liu, Q.; Long, A. M.; Moran, M.; Robertson, D.; Seymour, C.; Vande Kolk, B.; Wiescher, M.; Best, A.

    2018-06-01

    Background: The reaction 20Ne(p ,γ )21Na influences the nucleosynthesis of Ne, Na, and Mg isotopes while contributing to hydrogen burning in several stellar sites, such as red giants, asymptotic giant branch (AGB) stars, massive stars, and oxygen-neon (ONe) novae. In the relevant temperature range for these environments (T = 0.05-0.5 GK), the main contributions to this reaction rate are from the direct capture process as well as the high-energy tail of a subthreshold resonance in the ground-state transition at Ex = 2425 keV in the 21Na compound nucleus. Purpose: The previous measurement of this reaction reports cross sections with large uncertainties for the ground-state transition. At higher energies, where the subthreshold resonance makes a smaller contribution to the total cross section, only upper limits are provided. This work aims to reduce the uncertainty in the cross section where direct capture dominates, as well as provide cross-section data in previously unmeasured regions. Method: The 20Ne(p ,γ )21Na reaction was measured over a wide proton energy range (Ep = 0.5-2.0 MeV) at θlab = 90∘. Transitions to the ground state and to the 332 and 2425 keV excited states were observed. The primary transitions to these three bound states were utilized in an R -matrix analysis to determine the contributions of the direct capture and the subthreshold resonance to the total cross section. Results: The cross sections of the present measurements have been found to be in good agreement with the previous data at low energy. Significantly improved cross-section measurements have been obtained over the Ep = 1300-1900 keV region. The narrow resonance at Ec.m. = 1113 keV (Ex = 3544.3 keV) has also been remeasured and its strength has been found to be in good agreement with previous measurements. Conclusions: An extrapolation of the S factor of 20Ne(p ,γ )21Na has been made to low energies using the R -matrix fit. The reaction rate from the subthreshold resonance was found to be the main contributor to the reaction rate at temperatures below about 0.1 GK. The present rate is lower in the temperature range of interest than those presented in current reaction rate libraries by up to 20%.

  10. Vanadium fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser–solid experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège

    2015-09-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser–solid experiments through the K-shell emission cross section. In addition, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al. (2012)), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the vanadium isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent vanadium ions to the daughter ions K-vacancy levels considered in Palmerimore » et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 20 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic behavior of the modified relativistic binary encounter Bethe model (MRBEB) of Guerra et al. (2012) with the density-effect correction proposed by Davies et al. (2013)« less

  11. Experimental study of low-energy charge transfer in nitrogen

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1979-01-01

    Total charge transfer cross sections were obtained for the N2(+)-N2 system with relative translational ion energies between 9 and 441 eV. Data were obtained to examine the dependence of total cross section on ion energy. The effect of ion excitation on the cross sections was studied by varying the electron ionization energy in the mass spectrometer ion source over an electron energy range between 14.5 and 32.1 eV. The dependence of total cross section on the neutralization chamber gas pressure was examined by obtaining data at pressure values from 9.9 to 0.000199 torr. Cross section values obtained were compared with experimental and theoretical results of other investigations.

  12. Electron-impact vibrational excitation of furan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargreaves, L. R.; Albaridy, R.; Serna, G.

    2011-12-15

    We report measurements of differential cross sections for the vibrational excitation of furan (C{sub 4}H{sub 4}O), obtaining results for nine features spanning the electron energy loss range from 0 to 0.8 eV, at electron-impact energies of 5, 6, 7.5, 10, and 15 eV and for scattering angles ranging from 10{sup o} to 130{sup o}. The normalization of the differential cross sections was done using elastic differential cross sections for furan determined earlier by our group [Khakoo et al., Phys. Rev A 81, 062716 (2010)].

  13. Electron scattering by molecules. II - Experimental methods and data

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Chutjian, A.; Register, D. F.

    1983-01-01

    Experimental techniques for measuring electron-molecule collision cross sections are briefly summarized. A survey of the available experimental cross section data is presented. The emphasis here is on elastic scattering, rotational, vibrational and electronic excitations, total electron scattering, and momentum transfer in the few eV to few hundred eV impact energy range. Reference is made to works concerned with high energy electron scattering, innershell and multi-electron excitations, conicidence methods and electron scattering in laser fields.

  14. On the relativistic field theory model of the deuteron II

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Troitskaya, N. I.; Faber, M.; Oberhummer, H.

    1997-02-01

    The relativistic field theory model of the deuteron suggested previously is revised and applied to the calculation of the cross sections of the low-energy radiative neutron-proton capture n + p -> D + γ and the low-energy two-proton fusion p + p -> D + e+ + νc. For the low-energy radiative neutron-proton capture n + p -> D + γ our result agrees well with both experimental data and the potential model prediction. In the case of the two-proton fusion the cross section obtained is 2.9 times as much as that given by the potential approach. The obtained result is discussed in connection with the solar neutrino problem.

  15. Measurement of the neutron capture resonances for platinum using the Ge spectrometer and pulsed neutron beam at the J-PARC/MLF/ANNRI

    NASA Astrophysics Data System (ADS)

    Kino, Koichi; Hasemi, Hiroyuki; Kimura, Atsushi; Kiyanagi, Yoshiaki

    2017-09-01

    The neutron capture cross-section for platinum was measured at J-PARC/MLF/ANNRI. The intense pulsed neutron beam was impinging on a natural platinum foil sample and the emitted prompt γ-rays were detected by a Ge spectrometer. The peak energies of the low energy resonances for natural platinum are consistent with those of the JEFF-3.1.2, RUSFOND2010 and next-JENDL data libraries except for the 20-eV resonance. The resonance cross-sections of the next-JENDL library do not contradict the present measurements within the uncertainty of the absolute value of the present work. We analysed the prompt γ-ray spectrum and found a clear 7921.93 keV peak that originates from the transition from the 196Pt compound state to its ground state. The neutron capture cross-section for 195Pt was obtained by choosing events of this peak. The peak energies of most of the low energy resonances are almost consistent with those of the RUSFOND2010 and next-JENDL libraries. However, there was a disagreement for the 20-eV resonance.

  16. DANCEing with the Stars: Measuring Neutron Capture on Unstable Isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.; Bond, E.; Bredeweg, T. A.

    2009-03-10

    Isotopes heavier than iron are known to be produced in stars through neutron capture processes. Two major processes, the slow (s) and rapid (r) processes are each responsible for 50% of the abundances of the heavy isotopes. The neutron capture cross sections of the isotopes on the s process path reveal information about the expected abundances of the elements as well as stellar conditions and dynamics. Until recently, measurements on unstable isotopes, which are most important for determining stellar temperatures and reaction flow, have not been experimentally feasible. The Detector for Advance Neutron Capture Experiments (DANCE) located at the Losmore » Alamos Neutron Science Center (LANSCE) was designed to perform time-of-flight neutron capture measurements on unstable isotopes for nuclear astrophysics, stockpile stewardship, and reactor development. DANCE is a 4-{pi}BaF{sub 2} scintillator array which can perform measurements on sub-milligram samples of isotopes with half-lives as short as a few hundred days. These cross sections are critical for advancing our understanding of the production of the heavy isotopes.« less

  17. Measurements of the electron and muon inclusive cross-sections in proton–proton collisions at s = 7   TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-12-27

    Here, this Letter presents measurements of the differential cross-sections for inclusive electron and muon production in proton–proton collisions at a centre-of-mass energy of √s = 7 TeV, using data collected by the ATLAS detector at the LHC. The muon cross-section is measured as a function of p T in the range 4 < p T < 100 GeV and within pseudorapidity |η| < 2.5. In addition the electron and muon cross-sections are measured in the range 7 < p T < 26 GeV and within |η| < 2.0, excluding 1.37 < |η| < 1.52. Integrated luminosities of 1.3 pb –1more » and 1.4 pb –1 are used for the electron and muon measurements, respectively. After subtraction of the W/Z/γ* contribution, the differential cross-sections are found to be in good agreement with theoretical predictions for heavy-flavour production obtained from Fixed Order NLO calculations with NLL high-p T resummation, and to be sensitive to the effects of NLL resummation.« less

  18. Neutron Capture Reaction on 112Cd to Study of the s-process Origin of 115Sn

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takehito; Toh, Yosuke; Shizuma, Toshiyuki; Kimura, Atsushi; Nakamura, Shoji; Harada, Hideo; Iwamoto, Nobuyuki; Kajino, Toshitaka; Chiba, Satoshi

    The astrophysical origin of 115Sn has remained still an open question. An isomer with a half-life of 14.1 y in 113Cd is a branching point from which a nucleosynthesis flow reaches to a rare isotope 115Sn. The s-process abundance of 115Sn depends on the ratio of the 112Cd(n, γ)113Cdm reaction cross section to the 112Cd(n, γ)113Cdgs reaction cross section. However, the isomer production ratio following the neutron capture reaction has not been measured in an energy region higher than the thermal energy. We have measured γ-ray intensity ratios following neutron capture reactions on 112Cd using the HPGe detectors in conjunction with a time-of-flight method at ANNRI in J-PARC.

  19. Excitation cross sections for the ns 2S yields np 2P resonance transitions in Mg(+) (n = 3) and Zn(+) (n = 4) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Chutjian, A.; Mitroy, J.; Tayal, S. S.; Henry, Ronald J. W.; Man, K.-F.; Mawhorter, R. J.; Williams, I. D.

    1993-01-01

    Electron-excitation cross sections are reported for the 3s 2S yields 3p 2P(h, k) resonance transition in Mg(+) at energies from threshold (4.43 eV) to approximately 9 times threshold (40.0 eV). The electron-energy-loss merged-beams technique used in these measurements is described in detail. In addition, the method of separating contributions of the elastically scattered (Coulomb) and the inelastically scattered electrons in the present Mg(+) case and previously reported Zn(+) results is described. Comparisons in the experimental energy range are made for Mg(+) with the two five-state close-coupling theoretical calculations carried out herein, and with other published close-coupling, distorted-wave, and semiempirical calculations. The present Mg(+) cross sections and Zn(+) cross sections from earlier measurements are tabulated.

  20. Quantum Shielding Effects on the Eikonal Collision Cross Section in Strongly Coupled Two-temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-05-01

    The influence of nonisothermal and quantum shielding on the electron-ion collision process is investigated in strongly coupled two-temperature plasmas. The eikonal method is employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the impact parameter, collision energy, electron temperature, ion temperature, Debye length, and de Broglie wavelength. The results show that the quantum effect suppresses the eikonal scattering phase shift for the electron-ion collision in two-temperature dense plasmas. It is also found that the differential eikonal cross section decreases for small impact parameters. However, it increases for large impact parameters with increasing de Broglie wavelength. It is also found that the maximum position of the differential eikonal cross section is receded from the collision center with an increase in the nonisothermal character of the plasma. In addition, it is found that the total eikonal cross sections in isothermal plasmas are always greater than those in two-temperature plasmas. The variations of the eikonal cross section due to the two-temperature and quantum shielding effects are also discussed.

  1. Neutron Capture Measurements on 97Mo with the DANCE Array

    NASA Astrophysics Data System (ADS)

    Walker, Carrie L.

    Neutron capture is a process that is crucial to understanding nucleosynthesis, reactors, and nuclear weapons. Precise knowledge of neutron capture cross-sections and level densities is necessary in order to model these high-flux environments. High-confidence spin and parity assignments for neutron resonances are of critical importance to this end. For nuclei in the A=100 mass region, the p-wave neutron strength function is at a maximum, and the s-wave strength function is at a minimum, producing up to six possible Jpi combinations. Parity determination becomes important to assigning spins in this mass region, and the large number of spin groups adds complexity to the problem. In this work, spins and parities for 97Mo resonances are assigned, and best fit models for photon strength function and level density are determined. The neutron capture-cross section for 97Mo is also determined, as are resonance parameters for neutron energies ranging from 16 eV to 2 keV.

  2. Thermal Neutron Capture onto the Stable Tungsten Isotopes

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Sleaford, B. W.; Summers, N. C.; Revay, Zs.; Szentmiklósi, L.; Belgya, T.; Basunia, M. S.; Capote, R.; Choi, H.; Dashdorj, D.; Escher, J.; Krticka, M.; Nichols, A.

    2012-02-01

    Thermal neutron-capture measurements of the stable tungsten isotopes have been carried out using the guided thermal-neutron beam at the Budapest Reactor. Prompt singles spectra were collected and analyzed using the HYPERMET γ-ray analysis software package for the compound tungsten systems 183W, 184W, and 187W, prepared from isotopically-enriched samples of 182W, 183W, and 186W, respectively. These new data provide both confirmation and new insights into the decay schemes and structure of the tungsten isotopes reported in the Evaluated Gamma-ray Activation File based upon previous elemental analysis. The experimental data have also been compared to Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process using the statistical-decay code DICEBOX. Together, the experimental cross sections and modeledfeeding contribution from the quasi continuum, have been used to determine the total radiative thermal neutron-capture cross sections for the tungsten isotopes and provide improved decay-scheme information for the structural- and neutron-data libraries.

  3. Charge Exchange X-Ray Emission due to Highly Charged Ion Collisions with H, He, and H2: Line Ratios for Heliospheric and Interstellar Applications

    NASA Astrophysics Data System (ADS)

    Cumbee, R. S.; Mullen, P. D.; Lyons, D.; Shelton, R. L.; Fogle, M.; Schultz, D. R.; Stancil, P. C.

    2018-01-01

    The fundamental collisional process of charge exchange (CX) has been established as a primary source of X-ray emission from the heliosphere, planetary exospheres, and supernova remnants. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly excited, high-charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays. To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, molecular-orbital close-coupling, and classical trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics. X-ray spectra were computed for collisions of bare and H-like C to Al ions with H, He, and H2 with results compared to available experimental data. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant and the heliosphere are shown as examples with ion velocity dependence.

  4. Gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  5. Improved gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  6. Boltzmann Calculations of Electron Transport in CF4 and CF_4/Ar

    NASA Astrophysics Data System (ADS)

    Wang, Yicheng; van Brunt, R. J.

    1996-10-01

    A new set of electron collisional cross sections(L. G. Christophorou, J. K. Olthoff, and M. V. V. S. Rao, J. Phys. Chem. Ref. Data, submitted (May 1996)) for CF4 has been proposed, based primarily upon available experimental measurements. In this paper we present the results of calculations of the drift velocity, ionization coefficient, and attachment coefficient for electrons in CF4 based upon the new cross section set, using a two-term Boltzmann calculation. Comparison of results with experimental determinations of the transport parameters, such as drift velocity, are presented, along with comparison of results obtained using two previously pubished(M. Hyashi, in Swarm Studies and Elastic Electron-Molecule Collisions) (1987); and Y. Nakamura in Gaseous Electronics and Their Applications (1991) electron impact cross section sets for CF_4. Additions and adjustments to the cross section sets required for the model to achieve consitency with transport data are discussed. - Research sponsored in part by the U.S. Air Force Wright Laboratory under contract F33615-96-C-2600 with the University of Tennessee. Also, Department of Physics, The University of Tennessee, Knoxville, TN.

  7. Modification and benchmarking of MCNP for low-energy tungsten spectra.

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-12-01

    The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.

  8. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  9. Electron impact excitation of H2 - Rydberg band systems and the benchmark dissociative cross section for H Lyman-alpha

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.; Hall, D. T.; Ajello, J. M.

    1985-01-01

    The cross sections sigma R 1 (2p) for excitation of H Ly-alpha emission produced by electron impact on H2 is reexamined. A more accurate estimate for sigma R 1 (2p) is obtained based on Born approximation estimates of the H2 Rydberg system cross sections using measured relative excitation functions. The obtained value is (8.18 + or -1.2) x 10 to the -18th sq cm at 100 eV, a factor of 0.69 below the value universally applied to cross section measurements over the past decade. Cross sections for the H2 Rydberg systems fixed in magnitude by the Born approximation have also been obtained using experimentally determined excitation functions. Accurate analytic expressions for these cross sections allow the direct calculation of rate coefficients.

  10. Measurement of relative cross sections for simultaneous ionization and excitation of the helium 4 2s and 4 2p states

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.

    1972-01-01

    The relative cross sections for simultaneous ionization and excitation of helium by 200-eV electrons into the 4 2s and 4 2p states were measured via a fast delayed coincidence technique. Results show good agreement with the relative cross sections for single electron excitation of helium and hydrogen. An application of the results of the measurement to the development of ultraviolet intensity standard is suggested. This technique involves the use of known branching ratios, a visible light flux reference, and the measured relative cross sections.

  11. Experimental measurements with Monte Carlo corrections and theoretical calculations of neutron inelastic scattering cross section of 115In

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xiao, Jun; Luo, Xiaobing

    2016-10-01

    The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.

  12. Cross sections for electron scattering from furan molecules: Measurements and calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szmytkowski, Czeslaw; Mozejko, Pawel; Ptasinska-Denga, Elzbieta

    Electron-scattering cross sections have been determined for the furan (C{sub 4}H{sub 4}O) molecule, both experimentally and theoretically. An absolute total cross section (TCS) has been measured over energies from 0.6 to 400 eV using a linear electron-transmission method. The TCS energy function is dominated with a very broad enhancement, between 1.2 and 9 eV; on the low-energy side, some resonant structures are visible. Integral elastic (ECS) and ionization (ICS) cross sections have been also calculated up to 4 keV in the additivity rule approximation and the binary-encounter-Bethe approach, respectively. Their sum, ECS+ICS, is in a very good agreement with themore » measured TCS above 70 eV.« less

  13. Production of O(-) from CO2 by dissociative electron attachment

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Srivastava, S. K.

    1983-01-01

    Dissociative electron attachment cross-section measurements for the production of O(-) from CO2 are performed using a crossed target-beam - electron-beam collision geometry and a quadrupole mass spectrometer. The relative flow technique is used in determining the absolute values of the cross sections. The attachment energies corresponding to the five cross-section maxima are given. They are 4.4 + or - 0.1, 8.2 + or - 0.1, 13.0 + or - 0.2, 16.9 + or - 0.2, and 19.4 + or 0.2 eV. Also given are the cross sections at these maxima: 1.43 x 10 to the -19th sq cm, 4.48 x 10 to the -19th sq cm, 8.1 x 10 to the -21st sq cm, 8.1 x 10 to the -21st sq cm, and 1.2 x 10 to the -20th sq cm, respectively.

  14. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less

  15. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting

    NASA Astrophysics Data System (ADS)

    Li, Kexue; Liu, Lei; Yu, Peter Y.; Chen, Xiaobo; Shen, D. Z.

    2016-05-01

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  16. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting.

    PubMed

    Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z

    2016-05-11

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  17. Electronic stopping in oxides beyond Bragg additivity

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2018-01-01

    We present stopping cross sections calculated by our PASS code for several ions in metal oxides and SiO2 over a wide energy range. Input takes into account changes in the valence structure by assigning two additional electrons to the 2p shell of oxygen and removing the appropriate number of electrons from the outer shells of the metal atom. Results are compared with tabulated experimental values and with two versions of Bragg's additivity rule. Calculated stopping cross sections are applied in testing a recently-proposed scaling rule, which relates the stopping cross section to the number of oxygen atoms per molecule.

  18. Total electron scattering cross sections of some important biomolecules at 0.2-6.0 keV energies

    NASA Astrophysics Data System (ADS)

    Gurung, Meera Devi; Ariyasinghe, W. M.

    2017-12-01

    The total electron scattering cross sections (TCS) of five nucleic bases (adenine, cytosine, guanine, thymine and uracil), phosphoric acid, three amino acids (glycine, lysine, and L-histidine), D-glucose, alpha-D-glucose, tetrahydropyran (THP), 3-hydroxytetrahydrofuran and furan have been determined in the energy range 0.2-6.0 keV using a simple model based on the effective atomic total electron scattering cross sections (EATCS). The reliability of the model is confirmed by comparing the determined TCS with the predictions of those by existing theoretical models.

  19. Comparisons of sets of electron-neutral scattering cross sections and calculated swarm parameters in Kr and Xe

    NASA Astrophysics Data System (ADS)

    Bordage, M. C.; Hagelaar, G. J. M.; Pitchford, L. C.; Biagi, S. F.; Puech, V.

    2011-10-01

    Xenon is used in a number of application areas ranging from light sources to x-ray detectors for imaging in medicine, border security and high-energy particle physics. There is a correspondingly large body of data available for electron scattering cross sections and swarm parameters in Xe, whereas data for Kr are more limited. In this communication we show intercomparisons of the cross section sets in Xe and Kr presently available on the LXCat site. Swarm parameters calculated using these cross sections sets are compared with experimental data, also available on the LXCat site. As was found for Ar, diffusion coefficients calculated using these cross section data in a 2-term Boltzmann solver are higher than Monte Carlo results by about 30% over a range of E/N from 1 to 100 Td. We find otherwise good agreement in Xe between 2-term and Monte Carlo results and between measured and calculated values of electron mobility, ionization rates and light emission (dimer) at atmospheric pressure. The available cross section data in Kr yield swarm parameters in agreement with the limited experimental data. The cross section compilations and measured swarm parameters used in this work are available on-line at www.lxcat.laplace. univ-tlse.fr.

  20. Electron Collisions in our Atmosphere — How the Microscopic Drives the Macroscopic

    NASA Astrophysics Data System (ADS)

    Buckman, S. J.; Brunger, M. J.; Campbell, L.; Jelisavcic, M.; Petrovic, Z. Lj.

    2005-05-01

    Recent measurements of low energy, absolute electron scattering cross sections for vibrational excitation of NO have been used to update the cross set used for modeling atmospheric auroral processes. These new cross sections, which highlight the role that intermediate negative ions (resonances) play at energies below 5 eV in mediating vibrational excitation, also indicate that electron-driven processes play an important role in the infrared (˜5 um) auroral emissions from the NO molecule.

  1. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less

  2. M-shell x-ray production cross sections for 19 elements in the range Z=54-92 by H/sup +/, He/sup +/ and He/sup + +/ ions from 300 keV to 40 MeV. [Xe, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, Hf, Ta, W, Pt, Au, Hg, Pb, Bi, and U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, R.; Duggan, J.L.; Kocur, P.M.

    1983-04-01

    In this report, the measurements done over the last three decades at various laboratories are surveyed. The elements studied were Xe, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, Hf, Ta, W, Pt, Au, Hg, Pb, Bi, and U. The projectile energies investigated range from 300 keV to 40 MeV for the protons and 250 keV to 2.5 MeV for He/sup +/ ions. Also reported are the M-shell x-ray production cross sections of some rare-earth elements recently measured at NTSU. For these measurements the energy of incident /sup 1/H/sup +/ and /sup 4/He/sup +/ ions ranged from 0.25 tomore » 2.5 MeV. The experimental data are compared to the M-shell ionization cross section predictions of first Born approximation, i.e. the PWBA for direct ionization plus the OBK of Nikolaev for electron capture. Comparison is also made with the theory by Brandt and Lapicki that goes beyond the first Born approximation, i.e. the ECPSSR approach which accounts for the Energy loss, Coulomb deflection and Relativistic effects in the Perturbed Stationary State theory.« less

  3. Studies of electron-molecule collisions - Applications to e-H2O

    NASA Technical Reports Server (NTRS)

    Brescansin, L. M.; Lima, M. A. P.; Gibson, T. L.; Mckoy, V.; Huo, W. M.

    1986-01-01

    Elastic differential and momentum transfer cross sections for the elastic scattering of electrons by H2O are reported for collision energies from 2 to 20 eV. These fixed-nuclei static-exchange cross sections were obtained using the Schwinger variational approach. In these studies the exchange potential is directly evaluated and not approximated by local models. The calculated differential cross sections, obtained with a basis set expansion of the scattering wave function, agree well with available experimental data at intermediate and larger angles. As used here, the results cannot adequately describe the divergent cross sections at small angles. An interesting feature of the calculated cross sections, particularly at 15 and 20 eV, is their significant backward peaking. This peaking occurs in the experimentally inaccessible region beyond a scattering angle of 120 deg. The implication of this feature for the determination of momentum transfer cross sections is described.

  4. Electron-induced scattering dynamics of Boron, Aluminium and Gallium trihalides in the intermediate energy domain

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby

    2018-05-01

    This article is focused on the calculation of electron-induced ionisation and total scattering cross sections by Boron, Aluminium and Gallium trihalide molecules in the intermediate energy domain. The computational formalism, spherical complex optical potential has been employed for the study of these two scattering cross sections. The ionisation cross section has been derived from the inelastic cross section using a semi-empirical method called complex scattering potential-ionisation contribution (CSP-ic) method. We have also calculated the ionisation cross section using the BEB theory with Hartree-Fock and density functional theory (DFT- ωB97XD) orbitals so that a comparison can be made with the cross sections predicted by CSP-ic method. For this theoretical study, we have also calculated polarisability and bond length of some targets which were not found in literature using DFT/B3LYP in Gaussian 09 software.

  5. Simple method for determining fullerene negative ion formation★

    NASA Astrophysics Data System (ADS)

    Felfli, Zineb; Msezane, Alfred Z.

    2018-04-01

    A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer-Townsend minimum of the total cross section representing stable C60 - fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.

  6. NASA-Lewis experiences with multigroup cross sections and shielding calculations

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.

  7. Time-of-flight electron scattering from molecular hydrogen: Benchmark cross sections for excitation of the X 1Σg+→b 3Σu+ transition

    NASA Astrophysics Data System (ADS)

    Zawadzki, M.; Wright, R.; Dolmat, G.; Martin, M. F.; Hargreaves, L.; Fursa, D. V.; Zammit, M. C.; Scarlett, L. H.; Tapley, J. K.; Savage, J. S.; Bray, I.; Khakoo, M. A.

    2018-05-01

    The electron impact X 1Σg+→b 3Σu+ transition in molecular hydrogen is one of the most important dissociation pathways to forming atomic hydrogen atoms, and is of great importance in modeling astrophysical and industrial plasmas where molecular hydrogen is a substantial constituent. Recently, it has been found that the convergent close-coupling (CCC) cross sections of Zammit et al. [Phys. Rev. A 95, 022708 (2017), 10.1103/PhysRevA.95.022708] are up to a factor of 2 smaller than the currently recommended data. We have determined normalized differential cross sections for excitation of this transition from our experimental ratios of the inelastic to elastic scattering of electrons by molecular hydrogen using a transmission-free time-of-flight electron spectrometer, and find excellent agreement with the CCC calculations. Since there is already excellent agreement for the absolute elastic differential cross sections, we establish benchmark differential and integrated cross sections for the X 1Σg+→b 3Σu+ transition, with theory and experiment being essentially in complete agreement.

  8. Indirect contributions to electron-impact ionization of Li+ (1 s 2 s S31 ) ions: Role of intermediate double-K -vacancy states

    NASA Astrophysics Data System (ADS)

    Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D. V.; Bray, I.

    2018-02-01

    Fine details of the cross section for electron-impact ionization of metastable two-electron Li+(1 s 2 s S31) ions are scrutinized by both experiment and theory. Beyond direct knockoff ionization, indirect ionization mechanisms proceeding via formation of intermediate double-K-vacancy (hollow) states either in a Li+ ion or in a neutral lithium atom and subsequent emission of one or two electrons, respectively, can contribute to the net production of Li2 + ions. The partial cross sections for such contributions are less than 4% of the total single-ionization cross section. The characteristic steps, resonances, and interference phenomena in the indirect ionization contribution are measured with an experimental energy spread of less than 0.9 eV and with a statistical relative uncertainty of the order of 1.7%, requiring a level of statistical uncertainty in the total single-ionization cross section of better than 0.05%. The measurements are accompanied by convergent-close-coupling calculations performed on a fine energy grid. Theory and experiment are in remarkable agreement concerning the fine details of the ionization cross section. Comparison with previous R-matrix results is less favorable.

  9. Neutron-capture cross-section measurements of Xe136 between 0.4 and 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, W.

    2014-03-01

    Fast-neutron-capture cross-section data on Xe136 have been measured with the activation method between 0.4 and 14.8 MeV. The cross section was found to be of the order of 1 mb at the eleven energies investigated. This result is important to interpret potential neutron-induced backgrounds in the enriched xenon observatory and KamLAND-Zen neutrinoless double-β decay searches that use xenon as both source and detector. A high-pressure sphere filled with Xe136 was irradiated with monoenergetic neutrons produced by the reactions 3H(p ,n)3He, 2H(d ,n)3He, and 3H(d ,n)4He. Indium and gold monitor foils were irradiated simultaneously with the Xe136 to determine the incident neutron flux. The activities of the reaction products were measured with high-resolution γ-ray spectroscopy. The present results are compared to predictions from ENDF/B-VII.1 and TENDL-2012.

  10. Determination of neutron capture cross sections of 232Th at 14.1 MeV and 14.8 MeV using the neutron activation method

    NASA Astrophysics Data System (ADS)

    Lan, Chang-Lin; Zhang, Yi; Lv, Tao; Xie, Bao-Lin; Peng, Meng; Yao, Ze-En; Chen, Jin-Gen; Kong, Xiang-Zhong

    2017-04-01

    The 232Th(n, γ)233Th neutron capture reaction cross sections were measured at average neutron energies of 14.1 MeV and 14.8 MeV using the activation method. The neutron flux was determined using the monitor reaction 27Al(n,α)24Na. The induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. The experimentally determined cross sections were compared with the data in the literature, and the evaluated data of ENDF/B-VII.1, JENDL-4.0u+, and CENDL-3.1. The excitation functions of the 232Th(n,γ)233Th reaction were also calculated theoretically using the TALYS1.6 computer code. Supported by Chinese TMSR Strategic Pioneer Science and Technology Project-The Th-U Fuel Physics Term (XDA02010100) and National Natural Science Foundation of China (11205076, 21327801)

  11. Measurements of the thermal neutron cross-section and resonance integral for the 108Pd(n,γ)109Pd reaction

    NASA Astrophysics Data System (ADS)

    Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Do, Nguyen Van; Khue, Pham Duc; Thanh, Kim Tien; Shin, Sung-Gyun; Cho, Moo-Hyun

    2018-06-01

    The thermal neutron capture cross-section (σ0) and resonance integral (I0) of the 108Pd(n,γ)109Pd reaction have been measured relative to that of the monitor reaction 197Au(n,γ)198Au. The measurements were carried out using the neutron activation with the cadmium ratio method. Both the samples and monitors were irradiated with and without cadmium cover of 0.5 mm thickness. The induced activities of the reaction products were measured with a well calibrated HPGe γ-ray detector. In order to improve the accuracy of the results, the necessary corrections for the counting losses were made. The thermal neutron capture cross-section and resonance integral of the 108Pd(n,γ)109Pd reaction were determined to be σ0,Pd = 8.68 ± 0.41 barn and I0,Pd = 245.6 ± 24.8 barn, respectively. The obtained results are compared with literature values and discussed.

  12. Review of Livermore-Led Neutron Capture Studies Using DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, W; Sheets, S; Agvaanluvsan, U

    2007-05-11

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,{gamma}) reactions on {sup 94,95}Mo, {sup 152,154,157,160,nat}Gd, {sup 151,153}Eu and {sup 242m}Am for neutron energies from < 1eV up to {approx} 20 keV. We measured details of the {gamma}-ray cascade following neutron capture, for comparison with results of statistical model simulations. We determined the neutron energy dependent (n,{gamma}) cross section and gained information about statistical decaymore » properties, including the nuclear level density and the photon strength function. Because of the high granularity of the detector array, it is possible to look at gamma cascades with a specified number of transitions (a specific multiplicity). We simulated {gamma}-ray cascades using a combination of the DICEBOX/GEANT computer codes. In the case of the deformed nuclei, we found evidence of a scissors-mode resonance. For the Eu, we also determined the (n,{gamma}) cross sections. For the {sup 94,95}Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei {sup 95,96}Mo. Future plans include measurements on actinide targets; our immediate interest is in {sup 242m}Am.« less

  13. Electron Impact Ionization Cross Sections in Rb and Cs.

    NASA Astrophysics Data System (ADS)

    Reddish, T. J.; Lukomski, M.; Sutton, S.; Kedzierski, W.; McConkey, J. W.; Bartschat, K.; Bartlett, P. L.; Stelbovics, A. T.; Bray, I.

    2006-05-01

    We present a new atom trapping technique for determining absolute, total ionisation cross sections (TICS) out of an excited atom. The novel feature of this method is in utilizing Doppler cooling of neutral atoms to determine ionisation cross sections. This fluorescence-monitoring experiment, which is a variant of the `trap loss' technique, has enabled us to obtain the experimental electron impact ionisation cross sections out of the Cs 6^2P3/2 excited state between 7 - 400 eV. New CCC, R-Matrix with Pseudo-States (RMPS), and Born approximation single ionisation cross sections (SICS) are also presented for both the ground and excited states of Cs and Rb, and compared with the available experimental data. The comparison of the results reveals the importance of the autoionisation and multiple ionisation contributions to the TICS. The autoionisation contribution appears to be substantial for ionisation out of the Cs 6^2P and Rb 5^2P excited states; ˜ 3-4 larger than the direct ionisation contribution predicted by CCC at ˜ 30-50 eV. This surprising result shows the importance of multi-electron processes in determining the ionisation cross sections of heavy alkali atoms.

  14. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  15. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  16. Photodissociation spectroscopy of the dysprosium monochloride molecular ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, Alexander, E-mail: alexander.dunning@gmail.com; Schowalter, Steven J.; Puri, Prateek

    2015-09-28

    We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl{sup +}. The photodissociation cross section for the photon energy range 35 500 cm{sup −1} to 47 500 cm{sup −1} is measured using an integrated ion trap and time-of-flight mass spectrometer; we observe a broad, asymmetric profile that is peaked near 43 000 cm{sup −1}. The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl{sup +} is extremely complex due to the presence of multiple open electronic shells,more » including the 4f{sup 10} configuration. The molecule has nine attractive potentials with ionically bonded electrons and 99 repulsive potentials dissociating to a ground state Dy{sup +} ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between the vibrational ground state and several resolved repulsive excited states.« less

  17. Dissociative attachment of electrons with Si2H6

    NASA Technical Reports Server (NTRS)

    Krishnakumar, E.; Srivastava, S. K.; Iga, I.

    1991-01-01

    Cross-sections for the production of negative ion fragments by electron attachment to Si2H6 and ion pair formation from it have been measured by utilizing the crossed electron beam-molecular beam collision technique. The negative ions are mass-analyzed by employing a quadrupole mass spectrometer. There are serious disagreements between the present and two previously published results. In the present paper cross-section values, appearance potentials, and the various channels of dissociation for the formation of negative monosilane fragments are presented.

  18. Elastic electron scattering from the DNA bases cytosine and thymine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colyer, C. J.; Bellm, S. M.; Lohmann, B.

    2011-10-15

    Cross-section data for electron scattering from biologically relevant molecules are important for the modeling of energy deposition in living tissue. Relative elastic differential cross sections have been measured for cytosine and thymine using the crossed-beam method. These measurements have been performed for six discrete electron energies between 60 and 500 eV and for detection angles between 15 deg. and 130 deg. Calculations have been performed via the screen-corrected additivity rule method and are in good agreement with the present experiment.

  19. Collision energy-resolved study of the emission cross-section and the Penning ionization cross-section in the reaction of BrCN with He*(2 3S)

    NASA Astrophysics Data System (ADS)

    Kanda, Kazuhiro; Yamakita, Yoshihiro; Ohno, Koichi

    2001-12-01

    The dissociative excitation of BrCN producing CN(B 2Σ +) fragment by the collision of He *(2 3S) was investigated by the collision energy-resolved electron and emission spectroscopy using time-of-flight method with a high-intensity He * beam. The Penning electrons ejected from BrCN and the subsequent CN ( B2Σ +- X2Σ +) emission were measured as a function of collision energy in the range of 90-180 meV. The formation of CN ( B2Σ +) is concluded to proceed dominantly via the promotion of an electron from Π-character orbital, by comparison between the collision energy dependence of the partial Penning ionization cross-sections and the CN ( B2Σ +- X2Σ +) emission cross-section.

  20. Accurate Cross Sections for Microanalysis.

    PubMed

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V.

  1. A methodology to leverage cross-sectional accelerometry to capture weather's influence in active living research.

    PubMed

    Katapally, Tarun R; Rainham, Daniel; Muhajarine, Nazeem

    2016-06-27

    While active living interventions focus on modifying urban design and built environment, weather variation, a phenomenon that perennially interacts with these environmental factors, is consistently underexplored. This study's objective is to develop a methodology to link weather data with existing cross-sectional accelerometry data in capturing weather variation. Saskatoon's neighbourhoods were classified into grid-pattern, fractured grid-pattern and curvilinear neighbourhoods. Thereafter, 137 Actical accelerometers were used to derive moderate to vigorous physical activity (MVPA) and sedentary behaviour (SB) data from 455 children in 25 sequential one-week cycles between April and June, 2010. This sequential deployment was necessary to overcome the difference in the ratio between the sample size and the number of accelerometers. A data linkage methodology was developed, where each accelerometry cycle was matched with localized (Saskatoon-specific) weather patterns derived from Environment Canada. Statistical analyses were conducted to depict the influence of urban design on MVPA and SB after factoring in localized weather patterns. Integration of cross-sectional accelerometry with localized weather patterns allowed the capture of weather variation during a single seasonal transition. Overall, during the transition from spring to summer in Saskatoon, MVPA increased and SB decreased during warmer days. After factoring in localized weather, a recurring observation was that children residing in fractured grid-pattern neighbourhoods accumulated significantly lower MVPA and higher SB. The proposed methodology could be utilized to link globally available cross-sectional accelerometry data with place-specific weather data to understand how built and social environmental factors interact with varying weather patterns in influencing active living.

  2. Gamma heating in reflector heat shield of gas core reactor

    NASA Technical Reports Server (NTRS)

    Lofthouse, J. H.; Kunze, J. F.; Young, T. E.; Young, R. C.

    1972-01-01

    Heating rate measurements made in a mock-up of a BeO heat shield for a gas core nuclear rocket engine yields results nominally a factor of two greater than calculated by two different methods. The disparity is thought to be caused by errors in neutron capture cross sections and gamma spectra from the low cross-section elements, D, O, and Be.

  3. Cross sections for electron impact excitation of the b 3Sigma(+)u state of H2 - An application of the Schwinger multichannel variational method

    NASA Technical Reports Server (NTRS)

    Lima, M. A. P.; Gibson, T. L.; Mckoy, V.; Huo, W. M.

    1985-01-01

    In this and the two accompanying letters, the results of calculations of the cross sections for electron impact excitation of the b 3Sigma(+)u state of H2, for collision energies from near threshold to 30 eV, are presented. These results are obtained using a multichannel extension of the Schwinger variational principle at the two-state level. The quantitative agreement between the integral cross sections of these three studies is very good. Inclusion of correlation terms in the scattering wavefunctions, which relax the orthogonality between bound and continuum orbitals, is seen to affect the cross sections substantially. Although a comparison of these calculated cross sections with available experimental data is encouraging, some seious discrepancies exist.

  4. Experimental and Theoretical Understanding of Neutron Capture on Uranium Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, John Leonard

    2017-09-21

    Neutron capture cross sections on uranium isotopes are important quantities needed to model nuclear explosion performance, nuclear reactor design, nuclear test diagnostics, and nuclear forensics. It has been difficult to calculate capture accurately, and factors of 2 or more be- tween calculation and measurements are not uncommon, although normalization to measurements of the average capture width and nuclear level density can improve the result. The calculations of capture for 233,235,237,239U are further complicated by the need to accurately include the fission channel.

  5. Low-Energy Elastic Electron Scattering by Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Zatsarinny O.; Bartschat, K.; Tayal, S. S.

    2006-01-01

    The B-spline R-matrix method is employed to investigate the low-energy elastic electron scattering by atomic oxygen. Flexible non-orthogonal sets of radial functions are used to construct the target description and to represent the scattering functions. A detailed investigation regarding the dependence of the predicted partial and total cross sections on the scattering model and the accuracy of the target description is presented. The predicted angle-integrated elastic cross sections are in good agreement with experiment, whereas significant discrepancies are found in the angle-differential elastic cross sections near the forward direction. .The near-threshold results are found to strongly depend on the treatment of inner-core short-range correlation effects in the target description, as well as on a proper account of the target polarizability. A sharp increase in the elastic cross sections below 1 eV found in some earlier calculations is judged to be an artifact of an unbalanced description of correlation in the N-electron target structure and the (N+l)-electron-collision problems.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza

    A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of themore » differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.« less

  7. Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, D. B.; Ellis-Gibbings, L.; García, G.

    2015-09-07

    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energymore » condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.« less

  8. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy.

    PubMed

    Peters, Tanja; Grunewald, Catrin; Blaickner, Matthias; Ziegner, Markus; Schütz, Christian; Iffland, Dorothee; Hampel, Gabriele; Nawroth, Thomas; Langguth, Peter

    2015-02-22

    Neutron capture therapy for glioblastoma has focused mainly on the use of (10)B as neutron capture isotope. However, (157)Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with (157)Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the Auger and conversion electrons produced in (157)Gd capture, the proximity of Gd-atoms to cellular DNA is a crucial factor for infliction of lethal damage. Furthermore, Gd-containing liposomes may be used as MRI contrast agents for diagnostic purposes and surveillance of tumor targeting, thus enabling a theranostic approach for tumor therapy.

  9. Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Lerendegui-Marco, J.; Domingo-Pardo, C.; Casanovas, A.; Dressler, R.; Halfon, S.; Heinitz, S.; Kivel, N.; Köster, U.; Paul, M.; Quesada-Molina, J. M.; Schumann, D.; Tarifeño-Saldivia, A.; Tessler, M.; Weissman, L.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Becvar, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krticka, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weiss, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n_TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well.

  10. Scaled plane-wave Born cross sections for atoms and molecules

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Brunger, M. J.; Campbell, L.; Kato, H.; Hoshino, M.; Rau, A. R. P.

    2016-04-01

    Integral cross sections for optically allowed electronic-state excitations of atoms and molecules by electron impact, by applying scaled plane-wave Born models, are reviewed. Over 40 years ago, Inokuti presented an influential review of charged-particle scattering, based on the theory pioneered by Bethe forty years earlier, which emphasized the importance of reliable cross-section data from low eV energies to high keV energies that are needed in many areas of radiation science with applications to astronomy, plasmas, and medicine. Yet, with a couple of possible exceptions, most computational methods in electron-atom scattering do not, in general, overlap each other's validity range in the region from threshold up to 300 eV and, in particular, in the intermediate region from 30 to 300 eV. This is even more so for electron-molecule scattering. In fact this entire energy range is of great importance and, to bridge the gap between the two regions of low and high energy, scaled plane-wave Born models were developed to provide reliable, comprehensive, and absolute integral cross sections, first for ionization by Kim and Rudd and then extended to optically allowed electronic-state excitation by Kim. These and other scaling models in a broad, general application to electron scattering from atoms and molecules, their theoretical basis, and their results for cross sections along with comparison to experimental measurements are reviewed. Where possible, these data are also compared to results from other computational approaches.

  11. Resonant parametric interference effect in spontaneous bremsstrahlung of an electron in the field of a nucleus and two pulsed laser waves

    NASA Astrophysics Data System (ADS)

    Lebed', A. A.; Padusenko, E. A.; Roshchupkin, S. P.; Dubov, V. V.

    2018-04-01

    Electron-nucleus bremsstrahlung in the field of two moderately strong pulsed laser waves in the case of incommensurate frequencies is theoretically studied under resonant conditions. The process is studied in detail in a special kinematic region, where stimulated processes with correlated emission and absorption of photons of the first and second waves become predominant (parametric interference effect). The availability of this region is caused by interference of the first and second laser waves. The correspondence between the emission angle and the final-electron energy is established in this interference kinematic. In this case, the cross-sectional properties are determined by the multiphoton quantum interference parameter, which is proportional to the product of intensities of the first and second waves. The resonant differential cross section of electron-nucleus spontaneous bremsstrahlung with simultaneous registration of both emission angles of the spontaneous photon and the scattered electron can exceed by four or five orders of magnitude the corresponding cross section in the absence of an external field. It was shown for nonrelativistic electrons that the resonant cross section of the studied process in the field of two pulsed laser waves within the interference region in two order of magnitude may exceed corresponding cross sections at other scattering kinematics. The obtained results may be experimentally verified, for example, by scientific facilities at sources of pulsed laser radiation (such as SLAC, FAIR, XFEL, ELI).

  12. Ion charge state distribution effects on elastic X-ray Thomson scattering

    NASA Astrophysics Data System (ADS)

    Iglesias, Carlos A.

    2018-03-01

    Analytic models commonly applied in elastic X-ray Thomson scattering cross-section calculations are used to generate results from a discrete ion charge distribution and an average charge description. Comparisons show that interchanging the order of the averaging procedure can appreciably alter the cross-section, especially for plasmas with partially filled K-shell bound electrons. In addition, two common approximations to describe the free electron density around an ion are shown to yield significantly different elastic X-ray Thomson scattering cross-sections.

  13. Electron impact cross-sections and cooling rates for methane. [in thermal balance of electrons in atmospheres and ionospheres of planets and satellites in outer solar system

    NASA Technical Reports Server (NTRS)

    Gan, L.; Cravens, T. E.

    1992-01-01

    Energy transfer between electrons and methane gas by collisional processes plays an important role in the thermal balance of electrons in the atmospheres and ionospheres of planets and satellites in the outer solar system. The literature is reviewed for electron impact cross-sections for methane in this paper. Energy transfer rates are calculated for elastic and inelastic processes using a Maxwellian electron distribution. Vibrational, rotational, and electronic excitation and ionization are included. Results are presented for a wide range of electron temperatures and neutral temperatures.

  14. Elastic electron differential cross sections for argon atom in the intermediate energy range from 40 eV to 300 eV

    NASA Astrophysics Data System (ADS)

    Ranković, Miloš Lj.; Maljković, Jelena B.; Tökési, Károly; Marinković, Bratislav P.

    2018-02-01

    Measurements and calculations for electron elastic differential cross sections (DCS) of argon atom in the energy range from 40 to 300 eV are presented. DCS have been measured in the crossed beam arrangement of the electron spectrometer with an energy resolution of 0.5 eV and angular resolution of 1.5∘ in the range of scattering angles from 20∘ to 126∘. Both angular behaviour and energy dependence of DCS are obtained in a separate sets of experiments, while the absolute scale is achieved via relative flow method, using helium as a reference gas. All data is corrected for the energy transmission function, changes of primary electron beam current and target pressure, and effective path length (volume correction). DCSs are calculated in relativistic framework by expressing the Mott's cross sections in partial wave expansion. Our results are compared with other available data.

  15. Low-energy and very-low energy total cross sections for electron collisions with N2

    NASA Astrophysics Data System (ADS)

    Kitajima, Masashi; Kishino, Takaya; Okumura, Takuma; Kobayashi, Naomasa; Sayama, Atsushi; Mori, Yuma; Hosaka, Kouichi; Odagiri, Takeshi; Hoshino, Masamitsu; Tanaka, Hiroshi

    2017-06-01

    Absolute grand total cross sections for electron scattering from N2 are obtained in the energy range from 20 eV down to 5 meV with very narrow electron energy width of 9 meV using the threshold-photoelectron source. Total cross sections obtained in the present study are compared with the previous experimentally obtained results. At the very-low energy region below 50 meV, the present total cross sections are somewhat smaller than those reported by the Aarhus group [S.V. Hoffmann et al., Rev. Sci. Instrum. 73, 4157 (2002)], which has been the only experimental work that provided the total cross sections in the very-low energy region. The energy positions of the peaks in the total cross sections due to the 2Πg shape resonance are obtained with higher accuracy, due to the improved uncertainty of the energy position in the present measurement compared to the previous works. The resonance structure in the total cross sections due to the Feshbach resonances of N2 at around 11.5 eV are also observed. Analysis of the resonant structure was carried out in order to determine the values of resonance width of Feshbach resonances of N2. Contribution to the Topical Issue: "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  16. Status of the R-matrix Code AMUR toward a consistent cross-section evaluation and covariance analysis for the light nuclei

    NASA Astrophysics Data System (ADS)

    Kunieda, Satoshi

    2017-09-01

    We report the status of the R-matrix code AMUR toward consistent cross-section evaluation and covariance analysis for the light-mass nuclei. The applicable limit of the code is extended by including computational capability for the charged-particle elastic scattering cross-sections and the neutron capture cross-sections as example results are shown in the main texts. A simultaneous analysis is performed on the 17O compound system including the 16O(n,tot) and 13C(α,n)16O reactions together with the 16O(n,n) and 13C(α,α) scattering cross-sections. It is found that a large theoretical background is required for each reaction process to obtain a simultaneous fit with all the experimental cross-sections we analyzed. Also, the hard-sphere radii should be assumed to be different from the channel radii. Although these are technical approaches, we could learn roles and sources of the theoretical background in the standard R-matrix.

  17. Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays

    PubMed Central

    Keller, Adrian; Rackwitz, Jenny; Cauët, Emilie; Liévin, Jacques; Körzdörfer, Thomas; Rotaru, Alexandru; Gothelf, Kurt V.; Besenbacher, Flemming; Bald, Ilko

    2014-01-01

    The electronic structure of DNA is determined by its nucleotide sequence, which is for instance exploited in molecular electronics. Here we demonstrate that also the DNA strand breakage induced by low-energy electrons (18 eV) depends on the nucleotide sequence. To determine the absolute cross sections for electron induced single strand breaks in specific 13 mer oligonucleotides we used atomic force microscopy analysis of DNA origami based DNA nanoarrays. We investigated the DNA sequences 5′-TT(XYX)3TT with X = A, G, C and Y = T, BrU 5-bromouracil and found absolute strand break cross sections between 2.66 · 10−14 cm2 and 7.06 · 10−14 cm2. The highest cross section was found for 5′-TT(ATA)3TT and 5′-TT(ABrUA)3TT, respectively. BrU is a radiosensitizer, which was discussed to be used in cancer radiation therapy. The replacement of T by BrU into the investigated DNA sequences leads to a slight increase of the absolute strand break cross sections resulting in sequence-dependent enhancement factors between 1.14 and 1.66. Nevertheless, the variation of strand break cross sections due to the specific nucleotide sequence is considerably higher. Thus, the present results suggest the development of targeted radiosensitizers for cancer radiation therapy. PMID:25487346

  18. Multidimensional analysis of fast-spectrum material replacement measurements for systematic estimation of cross section uncertainties

    NASA Technical Reports Server (NTRS)

    Klann, P. G.; Lantz, E.; Mayo, W. T.

    1973-01-01

    A series of central core and core-reflector interface sample replacement experiments for 16 materials performed in the NASA heavy-metal-reflected, fast spectrum critical assembly (NCA) were analyzed in four and 13 groups using the GAM 2 cross-section set. The individual worths obtained by TDSN and DOT multidimensional transport theory calculations showed significant differences from the experimental results. These were attributed to cross-section uncertainties in the GAM 2 cross sections. Simultaneous analysis of the measured and calculated sample worths permitted separation of the worths into capture and scattering components which systematically provided fast spectrum averaged correction factors to the magnitudes of the GAM 2 absorption and scattering cross sections. Several Los Alamos clean critical assemblies containing Oy, Ta, and Mo as well as one of the NCA compositions were reanalyzed using the corrected cross sections. In all cases the eigenvalues were significantly improved and were recomputed to within 1 percent of the experimental eigenvalue. A comparable procedure may be used for ENDF cross sections when these are available.

  19. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolcott, Jeremy

    2016-01-01

    Appearance-type neutrino oscillation experiments, which observe the transition from muon neutrinos to electron neutrinos, promise to help answer some of the fundamental questions surrounding physics in the post-Standard-Model era. Because they wish to observe the interactions of electron neutrinos in their detectors, and because the power of current results is typically limited by their systematic uncertainties, these experiments require precise estimates of the cross-section for electron neutrino interactions. Of particular interest is the charged-current quasi-elastic (CCQE) process, which gures signi cantly in the composition of the reactions observed at the far detector. However, no experimental measurements of this crosssection currentlymore » exist for electron neutrinos; instead, current experiments typically work from the abundance of muon neutrino CCQE cross-section data and apply corrections from theoretical arguments to obtain a prediction for electron neutrinos. Veri cation of these predictions is challenging due to the di culty of constructing an electron neutrino beam, but the advent of modern high-intensity muon neutrino beams|together with the percent-level electron neutrino impurity inherent in these beams| nally presents the opportunity to make such a measurement. We report herein the rst-ever measurement of a cross-section for an exclusive state in electron neutrino scattering, which was made using the MINER A detector in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE di erential cross-sections, which are averaged over neutrinos of energies 1-10 GeV (with mean energy of about 3 GeV), in terms of various kinematic variables: nal-state electron angle, nal-state electron energy, and the square of the fourmomentum transferred to the nucleus by the neutrino , Q 2. We also provide a total cross-section vs. neutrino energy. While our measurement of this process is found to be in agreement with the predictions of the GENIE event generator, we also report on an unpredicted photon-like process we observe in a similar kinematic regime. The absence of this process from models for neutrino interactions is a potential stumbling block for future on-axis neutrino oscillation experiments. We include kinematic and particle species identi cation characterizations which can be used in building models to help address this shortcoming.« less

  20. Nuclear structure properties and stellar weak rates for 76Se: Unblocking of the Gamow Teller strength

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Ishfaq, Mavra; Böyükata, Mahmut; Riaz, Muhammad

    2017-10-01

    At finite temperatures (≥ 107K), 76Se is abundant in the core of massive stars and electron capture on 76Se has a consequential role to play in the dynamics of core-collapse. The present work may be classified into two main categories. In the first phase we study the nuclear structure properties of 76Se using the interacting boson model-1 (IBM-1). The IBM-1 investigations include the energy levels, B (E 2) values and the prediction of the geometry. We performed the extended consistent-Q formalism (ECQF) calculation and later the triaxial formalism calculation (constructed by adding the cubic term to the ECQF). The geometry of 76Se can be envisioned within the formalism of the potential energy surface based on the classical limit of IBM-1 model. In the second phase, we reconfirm the unblocking of the Gamow-Teller (GT) strength in 76Se (a test case for nuclei having N > 40 and Z < 40). Using the deformed pn-QRPA model we calculate GT transitions, stellar electron capture cross section (within the limit of low momentum transfer) and stellar weak rates for 76Se. The distinguishing feature of our calculation is a state-by-state evaluation of stellar weak rates in a fully microscopic fashion. Results are compared with experimental data and previous calculations. The calculated GT distribution fulfills the Ikeda sum rule. Rates for β-delayed neutrons and emission probabilities are also calculated. Our study suggests that at high stellar temperatures and low densities, the β+-decay on 76Se should not be neglected and needs to be taken into consideration along with electron capture rates for simulation of presupernova evolution of massive stars.

  1. Radiative capture reactions via indirect methods

    NASA Astrophysics Data System (ADS)

    Mukhamedzhanov, A. M.; Rogachev, G. V.

    2017-10-01

    Many radiative capture reactions of astrophysical interest occur at such low energies that their direct measurement is hardly possible. Until now the only indirect method, which was used to determine the astrophysical factor of the astrophysical radiative capture process, was the Coulomb dissociation. In this paper we address another indirect method, which can provide information about resonant radiative capture reactions at astrophysically relevant energies. This method can be considered an extension of the Trojan horse method for resonant radiative capture reactions. The idea of the suggested indirect method is to use the indirect reaction A (a ,s γ )F to obtain information about the radiative capture reaction A (x ,γ )F , where a =(s x ) and F =(x A ) . The main advantage of using the indirect reactions is the absence of the penetrability factor in the channel x +A , which suppresses the low-energy cross sections of the A (x ,γ )F reactions and does not allow one to measure these reactions at astrophysical energies. A general formalism to treat indirect resonant radiative capture reactions is developed when only a few intermediate states contribute and a statistical approach cannot be applied. The indirect method requires coincidence measurements of the triple differential cross section, which is a function of the photon scattering angle, energy, and the scattering angle of the outgoing spectator particle s . Angular dependence of the triple differential cross section at fixed scattering angle of the spectator s is the angular γ -s correlation function. Using indirect resonant radiative capture reactions, one can obtain information about important astrophysical resonant radiative capture reactions such as (p ,γ ) , (α ,γ ) , and (n ,γ ) on stable and unstable isotopes. The indirect technique makes accessible low-lying resonances, which are close to the threshold, and even subthreshold bound states located at negative energies. In this paper, after developing the general formalism, we demonstrate the application of the indirect reaction 12C(6Li,d γ )16O proceeding through 1- and 2+ subthreshold bound states and resonances to obtain the information about the 12C(α ,γ )16O radiative capture at the astrophysically most effective energy 0.3 MeV, which is impossible using standard direct measurements. Feasibility of the suggested approach is discussed.

  2. Measurement of electron impact collisional excitation cross sections of Ni to Ge-like gold

    DOE PAGES

    May, M. J.; Beiersdorfer, P.; Jordan, N.; ...

    2017-03-01

    We have measured the collisional excitation cross sections for the 3d→4f and 3d→5f excitations in Au ions near the Ni-like charge state by using beam plasmas created in the Livermore electron beam ion trap EBIT-I. The cross sections have been experimentally determined at approximately 1, 2 and 3 keV above the threshold energy, ET, for the 3d→4f excitations (ET ~2.5 keV) and at approximately 0.1, 1 and 2 keV above the threshold energy for the 3d→5f excitations (ET ~3.3 keV). The cross section measurements were made possible by using the GSFC x-ray microcalorimeter at the Livermore EBIT facility. The absolutemore » cross sections are determined from the ratio of the intensity of the collisionally excited bound-bound transitions to the intensity of the radiative recombination lines produced in EBIT-I plasmas. The effects of polarization and Auger decay channels are accounted for in the cross section determination. Measured cross sections are compared with those from HULLAC, DWS and FAC calculations. Finally, the measurements demonstrate that some errors exist in the calculated excitation cross sections.« less

  3. Measurement of electron impact collisional excitation cross sections of Ni to Ge-like gold

    NASA Astrophysics Data System (ADS)

    May, M. J.; Beiersdorfer, P.; Jordan, N.; Scofield, J. H.; Reed, K. J.; Brown, G. V.; Hansen, S. B.; Porter, F. S.; Kelley, R.; Kilbourne, C. A.; Boyce, K. R.

    2017-03-01

    We have measured the collisional excitation cross sections for the 3d→4f and 3d→5f excitations in Au ions near the Ni-like charge state by using beam plasmas created in the Livermore electron beam ion trap EBIT-I. The cross sections have been experimentally determined at approximately 1, 2 and 3 keV above the threshold energy, ET, for the 3d→4f excitations (ET ˜ 2.5 keV) and at approximately 0.1, 1 and 2 keV above the threshold energy for the 3d→5f excitations (ET ˜ 3.3 keV). The cross section measurements were made possible by using the GSFC x-ray microcalorimeter at the Livermore EBIT facility. The absolute cross sections are determined from the ratio of the intensity of the collisionally excited bound-bound transitions to the intensity of the radiative recombination lines produced in EBIT-I plasmas. The effects of polarization and Auger decay channels are accounted for in the cross section determination. Measured cross sections are compared with those from HULLAC, DWS and FAC calculations. The measurements demonstrate that some errors exist in the calculated excitation cross sections.

  4. Theoretical estimates of supernova-neutrino cross sections for the stable even-even lead isotopes: Charged-current reactions

    NASA Astrophysics Data System (ADS)

    Almosly, W.; Carlsson, B. G.; Suhonen, J.; Toivanen, J.; Ydrefors, E.

    2016-10-01

    A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering off the stable even-mass lead isotopes A =204 , 206, and 208 is reported in this work. The proton-neutron quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states. Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross sections with a two-parameter Fermi-Dirac distribution of the electron (anti)neutrino energies. The computed cross sections are compared with earlier calculations and the analyses are extended to take into account the effects coming from the neutrino oscillations.

  5. CCC calculated integrated cross sections of electron-H2 scattering

    NASA Astrophysics Data System (ADS)

    Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor

    2016-09-01

    Recently we applied the molecular convergent close-coupling (CCC) method to electron scattering from molecular hydrogen H2. Convergence of the major integrated cross sections has been explicitly demonstrated in the fixed-nuclei approximation by increasing the number of H2 target states in the close-coupling expansion from 9 to 491. The calculations have been performed using a projectile partial wave expansion with maximum orbital angular momentum Lmax = 8 and total orbital angular momentum projections | M | <= 8 . Coupling to the ionization continuum is modeled via a large pseudo state expansion, which we found is required to obtain reliable elastic and excitation cross sections. Here we present benchmark elastic, single-ionization, electronic excitation and total integrated cross sections over a broad energy range (0.1 to 300 eV) and compare with available experiment and previous calculations. Los Alamos National Laboratory and Curtin University.

  6. Electron induced inelastic and ionization cross section for plasma modeling

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby

    2016-09-01

    The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.

  7. Ionization cross sections of the Au L subshells by electron impact from the L3 threshold to 100 keV

    NASA Astrophysics Data System (ADS)

    Barros, Suelen F.; Vanin, Vito R.; Maidana, Nora L.; Martins, Marcos N.; García-Alvarez, Juan A.; Santos, Osvaldo C. B.; Rodrigues, Cleber L.; Koskinas, Marina F.; Fernández-Varea, José M.

    2018-01-01

    We measured the cross sections for Au Lα, Lβ, Lγ, Lℓ and Lη x-ray production by the impact of electrons with energies from the L3 threshold to 100 keV using a thin Au film whose mass thickness was determined by Rutherford Backscattering Spectrometry. The x-ray spectra were acquired with a Si drift detector, which allowed to separate the components of the Lγ multiplet lines. The measured Lα, Lβ, {{L}}{γ }1, L{γ }{2,3,6}, {{L}}{γ }{4,4\\prime }, {{L}}{γ }5, {{L}}{\\ell } and Lη x-ray production cross sections were then employed to derive Au L1, L2 and L3 subshell ionization cross sections with relative uncertainties of 8%, 7% and 7%, respectively; these figures include the uncertainties in the atomic relaxation parameters. The correction for the increase in electron path length inside the Au film was estimated by means of Monte Carlo simulations. The experimental ionization cross sections are about 10% above the state-of-the-art distorted-wave calculations.

  8. Electron transport in biomolecular gaseous and liquid systems: theory, experiment and self-consistent cross-sections

    NASA Astrophysics Data System (ADS)

    White, R. D.; Cocks, D.; Boyle, G.; Casey, M.; Garland, N.; Konovalov, D.; Philippa, B.; Stokes, P.; de Urquijo, J.; González-Magaña, O.; McEachran, R. P.; Buckman, S. J.; Brunger, M. J.; Garcia, G.; Dujko, S.; Petrovic, Z. Lj

    2018-05-01

    Accurate modelling of electron transport in plasmas, plasma-liquid and plasma-tissue interactions requires (i) the existence of accurate and complete sets of cross-sections, and (ii) an accurate treatment of electron transport in these gaseous and soft-condensed phases. In this study we present progress towards the provision of self-consistent electron-biomolecule cross-section sets representative of tissue, including water and THF, by comparison of calculated transport coefficients with those measured using a pulsed-Townsend swarm experiment. Water–argon mixtures are used to assess the self-consistency of the electron-water vapour cross-section set proposed in de Urquijo et al (2014 J. Chem. Phys. 141 014308). Modelling of electron transport in liquids and soft-condensed matter is considered through appropriate generalisations of Boltzmann’s equation to account for spatial-temporal correlations and screening of the electron potential. The ab initio formalism is applied to electron transport in atomic liquids and compared with available experimental swarm data for these noble liquids. Issues on the applicability of the ab initio formalism for krypton are discussed and addressed through consideration of the background energy of the electron in liquid krypton. The presence of self-trapping (into bubble/cluster states/solvation) in some liquids requires a reformulation of the governing Boltzmann equation to account for the combined localised–delocalised nature of the resulting electron transport. A generalised Boltzmann equation is presented which is highlighted to produce dispersive transport observed in some liquid systems.

  9. Following electron impact excitations of Rn, Ra, Th, U and Pu single atom L sub-shells ionization cross section calculations by using Lotz’s equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayinol, M., E-mail: aydinolm@dicle.edu.tr; Aydeniz, D., E-mail: daydeniz@hotmail.com

    L shell ionization cross section and L{sub i} subshells ionization cross sections of Rn, Ra, Th, U, Pu atoms calculated. For each of atoms, ten different electron impact energy values (E{sub o}) are used. Calculations carried out by using Lotz equation in Matlab. First, calculations done for non-relativistic case by using non-relativistic Lotz equation then repeated with relativistic Lotz equation. σ{sub L} total and σ{sub Li}(i = 1,2,3) subshells ionisation cross section values obtained for E{sub o} values in the energy range of E{sub Li}

  10. The interaction of low-energy electrons with fructose molecules

    NASA Astrophysics Data System (ADS)

    Chernyshova, I. V.; Kontrosh, E. E.; Markush, P. P.; Shpenik, O. B.

    2017-11-01

    Using a hypocycloidal electronic spectrometer, the interactions of low energy electrons (0-8.50 eV) with fructose molecules, namely, electron scattering and dissociative attachment, are studied. The results of these studies showed that the fragmentation of fructose molecules occurs effectively even at an electron energy close to zero. In the total electron-scattering cross section by molecules, resonance features (at energies 3.10 and 5.00 eV) were first observed near the formation thresholds of light ion fragments OH- and H-. The correlation of the features observed in the cross sections of electron scattering and dissociative attachment is analyzed.

  11. a Time-Dependent Many-Electron Approach to Atomic and Molecular Interactions

    NASA Astrophysics Data System (ADS)

    Runge, Keith

    A new methodology is developed for the description of electronic rearrangement in atomic and molecular collisions. Using the eikonal representation of the total wavefunction, time -dependent equations are derived for the electronic densities within the time-dependent Hartree-Fock approximation. An averaged effective potential which ensures time reversal invariance is used to describe the effect of the fast electronic transitions on the slower nuclear motions. Electron translation factors (ETF) are introduced to eliminate spurious asymptotic couplings, and a local ETF is incorporated into a basis of traveling atomic orbitals. A reference density is used to describe local electronic relaxation and to account for the time propagation of fast and slow motions, and is shown to lead to an efficient integration scheme. Expressions for time-dependent electronic populations and polarization parameters are given. Electronic integrals over Gaussians including ETFs are derived to extend electronic state calculations to dynamical phenomena. Results of the method are in good agreement with experimental data for charge transfer integral cross sections over a projectile energy range of three orders of magnitude in the proton-Hydrogen atom system. The more demanding calculations of integral alignment, state-to-state integral cross sections, and differential cross sections are found to agree well with experimental data provided care is taken to include ETFs in the calculation of electronic integrals and to choose the appropriate effective potential. The method is found to be in good agreement with experimental data for the calculation of charge transfer integral cross sections and state-to-state integral cross sections in the one-electron heteronuclear Helium(2+)-Hydrogen atom system and in the two-electron system, Hydrogen atom-Hydrogen atom. Time-dependent electronic populations are seen to oscillate rapidly in the midst of collision event. In particular, multiple exchanges of the electron are seen to occur in the proton-Hydrogen atom system at low collision energies. The concepts and results derived from the approach provide new insight into the dynamics of nuclear screening and electronic rearrangement in atomic collisions.

  12. A dominant electron trap in molecular beam epitaxial InAlN lattice-matched to GaN

    NASA Astrophysics Data System (ADS)

    Pandey, Ayush; Bhattacharya, Aniruddha; Cheng, Shaobo; Botton, Gianluigi A.; Mi, Zetian; Bhattacharya, Pallab

    2018-04-01

    Deep levels in lattice-matched undoped and Si-doped InAlN/GaN grown by plasma-assisted molecular beam epitaxy have been identified and characterized by capacitance and photocapacitance measurements. From x-ray diffraction, reflectance measurements, electron energy loss spectroscopy and high-resolution transmission electron microscopy it is evident that the material has two distinct phases with different compositions. These correspond to In compositions of 18.1% and 25.8%, with corresponding bandgaps of 4.6 eV and 4.1 eV, respectively. The lower bandgap material is present as columnar microstructures in the form of quantum wires. A dominant electron trap with an activation energy of 0.293  ±  0.01 eV, a small capture cross-section of (1.54  ±  0.25)  ×  10-18 cm2, and density increasing linearly with Si doping density is identified in all the samples. The characteristics of the electron trap and variation of diode capacitance are discussed in the context of carrier dynamics involving the dominant trap level and the quantum wires.

  13. Two-dimensional spectra of electron collisions with acrylonitrile and methacrylonitrile reveal nuclear dynamics

    NASA Astrophysics Data System (ADS)

    Regeta, K.; Allan, M.

    2015-05-01

    Detailed experimental information on the motion of a nuclear packet on a complex (resonant) anion potential surface is obtained by measuring 2-dimensional (2D) electron energy loss spectra. The cross section is plotted as a function of incident electron energy, which determines which resonant anion state is populated, i.e., along which normal coordinate the wave packet is launched, and of the electron energy loss, which reveals into which final states each specific resonant state decays. The 2D spectra are presented for acrylonitrile and methacrylonitrile, at the incident energy range 0.095-1.0 eV, where the incoming electron is temporarily captured in the lowest π∗ orbital. The 2D spectra reveal selectivity patterns with respect to which vibrations are excited in the attachment and de-excited in the detachment. Further insight is gained by recording 1D spectra measured along horizontal, vertical, and diagonal cuts of the 2D spectrum. The methyl group in methacrylonitrile increases the resonance width 7 times. This converts the sharp resonances of acrylonitrile into boomerang structures but preserves the essence of the selectivity patterns. Selectivity of vibrational excitation by higher-lying shape resonances up to 8 eV is also reported.

  14. Retarding friction versus white noise in the description of heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Chushnyakova, Maria; Gontchar, Igor

    2014-03-01

    We performed modeling of the collision of two spherical nuclei resulting in capture. For this aim the stochastic differential equations are used with the white or colored noise and with the instant or retarding friction, respectively. The dissipative forces are proportional to the squared derivative of the strong nucleus-nucleus interaction potential (SnnP). The SnnP is calculated in the framework of the double folding approach with the density-dependent M3Y NN-forces. Calculations performed for 28Si+144Sm reaction show that accounting for the fluctuations typically reduces the capture cross sections by not more than 10%. In contradistinction, the influence of the memory effects is found resulting in about 20% enhancement of the cross section.

  15. i-TED: A novel concept for high-sensitivity (n,γ) cross-section measurements

    NASA Astrophysics Data System (ADS)

    Domingo-Pardo, C.

    2016-07-01

    A new method for measuring (n , γ) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features γ-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture γ-rays arising from the sample under study and background γ-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.

  16. Differential cross sections for electron impact excitation of the Herzberg pseudocontinuum of molecular oxygen

    NASA Astrophysics Data System (ADS)

    Green, M. A.; Maddern, T.; Brunger, M. J.; Campbell, L.; Cartwright, D. C.; Newell, W. R.; Teubner, P. J. O.

    2002-09-01

    We report differential cross sections (DCSs) for electron impact excitation of the sum (c1Σ u- + A'3 Δ u + A3 Σ u+) of the three states that constitute the Herzberg pseudocontinuum in O2. These DCSs were measured at seven incident electron energies in the range 9-20 eV and over the scattered electron angular range 10-90°. We note that this represents a far more detailed study than has hitherto previously been reported. In their review on electron-diatomic molecule scattering systems, Brunger and Buckman (Brunger M J and Buckman S J 2002 Phys. Rep. 357 215) clearly identified gaps in our knowledge for electron impact excitation of the Herzberg electronic states. The present study rectifies this situation and, additionally, seeks to stimulate theoreticians to extend their existing integral cross section calculations, for the c1 Σ u-, A'3 Δ u and A3 Σ u+ states, to the DCS-level.

  17. Capture of free-floating planets by planetary systems

    NASA Astrophysics Data System (ADS)

    Goulinski, Nadav; Ribak, Erez N.

    2018-01-01

    Evidence of exoplanets with orbits that are misaligned with the spin of the host star may suggest that not all bound planets were born in the protoplanetary disc of their current planetary system. Observations have shown that free-floating Jupiter-mass objects can exceed the number of stars in our Galaxy, implying that capture scenarios may not be so rare. To address this issue, we construct a three-dimensional simulation of a three-body scattering between a free-floating planet and a star accompanied by a Jupiter-mass bound planet. We distinguish between three different possible scattering outcomes, where the free-floating planet may get weakly captured after the brief interaction with the binary, remain unbound or 'kick out' the bound planet and replace it. The simulation was performed for different masses of the free-floating planets and stars, as well as different impact parameters, inclination angles and approach velocities. The outcome statistics are used to construct an analytical approximation of the cross-section for capturing a free-floating planet by fitting their dependence on the tested variables. The analytically approximated cross-section is used to predict the capture rate for these kinds of objects, and to estimate that about 1 per cent of all stars are expected to experience a temporary capture of a free-floating planet during their lifetime. Finally, we propose additional physical processes that may increase the capture statistics and whose contribution should be considered in future simulations in order to determine the fate of the temporarily captured planets.

  18. Electron-impact total ionization cross sections of DNA sugar-phosphate backbone and an additivity principle

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.

    2005-01-01

    The improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)l is used to study the total ionization cross sections of the DNA sugar-phosphate backbone by electron impact. Calculations using neutral fragments found that the total ionization cross sections of C3' - and C5', -deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3' - and C5" -deoxyribose-phospate cross sections, differing by less than 10%. The result implies that certain properties of the-DNA, like the total singly ionization cross section, are localized properties and a building-up or additivity principle may apply. This allows us to obtain accurate properties of larger molecular systems built up from the results of smaller subsystem fragments. Calculations are underway using a negatively charged sugar-phosphate backbone with a metal counter-ion.

  19. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  20. Nucleon Form Factors above 6 GeV

    DOE R&D Accomplishments Database

    Taylor, R. E.

    1967-09-01

    This report describes the results from a preliminary analysis of an elastic electron-proton scattering experiment... . We have measured cross sections for e-p scattering in the range of q{sup 2} from 0.7 to 25.0 (GeV/c){sup 2}, providing a large region of overlap with previous measurements. In this experiment we measure the cross section by observing electrons scattered from a beam passing through a liquid hydrogen target. The scattered particles are momentum analyzed by a magnetic spectrometer and identified as electrons in a total absorption shower counter. Data have been obtained with primary electron energies from 4.0 to 17.9 GeV and at scattering angles from 12.5 to 35.0 degrees. In general, only one measurement of a cross section has been made at each momentum transfer.

  1. Total electron scattering cross section from pyridine molecules in the energy range 10-1000 eV

    NASA Astrophysics Data System (ADS)

    Dubuis, A. Traoré; Costa, F.; da Silva, F. Ferreira; Limão-Vieira, P.; Oller, J. C.; Blanco, F.; García, G.

    2018-05-01

    We report on experimental total electron scattering cross-section (TCS) from pyridine (C5H5N) for incident electron energies between 10 and 1000 eV, with experimental uncertainties within 5-10%, as measured with a double electrostatic analyser apparatus. The experimental results are compared with our theoretical calculations performed within the independent atom model complemented with a screening corrected additivity rule (IAM-SCAR) procedure which has been updated by including interference effects. A good level of agreement is found between both data sources within the experimental uncertainties. The present TCS results for electron impact energy under study contribute, together with other scattering data available in the literature, to achieve a consistent set of cross section data for modelling purposes.

  2. Neutron capture measurement on {sup 173}Lu at LANSCE with DANCE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theroine, C.; Ebran, A.; Meot, V.

    2013-06-10

    The (n,{gamma}) cross section on the unstable {sup 173}Lu(t{sub 1/2} = 1.37y) has been measured from thermal energy up to 200 eV at Los Alamos Neutron Science Center (LANSCE) with The Detector for Advanced Neutron Capture Experiements (DANCE). The main aim of this study is to validate and optimize reaction models for unstable nucleus. A preliminary capture yield will be presented in this paper.

  3. Exchange and Inelastic OH(+) + H Collisions on the Doublet and Quartet Electronic States.

    PubMed

    Bulut, Niyazi; Lique, François; Roncero, Octavio

    2015-12-17

    The exchange and inelastic state-to-state cross sections for the OH(+) + H collisions are computed from wave packet calculations using the doublet and quartet ground electronic potential energy surface (PES) correlating to the open shell reactants, for collision energies in the range of 1 meV to 0.7 eV. The doublet PES presents a deep insertion well, of ≈6 eV, but the exchange reaction has a rather low probability, showing that the mechanism is not statistical. This well is also responsible of a rather high rotational energy transfer, which makes the rigid-rotor approach overestimate the cross section for low Δj transitions and for high collisonal energies. The quartet PES, with a much shallower well, also presents a low exchange reaction cross section, but the inelastic state-to-state cross sections are very well reproduced by rigid-rotor calculations. When the electronic partition is used to obtain the total state-to-state cross section, the contribution of the doublet state becomes small, and the resulting total cross sections become close to those obtained for the quartet state. Thus, the total (quartet and doublet) cross sections for this open shell system can be reproduced rather satisfactorily by those obtained with the rigid-rotor approximation on the quartet state. Finally, we compare the new OH(+)-H cross sections with OH(+)-He ones recently computed. We found significant differences, especially for transitions with large Δj showing that specific OH(+)-H calculations had to be performed to accurately analyze the OH(+) emission from interstellar molecular clouds.

  4. Copper fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser-solid experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège

    2015-03-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII crossmore » sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)« less

  5. Study of scattering cross section of a plasma column using Green's function volume integral equation method

    NASA Astrophysics Data System (ADS)

    Soltanmoradi, Elmira; Shokri, Babak

    2017-05-01

    In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.

  6. Study of electron impact inelastic scattering of chlorine molecule (Cl2)

    NASA Astrophysics Data System (ADS)

    Yadav, Hitesh; Vinodkumar, Minaxi; Limbachiya, Chetan; Vinodkumar, P. C.

    2018-02-01

    A theoretical study is carried out for electron interactions with the chlorine molecule (Cl2) for incident energies ranging from 0.01 to 5000 eV. This wide range of energy has allowed us to investigate a variety of processes and report data on symmetric excitation energies, dissociative electron attachment (DEA), total excitation cross sections, and ionization cross section (Q ion) along with total inelastic cross sections (Q inel). The present study is important since Cl2 is a prominent gas for plasma etching and its anionic atoms are important in the etching of semiconductor wafers. In order to compute the total inelastic cross sections, we have employed the ab initio R-matrix method (0.01 to 15 eV) together with the spherical complex optical potential method (∼15 to 5000 eV). The R-matrix calculations are performed using a close coupling method, and we have used DEA estimator via Quantemol-N to calculate the DEA fragmentation and cross sections. The present study finds overall good agreement with the available experimental data. Total excitation and inelastic cross sections of e-{{{Cl}}}2 scattering for a wide energy range (0.01 to 5 keV) are reported for the first time, to the best of our knowledge.

  7. The electron-furfural scattering dynamics for 63 energetically open electronic states

    NASA Astrophysics Data System (ADS)

    da Costa, Romarly F.; do N. Varella, Márcio T.; Bettega, Márcio H. F.; Neves, Rafael F. C.; Lopes, Maria Cristina A.; Blanco, Francisco; García, Gustavo; Jones, Darryl B.; Brunger, Michael J.; Lima, Marco A. P.

    2016-03-01

    We report on integral-, momentum transfer- and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C5H4O2). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at either the static-exchange (Nopen ch-SE) or the static-exchange-plus-polarisation (Nopen ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channel coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections.

  8. The electron-furfural scattering dynamics for 63 energetically open electronic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Romarly F. da; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580; Varella, Márcio T. do N

    We report on integral-, momentum transfer- and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C{sub 5}H{sub 4}O{sub 2}). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (N{sub open}) at either the static-exchange (N{sub open} ch-SE) or the static-exchange-plus-polarisation (N{sub open} ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channelmore » coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections.« less

  9. Photoionization of Li2

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pindzola, M. S.; Ballance, C. P.; Colgan, J.

    2014-05-01

    Single and double photoionization cross sections for Li2 are calculated using a time-dependent close-coupling method. The correlation between the outer two electrons of Li2 is obtained by relaxation of the close-coupled equations in imaginary time. Propagation of the close-coupled equations in real time yields single and double photoionization cross sections for Li2. The two active electron cross sections are compared with one active electron distorted-wave and close-coupling results for both Li and Li2. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California, NICS in Knoxville, Tennessee, and OLCF in Oak Ridge, Tennessee.

  10. CCC calculated differential cross sections of electron-H2 scattering

    NASA Astrophysics Data System (ADS)

    Fursa, Dmitry; Zammit, Mark; Savage, Jeremy; Bray, Igor

    2016-09-01

    Recently we applied the molecular convergent close-coupling (CCC) method to electron scattering from molecular hydrogen H2. Convergence of the major differential cross sections has been explicitly demonstrated in the fixed-nuclei approximation. A large close-coupling expansion that coupled highly excited states and ionization channels proved to be important to obtain convergent results. Here we present benchmark elastic and electronic excitation differential cross sections for b3Σu+ , a3Σg+ , c3Πu , B1Σu+ , EF1Σg+ , C1Πu , and e3Σu+ states and compare with available experiment and previous calculations. Work supported by Los Alamos National Laboratory and Curtin University.

  11. Electron-impact excitation of the 1{sup 1}{ital S}{r_arrow}3{sup 1}{ital P} and 1{sup 1}{ital S}{r_arrow}4{sup 1}{ital P} transitions in helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakoo, M.A.; Roundy, D.; Rugamas, F.

    1996-11-01

    The method of electron-photon coincidence is used to {open_quote}{open_quote}resolve{close_quote}{close_quote} the electron-impact excitation of the {ital n}{sup 1}{ital P} levels ({ital n}=3 and 4) from nearby levels. Experimentally determined ratios of the differential cross sections for the electron-impact excitation of 1{sup 1}{ital S}{r_arrow}2{sup 1}{ital P}, to 1{sup 1}{ital S}{r_arrow}3{sup 1}{ital P}, and 4{sup 1}{ital P} transitions are presented at 30-, 40-, and 80-eV incident electron energies. Differential cross sections for the 1{sup 1}{ital S}{r_arrow}3{sup 1}{ital P} and 1{sup 1}{ital S}{r_arrow}4{sup 1}{ital P} transitions are derived by normalizing these ratios to available experimental differential cross sections for the 1{sup 1}{ital S}{r_arrow}2{sup 1}{italmore » P} transition. The ratios and differential cross sections are compared to available theoretical and semiempirical data. {copyright} {ital 1996 The American Physical Society.}« less

  12. Note on measuring electronic stopping of slow ions

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2017-11-01

    Extracting stopping cross sections from energy-loss measurements requires careful consideration of the experimental geometry. Standard procedures for separating nuclear from electronic stopping treat electronic energy loss as a friction force, ignoring its dependence on impact parameter. In the present study we find that incorporating this dependence has a major effect on measured stopping cross sections, in particular for light ions at low beam energies. Calculations have been made for transmission geometry, nuclear interactions being quantified by Bohr-Williams theory of multiple scattering on the basis of a Thomas-Fermi-Molière potential, whereas electronic interactions are characterized by Firsov theory or PASS code. Differences between the full and the restricted stopping cross section depend on target thickness and opening angle of the detector and need to be taken into account in comparisons with theory as well as in applications of stopping data. It follows that the reciprocity principle can be violated when checked on restricted instead of full electronic stopping cross sections. Finally, we assert that a seeming gas-solid difference in stopping of low-energy ions is actually a metal-insulator difference. In comparisons with experimental results we mostly consider proton data, where nuclear stopping is only a minor perturbation.

  13. State-resolved Photodissociation and Radiative Association Data for the Molecular Hydrogen Ion

    NASA Astrophysics Data System (ADS)

    Zammit, Mark C.; Savage, Jeremy S.; Colgan, James; Fursa, Dmitry V.; Kilcrease, David P.; Bray, Igor; Fontes, Christopher J.; Hakel, Peter; Timmermans, Eddy

    2017-12-01

    We present state-resolved (electronic, vibrational, and rotational) cross sections and rate coefficients for the photodissociation (PD) of {{{H}}}2+ and radiative association (RA) of H–H+. We developed a fully quantum mechanical approach within the nonrelativistic Born–Oppenheimer approximation to describe {{{H}}}2+ and calculate the data for transitions between the ground electronic state 1s{σ }g and the 2p{σ }u, 2p{π }u, 3p{σ }u, 3p{π }u, 4p{σ }u, 4f{σ }u, 4f{π }u, and 4p{π }u electronic states (i.e., up to {{{H}}}2+ n = 4). Tables of the dipole-matrix elements and energies needed to calculate state-resolved cross sections and rate coefficients will be made publicly available. These data could be important in astrophysical models when dealing with photon wavelengths (or radiation temperature distributions that are weighted toward such wavelengths) around 100 nm. For example, at these wavelengths and a material temperature of 8400 K, the LTE-averaged PD cross section via the (second electronically excited) 2p{π }u state is over three times larger than the PD cross section via the (first electronically excited) 2p{σ }u state.

  14. Positronium collisions with atoms and molecules

    NASA Astrophysics Data System (ADS)

    Fabrikant, I. I.; Gribakin, G. F.; Wilde, R. S.

    2017-11-01

    We review recent theoretical efforts to explain observed similarities between electron-atom and positronium(Ps)-atom scattering which also extends to molecular targets. In the range of the projectile velocities above the threshold for Ps ionization (break-up) this similarity can be explained in terms of quasi-free electron scattering and impulse approximation. However, for lower Ps velocities more sophisticated methods should be developed. Our calculations of Ps scattering by heavy noble-gas atoms agree well with experiments at Ps velocities above the Ps ionization threshold. However, in contrast to electron scattering cross sections, at lower velocities they exhibit maxima whereas the experimental cross sections tend to decrease toward lower velocities indicating the same similarity with electron scattering cross section observed above the threshold. Our preliminary results for Ps-N2 scattering confirm experimental observation of a resonance similar to the ∏ g resonance in electron-N2 scattering.

  15. Laser Assisted Free-Free Transition in Electron - Atom Collision

    NASA Technical Reports Server (NTRS)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  16. 3He(γ,pd) cross sections with tagged photons below the Δ resonance

    NASA Astrophysics Data System (ADS)

    Kolb, N. R.; Cairns, E. B.; Hackett, E. D.; Korkmaz, E.; Nakano, T.; Opper, A. K.; Quraan, M. A.; Rodning, N. L.; Rozon, F. M.; Asai, J.; Feldman, G.; Hallin, E.; O'rielly, G. V.; Pywell, R. E.; Skopik, D. M.

    1994-05-01

    The reaction cross section for 3He(γ,pd) has been measured using the Saskatchewan-Alberta Large Acceptance Detector (SALAD) with tagged photons in the energy range from 166 to 213 MeV. The energy and angle of the proton and the deuteron were measured with SALAD while the tagger determined the photon energy. Differential cross sections have been determined for 40°<θ*p<150°. The results are in agreement with the Bonn and Saclay photodisintegration measurements. The most recent photodisintegration measurement performed at Bates is higher by a factor of 1.3, which is just within the combined errors of the experiments. The proton capture results differ by a factor of 1.7 from the present experiment. Comparisons are made with microscopic calculations of the cross sections.

  17. Triple differential cross sections for the electron-impact ionization of H{sub 2} molecules for equal and unequal outgoing electron energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Al-Hagan, O.; Madison, D. H.

    A comprehensive theoretical and experimental investigation of the triple differential cross sections arising from the electron-impact ionization of molecular hydrogen is made, at an incident electron energy of 35.4 eV, for cases where the outgoing electrons have equal and unequal energies, and for a range of experimental geometries. Generally, good agreement is found between two theoretical approaches and experiment, with the best agreement arising for intermediate geometries with large gun angles and for the perpendicular geometry.

  18. Cross-Sectional Analysis of Longitudinal Mediation Processes.

    PubMed

    O'Laughlin, Kristine D; Martin, Monica J; Ferrer, Emilio

    2018-01-01

    Statistical mediation analysis can help to identify and explain the mechanisms behind psychological processes. Examining a set of variables for mediation effects is a ubiquitous process in the social sciences literature; however, despite evidence suggesting that cross-sectional data can misrepresent the mediation of longitudinal processes, cross-sectional analyses continue to be used in this manner. Alternative longitudinal mediation models, including those rooted in a structural equation modeling framework (cross-lagged panel, latent growth curve, and latent difference score models) are currently available and may provide a better representation of mediation processes for longitudinal data. The purpose of this paper is twofold: first, we provide a comparison of cross-sectional and longitudinal mediation models; second, we advocate using models to evaluate mediation effects that capture the temporal sequence of the process under study. Two separate empirical examples are presented to illustrate differences in the conclusions drawn from cross-sectional and longitudinal mediation analyses. Findings from these examples yielded substantial differences in interpretations between the cross-sectional and longitudinal mediation models considered here. Based on these observations, researchers should use caution when attempting to use cross-sectional data in place of longitudinal data for mediation analyses.

  19. Application of the BEf-scaling approach to electron impact excitation of diople-allowed electronic states in molecules

    NASA Astrophysics Data System (ADS)

    Brunger, M. J.; Thorn, P. A.; Campbell, L.; Kato, H.; Kawahara, H.; Hoshino, M.; Tanaka, H.; Kim, Y.-K.

    2008-05-01

    We consider the efficacy of the BEf-scaling approach, in calculating reliable integral cross sections for electron impact excitation of dipole-allowed electronic states in molecules. We will demonstrate, using specific examples in H2, CO and H2O, that this relatively simple procedure can generate quite accurate integral cross sections which compare well with available experimental data. Finally, we will briefly consider the ramifications of this to atmospheric and other types of modelling studies.

  20. Calculation of SF6-/SF6 and Cl-/CFCl3 electron attachment cross sections in the energy range 0-100 meV

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    1982-01-01

    Electron attachment cross sections for the processes SF6-/SF6 and Cl-/CFCl3 are calculated in a local theory using a model in which diatomic-like potential energy curves for the normal modes are constructed from available spectroscopic data. Thermally populated vibrational and rotational levels are included. Good agreement is found with experimental cross sections in the energy range 5-100 meV for a particular choice of potential energy curve parameters.

  1. Double Photoionization Near Threshold

    NASA Technical Reports Server (NTRS)

    Wehlitz, Ralf

    2007-01-01

    The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.

  2. An R-matrix study of electron induced processes in BF3 plasma

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Chakrabarti, Kalyan; Yoon, Jung-Sik; Song, Mi-Young

    2017-12-01

    An R-matrix formalism is used to study electron collision with the BF3 molecule using Quantemol-N, a computational system for electron molecule collisions which uses the molecular R-matrix method. Several target models are tested for BF3 in its equilibrium geometry, and the results are presented for the best model. Scattering calculations are then performed to yield resonance parameters, elastic, differential, excitation, and momentum transfer cross sections. The results for all the cross sections are compared with the experimental and theoretical data, and a good agreement is obtained. The resonances have been detected at 3.79 and 13.58 eV, with the ionization threshold being 15.7 eV. We have also estimated the absolute dissociative electron attachment (DEA) cross section for the F- ion production from BF3, which is a maiden attempt. The peak of the DEA is at around 13.5 eV, which is well supported by the resonance detected at 13.58 eV. The cross sections reported here find a variety of applications in the plasma technology.

  3. Spin-dependence of the electron scattering cross section by a magnetic layer system and the magneto-resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.T.; Tang, F.; Brown, W.D.

    1998-12-20

    The authors present a theoretical model for calculating the spin-dependent cross section of the scattering of electrons by a magnetic layer system. The model demonstrates that the cross sections of the scattering are different for spin up and spin down electrons. The model assumes that the electrical resistivity in a conductor is proportional to the scattering cross section of the electron in it. It is believed to support the two channel mechanism in interpreting magneto-resistance (MR). Based on the model without considering the scattering due to the interfacial roughness and the spin flipping scattering, the authors have established a relationshipmore » between MR and the square of the magnetic moment in the bulk sample without considering the scattering due to the interfacial roughness and the spin flipping scattering. It can also qualitatively explain the MR difference between the current in plane (CIP) and current perpendicular to the plane (CPP) configurations. The predictions by the model agree well with the experimental findings.« less

  4. Electron collisions with phenol: Total, integral, differential, and momentum transfer cross sections and the role of multichannel coupling effects on the elastic channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Romarly F. da; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo; Oliveira, Eliane M. de

    2015-03-14

    We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the numbermore » of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].« less

  5. Charge state distribution of 86Kr in hydrogen and helium gas charge strippers at 2.7 MeV /nucleon

    NASA Astrophysics Data System (ADS)

    Kuboki, H.; Okuno, H.; Hasebe, H.; Fukunishi, N.; Ikezawa, E.; Imao, H.; Kamigaito, O.; Kase, M.

    2014-12-01

    The charge state distributions of krypton (86Kr) with an energy of 2.7 MeV /nucleon were measured using hydrogen (H2 ) and helium (He) gas charge strippers. A differential pumping system was constructed to confine H2 and He gases to a thickness sufficient for the charge state distributions to attain equilibrium. The mean charge states of 86Kr in H2 and He gases attained equilibrium at 25.1 and 23.2, respectively, whereas the mean charge state in N2 gas at equilibrium was estimated to be less than 20. The charge distributions are successfully reproduced by the cross sections of ionization and electron capture processes optimized by a fitting procedure.

  6. Measurement of the 238U neutron-capture cross section and gamma-emission spectra from 10 eV to 100 keV using the DANCE detector at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, John L; Couture, A J; Keksis, A L

    2010-01-01

    A careful new measurement of the {sup 238}U(n,{gamma}) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4{pi} calorimetric scintillator array consisting of 160 BaF{sub 2} crystals. Measurements were made on a 48 mg/cm{sup 2} depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydinol, M., E-mail: aydinolm@dicle.edu.tr; Aydeniz, D., E-mail: daydeniz@hotmail.com

    L shell ionization cross section and {sub Li} subshells ionization cross sections of Os, Pt, Hg, Pb, Po atoms calculated. For each atom, ten different electron impacty energy values E{sub oi} used. Calculations carried out by using nonrelativistic Lotz equation in Matlab. Ionization cross section values obtained for Eoi values in the energy range of E{sub Li} ≤E{sub oi}≤4E{sub Li} for each atom. Starting allmost from E{sub oi} = E{sub Li} (i = 1,2,3) values of the each subshell ionization threshold energy, ionization cross section are increasing rapidly with E{sub oi}. For a fixed E{sub oi} = 3. E{sub Li}more » values, while Z increases from Z = 76 to Z = 84, ionization cross section are decrease. These results help to understand some results which obtained from other electron-sigle atom impact studies on σ{sub Li} subshells.« less

  8. Characteristics of Polarisation in the Ramsauer-Townsend Minima in Strongly Coupled Semiclassic Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-10-01

    The influence of quantum shielding on the Ramsauer-Townsend phenomena for the total electron-atom polarisation collision cross-section is investigated in partially ionised strongly coupled semiclassic plasmas. The result shows that the quantum shielding effect changes the position of the Ramsauer energy in partially ionised strongly coupled plasmas. It is also found that the quantum shielding effect enhances the total electron-atom collision cross-section when the collision energy is greater than the Ramsauer energy; however, it suppresses the collision cross-section when the collision energy is smaller than the Ramsauer energy. In addition, it is shown that the plasma screening effect significantly changes the position of the Ramsauer energy and the influence of plasma screening on the magnitude of the collision cross-section is more significant near the Ramsauer energy domain. The variations of the Ramsauer energy and the collision cross-section due to the quantum shielding effect are also discussed.

  9. Energy and angular distributions of electron emission from diatomic molecules by bare ion impact

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Mandal, C. R.; Purkait, M.

    2015-06-01

    The three-Coulomb wave model has been used extensively to study the energy and angular distributions of double-differential cross sections (DDCS) of electron emissions from hydrogen and nitrogen molecules by bare ion impact at intermediate and high energies. In the present model, we have expressed the molecular triple differential cross section in terms of the corresponding atomic triple differential cross section multiplied by the occupation number and the average Rayleigh interference factor, which accounts for the two-center interference effect. Here we have used an active electron approximation of the molecule as a whole in the initial channel. To account for the effect of passive electrons, we have constructed a model potential that satisfies the initial conditions and the corresponding wavefunction has been calculated from the model Hamiltonian of the active electron in the target. In the final channel, we have used a hydrogenic model with an effective nuclear charge that is calculated from its binding energy. In this model, the correlated motion of the particles in the exit channel of the reaction is considered by an adequate product of three-Coulomb functions. The emitted electron, the incident projectile ion and the residual ion are considered to be in same plane. The obtained results are compared with other recent theoretical and experimental findings. There is an overall agreement of the calculations with the experimental data for electron emission cross sections.

  10. A New Scaling Law of Resonance in Total Scattering Cross Section in Gases

    NASA Astrophysics Data System (ADS)

    Raju, Gorur Govinda

    2009-10-01

    Electrical discharges in gases continue to be an active area of research because of industrial applications such as power systems, environmental clean up, laser technology, semiconductor fabrication etc. A fundamental knowledge of electron-gas neutral interaction is indispensable and, the total scattering cross section is one of the quantities that have been measured extensively. The energy dependence of the total cross sections shows peaks or resonance processes that are operative in the collision process. These peaks and the energies at which they occur are shown to satisfy a broad relationship involving the polarizability and the dipole moment of the target particle. Data on 62 target particles belonging to the following species are analyzed. (Eq 1) Rare gas atoms (Eq 2) Di-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties Poly-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties. Methods of improving the newly identified scaling law and possible application have been identified. 1 INTRODUCTION: Data on electron-neutral interactions are one of the most fundamental in the study of gaseous electronics and an immense literature, both experimental and theoretical, has become available since about the year 1920. [1-5]. In view of the central role which these data play in all facets of gas discharges and plasma science, it is felt that a critical review of available data is timely, mainly for the community of high voltage engineers and industries connected with plasma science in general. The electron-neutral interaction, often referred to as scattering in the scientific literature, is quantified by using the quantity called the total scattering cross section (QT, m^2). In the literature on cross section, total cross section and total scattering cross section are terms used synonymously and we follow the same practice. A definition may be found in reference [1]. This paper concerns scaling of total cross section of gases at resonance energy and the electron energy at which resonance occurs. The meaning of resonance is briefly explained in the following section. Here, we use the term scaling to relate the two quantities mentioned, namely, the resonance energy and the total cross section at that energy. Consistent with the definition of scaling, if the law proposed holds, one of the two quantities mentioned above may be calculated if the other is known. Such a method is very useful in gas discharge modeling and calculation of breakdown voltages, as more fully explained in the later section of the paper. 2 DESCRIPTION OF RESONANCE: A brief description of resonance phenomena in several types of target particles, viz., atomic, poly atomic, polar, non-polar phenomena are presented. 3 PREVIOUS SCALING LAWS: A common representation of a given characteristic with as few adjustable parameters as possible is generally known as the scaling law. The Paschen curve for breakdown voltage is such a familiar scaling law. With reference to cross sections several attempts have been made to obtain a scaling law, with varying degree of success. If the cross section-energy curve is qualitatively similar without having sharp peaks and oscillations, moderately successful scaling laws may be devised. For example, the ionization cross section- energy curves for most gases follow a general pattern. Several published scaling laws are discussed. 4 A NEW SCALING LAW AND DISCUSSION: In this work the author has compiled the resonance details for more than 60 gasest hat include the range from simple atoms to complex molecules that are polyatomic, dipolar, electron-attaching and isomers. The target particles exhibit a number of distinct features, as far as their total cross section variation with electron energy is concerned as already explained.

  11. Interface investigation of solution processed high- κ ZrO2/Si MOS structure by DLTS

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Mondal, Sandip; Rao, Ksr Koteswara

    The interfacial region is dominating due to the continuous downscaling and integration of high- k oxides in CMOS applications. The accurate characterization of high- k oxides/semiconductor interface has the significant importance towards its usage in memory and thin film devices. The interface traps at the high - k /semiconductor interface can be quantified by deep level transient spectroscopy (DLTS) with better accuracy in contrast to capacitance-voltage (CV) and conductance technique. We report the fabrication of high- k ZrO2 films on p-Si substrate by a simple and inexpensive sol-gel spin-coating technique. Further, the ZrO2/Si interface is characterized through DLTS. The flat-band voltage (VFB) and the density of slow interface states (oxide trapped charges) extracted from CV characteristics are 0.37 V and 2x10- 11 C/cm2, respectively. The activation energy, interface state density and capture cross-section quantified by DLTS are EV + 0.42 eV, 3.4x1011 eV- 1 cm- 2 and 5.8x10- 18 cm2, respectively. The high quality ZrO2 films own high dielectric constant 15 with low leakage current density might be an appropriate insulating layer in future electronic application. The low value of interface state density and capture cross-section are the indication of high quality interface and the defect present at the interface may not affect the device performance to a great extent. The DLTS study provides a broad understanding about the traps present at the interface of spin-coated ZrO2/Si.

  12. Neutron Fission of 235,237,239U and 241,243Pu: Cross Sections, Integral Cross Sections and Cross Sections on Excited States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younes, W; Britt, H C

    In a recent paper submitted to Phys. Rev. C they have presented estimates for (n,f) cross sections on a series of Thorium, Uranium and Plutonium isotopes over the range E{sub n} = 0.1-2.5 MeV. The (n,f) cross sections for many of these isotopes are difficult or impossible to measure in the laboratory. The cross sections were obtained from previous (t,pf) reaction data invoking a model which takes into account the differences between (t,pf) and (n,f) reaction processes, and which includes improved estimates for the neutron compound formation process. The purpose of this note is: (1) to compare the estimated crossmore » sections to current data files in both ENDF and ENDL databases; (2) to estimate ratios of cross sections relatively to {sup 235}U integrated over the ''tamped flattop'' critical assembly spectrum that was used in the earlier {sup 237}U report; and (3) to show the effect on the integral cross sections when the neutron capturing state is an excited rotational state or an isomer. The isomer and excited state results are shown for {sup 235}U and {sup 237}U.« less

  13. Inelastic scattering of electrons at real metal surfaces

    NASA Astrophysics Data System (ADS)

    Ding, Z.-J.

    1997-04-01

    A theory is presented to calculate the electron inelastic scattering cross section for a moving electron near the surface region at an arbitrary takeoff angle. The theory is based on using a bulk plasmon-pole approximation to derive the numerically computable expression of the electron self-energy in the random-phase approximation for a surface system, through the use of experimental optical constants. It is shown that the wave-vector-dependent surface dielectric function satisfies the surface sum rules in this scheme. The theory provides a detailed knowledge of electron self-energy depending on the kinetic energy, distance from surface, and velocity vector of an electron moving in any metal of a known dielectric constant, accommodating the formulation to practical situation in surface electron spectroscopies. Numerical computations of the energy-loss cross section have been made for Si and Au. The contribution to the total differential scattering cross section from each component is analyzed. The depth dependence informs us in detail how the bulk excitation mode changes to a surface excitation mode with an electron approaching the surface from the interior of a medium.

  14. Considerations about projectile and target X-rays induced during heavy ion bombardment

    NASA Astrophysics Data System (ADS)

    Fernandes, F.; Bauer, D. V.; Duarte, A.; Ferrari, T. M.; Niekraszewicz, L. A. B.; Amaral, L.; Dias, J. F.

    2018-02-01

    In this work we present some results concerning the X-rays emitted by heavy ions during target bombardment. In this case, Cl4+ and Cl5+ ions with energies from 4 MeV to 10 MeV were employed to irradiate vitreous carbon planchets. Moreover, total X-ray production cross sections of titanium X-rays induced by chlorine ions were obtained as well for the same energy range. Only inner shell transitions were considered in the present work. The titanium target consisted of a thin film deposited over vitreous carbon planchets. The results indicate that the projectile X-ray yields increase as a function of the bombarding energy for the present energy range. Effects due to projectile charge state appears to be of minor importance at these low ion velocities. It is shown that a simple exponential function can represent the continuum background of such complex spectra. The chlorine transition rates Kβ/Kα obtained from chlorine acting as a projectile interacting with a carbon target are about half the value when compared to the chlorine Kβ/Kα ratios obtained when a LiCl target is bombarded with C+ and C3+ ions with energies from 2 MeV to 6 MeV. As far as the total X-ray production cross sections of Ti induced by chlorine ions are concerned, the ECPSSR theory underestimates the Ti total X-rays production cross sections by several orders of magnitude. The role of electron capture and possible mechanisms responsible for these effects are discussed.

  15. Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.

    PubMed

    Winkler, Alexander; Koivunoro, Hanna; Savolainen, Sauli

    2017-06-01

    The next step in the boron neutron capture therapy (BNCT) is the real time imaging of the boron concentration in healthy and tumor tissue. Monte Carlo simulations are employed to predict the detector response required to realize single-photon emission computed tomography in BNCT, but have failed to correctly resemble measured data for cadmium telluride detectors. In this study we have tested the gamma production cross-section data tables of commonly used libraries in the Monte Carlo code MCNP in comparison to measurements. The cross section data table TENDL-2008-ACE is reproducing measured data best, whilst the commonly used ENDL92 and other studied libraries do not include correct tables for the gamma production from the cadmium neutron capture reaction that is occurring inside the detector. Furthermore, we have discussed the size of the annihilation peaks of spectra obtained by cadmium telluride and germanium detectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 181Ta(n ,γ ) cross section and average resonance parameter measurements in the unresolved resonance region from 24 to 1180 keV using a filtered-beam technique

    NASA Astrophysics Data System (ADS)

    McDermott, B. J.; Blain, E.; Daskalakis, A.; Thompson, N.; Youmans, A.; Choun, H. J.; Steinberger, W.; Danon, Y.; Barry, D. P.; Block, R. C.; Epping, B. E.; Leinweber, G.; Rapp, M. R.

    2017-07-01

    A new array of four Deuterated Benzene (C6D6 ) detectors has been installed at the Gaerttner Linear Accelerator Center at Rensselaer Polytechnic Institute for the purpose of measuring neutron capture cross sections in the keV region. Measurements were performed on samples of 181Ta in the unresolved resonance region (URR) using a filtered-beam technique, by which a 30 cm iron filter was placed in a white-spectrum neutron beam to remove all time-dependent γ -ray background and all neutrons except those transmitted through resonance-potential interference "windows" in the iron. The resulting filtered beam was effectively a quasimonoenergetic neutron source, which was used for performing measurements on isotopes with narrow level spacings in the URR. The capture cross-section results obtained for two thicknesses of tantalum are in agreement with those documented in the JEFF-3.2 library, as are the average resonance parameters obtained via a fit to the data using the sammy-fitacs code.

  17. Use of integral experiments for the assessment of a new 235U IRSN-CEA evaluation

    NASA Astrophysics Data System (ADS)

    Ichou, Raphaëlle; Leclaire, Nicolas; Leal, Luiz; Haeck, Wim; Morillon, Benjamin; Romain, Pascal; Duarte, Helder

    2017-09-01

    The Working Party on International Nuclear Data Evaluation Co-operation (WPEC) subgroup 29 (SG 29) was established to investigate an issue with the 235U capture cross-section in the energy range from 0.1 to 2.25 keV, due to a possible overestimation of 10% or more. To improve the 235U capture crosssection, a new 235U evaluation has been proposed by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) and the CEA, mainly based on new time-of-flight 235U capture cross-section measurements and recent fission cross-section measurements performed at the n_TOF facility from CERN. IRSN and CEA Cadarache were in charge of the thermal to 2.25 keV energy range, whereas the CEA DIF was responsible of the high energy region. Integral experiments showing a strong 235U sensitivity are used to assess the new evaluation, using Monte-Carlo methods. The keff calculations were performed with the 5.D.1 beta version of the MORET 5 code, using the JEFF-3.2 library and the new 235U evaluation, as well as the JEFF-3.3T1 library in which the new 235U has been included. The benchmark selection allowed highlighting a significant improvement on keff due to the new 235U evaluation. The results of this data testing are presented here.

  18. Asymptotic form for the cross section for the Coulomb interacting rearrangement collisions.

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1973-01-01

    It is shown that in a rearrangement collision leading to the formation of highly excited hydrogenlike states the cross section at high energies behaves as 1/n-squared, with n the principal quantum number, thus invalidating the Brinkman-Kramers approximation for large n. Similarly, in high-energy inelastic electron-hydrogenlike-atom collisions the exchange cross section for sufficiently large n dominates the direct excitation cross section.

  19. Electron-impact excitation heating rates in the atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Kato, H.; Brunger, M. J.; Bradshaw, M. D.

    2010-09-01

    A previous study of various heating rates in the atmosphere of Titan included electron-impact excitation of molecular nitrogen as one component. This work examines this component in more detail, using a statistical equilibrium calculation to avoid approximations made in the earlier work. The sensitivity of the results to different cross-section sets is investigated. It is found that using recent and more physical cross sections for vibrational excitation produces a significant increase in the heating rate. On the other hand, using more accurate cross sections for the electronic states had little apparent effect on the heating rates when used within the approximations made in the previous model. However, the inclusion of more transitions in this study produces a significant increase in the electronic state heating rates, as states that were originally neglected are now accounted for here.

  20. EXCITATION OF LEVELS IN Li$sup 7$ BY INELASTIC ELECTRON SCATTERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernheim, M; Bishop, G R

    1963-07-15

    Cross sections for the excitation of some levels in Li/sup 7/ up to 8- Mev excitation energy were measured by the iiielastic scattering of electrons for a variety of incident electron energies and scatiering angles. The cross section calculated in first Dorn approximation is expected to be valid for this nucleus. The calculated angular distribution is given for different spin and parity and for different levels of excitation. (R.E.U.)

  1. Inelastic collisions of positrons with one-valence-electron targets

    NASA Technical Reports Server (NTRS)

    Abdel-Raouf, Mohamed Assad

    1990-01-01

    The total elastic and positronium formation cross sections of the inelastic collisions between positrons and various one-valence-electron atoms, (namely hydrogen, lithium, sodium, potassium and rubidium), and one-valence-electron ions, (namely hydrogen-like, lithium-like and alkaline-earth positive ions) are determined using an elaborate modified coupled-static approximation. Special attention is devoted to the behavior of the Ps cross sections at the energy regions lying above the Ps formation thresholds.

  2. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Sleaford, B. W.; Firestone, R. B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-06-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  3. Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2.

    PubMed

    Harel, Elad; Long, Phillip D; Engel, Gregory S

    2011-05-01

    Here we present two-dimensional (2D) electronic spectra of the light-harvesting complex LH2 from purple bacteria using coherent pulses with bandwidth of over 100 nm FWHM. This broadband excitation and detection has allowed the simultaneous capture of both the B800 and B850 bands using a single light source. We demonstrate that one laser pulse is sufficient to capture the entire 2D electronic spectrum with a high signal-to-noise ratio. At a waiting time of 800 fs, we observe population transfer from the B800 to B850 band as manifested by a prominent cross peak. These results will enable observation of the dynamics of biological systems across both ultrafast (<1 ps) and slower (>1 ms) timescales simultaneously.

  4. Crossing the "digital divide:" implementing an electronic medical record system in a rural Kenyan health center to support clinical care and research.

    PubMed

    Tierney, William M; Rotich, Joseph K; Smith, Faye E; Bii, John; Einterz, Robert M; Hannan, Terry J

    2002-01-01

    To improve care, one must measure it. In the US, electronic medical record systems have been installed in many institutions to support health care management, quality improvement, and research. Developing countries lack such systems and thus have difficulties managing scarce resources and investigating means of improving health care delivery and outcomes. We describe the implementation and use of the first documented electronic medical record system in ambulatory care in sub-Saharan Africa. After one year, it has captured data for more than 13,000 patients making more than 26,000 visits. We present lessons learned and modifications made to this system to improve its capture of data and ability to support a comprehensive clinical care and research agenda.

  5. Elastic electron scattering by ethyl vinyl ether

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakoo, M. A.; Hong, L.; Kim, B.

    2010-02-15

    We report measured and calculated results for elastic scattering of low-energy electrons by ethyl vinyl ether (ethoxyethene), a prototype system for studying indirect dissociative attachment processes that may play a role in DNA damage. The integral cross section displays the expected {pi}{sup *} shape resonance. The agreement between the calculated and measured cross sections is generally good.

  6. Electron and positron scattering from CF 3I molecules below 600 eV: a comparison with CF 3H

    NASA Astrophysics Data System (ADS)

    Kawada, Michihito K.; Sueoka, Osamu; Kimura, Mineo

    2000-11-01

    The total cross-sections (TCSs) for electron and positron scattering from CF 3I molecules have been studied experimentally. A theoretical analysis based on the continuum multiple-scattering (CMS) method has been performed to understand the origin of resonances and the elastic cross-sections. The present TCS for electron scattering is found to be larger by about 20% than that of T. Underwood-Lemons, D.C. Winkler, J.A. Tossel, J.H. Moore [J. Chem. Phys. 100 (1994) 9117] although the general shape agrees well in the entire energy studied. The difference in the cross-sections for CF 3I and CF 3H is explained by the sizes and the dipole moments of these molecules.

  7. Double differential cross sections of ethane molecule

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev

    2018-05-01

    Partial and total double differential cross sections corresponding to various cations C2H6+, C2H4+, C2H5+, C2H3+, C2H2+, CH3+, H+, CH2+, C2H+, H2+, CH+, H3+, C2+ and C+ produced during the direct and dissociative electron ionization of Ethane (C2H6) molecule have been calculated at fixed impinging electron energies 200 and 500eV by using modified Jain-Khare semi empirical approach. The calculation for double differential cross sections is made as a function of energy loss suffered by primary electron and angle of incident. To the best of my knowledge no other data is available for the comparison.

  8. 102Pd(n, {gamma}) Cross Section Measurement Using DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatarik, R.; Alpizar-Vicente, A. M.; Los Alamos National Laboratory, Los Alamos, NM 87545

    2006-03-13

    The neutron capture cross section of the proton rich nucleus 102Pd was measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. The target was a 2 mg Pd foil with 78% enriched 102Pd. It was held by a 0.9 {mu}m thick Mylar bag which was selected after comparing different thicknesses of Kapton and Mylar for their scattering background. To identify the contribution of the other Pd isotopes the data of a natural Pd sample was compared to the data of the 102Pd enriched sample. A 12C sample was used to determine themore » scattering background. The 102Pd(n, {gamma}) rate is of importance for the p-process nucleosynthesis.« less

  9. Nuclear astrophysics at FRANZ

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Dababneh, S.; Fiebiger, S.; Glorius, J.; Göbel, K.; Heil, M.; Hillmann, P.; Heftrich, T.; Langer, C.; Meusel, O.; Plag, R.; Schmidt, S.; Slavkovská, Z.; Veltum, D.; Weigand, M.; Wiesner, C.; Wolf, C.; Zadeh, A.

    2018-01-01

    The neutron capture cross section of radioactive isotopes for neutron energies in the keV region will be measured by a time-of-flight (TOF) experiment. NAUTILUS will provide a unique facility realizing the TOF technique with an ultra-short flight path at the FRANZ setup at Goethe-University Frankfurt am Main, Germany. A highly optimized spherical photon calorimeter will be built and installed at an ultra-short flight path. This new method allows the measurement of neutron capture cross sections on extremely small sample as needed in the case of 85Kr, which will be produced as an isotopically pure radioactive sample. The successful measurement will provide insights into the dynamics of the late stages of stars, an important independent check of the evolution of the Universe and the proof of principle.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, D.; Fabbris, O.

    Two different experiments performed in the 8 MWth MELUSINE experimental power pool reactor aimed at analyzing 1 GWd/t spent fuel pellets doped with several actinides. The goal was to measure the averaged neutron induced capture cross section in two very different neutron spectra (a PWR-like and an under-moderated one). This paper summarizes the combined deterministic APOLLO2-stochastic TRIPOLI4 analysis using the JEFF-3.1.1 European nuclear data library. A very good agreement is observed for most of neutron induced capture cross section of actinides and a clear underestimation for the {sup 241}Am(n,{gamma}) as an accurate validation of its associated isomeric ratio are emphasized.more » Finally, a possible huge resonant fluctuation (factor of 2.7 regarding to the 1=0 resonance total orbital momenta) is suggested for isomeric ratio. (authors)« less

  11. Ni62(n,γ) and Ni63(n,γ) cross sections measured at the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Lederer, C.; Massimi, C.; Berthoumieux, E.; Colonna, N.; Dressler, R.; Guerrero, C.; Gunsing, F.; Käppeler, F.; Kivel, N.; Pignatari, M.; Reifarth, R.; Schumann, D.; Wallner, A.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthier, B.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Dillmann, I.; Domingo-Pardo, C.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Fernández-Ordóñez, M.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Gramegna, F.; Griesmayer, E.; Gurusamy, P.; Harrisopulos, S.; Heil, M.; Ioannides, K.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Karadimos, D.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Lebbos, E.; Leeb, H.; Leong, L. S.; Losito, R.; Lozano, M.; Manousos, A.; Marganiec, J.; Marrone, S.; Martinez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plag, R.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Tlustos, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.; n TOF Collaboration

    2014-02-01

    The cross section of the Ni62(n,γ) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT=30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni63(n ,γ) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.

  12. X-ray Emission from Highly Charged Heavy Ions Studied at Storage Rings

    NASA Astrophysics Data System (ADS)

    Ma, X.; Stöhlker, Th.; Bosch, F.; Gumberidze, A.; Kozhuharov, C.; Muthig, A.; Mokler, P. H.; Warczak, A.

    2003-01-01

    Radiative electron capture at low projectile energies is studied via angular differential cross sections for collisions of bare uranium with low-Z target atoms. Our results show that for high-Z systems relativistic effects such as spin-flip transitions show up in an unambiguous fashion which still persist even in the low-energy domain. Moreover, following REC into the 2p3/2 state a strong alignment of this level was observed by measuring the angular distribution of the Lyα1 transition in H-like uranium. Here, an interference between the leading E1 decay channel and the much weaker M2 multipole transition gives rise to a remarkable modified angular distribution of the emitted photons. For the particular case of hydrogen-like uranium the former variance of the experimental data with theoretical findings is removed when this E1/M2 multipole mixing is taken into account. Finally, with respect to atomic structure studies, a very recent experiment will be discussed aiming on a precise determination of the electron-electron QED contribution to the groundstate ionization potential in He-like uranium.

  13. Angle-Differential Cross Sections for Radiative Recombination and the Photoelectric Effect in the K, L, and M Shells of One-Electron Systems Calculated Within AN Exact Relativistic Description

    NASA Astrophysics Data System (ADS)

    Ichihara, Akira; Eichler, Jörg

    2001-11-01

    An extensive tabulation of angle-differential cross sections for radiative recombination and, consequently, for the photoelectric effect of hydrogen-like ions with representative charge numbers Z=18, 36, 54, 66, 79, 82, and 92 is presented for the K, L, and M shells and electron energies ranging from 1.0 keV to 1.5 MeV. The cross sections, accurate to three digits, are based on fully relativistic calculations including the effects of the finite nuclear size and all multipole orders of the photon field. In order to provide a good overview, the following procedure has been adopted: For the charge numbers 18, 54, and 92, the differential cross sections are presented in figures for all subshells and for representative energies. Furthermore, as a sample of the calculations, we present a complete table for the case of Z=79. The full tabulation for all charge numbers mentioned above is provided in electronic form (http://www.idealibrary.com/links/doi/10.1006/adnd.2001.0868/dat). By simple scaling, the dependence on the projectile energy in MeV/u can be derived for accelerator experiments, and, by using elementary formulas, the differential cross section for the photoelectric effect as a function of the electron emission angle can also be obtained.

  14. Dissociative recombination of HCl+

    NASA Astrophysics Data System (ADS)

    Larson, Åsa; Fonseca dos Santos, Samantha; E. Orel, Ann

    2017-08-01

    The dissociative recombination of HCl+, including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0 , to the first three excited vibrational states, v = 1 , v = 2 , and v = 3 , are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  15. Electron Scattering from MERCURY-198 and Mercury -204.

    NASA Astrophysics Data System (ADS)

    Laksanaboonsong, Jarungsaeng

    This experiment is the first electron scattering study on mercury isotopes. Electron scattering from ^{198}Hg and ^{204 }Hg has been performed at the NIKHEF-K Medium Energy Accelerator. Measured cross sections cover an effective momentum transfer range from 0.4 to 2.9 fm^ {-1}. Elastic cross sections were determined for scattering from both isotopes. Cross section for inelastic excitations in ^{198}Hg below 3 MeV were also determined. Measured cross sections were fit using DWBA phase shift codes to determine coefficients for Fourier-Bessel expansions of ground state and transition charge densities. Differences between the ground state charge densities of the two isotopes reveal the effect of the polarization of the proton core in response to the addition of neutrons. Spin and parity of several excited states of ^{198}Hg were determined. Extracted transition densities of these states show their predominantly collective nature. Charge densities for members of the ground state rotational band were compared with axially symmetric Hartree-Fock and geometrical model predictions.

  16. Dissociative recombination of HCl.

    PubMed

    Larson, Åsa; Fonseca Dos Santos, Samantha; E Orel, Ann

    2017-08-28

    The dissociative recombination of HCl + , including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0, to the first three excited vibrational states, v = 1, v = 2, and  v = 3, are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  17. Measurements of inclusive W and Z cross sections in pp collisions at sqrt(s)=7 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, V.; et al.,

    2011-01-01

    Measurements of inclusive W and Z boson production cross sections in pp collisions at sqrt(s)=7 TeV are presented, based on 2.9 inverse picobarns of data recorded by the CMS detector at the LHC. The measurements, performed in the electron and muon decay channels, are combined to give sigma(pp to WX) times B(W to muon or electron + neutrino) = 9.95 \\pm 0.07(stat.) \\pm 0.28(syst.) \\pm 1.09(lumi.) nb and sigma(pp to ZX) times B(Z to oppositely charged muon or electron pairs) = 0.931 \\pm 0.026(stat.) \\pm 0.023(syst.) \\pm 0.102(lumi.) nb. Theoretical predictions, calculated at the next-to-next-to-leading order in QCD using recentmore » parton distribution functions, are in agreement with the measured cross sections. Ratios of cross sections, which incur an experimental systematic uncertainty of less than 4%, are also reported.« less

  18. Collisions of low-energy electrons with isopropanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettega, M. H. F.; Winstead, C.; McKoy, V.

    2011-10-15

    We report measured and calculated cross sections for elastic scattering of low-energy electrons by isopropanol (propan-2-ol). The experimental data were obtained using the relative flow technique with helium as the standard gas and a thin aperture as the collimating target gas source, which permits use of this method without the restrictions imposed by the relative flow pressure conditions on helium and the unknown gas. The differential cross sections were measured at energies of 1.5, 2, 3, 5, 6, 8, 10, 15, 20, and 30 eV and for scattering angles from 10 deg. to 130 deg. The cross sections were computedmore » over the same energy range employing the Schwinger multichannel method in the static-exchange plus polarization approximation. Agreement between theory and experiment is very good. The present data are compared with previously calculated and measured results for n-propanol, the other isomer of C{sub 3}H{sub 7}OH. Although the integral and momentum transfer cross sections for the isomers are very similar, the differential cross sections show a strong isomeric effect: In contrast to the f-wave behavior seen in scattering by n-propanol, d-wave behavior is observed in the cross sections of isopropanol. These results corroborate our previous observations in electron collisions with isomers of C{sub 4}H{sub 9}OH.« less

  19. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    DOE PAGES

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till; ...

    2017-07-07

    In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less

  20. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till

    In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less

Top