Organic electronic devices using phthalimide compounds
Hassan, Azad M.; Thompson, Mark E.
2010-09-07
Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.
Organic electronic devices using phthalimide compounds
Hassan, Azad M.; Thompson, Mark E.
2012-10-23
Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.
Organic electronic devices using phthalimide compounds
Hassan, Azad M.; Thompson, Mark E.
2013-03-19
Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.
Wasielewski, Michael R.; Gaines, George L.; Niemczyk, Mark P.; Johnson, Douglas G.; Gosztola, David J.; O'Neil, Michael P.
1996-01-01
A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound.
Wasielewski, M.R.; Gaines, G.L.; Niemczyk, M.P.; Johnson, D.G.; Gosztola, D.J.; O`Neil, M.P.
1996-07-23
A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound are disclosed. 4 figs.
NASA Astrophysics Data System (ADS)
Behzadi, Hadi; Roonasi, Payman; Assle taghipour, Khatoon; van der Spoel, David; Manzetti, Sergio
2015-07-01
The quantum chemical calculations at the DFT/B3LYP level of theory were carried out on seven quinoxaline compounds, which have been synthesized as anti-Mycobacterium tuberculosis agents. Three conformers were optimized for each compound and the lowest energy structure was found and used in further calculations. The electronic properties including EHOMO, ELUMO and related parameters as well as electron density around oxygen and nitrogen atoms were calculated for each compound. The relationship between the calculated electronic parameters and biological activity of the studied compounds were investigated. Six similar quinoxaline derivatives with possible more drug activity were suggested based on the calculated electronic descriptors. A mechanism was proposed and discussed based on the calculated electronic parameters and bond dissociation energies.
Two-photon or higher-order absorbing optical materials and methods of use
NASA Technical Reports Server (NTRS)
Perry, Joseph (Inventor); Marder, Seth (Inventor)
2001-01-01
Compositions capable of simultaneous two-photon absorption and higher order absorptivities are disclosed. Many of these compositions are compounds satisfying the formulae D-.PI.-D, A-.PI.-A, D-A-D and A-D-A, wherein D is an electron donor group, A is an electron acceptor group and .PI. comprises a bridge of .pi.-conjugated bonds connecting the electron donor groups and electron acceptor groups. In A-D-A and D-A-D compounds, the .pi. bridge is substituted with electron donor groups and electron acceptor groups, respectively. Also disclosed are methods that generate an electronically excited state of a compound, including those satisfying one of these formulae. The electronically excited state is achieved in a method that includes irradiating the compound with light. Then, the compound is converted to a multi-photon electronically excited state upon simultaneous absorption of at least two photons of light. The sum of the energies of all of the absorbed photons is greater than or equal to the transition energy from a ground state of the compound to the multi-photon excited state. The energy of each absorbed photon is less than the transition energy between the ground state and the lowest single-photon excited state of the compound is less than the transition energy between the multi-photon excited state and the ground state.
Two-photon or higher-order absorbing optical materials for generation of reactive species
NASA Technical Reports Server (NTRS)
Marder, Seth R. (Inventor); Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Perry, Joseph W. (Inventor)
2003-01-01
Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.
Two-photon or higher-order absorbing optical materials for generation of reactive species
NASA Technical Reports Server (NTRS)
Perry, Joseph W (Inventor); Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R (Inventor)
2007-01-01
Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.
Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species
NASA Technical Reports Server (NTRS)
Perry, Joseph W. (Inventor); Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor)
2013-01-01
Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.
Hyperpolarizable compounds and devices fabricated therefrom
Therien, Michael J.; DiMagno, Stephen G.
1998-01-01
Substituted compounds having relatively large molecular first order hyperpolarizabilities are provided, along with devices and materials containing them. In general, the compounds bear electron-donating and electron-withdrawing chemical substituents on a polyheterocyclic core.
Variable pressure ionization detector for gas chromatography
Buchanan, Michelle V.; Wise, Marcus B.
1988-01-01
Method and apparatus for differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated at pressures ranging from atmospheric to less than 1 torr. Through variation of the pressure within the ECD cell, the organic compounds are induced to either capture or emit electrons. Differentiation of isomeric compounds can be obtianed when, at a given pressure, one isomer is in the emission mode and the other is in the capture mode. Output of the ECD is recorded by chromatogram. The invention also includes a method for obtaining the zero-crossing pressure of a compound, defined as the pressure at which the competing emission and capture reactions are balanced and which may be correlated to the electron affinity of a compound.
Hyperpolarizable compounds and devices fabricated therefrom
Therien, M.J.; DiMagno, S.G.
1998-07-21
Substituted compounds having relatively large molecular first order hyperpolarizabilities are provided, along with devices and materials containing them. In general, the compounds bear electron-donating and electron-withdrawing chemical substituents on a polyheterocyclic core. 13 figs.
X-ray spectra and electron structure of A15 compounds of transition metals
NASA Astrophysics Data System (ADS)
Kurmaev, E. Z.; Iarmoshenko, Iu. M.
1988-01-01
Results of an X-ray emission spectroscopy study of the electron structure of A15 compounds are reported. In particular, attention is given to the X-ray spectra of A15 compounds of the A3B type with transition and nontransition elements, effect of alloying on the formation of the electron structure of ternary phases, and effect of atomic ordering in the X-ray spectra of A15 compounds with changes in heat treament and concentration. The X-ray spectra of A15 compounds irradiated by fast neutrons are also examined.
NASA Astrophysics Data System (ADS)
Antonov, V. N.; Shpak, A. P.; Yaresko, A. N.
2008-02-01
The present state of theoretical understanding of the x-ray magnetic circular dichroism (XMCD) of 4f and 5f compounds is reviewed. Energy band theory based upon the local spin-density approximation (LSDA) describes the XMCD spectra of transition metal compounds with high accuracy. However, the LSDA does not suffice for lanthanide compounds which have a correlated 4f shell. A satisfactory description of the XMCD spectra could be obtained by using a generalization of the LSDA, in which explicitly f electron Coulomb correlations are taken into account (LSDA +U approach). As examples of this group we consider the compound GdN. We also consider uranium 5f compounds. In those compounds where the 5f electrons are rather delocalized, the LSDA describes the XMCD spectra reasonably well. As an example of this group we consider UFe2. Particular differences occur for uranium compounds in which the 5f electrons are neither delocalized nor localized, but more or less semilocalized. Typical examples are UXAl (X =Co, Rh, and Pt), and UX (X =S, Se, Te). However, the semilocalized 5f's are not inert, but their interaction with conduction electrons plays an important role. We also consider the electronic structure and XMCD spectra of the heavy-fermion compounds UPt3, URu2Si2, UPd2Al3, UNi2Al3, and UBe13, where the degree of the 5f localization is increased in comparison with other uranium compounds. The electronic structure and XMCD spectra of UGe2 which possesses simultaneously ferromagnetism and superconductivity also presented. Recently achieved improvements for describing 5f compounds are discussed.
Charge transfer from TiO2 into adsorbed benzene diazonium compounds
NASA Astrophysics Data System (ADS)
Merson, A.; Dittrich, Th.; Zidon, Y.; Rappich, J.; Shapira, Yoram
2004-08-01
Electron transfer from sol-gel-prepared TiO2 into adsorbed benzene diazonium compounds has been investigated using cyclic voltammetry, x-ray photoelectron spectroscopy, contact potential difference, and surface photovoltage spectroscopy. The results show that the potential of maximum electron transfer depends strongly on the dipole moment of the benzene compound. Two reactive surface sites at which electron transfer occurs have been identified.
Organic solid state optical switches and method for producing organic solid state optical switches
Wasielewski, M.R.; Gaines, G.L.; Niemczyk, M.P.; Johnson, D.G.; Gosztola, D.J.; O`Neil, M.P.
1993-01-01
This invention consists of a light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, and a method for making said compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagai, M.; Urimoto, H.; Uetake, K.
The hydrodesulfurization of heavy petroleum feedstocks and coal-derived liquids requires the conversion of high molecular weight compounds like dibenzothiophene and benzonaphthothiophenes. There are several studies in the literature which deal with the mechanism of the hydrodesulfurization of multi-ring thiophenic compounds on cobalt or nickel molybdenum catalysts at high pressure. However, there are only a few studies which relate the chemical reactivity of these compounds to their electronic structure. The reactivity of a multi-ring sulfur-containing compound is not determined solely by the size of the molecule. In addition, others studied the relationship between the first step in the hydrotreating reaction ofmore » benzonaphthothiophene and the Coulombic interaction term of the compounds using the CNDO/S method. Because there is competition between the different processes (hydrogenation and desulfurization) during reaction, it is difficult to understand the relationship between desulfurization and the electronic properties of the compounds under reaction conditions. The calculation of electronic structures necessarily involves many sigma bonds of hydrogenated aromatic rings as well as many electrons of high molecular weight compounds. For this reason, it is best to select a catalyst and reaction conditions under which desulfurization takes place without hydrogenation.« less
NASA Astrophysics Data System (ADS)
Weber, K. C.; Honório, K. M.; da Silva, S. L.; Mercadante, R.; da Silva, A. B. F.
In the present study, the aim was to select electronic properties responsible for free radical scavenging ability of a set of 25 flavonoid compounds employing chemometric methods. Electronic parameters were calculated using the AM1 semiempirical method, and chemometric methods (principal component analysis, hierarchical cluster analysis, and k-nearest neighbor) were used with the aim to build models able to find relationships between electronic features and the antioxidant activity presented by the compounds studied. According to these models, four electronic variables can be considered important to discriminate more and less antioxidant flavonoid compounds: polarizability (α), charge at carbon 3 (QC3), total charge at substituent 5 (QS5), and total charge at substituent 3' (QS3'). The features found as being responsible for the antioxidant activity of the flavonoid compounds studied are consistent with previous results found in the literature. The results obtained can also bring improvements in the search for better antioxidant flavonoid compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Qisheng; Miller, Gordon J.
Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e –/atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Furthermore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate.
Lin, Qisheng; Miller, Gordon J.
2017-12-18
Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e –/atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Furthermore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate.
Low work function, stable thin films
Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.
2000-01-01
Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.
Mechanisms for Fe(III) oxide reduction in sedimentary environments
Nevin, Kelly P.; Lovely, Derek R.
2002-01-01
Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary to have information on the concentrations of electron-shuttling compounds and possibly Fe(III) ligands. Furthermore, as it is now apparent that different genera of Fe(III)-reducing microorganisms may reduce Fe(III) via different mechanisms, knowledge of which Fe(III)-reducing microorganisms predominate in the environment of interest is essential in order to model this process appropriately.
USDA-ARS?s Scientific Manuscript database
Prosciutto crudo were irradiated at 0, 3 and 6kGy by gamma ray (GR) and electron beam (EB), respectively. The odor scores and volatile compounds were examined after 7 days storage at 4'. Volatile compounds from samples without and with irradiation at 6kGy were analyzed by GC-MS. Fifty-nine compounds...
Polymerization catalysts containing electron-withdrawing amide ligands
Watkin, John G.; Click, Damon R.
2002-01-01
The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.
Generation of low work function, stable compound thin films by laser ablation
Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.
2001-01-01
Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.
A stable compound of helium and sodium at high pressure
Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; ...
2017-02-06
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less
Synthesis and Photoluminescent Properties of Arylethynyl substituted 9,10-Anthraquinones
NASA Technical Reports Server (NTRS)
Yang, Jin-Hua; Dass, Amala; Sotiriou-Leventis, Chariklia; Leventis, Nicholas
2003-01-01
A series of arylethynyl substituted anthraquinones were synthesized via Sonogashira coupling reactions of 2,7- dibromo-, 2,6-dibromo- and 2-bromoanthraquinone with para-substituted phenylacetylenes. While the redox properties of those compounds are almost insensitive to substitution, their absorption maxima are linearly related to the Hammett constants for electron donating and electron withdrawing groups separately. All compounds are photoluminescent both in solution (quantum yield of emission approximately 2%) and as solids. X-ray crystallographic characterization of 2,7-bisphenylethynyl anthraquinone indicates a monoclinic p2(l/n) space group and no indication for pi-overlap that would promote self-quenching. The emission maxima are red- shifted by both electron donating and electron withdrawing groups alike. The Stokes shifts of all compounds are significant and are correlated to the electronic properties of the substituents. The reduced forms of these compounds are also photoluminescent and the emission originates from the dihydroanthraquinone core.
A stable compound of helium and sodium at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. We also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less
A stable compound of helium and sodium at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less
Nevin, Kelly P.; Woodard, Trevor L.; Franks, Ashley E.; Summers, Zarath M.; Lovley, Derek R.
2010-01-01
The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appearing in these products accounted for over 85% of the electrons consumed. These results demonstrate that microbial production of multicarbon organic compounds from carbon dioxide and water with electricity as the energy source is feasible. PMID:20714445
Chen, Zhenlian; Zhang, Caixia; Zhang, Zhiyong; Li, Jun
2014-07-14
The d-electron localization is widely recognized as important to transport properties of transition metal compounds, but its role in the energy conversion of intercalation reactions of cathode compounds is still not fully explored. In this work, the correlation of intercalation potential with electron affinity, a key energy term controlling electron intercalation, then with d-electron configuration, is investigated. Firstly, we find that the change of the intercalation potential with respect to the transition metal cations within the same structure class is correlated in an approximately mirror relationship with the electron affinity, based on first-principles calculations on three typical categories of cathode compounds including layered oxides and polyoxyanions Then, by using a new model Hamiltonian based on the crystal-field theory, we reveal that the evolution is governed by the combination of the crystal-field splitting and the on-site d-d exchange interactions. Further, we show that the charge order in solid-solution composites and the compatibility of multi-electron redox steps could be inferred from the energy terms with the d-electron configuration alternations. These findings may be applied to rationally designing new chemistry for the lithium-ion batteries and other metal-ion batteries.
Heat detection and compositions and devices therefor
NASA Technical Reports Server (NTRS)
Rembaum, A. (Inventor)
1975-01-01
Temperature change of a substrate such as a microelectronic component is sensed and detected by means of a mixture of a weak molecular complex of an electron donor compound such as an organic amine and an electron acceptor compound such as nitroaromatic compound. The mixture is encapsulated in a clear binder such as a vinyl resin.
Organic photovoltaic cell incorporating electron conducting exciton blocking layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen R.; Lassiter, Brian E.
2014-08-26
The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to anmore » analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.« less
NASA Astrophysics Data System (ADS)
Richard, Pierre; Zhang, W.-L.; Wu, S.-F.; van Roekeghem, A.; Zhang, P.; Miao, H.; Qian, T.; Nie, S.-M.; Chen, G.-F.; Ding, H.; Xu, N.; Biermann, S.; Capan, C.; Fisk, Z.; Saparov, B. I.; Sefat, A. S.
2015-03-01
It is widely believed that the key ingredients for high-temperature superconductivity are already present in the non-superconducting parent compounds. With its ability to probe the single-particle electronic structure directly in the momentum space, ARPES is a very powerful tool to determine which parameters of the electronic structure are possibly relevant for promoting superconductivity. Here we report ARPES studies on the parent compounds of the 122 family of Fe-based superconductors and their 3 d transition metal pnictide cousins. In particular, we show that the Fe-compound exhibits the largest electronic correlations, possibly a determining factor for unconventional superconductivity.
Electronic structure and optical properties of GdNi2Mnx compounds
NASA Astrophysics Data System (ADS)
Knyazev, Yu. V.; Lukoyanov, A. V.; Kuz'min, Yu. I.; Gaviko, V. S.
2018-02-01
The electronic structure and optical properties of GdNi2Mnx compounds (x = 0, 0.4, 0.6) were investigated. Spin-polarized electronic structure calculations were performed in the approximation of local electron spin density corrected for strong electron correlations using the LSDA+U method. The changes in the magnetic moments and exchange interactions in GdNi2Mnx (x = 0, 0.4, 0.6) governing the increase in the Curie temperature with manganese concentration were determined. The optical constants of the compounds were measured by the ellipsometric method in the wide spectral range of 0.22-15 μm. The peculiarities of the evolution of the frequency dependences of optical conductivity with a change in the manganese content were revealed. Based on the calculated densities of electron states, the behavior of these dispersion curves in the region of interband absorption of light was discussed. The concentration dependences of several electronic characteristics were determined.
Electronic, phonon and superconducting properties of LaPtBi half-Heusler compound
NASA Astrophysics Data System (ADS)
Shrivastava, Deepika; Sanyal, Sankar P.
2018-05-01
In the framework of density functional theory based on plane wave pseudopotential method and linear response technique, we have studied the electronic, phonon and superconducting properties of LaPtBi half-Heusler compound. The electronic band structure and density of states show that it is gapless semiconductor which is consistent with previous results. The positive phonon frequencies confirm the stability of this compound in cubic MgAgAs phase. Superconductivity is studied in terms of Eliashberg spectral function (α2F(ω)), electron-phonon coupling constants (λ). The value of electron-phonon coupling parameter is found to be 0.41 and the superconducting transition temperature is calculated to be 0.76 K, in excellent agreement with the experimentally reported values.
End-group-directed self-assembly of organic compounds useful for photovoltaic applications
Beaujuge, Pierre M.; Lee, Olivia P.; Yiu, Alan T.; Frechet, Jean M.J.
2016-05-31
The present invention provides for an organic compound comprising electron deficient unit covalently linked to two or more electron rich units. The present invention also provides for a device comprising the organic compound, such as a light-emitting diode, thin-film transistor, chemical biosensor, non-emissive electrochromic, memory device, photovoltaic cells, or the like.
Chemical effect on diffusion in intermetallic compounds
NASA Astrophysics Data System (ADS)
Chen, Yi-Ting
With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion activation enthalpy and diffusion pre-factor by using lattice structure simulation. Last but not the least, X-ray photoelectron spectroscopy and First principal calculation simulation were used to observe the electron binding energies in the intermetallic compound and illustrate the partial covalent bonding behavior in the intermetallic compounds.
Li, Jie; Sun, Jin; Cui, Shengmiao; He, Zhonggui
2006-11-03
Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.
ERIC Educational Resources Information Center
Klier, Kamil
2010-01-01
The understanding of electronic structure of atomic and molecular term states involved in spectroscopic transitions is aided by projecting combinations of micro-configurations to multi-electron states with "good" quantum numbers of angular momenta. In rare-earth (RE) compounds, atomic term labels are justifiably carried over to compounds, because…
Zamora, Rosario; León, M Mercedes; Hidalgo, Francisco J
2015-09-16
Comparative formation of both 2-phenylethylamine and phenylacetaldehyde as a consequence of phenylalanine degradation by carbonyl compounds was studied in an attempt to understand if the amine/aldehyde ratio can be changed as a function of reaction conditions. The assayed carbonyl compounds were selected because of the presence in the chain of both electron-donating and electron-withdrawing groups and included alkenals, alkadienals, epoxyalkenals, oxoalkenals, and hydroxyalkenals as well as lipid hydroperoxides. The obtained results showed that the 2-phenylethylamine/phenylacetaldehyde ratio depended upon both the carbonyls and the reaction conditions. Thus, it can be increased using electron-donating groups in the chain of the carbonyl compound, small amounts of carbonyl compound, low oxygen content, increasing the pH, or increasing the temperature at pH 6. Opposed conditions (use of electron-withdrawing groups in the chain of the carbonyl compound, large amounts of carbonyl compound, high oxygen contents, low pH values, and increasing temperatures at low pH values) would decrease the 2-phenylethylamine/phenylacetaldehyde ratio, and the formation of aldehydes over amines in amino acid degradations would be favored.
On irreversible adsorption of electron-donating compounds in aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamon, Hajime; Atsushi, Masanori; Okazaki, Morio
Activated carbons and synthetic adsorbents have been used for liquid purification and wastewater treatment. The feasibility of an adsorption process depends greatly on the cost of regeneration of spent adsorbents. If irreversible adsorption occurs, regeneration of spent adsorbent is very difficult. Hence, it is very important to understand why irreversible adsorption appears in aqueous solution. In the adsorption of electron-donating compounds such as phenol, aniline, L-phenylalanine, and L-tyrosine from aqueous solution, irreversibility was observed on activated carbon and graphite. The compounds, except L-tyrosine, were reversibly adsorbed on a synthetic adsorbent. In the case where the carbonaceous adsorbents contacted the aqueousmore » solution containing electron-donating compounds for a long time, the irreversible amount adsorbed increased with the contact time. A two-state adsorption model was used to explain why the irreversible adsorption of electron-donating compound appears in aqueous solution. First, the compound is adsorbed in the precursor state for irreversible adsorption, and then moves into its irreversible state over a potential energy barrier after a long contact time. The appearance of irreversible adsorption was qualitatively explained by the two-state adsorption model.« less
Picture of the Week: Hacking the bio-nano interface for better biofuels
) influence electron transfer between the enzyme and the electrode to determine the best placement of enzymes compounds) influence electron transfer between the enzyme and the electrode to determine the best placement studied how three quinones (a class of organic compounds) influence electron transfer between the enzyme
Economic analysis of crystal growth in space
NASA Technical Reports Server (NTRS)
Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.
1972-01-01
Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.
NASA Astrophysics Data System (ADS)
Messina, Valeria; Biolatto, Andrea; Sancho, Ana; Descalzo, Adriana; Grigioni, Gabriela; de Reca, Noemí Walsöe
2011-09-01
The aim of the performed work was to evaluate with an electronic nose changes in odor profile of Arauco and Arbequina varieties of extra-virgin olive oil during deep-frying. Changes in odor were analyzed using an electronic nose composed of 16 sensors. Volatile compounds were analyzed by SPME-GC-FID. Principal Component Analysis was applied for electronic results. Arauco variety showed the highest response for sensors. Statistical analysis for volatile compounds indicated a significant (P<0.001) interaction between variety and time of frying processes. Arauco variety showed the highest production of volatile compounds at 60 min of deep frying. The two varieties presented distinct patterns of volatile products, being clearly identified with the electronic nose.
Electronic Structure of GdCuGe Intermetallic Compound
NASA Astrophysics Data System (ADS)
Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.
2018-04-01
The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.
Electron shuttles in biotechnology.
Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi
2009-12-01
Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.
MERCURY COMPOUNDS, CADMIUM COMPOUNDS, TELLURIDES, NEODYMIUM COMPOUNDS, PHOSPHATES , ELECTRON TRANSITIONS, INFRARED OPTICAL MATERIALS, CRYSTAL GROWTH, MAGNESIUM OXIDES, PHOSPHORESCENT MATERIALS, SEMICONDUCTOR DIODES, MICROELECTRONICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeier, Wolfgang G.; Anand, Shashwat; Huang, Lihong
The 18-electron rule is a widely used criterion in the search for new half-Heusler thermoelectric materials. However, several 19-electron compounds such as NbCoSb have been found to be stable and exhibit thermoelectric properties rivaling state-of-the art materials. Using synchrotron X-ray diffraction and density functional theory calculations, we show that samples with nominal (19-electron) composition NbCoSb actually contain a half-Heusler phase with composition Nb0.84CoSb. The large amount of stable Nb vacancies reduces the overall electron count, which brings the stoichiometry of the compound close to an 18-electron count, and stabilizes the material. Excess electrons beyond 18 electrons provide heavy doping neededmore » to make these good thermoelectric materials. This work demonstrates that considering possible defect chemistry and allowing small variation of electron counting leads to extra degrees of freedom for tailoring thermoelectric properties and exploring new compounds. Here we discuss the 18-electron rule as a guide to find defect-free half-Heusler semiconductors. Other electron counts such as 19-electron NbCoSb can also be expected to be stable as n-type metals, perhaps with cation vacancy defects to reduce the electron count.« less
Geng, Wei; Zhang, Haitao; Zhao, Xuefei; Zan, Wenyan; Gao, Xionghou; Yao, Xiaojun
2015-01-01
In this work, the adsorption behavior of nitrogen containing compounds including NH3, pyridine, quinoline, and carbazole on Na(I)Y and rare earth exchanged La(III)Y, Pr(III)Y, Nd(III)Y zeolites was investigated by density functional theory (DFT) calculations. The calculation results demonstrate that rare earth exchanged zeolites have stronger adsorption ability for nitrogen containing compounds than Na(I)Y. Rare earth exchanged zeolites exhibit strongest interaction with quinoline while weakest with carbazole. Nd(III)Y zeolites are found to have strongest adsorption to all the studied nitrogen containing compounds. The analysis of the electronic total charge density and electron orbital overlaps show that nitrogen containing compounds interact with zeolites by π-electrons of the compounds and the exchanged metal atom. Mulliken charge population analysis also proves that adsorption energies are strongly dependent on the charge transfer between the nitrogen containing molecules and exchanged metal atom in the zeolites.
Thermoelectric performance and the role of anti-site disorder in the 24-electron Heusler TiFe2Sn.
Buffon, Malinda L C; Laurita, Geneva; Lamontagne, Leo; Levin, Emily E; Mooraj, Shahryar; Lloyd, Demetrious L; White, Natalie; Pollock, Tresa M; Seshadri, Ram
2017-10-11
Heusler compounds XY 2 Z with 24 valence electrons per formula unit are potential thermoelectric materials, given their thermal and chemical stability and their relatively earth-abundant constituent elements. We present results on the 24-electron compound TiFe 2 Sn here. First principles calculations on this compound suggest semiconducting behavior. A relatively flat conduction band that could be associated with a high Seebeck coefficient upon electron doping is found. A series of compounds have been prepared and characterized using a combination of synchrotron x-ray and neutron diffraction studies to understand the effects of site order/disorder phenomena and n-type doping. Samples fabricated by a three step processing approach were subjected to high temperature Seebeck and electrical resistivity measurements. Ti:Fe anti-site disorder is present in the stoichiometric compound and these defects are reduced when starting Ti-rich compositions are employed. Additionally, we investigate control of the Seebeck coefficient through the introduction of carriers through the substitution of Sb on the Sn site in these intrinsically p-type materials.
Gaseous insulators for high voltage electrical equipment
Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.
1979-01-01
Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.
Gaseous insulators for high voltage electrical equipment
Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.
1981-01-01
Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.
The electronic properties of SWNTs intercalated by electron acceptors
NASA Astrophysics Data System (ADS)
Chernysheva, M. V.; Kiseleva, E. A.; Verbitskii, N. I.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu. D.; Savilov, S. V.; Kiselev, N. A.; Zhigalina, O. M.; Kumskov, A. S.; Krestinin, A. V.; Hutchison, J. L.
2008-05-01
Here we report synthesis of Chal@SWNT nanocomposites (where Chal=S, Se and Te) and the impact of the intercalated electron-acceptor compounds on the electronic properties of SWNTs. The chalcogens were introduced to the channels of single-walled carbon nanotubes by molten media technique via impregnation of pre-opened SWNTs with melted guest compounds in vacuum. HRTEM imaging confirms the filling of nanotube channels by continuous nanostructures of corresponding chalcogens. The strong influence of incorporated matter on the electronic properties of the SWNTs was detected by Raman spectroscopy.
NASA Technical Reports Server (NTRS)
Ware, Jacqueline; Hammond, Ernest C., Jr.
1989-01-01
The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.
NASA Astrophysics Data System (ADS)
Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su
2012-08-01
The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.
Use of electronic noses for detection of odour from animal production facilities: a review.
Nimmermark, S
2001-01-01
In the field of controlling livestock and poultry odours in the internal and external environment and in derived food products, one main obstacle is how to measure the odour in a suitable way. Olfactometry and a human panel have been used in most studies of farm odour until now. Alternatives like electronic noses are interesting considering disadvantages for olfactometry regarding cost and labour requirement. An electronic device can produce an almost instant response which is useful in many applications. Studies have shown detection of farm odour for some electronic noses and also response to odour concentrations. Other studies have shown very high odour threshold values compared to human noses. Electronic noses with a large number of sensors have been developed since a base was formed in the 1950s. The fast progress in data processing and sensor development in the latest years have made the electronic noses interesting for a large number of industrial applications in the food processing industry, as well as in other areas. Materials like manure produce a complex mixture of odorous compounds and the interaction between these creates a unique odour where no specific dominating and characterising compound seems to exist. Related to swine farms almost 200 different odorous compounds have been reported. The electronic noses can, depending on the sensitivity of its sensors, detect some compounds at lower levels than the human nose, while other compounds offensive to a human nose cannot be detected. Proper function of the electronic noses with sensitivity for the odorous gases in the application must be followed by satisfying properties regarding ageing, temperature stability, humidity and other environmental factors.
NASA Astrophysics Data System (ADS)
Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.
2002-11-01
The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genderen, E. van; Clabbers, M. T. B.; Center for Cellular Imaging and NanoAnalytics
A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at roommore » temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)« less
Electron spin resonance of an irradiated single crystal of potassium hydrogen maleate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwasaki, Machio; Itoh, Koichi
1963-09-15
Electron spin resonance absorptions of x-irradiated single crystals of potassium hydrogen maleate and potassium deuterium maleate were observed. Both compounds gave the same hyperfine structures, although the slightly sharper line widths were observed for the deuterium exchanged compound.
Electron-phonon superconductivity in YIn3
NASA Astrophysics Data System (ADS)
Billington, D.; Llewellyn-Jones, T. M.; Maroso, G.; Dugdale, S. B.
2013-08-01
First-principles calculations of the electron-phonon coupling were performed on the cubic intermetallic compound YIn3. The electron-phonon coupling constant was found to be λep = 0.42. Using the Allen-Dynes formula with a Coulomb pseudopotential of μ* = 0.10, a Tc of approximately 0.77 K is obtained which is reasonably consistent with the experimentally observed temperature (between 0.8 and 1.1 K). The results indicate that conventional electron-phonon coupling is capable of producing the superconductivity in this compound.
Investigating biological activity spectrum for novel styrylquinazoline analogues.
Jampilek, Josef; Musiol, Robert; Finster, Jacek; Pesko, Matus; Carroll, James; Kralova, Katarina; Vejsova, Marcela; O'Mahony, Jim; Coffey, Aidan; Dohnal, Jiri; Polanski, Jaroslaw
2009-10-23
In this study, series of ring-substituted 2-styrylquinazolin-4(3H)-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.
Two-Center/Three-Electron Sigma Half-Bonds in Main Group and Transition Metal Chemistry.
Berry, John F
2016-01-19
First proposed in a classic Linus Pauling paper, the two-center/three-electron (2c/3e) σ half-bond challenges the extremes of what may or may not be considered a chemical bond. Two electrons occupying a σ bonding orbital and one electron occupying the antibonding σ* orbital results in bond orders of ∼0.5 that are characteristic of metastable and exotic species, epitomized in the fleetingly stable He2(+) ion. In this Account, I describe the use of coordination chemistry to stabilize such fugacious three-electron bonded species at disparate ends of the periodic table. A recent emphasis in the chemistry of metal-metal bonds has been to prepare compounds with extremely short metal-metal distances and high metal-metal bond orders. But similar chemistry can be used to explore metal-metal bond orders less than one, including 2c/3e half-bonds. Bimetallic compounds in the Ni2(II,III) and Pd2(II,III) oxidation states were originally examined in the 1980s, but the evidence collected at that time suggested that they did not contain 2c/3e σ bonds. Both classes of compounds have been re-examined using EPR spectroscopy and modern computational methods that show the unpaired electron of each compound to occupy a M-M σ* orbital, consistent with 2c/3e Ni-Ni and Pd-Pd σ half-bonds. Elsewhere on the periodic table, a seemingly unrelated compound containing a trigonal bipyramidal Cu3S2 core caused a stir, leaving prominent theorists at odds with one another as to whether the compound contains a S-S bond. Due to my previous experience with 2c/3e metal-metal bonds, I suggested that the Cu3S2 compound could contain a 2c/3e S-S σ half-bond in the previously unknown oxidation state of S2(3-). By use of the Cambridge Database, a number of other known compounds were identified as potentially containing S2(3-) ligands, including a noteworthy set of cyclopentadienyl-supported compounds possessing diamond-shaped Ni2E2 units with E = S, Se, and Te. These compounds were subjected to extensive studies using X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, density functional theory, and wave function-based computational methods, as well as chemical oxidation and reduction. The compounds contain E-E 2c/3e σ half-bonds and unprecedented E2(3-) "subchalcogenide" ligands, ushering in a new oxidation state paradigm for transition metal-chalcogen chemistry.
Bulk semiconducting scintillator device for radiation detection
Stowe, Ashley C.; Burger, Arnold; Groza, Michael
2016-08-30
A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.
Does menaquinone participate in brain astrocyte electron transport?
Lovern, Douglas; Marbois, Beth
2013-10-01
Quinone compounds act as membrane resident carriers of electrons between components of the electron transport chain in the periplasmic space of prokaryotes and in the mitochondria of eukaryotes. Vitamin K is a quinone compound in the human body in a storage form as menaquinone (MK); distribution includes regulated amounts in mitochondrial membranes. The human brain, which has low amounts of typical vitamin K dependent function (e.g., gamma carboxylase) has relatively high levels of MK, and different regions of brain have different amounts. Coenzyme Q (Q), is a quinone synthesized de novo, and the levels of synthesis decline with age. The levels of MK are dependent on dietary intake and generally increase with age. MK has a characterized role in the transfer of electrons to fumarate in prokaryotes. A newly recognized fumarate cycle has been identified in brain astrocytes. The MK precursor menadione has been shown to donate electrons directly to mitochondrial complex III. Vitamin K compounds function in the electron transport chain of human brain astrocytes. Copyright © 2013 Elsevier Ltd. All rights reserved.
One-atom-layer 4×4 compound in (Tl, Pb)/Si(111) system
NASA Astrophysics Data System (ADS)
Mihalyuk, A. N.; Hsing, C. R.; Wei, C. M.; Gruznev, D. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Zotov, A. V.; Saranin, A. A.
2017-03-01
An ordered 4×4-periodicity 2D compound has been found in the (Tl, Pb)/Si(111) system and its composition, structure and electronic properties have been characterized using low-energy electron diffraction, scanning tunneling microscopy observations and density-functional-theory calculations. The compound has been concluded to contain 9 Tl atoms and 12 Pb atoms per 4×4 unit cell, i.e., 0.56 ML of Tl and 0.75 ML of Pb. Structural model was proposed for the 4×4-(Tl, Pb) compound where building blocks are a hexagonal array of 12 Pb atoms, a triangular array of 6 Tl atoms and a Tl trimer. The proposed structure has a C3 symmetry and occurs in the two equivalent orientations. The electron band structure of the compound contains two metallic spin-split surface-state bands. Bearing in mind the advanced properties of the known √{ 3 } ×√{ 3 } 2D compound in the same (Tl, Pb)/Si(111) system (i.e., combination of giant Rashba effect and superconductivity), the found 4×4-(Tl, Pb) compound is believed to be a promising object for exploration of its superconductive properties.
NASA Astrophysics Data System (ADS)
Herper, H. C.; Ahmed, T.; Wills, J. M.; Di Marco, I.; Björkman, T.; Iuşan, D.; Balatsky, A. V.; Eriksson, O.
2017-08-01
Recent progress in materials informatics has opened up the possibility of a new approach to accessing properties of materials in which one assays the aggregate properties of a large set of materials within the same class in addition to a detailed investigation of each compound in that class. Here we present a large scale investigation of electronic properties and correlated magnetism in Ce-based compounds accompanied by a systematic study of the electronic structure and 4 f -hybridization function of a large body of Ce compounds. We systematically study the electronic structure and 4 f -hybridization function of a large body of Ce compounds with the goal of elucidating the nature of the 4 f states and their interrelation with the measured Kondo energy in these compounds. The hybridization function has been analyzed for more than 350 data sets (being part of the IMS database) of cubic Ce compounds using electronic structure theory that relies on a full-potential approach. We demonstrate that the strength of the hybridization function, evaluated in this way, allows us to draw precise conclusions about the degree of localization of the 4 f states in these compounds. The theoretical results are entirely consistent with all experimental information, relevant to the degree of 4 f localization for all investigated materials. Furthermore, a more detailed analysis of the electronic structure and the hybridization function allows us to make precise statements about Kondo correlations in these systems. The calculated hybridization functions, together with the corresponding density of states, reproduce the expected exponential behavior of the observed Kondo temperatures and prove a consistent trend in real materials. This trend allows us to predict which systems may be correctly identified as Kondo systems. A strong anticorrelation between the size of the hybridization function and the volume of the systems has been observed. The information entropy for this set of systems is about 0.42. Our approach demonstrates the predictive power of materials informatics when a large number of materials is used to establish significant trends. This predictive power can be used to design new materials with desired properties. The applicability of this approach for other correlated electron systems is discussed.
Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui
2016-04-01
Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Computer predictions on Rh-based double perovskites with unusual electronic and magnetic properties
NASA Astrophysics Data System (ADS)
Halder, Anita; Nafday, Dhani; Sanyal, Prabuddha; Saha-Dasgupta, Tanusri
2018-03-01
In search for new magnetic materials, we make computer prediction of structural, electronic and magnetic properties of yet-to-be synthesized Rh-based double perovskite compounds, Sr(Ca)2BRhO6 (B=Cr, Mn, Fe). We use combination of evolutionary algorithm, density functional theory, and statistical-mechanical tool for this purpose. We find that the unusual valence of Rh5+ may be stabilized in these compounds through formation of oxygen ligand hole. Interestingly, while the Cr-Rh and Mn-Rh compounds are predicted to be ferromagnetic half-metals, the Fe-Rh compounds are found to be rare examples of antiferromagnetic and metallic transition-metal oxide with three-dimensional electronic structure. The computed magnetic transition temperatures of the predicted compounds, obtained from finite temperature Monte Carlo study of the first principles-derived model Hamiltonian, are found to be reasonably high. The prediction of favorable growth condition of the compounds, reported in our study, obtained through extensive thermodynamic analysis should be useful for future synthesize of this interesting class of materials with intriguing properties.
Structural, electronic and elastic properties of heavy fermion YbRh2 Laves phase compound
NASA Astrophysics Data System (ADS)
Pawar, Harsha; Shugani, Mani; Aynyas, Mahendra; Sanyal, Sankar P.
2018-05-01
The structural, electronic and elastic properties of YbRh2 Laves phase intermetallic compound which crystallize in cubic (MgCu2-type) structure have been investigated using ab-initio full potential linearized augmented plane wave (FP- LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B') are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for this compound which obeys the stability criteria for cubic system.
NASA Astrophysics Data System (ADS)
Chibani, S.; Arbouche, O.; Zemouli, M.; Amara, K.; Benallou, Y.; Azzaz, Y.; Belgoumène, B.; Bentayeb, A.; Ameri, M.
2018-01-01
The structural, electronic, elastic, and thermoelectric properties of TiIrX (X = As and Sb) half-Heusler compounds with 18 valence electrons were studied using density functional theory. The generalized gradient approximation of Perdew-Burke and Ernzerhof used for calculation of the structural parameters and elastic properties of TiIrAs and TiIrSb denotes that the computed lattice constants were in excellent agreement with the available experimental data and previous theoretical works. Furthermore, the calculated elastic constants for both compounds satisfy the Born criteria indicating their mechanical stabilities. The modified Becke-Johnson potential (TB-mBJ) was used to provide a better description of the electronic structures, which indicate that both compounds are narrow-gap semiconductors. Additionally, the investigations of thermoelectric performance were carried out using the results of ab initio band-structure calculations and the semi-classical Boltzmann theory within the constant relaxation time approximations. The predicted values of the figure of merit ZT e are close to unity at room temperature. This reveals that TiIrAs and TiIrSb compounds are excellent candidates for practical applications in the thermoelectric devices.
NASA Astrophysics Data System (ADS)
Abid, O. Miloud; Menouer, S.; Yakoubi, A.; Khachai, H.; Omran, S. Bin; Murtaza, G.; Prakash, Deo; Khenata, R.; Verma, K. D.
2016-05-01
The structural, electronic, elastic, thermoelectric and thermodynamic properties of NbMSb (M = Fe, Ru, Os) half heusler compounds are reported. The full-potential linearized augmented plane wave (FP-LAPW) plus local orbital (lo) method, based on the density functional theory (DFT) was employed for the present study. The equilibrium lattice parameter results are in good compliance with the available experimental measurements. The electronic band structure and Boltzmann transport calculations indicated a narrow indirect energy band gap for the compound having electronic structure favorable for thermoelectric performance as well as with substantial thermopowers at temperature ranges from 300 K to 800 K. Furthermore, good potential for thermoelectric performance (thermopower S ≥ 500 μeV) was found at higher temperature. In addition, the analysis of the charge density, partial and total densities of states (DOS) of three compounds demonstrate their semiconducting, ionic and covalent characters. Conversely, the calculated values of the Poisson's ratio and the B/G ratio indicate their ductile makeup. The thermal properties of the compounds were calculated by quasi-harmonic Debye model as implemented in the GIBBS code.
Does Compound I Vary Significantly between Isoforms of Cytochrome P450?
2011-01-01
The cytochrome P450 (CYP) enzymes are important in many areas, including pharmaceutical development. Subtle changes in the electronic structure of the active species, Compound I, have been postulated previously to account partly for the experimentally observed differences in reactivity between isoforms. Current predictive models of CYP metabolism typically assume an identical Compound I in all isoforms. Here we present a method to calculate the electronic structure and to estimate the Fe–O bond enthalpy of Compound I, and apply it to several human and bacterial CYP isoforms. Conformational flexibility is accounted for by sampling large numbers of structures from molecular dynamics simulations, which are subsequently optimized with density functional theory (B3LYP) based quantum mechanics/molecular mechanics. The observed differences in Compound I between human isoforms are small: They are generally smaller than the spread of values obtained for the same isoform starting from different initial structures. Hence, it is unlikely that the variation in activity between human isoforms is due to differences in the electronic structure of Compound I. A larger difference in electronic structure is observed between the human isoforms and P450cam and may be explained by the slightly different hydrogen-bonding environment surrounding the cysteinyl sulfur. The presence of substrate in the active site of all isoforms studied appears to cause a slight decrease in the Fe–O bond enthalpy, apparently due to displacement of water out of the active site, suggesting that Compound I is less stable in the presence of substrate. PMID:21863858
Endohedral gallide cluster superconductors and superconductivity in ReGa5.
Xie, Weiwei; Luo, Huixia; Phelan, Brendan F; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph
2015-12-22
We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciftci, Yasemin O.; Mahanti, Subhendra D.
Electronic band structure and structural properties of two representative half-Heusler (HH) compounds with 8 electron valence count (VC), KScC and KScGe, have been studied using first principles methods within density functional theory and generalized gradient approximation. These systems differ from the well studied class of HH compounds like ZrNiSn and ZrCoSb which have VC = 18 because of the absence of d electrons of the transition metal atoms Ni and Co. Electronic transport properties such as Seebeck coefficient (S), electrical conductivity (σ), electronic thermal conductivity (κ{sub e}) (the latter two scaled by electronic relaxation time), and the power factor (S{sup 2}σ) havemore » been calculated using semi-classical Boltzmann transport theory within constant relaxation time approximation. Both the compounds are direct band gap semiconductors with band extrema at the X point. Their electronic structures show a mixture of heavy and light bands near the valance band maximum and highly anisotropic conduction and valence bands near the band extrema, desirable features of good thermoelectric. Optimal p- or n-type doping concentrations have been estimated based on thermopower and maximum power factors. The optimum room temperature values of S are ∼1.5 times larger than that of the best room temperature thermoelectric Bi{sub 2}Te{sub 3}. We also discuss the impact of the band structure on deviations from Weidemann-Franz law as one tunes the chemical potential across the band gap.« less
Yosca, Timothy H.; Langston, Matthew C.; Krest, Courtney M.; Onderko, Elizabeth L.; Grove, Tyler L.; Livada, Jovan; Green, Michael T.
2018-01-01
We report on the protonation state of Helicobacter pylori catalase compound II. UV/visible, Mössbauer, and X-ray absorption spectroscopies have been used to examine the intermediate from pH 5 to 14. We have determined that HPC-II exists in an iron(IV) hydroxide state up to pH 11. Above this pH, the iron(IV) hydroxide complex transitions to a new species (pKa = 13.1) with Mössbauer parameters that are indicative of an iron(IV)-oxo intermediate. Recently, we discussed a role for an elevated compound II pKa in diminishing the compound I reduction potential. This has the effect of shifting the thermodynamic landscape toward the two-electron chemistry that is critical for catalase function. In catalase, a diminished potential would increase the selectivity for peroxide disproportionation over off-pathway one-electron chemistry, reducing the buildup of the inactive compound II state and reducing the need for energetically expensive electron donor molecules. PMID:27960340
BAC-MP4 predictions of thermochemistry for the gas-phase tin compounds in the Sn-H-C-Cl system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, Mark D.; Melius, Carl F.
2004-09-01
In this work, the BAC-MP4 method is extended for the first time to compounds in the fourth row of the periodic table, resulting in a self-consistent set of thermochemical data for 56 tin-containing molecules in the Sn-H-C-Cl system. The BAC-MP4 method combines ab initio electronic structure calculations with empirical corrections to obtain accurate heats of formation. To obtain electronic energies for tin-containing species, the standard 6-31G(d,p) basis set used in BAC-MP4 calculations is augmented with a relativistic effective core potential to describe the electronic structure of the tin atom. Both stable compounds and radical species are included in this study.more » Trends within homologous series and calculated bond dissociation energies are consistent with previous BAC-MP4 predictions for group 14 compounds and the limited data available from the literature, indicating that the method is performing well for these compounds.« less
Jeyanthi, Venkadapathi; Velusamy, Palaniyandi
2016-06-01
The aim of this study was to purify, characterize and evaluate the antibacterial activity of bioactive compound against methicillin-resistant Staphylococcus aureus (MRSA). The anti-MRSA compound was produced by a halophilic bacterial strain designated as MHB1. The MHB1 strain exhibited 99 % similarity to Bacillus amyloliquefaciens based on 16S rRNA gene analysis. The culture conditions of Bacillus amyloliquefaciens MHB1 were optimized using nutritional and environmental parameters for enhanced anti-MRSA compound production. The pure bioactive compound was isolated using silica gel column chromatography and Semi-preparative High-performance liquid chromatography (Semi-preparative HPLC). The Thin layer chromatography, Fourier transform infrared spectroscopy and proton NMR ((1)H NMR) analysis indicated the phenolic nature of the compound. The molecular mass of the purified compound was 507 Da as revealed by Liquid chromatography-mass spectrometry (LC-MS) analysis. The compound inhibited the growth of MRSA with minimum inhibitory concentration (MIC) of 62.5 µg mL(-1). MRSA bacteria exposed to 4× MIC of the compound and the cell viability was determined using flow cytometric analysis. Scanning electron microscope and Transmission electron microscope analysis was used to determine the ultrastructural changes in bacteria. This is the first report on isolation of anti-MRSA compound from halophilic B. amyloliquefaciens MHB1 and could act as a promising biocontrol agent.
NASA Astrophysics Data System (ADS)
Mizutani, U.; Sato, H.
2018-05-01
Many face-centred cubic elements and compounds with the number of atoms per unit cell N equal to 8, 12 and 16 are known to be stabilised by forming either a band gap or a pseudogap at the Fermi level. They are conveniently expressed as cF8, cF12 and cF16, respectively, in the Pearson symbol. From the cF8 family, we worked on three tetravalent elements C (diamond), Si and Ge, SZn-type AsGa compound and NaCl-type compounds like BiLu, AsSc, etc. From the cF12 family, more than 80 compounds were selected, with a particular emphasis on ABC- and half-Heusler-type ternary equiatomic compounds. Among cF16 compounds, both the Heusler compounds ABC2 and Zintl compounds were studied. We revealed that, regardless of whether or not the transition metal (TM) and/or rare-earth (RE) elements are involved as constituent elements, the energy gap formation mechanism for cF8, cF12 and cF16 compounds can be universally discussed in terms of interference phenomenon of itinerant electrons with set of reciprocal lattice planes with ? = 8, 11 and 12, where ? refers to square of the critical reciprocal of lattice vector of an fcc lattice. The number of itinerant electrons per unit cell, e/uc, for all these band gap/pseudogap-bearing compounds is found to fall on a universal line called "3/2-power law" when plotted against ? on a logarithmic scale. This proves the validity of the fulfilment of the interference condition ? in conformity with other pseudogap compounds with different crystal symmetries and different sizes of the unit cell reported in literature.
Structural stability and electronic structure of transition metal compound: HfN
NASA Astrophysics Data System (ADS)
Sarwan, Madhu; Shukoor, V. Abdul; Singh, Sadhna
2018-05-01
The structural stability of transition metal nitride (HfN) has been investigated using density functional theory (DFT) with the help of Quantum-espresso codes. Our calculations confirm that the hafnium nitride (HfN) is stable in zinc-blende (B3) and rock-salt (B1) type structure. We have also reported the structural and electronic properties of HfN compound. These structural properties have been compared with experimental and theoretical data available on this compound.
Ahn, Se Chang; Hubbard, Brian; Cha, Daniel K; Kim, Byung J
2014-01-01
Ammonium perchlorate is one of the main constituents in Army's insensitive melt-pour explosive, PAX-21 in addition to RDX and 2,4-dinitroanisole (DNAN). The objective of this study is to develop an innovative treatment process to remove both perchlorate and energetic compounds simultaneously from PAX-21 production wastewater. It was hypothesized that the pretreatment of PAX-21 wastewater with zero-valent iron (ZVI) would convert energetic compounds to products that are more amenable for biological oxidation and that these products serve as electron donors for perchlorate-reducing bacteria. Results of batch ZVI reduction experiments showed that DNAN was completely reduced to 2,4-diaminoanisole and RDX was completely reduced to formaldehyde. Anaerobic batch biodegradation experiments showed that perchlorate (30 mg L(-1)) in ZVI-treated PAX-21 wastewater was decreased to an undetectable level after 5 days. Batch biodegradation experiments also confirmed that formaldehyde in ZVI-treated wastewater was the primary electron donor for perchlorate-respiring bacteria. The integrated iron-anaerobic bioreactor system was effective in completely removing energetic compounds and perchlorate from the PAX-21 wastewater without adding an exogenous electron donor. This study demonstrated that ZVI pretreatment not only removed energetic compounds, but also transformed energetic compounds to products that can serve as the source of electrons for perchlorate-respiring bacteria.
Electronic, thermoelectric and transport properties of cesium cadmium trifluoride: A DFT study
NASA Astrophysics Data System (ADS)
Abraham, Jisha Annie; Pagare, G.; Sanyal, Sankar P.
2018-04-01
The full potential linearized augmented plane wave method based on density functional theory is employed to investigate the electronic structure of CsCdF3. The electronic properties of this compound have been studied from the band structure plot and density of states. The presence of indirect energy gap reveals its insulating nature. Using constant relaxation time, the electrical conductivity, electronic thermal conductivity, Seebeck coefficient and figure of merit are calculated by using Boltzmann transport theory. We have also studied the temperature dependence of thermoelectric properties of this compound.
Gorelik, Tatiana E; Schmidt, Martin U; Kolb, Ute; Billinge, Simon J L
2015-04-01
This paper shows that pair-distribution function (PDF) analyses can be carried out on organic and organometallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction and nanodiffraction in transmission electron microscopy or nanodiffraction in scanning transmission electron microscopy modes. The methods were demonstrated on organometallic complexes (chlorinated and unchlorinated copper phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam damage of the sample are possible to resolve.
NASA Astrophysics Data System (ADS)
Tokumoto, T.; Brooks, J. S.; Oshima, Y.; Choi, E. S.; Brunel, L. C.; Akutsu, H.; Kaihatsu, T.; Yamada, J.; van Tol, J.
2008-04-01
Electron spin resonance reveals the spin behavior of conduction (π) and localized (d) electrons in β-(BDA-TTP)2MCl4 (M=Fe, Ga). Both the Ga3+(S=0) and Fe3+(S=5/2) compounds exhibit a metal-insulator transition at 113 K with the simultaneous formation of a spin-singlet ground state in the π electron system of the donor molecules. The behavior is consistent with charge ordering in β-(BDA-TTP)2MCl4 at the metal-insulator transition. At 5 K, the Fe3+ compound orders antiferromagnetically, even though the π electrons, which normally would facilitate magnetic exchange, are localized nonmagnetic singlets.
Irfan, Ahmad; Chaudhry, Aijaz Rasool; Muhammad, Shabbir; Al-Sehemi, Abdullah G
2017-08-01
Owing to their excellent electrochemical properties, graphenes found applications in several fields ranging from semiconductors, solar cells, field effect transistors, and nanoscale electronic devices as well as in nonlinear optical (NLO) applications. The structural features, electro-optical, charge transport and nonlinear optical properties of the boron-doped graphene (BG) compound 1 were studied using density functional theory methods The BG compound comprises a central electron deficient site of boron atoms, which can serve as electron acceptor while terminal alkoxy groups as donors leading to powerful donor-π-acceptor (D-π-A) configuration. The experimental crystal structure was successfully reproduced by optimized ground state geometry at PBE0/6-311G* level of theory for isolated molecule. The experimental lattice parameters, geometries, crystal presentation and alignment of molecules in the unit cells as well as their packing orientation of BG compound 1 was also efficiently reproduced by applying periodic boundary conditions (PBC) at PBE level. The comprehensive intramolecular charge transfer (CT) was realized from terminal rings of the HOMO to the electron deficient sites of boron atoms of the LUMO. The nature of BG compound 1 might be more towards hole transport even though its hole reorganization energy is twice than that of the electron one due to the significant higher hole transfer integral values. The superior hole transfer integrals and intrinsic mobility values of the BG compound 1 might lead remarkable hole transport contender as compared to many other organic materials. The narrow band gap, density of states profile, dielectric function, uniform conductivity functions and noteworthy electronic as well as CT properties revealed that the BG compound 1 might be proficient optoelectronic contestant having intermolecular CT as well as intramolecular CT with optimal stability. A comparison of static third-order polarizability <γ> of BG compound 1, as calculated in present investigation, was also performed with some standard NLO molecules as well as graphene nanoflakes. Moreover, longitudinal component γ zzzz of parent compound has been found 12 and 4 times larger than those of previously reported open-shell poly aromatic hydrocarbons (PAH). Interestingly, by increasing the donor ability, i.e., introduction of C 2 H 2 PhNH 2 groups in place of OC 4 H 9 groups (BG compound 3) at terminal positions boosts the <γ> amplitude∼8 times than that of its parent BG compound 1. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saghatforoush, Lotfali, E-mail: saghatforoush@gmail.com; Khoshtarkib, Zeinab; Amani, Vahid
2016-01-15
Three new coordination polymers, [Hg(μ-bptz)X{sub 2}]{sub n} (X=Cl (1), Br (2)) and [Hg{sub 2}(μ-bptz)(μ-I){sub 2}I{sub 2}]{sub n} (3) (bptz=3,6-bis(2-pyridyl)-1,2,4,5-tetrazine) were synthesized. X-ray structural analysis indicated that compounds 1 and 2 are composed of one-dimensional (1D) linear chains while the compound 3 has 1D stair-stepped structure. The electronic band structure along with density of states (DOS) calculated by the DFT method indicates that compound 1 and 2 are direct band gap semiconductors; however, compound 3 is an indirect semiconductor. The linear optical properties of the compounds are also calculated by DFT method. According to the DFT calculations, the observed emission bandmore » of the compounds in solid state is due to electron transfer from an excited bptz-π* state (CBs) to the top of VBs. {sup 1}H NMR spectra of the compounds indicate that, in solution phase, the compounds don’t decompose completely. Thermal stability of the compounds is studied using TG, DTA methods. - Graphical abstract: Synthesis, crystal structure and emission spectra of [Hg(μ-bptz)X{sub 2}]{sub n} (X=Cl and Br) and [Hg{sub 2}(μ-bptz)(μ-I){sub 2}I{sub 2}]{sub n} are presented. The electronic band structure and linear optical properties of the compounds are calculated by the DFT method. - Highlights: • Three 1D Hg(II) halide coordination polymers with bptz ligand have been prepared. • The structures of the compounds are determined by single crystal XRD. • DFT calculations show that [Hg(μ-bptz)X{sub 2}]{sub n} (X=Cl and Br) have a direct band gap. • DFT calculations show that [Hg{sub 2}(μ-bptz)(μ-I){sub 2}I{sub 2}]{sub n} has an indirect band gap. • The compounds show an intraligand electron transfer emission band in solid state.« less
NASA Astrophysics Data System (ADS)
Pawar, H.; Shugani, M.; Aynyas, M.; Sanyal, S. P.
2018-02-01
The structural, electronic and elastic properties of YbTM2 (TM = Ir and Pt) Laves phase intermetallic compounds which crystallize in cubic (MgCu2-type) structure, have been investigated using ab-initio full potential linearized augmented plane wave (FP-LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B‧) are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for these compounds which obey the stability criteria for cubic system.
Powering microbes with electricity: direct electron transfer from electrodes to microbes.
Lovley, Derek R
2011-02-01
The discovery of electrotrophs, microorganisms that can directly accept electrons from electrodes for the reduction of terminal electron acceptors, has spurred the investigation of a wide range of potential applications. To date, only a handful of pure cultures have been shown to be capable of electrotrophy, but this process has also been inferred in many studies with undefined consortia. Potential electron acceptors include: carbon dioxide, nitrate, metals, chlorinated compounds, organic acids, protons and oxygen. Direct electron transfer from electrodes to cells has many advantages over indirect electrical stimulation of microbial metabolism via electron shuttles or hydrogen production. Supplying electrons with electrodes for the bioremediation of chlorinated compounds, nitrate or toxic metals may be preferable to adding organic electron donors or hydrogen to the subsurface or bioreactors. The most transformative application of electrotrophy may be microbial electrosynthesis in which carbon dioxide and water are converted to multi-carbon organic compounds that are released extracellularly. Coupling photovoltaic technology with microbial electrosynthesis represents a novel photosynthesis strategy that avoids many of the drawbacks of biomass-based strategies for the production of transportation fuels and other organic chemicals. The mechanisms for direct electron transfer from electrodes to microorganisms warrant further investigation in order to optimize envisioned applications. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Magnetic susceptibilities of actinide 3d-metal intermetallic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muniz, R.B.; d'Albuquerque e Castro, J.; Troper, A.
1988-04-15
We have numerically calculated the magnetic susceptibilities which appear in the Hartree--Fock instability criterion for actinide 3d transition-metal intermetallic compounds. This calculation is based on a previous tight-binding description of these actinide-based compounds (A. Troper and A. A. Gomes, Phys. Rev. B 34, 6487 (1986)). The parameters of the calculation, which starts from simple tight-binding d and f bands are (i) occupation numbers, (ii) ratio of d-f hybridization to d bandwidth, and (iii) electron-electron Coulomb-type interactions.
Mehta-Kolte, Misha G.
2012-01-01
The current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial genera Geobacter and Shewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of the Acidobacteria, Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE), G. fermentans required potentials as high as 0.55 V to respire at its maximum rate. In addition, G. fermentans secreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found in G. fermentans supernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals that Geothrix is able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined to Shewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies of Geothrix and Geobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential. PMID:22843516
NASA Astrophysics Data System (ADS)
Matetskiy, A. V.; Kibirev, I. A.; Mihalyuk, A. N.; Eremeev, S. V.; Gruznev, D. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Zotov, A. V.; Saranin, A. A.
2017-08-01
Two-dimensional compounds made of one monolayer of Tl and one-third monolayer of Pb, Bi, Te, or Se (but not of Sn or Sb) on Si(111) have been found to have a similar atomic arrangement which can be visualized as a √{3 }×√{3 } -periodic honeycomb network of chained Tl trimers with atoms of the second adsorbate occupying the centers of the honeycomb units. Structural and electronic properties of the compounds have been examined in detail theoretically using density functional theory (DFT) calculations and experimentally using low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and angle-resolved photoelectron spectroscopy (ARPES) observations. It has been found that though structural parameters of the compounds are very similar for all species, the only common feature of their band structure is a considerable spin-splitting of the surface-state bands, while other basic electronic properties vary greatly with a change of species. The Tl-Pb compound is strongly metallic with two metallic surface-state bands; the Tl-Bi compound is also metallic but with a single metallic band; the Tl-Te and Tl-Se compounds appear to be insulators.
Electronic band structure of LaCoO3/Y/Mn compounds
NASA Astrophysics Data System (ADS)
Rahnamaye Aliabad, H. A.; Hesam, V.; Ahmad, Iftikhar; Khan, Imad
2013-02-01
Spin polarization effects on electronic properties of pure LaCoO3 and doped compounds (La0.5Y0.5CoO3, LaCo0.5Mn0.5O3) in the rhombohedral phase have been studied. We have employed the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA+U) under density functional theory (DFT). The calculated band structures along with total as well as partial densities of states reveal that Y and Mn impurities have a significant effect on the structural and electronic properties of LaCoO3. It is found that Mn alters insulating behavior of this compound to the half metallic for spin up state. Obtained results show that the magnetic moment for the Co-3d state is near 3.12μB in LaCoO3 compound which increases and decreases with addition of Y and Mn dopants respectively.
NASA Astrophysics Data System (ADS)
Liu, Yangzhen; Xing, Jiandong; Fu, Hanguang; Li, Yefei; Sun, Liang; Lv, Zheng
2017-08-01
The properties of sulfides are important in the design of new iron-steel materials. In this study, first-principles calculations were used to estimate the structural stability, mechanical properties, electronic structures and thermal properties of XS (X = Ti, V, Cr, Mn, Fe, Co, Ni) binary compounds. The results reveal that these XS binary compounds are thermodynamically stable, because their formation enthalpy is negative. The elastic constants, Cij, and moduli (B, G, E) were investigated using stress-strain and Voigt-Reuss-Hill approximation, respectively. The sulfide anisotropy was discussed from an anisotropic index and three-dimensional surface contours. The electronic structures reveal that the bonding characteristics of the XS compounds are a mixture of metallic and covalent bonds. Using a quasi-harmonic Debye approximation, the heat capacity at constant pressure and constant volume was estimated. NiS possesses the largest CP and CV of the sulfides.
Conduction mechanism of nitronyl-nitroxide molecular magnetic compounds
NASA Astrophysics Data System (ADS)
Dotti, N.; Heintze, E.; Slota, M.; Hübner, R.; Wang, F.; Nuss, J.; Dressel, M.; Bogani, L.
2016-04-01
We investigate the conduction mechanisms of nitronyl-nitroxide (NIT) molecular radicals, as useful for the creation of nanoscopic molecular spintronic devices, finding that it does not correspond to standard Mott behavior, as previously postulated. We provide a complete investigation using transport measurements, low-energy, sub-THz spectroscopy and introducing differently substituted phenyl appendages. We show that a nontrivial surface-charge-limited regime is present in addition to the standard low-voltage Ohmic conductance. Scaling analysis allows one to determine all the main transport parameters for the compounds and highlights the presence of charge-trapping effects. Comparison among the different compounds shows the relevance of intermolecular stacking between the aromatic ring of the phenyl appendix and the NIT motif in the creation of useful electron transport channels. The importance of intermolecular pathways is further highlighted by electronic structure calculations, which clarify the nature of the electronic channels and their effect on the Mott character of the compounds.
USDA-ARS?s Scientific Manuscript database
Electronic nose technology has historically been utilized for the detection of volatile organic compounds (VOCs) and semi-volatile compounds in air, soil, water, and for quality control in food, beverage and cosmetic industries. Breath analysis has been used experimentally in humans and animals to ...
NASA Astrophysics Data System (ADS)
Rasero Causil, Diego; Ortega López, César; Espitia Rico, Miguel
2018-04-01
Computational calculations of total energy based on density functional theory were used to investigate the structural, electronic, and magnetic properties of the DyB2 compounds in the hexagonal structure. The calculations were carried out by means of the full-potential linearized augmented plane wave (FP-LAPW) method, employing the computational Wien2k package. The local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the electron-electron interactions. Additionally, we used the functional hybrid PBE0 for a better description the electronic and magnetic properties, because the DyB2 compound is a strongly-correlated system. We found that the calculated lattice constant agrees well with the values reported theoretically and experimentally. The density of states (DOS) calculation shows that the compound exhibits a metallic behavior and has magnetic properties, with a total magnetic moment of 5.47 μ0/cell determined mainly by the 4f states of the rare earth elements. The functional PBE0 shows a strong localization of the Dy-4f orbitals.
Liu, Dengyong; Li, Shengjie; Wang, Nan; Deng, Yajun; Sha, Lei; Gai, Shengmei; Liu, Huan; Xu, Xinglian
2017-05-01
This paper aimed to study the time course changes in taste compounds of Dezhou-braised chicken during the entire cooking process mainly consisting of deep-frying, high-temperature boiling, and low-temperature braising steps. For this purpose, meat samples at different processing stages were analyzed for 5'-nucleotides and free amino acids, and were also subjected to electronic tongue measurements. Results showed that IMP, Glu, Lys, and sodium chloride were the main compounds contributing to the taste attributes of the final product. IMP and Glu increased in the boiling step and remained unchanged in the following braising steps. Meanwhile, decrease in Lys content and increase in sodium chloride content were observed over time in both boiling and braising steps. Intensities for bitterness, saltiness, and Aftertaste-B obtained from the electronic tongue analysis were correlated with the concentrations of these above chemical compounds. Therefore, the electronic tongue system could be applied to evaluate the taste development of Dezhou-braised chicken during processing. © 2017 Institute of Food Technologists®.
Semiconducting compounds and devices incorporating same
Marks, Tobin J; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki
2014-06-17
Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.
Semiconducting compounds and devices incorporating same
Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki
2016-01-19
Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.
The adsorption properties of titanium dioxide
NASA Astrophysics Data System (ADS)
Lanin, S. N.; Vlasenko, E. V.; Kovaleva, N. V.; Zung, Fam Tien
2008-12-01
The adsorption properties of titanium dioxide were studied by gas chromatography. We used organic compounds from different classes, namely, n-alkanes, n-alkenes (C6-C8), and polar compounds (electron donors and acceptors) as test adsorbates. The differential heats of adsorption and the contributions of dispersion and specific intermolecular interaction energies were determined for the systems from the experimental retention data. The electron-donor and electron-acceptor characteristics of the ultimately hydroxylated surface of TiO2 were evaluated.
P, Ragesh Kumar T; Hari, Sangeetha; Damodaran, Krishna K; Ingólfsson, Oddur; Hagen, Cornelis W
2017-01-01
We present first experiments on electron beam induced deposition of silacyclohexane (SCH) and dichlorosilacyclohexane (DCSCH) under a focused high-energy electron beam (FEBID). We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we compare the proximity effect observed for these compounds. The two precursors show similar behaviour with regards to fragmentation through dissociative ionization in the gas phase under single-collision conditions. However, while DCSCH shows appreciable cross sections with regards to dissociative electron attachment, SCH is inert with respect to this process. We discuss our deposition experiments in context of the efficiency of these different electron-induced fragmentation processes. With regards to the deposition dynamics, we observe a substantially faster growth from DCSCH and a higher saturation diameter when growing pillars with high aspect ratio. However, both compounds show similar behaviour with regards to the proximity effect. With regards to the composition of the deposits, we observe that the C/Si ratio is similar for both compounds and in both cases close to the initial molecular stoichiometry. The oxygen content in the DCSCH deposits is about double that of the SCH deposits. Only marginal chlorine is observed in the deposits of from DCSCH. We discuss these observations in context of potential approaches for Si deposition.
Endohedral gallide cluster superconductors and superconductivity in ReGa5
Xie, Weiwei; Luo, Huixia; Phelan, Brendan F.; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph
2015-01-01
We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures. PMID:26644566
Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO3
NASA Astrophysics Data System (ADS)
Tariq, Saad; Saad, Saher; Jamil, M. Imran; Sohail Gilani, S. M.; Mahmood Ramay, Shahid; Mahmood, Asif
2018-03-01
By using the density functional theory (DFT) the systematic study of the structural, electronic and thermodynamic properties of lanthanum ferrite (LaFeO3) has been conducted. The elastic stability criterion and structural tolerance factor reveal that LaFeO3 exists in the cubic phase and is found to be stable under the ambient conditions. In electronic properties, the optical spectrum of the compound has been found to fall in the range of 488 to 688nm which has been calculated from the electronic band gap values by using the PBE-GGA and mBJ-GGA techniques. The light between 488 to 688nm would cause the valence electrons to jump in the conduction band showing the photoconductivity. The pronounced half-metallic character has been discussed by using the projected electronic density of states. The ferromagnetic response has been observed which may be attributed to the Fe-O bonding situation. The compound exhibits ductile, indirect band gap and half-metallic traits in the bulk phase. We expect the compound to be felicitous for the novel spintronic applications.
NASA Astrophysics Data System (ADS)
Khan, Abdul Ahad; Yaseen, M.; Laref, A.; Murtaza, G.
2018-07-01
The structural, electronic, optical and thermoelectric properties of ternary CaMg2X2 (X = N, P, As, Sb and Bi) compounds are investigated using all electrons full potential linearized augment plane wave method. By using generalized gradient approximation (GGA), unit cell volumes of the compounds are optimized. For calculations of optical and electronic properties the modified Becke Johnson exchange potential is used along with the GGA. The direct energy band gap decreases by replacing the pnictogen elements, while indirect bandgap also decreases except for CaMg2As2. The optical properties show a prominent variation over the change of anion from N to Bi. There is inverse variation between refractive index and the band gap. The refractive indices of these compounds are high in the visible region and sharply decreased in the ultraviolet region. The thermoelectric properties are also studied using Boltzmann statistics through BoltzTrap code. A positive non-zero value of Seebeck coefficient shows a P-type semiconducting behavior of these compounds. High figure of merits (ZT) and optical conductivity peaks for all compounds reveal that they are good candidates for the thermo-electric and optoelectronics devices.
Strongly-correlated crystal-field approach to heavy-fermion compounds and to 3d oxides
NASA Astrophysics Data System (ADS)
Radwanski, Ryszard; Ropka, Zofia
2005-03-01
The description of electronic and magnetic properties of real compounds like LaMnO3, LaCoO3, Na2V3O7, FeO, NdAl2 and ErNi5 as well as heavy-fermion superconductor UPd2Al3 and heavy-fermion metal YbRh2Si2, both zero-temperature ground state properties and thermodynamics, will be presented pointing out the existence of a discrete atomic-like low-energy, in the meV scale, electronic structure. This low-energy many-electron discrete atomic-like electronic structure is governed by very strong electron correlations, predominantly on-site, by the intra-atomic spin-orbit coupling and by details of the local surrounding (crystal-field interactions), but later is modified by inter-site interactions. Our studies indicate that there is the highest time to ``unquench'' the orbital moment in solid state physics in description of 3d-/4f-/5f-atom containing compounds and that heavy-fermion phenomena are of the relativistic origin.
NASA Astrophysics Data System (ADS)
Miao, Mao-Sheng; Yarbro, Sam; Barton, Phillip T.; Seshadri, Ram
2014-01-01
Using density functional theory with a hybrid functional, we calculate the ionization energies and electron affinities of a series of delafossite compounds (AMO2: A =Cu, Ag; M =B, Al, Ga, In, Sc). The alignments of the valence band maximum and the conduction band minimum, which directly relate to the ionization energies and electron affinities, were obtained by calculations of supercell slab models constructed in a nonpolar orientation. Our calculations reveal that the ionization energy decreases with an increasing atomic number of group-III elements, and thus suggest an improved p-type doping propensity for heavier compounds. For keeping both a low ionization energy and a band gap of sufficient size, CuScO2 is superior to the Cu-based group-III delafossites. By analyzing the electronic structures, we demonstrate that the compositional trend of the ionization energies and electron affinities is the result of a combined effect of d-band broadening due to Cu(Ag)-Cu(Ag) coupling and a repositioning of the d-band center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocak, Belgin, E-mail: koakbelgin@gmail.com; Ciftci, Yasemin Oztekin, E-mail: yasemin@gazi.edu.tr
2016-03-25
The structural, electronic band structure and optic properties of the Ni doped MgSiP{sub 2} chalcopyrite compound have been performed by using first-principles method in the density functional theory (DFT) as implemented in Vienna Ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke and Ernzerhof (PBE) is used for the exchange and correlation functional. The present lattice constant (a) follows generally the Vegard’s law. The electronic band structure, total and partial density of states (DOS and PDOS) are calculated. We present data for the frequency dependence of imaginary and real parts of dielectric functions ofmore » Ni doped MgSiP{sub 2}. For further investigation of the optical properties the reflectivity, refractive index, extinction coefficient and electron energy loss function are also predicted. Our obtained results indicate that the lattice constants, electronic band structure and optical properties of this compound are dependent on the substitution concentration of Ni.« less
Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; ...
2015-04-01
This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering datamore » and avoiding beam-damage of the sample are possible to resolve.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Liang, Le; Zhang, Lanting, E-mail: lantingzh@sjtu.edu.cn, E-mail: lmsun@sjtu.edu.cn
2014-10-28
Characterization of chemical state and electronic structure of the technologically important Nd{sub 2}Fe{sub 14}B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd{sub 2}Fe{sub 14}B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd{sub 2}Fe{sub 14}B compound can be clearlymore » determined to be 0 and −3, respectively. The Nd in Nd{sub 2}Fe{sub 14}B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd{sub 2}O{sub 3}. In addition, by comparing the valence-band spectrum of Nd{sub 2}Fe{sub 14}B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd{sub 2}Fe{sub 14}B compound is made more clear. The B 2p states and B 2s states are identified to be at ∼11.2 eV and ∼24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd{sub 2}Fe{sub 14}B compound.« less
NASA Astrophysics Data System (ADS)
Singh, Yadunath
2018-05-01
Organic semiconductors have so far found extensive practical applications similar to inorganic semiconductors. Interest in these compounds has been stimulated by the synthesis of several powerful electron acceptors, such as tetracynoethylene (TCNE), 7, 7, 8, 8, tetracynoquinodimethane (TCNQ) and cyno-p-benzoquinone. In this connection TCNQ is of particular interest, due to presence of four powerful electron accepting groups in its molecule. Nucleophillic addition reactions, which are rarely encountered among unsaturated compounds, as well as addition reactions proceeding via a one electron transfer stage are characteristic of this substance.
Pron, Adam; Gawrys, Pawel; Zagorska, Malgorzata; Djurado, David; Demadrille, Renaud
2010-07-01
This critical review discusses specific chemical and physicochemical requirements which must be met for organic compounds to be considered as promising materials for applications in organic electronics. Although emphasis is put on molecules and macromolecules suitable for fabrication of field effect transistors (FETs), a large fraction of the discussed compounds can also be applied in other organic or hybrid (organic-inorganic) electronic devices such as photodiodes, light emitting diodes, photovoltaic cells, etc. It should be of interest to chemists, physicists, material scientists and electrical engineers working in the domain of organic electronics (423 references).
NASA Astrophysics Data System (ADS)
Wei, Hui-Ling; Shi, Ya-Rui; Liu, Yu-Fang
2015-06-01
A series of phenyl end-capped derivatives of benzo[d,d‧]thieno[3,2-b4,5- b‧]dithiophene (BTDT) with periphery-fluorinated substitutions (PFS) were systematically investigated by using density functional theory (DFT) combined with the Marcus-Hush electron transfer theory. The substituting effects of PFS were discussed. Compared with the original compounds, (i) the PFS compounds have a relatively higher efficiency of charge transport, lower barriers of electron injection, and larger HOMO-LUMO gaps; (ii) the air-stability and the device performance are enhanced by PFS; and (iii) the HOMO-LUMO transitions in the absorption spectrum of the PFS compounds show an obvious blue-shift trend. The perfluorophenylbisbenzo[d, d‧]thieno[3,2-b4,5-b‧]dithiophene (BpF-BTDT) is found to be the most stable and most effective compound in charge transport among the investigated compounds, and it is suggested as an ambipolar semiconducting material. The results of electronic coupling of the bisbenzo[d, d‧]thieno[3,2-b 4,5- b‧]dithiophene (BBTDT) derivatives show that the orbital interaction is mainly contributed by the neighboring molecule in the two dimensional (2D) layer. The PFS compounds have lower oxidization potential, ionization potential, and electron affinity values than the corresponding original ones, which suggest that fluorination can enhance the performance of the thiophene-based organic solar cells. These findings provide a better understanding of the PFS effects on organic semiconductors and may help to design high-performance semiconductor materials.
Olalekan, Temitope E; Adejoro, Isaiah A; VanBrecht, Bernardus; Watkins, Gareth M
2015-03-15
New Schiff bases derived from p-methoxysalicylaldehyde and 2-(methylthiomethyl)anilines (substituted with methyl, methoxy, nitro) were synthesized and characterized by elemental analyses, FT-IR, NMR, electronic spectra and quantum chemical calculations. X-ray crystallography of two compounds showed the solid structures are stabilized by intramolecular and intermolecular H-bonds. The effect of OH⋯N interaction between the phenolic hydrogen and imine nitrogen on the proton and carbon NMR shifts, and the role of CH⋯O and CH⋯S contacts are discussed. The bond lengths and angles, (1)H and (13)C NMR data, E(LUMO-HOMO), dipole moments and polarizability of the compounds were predicted by density functional theory, DFT (B3LYP/6-31G∗∗) method. The experimental geometric parameters and the NMR shifts were compared with the calculated values, which gave good correlations. The electronic effects of aryl ring substituents (methyl, methoxy and nitro) on the properties of the resulting compounds, such as the color, NMR shifts, electronic spectra and the calculated energy band gaps, dipole moments and polarizability are discussed. Increase in electron density shifted the phenolic proton resonance to lower fields. The methoxy-substituted compound has a small dipole moment and subsequent large polarizability value. Highest polarity was indicated by the nitro compound which also showed high polarizability due to its larger size. The energy gaps obtained from E(LUMO-HOMO) calculations suggest these compounds may have applications as organic semiconducting materials. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Erum, Nazia; Azhar Iqbal, Muhammad
2017-09-01
Detailed ab-initio calculations are performed to investigate structural, elastic, mechanical, magneto-electronic and optical properties of the KXF3 (X = V, Fe, Co, Ni) fluoro-perovskites using Full Potential Linearized Augmented Plane Wave (FP-LAPW) method within the framework of density functional theory (DFT). The calculated structural parameters by DFT and analytical methods are found consistent with the experimental results. From the elastic and mechanical properties, it can be inferred that these compounds are elastically stable and anisotropic while KCoF3 is harder than rest of the compounds. Furthermore, thermal behavior of these compounds is analyzed by calculating Debye temperature (θD). The calculated spin dependent magneto-electronic properties in these compounds reveal that exchange splitting is dominated by N-3d orbital. The stable magnetic phase optimizations verify the experimental observations at low temperature. Type of chemical bonding is analyzed with the help of variations in electron density difference distribution that is induced due to changes of the second cation. The linear optical properties are also discussed in terms of optical spectra. The present methodology represents an influential approach to calculate the whole set of mechanical and magneto-opto-electronic parameters, which would support to understand various physical phenomena and empower device engineers for implementing these materials in spintronic applications.
Gao, Xionghou; Geng, Wei; Zhang, Haitao; Zhao, Xuefei; Yao, Xiaojun
2013-11-01
We have theoretically investigated the adsorption of thiophene, benzothiophene, dibenzothiophene on Na(I)Y and rare earth exchanged La(III)Y, Ce(III)Y, Pr(III)Y Nd(III)Y zeolites by density functional theory calculations. The calculated results show that except benzothiophene adsorbed on Na(I)Y with a stand configuration, the stable adsorption structures of other thiophenic compounds on zeolites exhibit lying configurations. Adsorption energies of thiophenic compounds on the Na(I)Y are very low, and decrease with the increase of the number of benzene rings in thiophenic compounds. All rare earth exchanged zeolites exhibit strong interaction with thiophene. La(III)Y and Nd(III)Y zeolites are found to show enhanced adsorption energies to benzothiophene and Pr(III)Y zeolites are favorable for dibenzothiophene adsorption. The analysis of the electronic total charge density and electron orbital overlaps show that the thiophenic compounds interact with zeolites by π-electrons of thiophene ring and exchanged metal atom. Mulliken charge populations analysis reveals that adsorption energies are strongly dependent on the charge transfer of thiophenic molecule and exchanged metal atom.
Reductive precipitation of metals photosensitized by tin and antimony porphyrins
Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner
2003-09-30
A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.
Differential Mobility Spectrometry: Preliminary Findings on Determination of Fundamental Constants
NASA Technical Reports Server (NTRS)
Limero, Thomas; Cheng, Patti; Boyd, John
2007-01-01
The electron capture detector (ECD) has been used for 40+ years (1) to derive fundamental constants such as a compound's electron affinity. Given this historical perspective, it is not surprising that differential mobility spectrometry (DMS) might be used in a like manner. This paper will present data from a gas chromatography (GC)-DMS instrument that illustrates the potential capability of this device to derive fundamental constants for electron-capturing compounds. Potential energy curves will be used to provide possible explanation of the data.
Soft X-ray spectroscopy of transition metal compounds: a theoretical perspective
NASA Astrophysics Data System (ADS)
Bokarev, S. I.; Hilal, R.; Aziz, S. G.; Kühn, O.
2017-01-01
To date, X-ray spectroscopy has become a routine tool that can reveal highly local and element-specific information on the electronic structure of atoms in complex environments. Here, we report on the development of an efficient and versatile theoretical methodology for the treatment of soft X-ray spectra of transition metal compounds based on the multi-configurational self-consistent field electronic structure theory. A special focus is put on the L-edge photon-in/photon-out and photon-in/electron-out processes, i.e. X-ray absorption, resonant inelastic scattering, partial fluorescence yield, and photoelectron spectroscopy, all treated on the same theoretical footing. The investigated systems range from small prototypical coordination compounds and catalysts to aggregates of biomolecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
San, Long K.; Spisak, Sarah N.; Dubceac, Cristina
Two series of aromatic compounds with perfluoroalkyl (RF) groups of increasing length, 1,3,5,7-naphthalene(RF)4 and 1,3,5,7,9-corannulene(RF)5, have been prepared and their electronic properties studied by low-temperature PES (i.e., gas-phase electron affinity (EA) measurements). These and many related compounds were also studied by DFT calculations. The data demonstrate unambiguously that the electron-withdrawing ability of RF substituents increases significantly and uniformly from CF3 to C2F5 to n-C3F7 to n-C4F9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
San, Long K.; Spisak, Sarah N.; Dubceac, Cristina
2018-01-26
Two series of aromatic compounds with perfluoroalkyl (RF) groups of increasing length, 1,3,5,7-naphthalene(RF)4 and 1,3,5,7,9-corannulene(RF)5, have been prepared and their electronic properties studied by low-temperature PES (i.e., gas-phase electron affinity (EA) measurements). These and many related compounds were also studied by DFT calculations. The data demonstrate unambiguously that the electron-withdrawing ability of RF substituents increases significantly and uniformly from CF3 to C2F5 to n-C3F7 to n-C4F9.
To, Wai-Pong; Zou, Taotao; Sun, Raymond Wai-Yin; Che, Chi-Ming
2013-07-28
Transition metal compounds are well documented to have diverse applications such as in catalysis, light-emitting materials and therapeutics. In the areas of photocatalysis and photodynamic therapy, metal compounds of heavy transition metals are highly sought after because they can give rise to triplet excited states upon photoexcitation. The long lifetimes (more than 1 μs) of the triplet states of transition metal compounds allow for bimolecular reactions/processes such as energy transfer and/or electron transfer to occur. Reactions of triplet excited states of luminescent metal compounds with oxygen in cells may generate reactive oxygen species and/or induce damage to DNA, leading to cell death. This article recaps the recent findings on photochemical and phototoxic properties of luminescent platinum(II) and gold(III) compounds both from the literature and experimental results from our group.
NASA Astrophysics Data System (ADS)
Chiker, Fafa; Boukabrine, Fatiha; Khachai, H.; Khenata, R.; Mathieu, C.; Bin Omran, S.; Syrotyuk, S. V.; Ahmed, W. K.; Murtaza, G.
2016-11-01
In the present study, the structural, thermal, and electronic properties of some important orthosilicate dielectrics, such as the ZrSiO4, ZrGeO4, and HfSiO4 compounds, have been investigated theoretically with the use of first-principle calculations. We attribute the application of the modified Becke-Johnson exchange potential, which is basically an improvement over the local density approximation and the Perdew-Burke-Ernzerhof exchange-correlation functional, for a better description of the band gaps of the compounds. This resulted in a good agreement with our estimated values in comparison with the reported experimental data, specifically for the ZrSiO4, and HfSiO4 compounds. Conversely, for the ZrGeO4 compound, the calculated electronic band structure shows a direct band gap at the Γ point with the value of 5.79 eV. Furthermore, our evaluated thermal properties that are calculated by using the quasi-harmonic Debye model indicated that the volume variation with temperature is higher in the ZrGeO4 compound as compared to both the ZrSiO4 and HfSiO4 compounds, which is ascribed to the difference between the electron shells of the Si and Ge atoms. Therefore, these results also indicate that while the entropy ( S) and enthalpy ( U) parameters increase monotonically, the free energy ( G), in contrast, decreases monotonically with increasing temperature, respectively. Moreover, the pressure and temperature dependencies of the Debye temperature Θ, thermal expansion coefficient, and heat capacities C V were also predicted in our study.
Electronic spectra and DFT calculations of some pyrimido[1,2-a]benzimidazole derivatives
NASA Astrophysics Data System (ADS)
Elshakre, Mohamed E.; Moustafa, H.; Hassaneen, Huwaida. M. E.; Moussa, Abdelrahim. Z.
2015-06-01
Ground state properties of 2,4-diphenyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine, compound 1, and its derivatives are investigated experimentally and theoretically in Dioxane and DMF. The calculations show that all the studied compounds (1-7) are non-planar, resulting in a significant impact on the electronic and structural properties. The ground state properties of compounds 1-7 at B3LYP/6-311G (d, p) show that compound 5 has the lowest EHOMO, ELUMO, and ΔE indicating highest reactivity. Compound 7 is found to have the highest polarity. The observed UV spectra in Dioxane and DMF of compounds 1-4 show 2 bands, while compounds 5-7 show 4 bands in both solvents. Band maxima (λmax) and intensities of the spectra are found to have solvent dependence reflected as blue and red shifts. The theoretical spectra computed at TD-B3LYP/6-311G (d, p) in gas phase, Dioxane and DMF indicate a good agreement with the observed spectra.
Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola
2018-03-01
Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.
NASA Astrophysics Data System (ADS)
Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola
2018-02-01
Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zegrya, G. G.; Savenkov, G. G.; Morozov, V. A.
2017-04-15
The sensitivity of an energy-packed compound based on nanoporous silicon and calcium perchlorate to a high-current electron beam is studied. The initiation of explosive transformations in a mixture of potassium picrate with a highly dispersed powder of boron-doped silicon by means of a high-voltage discharge is examined. It is shown that explosive transformation modes (combustion and explosion) appear in the energy-packed compound under study upon its treatment with an electron beam. A relationship is established between the explosive transformation modes and the density of the energy-packed compound and between the breakdown (initiation) voltage and the mass fraction of the siliconmore » powder.« less
NASA Astrophysics Data System (ADS)
Estrada, F.; Guzmán, E. J.; Navarro, O.; Avignon, M.
2018-05-01
The half-metallic ferromagnetic compound Sr2FeMoO6 is considered a fundamental material to understand the role of electronic parameters controlling the half-metallic ground state and high Curie temperature in double perovskite. We present an electronic approach using the Green's function technique and the renormalization perturbation expansion method to study the thermodynamical properties of double perovskites. The model is based on a correlated electron picture with localized Fe spins and conduction electrons interacting with the local spins via a double-exchange-type mechanism. Electron correlations within the conduction band are also included in order to study the Curie temperature TC. Our results show an increases of TC by increasing the carrier density in La-doped Sr2FeMoO6 compounds in contrast to the case of uncorrelated itinerant electrons.
van Genderen, E; Clabbers, M T B; Das, P P; Stewart, A; Nederlof, I; Barentsen, K C; Portillo, Q; Pannu, N S; Nicolopoulos, S; Gruene, T; Abrahams, J P
2016-03-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).
Chandrasekhar, Vadapalli; Hajra, Tanima; Bera, Jitendra K; Rahaman, S M Wahidur; Satumtira, Nisa; Elbjeirami, Oussama; Omary, Mohammad A
2012-02-06
Metallamacrocycles 1, 2, and 3 of the general formula [{Ir(ppy)(2)}(2)(μ-BL)(2)](OTf)(2) (ppyH = 2-phenyl pyridine; BL = 1,2-bis(4-pyridyl)ethane (bpa) (1), 1,3-bis(4-pyridyl)propane (bpp) (2), and trans-1,2-bis(4-pyridyl)ethylene (bpe) (3)) have been synthesized by the reaction of [{(ppy)(2)Ir}(2)(μ-Cl)(2)], first with AgOTf to effect dechlorination and later with various bridging ligands. Open-frame dimers [{Ir(ppy)(2)}(2)(μ-BL)](OTf)(2) were obtained in a similar manner by utilizing N,N'-bis(2-pyridyl)methylene-hydrazine (abp) and N,N'-(bis(2-pyridyl)formylidene)ethane-1,2-diamine (bpfd) (for compounds 4 and 5, respectively) as bridging ligands. Molecular structures of 1, 3, 4, and 5 were established by X-ray crystallography. Cyclic voltammetry experiments reveal weakly interacting "Ir(ppy)(2)" units bridged by ethylene-linked bpe ligand in 3; on the contrary the metal centers are electronically isolated in 1 and 2 where the bridging ligands are based on ethane and propane linkers. The dimer 4 exhibits two accessible reversible reduction couples separated by 570 mV indicating the stability of the one-electron reduced species located on the diimine-based bridge abp. The "Ir(ppy)(2)" units in compound 5 are noninteracting as the electronic conduit is truncated by the ethane spacer in the bpfd bridge. The dinuclear compounds 1-5 show ligand centered (LC) transitions involving ppy ligands and mixed metal to ligand/ligand to ligand charge transfer (MLCT/LLCT) transitions involving both the cyclometalating ppy and bridging ligands (BL) in the UV-vis spectra. For the conjugated bridge bpe in compound 3 and abp in compound 4, the lowest-energy charge-transfer absorptions are red-shifted with enhanced intensity. In accordance with their similar electronic structures, compounds 1 and 2 exhibit identical emissions. The presence of vibronic structures in these compounds indicates a predominantly (3)LC excited states. On the contrary, broad and unstructured phosphorescence bands in compounds 3-5 strongly suggest emissive states of mixed (3)MLCT/(3)LLCT character. Density functional theory (DFT) calculations have been carried out to gain insight on the frontier orbitals, and to rationalize the electrochemical and photophysical properties of the compounds based on their electronic structures.
Artemisinin Inhibits Chloroplast Electron Transport Activity: Mode of Action
Bharati, Adyasha; Kar, Monaranjan; Sabat, Surendra Chandra
2012-01-01
Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo), behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the QB; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth. PMID:22719995
Allen, Felicity; Pon, Allison; Greiner, Russ; Wishart, David
2016-08-02
We describe a tool, competitive fragmentation modeling for electron ionization (CFM-EI) that, given a chemical structure (e.g., in SMILES or InChI format), computationally predicts an electron ionization mass spectrum (EI-MS) (i.e., the type of mass spectrum commonly generated by gas chromatography mass spectrometry). The predicted spectra produced by this tool can be used for putative compound identification, complementing measured spectra in reference databases by expanding the range of compounds able to be considered when availability of measured spectra is limited. The tool extends CFM-ESI, a recently developed method for computational prediction of electrospray tandem mass spectra (ESI-MS/MS), but unlike CFM-ESI, CFM-EI can handle odd-electron ions and isotopes and incorporates an artificial neural network. Tests on EI-MS data from the NIST database demonstrate that CFM-EI is able to model fragmentation likelihoods in low-resolution EI-MS data, producing predicted spectra whose dot product scores are significantly better than full enumeration "bar-code" spectra. CFM-EI also outperformed previously reported results for MetFrag, MOLGEN-MS, and Mass Frontier on one compound identification task. It also outperformed MetFrag in a range of other compound identification tasks involving a much larger data set, containing both derivatized and nonderivatized compounds. While replicate EI-MS measurements of chemical standards are still a more accurate point of comparison, CFM-EI's predictions provide a much-needed alternative when no reference standard is available for measurement. CFM-EI is available at https://sourceforge.net/projects/cfm-id/ for download and http://cfmid.wishartlab.com as a web service.
Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode.
Savkin, K P; Yushkov, Yu G; Nikolaev, A G; Oks, E M; Yushkov, G Yu
2010-02-01
This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.
Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation
NASA Astrophysics Data System (ADS)
Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong
2003-05-01
Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.
NASA Astrophysics Data System (ADS)
Ding, Guodong; Mahmood, Asif; Tang, Ailing; Chen, Fan; Zhou, Erjun
2018-01-01
Three new diketopyrrolopyrrole based compounds with Acceptor-Donor-Acceptor-Donor-Acceptor (A-D-A-D-A) skeletons were designed and synthesized through varying the electron-deficient core from diphenylquinoxaline (DP-Qx), thieno[3,4-c]pyrrole-4,6-dione (DP-TPD) to 2-dodecyl-6,7-diphenyl-2H-[1,2,3]triazole[4,5-g]quinoxaline (DP-TQx). We have calculated and studied the effect of central acceptor units on electronic, optical and non-optical properties. As well as, we have predicted the charge transport properties. Results indicate that change of central acceptor unit remarkably affects the molecular electronic, optical and non-optical properties. And the molecular band gap and UV/vis adsorption spectra are significantly changed. It should be noted that Compound 3 with 2-dodecyl-6,7-diphenyl-2H-[1,2,3]triazole[4,5-g]quinoxaline as core show superior non-optical properties as compare to other compounds. Our study here indicate that inserting the strong electron-deficient moieties improves intramolecular charge transfer (ICT) and charge transport properties dramatically.
Ultralow Thermal Conductivity in Full Heusler Semiconductors.
He, Jiangang; Amsler, Maximilian; Xia, Yi; Naghavi, S Shahab; Hegde, Vinay I; Hao, Shiqiang; Goedecker, Stefan; Ozoliņš, Vidvuds; Wolverton, Chris
2016-07-22
Semiconducting half and, to a lesser extent, full Heusler compounds are promising thermoelectric materials due to their compelling electronic properties with large power factors. However, intrinsically high thermal conductivity resulting in a limited thermoelectric efficiency has so far impeded their widespread use in practical applications. Here, we report the computational discovery of a class of hitherto unknown stable semiconducting full Heusler compounds with ten valence electrons (X_{2}YZ, X=Ca, Sr, and Ba; Y=Au and Hg; Z=Sn, Pb, As, Sb, and Bi) through high-throughput ab initio screening. These new compounds exhibit ultralow lattice thermal conductivity κ_{L} close to the theoretical minimum due to strong anharmonic rattling of the heavy noble metals, while preserving high power factors, thus resulting in excellent phonon-glass electron-crystal materials.
NASA Astrophysics Data System (ADS)
Rambabu, P.; Kanchana, V.
2018-06-01
A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.
Ayub, Rabia; Bakouri, Ouissam El; Jorner, Kjell; Solà, Miquel; Ottosson, Henrik
2017-06-16
Compounds that can be labeled as "aromatic chameleons" are π-conjugated compounds that are able to adjust their π-electron distributions so as to comply with the different rules of aromaticity in different electronic states. We used quantum chemical calculations to explore how the fusion of benzene rings onto aromatic chameleonic units represented by biphenylene, dibenzocyclooctatetraene, and dibenzo[a,e]pentalene modifies the first triplet excited states (T 1 ) of the compounds. Decreases in T 1 energies are observed when going from isomers with linear connectivity of the fused benzene rings to those with cis- or trans-bent connectivities. The T 1 energies decreased down to those of the parent (isolated) 4nπ-electron units. Simultaneously, we observe an increased influence of triplet state aromaticity of the central 4n ring as given by Baird's rule and evidenced by geometric, magnetic, and electron density based aromaticity indices (HOMA, NICS-XY, ACID, and FLU). Because of an influence of triplet state aromaticity in the central 4nπ-electron units, the most stabilized compounds retain the triplet excitation in Baird π-quartets or octets, enabling the outer benzene rings to adapt closed-shell singlet Clar π-sextet character. Interestingly, the T 1 energies go down as the total number of aromatic cycles within a molecule in the T 1 state increases.
NASA Astrophysics Data System (ADS)
Karabıyık, Hasan; Kırılmış, Cumhur; Karabıyık, Hande
2017-08-01
The molecular and crystal structure of the title compound in which two thiazole-2-amine rings are linked to each other by disulfide bridge (sbnd Csbnd Ssbnd Ssbnd Csbnd) were studied by single-crystal X-ray diffraction, FT-IR, NMR spectroscopy, quantum chemical calculations and topological analyses on the electron density. A novel synthesis route for the compounds having symmetrical disulfide bridge is reported. The most important result regarding the compound is about electron donating or accepting properties of the terminal amine groups. Planar amine group acts as an electron-donating group, while pyramidal amine behaves as electron-accepting group. This inference was confirmed by scrutiny of crystallographic geometry and quantum chemical studies. To ascertain underlying reasons for this fact, intermolecular interactions (Nsbnd H⋯N type H-bonds and Csbnd H···π interactions) were studied. These interactions involving aromatic thiazole rings are verified by topological electron density and Hirshfeld surface analyses. Intermolecular interactions do not have an effect on the differentiation in electron donating or accepting ability of amine groups, because both amine groups are involved in Nsbnd H⋯N type H-bonds. In methodological sense, it has been understood that Ehrenfest forces acting on electron density are useful theoretical probe to analyze intra-molecular charge transfer processes.
Topology of the electron density of d0 transition metal compounds at subatomic resolution.
Batke, Kilian; Eickerling, Georg
2013-11-14
Accurate X-ray diffraction experiments allow for a reconstruction of the electron density distribution of solids and molecules in a crystal. The basis for the reconstruction of the electron density is in many cases a multipolar expansion of the X-ray scattering factors in terms of spherical harmonics, a so-called multipolar model. This commonly used ansatz splits the total electron density of each pseudoatom in the crystal into (i) a spherical core, (ii) a spherical valence, and (iii) a nonspherical valence contribution. Previous studies, for example, on diamond and α-silicon have already shown that this approximation is no longer valid when ultrahigh-resolution diffraction data is taken into account. We report here the results of an analysis of the calculated electron density distribution in the d(0) transition metal compounds [TMCH3](2+) (TM = Sc, Y, and La) at subatomic resolution. By a detailed molecular orbital analysis, it is demonstrated that due to the radial nodal structure of the 3d, 4d, and 5d orbitals involved in the TM-C bond formation a significant polarization of the electron density in the inner electronic shells of the TM atoms is observed. We further show that these polarizations have to be taken into account by an extended multipolar model in order to recover accurate electron density distributions from high-resolution structure factors calculated for the title compounds.
Method of isotope separation by chemi-ionization
Wexler, Sol; Young, Charles E.
1977-05-17
A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.
Ferrocene- and Biferrocene-Containing Macrocycles towards Single-Molecule Electronics.
Wilson, Lucy E; Hassenrück, Christopher; Winter, Rainer F; White, Andrew J P; Albrecht, Tim; Long, Nicholas J
2017-06-06
Cyclic multiredox centered systems are currently of great interest, with new compounds being reported and developments made in understanding their behavior. Efficient, elegant, and high-yielding (for macrocyclic species) synthetic routes to two novel alkynyl-conjugated multiple ferrocene- and biferrocene-containing cyclic compounds are presented. The electronic interactions between the individual ferrocene units have been investigated through electrochemistry, spectroelectrochemistry, density functional theory (DFT), and crystallography to understand the effect of cyclization on the electronic properties and structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
National Institute of Standards and Technology Data Gateway
SRD 69 NIST Chemistry WebBook (Web, free access) The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, M.S.
2007-05-03
A general empirical formula was found for calculating lattice thermal expansion for compounds having their properties extended for compound groups having different mean ionicity as well as more than one type of cation atoms with that of different numbers of them such as I{sub 2}-IV-VI{sub 3} and I{sub 3}-V-VI{sub 4}. The difference in the valence electrons for cations and anions in the compound was used to correlate the deviations caused by the compound ionicity. The ionicity effects, which are due to their different numbers for their types, were also added to the correlation equation. In general, the lattice thermal expansionmore » for a compound semiconductor can be calculated from a relation containing melting point, mean atomic distance and number of valence electrons for the atoms forming the compound. The mean ionicity for the group compounds forming I{sub 2}-IV-VI{sub 3} was found to be 0.323 and 0.785 for the ternary group compounds of I{sub 3}-V-VI{sub 4}.« less
van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.
2016-01-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375
Energetic Limitations on Microbial Respiration of Organic Compounds using Aqueous Fe(III) Complexes
NASA Astrophysics Data System (ADS)
Naughton, H.; Fendorf, S. E.
2015-12-01
Soil organic matter constitutes up to 75% of the terrestrial carbon stock. Microorganisms mediate the breakdown of organic compounds and the return of carbon to the atmosphere, predominantly through respiration. Microbial respiration requires an electron acceptor and an electron donor such as small fatty acids, organic acids, alcohols, sugars, and other molecules that differ in oxidation state of carbon. Carbon redox state affects how much energy is required to oxidize a molecule through respiration. Therefore, different organic compounds should offer a spectrum of energies to respiring microorganisms. However, microbial respiration has traditionally focused on the availability and reduction potential of electron acceptors, ignoring the organic electron donor. We found through incubation experiments that the organic compound serving as electron donor determined how rapidly Shewanella putrefaciens CN32 respires organic substrate and the extent of reduction of the electron acceptor. We simulated a range of energetically favorable to unfavorable electron acceptors using organic chelators bound to Fe(III) with equilibrium stability constants ranging from log(K) of 11.5 to 25.0 for the 1:1 complex, where more stable complexes are less favorable for microbial respiration. Organic substrates varied in nominal oxidation state of carbon from +2 to -2. The most energetically favorable substrate, lactate, promoted up to 30x more rapid increase in percent Fe(II) compared to less favorable substrates such as formate. This increased respiration on lactate was more substantial with less stable Fe(III)-chelate complexes. Intriguingly, this pattern contradicts respiration rate predicted by nominal oxidation state of carbon. Our results suggest that organic substrates will be consumed so long as the energetic toll corresponding to the electron donor half reaction is counterbalanced by the energy available from the electron accepting half reaction. We propose using the chemical structure of organic matter, elucidated with techniques such as FT-ICR MS, to improve microbial decomposition and carbon cycling models by incorporating energetic limitations due to carbon oxidation.
Lattice stability and thermal properties of Fe2VAl and Fe2TiSn Heusler compounds
NASA Astrophysics Data System (ADS)
Shastri, Shivprasad S.; Pandey, Sudhir K.
2018-04-01
Fe2VAl and Fe2TiSn are two full-Heusler compounds with non-magnetic ground states. They have application as potential thermoelectric materials. Along with first-principles electronic structure calculations, phonon calculation is one of the important tools in condensed matter physics and material science. Phonon calculations are important in understanding mechanical properties, thermal properties and phase transitions of periodic solids. A combination of electronic structure code and phonon calculation code - phonopy is employed in this work. The vibrational spectra, phonon DOS and thermal properties are studied for these two Heusler compounds. Two compounds are found to be dynamically stable with absence of negative frequencies (energy) in the phonon band structure.
High Field Transport of Free Carriers at the SI-SIO2 Interface.
1983-10-27
nuotbor) - Investigations of interface transport, ballistic transport and generally speaking high field transport in silicon and III-V compounds are...Tang and K. Hess, "Energy Diffusion Equation for an Electron Gas Interacting with Polar Optical Phonons: Non- Parabolic Case," Solid State...deformation potential electron-phonon scattering coeffi- cents is preented for elemental and compound semiconductors. Explesions for t acoustical defonoation
Harnessing redox activity for the formation of uranium tris(imido) compounds
NASA Astrophysics Data System (ADS)
Anderson, Nickolas H.; Odoh, Samuel O.; Yao, Yiyi; Williams, Ursula J.; Schaefer, Brian A.; Kiernicki, John J.; Lewis, Andrew J.; Goshert, Mitchell D.; Fanwick, Phillip E.; Schelter, Eric J.; Walensky, Justin R.; Gagliardi, Laura; Bart, Suzanne C.
2014-10-01
Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium-nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.
Electronic transport properties of intermediately coupled superconductors: PdTe2 and Cu0.04PdTe2
NASA Astrophysics Data System (ADS)
Hooda, M. K.; Yadav, C. S.
2018-01-01
We have investigated the electrical resistivity (1.8-480 K), Seebeck coefficient (2.5-300 K) and thermal conductivity (2.5-300 K) of PdTe2 and 4% Cu intercalated PdTe2 compounds. The electrical resistivity for the compounds shows a Bloch-Gruneisen-type linear temperature (T) dependence for 100 \\text{K}, and Fermi liquid behavior (ρ (T) \\propto T2) for T<50 \\text{K} . Seebeck coefficient data exhibit a strong competition between Normal (N) and Umklapp (U) scattering processes at low T. The low-T, thermal conductivity (κ) of the compounds is strongly dominated by the electronic contribution, and exhibits a rare linear T-dependence below 10 K. However, high-T, κ (T) shows the usual 1/T -dependence, dominated by the U-scattering process. The electron-phonon coupling parameters, estimated from the low-T, specific-heat data and first-principle electronic structure calculations suggest that PdTe2 and Cu0.04PdTe2 are intermediately coupled superconductors.
Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model.
Ma, Yanping; Dong, Dandan; Wu, Aimin; Dong, Chuang
2018-01-16
The present paper attempts to identify the molecule-like structural units in inorganic compounds, by applying the so-called "cluster plus glue atom model". This model, originating from metallic glasses and quasi-crystals, describes any structure in terms of a nearest-neighbor cluster and a few outer-shell glue atoms, expressed in the cluster formula [cluster](glue atoms). Similar to the case for normal molecules where the charge transfer occurs within the molecule to meet the commonly known octet electron rule, the octet state is reached after matching the nearest-neighbor cluster with certain outer-shell glue atoms. These kinds of structural units contain information on local atomic configuration, chemical composition, and electron numbers, just as for normal molecules. It is shown that the formulas of typical inorganic compounds, such as fluorides, oxides, and nitrides, satisfy a similar octet electron rule, with the total number of valence electrons per unit formula being multiples of eight.
He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying
2016-07-01
Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds.
Redox chromophore compounds and electrodes of metal containing substituted bipyridines
Elliott, Cecil M.; Redepenning, Jody G.
1986-01-01
Chromophoric compounds, each having a wide range of distinct color changes in response to changes in the oxidation states thereof, are provided in the form of polymerizable monomers, and polymers thereof, of certain metal containing, and electron group substituted, 2,2'-bipyridine compounds.
Microstructure and tribological properties of TiAg intermetallic compound coating
NASA Astrophysics Data System (ADS)
Guo, Chun; Chen, Jianmin; Zhou, Jiansong; Zhao, Jierong; Wang, Linqian; Yu, Youjun; Zhou, Huidi
2011-10-01
TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.
NASA Astrophysics Data System (ADS)
Guosheng, Cheng; Jiaxiang, Shang; Xigui, Li; xianqi, Dai; Xizhong, Wang; Jincang, Zhang
1997-08-01
We present positron lifetime data of YBa 2Cu 3O 6+ x (x=0.92, 0.43) compounds for different photo-irradiation time. It is given that change of the local electron density and vacancy concentration with photoirradiation time. It is found that there is transform at the electronic structure of CuO chains. We also have discussed the effect of photoirradiations time on the electronic structure of YBa 2Cu 3O 6+ x systems and their charge reservoir layer and CuO 2 plane conduction.layer. The positron experimental results support the model of photoinduced oxygen-diffusion mechanism.
TiO2-V2O5 nanocomposites as alternative energy storage substances for photocatalysts.
Ngaotrakanwiwat, Pailin; Meeyoo, Vissanu
2012-01-01
TiO2-V2O5 was prepared and evaluated as an energy storage material for photocatalysts with high capacity and initial charging rate. The compound was successfully obtained by sol-gel technique and effects of compound composition and calcination temperature on the energy storage ability were investigated. The synthesized compounds were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM). The results reveals that the compound of Ti:V molar ratio equal to 1:0.11 calcined at 550 degrees C exhibited superior energy storage ability than parent substances and 1.7-times higher capacity and 2.3-times higher initial charging rate compared to WO3, indicating that the compound is a remarkable alternative to conventional energy storage substances.
Cytotoxic 2',5'-dihydroxychalcones with unexpected antiangiogenic activity.
Nam, Nguyen-Hai; Kim, Yong; You, Young-Jae; Hong, Dong-Ho; Kim, Hwan-Mook; Ahn, Byung-Zun
2003-02-01
A series of 2',5'-dihydroxychalcones were synthesized and evaluated for cytotoxicity against tumor cell lines and human umbilical venous endothelial cells (HUVEC). It was found that chalcones with electron-withdrawing substituents on the B ring exhibited potent cytotoxicity against a variety of tumor cell lines while compounds with electron-releasing groups were less potent in general. Those compounds with B ring replaced by extended or heteroaromatic rings exhibited significant bioactivity. Several compounds were shown to have marked cytotoxic selectivity towards HUVECs. Especially, among the synthesized compounds, 2-chloro-2',5'-dihydroxychalcone (2-3) showed the highest selectivity index up to 66 in comparison to HCT116 cells. This compound also exhibited strong inhibitory effects on the HUVEC tube formation in an in vitro model. When administered into BDF1 mice bearing Lewis lung carcinoma cells at 50 mg kg(-1) day(-1), 2-3 was found to inhibit the growth of tumor mass by 60.5%.
Anti-inflammatory Flavanones and Flavanols from the Roots of Pongamia pinnata.
Wen, Ran; Lv, Haining; Jiang, Yong; Tu, Pengfei
2018-05-18
A phytochemical study of the roots of Pongamia pinnata afforded 29 flavanones and flavanols, including 7 previously undescribed compounds. The structures of the isolated compounds were determined by 1D and 2D NMR and mass spectroscopy data. The absolute configurations of the compounds were assigned via analysis of the specific rotations and electronic circular dichroism spectra, application of Mosher's method, and by comparing the calculated and experimental electronic circular dichroism spectra. The isolates were evaluated for their inhibitory effects on nitric oxide production in lipopolysaccharide-stimulated BV-2 microglial cells. All of the isolated compounds exhibited inhibitory effects against nitric oxide production, and most of them showed obvious anti-inflammatory activities (IC 50 < 20 µM), among which 26: was the most active compound with an IC 50 of 9.6 µM. Georg Thieme Verlag KG Stuttgart · New York.
One Way to Design a Valence-Skip Compound.
Hase, I; Yanagisawa, T; Kawashima, K
2017-12-01
Valence-skip compound is a good candidate with high T c and low anisotropy because it has a large attractive interaction at the site of valence-skip atom. However, it is not easy to synthesize such compound because of (i) the instability of the skipping valence state, (ii) the competing charge order, and (iii) that formal valence may not be true in some compounds. In the present study, we show several examples of the valence-skip compounds and discuss how we can design them by first principles calculations. Furthermore, we calculated the electronic structure of a promising candidate of valence skipping compound RbTlCl 3 from first principles. We confirmed that the charge-density wave (CDW) is formed in this compound, and the Tl atoms in two crystallographic different sites take the valence Tl 1+ and Tl 3+ . Structure optimization study reveals that this CDW is stable at the ambient pressure, while this CDW gap can be collapsed when we apply pressure with several gigapascals. In this metallic phase, we can expect a large charge fluctuation and a large electron-phonon interaction.
Carbonyl compounds generated from electronic cigarettes.
Bekki, Kanae; Uchiyama, Shigehisa; Ohta, Kazushi; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki
2014-10-28
Electronic cigarettes (e-cigarettes) are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols) when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhemadou, A., E-mail: a_bouhemadou@yahoo.fr; Bin-Omran, S.; Department of Physics, Faculty of Science & Humanitarian Studies, Salman Bin Abdalaziz University, Alkharj 11942
Highlights: • Electronic and optical properties of the LiCdX compounds have been predicted. • Tran–Blaha-modified Becke–Johnson functional significantly improves the band gap. • We predict a direct band gap in all of the considered LiCdX compounds. • Origin of the peaks in the optical spectra is determined. - Abstract: The structural, electronic and optical properties of the LiCdN, LiCdP, LiCdAs and LiCdSb filled-tetrahedral compounds have been explored from first-principles. The calculated structural parameters are consistent with the available experimental results. Since DFT with the common LDA and GGA underestimates the band gap, we use a new developed functional able tomore » accurately describe the electronic structure of semiconductors, namely the Tran–Blaha-modified Becke–Johnson potential. The four investigated compounds demonstrate semiconducting behavior with direct band gap ranging from about 0.32 to 1.65 eV. The charge-carrier effective masses are evaluated at the topmost valence band and at the bottommost conduction band. The evolution of the value and nature of the energy band gap under pressure effect is also investigated. The frequency-dependent complex dielectric function and some macroscopic optical constants are estimated. The microscopic origins of the structures in the optical spectra are determined in terms of the calculated energy band structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Munehisa; Akai, Hisazumi; Doi, Shotaro
2016-06-07
A classical spin model derived ab initio for rare-earth-based permanent magnet compounds is presented. Our target compound, NdFe{sub 12}N, is a material that goes beyond today's champion magnet compound Nd{sub 2}Fe{sub 14}B in its intrinsic magnetic properties with a simpler crystal structure. Calculated temperature dependence of the magnetization and the anisotropy field agrees with the latest experimental results in the leading order. Having put the realistic observables under our numerical control, we propose that engineering 5d-electron-mediated indirect exchange coupling between 4f-electrons in Nd and 3d-electrons from Fe would most critically help enhance the material's utility over the operation-temperature range.
Electron Impact Ionization: A New Parameterization for 100 eV to 1 MeV Electrons
NASA Technical Reports Server (NTRS)
Fang, Xiaohua; Randall, Cora E.; Lummerzheim, Dirk; Solomon, Stanley C.; Mills, Michael J.; Marsh, Daniel; Jackman, Charles H.; Wang, Wenbin; Lu, Gang
2008-01-01
Low, medium and high energy electrons can penetrate to the thermosphere (90-400 km; 55-240 miles) and mesosphere (50-90 km; 30-55 miles). These precipitating electrons ionize that region of the atmosphere, creating positively charged atoms and molecules and knocking off other negatively charged electrons. The precipitating electrons also create nitrogen-containing compounds along with other constituents. Since the electron precipitation amounts change within minutes, it is necessary to have a rapid method of computing the ionization and production of nitrogen-containing compounds for inclusion in computationally-demanding global models. A new methodology has been developed, which has parameterized a more detailed model computation of the ionizing impact of precipitating electrons over the very large range of 100 eV up to 1,000,000 eV. This new parameterization method is more accurate than a previous parameterization scheme, when compared with the more detailed model computation. Global models at the National Center for Atmospheric Research will use this new parameterization method in the near future.
Stability and Elastic, Electronic, and Thermodynamic Properties of Fe2TiSi1- x Sn x Compounds
NASA Astrophysics Data System (ADS)
Jong, Ju-Yong; Yan, Jihong; Zhu, Jingchuan; Kim, Chol-Jin
2017-10-01
We have systematically studied the structural, phase, and mechanical stability and elastic, electronic, and thermodynamic properties of Fe2TiSi1- x Sn x ( x = 0, 0.25, 0.5, 0.75, 1) compounds using first-principles calculations. The structural and phase stability and elastic properties of Fe2TiSi1- x Sn x ( x = 0, 0.25, 0.5, 0.75, 1) indicated that all of the compounds are thermodynamically and mechanically stable. The shear modulus, bulk modulus, Young's modulus, Poisson's ratio, electronic band structure, density of states, Debye temperature, and Grüneisen parameter of all the substituted compounds were studied. The results show that Sn substitution in Fe2TiSi enhances its stability and mechanical and thermoelectric properties. The Fe2TiSi1- x Sn x compounds have narrow bandgap from 0.144 eV and 0.472 eV for Sn substitution from 0 to 1. The calculated band structure and density of states (DOS) of Fe2TiSi1- x Sn x show that the thermoelectric properties can be improved at substituent concentration x of 0.75. The lattice thermal conductivity was significantly decreased in the Sn-substituted compounds, and all the results indicate that Fe2TiSi0.25Sn0.75 could be a new candidate high-performance thermoelectric material.
Expanding the analyte set of the JPL Electronic Nose to include inorganic compounds
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Homer, M. L.; Zhou, H.; Mannat, K.; Manfreda, A.; Kisor, A.; Shevade, A.; Yen, S. P. S.
2005-01-01
An array-based sensing system based on 32 polymer/carbon composite conductometric sensors is under development at JPL. Until the present phase of development, the analyte set has focuses on organic compounds and a few selected inorganic compounds, notably ammonia and hydrazine.
The electronic nose as a rapid sensor for volatile compounds in treated domestic wastewater.
Dewettinck, T; Van Hege, K; Verstraete, W
2001-07-01
An electronic nose consisting of 12 metal oxide sensors was used to monitor volatile compounds in effluent of a domestic wastewater treatment plant. Effluent and reference (deionized water) samples were heated to 60 and 90 degrees C to promote the volatilization and to increase the sensitivity. An effluent measuring campaign of 12 weeks was conducted and the repeatability and reproducibility of the procedure and the apparatus were determined. Processing the obtained fingerprints with principal component analysis (PCA) allowed interpretation and differentiation of the samples in terms of origin and quality, relative to the reference. To minimize the variance due to sensitivity fluctuations of the apparatus and to detect effluents with deviating qualities, two new concepts were defined, i.e. the relative sensorial odour perception (in short: rSOP) and the relative fingerprint. Correlations between the relative overall electronic nose output, expressed as rSOP, and selected routine parameters were weak except for the parameter "volatile suspended solids" (VSS), indicating adsorption of volatile organic compounds (VOCs) onto the organic particles. The results clearly demonstrate the possibility to use the electronic nose as a rapid alarm generator towards volatile compounds, e.g. in specific advanced treatment processes to produce reclaimed water from effluent of the domestic wastewater treatment plant under scrutiny.
NASA Astrophysics Data System (ADS)
Wang, Xiaotian; Cheng, Zhenxiang; Khenata, Rabah; Wu, Yang; Wang, Liying; Liu, Guodong
2017-12-01
The spin-gapless semiconductors with parabolic energy dispersions [1-3] have been recently proposed as a new class of materials for potential applications in spintronic devices. In this work, according to the Slater-Pauling rule, we report the fully-compensated ferrimagnetic (FCF) behavior and spin-gapless semiconducting (SGS) properties for a new inverse Heusler compound Zr2MnGa by means of the plane-wave pseudo-potential method based on density functional theory. With the help of GGA-PBE, the electronic structures and the magnetism of Zr2MnGa compound at its equilibrium and strained lattice constants are systematically studied. The calculated results show that the Zr2MnGa is a new SGS at its equilibrium lattice constant: there is an energy gap between the conduction and valence bands for both the majority and minority electrons, while there is no gap between the majority electrons in the valence band and the minority electrons in the conduction band. Remarkably, not only a diverse physical nature transition, but also different types of spin-gapless features can be observed with the change of the lattice constants. Our calculated results of Zr2MnGa compound indicate that this material has great application potential in spintronic devices.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.
Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C
2015-05-26
Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.
NASA Astrophysics Data System (ADS)
Cui, Zi-Ning; Li, Ya-Sheng; Hu, De-Kun; Tian, Hao; Jiang, Jia-Zhen; Wang, Yuan; Yan, Xiao-Jing
2016-01-01
A series of 2,5-disubstituted-1,3,4-thiadiazoles were synthesized using Lawesson’s reagent by an efficient approach under microwave irradiation in good yields. Their structures were characterized by MS, IR, 1H NMR, 13C NMR, and elemental analysis. Their in vitro and in vivo fungicidal activities revealed that the title compounds exhibited considerable activity against five selected fungi, especially to Phytophthora infestans. In order to illustrate the mechanism of title compounds against P. infestans, scanning electron micrographs (SEM) and transmission electron micrographs (TEM) were applied. The morphological and ultrastructural studies demonstrated that compound I18 led to swelling of hyphae, thickening and proliferating multilayer cell walls, excessive septation and accumulation of dense bodies. The bioassay results indicated compound I18 might act on cell wall biosynthesis, and blocked the nutrition transportation and led to cells senescence and death. Meanwhile, compound I18 had broad fungicidal activity against other twenty different kinds of fungi. These results suggested that title compounds were eligible to be development candidates and compound I18 as a promising lead compound was worthy to be further discovery, especially against P. infestans.
NASA Astrophysics Data System (ADS)
Zhi-Qin, Xue; Yong-Quan, Guo
2016-06-01
The magnetisms of RCo5 (R = rare earth) intermetallics are systematically studied with the empirical electron theory of solids and molecules (EET). The theoretical moments and Curie temperatures agree well with experimental ones. The calculated results show strong correlations between the valence electronic structure and the magnetic properties in RCo5 intermetallic compounds. The moments of RCo5 intermetallics originate mainly from the 3d electrons of Co atoms and 4f electrons of rare earth, and the s electrons also affect the magnetic moments by the hybridization of d and s electrons. It is found that moment of Co atom at 2c site is higher than that at 3g site due to the fact that the bonding effect between R and Co is associated with an electron transformation from 3d electrons into covalence electrons. In the heavy rare-earth-based RCo5 intermetallics, the contribution to magnetic moment originates from the 3d and 4f electrons. The covalence electrons and lattice electrons also affect the Curie temperature, which is proportional to the average moment along the various bonds. Project supported by the National Natural Science Foundation of China (Grant No. 11274110).
Investigation of thermoelectricity in KScSn half-Heusler compound
NASA Astrophysics Data System (ADS)
Shrivastava, Deepika; Acharya, Nikita; Sanyal, Sankar P.
2018-05-01
The electronic and transport properties of KScSn half-Heusler (HH) compound have been investigated using first-principles density functional theory and semi classical Boltzmann transport theory. The electronic band structure and density of states (total and partial) show semiconducting nature of KScSn with band gap 0.48 eV which agree well with previously reported results. The transport coefficient such as electrical conductivity, Seebeck coefficient, electronic thermal conductivity and power factor as a function of chemical potential are evaluated. KScSn has high power factor for p-type doping and is a potential candidate for thermoelectric applications.
Dynamical and electronic properties of rare-earth aluminides
NASA Astrophysics Data System (ADS)
Sharma, Ramesh; Sharma, Yamini
2018-04-01
Rare-earth dialuminides belong to a large family of compounds that stabilize in cubic MgCu2 structure. A large number of these compounds are superconducting, amongst these YAl2, LaAl2 and LuAl2 have been chosen as reference materials for studying 4f-electron systems. In order to understand the role of the RE atoms, we have applied the FPLAPW and PAW methods within the density functional theory (DFT). Our results show that the contribution of RE atoms is dominant in both electronic structure and phonon dispersion. The anomalous behavior of superconducting LaAl2 is well explained from an analysis of the electron localization function (ELF), Bader charge analysis, density of electronic states as well as the dynamical phonon vibrational modes. The interaction of phonon modes contributed by low frequency vibrations of La atoms with the high density La 5d-states at EF in LaAl2 lead to strong electron-phonon coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Azam; Zhao, Zhenling; Xie, Jinlin, E-mail: jlxie@ustc.edu.cn
The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may bemore » related to heat transport suppression caused by a decrease in electron heat diffusivity.« less
Temperature and pressure dependences of Sm valence in intermediate valence compound SmB6
NASA Astrophysics Data System (ADS)
Emi, N.; Mito, T.; Kawamura, N.; Mizumaki, M.; Ishimatsu, N.; Pristáš, G.; Kagayama, T.; Shimizu, K.; Osanai, Y.; Iga, F.
2018-05-01
We report the results of the X-ray absorption spectroscopy (XAS) on the intermediate valence compound SmB6. The XAS measurements were performed near the nonmagnetic-magnetic phase boundary. Mean Sm valence vSm was estimated from absorption spectra, and we found that vSm near the boundary (P ≥ 10 GPa and T ∼ 12 K) is far below a trivalent state with magnetic characteristics. Although the result is markedly different from the cases of pressure induced magnetic orders in Yb and Ce compounds, it is likely that the large deviation from the trivalent state seems to be common in some Sm compounds which possess electronic configuration between 4f5 and 4f6 with multi 4 f electrons.
Isaacs, Eric B.; Wolverton, Chris
2018-02-26
Electronic band structure contains a wealth of information on the electronic properties of a solid and is routinely computed. However, the more difficult problem of designing a solid with a desired band structure is an outstanding challenge. In order to address this inverse band structure design problem, we devise an approach using materials database screening with materials attributes based on the constituent elements, nominal electron count, crystal structure, and thermodynamics. Our strategy is tested in the context of thermoelectric materials, for which a targeted band structure containing both flat and dispersive components with respect to crystal momentum is highly desirable.more » We screen for thermodynamically stable or metastable compounds containing d 8 transition metals coordinated by anions in a square planar geometry in order to mimic the properties of recently identified oxide thermoelectrics with such a band structure. In doing so, we identify 157 compounds out of a total of over half a million candidates. After further screening based on electronic band gap and structural anisotropy, we explicitly compute the band structures for the several of the candidates in order to validate the approach. We successfully find two new oxide systems that achieve the targeted band structure. Electronic transport calculations on these two compounds, Ba 2PdO 3 and La 4PdO 7, confirm promising thermoelectric power factor behavior for the compounds. This methodology is easily adapted to other targeted band structures and should be widely applicable to a variety of design problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaacs, Eric B.; Wolverton, Chris
Electronic band structure contains a wealth of information on the electronic properties of a solid and is routinely computed. However, the more difficult problem of designing a solid with a desired band structure is an outstanding challenge. In order to address this inverse band structure design problem, we devise an approach using materials database screening with materials attributes based on the constituent elements, nominal electron count, crystal structure, and thermodynamics. Our strategy is tested in the context of thermoelectric materials, for which a targeted band structure containing both flat and dispersive components with respect to crystal momentum is highly desirable.more » We screen for thermodynamically stable or metastable compounds containing d 8 transition metals coordinated by anions in a square planar geometry in order to mimic the properties of recently identified oxide thermoelectrics with such a band structure. In doing so, we identify 157 compounds out of a total of over half a million candidates. After further screening based on electronic band gap and structural anisotropy, we explicitly compute the band structures for the several of the candidates in order to validate the approach. We successfully find two new oxide systems that achieve the targeted band structure. Electronic transport calculations on these two compounds, Ba 2PdO 3 and La 4PdO 7, confirm promising thermoelectric power factor behavior for the compounds. This methodology is easily adapted to other targeted band structures and should be widely applicable to a variety of design problems.« less
Phase stability and electronic structure of UMo2Al20: A first-principles study
NASA Astrophysics Data System (ADS)
Liu, Peng-Chuang; Xian, Ya-Jiang; Wang, Xin; Zhang, Yu-Ting; Zhang, Peng-Cheng
2017-09-01
In this paper, the phase stability of UMo2Al20 was explored using cluster formula in combination with first-principles calculations. Cluster formula analysis uncovered that the compound was composed of two principal clusters, i.e. [Mo-Al12] and [U-Al16]. The electronic interactions between U, Mo and Al atoms in this compound were discussed using elastic property, Bader charges and energy-resolved local bonding analysis, as well as the electronic interactions between Mo and Al atoms in [Mo-Al12] cluster and between U and Al atoms in [U-Al16] cluster. It revealed that UMo2Al20 satisfied the mechanical stability criterion for cubic system, and exhibited near ionic bonding character with weak bonding directionality. The calculations within both standard DFT and HSE frameworks demonstrated that U and Al atoms acted as an electron donor while Mo atoms acted as electron acceptor. The intrinsic stability of UMo2Al20 mainly stemmed from the bonding states of Mo-Al bonds and Al-Al bonds in [Mo-Al12] cluster. These calculations provide a further insight on the CeCr2Al20-type ternary compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiliang; Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716; Zheng, Zhigang
2015-10-07
The structure of known Gd{sub 4}Co{sub 3} compound is re-determined as Gd{sub 6}Co{sub 4.85}, adopting the Gd{sub 6}Co{sub 1.67}Si{sub 3} structure type, which is characterized by two disorder Co sites filling the Gd octahedral and a short Gd-Gd distance within the octahedra. The compound shows uniaxial negative thermal expansion in paramagnetic state, significant negative expansion in ferromagnetic state, and positive expansion below ca. 140 K. It also exhibits large magnetocaloric effect, with an entropy change of −6.4 J kg{sup −1} K{sup −1} at 50 kOe. In the lattice of the compound, Co atoms at different sites show different spin states. It was confirmed by themore » X-ray photoelectron spectra and calculation of electronic structure and shed lights on the abnormal thermal expansion. The stability of such compound and the origin of its magnetism are also discussed based on measured and calculated electronic structures.« less
Electronic response of rare-earth magnetic-refrigeration compounds GdX2 (X = Fe and Co)
NASA Astrophysics Data System (ADS)
Bhatt, Samir; Ahuja, Ushma; Kumar, Kishor; Heda, N. L.
2018-05-01
We present the Compton profiles (CPs) of rare-earth-transition metal compounds GdX2 (X = Fe and Co) using 740 GBq 137Cs Compton spectrometer. To compare the experimental momentum densities, we have also computed the CPs, electronic band structure, density of states (DOS) and Mulliken population (MP) using linear combination of atomic orbitals (LCAO) method. Local density and generalized gradient approximations within density functional theory (DFT) along with the hybridization of Hartree-Fock and DFT (B3LYP and PBE0) have been considered under the framework of LCAO scheme. It is seen that the LCAO-B3LYP based momentum densities give a better agreement with the experimental data for both the compounds. The energy bands and DOS for both the spin-up and spin-down states show metallic like character of the reported intermetallic compounds. The localization of 3d electrons of Co and Fe has also been discussed in terms of equally normalized CPs and MP data. Discussion on magnetization using LCAO method is also included.
The Thermochemical Stability of Ionic Noble Gas Compounds.
ERIC Educational Resources Information Center
Purser, Gordon H.
1988-01-01
Presents calculations that suggest stoichiometric, ionic, and noble gas-metal compounds may be stable. Bases calculations on estimated values of electron affinity, anionic radius for the noble gases and for the Born exponents of resulting crystals. Suggests the desirability of experiments designed to prepare compounds containing anionic,…
NASA Astrophysics Data System (ADS)
Joshi, Ankita; Ramachandran, C. N.
2017-07-01
A variety of 1,3,4-oxadiazole derivatives based on electron- donor pyrrole and -acceptor nitro groups are modelled. Various isomers of pyrole-oxadiazole-nitro unit and its dimer linked to substituted and unsubstituted phenyl group are studied using the dispersion corrected density functional theoretical method. The electron density distribution in frontier orbitals of the phenyl-spacer compounds bearing amino and phenylamino groups indicates the possibility of intramolecular charge transfer. The isomers of phenyl-spacer compounds absorb in visible region of electromagnetic spectrum. The compounds show high values of light harvesting efficiency, despite the weak anchoring nature of nitro groups.
An electro-conductive organic coating for scanning electron microscopy (déjà vu)
NASA Astrophysics Data System (ADS)
Burnett, Bryan R.
2014-09-01
An organic compound, originally marketed as an antistatic, can form an extremely thin electro-conductive coating upon drying. A scanning electron microscope (SEM) application for this compound was first explored in the late 1960s. A coating of this compound eliminates the need for carbon or gold coating in some applications. It is well suited for the viewing of fabric samples and associated gunshot residue (GSR) in the SEM and makes it possible to quickly analyze fabric bullet wipe and bore wipe GSR. Fabric samples can also be examined for GSR from intermediate-range shots to estimate muzzle-target distances. Scanning
Incipient class II mixed valency in a plutonium solid-state compound
NASA Astrophysics Data System (ADS)
Cary, Samantha K.; Galley, Shane S.; Marsh, Matthew L.; Hobart, David L.; Baumbach, Ryan E.; Cross, Justin N.; Stritzinger, Jared T.; Polinski, Matthew J.; Maron, Laurent; Albrecht-Schmitt, Thomas E.
2017-09-01
Electron transfer in mixed-valent transition-metal complexes, clusters and materials is ubiquitous in both natural and synthetic systems. The degree to which intervalence charge transfer (IVCT) occurs, dependent on the degree of delocalization, places these within class II or III of the Robin-Day system. In contrast to the d-block, compounds of f-block elements typically exhibit class I behaviour (no IVCT) because of localization of the valence electrons and poor spatial overlap between metal and ligand orbitals. Here, we report experimental and computational evidence for delocalization of 5f electrons in the mixed-valent PuIII/PuIV solid-state compound, Pu3(DPA)5(H2O)2 (DPA = 2,6-pyridinedicarboxylate). The properties of this compound are benchmarked by the pure PuIII and PuIV dipicolinate complexes, [PuIII(DPA)(H2O)4]Br and PuIV(DPA)2(H2O)3·3H2O, as well as by a second mixed-valent compound, PuIII[PuIV(DPA)3H0.5]2, that falls into class I instead. Metal-to-ligand charge transfer is involved in both the formation of Pu3(DPA)5(H2O)2 and in the IVCT.
Electronic cigarette solutions and resultant aerosol profiles.
Herrington, Jason S; Myers, Colton
2015-10-30
Electronic cigarettes (e-cigarettes) are growing in popularity exponentially. Despite their ever-growing acceptance, their aerosol has not been fully characterized. The current study focused on evaluating e-cigarette solutions and their resultant aerosol for potential differences. A simple sampling device was developed to draw e-cigarette aerosol into a multi-sorbent thermal desorption (TD) tube, which was then thermally extracted and analyzed via a gas chromatography (GC) mass spectrometry (GC-MS) method. This novel application provided detectable levels of over one hundred fifteen volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) from a single 40mL puff. The aerosol profiles from four commercially available e-cigarettes were compared to their respective solution profiles with the same GC-MS method. Solution profiles produced upwards of sixty four unidentified and identified (some only tentatively) constituents and aerosol profiles produced upwards of eighty two compounds. Results demonstrated distinct analyte profiles between liquid and aerosol samples. Most notably, formaldehyde, acetaldehyde, acrolein, and siloxanes were found in the aerosol profiles; however, these compounds were never present in the solutions. These results implicate the aerosolization process in the formation of compounds not found in solutions; have potential implications for human health; and stress the need for an emphasis on electronic cigarette aerosol testing. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Two-photon or higher-order absorbing optical materials and methods of use
NASA Technical Reports Server (NTRS)
Marder, Seth (Inventor); Perry, Joseph (Inventor)
2012-01-01
Compositions capable of simultaneous two-photon absorption and higher order absorptivities are provided. Compounds having a donor-pi-donor or acceptor-pi-acceptor structure are of particular interest, where the donor is an electron donating group, acceptor is an electron accepting group, and pi is a pi bridge linking the donor and/or acceptor groups. The pi bridge may additionally be substituted with electron donating or withdrawing groups to alter the absorptive wavelength of the structure. Also disclosed are methods of generating an excited state of such compounds through optical stimulation with light using simultaneous absorption of photons of energies individually insufficient to achieve an excited state of the compound, but capable of doing so upon simultaneous absorption of two or more such photons. Applications employing such methods are also provided, including controlled polymerization achieved through focusing of the light source(s) used.
NASA Astrophysics Data System (ADS)
Diwaker
2014-07-01
The electronic, NMR, vibrational, structural properties of a new pyrazoline derivative: 2-(5-(4-Chlorophenyl)-3-(pyridine-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole has been studied using Gaussian 09 software package. Using VEDA 4 program we have reported the PED potential energy distribution of normal mode of vibrations of the title compound. We have also reported the 1H and 13C NMR chemical shifts of the title compound using B3LYP level of theory with 6-311++G(2d,2p) basis set. Using time dependent (TD-DFT) approach electronic properties such as HOMO and LUMO energies, electronic spectrum of the title compound has been studied and reported. NBO analysis and MEP surface mapping has also been calculated and reported using ab initio methods.
Akman, F; Durak, R; Turhan, M F; Kaçal, M R
2015-07-01
The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. Copyright © 2015 Elsevier Ltd. All rights reserved.
Theoretical study of thermopower behavior of LaFeO3 compound in high temperature region
NASA Astrophysics Data System (ADS)
Singh, Saurabh; Shastri, Shivprasad S.; Pandey, Sudhir K.
2018-04-01
The electronic structure and thermopower (α) behavior of LaFeO3 compound were investigated by combining the ab-initio electronic structures and Boltzmann transport calculations. LSDA plus Hubbard U (U = 5 eV) calculation on G-type anti-ferromagnetic (AFM) configuration gives an energy gap of ˜2 eV, which is very close to the experimentally reported energy gap. The calculated values of effective mass of holes (mh*) in valance band (VB) are found ˜4 times that of the effective mass of electrons (me*) in conduction band (CB). The large effective masses of holes are responsible for the large and positive thermopower exhibited by this compound. The calculated values of α using BoltzTraP code are found to be large and positive in the 300-1200 K temperature range, which is in agreement with the experimentally reported data.
Pfennig, B W; Fritchman, V A; Hayman, K A
2001-01-15
The synthesis and characterization of 10 cyano-bridged trinuclear mixed-valence compounds of the form [(NH3)5M-NC-FeII(CN)4-CN-M'(NH3)5]n+ (M = RuIII, OsIII, CrIII, or PtIV; n = 2, 3, or 4) is reported. The electronic spectra of these supramolecular compounds exhibit a single intervalent (IT) absorption band for each nondegenerate Fe-->M/M' transition. The redox potential of the Fe(II) center is shifted more positive with the addition of each coordinated metal complex, while the redox potentials of the pendant metals vary only slightly from their dinuclear counterparts. As a result, the Fe-->M IT bands are blue-shifted from those in the corresponding dinuclear mixed-valence compounds. The energies of these IT bands show a linear correlation with the ground-state thermodynamic driving force, as predicted by classical electron transfer theory. Estimates of the degree of electronic coupling (Hab) between the metal centers using a theoretical analysis of the IT band shapes indicate that most of these values are similar to those for the corresponding dinuclear species. Notable exceptions occur for the Fe-->M IT transitions in Os-Fe-M (M = Cr or Pt). The enhanced electronic coupling in these two species can be explained as a result of excited state mixing between electron transfer and/or ligand-based charge transfer states and an intensity-borrowing mechanism. Additionally, the possibility of electronic coupling between the remote metal centers in the Ru-Fe-Ru species is discussed in order to explain the observation of two closely spaced redox waves for the degenerate Ru(III) acceptors.
Biodegradation of munitions compounds by a sulfate reducing bacterial enrichment culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boopathy, R.; Manning, J.
1997-08-01
The degradation of several munitions compounds was studied. The compounds included 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine, 2,4,6-trinitrobenzene (TNB), and 2,4-dinitrotoluene. All of the compounds studied were degraded by the sulfate reducing bacterial (SRB) enrichment culture. The SRB culture did not use the munitions compounds as their sole source of carbon. However, all the munitions compounds tested served as the sole source of nitrogen for the SRB culture. Degradation of munitions compounds was achieved by a co-metabolic process. The SRB culture used a variety of carbon sources including pyruvate, ethanol, formate, lactate, and H{sub 2}-CO{sub 2}. The SRB culture was an incompletemore » oxidizer, unable to carry out the terminal oxidation of organic substrates to CO{sub 2} as the sole product, and it did not use acetate or methanol as a carbon source. In addition to serving as nitrogen sources, the munitions compounds also served as electron acceptors in the absence of sulfate. A soil slurry experiment with 5% and 10% munitions compounds-contaminated soil showed that the contaminant TNT was metabolized by the SRB culture in the presence of pyruvate as electron donor. This culture may be useful in decontaminating munitions compounds-contaminated soil and water under anaerobic conditions.« less
Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.
Masuda, Masaki; Freguia, Stefano; Wang, Yung-Fu; Tsujimura, Seiya; Kano, Kenji
2010-06-01
Cyclic voltammograms of yeast extract-containing medium exhibit a clear redox peak around -0.4V vs. Ag|AgCl. Fermentative bacterium Lactococcus lactis was hereby shown to exploit this redox compound for extracellular electron transfer towards a graphite anode using glucose as an electron donor. High performance liquid chromatography revealed that this may be a flavin-type compound. The ability of L. lactis to exploit exogenous flavins for anodic glucose oxidation was confirmed by tests where flavin-type compounds were supplied to the bacterium in well defined media. Based on its mid-point potential, riboflavin can be regarded as a near-optimal mediator for microbially catalyzed anodic electron transfer. Riboflavin derivative flavin mononucleotide (FMN) was also exploited by L. lactis as a redox shuttle, unlike flavin adenine dinucleotide (FAD), possibly due to the absence of a specific transporter for the latter. The use of yeast extract in microbial fuel cell media is herein discouraged based on the related unwanted artificial addition of redox mediators which may distort experimental results. Copyright 2009 Elsevier B.V. All rights reserved.
Decomposition of PCBs in transformer oil using an electron beam accelerator
NASA Astrophysics Data System (ADS)
Jung, In-Ha; Lee, Myun-Joo; Mah, Yoon-Jung
2012-07-01
Decomposition of PCBs in commercially used transformer oil used for more than 30 years has been carried out at normal temperature and pressure without any additives using an electron beam accelerator. The experiments were carried out in two ways: batch and continuous pilot plant with 1.5 MeV of energy, a 50 mA current, and 75 kW of power in a commercial scale accelerator. The electron beam irradiation seemed to transform large molecular weight compounds into lower ones, but the impact was considered too small on the physical properties of oil. Residual concentrations of PCBs after irradiation depend on the absorption dose of the electron beam energy, but aliphatic chloride compounds were produced at higher doses of irradiation. As the results from FT-NMR, chloride ions decomposed from the PCBs are likely to react with aliphatic hydro carbon compounds rather than existing as free radical ions in the transformer oil. Since this is a dry process, treated oil can be used as cutting oil or machine oil for heavy equipment without any additional treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousa, A. M.; Coutinho, W. S.; Lima, A. F.
2015-02-21
We have investigated the structural, bonding, and electronic properties of both ferroelectric (FE) and paraelectric (PE) phases of the hexagonal LuMnO{sub 3} compound using calculations based on density functional theory. The structural properties have been determined by employing the generalized gradient approximation with Perdew-Burke-Ernzerhof and Wu-Cohen parameterization. The bonding and electronic properties have been treated by recently developed modified Becke-Johnson exchange potential, which succeeded to open a band gap for both PE and FE phases, in agreement with experimental predictions. The Bader’s topological analysis of electronic density showed that the character of the Lu–O axial bonds changes when the crystalmore » exhibits the PE → FE structural transition. This fact is in agreement with experimental findings. The covalent character of the Lu–O bond significantly increases due to orbital hybridization between the Lu 5d{sub z}{sup 2} and O 2p{sub z}-states. This bonding mechanism causes the ferroelectricity in the hexagonal LuMnO{sub 3} compound.« less
Nanowire Electron Scattering Spectroscopy
NASA Technical Reports Server (NTRS)
Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano
2009-01-01
Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.
Saito, Norio; Cordier, Stéphane; Lemoine, Pierric; Ohsawa, Takeo; Wada, Yoshiki; Grasset, Fabien; Cross, Jeffrey S; Ohashi, Naoki
2017-06-05
The electronic and crystal structures of Cs 2 [Mo 6 X 14 ] (X = Cl, Br, I) cluster-based compounds were investigated by density functional theory (DFT) simulations and experimental methods such as powder X-ray diffraction, ultraviolet-visible spectroscopy, and X-ray photoemission spectroscopy (XPS). The experimentally determined lattice parameters were in good agreement with theoretically optimized ones, indicating the usefulness of DFT calculations for the structural investigation of these clusters. The calculated band gaps of these compounds reproduced those experimentally determined by UV-vis reflectance within an error of a few tenths of an eV. Core-level XPS and effective charge analyses indicated bonding states of the halogens changed according to their sites. The XPS valence spectra were fairly well reproduced by simulations based on the projected electron density of states weighted with cross sections of Al K α , suggesting that DFT calculations can predict the electronic properties of metal-cluster-based crystals with good accuracy.
Features of the electronic structure of FeTe compounds
NASA Astrophysics Data System (ADS)
Grechnev, G. E.; Lyogenkaya, A. A.; Panfilov, A. S.; Logosha, A. V.; Kotlyar, O. V.; Gnezdilov, V. P.; Makarova, I. P.; Chareev, D. A.; Mitrofanova, E. S.
2015-12-01
A theoretical and experimental study of the electronic structure and nature of the chemical bonds in FeTe compounds in antiferromagnetic (AFM) and paramagnetic phases was carried out. It is established that the nature of the chemical bonds is mainly metallic, and the presence of covalent bonds Fe-Te and Te-Te helps to stabilize the structural distortions of the tetragonal phase of FeTe in the low-temperature region. It is found that the bicollinear AFM structure corresponds to the ground state of the FeTe compound and the calculated value of the magnetic moment MFe = -2.4μB is in good agreement with the data from neutron diffraction measurements. At the same time, the Fermi surface (FS) of the low-temperature AFM phase is radically different from the FS of the paramagnetic FeTe. Reconstructing the FS can lead to a sign change of the Hall coefficient observed in FeTe. The calculation results serve as evidence of the fact that the electronic structures and magnetic properties of FeTe are well-described by the model of itinerant d-electrons and the density functional theory (DFT-GGA).
Joshi, Hemant K; Cooney, J Jon A; Inscore, Frank E; Gruhn, Nadine E; Lichtenberger, Dennis L; Enemark, John H
2003-04-01
Gas-phase photoelectron spectroscopy and density functional theory have been used to investigate the interactions between the sulfur pi-orbitals of arene dithiolates and high-valent transition metals as minimum molecular models of the active site features of pyranopterin MoW enzymes. The compounds (Tp*)MoO(bdt) (compound 1), Cp(2)Mo(bdt) (compound 2), and Cp(2)Ti(bdt) (compound 3) [where Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate, bdt is 1,2-benzenedithiolate, and Cp is eta(5)- cyclopentadienyl] provide access to three different electronic configurations of the metal, formally d(1), d(2), and d(0), respectively. The gas-phase photoelectron spectra show that ionizations from occupied metal and sulfur based valence orbitals are more clearly observed in compounds 2 and 3 than in compound 1. The observed ionization energies and characters compare very well with those calculated by density functional theory. A "dithiolate-folding-effect" involving an interaction of the metal in-plane and sulfur-pi orbitals is proposed to be a factor in the electron transfer reactions that regenerate the active sites of molybdenum and tungsten enzymes.
Ribeiro, Taisa Pereira Piacentini; Manarin, Flávia Giovana; Borges de Melo, Eduardo
2018-05-30
To address the rising global demand for food, it is necessary to search for new herbicides that can control resistant weeds. We performed a 2D-quantitative structure-activity relationship (QSAR) study to predict compounds with photosynthesis-inhibitory activity. A data set of 44 compounds (quinolines and naphthalenes), which are described as photosynthetic electron transport (PET) inhibitors, was used. The obtained model was approved in internal and external validation tests. 2D Similarity-based virtual screening was performed and 64 compounds were selected from the ZINC database. By using the VEGA QSAR software, 48 compounds were shown to have potential toxic effects (mutagenicity and carcinogenicity). Therefore, the model was also tested using a set of 16 molecules obtained by a similarity search of the ZINC database. Six compounds showed good predicted inhibition of PET. The obtained model shows potential utility in the design of new PET inhibitors, and the hit compounds found by virtual screening are novel bicyclic scaffolds of this class. Copyright © 2018 Elsevier Inc. All rights reserved.
Variations in interface compound nucleation for Ti-Al ultrathin films on Si substrates
NASA Astrophysics Data System (ADS)
Han, C. C.; Bené, R. W.
1985-11-01
We have determined the structures of compounds nucleated in a series of sequentially sputtered thin bilayer films of Al and Ti on Si substrates for a range of metal thicknesses and for both (100) and (111) substrates. The compound structures were determined by transmission electron microscopy and diffraction, augmented by Auger electron spectroscopy. An annealing temperature of about 380 °C for 30 min was required to produce compound nucleation. For the Ti/Al/Si(100) system it was found that the phases which were nucleated for samples with 30-min, 380 °C anneals varied from TiAl3 to Ti8Al24 to an unknown compound of tetragonal structure (a=b=5.782 Å, c=6.713 Å) as the Al intermediate layer thickness is changed from 200 to 60 to 40 Å. TiAl3 was the compound nucleated at 380 °C for all other cases. Finally, 410 °C annealing of the Al/Ti/Si(100) samples for 30 min resulted in formation of an apparently Al-altered form of TiSi2.
The Electronic and Electro-Optic Future of III-V Semiconductor Compounds.
1978-12-01
An assessment of material development of III-V compounds for electro - optic , microwave and millimeter wave technology is presented. Questions concerning material selection, needs and processing is addressed. (Author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawtelle, S.M.
The determination of the electron transfer properties of gold, tin, and titanium compounds using electrochemical and spectroelectrochemical techniques is the focus of this dissertation. The investigations of the gold compounds include the determination of the properties of Au[PR[sub 3
NASA Astrophysics Data System (ADS)
Mubarak, A. A.
2016-07-01
The FP-LAPW method is utilized to investigate the elastic, optoelectronic and thermoelectric properties of XTiO3 (X = Ca, Sr and Ba) within the GGA. The calculated lattice constants and bulk modulus are found in agreement with previous studies. The present oxide-perovskite compounds are characterized as elastically stable and anisotropic. CaTiO3 and SrTiO3 are categorized as ductile compounds, whereas the BaTiO3 compound is in the critical region between ductile and brittle. The DOS and the band structure calculations reveal indirect (M-Γ) energy bandgap for the present compounds. The hydrostatic pressure increases the energy bandgap and the width of the valence band. The character of the band structure does not change due to this pressure. The optical parameters are calculated in different radiation regions. Beneficial optics applications are predicted as revealed from the optical spectra. The transport properties are applied as a function of the variable temperatures or carrier concentration. It is found that the compounds under study are classified as a p-type semiconductor. The majority charge carriers responsible for conduction in these calculated compounds are holes rather than electrons.
NASA Astrophysics Data System (ADS)
Pedro, S. S.; Caraballo Vivas, R. J.; Andrade, V. M.; Cruz, C.; Paixão, L. S.; Contreras, C.; Costa-Soares, T.; Caldeira, L.; Coelho, A. A.; Carvalho, A. Magnus G.; Rocco, D. L.; Reis, M. S.
2015-01-01
The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe2MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system, but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.
A modification of the Hammett equation for predicting ionisation constants of p-vinyl phenols.
Sipilä, Julius; Nurmi, Harri; Kaukonen, Ann Marie; Hirvonen, Jouni; Taskinen, Jyrki; Yli-Kauhaluoma, Jari
2005-01-01
Currently there are several compounds used as drugs or studied as new chemical entities, which have an electron withdrawing group connected to a vinylic double bond in a phenolic or catecholic core structure. These compounds share a common feature--current computational methods utilizing the Hammett type equation for the prediction of ionisation constants fail to give accurate prediction of pK(a)'s for compounds containing the vinylic moiety. The hypothesis was that the effect of electron-withdrawing substituents on the pK(a) of p-vinyl phenols is due to the delocalized electronic structure of these compounds. Thus, this effect should be additive for multiple substituents attached to the vinylic double bond and quantifiable by LFER-based methods. The aim of this study was to produce an improved equation with a reduced tendency to underestimate the effect of the double bond on the ionisation of the phenolic hydroxyl. To this end a set of 19 para-substituted vinyl phenols was used. The ionisation constants were measured potentiometrically, and a training set of 10 compounds was selected to build a regression model (r2 = 0.987 and S.E. = 0.09). The average error with an external test set of six compounds was 0.19 for our model and 1.27 for the ACD-labs 7.0. Thus, we have been able to significantly improve the existing model for prediction of the ionisation constants of substituted p-vinyl phenols.
Role of atomic bonding for compound and glass formation in Ni-Si, Pd-Si, and Ni-B systems
NASA Astrophysics Data System (ADS)
Tanaka, K.; Saito, T.; Suzuki, K.; Hasegawa, R.
1985-11-01
Valence electronic structures of crystalline compounds and glassy alloys of Ni silicides, Pd silicides, and Ni borides are studied by soft-x-ray spectroscopy over wide ranges of Si and B concentrations. The samples prepared include bulk compounds, glassy ribbons, and amorphous sputtered films. Silicon Kβ emissions of Ni and Pd silicides generally consist of a prominent peak fixed at ~=4.5 and ~=5.8 eV below the Fermi level EF, respectively, with a shoulder near EF which grows and shifts toward lower energy with increasing Si concentration. The former is identified as due to Si p-like states forming Si 3p-Ni 3d or Si 3p-Pd 4d bonding states while the latter as due to the corresponding antibonding states. Ni L3 and Pd L3 emissions of these silicides indicate that Ni 3d and Pd 4d states lie between the above two states. These local electronic configurations are consistent with partial-density-of-states (PDOS) calculations performed by Bisi and Calandra. Similar electronic configurations are suggested for Ni borides from B Kα and Ni L3 emissions. Differences of emission spectra between compounds and glasses of similar compositions are rather small, but some enhancement of the contribution of antibonding states to the PDOS near EF is suggested for certain glasses over that of the corresponding compounds. These features are discussed in connection with the compound stability and glass formability.
Investigating electron spin resonance spectroscopy of a spin-½ compound in a home-built spectrometer
NASA Astrophysics Data System (ADS)
Sarkar, Jit; Roy, Subhadip; Singh, Jitendra Kumar; Singh, Sourabh; Chakraborty, Tanmoy; Mitra, Chiranjib
2018-05-01
In this work we report electron spin resonance (ESR) measurements performed on NH4CuPO4.H2O, a Heisenberg spin ½ dimer compound. We carried out the experiments both at room temperature and at 78 K, which are well above the antiferromagnetic ordering temperature of the system where the paramagnetic spins have a dominant role in determining its magnetic behavior. We performed the measurements in a home built custom designed continuous wave electron spin resonance (CW-ESR) spectrometer. By analyzing the experimental data, we were able to quantify the Landé g-factor and the ESR line-width of the sample.
Electronic and Piezoelectric properties of half-Heusler compounds: A first principles study
NASA Astrophysics Data System (ADS)
Rai, D. P.; Sandeep; Shankar, A.; Aly, Abeer E.; Patra, P. K.; Thapa, R. K.
2016-10-01
We have investigated the semiconducting and piezoelectric properties of bulk MNiSn (M=Ti, Zr, Hf) type a half-Heusler compound with cubic F-43m symmetry by means of density functional theory (DFT). For electron exchange correlation a generalized gradient approximation (GGA) was used. Special attention was paid to establish a most favourble ground state configuration on magnetic as well as non-magnetic ordering. With fully optimized structure the electronic and ferroelectric calculation was performed. The formation of band gap was discussed on the basis of d-d orbital hybridization. Further we have calculated the spontaneous polarization by means of structural deformation.
Leiker, Thomas J.; Madsen, J.E.; Deacon, J.R.; Foreman, W.T.
1995-01-01
A method for the determination of chlorinated organic compounds in aquatic tissue by dual capillary-column gas chromatography with electron-capture detection is described. Whole-body-fish or corbicula tissue is homogenized, Soxhlet extracted, lipid removed by gel permeation chromatography, and fractionated using alumina/silica adsorption chromatography. The extracts are analyzed by dissimilar capillary-column gas chromatography with electron-capture detection. The method reporting limits are 5 micrograms per kilogram (μg/kg) for chlorinated compounds, 50 μg/kg for polychlorinated biphenyls, and 200 μg/kg for toxaphene.
Positron annihilation studies in solid substituted aromatic compounds
NASA Astrophysics Data System (ADS)
Oliveira, F. C.; Oliveira, A. M.; Donnici, C. L.; Machado, J. C.; Magalhães, W. F.; Windmöller, D.; Fulgêncio, F. H.; Souza, L. R.
2011-04-01
Positronium formation was investigated in benzene and naphthalene compounds with electron donating (sbnd NH2 and sbnd OH) and electron withdrawing (sbnd CN and sbnd NO2) substituents. The results exhibit an increase in the positronium formation yield whenever donating groups are bound to the ring and a decrease with withdrawing groups. These results can be attributed to the π-system electronic density variation in the aromatic ring. The amount of positronium obtained, I3 parameter, has been correlated with the Hammett (σ) and Brown-Okamoto (σp+) constants and adjusted through the modified Hammett equation, which employs the ratio I3/I3ϕ, yielding a satisfactory fit.
Magnetic phase transitions and magnetic structures in RTxX2, RSn1+xGe1-x and RSn2 compounds
NASA Astrophysics Data System (ADS)
Gil, Alina
2018-02-01
The work presents the review of magnetic properties of the RTxX2, RSn1+xGe1-x and RSn2 compounds. The RTxX2 (where R - rare earth, T - 3d-metal, X - p-electron element: Si, Ge, Sn, and 1 ≥ x > 0) and RSn1+xGe1-x compounds (where x ≈ 0.1) crystallize in the orthorhombic crystal structure of CeNiSi2-type and RSn2 compounds crystallize in ZrSi2-type structure. Both structures are described by the space group Cmcm. The RSn1+xGe1-x compounds seem to be interesting due to the replacement of d-metal to p-electron element. The non-stoichiometric CeNiSi2-type of RTxX2 compounds may be regarded as partially filled ZrSi2-type compounds. The transitions from paramagnetic to antiferromagnetic or ferromagnetic states are observed at low temperatures and there are lots of variants of magnetic structures ranging from simple collinear to the sine-modulated structures with commensurate or incommensurate propagation vector. The comparison of magnetic properties of these compounds may help to find answers to questions concerning mechanisms of interaction between the magnetic moments.
A first principles study on newly proposed (Ca/Sr/Ba)Fe2Bi2 compounds with their parent compounds
NASA Astrophysics Data System (ADS)
Sundareswari, M.; Jayalakshmi, D. S.; Viswanathan, E.
2016-02-01
The structural, electronic, bonding and magnetic properties of newly proposed iron-based compounds viz., CaFe2Bi2, SrFe2Bi2, BaFe2Bi2 with their Fermi surface topology are reported here for the first time by means of first principles calculation. All these properties of newly proposed compounds are compared and analysed along with their respective parent compounds namely (Ca,Sr,Ba)Fe2As2.
NASA Astrophysics Data System (ADS)
Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.
2018-03-01
Compound semiconductors being piezoelectric in nature, the intrinsic thermal vibration of the lattice atoms at any temperature gives rise to an additional potential field that perturbs the periodic potential field of the atoms. This is over and above the intrinsic deformation acoustic potential field which is always produced in every material. The scattering of the electrons through the piezoelectric perturbing potential is important in all compound semiconductors, particularly at the low lattice temperatures. Thus, the electrical transport in such materials is principally controlled by the combined interaction of the electrons with the deformation potential acoustic and piezoelectric phonons at low lattice temperatures. The study here, deals with the problem of phonon growth characteristics, considering the combined scattering of the non-equilibrium electrons in compound semiconductors, at low lattice temperatures. Beside degeneracy, other low temperature features, like the inelasticity of the electron-phonon collisions, and the full form of the phonon distribution have been duly considered. The distribution function of the degenerate ensemble of carriers, as given by the heated Fermi-Dirac function, has been approximated by a simplified, well-tested model. The model which has been proposed earlier, makes it much easier to carry out analytically the integrations without usual oversimplified approximations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.
2015-06-01
Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5))more » and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Souza, F.; Forsyth, T.P.; Fukuzumi, S.
1998-10-19
Dodecaphenylporphyrins with varying degrees of fluorination of the peripheral phenyl rings (FXDPPS) were synthesized as model compounds for studying electronic effects in nonplan~ porphyrins, and detailed electrochemical studies of the chloroiron(HI) complexes of these compounds were undertaken. The series of porphyrins, represented as FeDPPCl and as FeFXDPPCl where x = 4, 8 (two isomers), 12, 20,28 or 36, could be reversibly oxidized by two electrons in dichloromethane to give n-cation radicals and n-dications. All of the compounds investigated could also be reduced by three electrons in benzonitrile or pyridine. In benzonitrile, three reversible reductions were observed for the unfluorinated compoundmore » FeDPPC1, whereas the FeFXDPPCl complexes generally exhibited irreversible first and second reductions which were coupled to chemical reactions. The chemical reaction associated with the first reduction involved a loss of the chloride ion after generation of Fe FXDPPC1. The second chemical reaction involved a novel intramolecular electron transfer between the initially generated Fe(H) porphyrin n-anion radical and the final Fe(I) porphyrin reduction product. In pyridine, three reversible one electron reductions were observed with the second reduction affording stable Fe(II) porphyrin o - anion radicals for ail of the complexes investigated.« less
Electronic shell structure in Ga12 icosahedra and the relation to the bulk forms of gallium.
Schebarchov, D; Gaston, N
2012-07-28
The electronic structure of known cluster compounds with a cage-like icosahedral Ga(12) centre is studied by first-principles theoretical methods, based on density functional theory. We consider these hollow metalloid nanostructures in the context of the polymorphism of the bulk, and identify a close relation to the α phase of gallium. This previously unrecognised connection is established using the electron localisation function, which reveals the ubiquitous presence of radially-pointing covalent bonds around the Ga(12) centre--analogous to the covalent bonds between buckled deltahedral planes in α-Ga. Furthermore, we find prominent superatom shell structure in these clusters, despite their hollow icosahedral motif and the presence of covalent bonds. The exact nature of the electronic shell structure is contrasted with simple electron shell models based on jellium, and we demonstrate how the interplay between gallium dimerisation, ligand- and crystal-field effects can alter the splitting of the partially filled 1F shell. Finally, in the unique compound where the Ga(12) centre is bridged by six phosphorus ligands, the electronic structure most closely resembles that of δ-Ga and there are no well-defined superatom orbitals. The results of this comprehensive study bring new insights into the nature of chemical bonding in metalloid gallium compounds and the relation to bulk gallium metal, and they may also guide the development of more general models for ligand-protected clusters.
Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials
Parker, David; Singh, David J
2013-01-01
We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature. PMID:27877610
Fang, Yuankan; Wolowiec, Christian T.; Yazici, Duygu; ...
2015-12-14
A large number of compounds which contain BiSmore » $$_2$$ layers exhibit enhanced superconductivity upon electron doping. Much interest and research effort has been focused on BiS$$_2$$-based compounds which provide new opportunities for exploring the nature of superconductivity. Important to the study of BiS2-based superconductors is the relation between structure and superconductivity. By modifying either the superconducting BiS$$_2$$ layers or the blocking layers in these layered compounds, one can effectively tune the lattice parameters, local atomic environment, electronic structure, and other physical properties of these materials. In this article, we will review some of the recent progress on research of the effects of chemical substitution in BiS$$_2$$-based compounds, with special attention given to the compounds in the LnOBiSS$$_2$$ (Ln = La-Nd) system. Strategies which are reported to be essential in optimizing superconductivity of these materials will also be discussed.« less
MTBE and priority contaminant treatment with high energy electron beam injection
NASA Astrophysics Data System (ADS)
Cooper, William J.; Nickelsen, Michael G.; Mezyk, Stephen P.; Leslie, Greg; Tornatore, Paul M.; Hardison, Wayne; Hajali, Paris A.
2002-11-01
A study was conducted to examine the removal of methyl tert-butyl ether (MTBE) and 15 other organic compounds, as well as perchlorate ion, in waters of different quality. The 15 organic compounds consisted of halogenated solvents (chlorination), disinfection by-products, pesticides, and nitrosodimethylamine (NDMA). These studies were conducted using a pilot scale 20 kW mobile electron beam system at Water Factory 21, Orange County, CA where wastewater is treated and re-injected into the ground as a barrier to salt water intrusion. Future applications for this treated water include water reuse. Ground water and treated wastewater, after having gone through a reverse osmosis-polishing step (RO permeate), were used to prepare mixtures of the compounds. Using fundamental radiation chemistry, it was possible to examine the factors effecting removal efficiency of all the compounds as well as MTBE destruction and reaction by-product formation and removal. All of the organic compounds were destroyed in the studies and we also observed the destruction of perchlorate ion in one of the waters.
High pressure and synchrotron radiation studies of solid state electronic instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pifer, J.H.; Croft, M.C.
This report discusses Eu and General Valence Instabilities; Ce Problem: L{sub 3} Spectroscopy Emphasis; Bulk Property Emphasis; Transition Metal Compound Electronic Structure; Electronic Structure-Phonon Coupling Studies; High Temperature Superconductivity and Oxide Materials; and Novel Materials Collaboration with Chemistry.
Lajaunie, Luc; Radovsky, Gal; Tenne, Reshef; Arenal, Raul
2018-01-16
We have synthesized quaternary chalcogenide-based misfit nanotubes LnS(Se)-TaS 2 (Se) (Ln = La, Ce, Nd, and Ho). None of the compounds described here were reported in the literature as a bulk compound. The characterization of these nanotubes, at the atomic level, has been developed via different transmission electron microscopy techniques, including high-resolution scanning transmission electron microscopy, electron diffraction, and electron energy-loss spectroscopy. In particular, quantification at sub-nanometer scale was achieved by acquiring high-quality electron energy-loss spectra at high energy (∼between 1000 and 2500 eV). Remarkably, the sulfur was found to reside primarily in the distorted rocksalt LnS lattice, while the Se is associated with the hexagonal TaSe 2 site. Consequently, these quaternary misfit layered compounds in the form of nanostructures possess a double superstructure of La/Ta and S/Se with the same periodicity. In addition, the interlayer spacing between the layers and the interatomic distances within the layer vary systematically in the nanotubes, showing clear reduction when going from the lightest (La atom) to the heaviest (Ho) atom. Amorphous layers, of different nature, were observed at the surface of the nanotubes. For La-based NTs, the thin external amorphous layer (inferior to 10 nm) can be ascribed to a Se deficiency. Contrarily, for Ho-based NTs, the thick amorphous layer (between 10 and 20 nm) is clearly ascribed to oxidation. All of these findings helped us to understand the atomic structure of these new compounds and nanotubes thereof.
NASA Technical Reports Server (NTRS)
Yang, Jinhua; Dass, Amala; Rawashdeh, Abdel-Monem M.; Sotiriou-Leventis, Chariklia; Panzner, Matthew J.; Tyson, Daniel S.; Kinder, James D.; Leventis, Nicholas
2004-01-01
2-Arylethynyl- and 2,6- and 2,7-diarylethynyl-substituted 9,lO-anthraquinones were synthesized via Sonogashira coupling reactions of 2-bromo-, 2,6-dibromo-, and 2,7-dibromo-9,10- anthraquinone with para-substituted phenylacetylenes. While the redox properties of those compounds are almost insensitive to substitution, their absorption maxima are linearly related to the Hammett constants with different slopes for electron donors and electron acceptors. ABI compounds are photoluminescent both in solution (quantum yields of emission <= 6 %), and as solids. The emission spectra have the characteristics of charge-transfer bands with large Stokes shifts (100-250 nm). The charge-transfer character of the emitting state is supported by large dipole moment differences between the ground and the excited state as concluded on the basis of molecular modeling and Lippert-Mataga correlations of the Stokes shifts with solvent polarity. Maximum Stokes shifts are attained by both electron-donating and -withdrawing groups. This is explained by a destabilization of the HOMO by electron donors and a stabilization of the LUMO by electron acceptors. X-ray crystallographic analysis of, for example, 2,7-bisphenylethynfl- 9,lO-anthraquinone reveals a monoclinic P21In space group and no indication for pi-overlap that would promote quenching, thus explaining emission from the solid state. Representative reduced forms of the title compounds were isolated as stable acetates of the corresponding dihydrs-9,10- anthraquinones. The emission of these compounds is blue-shifted relative to the parent oxidized forms and is attributed to internal transitions in the dihydro-9,lO-anthraquinone core.
Battiston, Enrico; Salvatici, Maria C; Lavacchi, Alessandro; Gatti, Antonietta; Di Marco, Stefano; Mugnai, Laura
2018-02-19
The present study evaluated a biocompatible material for plant protection with the aim of reducing the amount of active substance applied. We used a synthetic hydroxyapatite (HA) that has been studied extensively as a consequence of its bioactivity and biocompatibility. An aggregation between HA nanoparticles and four Cu(II) compounds applied to Vitis vinifera L. leaves as a pesticide was studied. Formulations were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS) and electron microscopy and applied in planta to verify particle aggregation and efficiency in controlling the pathogen Plasmopara viticola. The XRD patterns showed different crystalline phases dependig on the Cu(II) compound formulated with HA particles, DLS showed that nanostructured particles are stable as aggregates out of the nanometer range and, in all formulations, transmission electron microscopy (TEM) and environmental scanning electron microscopy (ESEM) microscopy showed large aggregates which were partially nanostructured and were recognized as stable in their micrometric dimensions. Such particles did not show phytotoxic effects after their application in planta. A formulation based on HA and a soluble Cu(II) compound showed promising results in the control of the fungal pathogen, confirming the potential role of HA as an innovative delivery system of Cu(II) ions. The present work indicates the possibility of improving the biological activity of a bioactive substance by modifying its structure through an achievable formulation with a biocompatible material. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Sunil Kumar Reddy, N.; Badam, Rajashekar; Sattibabu, Romala; Molli, Muralikrishna; Sai Muthukumar, V.; Siva Sankara Sai, S.; Rao, G. Nageswara
2014-11-01
We report here the nonlinear optical (NLO) properties of eight bis-chalcones of D-π-A-π-D type. These dibenzylideneacetone (DBA) derivatives are synthesized by Claisen-Schmidt reaction. The compounds are characterized by UV-vis, FTIR, 1H NMR, 13C NMR, mass spectroscopy and powder XRD. By substituting different groups (electron withdrawing and electron donating) at 'para' and 'meta' positions of the aromatic ring, we observed an enhancement in second harmonic generation with substitution at 'para' position. These compounds have also showed higher two-photon absorption compared to other chalcones reported in literature. These compounds, exhibiting both second and third order NLO effects, are plausible candidate materials in photonic devices.
NASA Technical Reports Server (NTRS)
Sharma, S. P.; Rao, M. V. V. S.; Arnold, James O. (Technical Monitor)
1998-01-01
Published electron impact cross section data on halogens Cl2, F2, and halogen containing compounds such as Cx Fy, HCl, Cx Cly Fz are reviewed and critically evaluated based on the information provided by various researchers. The present work reports data on electron impact excitation, ionization, dissociation, electron attachment, electron detachment, and photo detachment. Elastic scattering cross sections and data on bulk properties such as diffusion coefficients in various background gases are also evaluated. Since some of the cross sectional data is derived from indirect measurements such as drift velocity, care has been taken to reconcile the differences among the reported data with due attention to the measurement technique. In conclusion, the processes with no or very limited amount of data and questionable set of data are identified and recommendation for further research direction is made.
Food Antioxidants: Chemical Insights at the Molecular Level.
Galano, Annia; Mazzone, Gloria; Alvarez-Diduk, Ruslán; Marino, Tiziana; Alvarez-Idaboy, J Raúl; Russo, Nino
2016-01-01
In this review, we briefly summarize the reliability of the density functional theory (DFT)-based methods to accurately predict the main antioxidant properties and the reaction mechanisms involved in the free radical-scavenging reactions of chemical compounds present in food. The analyzed properties are the bond dissociation energies, in particular those involving OH bonds, electron transfer enthalpies, adiabatic ionization potentials, and proton affinities. The reaction mechanisms are hydrogen-atom transfer, proton-coupled electron transfer, radical adduct formation, single electron transfer, sequential electron proton transfer, proton-loss electron transfer, and proton-loss hydrogen-atom transfer. Furthermore, the chelating ability of these compounds and its role in decreasing or inhibiting the oxidative stress induced by Fe(III) and Cu(II) are considered. Comparisons between theoretical and experimental data confirm that modern theoretical tools are not only able to explain controversial experimental facts but also to predict chemical behavior.
Ab Initio Study of Electronic Structure, Elastic and Transport Properties of Fluoroperovskite LiBeF3
NASA Astrophysics Data System (ADS)
Benmhidi, H.; Rached, H.; Rached, D.; Benkabou, M.
2017-04-01
The aim of this work is to investigate the electronic, mechanical, and transport properties of the fluoroperovskite compound LiBeF3 by first-principles calculations using the full-potential linear muffin-tin orbital method based on density functional theory within the local density approximation. The independent elastic constants and related mechanical properties including the bulk modulus ( B), shear modulus ( G), Young's modulus ( E), and Poisson's ratio ( ν) have been studied, yielding the elastic moduli, shear wave velocities, and Debye temperature. According to the electronic properties, this compound is an indirect-bandgap material, in good agreement with available theoretical data. The electron effective mass, hole effective mass, and energy bandgaps with their volume and pressure dependence are investigated for the first time.
An organoboron compound with a wide absorption spectrum for solar cell applications.
Liu, Fangbin; Ding, Zicheng; Liu, Jun; Wang, Lixiang
2017-11-09
Organoboron compounds offer new approaches to tune the electronic structures of π-conjugated molecules. In this work, an electron acceptor (M-BNBP4P-1) is developed by endcapping an organoboron core unit with two strong electron-withdrawing groups. M-BNBP4P-1 exhibits a unique wide absorption spectrum with two strong absorption bands in the long wavelength region (λ max = 771 nm) and the short wavelength region (λ max = 502 nm), which indicate superior sunlight harvesting capability. This is due to its special electronic structure, i.e. a delocalized LUMO and a localized HOMO. Prototype solution-processed organic solar cells based on M-BNBP4P-1 show a power conversion efficiency of 7.06% and a wide photoresponse from 350 nm to 880 nm.
Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds
Hong, A. J.; Li, L.; He, R.; ...
2016-03-07
The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half- Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k codemore » and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Tidoped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. Lastly, the present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.« less
Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, A. J.; Li, L.; He, R.
The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half- Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k codemore » and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Tidoped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. Lastly, the present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.« less
Sensing a Changing Chemical Mixture Using an Electronic Nose
NASA Technical Reports Server (NTRS)
Duong, Tuan; Ryan, Margaret
2008-01-01
A method of using an electronic nose to detect an airborne mixture of known chemical compounds and measure the temporally varying concentrations of the individual compounds is undergoing development. In a typical intended application, the method would be used to monitor the air in an inhabited space (e.g., the interior of a building) for the release of solvents, toxic fumes, and other compounds that are regarded as contaminants. At the present state of development, the method affords a capability for identifying and quantitating one or two compounds that are members of a set of some number (typically of the order of a dozen) known compounds. In principle, the method could be extended to enable monitoring of more than two compounds. An electronic nose consists of an array of sensors, typically made from polymer carbon composites, the electrical resistances of which change upon exposure to a variety of chemicals. By design, each sensor is unique in its responses to these chemicals: some or all of the sensitivities of a given sensor to the various vapors differ from the corresponding sensitivities of other sensors. In general, the responses of the sensors are nonlinear functions of the concentrations of the chemicals. Hence, mathematically, the monitoring problem is to solve the set of time-dependent nonlinear equations for the sensor responses to obtain the time dependent concentrations of individual compounds. In the present developmental method, successive approximations of the solution are generated by a learning algorithm based on independent-component analysis (ICA) an established information theoretic approach for transforming a vector of observed interdependent signals into a set of signals that are as nearly statistically independent as possible.
NASA Astrophysics Data System (ADS)
Bakhshayeshi, A.; Sarmazdeh, M. Majidiyan; Mendi, R. Taghavi; Boochani, A.
2017-04-01
Electronic, magnetic, and optical properties of Co2MnAs full-Heusler compound have been calculated using a first-principles approach with the full-potential linearized augmented plane-wave (FP-LAPW) method and generalized gradient approximation plus U (GGA + U). The results are compared with various properties of Co2Mn Z ( Z = Si, Ge, Al, Ga, Sn) full-Heusler compounds. The results of our calculations show that Co2MnAs is a half-metallic ferromagnetic compound with 100% spin polarization at the Fermi level. The total magnetic moment and half-metallic gap of Co2MnAs compound are found to be 6.00 μ B and 0.43 eV, respectively. It is also predicted that the spin-wave stiffness constant and Curie temperature of Co2MnAs compound are about 3.99 meV nm2 and 1109 K, respectively. The optical results show that the dominant behavior, at energy below 2 eV, is due to interactions of free electrons in the system. Interband optical transitions have been calculated based on the imaginary part of the dielectric function and analysis of critical points in the second energy derivative of the dielectric function. The results show that there is more than one plasmon energy for Co2MnAs compound, with the highest occurring at 25 eV. Also, the refractive index variations and optical reflectivity for radiation at normal incidence are calculated for Co2MnAs. Because of its high magnetic moment, high Curie temperature, and 100% spin polarization at the Fermi level as well as its optical properties, Co2MnAs is a good candidate for use in spintronic components and magnetooptical devices.
ERIC Educational Resources Information Center
Mitchell, P. R.; Parish, R. V.
1969-01-01
Discusses the stability of the structures of transition metal complexes (primarily carbonyls and organometallic compounds) having 18 electrons or less in their valence shell. Presents molecular orbital diagrams for various structures involving alpha and pi bonding and describes the conditions under which the 18 electron rule applies. (RR)
78 FR 53029 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
... Air Quality: Revision to Definition of Volatile Organic Compounds--Exclusion of trans 1-chloro-3,3,3.... SUMMARY: The EPA is taking final action to revise the regulatory definition of volatile organic compounds..., June 16, 2010), and as a solvent for metals, electronics, and precision cleaning and in adhesives...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.
The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us tomore » predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.« less
Lifetime of a Chemically Bound Helium Compound
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)
2001-01-01
The rare-gas atoms are chemically inert, to an extent unique among all elements. This is due to the stable electronic structure of the atoms. Stable molecules with chemically bound rare-gas atoms are, however, known. A first such compound, XePtF6, W2S prepared in 1962 and since then a range of molecules containing radon, xenon and krypton have been obtained. Most recently, a first stable chemically bound compound of argon was prepared, leaving neon and helium as the only elements for which stable chemically bound molecules are not yet known. Electronic structure calculations predict that a metastable species HHeF exists, but significance of the result depends on the unknown lifetime. Here we report quantum dynamics calculations of the lifetime of HHeF, using accurate interactions computed from electronic structure theory. HHeF is shown to disintegrate by tunneling through energy barriers into He + HF and H + He + F the first channel greatly dominating. The lifetime of HHeF is more than 120 picoseconds, that of DHeF is 14 nanoseconds. The relatively long lifetimes are encouraging for the preparation prospects of this first chemically bound helium compound.
Guo, Xiaoning; Hao, Caihong; Jin, Guoqiang; Zhu, Huai-Yong; Guo, Xiang-Yun
2014-02-10
Copper is a low-cost plasmonic metal. Efficient photocatalysts of copper nanoparticles on graphene support are successfully developed for controllably catalyzing the coupling reactions of aromatic nitro compounds to the corresponding azoxy or azo compounds under visible-light irradiation. The coupling of nitrobenzene produces azoxybenzene with a yield of 90 % at 60 °C, but azobenzene with a yield of 96 % at 90 °C. When irradiated with natural sunlight (mean light intensity of 0.044 W cm(-2) ) at about 35 °C, 70 % of the nitrobenzene is converted and 57 % of the product is azobenzene. The electrons of the copper nanoparticles gain the energy of the incident light through a localized surface plasmon resonance effect and photoexcitation of the bound electrons. The excited energetic electrons at the surface of the copper nanoparticles facilitate the cleavage of the NO bonds in the aromatic nitro compounds. Hence, the catalyzed coupling reaction can proceed under light irradiation and moderate conditions. This study provides a green photocatalytic route for the production of azo compounds and highlights a potential application for graphene. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent developments in and perspectives on three-coordinate boron materials: a bright future
Ji, Lei; Griesbeck, Stefanie
2017-01-01
The empty pz-orbital of a three-coordinate organoboron compound leads to its electron-deficient properties, which make it an excellent π-acceptor in conjugated organic chromophores. The empty p-orbital in such Lewis acids can be attacked by nucleophiles, so bulky groups are often employed to provide air-stable materials. However, many of these can still bind fluoride and cyanide anions leading to applications as anion-selective sensors. One electron reduction generates radical anions. The π-acceptor strength can be easily tuned by varying the organic substituents. Many of these compounds show strong two-photon absorption (TPA) and two-photon excited fluorescence (TPEF) behaviour, which can be applied for e.g. biological imaging. Furthermore, these chromophores can be used as emitters and electron transporters in OLEDs, and examples have recently been found to exhibit efficient thermally activated delayed fluorescence (TADF). The three-coordinate organoboron unit can also be incorporated into polycyclic aromatic hydrocarbons. Such boron-doped compounds exhibit very interesting properties, distinct from their all-carbon analogues. Significant developments have been made in all of these areas in recent years and new applications are rapidly emerging for this class of boron compounds. PMID:28572897
NASA Astrophysics Data System (ADS)
Fink, J.; Rienks, E. D. L.; Thirupathaiah, S.; Nayak, J.; van Roekeghem, A.; Biermann, S.; Wolf, T.; Adelmann, P.; Jeevan, H. S.; Gegenwart, P.; Wurmehl, S.; Felser, C.; Büchner, B.
2017-04-01
Angle-resolved photoemission spectroscopy is used to study the scattering rates of charge carriers from the hole pockets near Γ in the iron-based high-Tc hole-doped superconductors KxBa1 -xFe2As2 , x =0.4 , and KxEu1 -xFe2As2 , x =0.55 , and the electron-doped compound Ba (Fe1-xCox) 2As2 , x =0.075 . The scattering rate for any given band is found to depend linearly on the energy, indicating a non-Fermi-liquid regime. The scattering rates in the hole-doped compound are considerably higher than those in the electron-doped compounds. In the hole-doped systems the scattering rate of the charge carriers of the inner hole pocket is about three times higher than the binding energy, indicating that the spectral weight is heavily incoherent. The strength of the scattering rates and the difference between electron- and hole-doped compounds signals the importance of Hund's exchange coupling for correlation effects in these iron-based high-Tc superconductors. The experimental results are in qualitative agreement with theoretical calculations in the framework of combined density functional dynamical mean-field theory.
Lin, Qisheng; Miller, Gordon J
2018-01-16
Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural complexity can be realized by small amounts of Li replacing Zn atoms in the parent binary compounds CaZn 2 , CaZn 3 , and CaZn 5 ; their phase formation and bonding schemes can be rationalized by Fermi surface-Brillouin zone interactions between nearly free-electron states. "Cation-rich", electron-poor polar intermetallics have emerged using rare earth metals as the electropositive ("cationic") component together metal/metalloid clusters that mimic the backbones of aromatic hydrocarbon molecules, which give evidence of extensive electronic delocalization and multicenter bonding. Thus, we can identify three distinct, valence electron-poor, polar intermetallic systems that have yielded unprecedented phases adopting novel structures containing complex clusters and intriguing bonding characteristics. In this Account, we summarize our recent specific progress in the developments of novel Au-rich BaAl 4 -type related structures, shown in the "gold-rich grid", lithiation-modulated Ca-Li-Zn phases stabilized by different bonding characteristics, and rare earth-rich polar intermetallics containing unprecedented hydrocarbon-like planar Co-Ge metal clusters and pronounced delocalized multicenter bonding. We will focus mainly on novel structural motifs, bonding analyses, and the role of valence electrons for phase stability.
Hyster, Todd K.; Ruhl, Kyle E.; Rovis, Tomislav
2013-01-01
The coupling of O-pivaloyl benzhydroxamic acids with donor/acceptor diazo compounds provides iso-indolones in high yield. The reaction tolerates a broad range of benzhydroxamic acids and diazo compounds including substituted 2,2,2-trifluorodiazo ethanes. Mechanistic experiments suggest that C–H activation is turnover limiting and irreversible, while insertion of the diazo compound favors electron deficient substrates. PMID:23548055
Yang, Kesong; Nazir, Safdar; Behtash, Maziar; Cheng, Jianli
2016-01-01
The two-dimensional electron gas (2DEG) formed at the interface between two insulating oxides such as LaAlO3 and SrTiO3 (STO) is of fundamental and practical interest because of its novel interfacial conductivity and its promising applications in next-generation nanoelectronic devices. Here we show that a group of combinatorial descriptors that characterize the polar character, lattice mismatch, band gap, and the band alignment between the perovskite-oxide-based band insulators and the STO substrate, can be introduced to realize a high-throughput (HT) design of SrTiO3-based 2DEG systems from perovskite oxide quantum database. Equipped with these combinatorial descriptors, we have carried out a HT screening of all the polar perovskite compounds, uncovering 42 compounds of potential interests. Of these, Al-, Ga-, Sc-, and Ta-based compounds can form a 2DEG with STO, while In-based compounds exhibit a strain-induced strong polarization when deposited on STO substrate. In particular, the Ta-based compounds can form 2DEG with potentially high electron mobility at (TaO2)+/(SrO)0 interface. Our approach, by defining materials descriptors solely based on the bulk materials properties, and by relying on the perovskite-oriented quantum materials repository, opens new avenues for the discovery of perovskite-oxide-based functional interface materials in a HT fashion. PMID:27708415
Aromaticity and Antiaromaticity in Zintl Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Zhong -Ming; Liu, Chao; Popov, Ivan Aleksandrovich
Originally, the concepts of aromaticity and antiaromaticity were introduced to explain the stability and reactivity of unsaturated organic compounds. Since then, they have been extended to other species with delocalized electrons including various saturated systems, organometallic compounds, and even inorganic clusters and molecules. In this study, we focus on the most recent progress of using these concepts to guide experimental synthesis and rationalize geometrical and electronic structures of a particular family of polyanions composed of Group 14 and 15 elements, namely Zintl clusters.
Single Crystal Growth, Resistivity, and Electronic Structure of the Weyl Semimetals NbP and TaP
Sapkota, Deepak; Mukherjee, Rupam; Mandrus, David
2016-12-06
We have successfully synthesized niobium monophosphide and tantalum monophosphide crystals by a chemical vapor transport technique. We report resistivity vs. temperature of both materials in the temperature range from 2 K to 300 K. We have also performed electronic structure calculations and present the band structure and density of states of these two compounds. The calculations show that both compounds are semimetals, as their conduction and valence bands overlap near the Fermi energy.
Aromaticity and Antiaromaticity in Zintl Clusters
Sun, Zhong -Ming; Liu, Chao; Popov, Ivan Aleksandrovich; ...
2018-05-18
Originally, the concepts of aromaticity and antiaromaticity were introduced to explain the stability and reactivity of unsaturated organic compounds. Since then, they have been extended to other species with delocalized electrons including various saturated systems, organometallic compounds, and even inorganic clusters and molecules. In this study, we focus on the most recent progress of using these concepts to guide experimental synthesis and rationalize geometrical and electronic structures of a particular family of polyanions composed of Group 14 and 15 elements, namely Zintl clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedro, S. S., E-mail: sandrapedro@uerj.br; Caraballo Vivas, R. J.; Andrade, V. M.
2015-01-07
The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe{sub 2}MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system,more » but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.« less
von Lilienfeld, O. Anatole
2013-02-26
A well-defined notion of chemical compound space (CCS) is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we give an introduction to an atomistic first principles perspective on CCS. First, CCS is discussed in terms of variational nuclear charges in the context of conceptual density functional and molecular grand-canonical ensemble theory. Thereafter, we revisit the notion of compound pairs, related to each other via “alchemical” interpolations involving fractional nuclear charges in the electronic Hamiltonian. We address Taylor expansions in CCS, property nonlinearity, improved predictions using reference compound pairs, and the ounce-of-gold prizemore » challenge to linearize CCS. Finally, we turn to machine learning of analytical structure property relationships in CCS. Here, these relationships correspond to inferred, rather than derived through variational principle, solutions of the electronic Schrödinger equation.« less
Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y)
Liu, Z. K.; Yang, L. X.; Wu, S. -C.; ...
2016-09-27
Topological quantum materials represent a new class of matter with both exotic physical phenomena and novel application potentials. Many Heusler compounds, which exhibit rich emergent properties such as unusual magnetism, superconductivity and heavy fermion behaviour, have been predicted to host non-trivial topological electronic structures. The coexistence of topological order and other unusual properties makes Heusler materials ideal platform to search for new topological quantum phases (such as quantum anomalous Hall insulator and topological superconductor). By carrying out angle-resolved photoemission spectroscopy and ab initio calculations on rare-earth half-Heusler compounds LnPtBi (Ln=Lu, Y), we directly observe the unusual topological surface states onmore » these materials, establishing them as first members with non-trivial topological electronic structure in this class of materials. Moreover, as LnPtBi compounds are non-centrosymmetric superconductors, our discovery further highlights them as promising candidates of topological superconductors.« less
Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. K.; Yang, L. X.; Wu, S. -C.
Topological quantum materials represent a new class of matter with both exotic physical phenomena and novel application potentials. Many Heusler compounds, which exhibit rich emergent properties such as unusual magnetism, superconductivity and heavy fermion behaviour, have been predicted to host non-trivial topological electronic structures. The coexistence of topological order and other unusual properties makes Heusler materials ideal platform to search for new topological quantum phases (such as quantum anomalous Hall insulator and topological superconductor). By carrying out angle-resolved photoemission spectroscopy and ab initio calculations on rare-earth half-Heusler compounds LnPtBi (Ln=Lu, Y), we directly observe the unusual topological surface states onmore » these materials, establishing them as first members with non-trivial topological electronic structure in this class of materials. Moreover, as LnPtBi compounds are non-centrosymmetric superconductors, our discovery further highlights them as promising candidates of topological superconductors.« less
NASA Astrophysics Data System (ADS)
Badave, Kirti; Patil, Yogesh; Gonnade, Rajesh; Srinivas, Darbha; Dasgupta, Rajan; Khan, Ayesha; Rane, Sandhya
2011-12-01
Compound 1 [1-imino (acetyl hydrazino)-Vitamin K 3], displays valence tautomerically related electronic isomers as Form I and Form II. Form I exhibits 2D packing fragment with 1D ribbon chains of N-H⋯O hydrogen bonds and shows EPR silent features. While Form II is EPR active and exhibits biradical nature with double quantum transitions at g = 2.0040. 1H NMR of compound 2, [1-imino (hydrazino carboxylate)-Vitamin K 3] and Form II exhibit π delocalization via resonance assisted H-bonding [RAHB] effect compared to Form I. Molecular interactions in Form I and II are visualized by DSC. The electronic structures of compounds 1 and 2 have been correlated to their API values by measuring anticancer activities, mitochondrial potentials and DNA shearing patterns. Form II and compound 2 indicate mitochondria mediated apoptosis (˜75% cell death) while Form I causes 35% cell death.
Ab initio calculation of electronic structure and magnetic properties of R2Fe14BNx (R = Pr,Nd)
NASA Astrophysics Data System (ADS)
Tian, Guang; Zha, Liang; Yang, Wenyun; Qiao, Guanyi; Wang, Changsheng; Yang, Yingchang; Yang, Jinbo
2018-05-01
The site preference of N atom for R2Fe14BNx (R= Pr, Nd) and the interstitial nitrogen effect on the magnetic properties have been studied by the first-principles method. It was found that the nitrogen is more likely to occupy the 4e site for Pr2Fe14BNx compound, while 4f site for Nd2Fe14BNx. When N atoms entering some specific crystal sites (such as 2a and 4f), the total magnetic moments of these compounds are not reduced, but slightly increased. Although the doping of N may reduce the total magnetic moments of some R2Fe14B compounds in the cases of optimal occupancy, the volumetric effect caused by N doping can still change the electron density distributions of Fe near the Fermi level, improving the magnetic ordering temperature of such compounds.
Aigner, Siegfried; Remias, Daniel; Karsten, Ulf; Holzinger, Andreas
2013-01-01
The filamentous green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) was collected in a high-alpine rivulet in Tyrol, Austria. Two different morphotypes of this alga were found: a purple morph with a visible purple vacuolar content and a green morph lacking this coloration. These morphotypes were compared with respect to their secondary metabolites, ultrastructure, and ecophysiological properties. Colorimetric tests with aqueous extracts of the purple morph indicated the presence of soluble compounds such as phenolics and hydrolyzable tannins. High-performance liquid chromatography-screening showed that Z. ericetorum contained several large phenolic peaks with absorption maxima at ∼280 nm and sometimes with minor maxima at ∼380 nm. Such compounds are uncommon for freshwater green microalgae, and could contribute to protect the organism against increased UV and visible (VIS) irradiation. The purple Z. ericetorum contained larger amounts (per dry weight) of the putative phenolic substances than the green morph; exposure to irradiation may be a key factor for accumulation of these phenolic compounds. Transmission electron microscopy of the purple morph showed massive vacuolization with homogenous medium electron-dense content in the cell periphery, which possibly contains the secondary compounds. In contrast, the green morph had smaller, electron-translucent vacuoles. The ecophysiological data on photosynthesis and desiccation tolerance indicated that increasing photon fluence densities led to much higher relative electron transport rates (rETR) in the purple than in the green morph. These data suggest that the secondary metabolites in the purple morph are important for light acclimation in high-alpine habitats. However, the green morph recovered better after 4 d of rehydration following desiccation stress. PMID:25810559
Lu, Xiaonan; Rasco, Barbara A.; Jabal, Jamie M. F.; Aston, D. Eric; Lin, Mengshi; Konkel, Michael E.
2011-01-01
Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy were used to study the cell injury and inactivation of Campylobacter jejuni from exposure to antioxidants from garlic. C. jejuni was treated with various concentrations of garlic concentrate and garlic-derived organosulfur compounds in growth media and saline at 4, 22, and 35°C. The antimicrobial activities of the diallyl sulfides increased with the number of sulfur atoms (diallyl sulfide < diallyl disulfide < diallyl trisulfide). FT-IR spectroscopy confirmed that organosulfur compounds are responsible for the substantial antimicrobial activity of garlic, much greater than those of garlic phenolic compounds, as indicated by changes in the spectral features of proteins, lipids, and polysaccharides in the bacterial cell membranes. Confocal Raman microscopy (532-nm-gold-particle substrate) and Raman mapping of a single bacterium confirmed the intracellular uptake of sulfur and phenolic components. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to verify cell damage. Principal-component analysis (PCA), discriminant function analysis (DFA), and soft independent modeling of class analogs (SIMCA) were performed, and results were cross validated to differentiate bacteria based upon the degree of cell injury. Partial least-squares regression (PLSR) was employed to quantify and predict actual numbers of healthy and injured bacterial cells remaining following treatment. PLSR-based loading plots were investigated to further verify the changes in the cell membrane of C. jejuni treated with organosulfur compounds. We demonstrated that bacterial injury and inactivation could be accurately investigated by complementary infrared and Raman spectroscopies using a chemical-based, “whole-organism fingerprint” with the aid of chemometrics and electron microscopy. PMID:21642409
TERMINAL ELECTRON ACCEPTOR MASS BALANCE: LIGHT NONAQUEOUS PHASE LIQUIDS AND NATURAL ATTENUATION
Nonaqueous phase liquids (NAPLs) in subsurface systems contain a relatively large amount of biodegradable organic material. During the biochemical oxidation of the organic compounds in the NAPL, electrons are transferred to terminal electron acceptors (TEA) (i.e., O2, NO3-, Mn(I...
Irradiation of aqueous solutions with high-energy electrons results in the formation of the aqueous electron, hydrogen radical, H-, and the hydroxyl radical, OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solut...
NASA Astrophysics Data System (ADS)
Ramudu, M.; Satish Kumar, A.; Seshubai, V.; Rajasekharan, T.
2015-02-01
The martensitic transformation TM of the alloys of Ni-Mn-Ga and Ni-Mn-Al show a general trend of increase with electron per atom ratio (e/a) calculated from the total number of electrons outside the rare gas shell of the atoms. However prediction of TM fails among iron substituted Ni-Mn-Ga alloys and those with In doped for Ga, due to the absence of a useful trend. A scheme of computing modified electron concentration is presented considering only the non-bonding electrons per atom Ne/a of the compounds, based on Pauling's ideas on the electronic structure of metallic elements. Systematic variation of TM with Ne/a is reproduced for a large number of alloys of Ni-Mn-Ga and the anomaly observed for Fe containing alloys with e/a disappears. The non-bonding electron concentration is thus demonstrated to be effective in predicting TM of shape memory alloys of Ni-Mn-Ga-X system including the isoelectronic compounds of Ni-Mn-Ga-In.
Getoff, Nikola
2013-04-01
A new conception of the action mechanisms of vitamins and some other compounds without a vitamin status is briefly presented. It is based on results obtained through pulse radiolysis, molecular radiation biological investigations, and in vitro studies. The data clearly show that antioxidant vitamins (C, E, β-carotene) and B vitamins and related compounds possess the capability to emit "solvated electrons" in aqueous solutions or polar media. In consequence, the well-known vitamin effects are attributed to the action of the emitted solvated electrons and the resulting vitamin free radicals rather than the vitamin molecules per se, as generally accepted. Copyright © 2013 Elsevier Inc. All rights reserved.
First-principles study of structural and electronic properties of Be0.25Zn0.75S mixed compound
NASA Astrophysics Data System (ADS)
Paliwal, U.; Joshi, K. B.
2018-05-01
In this work the first-principles study of structural and electronic properties of Be0.25Zn0.75S mixed compound is presented. The calculations are performed applying the QUANTUM ESPRESSO code utilizing the Perdew, Becke, Ernzerhof generalized gradient approximation in the framework of density functional theory. Adopting standard optimization strategy, the ground state equilibrium lattice constant and bulk modulus are calculated. After settling the structure the electronic band structure, bandgap and static dielectric constant are evaluated. In absence of any experimental work on this system our findings are compared with the available theoretical calculations which are found to follow well anticipated general trends.
Lovley, Derek R.; Summers, Zarath Morgan; Haveman, Shelley Annette; Izallalen, Mounir
2016-03-01
In preferred embodiments, the present invention provides new isolated strains of a Geobacter species that are capable of using a carbon source that is selected from C.sub.3 to C.sub.12 organic compounds selected from pyruvate or metabolic precursors of pyruvate as an electron donor in metabolism and in subsequent energy production. The wild type strain of the microorganisms has been shown to be unable to use these C.sub.3 to C.sub.12 organic compounds as electron donors. The inventive strains of microorganisms are useful for improving bioremediation applications, including in situ bioremediation (including uranium bioremediation and halogenated solvent bioremediation), microbial fuel cells, power generation from small and large-scale waste facilities (e.g., biomass waste from dairy, agriculture, food processing, brewery, or vintner industries, etc.) using microbial fuel cells, and other applications of microbial fuel cells, including, but not limited to, improved electrical power supplies for environmental sensors, electronic devices, and electric vehicles.
First-order metal-insulator transitions in vanadates from first principles
NASA Astrophysics Data System (ADS)
Kumar, Anil; Rabe, Karin
2013-03-01
Materials that exhibit first-order metal-insulator transitions, with the accompanying abrupt change in the conductivity, have potential applications as switches in future electronic devices. Identification of materials and exploration of the atomic-scale mechanisms for switching between the two electronic states is a focus of current research. In this work, we search for first-order metal-insulator transitions in transition metal compounds, with a particular focus on d1 and d2 systems, by using first principles calculations to screen for an alternative low-energy state having not only a electronic character opposite to that of the ground state, but a distinct structure and/or magnetic ordering which would permit switching by an applied field or stress. We will present the results of our investigation of the perovskite compounds SrVO3, LaVO3, CaVO3, YVO3, LaTiO3 and related layered phase, including superlattices and Ruddlesden-Popper phases. While the pure compounds do not satisfy the search criteria, the layered phases show promising results.
Diwaker
2014-07-15
The electronic, NMR, vibrational, structural properties of a new pyrazoline derivative: 2-(5-(4-Chlorophenyl)-3-(pyridine-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole has been studied using Gaussian 09 software package. Using VEDA 4 program we have reported the PED potential energy distribution of normal mode of vibrations of the title compound. We have also reported the (1)H and (13)C NMR chemical shifts of the title compound using B3LYP level of theory with 6-311++G(2d,2p) basis set. Using time dependent (TD-DFT) approach electronic properties such as HOMO and LUMO energies, electronic spectrum of the title compound has been studied and reported. NBO analysis and MEP surface mapping has also been calculated and reported using ab initio methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Semiclassical transport properties of IrGa3: a promising thermoelectric material.
Alvarez Quiceno, Juan Camilo; Dalpian, Gustavo; Fazzio, Adalberto; Osorio-Guillén, Jorge M
2018-01-09
IrGa3 is an intermetallic compound which is expected to be a metal, but a study on the electronic properties of this material to confirm its metallic character is not available in the literature. In this work, we report for the first time a first-principles Density Functional Theory and semiclassical Boltzmann theory study of the structural, electronic and transport properties of this material. The inclusion of the spin-orbit coupling term is crucial to calculate accurately the electronic properties of this compound. We have established that IrGa3 is an indirect semiconductor with a narrow gap of 0.07 eV. From semiclassical Boltzmann transport theory, it is inferred that this material, with the appropriate hole concentration, could have a thermoelectric figure of merit at room temperature comparable to other intermetallic compounds such as FeGa3, though the transport properties of IrGa3 are highly anisotropic. . © 2018 IOP Publishing Ltd.
Ikeda, Masato; Nobori, Tadahito; Schmutz, Marc; Lehn, Jean-Marie
2005-01-07
The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.
Wu, Yun; Lee, Yongbin; Kong, Tai; ...
2017-07-15
Here, we use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Duemore » to the “lanthanide contraction”, the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Lee, Yongbin; Kong, Tai
Here, we use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Duemore » to the “lanthanide contraction”, the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.« less
Method of making compound semiconductor films and making related electronic devices
Basol, Bulent M.; Kapur, Vijay K.; Halani, Arvind T.; Leidholm, Craig R.; Roe, Robert A.
1999-01-01
A method of forming a compound film includes the steps of preparing a source material, depositing the source material on a base to form a precursor film, and heating the precursor film in a suitable atmosphere to form a film. The source material includes Group IB-IIIA alloy-containing particles having at least one Group IB-IIIA alloy phase, with Group IB-IIIA alloys constituting greater than about 50 molar percent of the Group IB elements and greater than about 50 molar percent of the Group IIIA elements in the source material. The film, then, includes a Group IB-IIIA-VIA compound. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.80 and less than about 1.0, or substantially greater than 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.80 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The alloy phase may include a dopant. Compound films including a Group IIB-IVA-VA compound or a Group IB-VA-VIA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.
Lattice thermal expansion for normal tetrahedral compound semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, M.S.
2007-02-15
The cubic root of the deviation of the lattice thermal expansion from that of the expected value of diamond for group IV semiconductors, binary compounds of III-V and II-VI, as well as several ternary compounds from groups I-III-VI{sub 2}, II-IV-V{sub 2} and I-IV{sub 2}V{sub 3} semiconductors versus their bonding length are given straight lines. Their slopes were found to be 0.0256, 0.0210, 0.0170, 0.0259, 0.0196, and 0.02840 for the groups above, respectively. Depending on the valence electrons of the elements forming these groups, a formula was found to correlate all the values of the slopes mentioned above to that ofmore » group IV. This new formula which depends on the melting point and the bonding length as well as the number of valence electrons for the elements forming the compounds, will gives best calculated values for lattice thermal expansion for all compounds forming the groups mentioned above. An empirical relation is also found between the mean ionicity of the compounds forming the groups and their slopes mentioned above and that gave the mean ionicity for the compound CuGe{sub 2}P{sub 3} in the range of 0.442.« less
Haile, Michael; Anderson, Kim; Evans, Alex; Crawford, Angela
2012-01-01
In part 1 of this series, we outlined the rationale behind the development of a centralized electronic database used to maintain nonsterile compounding formulation records in the Mission Health System, which is a union of several independent hospitals and satellite and regional pharmacies that form the cornerstone of advanced medical care in several areas of western North Carolina. Hospital providers in many healthcare systems require compounded formulations to meet the needs of their patients (in particular, pediatric patients). Before a centralized electronic compounding database was implemented in the Mission Health System, each satellite or regional pharmacy affiliated with that system had a specific set of formulation records, but no standardized format for those records existed. In this article, we describe the quality control, database platform selection, description, implementation, and execution of our intranet database system, which is designed to maintain, manage, and disseminate nonsterile compounding formulation records in the hospitals and affiliated pharmacies of the Mission Health System. The objectives of that project were to standardize nonsterile compounding formulation records, create a centralized computerized database that would increase healthcare staff members' access to formulation records, establish beyond-use dates based on published stability studies, improve quality control, reduce the potential for medication errors related to compounding medications, and (ultimately) improve patient safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abernathy, C.R.; Hobson, W.S.; Hong, J.
1998-11-04
Current and future generations of sophisticated compound semiconductor devices require the ability for submicron scale patterning. The situation is being complicated since some of the new devices are based on a wider diversity of materials to be etched. Conventional IUE (Reactive Ion Etching) has been prevalent across the industry so far, but has limitations for materials with high bond strengths or multiple elements. IrI this paper, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma), for the etching of ternary compound semiconductors (InGaP, AIInP, AlGaP) which are employed for electronic devices like heterojunctionmore » bipolar transistors (HBTs) or high electron mobility transistors (HEMTs), and photonic devices such as light-emitting diodes (LEDs) and lasers. High density plasma sources, opeiating at lower pressure, are expected to meet target goals determined in terms of etch rate, surface morphology, surface stoichiometry, selectivity, etc. The etching mechanisms, which are described in this paper, can also be applied to other III-V (GaAs-based, InP-based) as well as III-Nitride since the InGaAIP system shares many of the same properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.
Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO 2 and CH 4 for each molecule of organic matter degraded. However, CO 2:CH 4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO 2 has an oxidationmore » state of +4, if CH 4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO 2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO 2:CH 4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. In conclusion, this mechanism for CO 2 generation without concomitant CH 4 production has the potential to regulate the global warming potential of peatlands by elevating CO 2:CH 4 production ratios.« less
Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.; ...
2017-07-03
Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO 2 and CH 4 for each molecule of organic matter degraded. However, CO 2:CH 4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO 2 has an oxidationmore » state of +4, if CH 4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO 2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO 2:CH 4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. In conclusion, this mechanism for CO 2 generation without concomitant CH 4 production has the potential to regulate the global warming potential of peatlands by elevating CO 2:CH 4 production ratios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.
Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4more » (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios.« less
The degree of π electron delocalization and the formation of 3D-extensible sandwich structures.
Wang, Xiang; Wang, Qiang; Yuan, Caixia; Zhao, Xue-Feng; Li, Jia-Jia; Li, Debao; Wu, Yan-Bo; Wang, Xiaotai
2016-04-28
DFT B3LYP/6-31G(d) calculations were performed to examine the feasibility of graphene-like C42H18 and starbenzene C6(BeH)6 (SBz) polymers as ligands of 3D-extensible sandwich compounds (3D-ESCs) with uninterrupted sandwich arrays. The results revealed that sandwich compounds with three or more C42H18 ligands were not feasible. The possible reason may be the localization of π electrons on certain C6 hexagons due to π-metal interactions, which makes the whole ligand lose its electronic structure basis (higher degree of π electron delocalization) to maintain the planar structure. For comparison, with the aid of benzene (Bz) molecules, the SBz polymers can be feasible ligands for designing 3D-ESCs because the C-Be interactions in individual SBz are largely ionic, which will deter the π electrons on one C6 ring from connecting to those on neighbouring C6 rings. This means that high degree of π electron delocalization is not necessary for maintaining the planarity of SBz polymers. Such a locally delocalized π electron structure is desirable for the ligands of 3D-ESCs. Remarkably, the formation of a sandwich compound with SBz is thermodynamically more favourable than that found for bis(Bz)chromium. The assembly of 3D-ESCs is largely exothermic, which will facilitate future experimental synthesis. The different variation trends on the HOMO-LUMO gaps in different directions (relative to the sandwich axes) suggest that they can be developed to form directional conductors or semiconductors, which may be useful in the production of electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipov, B.G.; Kryuchkov, S.V.; Grigor`ev, M.S.
1995-09-01
New technetium and rhenium compounds with ferricenium cations - [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 3}[Tc{sub 6}I{sub 14}], [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 3}[Tc{sub 6}Cl{sub 14}], [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 2}[Tc{sub 8}Br{sub 14}], and [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 2}[Re{sub 2}Br{sub 8}] - are synthesized and identified. The compounds are characterized by the methods of static magnetic susceptibility and differential scanning calorimetry; solid-state conductivity measurements; and IR, EPR, {sup 57}Fe Moessbauer, and X-ray photoelectron spectroscopic data. These data are compared with the physicochemical characteristics of ferricenium pertechnetate and hexachlorotechnetate, as well as of a number of reference technetium and rhenium compounds containing the samemore » anions but different cations. The structure of [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 3}[Tc{sub 6}I{sub 14}] is determined by X-ray diffraction analysis of a single crystal [space group P6/m, a = 15.34(2), c = 12.70(1) {angstrom}]. The structures of the remaining compounds were confirmed by comparing their spectroscopic properties with corresponding properties of compounds with known composition and structure. None of the compounds with ferricenium cations exhibit covalent or other localized bonds between anions and cations. However, the physicochemical properties of these compounds indicate the occurrence of a fast dynamic electron transfer along infinite anion-cation chains. Compounds [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 3}[Tc{sub 6}Cl{sub 14}] and [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 2}[Tc{sub 8}Br{sub 14}] were found to exhibit a new phenomenon of X-ray-induced low-temper ature high-energy electron emission.« less
Limitations on analysis of small particles with an electron probe: pollution studies
Heidel, R.H.; Desborough, G.A.
1975-01-01
Recent literature concerning the size and composition of airborne lead particles in automobile exhaust emissions determined by electron microprobe analysis reports 14 distinct lead compounds. Particle sizes reported were from 0.2 ??m to 2 ??m in the diameter. The determination of chemical formulae for compounds requires quantitative elemental data for individual particles. It was also assumed that the lead bearing particles analysed were solid (specifically non porous or non fluffy) compounds which occurred as discrete (non aggregate) particles. Intensity data obtained in the laboratory from the excited volume in a 1 ??m diameter sphere of solid lead chloride indicate insufficient precision and sensitivity to obtain chemical formulae as reported in the literature for exhaust emission products.
Physics and chemistry of MoS2 intercalation compounds
NASA Technical Reports Server (NTRS)
Woollam, J. A.; Somoano, R. B.
1977-01-01
An investigation is made of the physics and chemistry of MoS2 intercalation compounds. These compounds may be separated into two groups according to their stoichiometry, structure and superconducting properties. The first group consists of Na, Ca, and Sr intercalates, and the second group consists of K, Rb, and Cs intercalates. Particular attention is given to the structure of the electronic energy band and to the normal state and superconducting properties of these compounds.
Two-electron high potential and high capacity redox active molecules for energy storage applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinhua; Zhang, Lu; Burrell, Anthony K.
A non-aqueous redox flow battery includes a catholyte including a compound of formula (I), a compound of formula (II), or a compound of formula (III): ##STR00001## wherein two R groups have the formula X, wherein X is X, wherein X is a group of formula IV-A or IV-B; ##STR00002##
Alvarenga, Tavane A; de Oliveira, Pollyanna F; de Souza, Julia M; Tavares, Denise C; Andrade E Silva, Márcio L; Cunha, Wilson R; Groppo, Milton; Januário, Ana H; Magalhães, Lizandra G; Pauletti, Patrícia M
2016-11-23
Bioassay-guided study of the ethanol extract from the cashew Anacardium occidentale furnished cardol triene (1), cardol diene (2), anacardic acid triene (3), cardol monoene (4), anacardic acid diene (5), 2-methylcardol triene (6), and 2-methylcardol diene (7). 1D- and 2D-NMR experiments and HRMS analysis confirmed the structures of compounds 1-7. Compounds 2 and 7 were active against Schistosoma mansoni adult worms in vitro, with LC 50 values of 32.2 and 14.5 μM and selectivity indices of 6.1 and 21.2, respectively. Scanning electron microscopy of the tegument of male worms in the presence of compound 7 at 25 μM after 24 h of incubation showed severe damage as well as peeling and reduction in the number of spine tubercles. Transmission electron microscopy analyses revealed swollen mitochondrial membrane, vacuoles, and altered tegument in worms incubated with compound 2 (25 μM after 24 h). Worms incubated with compound 7 (25 μM after 24 h) had lysed interstitial tissue, degenerated mitochondria, and drastically altered tegument. Together, the results indicated that compound 7 presents promising in vitro schistosomicidal activity.
Joshi, Hemant K.; Cooney, J. Jon A.; Inscore, Frank E.; Gruhn, Nadine E.; Lichtenberger, Dennis L.; Enemark, John H.
2003-01-01
Gas-phase photoelectron spectroscopy and density functional theory have been used to investigate the interactions between the sulfur π-orbitals of arene dithiolates and high-valent transition metals as minimum molecular models of the active site features of pyranopterin Mo/W enzymes. The compounds (Tp*)MoO(bdt) (compound 1), Cp2Mo(bdt) (compound 2), and Cp2Ti(bdt) (compound 3) [where Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate, bdt is 1,2-benzenedithiolate, and Cp is η5- cyclopentadienyl] provide access to three different electronic configurations of the metal, formally d1, d2, and d0, respectively. The gas-phase photoelectron spectra show that ionizations from occupied metal and sulfur based valence orbitals are more clearly observed in compounds 2 and 3 than in compound 1. The observed ionization energies and characters compare very well with those calculated by density functional theory. A “dithiolate-folding-effect” involving an interaction of the metal in-plane and sulfur-π orbitals is proposed to be a factor in the electron transfer reactions that regenerate the active sites of molybdenum and tungsten enzymes. PMID:12655066
NASA Astrophysics Data System (ADS)
Murtaza, G.; Yousaf, N.; Laref, A.; Yaseen, M.
2018-03-01
Pnictogen-based Zintl compounds have fascinating properties. Nowadays these compounds have gained exceptional interest in thermoelectric and optoelectronic fields. Therefore, in this work the structural, electronic and optical properties of SrZn2Pn2 (Pn=N, P, As, Sb, Bi) compounds were studied using state-of-the-art density functional theory. The optimised lattice parameters (ɑ, c, c/ɑ and bond lengths) are consistent with the experimental results. The bulk moduli and c/a showed a decrease when changing the Pnictogen (Pn) anion from N to Bi in SrZn2Pn2 (Pn=N, P, As, Sb, Bi). The modified Becke-Johnson potential is used for band structure calculations. All compounds show semiconducting behaviour except SrZn2Bi2, which is metallic. Pn-p, Zn-d and Sr-d play an important role in defining the electronic structure of the compounds. The optical conductivity and absorption coefficient strength are high in visible and ultraviolet regions. These band structures and optical properties clearly show that SrZn2Pn2 compounds are potential candidates in the fields of optoelectronic and photonic devices.
Arivazhagan, M; Muniappan, P; Meenakshi, R; Rajavel, G
2013-03-15
This study represents an integral approach towards understanding the electronic and structural aspects of 1-bromo-2,3-dichlorobenzene (BDCB). The experimental spectral bands were structurally assigned with the theoretical calculation, and the thermodynamic properties of the studied compound were obtained from the theoretically calculated frequencies. The relationship between the structure and absorption spectrum and effects of solvents have been discussed. It turns that the hybrid PBE1PBE functional with 6-311+G(d,p) basis provide reliable λ(max) when solvent effects are included in the model. The NBO analysis reveals that the studied compound presents a structural characteristic of electron-transfer within the compound. The frontier molecular orbitals (HOMO-LUMO) are responsible for the electron polarization and electron-transfer properties. The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MESP). Besides, (13)C and (1)H have been calculated using the gauge-invariant atomic orbital (GIAO) method. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. Furthermore, the studied compound can be used as a good nonlinear optical material due to the higher value of first hyper polarizability (5.7 times greater than that of urea (0.37289×10(-30) esu)). Finally, it is worth to mentioning that solvent induces a considerable red shift of the absorption maximum going from the gas phase, and a slight blue shift of the transition S(0)→S(1) going from less polar to more polar solvents. Copyright © 2012 Elsevier B.V. All rights reserved.
Narrow chaotic compound autoionizing states in atomic spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flambaum, V.V.; Gribakina, A.A.; Gribakin, G.F.
1996-09-01
Simultaneous excitation of several valence electrons in atoms gives rise to a dense spectrum of compound autoionizing states (AIS). These states are almost chaotic superpositions of large numbers of many-electron basis states built of single-electron orbitals. The mean level spacing {ital D} between such states is very small (e.g., {ital D}{lt}0.01 eV for the numerical example of {ital J}{sup {pi}}=4{sup {minus}} states of Ce just above the ionization threshold). The autoionization widths of these states estimated by perturbations, {gamma}=2{pi}{vert_bar}{ital W}{vert_bar}{sup 2}, where {ital W} is the Coulomb matrix element coupling the AIS to the continuum, are also small, but comparablemore » with {ital D} in magnitude: {gamma}{approximately}{ital D}. Hence the nonperturbative interaction of AIS with each other via the continuum is very essential. It suppresses greatly the widths of the autoionizing resonances ({Gamma}{approx_equal}{ital D}{sup 2}/3{gamma}{lt}{ital D}), and leads to the emergence of a {open_quote}{open_quote}collective{close_quote}{close_quote} doorway state which accumulates a large share of the total width. This state is in essence a modified single-particle continuum decoupled from the resonances due to its large width. Narrow compound AIS should be a common feature of atomic spectra at energies sufficient for excitation of several electrons above the ground-state configuration. The narrow resonances can be observed as peaks in the photoabsorption, or, in electron-ion scattering, as Fano-type profiles on the background provided by the wide doorway-state resonance. It is also shown that the statistics of electromagnetic and autoionization amplitudes involving compound states are close to Gaussian. {copyright} {ital 1996 The American Physical Society.}« less
Marković, Svetlana; Tošović, Jelena
2015-09-03
The UV-vis properties of 22 natural phenolic compounds, comprising anthraquinones, neoflavonoids, and flavonoids were systematically examined. The time-dependent density functional theory (TDDFT) approach in combination with the B3LYP, B3LYP-D2, B3P86, and M06-2X functionals was used to simulate the UV-vis spectra of the investigated compounds. It was shown that all methods exhibit very good (B3LYP slightly better) performance in reproducing the examined UV-vis spectra. However, the shapes of the Kohn-Sham molecular orbitals (MOs) involved in electronic transitions were misleading in constructing the MO correlation diagrams. To provide better understanding of redistribution of electron density upon excitation, the natural bond orbital (NBO) analysis was applied. Bearing in mind the spatial and energetic separations, as well as the character of the π bonding, lone pair, and π* antibonding natural localized molecular orbitals (NLMOs), the "NLMO clusters" were constructed. NLMO cluster should be understood as a part of a molecule characterized with distinguished electron density. It was shown that all absorption bands including all electronic transitions need to be inspected to fully understand the UV-vis spectrum of a certain compound, and, thus, to learn more about its UV-vis light absorption. Our investigation showed that the TDDFT and NBO theories are complementary, as the results from the two approaches can be combined to interpret the UV-vis spectra. Agreement between the predictions of the TDDFT approach and those based on the NLMO clusters is excellent in the case of major electronic transitions and long wavelengths. It should be emphasized that the approach for investigation of UV-vis light absorption based on the NLMO clusters is applied for the first time.
Tuning the electronic hybridization in the heavy fermion cage compound YbFe2Zn20 with Cd doping
NASA Astrophysics Data System (ADS)
Cabrera-Baez, M.; Ribeiro, R. A.; Avila, M. A.
2016-09-01
The tuning of the electronic properties of heavy fermion compounds by chemical substitution provides excellent opportunities for further understanding the physics of hybridized ions in crystal lattices. Here we present an investigation on the effects of Cd doping in flux-grown single crystals of the complex intermetallic cage compound YbFe2Zn20, which has been described as a heavy fermion with a Sommerfeld coefficient of 535 mJ mol-1 · K-2. The substitution of Cd for Zn disturbs the system by expanding the unit cell and, in this case, the size of the Zn cages that surround the Yb and Fe. With an increasing amount of Cd, the hybridization between the Yb 4f electrons and the conduction electrons is weakened, as shown by a decrease in the Sommerfeld coefficient, which should be accompanied by a valence shift of the Yb3+ due to the negative chemical pressure effect. This scenario is also supported by the low temperature DC magnetic susceptibility, which is gradually suppressed and shows an increment of the Kondo temperature, based on a shift to higher temperatures of the characteristic broad susceptibility peak. Furthermore, the DC resistivity decreases with the isoelectronic substitution of Cd for Zn, contrary to expectations in an increasingly disordered system, and implying that the valence shift is not related to charge carrier doping. The combined results demonstrate the excellent complementarity between positive physical pressure and negative chemical pressure, and point to a rich playground for exploring the physics and chemistry of strongly correlated electron systems in the general family of Zn20 compounds, despite their structural complexity.
NASA Astrophysics Data System (ADS)
Yang, Zhao; Han, Dan; Chen, Guohong; Chen, Shiyou
2018-03-01
The III-V binary compound semiconductors such as GaN, GaP, InN and InP have extensive applications in various optoelectronic, microwave and power-electronic devices. Using first-principles calculation, we systematically studied the structural and electronic properties of the V-V binary compounds (BiN, BiP, SbN and SbP) that are isoelectronic to GaN, GaP, InN and InP if Bi and Sb are in the +3 valence state. Interestingly, we found that the ground-state structures of BiP, SbN and SbP have the R-3m symmetry and are isostructural to the layered structure of gray arsenic, whereas BiN prefers a different ground-state structure with the C2 symmetry. Electronic structure calculations showed that the bulk BiN is a narrow bandgap semiconductor for its bandgap is about 0.2 eV. In contrast, BiP, SbN and SbP are metallic. The layered ground-state structure of the V-V binary compounds motivates us to study the electronic properties of their few-layer structures. As the structure becomes monolayer, their bandgaps increase significantly and are all in the range from about 1 eV to 1.7 eV, which are comparative to the bandgap of the monolayer gray arsenic. The monolayer BiP, SbN and SbP have indirect bandgaps, and they show a semiconductor-metal transition as the number of layers increase. Interestingly, the monolayer BiP has the largest splitting (350 meV) of the CBM valley, and thus may have potential application in novel spintronics and valleytronics devices.
Xu, Min; Wang, Li -Min; Peng, Rui; ...
2015-02-01
With angle-resolved photoemission spectroscopy, we studied the electronic structure of TaFe₁̣₂₃Te₃, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observed the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe₁̣₂₃Te₃ serves as a simpler platform that containsmore » similar ingredients as the parent compounds of iron-based superconductors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pifer, J.H.; Croft, M.C.
This report discusses Eu and General Valence Instabilities; Ce Problem: L{sub 3} Spectroscopy Emphasis; Bulk Property Emphasis; Transition Metal Compound Electronic Structure; Electronic Structure-Phonon Coupling Studies; High Temperature Superconductivity and Oxide Materials; and Novel Materials Collaboration with Chemistry.
Structural, electronic and magnetic properties of Cd1-xTMxS (TM=Co and V) by ab-initio calculations
NASA Astrophysics Data System (ADS)
Yahi, Hakima; Meddour, Athmane
2016-03-01
The structural, electronic and ferromagnetic properties of Cd1-xTMxS (TM=Co and V) compounds at x=0.25, 0.50 and 0.75 in zinc blende (B3) phase, have been investigated using all-electron full-potential linear muffin tin orbital (FP-LMTO) calculations within the frame work of the density functional theory and the generalized gradient approximation. The electronic properties exhibit half-metallic behavior at x=0.25, 0.50, and 0.75 for Cd1-xVxS and x=0.25 and 0.50 for Cd1-xCoxS, while Cd1-xCoxS with x=0.75 is nearly half-metallic. The calculated magnetic moment per substituted transition metal (TM) atom for half-metallic compounds is found to be 3 μB, whereas that of a nearly half-metallic compound is 2.29 μB. The analysis of band structure and density of states shows that the TM-3d states play a key role in generating spin-polarization and magnetic moment in these compounds. Furthermore, we establish that the p-d hybridization reduces the local magnetic moment of Co and enhances that of V from their free space charge value of 3 μB and creates small local magnetic moments on nonmagnetic Cd and S sites. The exchange constant N0α and N0β have been calculated to validate the effects resulting from exchange splitting process.
Electron Effective-Attenuation-Length Database
National Institute of Standards and Technology Data Gateway
SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge) This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).
Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View
Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo
2009-01-01
Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534
Quantum chemical studies of estrogenic compounds
USDA-ARS?s Scientific Manuscript database
Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...
NASA Astrophysics Data System (ADS)
Pan, Y.; Zheng, W. T.; Guan, W. M.; Zhang, K. H.; Fan, X. F.
2013-11-01
The structural formation, elastic properties, hardness and electronic structure of TMB4 (TM=Cr, Re, Ru and Os) compounds are investigated using first-principles approach. The value of C22 for these compounds is almost two times bigger than the C11 and C33. The intrinsic hardness, shear modulus and Young's modulus are calculated to be in a sequence of CrB4>ReB4>RuB4>OsB4, and the Poisson's ratio and B/G ratio of TMB4 follow the order of CrB4
NASA Astrophysics Data System (ADS)
Masrour, R.; Jabar, A.; Hlil, E. K.
2018-05-01
Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate the electronic and magnetic properties of the Fe4N compound. Polarized spin and spin-orbit coupling are included in calculations within the framework of the ferromagnetic state between Fe(I) and Fe(II) in Fe4N compound. We have used the obtained data from abinitio calculations as an input in Monte Carlo simulation to calculate the magnetic properties of this compounds such as the ground state phase diagrams, total and partial magnetization of Fe(I) and Fe(II) as well as the transition temperatures are computed. The variation of magnetization with the crystal field are also studied. The magnetic hysteresis cycle of the same Fe4N compound are determined for different values of temperatures and crystal field values. The two-step hysteresis loop are evidenced, which is typical for Fe4N structure. The ferromagnetic and superparamagnetic phase is observed as well.
Oxidation of aromatic contaminants coupled to microbial iron reduction
Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.
1989-01-01
THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.
Derpmann, Valerie; Mueller, David; Bejan, Iustinian; Sonderfeld, Hannah; Wilberscheid, Sonja; Koppmann, Ralf; Brockmann, Klaus J; Benter, Thorsten
2014-03-01
We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols), respectively. The method is based on the generation of thermal electrons by the photo-electric effect, followed by electron capture of oxygen when air is the gas matrix yielding O2(-) or of the analyte directly with nitrogen as matrix. Charge transfer or proton abstraction by O2(-) leads to the ionization of the analytes. The interaction of UV-light with metals is a clean method for the generation of thermal electrons at atmospheric pressure. Furthermore, only negative ions are generated and neutral radical formation is minimized, in contrast to discharge- or dopant assisted methods. Ionization takes place inside the transfer capillary of the mass spectrometer leading to comparably short transfer times of ions to the high vacuum region of the mass spectrometer. This strongly reduces ion transformation processes, resulting in mass spectra that more closely relate to the neutral analyte distribution. cAPECI is thus a soft and selective ionization method with detection limits in the pptV range. In comparison to standard ionization methods (e.g., PTR), cAPECI is superior with respect to both selectivity and achievable detection limits. cAPECI demonstrates to be a promising ionization method for applications in relevant fields as, for example, explosives detection and atmospheric chemistry.
[Preparation and application on compound excipient of sodium stearyl fumarate and plasdone S-630].
Jiang, Yan-Rong; Zhang, Zhen-Hai; Jia, Xiao-Bin
2013-01-01
The compound excipient containing sodium stearyl fumarate and plasdone S-630 was prepared by applying spray drying method. The basic physical properties of compound excipient were studied by solubility test, scanning electron microscope, differential scanning calorimeter, X-ray diffraction and Fourier transform infra-red spectroscopy. The effect of compound excipient on moisture absorption and ferulic acid in vitro dissolution of spray drying power of angelica were investigated. The results showed that the chemical constituents of compound excipient did not change before and after spray drying. The water soluble compound excipient can improve significantly moisture absorption and has application prospect.
Synthesis and cytotoxicity of 2,5-dihydroxychalcones and related compounds.
Nam, Nguyen-Hai; Hong, Dong-Ho; You, Young-Jae; Kim, Yong; Bang, Seong-Cheol; Kim, Hwan-Mook; Ahn, Byung-Zun
2004-06-01
A series of 2, 5-dihydroxychalcones and related compounds were synthesized, and their cytotoxicities against tumor cell lines and human umbilical venous endothelial cells (HUVEC) evaluated. It was found that chalcones, with electron-withdrawing substituents on an A ring, exhibited significant cytotoxicities. Among the synthesized compounds, 2'-chloro-2, 5-dihydroxychalcone (9) was most potent, with an IC50 value as low as 0.31 microg/mL. This compound also exhibited a significant cytotoxic selectivity toward HUVEC.
Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys
NASA Astrophysics Data System (ADS)
Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun
2011-03-01
Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.
Method for detection of selected chemicals in an open environment
NASA Technical Reports Server (NTRS)
Duong, Tuan (Inventor); Ryan, Margaret (Inventor)
2009-01-01
The present invention relates to a space-invariant independent component analysis and electronic nose for detection of selective chemicals in an unknown environment, and more specifically, an approach to analysis of sensor responses to mixtures of unknown chemicals by an electronic nose in an open and changing environment. It is intended to fill the gap between an alarm, which has little or no ability to distinguish among chemical compounds causing a response, and an analytical instrument, which can distinguish all compounds present but with no real-time or continuous event monitoring ability.
Homestead Valley, California, aftershocks (March 17-18, 1979) recorded on portable seismographs
Perry-Huston, Sue; Eberhart-Phillips, Donna
1994-01-01
A method for the determination of chlorinated organic compounds in aquatic tissue by dual capillary-column gas chromatography with electron- capture detection is described. Whole-body-fish or corbicula tissue is homogenized, Soxhlet extracted, lipid removed by gel permeation chromatography, and fractionated using alumina/silica adsorption chromatography. The extracts are analyzed by dissimilar capillary-column gas chromatography with electron-capture detection. The method reporting limits are 5 micrograms per kilogram (ug/kg) for chlorinated compounds, 50 ug/kg for polychlorinated biphenyls, and 200 ug/kg for toxaphene.
Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil
NASA Astrophysics Data System (ADS)
Boopathy, Raj
Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.
Electron-rich triphenylamine-based sensors for picric acid detection.
Chowdhury, Aniket; Mukherjee, Partha Sarathi
2015-04-17
This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes π-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.
NASA Astrophysics Data System (ADS)
Gowda, Shivalinge; Krishnaveni, S.; Yashoda, T.; Umesh, T. K.; Gowda, Ramakrishna
2004-09-01
Photon mass attenuation coefficients of some thermoluminescent dosimetric (TLD) compounds, such as LiF, CaCO_3, CaSO_4, CaSO_4\\cdot2H_2O, SrSO_4, CdSO_4, BaSO_4, C_4H_6BaO_4 and 3CdSO_4\\cdot8H_2O were determined at 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The attenuation coefficient data were then used to compute the effective atomic number and the electron density of TLD compounds. The interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon energy range of 279.2 to 320.07 keV, 514.0 to 661.6 keV and 1115.5 to 1332.5 keV by a piece-wise interpolation method were then used to find the effective atomic number and electron density of the compounds. These values are found to be in agreement with other available published values.
NASA Astrophysics Data System (ADS)
Kaur, Kulwinder; Rai, D. P.; Thapa, R. K.; Srivastava, Sunita
2017-07-01
We explore the structural, electronic, mechanical, and thermoelectric properties of a new half Heusler compound HfPtPb, an all metallic heavy element, recently proposed to be stable [Gautier et al., Nat. Chem. 7, 308 (2015)]. In this work, we employ density functional theory and semi-classical Boltzmann transport equations with constant relaxation time approximation. The mechanical properties, such as shear modulus, Young's modulus, elastic constants, Poisson's ratio, and shear anisotropy factor, have been investigated. The elastic and phonon properties reveal that this compound is mechanically and dynamically stable. Pugh's ratio and Frantsevich's ratio demonstrate its ductile behavior, and the shear anisotropic factor reveals the anisotropic nature of HfPtPb. The band structure predicts this compound to be a semiconductor with a band gap of 0.86 eV. The thermoelectric transport parameters, such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity, and lattice thermal conductivity, have been calculated as a function of temperature. The highest value of Seebeck coefficient is obtained for n-type doping at an optimal carrier concentration of 1.0 × 1020 e/cm3. We predict the maximum value of figure of merit (0.25) at 1000 K. Our investigation suggests that this material is an n-type semiconductor.
Thermal and electron transport studies on the valence fluctuating compound YbNiAl4
NASA Astrophysics Data System (ADS)
Falkowski, M.; Kowalczyk, A.
2018-05-01
We report the thermoelectric power S and thermal conductivity κ measurements on the valence fluctuating compound YbNiAl4, furthermore taking into account the impact of the applied magnetic field. We discuss our new results with revisiting the magnetic [χ(T)], transport [ρ(T)], and thermodynamic [Cp(T)] properties in order to better understand the phenomenon of thermal and electron transport in this compound. The field dependence of the magnetoresistivity data is also given. The temperature dependence of thermoelectric power S(T) was found to exhibit a similar behaviour as expected for Yb-based compounds with divalent or nearly divalent Yb ions. In addition, the values of total thermal conductivity as a function of temperature κ(T) of YbNiAl4 are fairly low compared to those of pure metals which may be linked to the fact that the conduction band is perturbed by strong hybridization. A deeper analysis of the specific heat revealed the low-T anomaly of the ratio Cp(T)/T3, most likely associated with the localized low-frequency oscillators in this alloy. In addition, the Kadowaki-Woods ratio and the Wilson ratio are discussed with respect to the electronic correlations in YbNiAl4.
Analyzing volatile compounds in dairy products
USDA-ARS?s Scientific Manuscript database
Volatile compounds give the first indication of the flavor in a dairy product. Volatiles are isolated from the sample matrix and then analyzed by chromatography, sensory methods, or an electronic nose. Isolation may be performed by solvent extraction or headspace analysis, and gas chromatography i...
Production of metals and compounds by radiation chemistry
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Philipp, W. H.
1969-01-01
Preparation of metals and compounds by radiation induced chemical reactions involves irradiation of metal salt solutions with high energy electrons. This technique offers a method for the preparation of high purity metals with minimum contamination from the container material or the cover gas.
IRIS Toxicological Review of Thallium and Compounds (External Review Draft)
Thallium compounds are used in the semiconductor industry, the manufacture of optic lenses and low-melting glass, low-temperature thermometers, alloys, electronic devices, mercury lamps, fireworks, and imitation germs, and clinically as an imaging agent in the diagnosis of certai...
Bolligarla, Ramababu; Reddy, Samala Nagaprasad; Durgaprasad, Gummadi; Sreenivasulu, Vudagandla; Das, Samar K
2013-01-07
We describe the synthesis, crystal structures, electronic absorption spectra, and electrochemistry of a series of square-planar nickel-bis(quinoxaline-6,7-dithiolate) complexes with the general formula [Bu(4)N](2)[Ni(X(2)6,7-qdt)(2)], where X = H (1a), Ph (2a), Cl (3), and Me (4). The solution and solid-state electronic absorption spectral behavior and electrochemical properties of these compounds are strongly dependent on the electron donating/accepting nature of the substituent X, attached to the quinoxaline-6,7-dithiolate ring in the system [Bu(4)N](2)[Ni(X(2)6,7-qdt)(2)]. Particularly, the charge transfer (CT) transition bands observed in the visible region are greatly affected by the electronic nature of the substituent. A possible explanation for this influence of the substituents on electronic absorption and electrochemistry is described based on highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) gaps, which is further supported by ground-state electronic structure calculations. In addition to this, the observed CT bands in all the complexes are sensitive to the solvent polarity. Interestingly, compounds 1a, 2a, 3, and 4 undergo reversible oxidation at very low oxidation potentials appearing at E(1/2) = +0.12 V, 0.033 V, 0.18 V, and 0.044 V vs Ag/AgCl, respectively, in MeOH solutions, corresponding to the respective couples [Ni(X(2)6,7-qdt)(2)](-)/[Ni(X(2)6,7-qdt)(2)](2-). Compounds 1a, 3, and 4 have been characterized unambiguously by single crystal X-ray structural analysis; compound 2a could not be characterized by single crystal X-ray structure determination because of the poor quality of the concerned crystals. Thus, we have synthesized the tetraphenyl phosphonium salt of the complex anion of 2a, [PPh(4)](2)[Ni(Ph(2)6,7-qdt)(2)]·3DMF (2b) for its structural characterization.
Recent progress in the design and clinical development of electronic-nose technologies
Dan Wilson
2016-01-01
Electronic-nose (e-nose) devices are instruments designed to detect and discriminate between precise complex gaseous mixtures of volatile organic compounds derived from specific organic sources, such as clinical test samples from patients, based on electronic aroma signature patterns (distinct digital sensor responses) resulting from the combined outputs of a...
Effect of chemical compounds on electronic tongue response to citrus juices
USDA-ARS?s Scientific Manuscript database
The electronic tongue system mimics the process of taste detection by human taste buds and recognition by the brain, hence helping in prediction of taste. With this unique capability, the electronic tongue has been used for taste detection of a wide range of food products. As a preliminary step in p...
Electronic contributions to the sigma(p) parameter of the Hammett equation.
Domingo, Luis R; Pérez, Patricia; Contreras, Renato
2003-07-25
A statistical procedure to obtain the intrinsic electronic contributions to the Hammett substituent constant sigma(p) is reported. The method is based on the comparison between the experimental sigma(p) values and the electronic electrophilicity index omega evaluated for a series of 42 functional groups commonly present in organic compounds.
NASA Astrophysics Data System (ADS)
Halim Başkan, M.; Kartal, Zeki; Aydın, Murat
2015-12-01
Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).
An Unsymmetric Ligand Framework for Noncoupled Homo- and Heterobimetallic Complexes.
Haas, Ruth M; Hern, Zachary; Sproules, Stephen; Hess, Corinna R
2017-12-18
We introduce a new unsymmetric ligand, PDIpCy (PDI = pyridyldiimine; Cy = cyclam), that offers two distinct, noncoupled coordination sites. A series of homo- and heterobimetallic complexes, [Zn 2 (PDIpCy)(THF)(OTf) 4 ] (1; THF = tetrahydrofuran and OTf = triflate), [Ni 2 (PDIpCy)(THF)(OTf) 2 ](OTf) 2 (2), and [NiZn(PDIpCy)(THF)(OTf) 4 ] (3), are described. The one-electron-reduced compounds, [Zn 2 (PDIpCy)(OTF) 3 ] (4), [Ni 2 (PDIpCy)(OTf)](OTf) 2 (5), and [NiZn(PDIpCy)(OTf) 3 ] (6), were isolated, and their electronic structures were characterized. The reduced compounds are charge-separated species, with electron storage at either the PDI ligand (4) or at the PDI-bound metal ion (5 and 6).
NASA Astrophysics Data System (ADS)
Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.
2014-11-01
Multicopper oxidases are fundamental in a variety of biological processes in bacteria, fungi and vertebrates. The catalytic center in these enzymes is formed basically by three copper ions, bridged by oxygen bonds. In order to get insights into the reactivity of these complex systems, biomimetic compounds are usually synthesized. Accordingly, in this work, we studied structural, vibrational, and electronic properties of an uncoordinated pseudoephedrine derivative, as well as its corresponding mononuclear and trinuclear copper(II)-coordinated complexes by means of density functional theory. The calculations are compared with experimental results using measurements of the infrared spectra. It is obtained that the molecular configuration of the pseudoephedrine amino-alcohol derivative is stabilized by hydrogen bonding Osbnd H⋯N and by Csbnd H⋯π interactions that are not present in the mononuclear and trinuclear compounds. The coordination compounds show octahedral and square pyramid geometries, respectively, which are slightly distorted by Jahn-Teller effects. The analysis of their theoretical and experimental IR spectra reveals signals related with hydrogen bonding as well as metal-ligand vibrational modes. Regarding the electronic structure, the density of states was calculated in order to analyze the atomic orbital contributions present in these compounds. This analysis would provide useful insights about the optical behavior, for example, in the visible region of the spectrum of the coordinated compounds. At these energies, the optical absorption would be influenced by the orbital interaction of the Cu2+d orbitals with sp ones of the ligand, reflecting a decrease of the HOMO-LUMO gap of the organic ligand due to the presence of the copper(II) ions.
Photochemical transformations of diazocarbonyl compounds: expected and novel reactions
NASA Astrophysics Data System (ADS)
Galkina, O. S.; Rodina, L. L.
2016-05-01
Photochemical reactions of diazocarbonyl compounds are well positioned in synthetic practice as an efficient method for ring contraction and homologation of carboxylic acids and as a carbene generation method. However, interpretation of the observed transformations of diazo compounds in electronically excited states is incomplete and requires a careful study of the fine mechanisms of these processes specific to different excited states of diazo compounds resorting to modern methods of investigation, including laser technology. The review is devoted to analysis of new data in the chemistry of excited states of diazocarbonyl compounds. The bibliography includes 155 references.
Electron beam irradiation induced changes in liquid-crystal compound 5CB
NASA Astrophysics Data System (ADS)
Rath, M. C.; Sarkar, S. K.; Wadhawan, V. K.; Verma, R.; Das, I. M. L.; Dąbrowski, R.; Tykarska, M.; Dhar, R.
2008-12-01
Electron beam irradiation studies on liquid crystal material 5CB have been carried out at a temperature where the compound exists in the isotropic liquid phase. In situ time-resolved spectroscopic characterization was carried out during the irradiation. Three different transients were observed during the 2-μs electron pulse. After about 50 μs, only one transient species was found to be present, which has an absorption peak at 360 nm. Radiolysed sample exhibits a broad absorption at ˜400 nm. The dielectric measurements show that even a low level of irradiation results in a dramatic increase in the component of dielectric permittivity normal to the long axes of the molecules ɛ⊥', and a corresponding decrease in the dielectric anisotropy (Δɛ'=ɛ∥'-ɛ⊥' ). These studies show that 5CB is prone to substantial radiation damage on exposure to the beam of high-energy electrons.
Segregation Phenomena on the Crystal Surface of Chemical Compounds
NASA Astrophysics Data System (ADS)
Tomashpol'skii, Yu. Ya.
2018-06-01
The current state of the theoretical and experimental studies of changes in the chemical structure and composition caused by segregation phenomena on the surface of chemical compounds was reviewed. The review considers the experimental data obtained exclusively on single crystals, which were studied by modern instrumental methods, including in situ Auger electron spectrometry, X-ray spectral microanalysis, high-resolution scanning and transmission electron microscopy, secondary electron emission, and atomic force microscopy. The models that suggest the crystal-chemical diffusion and liquid-phase mechanisms of segregation were described. The parameters of the theory include the type of chemical bond, elastic constants, and crystal-chemical characteristics of substances. The models make it possible to predict the nature of changes in the surface composition: segregation tendency, segregant type, and degree of nonstoichiometry. A new direction in surface segregation was considered, which is promising for nanoelectronics and emission electronics.
Electronic Transmutation (ET): Chemically Turning One Element into Another.
Zhang, Xinxing; Lundell, Katie A; Olson, Jared K; Bowen, Kit H; Boldyrev, Alexander I
2018-03-08
The concept of electronic transmutation (ET) depicts the processes that by acquiring an extra electron, an element with the atomic number Z begins to have properties that were known to only belong to its neighboring element with the atomic number Z+1. Based on ET, signature compounds and chemical bonds that are composed of certain elements can now be designed and formed by other electronically transmutated elements. This Minireview summarizes the recent developments and applications of ET on both the theoretical and experimental fronts. Examples on the ET of Group 13 elements into Group 14 elements, Group 14 elements into Group 15 elements, and Group 15 elements into Group 16 elements are discussed. Compounds and chemical bonding composed of carbon, silicon, germanium, phosphorous, oxygen and sulfur now have analogues using transmutated boron, aluminum, gallium, silicon, nitrogen, and phosphorous. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bano, Amreen; Gaur, N. K.
2018-05-01
Ab-initio calculations are carried out to study the electronic and chemical bonding properties of Intermetallic full Heusler compound Pd2HfIn which crystallizes in F-43m structure. All calculations are performed by using density functional theory (DFT) based code Quantum Espresso. Generalized gradient approximations (GGA) of Perdew- Burke- Ernzerhof (PBE) have been adopted for exchange-correlation potential. Calculated electronic band structure reveals the metallic character of the compound. From partial density of states (PDoS), we found the presence of relatively high intensity electronic states of 4d-Pd atom at Fermi level. We have found a pseudo-gap just abouve the Fermi level and N(E) at Fermi level is observed to be 0.8 states/eV, these finding indicates the existence of superconducting character in Pd2HfIn.
Parrish, Richard H.
2015-01-01
Numerous gaps in the current medication use system impede complete transmission of electronically identifiable and standardized extemporaneous formulations as well as a uniform approach to medication therapy management (MTM) for paediatric patients. The Pharmacy Health Information Technology Collaborative (Pharmacy HIT) identified six components that may have direct importance for pharmacy related to medication use in children. This paper will discuss key positions within the information technology infrastructure (HIT) where an electronic repository for the medication management of paediatric patients’ compounded non-sterile products (pCNP) and care provision could be housed optimally to facilitate and maintain transmission of e-prescriptions (eRx) from initiation to fulfillment. Further, the paper will propose key placement requirements to provide for maximal interoperability of electronic medication management systems to minimize disruptions across the continuum of care. PMID:28970375
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gout, Delphine J; Gourdon, Olivier; Bauer, E. D.
2008-01-01
Crystal structures of a series of La1−xCexIn3 (x = 0.02, 0.2, 0.5, or 0.8) intermetallic compounds have been investigated by both neutron and X-ray diffraction, and their physical properties have been characterized by magnetic susceptibility and specific heat measurements. Our results emphasize atypical atomic displacement parameters (ADP) for the In and the rare-earth sites. Depending on the x value, the In ADP presents either an ellipsoidal elongation (La-rich compounds) or a butterfly-like distortion (Ce-rich compounds). These deformations have been understood by theoretical techniques based on the band theory and are the result of hybridization between conduction electrons and 4f-electrons.
Superconductivity in graphite intercalation compounds
Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; ...
2015-02-26
This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less
Sek, Danuta; Siwy, Mariola; Bijak, Katarzyna; Grucela-Zajac, Marzena; Malecki, Grzegorz; Smolarek, Karolina; Bujak, Lukasz; Mackowski, Sebastian; Schab-Balcerzak, Ewa
2013-10-10
Two series of azines and their azomethine analogues were prepared via condensation reaction of benzaldehyde, 2-hydroxybenzaldehyde, 4-pyridinecarboxaldehyde, 2-thiophenecarboxaldehyde, and 4-(diphenylamino)benzaldehyde with hydrazine monohydrate and 1,4-phenylenediamine, respectively. The structures of given compounds were characterized by FTIR, (1)H NMR, and (13)C NMR spectroscopy as well as elemental analysis. Optical, electrochemical, and thermal properties of all compounds were investigated by means of differential scanning calorimetry (DSC), UV-vis spectroscopy, stationary and time-resolved photoluminescence spectroscopy, and cycling voltammetry (CV). Additionally, the electronic properties, that is, orbital energies and resulting energy gap were calculated theoretically by density functional theory (DFT). Influence of chemical structure of the compounds on their properties was analyzed.
Electronic structure of semiconducting alkali-metal silicides and germanides
NASA Astrophysics Data System (ADS)
Tegze, M.; Hafner, J.
1989-11-01
We present self-consistent linearized-muffin-tin-orbital calculations of the electronic structure of three alkali-metal germanides and silicides (KGe, NaGe, and NaSi). Like the alkali-metal-lead compounds investigated in our earlier work [M. Tegze and J. Hafner, Phys. Rev. B 39, 8263 (1989)] the Ge and Si compounds of the alkali metals form complex structures based on the packing of tetrahedral Ge4 and Si4 clusters. Our calculations show that all three compounds are narrow-gap semiconductors. The width of the energy gap depends on two main factors: the ratio of the intracluster to the intercluster interactions between the group-IV elements (which increases from Pb to Si) and the strength of the interactions between the alkali-metal atoms (which varies with the size ratio).
NASA Astrophysics Data System (ADS)
Quan, Xie; Chen, Shuo; Platzer, Bernhard; Chen, Jingwen; Gfrerer, Marion
2002-01-01
Water and sediment samples were screened simultaneously for the presence of polychlorinated organic compounds using gas chromatography (GC) coupled with an micro electron capture detector (μ-ECD) and a newly developed helium plasma based on a micro-atomic emission detector (μ-AED). The GC column effluent was split 15:85 between two detectors. In this way, two chromatograms, one obtained by μ-ECD and another by μ-AED, were recorded simultaneously. α-, β-hexachlorocyclohexane and p, p'-DDE were detected. RSDs of the monitoring results from the two detection methods were <20% for the three compounds. A detection limit of 8.5 pg and at least 3 orders of magnitude of linear range for μ-AED was observed.
Quantum Theory of Rare-Earth Magnets
NASA Astrophysics Data System (ADS)
Miyake, Takashi; Akai, Hisazumi
2018-04-01
Strong permanent magnets mainly consist of rare earths (R) and transition metals (T). The main phase of the neodymium magnet, which is the strongest magnet, is Nd2Fe14B. Sm2Fe17N3 is another magnet compound having excellent magnetic properties comparable to those of Nd2Fe14B. Their large saturation magnetization, strong magnetocrystalline anisotropy, and high Curie temperature originate from the interaction between the T-3d electrons and R-4f electrons. This article discusses the magnetism of rare-earth magnet compounds. The basic theory and first-principles calculation approaches for quantitative description of the magnetic properties are presented, together with applications to typical compounds such as Nd2Fe14B, Sm2Fe17N3, and the recently synthesized NdFe12N.
NASA Astrophysics Data System (ADS)
Gajek, Z.
2004-05-01
The electronic properties of the actinide ions in the series of semi-conducting, antiferromagnetic compounds: dioxides, AnO2 and oxychalcogenides, AnOY, where An=U, Np and Y=S, Se, are re-examined from the point of view of the consistency of the crystal field (CF) model. The discussion is based on the supposition that the effective metal-ligand interaction solely determines the net CF effect in non-metallic compounds. The main question we address here is, whether a reliable, consistent description of the CF effect in terms of the intrinsic parameters can be achieved for this particular family of compounds. Encouraging calculations reported previously for the AnO2 and UOY series serve as a reference data in the present estimation of electronic structure parameters for neptunium oxychalcogenides.
NASA Astrophysics Data System (ADS)
Scandurra, A.; Zafarana, R.; Tenya, Y.; Pignataro, S.
2004-07-01
The interface chemistry between encapsulating epoxy phenolic molding compound (EMC) containing phosphorous based organic flame retardant (the so called "green materials") and copper oxide-hydroxide and aluminum oxide-hydroxide surfaces have been studied in comparison with "conventional" EMC containing bromine and antimony as flame retardant. These green materials are designed to reduce the presence of toxic elements in the electronic packages and, consequently, in the environment. For the study were used a Scanning Acoustic Microscopy for delamination measurements, a dynamometer for the pull strength measurements and an ESCA spectrometer for chemical analysis of the interface. The general behavior of the green compound in terms of delamination, adhesion, and corrosion is found better or at least comparable than that of the conventional EMC.
NASA Astrophysics Data System (ADS)
Avigo, I.; Cortés, R.; Rettig, L.; Thirupathaiah, S.; Jeevan, H. S.; Gegenwart, P.; Wolf, T.; Ligges, M.; Wolf, M.; Fink, J.; Bovensiepen, U.
2013-03-01
We employed femtosecond time- and angle-resolved photoelectron spectroscopy to analyze the response of the electronic structure of the 122 Fe-pnictide parent compounds Ba/EuFe2As2 and optimally doped BaFe1.85Co0.15As2 near the Γ point to optical excitation by an infrared femtosecond laser pulse. We identify pronounced changes of the electron population within several 100 meV above and below the Fermi level, which we explain as a combination of (i) coherent lattice vibrations, (ii) a hot electron and hole distribution, and (iii) transient modifications of the chemical potential. The responses of the three different materials are very similar. In the coherent response we identify three modes at 5.6, 3.3, and 2.6 THz. While the highest frequency mode is safely assigned to the A1g mode, the other two modes require a discussion in comparison to the literature. Employing a transient three temperature model we deduce from the transient evolution of the electron distribution a rather weak, momentum-averaged electron-phonon coupling quantified by values for λ<ω2> between 30 and 70 meV2. The chemical potential is found to present pronounced transient changes reaching a maximum of 15 meV about 0.6 ps after optical excitation and is modulated by the coherent phonons. This change in the chemical potential is particularly strong in a multiband system like the 122 Fe-pnictide compounds investigated here due to the pronounced variation of the electron density of states close to the equilibrium chemical potential.
NASA Astrophysics Data System (ADS)
Fan, Yan; Yin, Li'ang; Xue, Yong; Li, Zhaojie; Hou, Hu; Xue, Changhu
2017-04-01
Shrimp paste is a type of condiments with high nutritional value. However, the flavors of shrimp paste, particularly the non-uniformity flavors, have limited its application in food processing. In order to identify the characteristic flavor compounds in Chinese traditional shrimp pastes, five kinds of typical commercial products were evaluated in this study. The differences in the volatile composition of the five products were investigated. Solid phase micro-extraction method was employed to extract the volatile compounds. GC-MS and electronic nose were applied to identify the compounds, and the data were analyzed using principal component analysis (PCA). A total of 62 volatile compounds were identified, including 8 alcohols, 7 aldehydes, 3 ketones, 7 ethers, 7 acids, 3 esters, 6 hydrocarbons, 12 pyrazines, 2 phenols, and 7 other compounds. The typical volatile compounds contributing to the flavor of shrimp paste were found as follows: dimethyl disulfide, dimethyl tetrasulfide, dimethyl trisulfide, 2, 3, 5-trimethyl-6-ethyl pyrazine, ethyl-2, 5-dimethyl-pyrazine, phenol and indole. Propanoic acid, butanoic acid, furans, and 2-hydroxy-3-pentanone caused unpleasant odors, such as pungent and rancid odors. Principal component analysis showed that the content of volatile compounds varied depending on the processing conditions and shrimp species. These results indicated that the combinations of multiple analysis and identification methods could make up the limitations of a single method, enhance the accuracy of identification, and provide useful information for sensory research and product development.
Tasaki, Ken
2005-02-24
The density functional theory (DFT) calculations have been performed for the reduction decompositions of solvents widely used in Li-ion secondary battery electrolytes, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonates (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC), including a typical electrolyte additive, vinylene carbonate (VC), at the level of B3LYP/6-311+G(2d,p), both in the gas phase and solution using the polarizable conductor calculation model. In the gas phase, the first electron reduction for the cyclic carbonates and for the linear carbonates is found to be exothermic and endothermic, respectively, while the second electron reduction is endothermic for all the compounds examined. On the contrary, in solution both first and second electron reductions are exothermic for all the compounds. Among the solvents and the additive examined, the likelihood of undergoing the first electron reduction in solution was found in the order of EC > PC > VC > DMC > EMC > DEC with EC being the most likely reduced. VC, on the other hand, is most likely to undergo the second electron reduction among the compounds, in the order of VC > EC > PC. Based on the results, the experimentally demonstrated effectiveness of VC as an excellent electrolyte additive was discussed. The bulk thermodynamic properties of two dilithium alkylene glycol dicarbonates, dilithium ethylene glycol dicarbonate (Li-EDC) and dilithium 1,2-propylene glycol dicarbonate (Li-PDC), as the major component of solid-electrolyte interface (SEI) films were also examined through molecular dynamics (MD) simulations in order to understand the stability of the SEI film. It was found that film produced from a decomposition of EC, modeled by Li-EDC, has a higher density, more cohesive energy, and less solubility to the solvent than the film produced from decomposition of PC, Li-PDC. Further, MD simulations of the interface between the decomposition compound and graphite suggested that Li-EDC has more favorable interactions with the graphite surface than Li-PDC. The difference in the SEI film stability and the behavior of Li-ion battery cycling among the solvents were discussed in terms of the molecular structures.
Gardette, Maryline; Papon, Janine; Bonnet, Mathilde; Desbois, Nicolas; Labarre, Pierre; Wu, Ting-Dee; Miot-Noirault, Elisabeth; Madelmont, Jean-Claude; Guerquin-Kern, Jean-Luc; Chezal, Jean-Michel; Moins, Nicole
2011-12-01
The increasing incidence of melanoma and the lack of effective therapy on the disseminated form have led to an urgent need for new specific therapies. Several iodobenzamides or analogs are known to possess specific affinity for melanoma tissue. New heteroaromatic derivatives have been designed with a cytotoxic moiety and termed DNA intercalating agents. These compounds could be applied in targeted radionuclide therapy using (125)I, which emits Auger electrons and gives high-energy, localized irradiation. Two iodinated acridine derivatives have been reported to present an in vivo kinetic profile conducive to application in targeted radionuclide therapy. The aim of the present study was to perform a preclinical evaluation of these compounds. The DNA intercalating property was confirmed for both compounds. After radiolabeling with (125)I, the two compounds induced in vitro a significant radiotoxicity to B16F0 melanoma cells. Nevertheless, the acridine compound appeared more radiotoxic than the acridone compound. While cellular uptake was similar for both compounds, SIMS analysis and in vitro protocol showed a stronger affinity for melanin with acridone derivative, which was able to induce a predominant scavenging process in the melanosome and restrict access to the nucleus. In conclusion, the acridine derivative with a higher nuclear localization appeared a better candidate for application in targeted radionuclide therapy using (125)I.
NASA Astrophysics Data System (ADS)
Bakri, Badis; Driss, Zied; Berri, Saadi; Khenata, Rabah
2017-12-01
In this work, the structural, electronic and optical properties of fluoroperovskite ABF3 (A = K, Na; B = Mg, Zn) were studied using two different approaches: the full-potential linearized augmented plane wave method and the pseudo-potential plane wave scheme in the frame of generalized gradient approximation features such as the lattice constant, bulk modulus and its pressure derivative are reported. The ground state properties of these compounds such as the equilibrium lattice constant and the bulk modulus are in good agreement with the experimental results. The first principles calculations were performed to study the electronic structures of ABF3(A = K, Na; B = Mg, Zn) compounds and the results indicated that these four compounds are indirect band gap insulators. The optical properties are analysed and the source of some peaks in the spectra is discussed. Besides, the dielectric function, refractive index and extinction coefficient for radiation up to 25 eV have also been reported and discussed.
NASA Astrophysics Data System (ADS)
Zhang, Y. J.; Liu, Z. H.; Liu, G. D.; Ma, X. Q.; Cheng, Z. X.
2018-03-01
Compensated ferrimagnets, due to their zero net magnetization and potential for large spin-polarization, have been attracting more and more attention in the field of spintronics. We demonstrate potential candidate materials among the inverse Heusler compounds Ti2VZ (Z = P, As, Sb, Bi) by first principles calculations. It is found that these compounds with 18 valence electrons per unit cell have zero net magnetic moment with compensated sublattice magnetization, as anticipated by a variant of Slater-Pauling rule of Mt = NV - 18, where Mt is the total spin magnetic moment per formula unit and NV is the number of valence electrons per formula unit, and show semiconducting behavior in both spin channels with a moderate exchange splitting, as with ordinary ferromagnetic semiconductors. Furthermore, the fully compensated ferrimagnetism and semiconductivity are rather robust over a wide range of lattice contraction and expansion. Due to the above distinct advantages, these compounds will be promising candidates for spintronic applications.
Balasekaran, Samundeeswari Mariappan; Sattelberger, Alfred P.; Hagenbach, Adelheid; ...
2017-12-08
Quadruply bonded rhenium(III) dimers with the stoichiometry Re 2L 4F 2 (1, L = hexahydro-2H-pyrimido[1,2a]pyrimidinate (hpp –); 2, L = diphenyl formamidinate (dpf –)) were prepared from the solid-state melt reactions (SSMRs) between (NH 4) 2[Re 2F 8]·2H 2O and HL. Then those compounds were characterized in the solid state by single-crystal X-ray diffraction and in solution by UV–visible spectroscopy and cyclic voltammetry. The compound [Re 2(hpp) 4F 2]PF 6 (3) was prepared from the one-electron oxidation of Re 2(hpp) 4F 2 with [Cp 2Fe]PF 6. Compounds 1–3 are isostructural with the corresponding chloro derivatives. In summation, compound 1 undergoesmore » two one-electron oxidations. Comparison with its higher halogen homologues reveals that Re 2(hpp) 4F 2 (1) is more easily oxidized than its chloro and bromo analogues.« less
Cho, Dae Won; Latham, John A; Park, Hea Jung; Yoon, Ung Chan; Langan, Paul; Dunaway-Mariano, Debra; Mariano, Patrick S
2011-04-15
New types of tetrameric lignin model compounds, which contain the common β-O-4 and β-1 structural subunits found in natural lignins, have been prepared and carbon-carbon bond fragmentation reactions of their cation radicals, formed by photochemical (9,10-dicyanoanthracene) and enzymatic (lignin peroxidase) SET-promoted methods, have been explored. The results show that cation radical intermediates generated from the tetrameric model compounds undergo highly regioselective C-C bond cleavage in their β-1 subunits. The outcomes of these processes suggest that, independent of positive charge and odd-electron distributions, cation radicals of lignins formed by SET to excited states of sensitizers or heme-iron centers in enzymes degrade selectively through bond cleavage reactions in β-1 vs β-O-4 moieties. In addition, the findings made in the enzymatic studies demonstrate that the sterically large tetrameric lignin model compounds undergo lignin peroxidase-catalyzed cleavage via a mechanism involving preliminary formation of an enzyme-substrate complex.
Glucose sensing molecules having selected fluorescent properties
Satcher, Jr., Joe H.; Lane, Stephen M.; Darrow, Christopher B.; Cary, Douglas R.; Tran, Joe Anh
2004-01-27
An analyte sensing fluorescent molecule that employs intramolecular electron transfer is designed to exhibit selected fluorescent properties in the presence of analytes such as saccharides. The selected fluorescent properties include excitation wavelength, emission wavelength, fluorescence lifetime, quantum yield, photostability, solubility, and temperature or pH sensitivity. The compound comprises an aryl or a substituted phenyl boronic acid that acts as a substrate recognition component, a fluorescence switch component, and a fluorophore. The fluorophore and switch component are selected such that the value of the free energy for electron transfer is less than about 3.0 kcal mol.sup.-1. Fluorescent compounds are described that are excited at wavelengths greater than 400 nm and emit at wavelengths greater than 450 nm, which is advantageous for optical transmission through skin. The fluorophore is typically selected from transition metal-ligand complexes and thiazine, oxazine, oxazone, or oxazine-one as well as anthracene compounds. The fluorescent compound can be immobilized in a glucose permeable biocompatible polymer matrix that is implantable below the skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balasekaran, Samundeeswari Mariappan; Sattelberger, Alfred P.; Hagenbach, Adelheid
Quadruply bonded rhenium(III) dimers with the stoichiometry Re 2L 4F 2 (1, L = hexahydro-2H-pyrimido[1,2a]pyrimidinate (hpp –); 2, L = diphenyl formamidinate (dpf –)) were prepared from the solid-state melt reactions (SSMRs) between (NH 4) 2[Re 2F 8]·2H 2O and HL. Then those compounds were characterized in the solid state by single-crystal X-ray diffraction and in solution by UV–visible spectroscopy and cyclic voltammetry. The compound [Re 2(hpp) 4F 2]PF 6 (3) was prepared from the one-electron oxidation of Re 2(hpp) 4F 2 with [Cp 2Fe]PF 6. Compounds 1–3 are isostructural with the corresponding chloro derivatives. In summation, compound 1 undergoesmore » two one-electron oxidations. Comparison with its higher halogen homologues reveals that Re 2(hpp) 4F 2 (1) is more easily oxidized than its chloro and bromo analogues.« less
NASA Astrophysics Data System (ADS)
Thakare, Sanjay R.; Ramteke, Shruti M.
2018-05-01
A novel HOQ@MOF-5 compound photocatalyst was successfully constructed by interacting 8- Hydroxyquinoline with MOF-5 synthesized through a room temperature method. The secondary complex formation between the Zn cluster with 8-Hydroxyquinoline harnessed visible light and acted as a mediator to transfer photoinduced electrons to MOF-5 for enhancing the photocatalytic reaction rate with visible light. HOQ@MOF-5 was characterized by various spectroscopic techniques, such as XRD showing the crystalline nature of compound, UV-Visible spectroscopy showing the 2.54 eV band gap of HOQ@MOF-5 and morphological analysis tools, such as the nanoparticle nature of the compound with 9.561 nm particle size. The photocatalytic effect was estimated using the photocatalytic degradation of phenol as a representative organic pollutant under visible light irradiation. This work provides a new compound acting as source of electrons transfer for the development of efficient photocatalysts for remediation of environmental pollution.
NASA Astrophysics Data System (ADS)
Boulechfar, R.; Khenioui, Y.; Drablia, S.; Meradji, H.; Abu-Jafar, M.; Omran, S. Bin; Khenata, R.; Ghemid, S.
2018-05-01
Ab-initio calculations based on density functional theory have been performed to study the structural, electronic, thermodynamic and mechanical properties of intermetallic compounds Pt3Sc and Pt3Y using the full-potential linearized augmented plane wave(FP-LAPW) method. The total energy calculations performed for L12, D022 and D024 structures confirm the experimental phase stability. Using the generalized gradient approximation (GGA), the values of enthalpies formation are -1.23 eV/atom and -1.18 eV/atom for Pt3Sc and Pt3Y, respectively. The densities of states (DOS) spectra show the existence of a pseudo-gap at the Fermi level for both compounds which indicate the strong spd hybridization and directing covalent bonding. Furthermore, the density of states at the Fermi level N(EF), the electronic specific heat coefficient (γele) and the number of bonding electrons per atom are predicted in addition to the elastic constants (C11, C12 and C44). The shear modulus (GH), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), ratio of B/GH and Cauchy pressure (C12-C44) are also estimated. These parameters show that the Pt3Sc and Pt3Y are ductile compounds. The thermodynamic properties were calculated using the quasi-harmonic Debye model to account for their lattice vibrations. In addition, the influence of the temperature and pressure was analyzed on the heat capacities (Cp and Cv), thermal expansion coefficient (α), Debye temperature (θD) and Grüneisen parameter (γ).
Kim, Sung Yoon; Seo, Jae Hwa; Yoon, Young Jun; Lee, Ho-Young; Lee, Seong Min; Cho, Seongjae; Kang, In Man
2015-10-01
In this work, we design and analyze complementary metal-oxide-semiconductor (CMOS)-compatible III-V compound electron-hole bilayer (EHB) tunneling field-effect transistors (TFETs) by using two-dimensional (2D) technology computer-aided design (TCAD) simulations. A recently proposed EHB TFET exploits a bias-induced band-to-band tunneling (BTBT) across the electron-hole bilayer by an electric field from the top and bottom gates. This is in contrast to conventional planar p(+)-p(-)-n TFETs, which utilize BTBT across the source-to-channel junction. We applied III-V compound semiconductor materials to the EHB TFETs in order to enhance the current drivability and switching performance. Devices based on various compound semiconductor materials have been designed and analyzed in terms of their primary DC characteristics. In addition, the operational principles were validated by close examination of the electron concentrations and energy-band diagrams under various operation conditions. The simulation results of the optimally designed In0.533Ga0.47As EHB TFET show outstanding performance, with an on-state current (Ion) of 249.5 μA/μm, subthreshold swing (S) of 11.4 mV/dec, and threshold voltage (Vth) of 50 mV at VDS = 0.5 V. Based on the DC-optimized InGaAs EHB TFET, the CMOS inverter circuit was simulated in views of static and dynamic behaviors of the p-channel device with exchanges between top and bottom gates or between source and drain electrodes maintaining the device structure.
NASA Astrophysics Data System (ADS)
Umamaheswari, R.; Yogeswari, M.; Kalpana, G.
2013-02-01
Self-consistent scalar relativistic band structure calculations for AMO (A=Li, Na, K and Rb; M=Ag and Cu) compounds have been performed using the tight-binding linear muffin-tin orbital (TB-LMTO) method within the local density approximation (LDA). At ambient conditions, these compounds are found to crystallize in tetragonal KAgO-type structure with two different space group I-4m2 and I4/mmm. Nowadays, hypothetical structures are being considered to look for new functional materials. AMO compounds have stoichiometry similar to eight-electron half-Heusler materials of type I-I-VI which crystallizes in cubic (C1b) MgAgAs-type structure with space group F-43m. For all these compounds, by interchanging the positions of atoms in the hypothetical cubic structure, three phases (α, β and γ) are formed. The energy-volume relation for these compounds in tetragonal KAgO-type structure and cubic α, β and γ phases of related structure have been obtained. Under ambient conditions these compounds are more stable in tetragonal KAgO-type (I4/mmm) structure. The total energies calculated within the atomic sphere approximation (ASA) were used to determine the ground state properties such as equilibrium lattice parameters, c/a ratio, bulk modulus, cohesive energy and are compared with the available experimental results. The results of the electronic band structure calculations at ambient condition show that LiCuO and NaMO are indirect band gap semiconductors whereas KMO and RbMO are direct band gap semiconductors. At high pressure the band gap decreases and the phenomenon of band overlap metallization occur. Also these compounds undergo structural phase transition from tetragonal I-4m2 phase to cubic α-phase and transition pressures were calculated.
Alam, Mohammad Sayed; Nam, Young-Joo; Lee, Dong-Ung
2013-11-01
In the present study, a series of (Z)-2,3-diphenylacrylonitrile analogs were synthesized and then evaluated in terms of their cytotoxic activities against four human cancer cell lines, e.g. lung cancer (A549), ovarian cancer (SK-OV-3), skin cancer (SK-MEL-2), and colon cancer (HCT15), as well as anti-microbial activities against three microbes, e.g. Staphylococcus aureus, Salmonella typhi, and Aspergillus niger. The title compounds were synthesized by Knoevenagel condensation reaction of benzyl cyanide or p-nitrobenzyl cyanide with substituted benzaldehydes in good yields. Most of the compounds exhibited significant suppressive activities against the growth of all cancer cell lines. Compound 3c was most active in inhibiting the growth of A549, SK-OV-3, SK-MEL-2, and HCT15 cells lines with IC50 values of 0.57, 0.14, 0.65, and 0.34 mg/mL, respectively, followed by compounds 3f, 3i, and 3h. Compound 3c exhibited 2.4 times greater cytotoxic activity against HCT15 cells, whereas it showed similar potency against SK-OV-3 cells to that of the standard anti-cancer agent doxorubicin. Structure-activity relationship study revealed that electron-donating groups at the para-position of phenyl ring B were more favorable for improved cytotoxic activity, whereas the presence of electron-withdrawing groups was unfavorable compare to unsubstituted acrylonitrile. An optimal electron density on phenyl ring A of (Z)-2,3-diphenylacrylonitrile analogs was crucial for their cytotoxic activities against human cancer cell lines used in the present study. Qualitative structure-cytotoxic activity relationships were studied using physicochemical parameters; a good correlation between calculated polar surface area (PSA), a lipophobic parameter, and cytotoxic activity was found. Moreover, all compounds showed significant anti-bacterial activities against S. typhi, whereas compound 3k showed potent inhibition against both S. aureus and S. typhi bacterial strains. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Factors determining the average atomic volumes in intermetallic compounds.
Pauling, L
1987-07-01
In formation of an intermetallic compound from the elementary metals there is usually a contraction in volume. Electron transfer leading to the charge states M(+) and M(-) with increase in valence and decrease in volume explains the more than 2-fold range in contraction for different compounds in the same binary system. In a more thorough analysis, the better packing of atoms of different sizes also needs to be considered.
Spin Interactions and Spin Dynamics in Electronic Nanostructures
2006-08-31
in Semiconductor Nanostructures,” D. D. Awschalom, Plenary Speaker, 36th International Symposium on Compound Semiconductors, San Diego, CA, August 25...Electrical Manipulation of Spin Orientation in Compound Semiconductors”, M. E. Flatté, W. H. Lau, C. E. Pryor, and I. Tifrea, International Symposium...on Compound Semiconductors 2003, San Diego, August 25, 2003. 73. “Spin Dynamics in Semiconductors”, M. E. Flatté, SPINTECH II: 2nd International
Weber, Katharina; Erdem, Özlen F; Bill, Eckhard; Weyhermüller, Thomas; Lubitz, Wolfgang
2014-06-16
A series of four [S2Ni(μ-S)2FeCp*Cl] compounds with different tetradentate thiolate/thioether ligands bound to the Ni(II) ion is reported (Cp* = C5Me5). The {S2Ni(μ-S)2Fe} core of these compounds resembles structural features of the active site of [NiFe] hydrogenases. Detailed analyses of the electronic structures of these compounds by Mössbauer and electron paramagnetic resonance spectroscopy, magnetic measurements, and density functional theory calculations reveal the oxidation states Ni(II) low spin and Fe(II) high spin for the metal ions. The same electronic configurations have been suggested for the Cred1 state of the C-cluster [NiFeu] subsite in carbon monoxide dehydrogenases (CODH). The Ni-Fe distance of ∼3 Å excludes a metal-metal bond between nickel and iron, which is in agreement with the computational results. Electrochemical experiments show that iron is the redox active site in these complexes, performing a reversible one-electron oxidation. The four complexes are discussed with regard to their similarities and differences both to the [NiFe] hydrogenases and the C-cluster of Ni-containing CODH.
Design of hydrophobic polyoxometalate hybrid assemblies beyond surfactant encapsulation.
Song, Yu-Fei; McMillan, Nicola; Long, De-Liang; Thiel, Johannes; Ding, Yulong; Chen, Haisheng; Gadegaard, Nikolaj; Cronin, Leroy
2008-01-01
Grafting of C-6, C-16 and C-18 alkyl chains onto the hydrophilic Mn-Anderson clusters (compounds 2-4) has been achieved. Exchange of the tetrabutyl ammonium (TBA) with dimethyldioctadecyl ammonium (DMDOA) results in the formation of new polyoxometalate (POM) assemblies (compounds 5-6), in which the POM cores are covalently functionalized by hydrophilic alkyl-chains and enclosed by surfactant of DMDOABr. As a result, we have been able to design and synthesize POM-containing hydrophobic materials beyond surfactant encapsulation. In solid state, scanning electron and transmission electron microscopy (SEM and TEM) studies of the TBA salts of compounds 3 and 4 show highly ordered, uniform, reproducible assemblies with unique segmented rodlike morphology. SEM and TEM studies of the DMDOA salts of compounds 5 and 6 show that they form spherical and sea urchin 3D objects in different solvent systems. In solution, the physical properties of compound 5 and 6 (combination of surfactant-encapsulated cluster (SEC) and surface-grafted cluster (SGC)) show a liquid-to-gel phase transition in pure chloroform below 0 degrees C, which are much lower than other reported SECs. By utilizing light scattering measurements, the nanoparticle size for compounds 5 and 6 were measured at 5 degrees C and 30 degrees C, respectively. Other physical properties including differential scanning calorimetry have been reported.
Zha, Gao-Feng; Leng, Jing; Darshini, N; Shubhavathi, T; Vivek, H K; Asiri, Abdullah M; Marwani, Hadi M; Rakesh, K P; Mallesha, N; Qin, Hua-Li
2017-07-15
A series of new benzo[d]thiazole-hydrazones analogues were synthesized and screened for their in vitro antibacterial and antifungal activities. The results revealed that compounds 13, 14, 15, 19, 20, 28 and 30 exhibited superior antibacterial potency compared to the reference drug chloramphenicol and rifampicin. Compounds 5, 9, 10, 11, 12, 28 and 30 were found to be good antifungal activity compared to the standard drug ketoconazole. A preliminary study of the structure-activity relationship (SAR) revealed that the antimicrobial activity depended on the effect of different substituents on the phenyl ring. The electron donating (OH and OCH 3 ) groups presented in the analogues, increase the antibacterial activity (except compound 12), interestingly, while the electron withdrawing (Cl, NO 2 , F and Br) groups increase the antifungal activity (except compound 19 and 20). In addition, analogues containing thiophene (28) and indole (30) showed good antimicrobial activities. Whereas, aliphatic analogues (24-26) shown no activities in both bacterial and fungal stains even in high concentrations (100µg/mL). Molecular docking studies were performed for all the synthesized compounds of which compounds 11, 19 and 20 showed the highest glide G-score. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Shanlan; Kim, Jooil; Park, Sunyoung; Kim, Seung-Kyu; Park, Mi-Kyung; Mühle, Jens; Lee, Gangwoong; Lee, Meehye; Jo, Chun Ok; Kim, Kyung-Ryul
2014-01-01
The sources of halogenated compounds in East Asia associated with stratospheric ozone depletion and climate change are relatively poorly understood. High-precision in situ measurements of 18 halogenated compounds and carbonyl sulfide (COS) made at Gosan, Jeju Island, Korea, from November 2007 to December 2011 were analyzed by a positive matrix factorization (PMF). Seven major industrial sources were identified from the enhanced concentrations of halogenated compounds observed at Gosan and corresponding concentration-based source contributions were also suggested: primary aluminum production explaining 37% of total concentration enhancements, solvent usage of which source apportionment is 25%, fugitive emissions from HCFC/HFC production with 11%, refrigerant replacements (9%), semiconductor/electronics industry (9%), foam blowing agents (6%), and fumigation (3%). Statistical trajectory analysis was applied to specify the potential emission regions for seven sources using back trajectories. Primary aluminum production, solvent usage and fugitive emission sources were mainly contributed by China. Semiconductor/electronics sources were dominantly located in Korea. Refrigerant replacement, fumigation and foam blowing agent sources were spread throughout East Asian countries. The specified potential source regions are consistent with country-based consumptions and emission patterns, verifying the PMF analysis results. The industry-based emission sources of halogenated compounds identified in this study help improve our understanding of the East Asian countries' industrial contributions to halogenated compound emissions.
ARPES studies of the electronic structure of Fe-based superconductors
NASA Astrophysics Data System (ADS)
Lu, Donghui
2009-03-01
The recent discovery of superconductivity in Fe-based layered compounds has created renewed interest in high temperature superconductivity. With a superconducting transition temperature as high as 55 K, this discovery provides a new direction to understand the essential ingredients for achieving a high superconducting transition temperature. In this talk, I will present our recent angle-resolved photoemission spectroscopy (ARPES) studies on LaOFeP and (Ba,K)Fe2As2 systems, with special emphasis on the basic electronic structure of the parent compounds. For LaOFeP, quantitative agreement can be found between our ARPES data and the LDA band structure calculations, suggesting that a weak coupling approach based on an itinerant ground state may be more appropriate for understanding this new superconducting compound [1]. On the other hand, the picture for (Ba,K)Fe2As2 system is more complicated. I will discuss two important issues in these FeAs compounds: 1) the unexpected Fermi surface topology in both undoped and doped compounds; 2) the peculiar signature of the SDW transition in ARPES spectra for the parent compound. [4pt] [1] D. H. Lu, M. Yi, S.-K. Mo, A. S. Erickson, J. Analytis, J.-H. Chu, D. J. Singh, Z. Hussain, T. H. Geballe, I. R. Fisher & Z.-X. Shen, Nature 455, 81 (2008).
All Spin Artificial Neural Networks Based on Compound Spintronic Synapse and Neuron.
Zhang, Deming; Zeng, Lang; Cao, Kaihua; Wang, Mengxing; Peng, Shouzhong; Zhang, Yue; Zhang, Youguang; Klein, Jacques-Olivier; Wang, Yu; Zhao, Weisheng
2016-08-01
Artificial synaptic devices implemented by emerging post-CMOS non-volatile memory technologies such as Resistive RAM (RRAM) have made great progress recently. However, it is still a big challenge to fabricate stable and controllable multilevel RRAM. Benefitting from the control of electron spin instead of electron charge, spintronic devices, e.g., magnetic tunnel junction (MTJ) as a binary device, have been explored for neuromorphic computing with low power dissipation. In this paper, a compound spintronic device consisting of multiple vertically stacked MTJs is proposed to jointly behave as a synaptic device, termed as compound spintronic synapse (CSS). Based on our theoretical and experimental work, it has been demonstrated that the proposed compound spintronic device can achieve designable and stable multiple resistance states by interfacial and materials engineering of its components. Additionally, a compound spintronic neuron (CSN) circuit based on the proposed compound spintronic device is presented, enabling a multi-step transfer function. Then, an All Spin Artificial Neural Network (ASANN) is constructed with the CSS and CSN circuit. By conducting system-level simulations on the MNIST database for handwritten digital recognition, the performance of such ASANN has been investigated. Moreover, the impact of the resolution of both the CSS and CSN and device variation on the system performance are discussed in this work.
Contaminated environments in the subsurface and bioremediation: organic contaminants.
Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F
1997-07-01
Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.
Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent.
Hoffmann, Norbert
2012-11-01
Electronic excitation significantly changes the reactivity of chemical compounds. Compared to ground state reactions, photochemical reactions considerably enlarge the application spectrum of a particular functional group in organic synthesis. Multistep syntheses may be simplified and perspectives for target oriented synthesis (TOS) and diversity oriented synthesis (DOS) are developed. New compound families become available or may be obtained more easily. In contrast to common chemical reagents, photons don't generate side products resulting from the transformation of a chemical reagent. Therefore, they are considered as a traceless reagent. Consequently, photochemical reactions play a central role in the methodology of sustainable chemistry. This aspect has been recognized since the beginning of the 20th century. As with many other photochemical transformations, photochemical reactions of aromatic, benzene-like compounds illustrate well the advantages in this context. Photochemical cycloadditions of aromatic compounds have been investigated for a long time. Currently, they are applied in various fields of organic synthesis. They are also studied in supramolecular structures. The phenomena of reactivity and stereoselectivity are investigated. During recent years, photochemical electron transfer mediated reactions are particularly focused. Such transformations have likewise been performed with aromatic compounds. Reactivity and selectivity as well as application to organic synthesis are studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, B.D.; Apel, W.A.; Walton, M.R.
Conceptually, biofilters are vapor phase bioreactors that rely on microorganisms in the bed medium to oxidize contaminants in off-gases flowing through the bed to less hazardous compounds. In the most studied and utilized systems reduced compounds such as fuel hydrocarbons are enzymatically oxidized to compounds such as carbon dioxide and water. In these types of reactions the microorganisms in the bed oxidize the contaminant and transfer the electrons to oxygen which is the terminal electron acceptor in the process. In essence the contaminant is the carbon and energy source for the microorganisms in the bed medium and through this catabolicmore » process oxygen is reduced to water. An example of this oxidation process can be seen during the degradation of benzene and similar aromatic compounds. Aromatics are initially attacked by a dioxygenase enzyme which oxidizes the compounds to a labile dihydrodiole which is spontaneously converted to a catechol. The dihydroxylated aromatic rings is then opened by oxidative {open_quotes}ortho{close_quotes} or {open_quotes}meta{close_quotes} cleavage yielding cis, cis-muconic acid or 2-hydroxy-cis, cis-muconic semialdehyde, respectively. These organic compounds are further oxidized to carbon dioxide or are assimilated for cellular material. This paper describes the conversion of carbon tetrachloride using methanol as the primary carbon and energy source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Abraham, Jisha Annie, E-mail: disisjisha@yahoo.com
A theoretical study of structural, electronic, elastic and mechanical properties of CePb{sub 3} intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), which has notmore » been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh’s criteria and Cauchy's pressure (C{sub 11}-C{sub 12}). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (v{sub m}), density (ρ) and Debye temperature (θ{sub D}) of this compound are also estimated from the elastic constants.« less
Iridates and RuCl3 - from Heisenberg antiferromagnets to potential Kitaev spin-liquids
NASA Astrophysics Data System (ADS)
van den Brink, Jeroen
The observed richness of topological states on the single-electron level prompts the question what kind of topological phases can develop in more strongly correlated, many-body electron systems. Correlation effects, in particular intra- and inter-orbital electron-electron interactions, are very substantial in 3 d transition-metal compounds such as the copper oxides, but the spin-orbit coupling (SOC) is weak. In 5 d transition-metal compounds such as iridates, the interesting situation arises that the SOC and Coulomb interactions meet on the same energy scale. The electronic structure of iridates thus depends on a strong competition between the electronic hopping amplitudes, local energy-level splittings, electron-electron interaction strengths, and the SOC of the Ir 5d electrons. The interplay of these ingredients offers the potential to stabilise relatively well-understood states such as a 2D Heisenberg-like antiferromagnet in Sr2IrO4, but in principle also far more exotic ones, such a topological Kitaev quantum spin liquid, in (hyper)honeycomb iridates. I will discuss the microscopic electronic structures of these iridates, their proximity to idealized Heisenberg and Kitaev models and our contributions to establishing the physical factors that appear to have preempted the realization of quantum spin liquid phases so far and include a discussion on the 4d transition metal chloride RuCl3. Supported by SFB 1143 of the Deutsche Forschungsgemeinschaft.
Electronic structure of shandite Co3Sn2S2
NASA Astrophysics Data System (ADS)
Dedkov, Y. S.; Holder, M.; Molodtsov, S. L.; Rosner, H.
2008-03-01
The electronic structure of shandite Co3Sn2S2 was determined by photoelectron spectroscopy and compared with ab initio band structure calculations. Presented results give evidence that this compound has half-metallic ferromagnetic properties.
BIOREMEDIATION AT WOOD-PRESERVING SITES
The removal of organic compounds from ground water during bioremediation at wood-preserving sites is a function of the stoichiometric demand for electron acceptors (oxygen, nitrate, and sulfate) to metabolize the organic contaminants and the supply of the electron acceptors in th...
Parson, Carl; Smith, Valerie; Krauss, Christopher; Banerjee, Hirendra N.; Reilly, Christopher; Krause, Jeanette A.; Wachira, James M.; Giri, Dipak; Winstead, Angela; Mandal, Santosh K.
2014-01-01
Despite the tremendous success of cisplatin and other platinum-based anticancer drugs, severe toxicity and resistance to tumors limit their applications. It is believed that the coordination (formation of covalent bond) of the metal (platinum) to the nitrogen bases of DNA cause the ruptures of the cancer as well as normal cells. A search for anticancer drugs with different modes of action resulted in the synthesis of variety of novel compounds. Many of them are in clinical trials now. Recently we synthesized a series of novel rhenium pentylcarbonato compounds (PC1–PC6). The rhenium atom in each compound is coordinated (bonded) to a planar polypyridyl aromatic ligand, thereby forcing each compound to intercalate between the DNA bases. We have investigated the DNA binding properties of one of the PC-series of compounds (PC6) using electronic spectroscopy. The UV absorption titration of PC6 with DNA shows hypochromic effect with concomitant bathochromic shift of the charge transfer band at 290 nm. These results suggest that the compound PC6 binds to DNA through intercalation. It is therefore likely that the other PC-series of compounds will behave in a similar manner. Thus it is expected that these compounds will exhibit negligible or no side effect. We have observed that the PC-series of compounds are strong cytotoxic agents against lymphosarcoma (average GI50 ≈ 2±2.6 µM), PC-3 prostate (average GI50 ≈ 3±2.8 µM) and myeloid leukemia (average GI50 ≈ 3±2.8 µM) cancer cell lines. The average GI50 values of the PC-series of compounds are 2–3 less than the corresponding GI50 values of cisplatin. Also each of the PC-series of compounds exhibits less toxicity than cisplatin in the glomerular mesangial cells. PMID:25221731
NASA Astrophysics Data System (ADS)
Teyssier, J.; Lortz, R.; Petrovic, A.; van der Marel, D.; Filippov, V.; Shitsevalova, N.
2008-10-01
We report a detailed study of specific heat, electrical resistivity, and optical spectroscopy in the superconducting boride LuB12 (Tc=0.4K) , and compare it to the higher Tc compound ZrB12 (Tc=6K) . Both compounds have the same structure based on enclosed metallic Lu or Zr ions in oversized boron cages. The infrared reflectivity and ellipsometry in the visible range allow us to extract the optical conductivity from 6 meV to 4 eV in the normal state from 20 to 280 K. By extracting the superconducting properties, phonon density of states, and electron-phonon coupling function from these measurements, we discuss the important factors governing Tc and explain the difference between the two compounds. The phonon density of states seems to be insignificantly modified by substitution of Zr with Lu. However, the soft vibrations of the metal ions in boron cages, responsible for the relatively high Tc in ZrB12 , have almost no contribution to the electron-phonon coupling in LuB12 .
Ultrafast dynamics of differently aligned COOH-DTE-BODIPY conjugates linked to the surface of TiO2
NASA Astrophysics Data System (ADS)
Schweighöfer, Felix; Yüce, Imanuel; Dworak, Lars; Guo, Peng; Zastrow, Marc; Mayer, Kerstin; Barta, Christoph; Liebmann, Diana; Ziebart, Nandor; Rück-Braun, Karola; Wachtveitl, Josef
2018-02-01
The photoinduced dynamics of two DTE-BODIPY conjugates A, B with carboxylic acid anchoring groups coupled to the surface of TiO2 were studied by ultrafast transient absorption spectroscopy. For compound A, with an orthogonal orientation of the BODIPY chromophore and the photoswitchable DTE unit, a charge separated state could not be reliably detected. Nevertheless, besides the energy transfer from the BODIPY to the ring-closed DTE-c, indications for an electron transfer reaction were found by analyzing fluorescence quenching on TiO2 in steady state fluorescence measurements. For compound B with a parallel orientation of chromophore and photoswitch, a charge separated state was conclusively identified for the coupled dyad (TiO2) via the observation of a positive absorption signal (at λ pr > 610 nm) at later delay times. An electron transfer rate of 7 × 1010 s-1 can be extracted, indicating slower processes in the dyads in comparison to previously published electron transfer reactions of DTE compounds coupled to TiO2.
Dielectric and Impedance Characteristics of Nickel-Modified BiFeO3-BaTiO3 Electronic Compound
NASA Astrophysics Data System (ADS)
Das, S. N.; Pardhan, S. K.; Bhuyan, S.; Sahoo, S.; Choudhary, R. N. P.; Goswami, M. N.
2018-01-01
The temperature- and field-dependent capacitive, resistive and conducting characteristics of nickel-modified binary electronic systems of bismuth ferrite (BiFeO3) and barium titanate (BaTiO3) have been investigated using dielectric and impedance spectroscopy techniques. The orthorhombic crystal structures of the solid solution (Bi1-2xNixBax)(Fe1-2xTi0.2x)O3 (with x = 0.10, 0.15, 0.20 and 0.25) have been identified from powder x-ray crystallography. The micrographs exhibit the development of dense samples with reduced grain size for higher percentage of Ni in the BiFeO3-BaTiO3. The stoichiometric content of each sample has been realized using the energy dispersive x-ray technique. The relationship between micro-structural study and frequency-temperature-dependent electrical properties of the compound has revealed a negative temperature coefficient of resistance behavior. A non-Debye-type relaxation process is observed from the Niquist plot. The studied compound presents important dielectric properties for the formulation of electronic devices.
Fast detection of toxic industrial compounds by laser ion mobility spectrometry
NASA Astrophysics Data System (ADS)
Oberhuettinger, Carola; Langmeier, Andreas; Oberpriller, Helmut; Kessler, Matthias; Goebel, Johann; Mueller, Gerhard
2009-05-01
Trace detection of toxic industrial compounds has been investigated with the help of a laser ion mobility spectrometer (LIMS). The LIMS was equipped with a tuneable UV laser source for enabling two-photon ionization of the analyte gases and an ion drift tube for the measurement of the ion mobility. Different aromatic and aliphatic hydrocarbons as well as amines were investigated. We find that the first class of molecules can be well ionized due to the delocalization of their valence electron shells and the second due to the presence of non-bonding electrons in lone-pair orbitals. Selectivity of detection is attained on the basis of molecule-specific photo-ionization and drift time spectra. Ion currents were found to scale linearly with the substance concentration over several orders of magnitude down to the detection limits in the ppt range. As besides toxic industrial compounds, similar electron configurations also occur in illicit drugs, toxins and pharmaceutical substances, LIMS can be applied in a variety of fields ranging from environmental analysis, air pollution monitoring, drug detection and chemical process monitoring.
Čechová, Lucie; Kind, Jonas; Dračínský, Martin; Filo, Juraj; Janeba, Zlatko; Thiele, Christina M; Cigáň, Marek; Procházková, Eliška
2018-05-11
The photoswitching behavior of 5-phenylazopyrimidines was investigated by optical methods and NMR spectroscopy with in situ irradiation sustained by mathematical modeling and DFT calculations. Irradiation of various compounds with electron-donating groups on the pyrimidine ring and substituents with electron-withdrawing as well as electron-donating substituent in the para-position of the phenyl ring were examined. All compounds could be successfully converted to the cis isomer; this isomerization and the subsequent thermal fading were studied. Switching cycles can be repeated without signs of photodegradation for most of the compounds, which makes them adept to molecular photoswitches. Interestingly, the chloro and cyano derivatives can be switched without UV light, which makes them vis(π → π*)-vis(n → π*) photoswitches. Surprisingly equal trans-to- cis photoisomerization quantum yields for π → π* and n → π* excitation indicate the blocking of the inversion pathway following π → π* excitation. In contrast to that, DFT computations suggest the inversion mechanism for the reverse thermal cis-to- trans isomerization of 5-phenylazopyrimidines.
Kumar, Pavitra V; Singh, Beena G; Phadnis, Prasad P; Jain, Vimal K; Priyadarsini, K Indira
2016-08-16
Understanding electron-transfer processes is crucial for developing organoselenium compounds as antioxidants and anti-inflammatory agents. To find new redox-active selenium antioxidants, we have investigated one-electron-transfer reactions between hydroxyl ((.) OH) radical and three bis(alkanol)selenides (SeROH) of varying alkyl chain length, using nanosecond pulse radiolysis. (.) OH radical reacts with SeROH to form radical adduct, which is converted primarily into a dimer radical cation (>Se∴Se<)(+) and α-{bis(hydroxyl alkyl)}-selenomethine radical along with a minor quantity of an intramolecularly stabilized radical cation. Some of these radicals have been subsequently converted to their corresponding selenoxide, and formaldehyde. Estimated yield of these products showed alkyl chain length dependency and correlated well with their antioxidant ability. Quantum chemical calculations suggested that compounds that formed more stable (>Se∴Se<)(+) , produced higher selenoxide and lower formaldehyde. Comparing these results with those for sulfur analogues confirmed for the first time the distinctive role of selenium in making such compounds better antioxidants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrafast dynamics of differently aligned COOH-DTE-BODIPY conjugates linked to the surface of TiO2.
Schweighöfer, Felix; Yüce, Imanuel; Dworak, Lars; Guo, Peng; Zastrow, Marc; Mayer, Kerstin; Barta, Christoph; Liebmann, Diana; Ziebart, Nandor; Rück-Braun, Karola; Wachtveitl, Josef
2018-01-05
The photoinduced dynamics of two DTE-BODIPY conjugates A, B with carboxylic acid anchoring groups coupled to the surface of TiO 2 were studied by ultrafast transient absorption spectroscopy. For compound A, with an orthogonal orientation of the BODIPY chromophore and the photoswitchable DTE unit, a charge separated state could not be reliably detected. Nevertheless, besides the energy transfer from the BODIPY to the ring-closed DTE-c, indications for an electron transfer reaction were found by analyzing fluorescence quenching on TiO 2 in steady state fluorescence measurements. For compound B with a parallel orientation of chromophore and photoswitch, a charge separated state was conclusively identified for the coupled dyad (TiO 2 ) via the observation of a positive absorption signal (at λ pr > 610 nm) at later delay times. An electron transfer rate of 7 × 10 10 s -1 can be extracted, indicating slower processes in the dyads in comparison to previously published electron transfer reactions of DTE compounds coupled to TiO 2 .
Royt, P.W.; Honeychuck, R.V.; Pant, R.R.; Rogers, M.L.; Asher, L.V.; Lloyd, J.R.; Carlos, W.E.; Belkin, H.E.; Patwardhan, S.
2007-01-01
Dark aggregated particles were seen on pellets of iron-rich, mid-logarithmic phase Pseudomonas aeruginosa. Transmission electron microscopy of these cells showed inclusion bodies in periplasmic vacuoles. Aggregated particles isolated from the spent medium of these cells contained iron as indicated by atomic absorption spectroscopy and by electron paramagnetic resonance spectroscopy that revealed Fe3+. Scanning electron microscopy/energy dispersive X-ray analysis of whole cells revealed the presence of iron-containing particles beneath the surface of the cell, indicating that the isolated aggregates were the intracellular inclusion bodies. Collectively, mass spectroscopy and nuclear magnetic resonance spectroscopy of the isolated inclusion bodies revealed the presence of 3,4-dihydroxy-2-heptylquinoline which is the Pseudomonas quinolone signaling compound (PQS) and an iron chelator; 4-hydroxy-2-heptylquinoline (pseudan VII), which is an iron chelator, antibacterial compound and precursor of PQS; 4-hydroxy-2-nonylquinoline (pseudan IX) which is an iron chelator and antibacterial compound; 4-hydroxy-2-methylquinoline (pseudan I), and 4-hydroxy-2-nonylquinoline N-oxide. ?? 2006 Elsevier Inc. All rights reserved.
Photosensitized regeneration of carbonyl compounds from oximes.
de Lijser, H J Peter; Fardoun, Fadia H; Sawyer, Jody R; Quant, Michelle
2002-07-11
[reaction: see text] Deprotection of oximes to their corresponding carbonyl compounds through the use of photosensitized electron-transfer reactions proceeds in reasonable to good yields. Better yields are obtained in nonpolar solvents and when triplet sensitizers are used. Preliminary mechanistic studies suggest the involvement of an iminoxyl radical.
Applying Query Structuring in Cross-language Retrieval.
ERIC Educational Resources Information Center
Pirkola, Ari; Puolamaki, Deniz; Jarvelin, Kalervo
2003-01-01
Explores ways to apply query structuring in cross-language information retrieval. Tested were: English queries translated into Finnish using an electronic dictionary, and run in a Finnish newspaper databases; effects of compound-based structuring using a proximity operator for translation equivalents of query language compound components; and a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuvychko, Igor V.; Whitaker, James B.; Larson, Bryon W.
2013-04-08
A series of seven structurally-similar compounds with different pairs of R{sub F} groups were prepared, characterized spectroscopically, and studied by electrochemical methods (cyclic and square-wave voltammetry), low-temperature anion photoelectron spectroscopy, and DFT calculations (five of the compounds are reported here for the first time). This is the first time that a set of seven R{sub F} groups have been compared with respect to their relative effects on E{sub 1/2}(0/-), electron affinity (EA), and the DFT-calculated LUMO energy. The compounds, 1,7-C{sub 60}(R{sub F}){sub 2} (R{sub F} = CF{sub 3}, C{sub 2}F{sub 5}, i-C{sub 3}F{sub 7}, n-C{sub 3}F{sub 7}, s-C{sub 4}F{sub 9},more » n-C{sub 4}F{sub 9} and n-C{sub 8}F{sub 21}), were found to have statistically different electron affinities (EA), at the {+-}10 meV level of uncertainty, but virtually identical first reduction potentials, at the {+-}10 mV level of uncertainty. The lack of a correlation between EA and E{sub 1/2}(0/-), and between E(LUMO) and E{sub 1/2}(0/-), for such similar compounds is unprecedented and suggests that explanations for differences in figures of merit for materials and/or devices that are based on equating easily measurable E{sub 1/2}(0/-) values with EAs or E(LUMO) values should be viewed with caution. The solubilities of the seven compounds in toluene varied by nearly a factor of six, but in an unpredictable way, with the C{sub 2}F{sub 5} and s-C{sub 4}F{sub 9} compounds being the most soluble and the i-C{sub 3}F{sub 7} compound being the least soluble. The effects of the different R{sub F} groups on EAs, E(LUMO) values, and solubilities should help fluorine chemists choose the right R{sub F} group to design new materials with improved morphological, electronic, optical, and/or magnetic properties.« less
Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J
2015-03-17
Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron tetraphenyl porphyrin chloride (Fe((III))TPPCl) exhibits picosecond decay to a metal centered d → d* (4)T state. This state decays on a ca. 16 ps time scale in room temperature solution but persists for much longer in a cryogenic glass. The photoreactivity of the (4)T state may lead to novel future applications for these compounds. In contrast, the nonplanar cob(III)alamins contain two axial ligands to the central cobalt atom. The upper axial ligand can be an alkyl group as in the two biologically active coenzymes or a nonalkyl ligand such as -CN in cyanocobalamin (vitamin B12) or -OH in hydroxocobalamin. The electronic structure, energy cascade, and bond cleavage of these compounds is sensitive to the details of the axial ligand. Nonalkylcobalamins exhibit ultrafast internal conversion to a low-lying state of metal to ligand or ligand to metal charge transfer character. The compounds are generally photostable with ground state recovery complete on a time scale of 2-7 ps in room temperature aqueous solution. Alkylcobalamins exhibit ultrafast internal conversion to an S1 state of d/π → π* character. Most compounds undergo bond cleavage from this state with near unit quantum yield within ∼100 ps. Recent theoretical calculations provide a potential energy surface accounting for these observations. Conformation dependent mixing of the corrin π and cobalt d orbitals plays a significant role in the observed photochemistry and photophysics.
Olive Oil Headspace Characterization by a Gas Sensor Array
NASA Astrophysics Data System (ADS)
Santonico, Marco; Gianni, Giacomo; Capuano, Rosamaria; Migliorini, Marzia; Catini, Alexandro; Dini, Francesca; Martinelli, Eugenio; Paolesse, Roberto; D'Amico, Arnaldo; Di Natale, Corrado
2011-09-01
Olive oil quality is strictly correlated to the volatile compounds profile. Both quality and defects can be connected to the presence of specific volatile compounds in the oil headspace. In this paper, olive oil samples have been artificially modified by adding a number of compounds known to be typical of the more frequent defects: fusty, musty, muddy and rancid. Results demonstrate the sensitivity of the electronic nose to the compounds characterizing the defects and then the capability of the instrument to identify the defects in real samples.
NASA Astrophysics Data System (ADS)
Jiang, Wei; Wu, Zhaomei; Zhu, Yingming; Tian, Wen; Liang, Bin
2018-01-01
Four silver chalcogen compounds, Ag2O, Ag2S, Ag2Se and Ag2Te, can be utilized as visible-light-driven photocatalysts. In this research, the electronic structures of these compounds were analyzed by simulation and experiments to systematically reveal the relationship between photocatalytic performance and energetic structure. All four chalcogenides exhibited interesting photocatalytic activities under ultraviolet, visible and near-infrared light. However, their photocatalytic performances and stability significantly depended on the band gap width, and the valence band and conduct band position, which was determined by their composition. Increasing the X atomic number from O to Te resulted in the upward movement of the valence band top and the conduct band bottom, which resulted in narrower band gaps, a wider absorption spectrum, a weaker photo-oxidization capacity, a higher recombination probability of hole and electron pairs, lower quantum efficiency, and worse stability. Among them, Ag2O has the highest photocatalytic performance and stability due to its widest band gap and lowest position of VB and CB. The combined action of photogenerated holes and different radicals, depending on the different electronic structures, including anion ozone radical, hydroxide radical, and superoxide radical, was observed and understood. The results of experimental observations and simulations of the four silver chalcogen compounds suggested that a proper electronic structure is necessary to obtain a balance between photocatalytic performance and absorbable light region in the development of new photocatalysts.
Superconductivity in solid benzene molecular crystal.
Zhong, Guo-Hua; Yang, Chun-Lei; Chen, Xiao-Jia; Lin, Hai-Qing
2018-06-20
Light-element compounds hold great promise of high critical temperature superconductivity judging from the theoretical perspective. A hydrogen-rich material, benzene, is such a kind of candidate but also an organic compound. A series of first-principles calculations are performed on the electronic structures, dynamics properties, and electron-phonon interactions of solid benzene at high pressures. Benzene is found to be dynamically stable in the pressure range of 180-200 GPa and to exhibit superconductivity with a maximum transition temperature of 20 K at 195 GPa. The phonon modes of carbon atoms are identified to mainly contribute to the electron-phonon interactions driving this superconductivity. The predicted superconductivity in this simplest pristine hydrocarbon shows a common feature in aromatic hydrocarbons and also makes it a bridge to organic and hydrogen-rich superconductors.
Walther, T; Wang, X
2016-05-01
Based on Monte Carlo simulations of X-ray generation by fast electrons we calculate curves of effective sensitivity factors for analytical transmission electron microscopy based energy-dispersive X-ray spectroscopy including absorption and fluorescence effects, as a function of Ga K/L ratio for different indium and gallium containing compound semiconductors. For the case of InGaN alloy thin films we show that experimental spectra can thus be quantified without the need to measure specimen thickness or density, yielding self-consistent values for quantification with Ga K and Ga L lines. The effect of uncertainties in the detector efficiency are also shown to be reduced. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Electrodes mitigating effects of defects in organic electronic devices
Heller, Christian Maria Anton [Albany, NY
2008-05-06
A compound electrode for organic electronic devices comprises a thin first layer of a first electrically conducting material and a second electrically conducting material disposed on the first layer. In one embodiment, the second electrically conducting material is formed into a plurality of elongated members. In another embodiment, the second material is formed into a second layer. The elongated members or the second layer has a thickness greater than that of the first layer. The second layer is separated from the first layer by a conducting material having conductivity less than at least the material of the first layer. The compound electrode is capable of mitigating adverse effects of defects, such as short circuits, in the construction of the organic electronic devices, and can be included in light-emitting or photovoltaic devices.
Gallardo, Iluminada; Morais, Sandy; Prats, Gemma
2016-01-01
Although the quantum nature of molecules makes them specially suitable for mimicking the operation of digital electronic elements, molecular compounds can also be envisioned to emulate the behavior of analog devices. In this work we report a novel fluorescent three-state switch capable of reproducing the analog response of transistors, an ubiquitous device in modern electronics. Exploiting the redox and thermal sensitivity of this compound, the amplitude of its fluorescence emission can be continuously modulated, in a similar way as the output current in a transistor is amplified by the gate-to-source voltage. PMID:28959394
NASA Astrophysics Data System (ADS)
Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Pandian, G. V.; Anbusrinivasan, P.
2016-04-01
In order to investigate the vibrational, electronic and NLO characteristics of the compound; benzaldehyde thiosemicarbazone (BTSC), the XRD, FT-IR, FT-Raman, NMR and UV-visible spectra were recorded and were analysed with the calculated spectra by using HF and B3LYP methods with 6-311++G(d,p) basis set. The XRD results revealed that the stabilized molecular systems were confined in orthorhombic unit cell system. The cause for the change of chemical and physical properties behind the compound has been discussed makes use of Mulliken charge levels and NBO in detail. The shift of molecular vibrational pattern by the fusing of ligand; thiosemicarbazone group with benzaldehyde has been keenly observed. The occurrence of in phase and out of phase molecular interaction over the frontier molecular orbitals was determined to evaluate the degeneracy of the electronic energy levels. The thermodynamical studies of the temperature region 100-1000 K to detect the thermal stabilization of the crystal phase of the compound were investigated. The NLO properties were evaluated by the determination of the polarizability and hyperpolarizability of the compound in crystal phase. The physical stabilization of the geometry of the compound has been explained by geometry deformation analysis.
High field ESR study of the pi-d interaction effect in beta-(BDA-TTP)2MCl4 (M=Fe, Ga)
NASA Astrophysics Data System (ADS)
Tokumoto, Takahisa; Vantol, J.; Brunel, L.-C.; Choi, E. S.; Brooks, J. S.; Kaihatsu, T.; Akutsu, H.; Yamada, J.
2007-03-01
Novel magnetic organic conductors with pi-d interaction have commanded attention since the discovery of field induced superconductivity. One of them, beta-(BDA-TTP)2FeCl4, has alternating donor molecules and quasi 2D electrical properties. Previous studies of electrical and magnetic properties show an M-I transition at 120K and an AF transition at TN=8.5K, suggesting an exchange interaction between the conduction electrons and the Fe^3+ d-electrons. The properties of beta-(BDA-TTP)2GaCl4 are similar with exception of the absence of the AF transition, which is apparently due to the absence of pi-d exchange interaction. We report angular/temperature dependent 240GHz quasi optical ESR measurements on both compounds to probe the magnetic properties. The Ga compound signals follow the donor molecule structure, and show no magnetic order at any temperature. The Fe compound signals are quite different from the Ga compound, and exhibit AF behavior below TN. The difference of Fe and Ga compounds will be discussed in terms of the interaction between localized and itinerant magnetic moments.
NASA Astrophysics Data System (ADS)
Ramos, S. B.; González Lemus, N. V.; Deluque Toro, C. E.; Cabeza, G. F.; Fernández Guillermet, A.
2017-07-01
Motivated by the high solubility of In in ( mC44) η'-Cu6Sn5 compound as well as the occurrence of an In-doped η'-intermetallic in the microstructure of Cu/In-Sn/Cu solder joints, a theoretical study has been carried out to investigate the various physical effects of incorporating In at Sn Wyckoff sites of the binary η'-phase. Systematic ab initio calculations using the projected augmented wave method and Vienna Ab initio Simulation Package were used to determine the composition dependence of the structural and cohesive properties of η'-Cu6(Sn,In)5 compounds, compared with those expected from the binary end-member compounds Cu6Sn5 and Cu6In5. The molar volume shows significant deviations from Vegard's law. The predicted composition dependence of the cohesive properties is discussed using two complementary approaches, viz. a valence-electron density approach as well as a bond-number approach, both accounting for the roughly linear dependence of the cohesive energy on the In content. A microscopic interpretation for this general trend is given in terms of the key contributions to chemical bonding in this class of compounds, namely Cu d-electron overlap and hybridization of Cu d-states with In and Sn p-electron states. Moreover, a crystallographic site approach is developed to accurately establish the phase-stabilizing effect of incorporating In at specific Wyckoff positions of the ( mC44) η'-Cu6Sn5 structure.
NASA Astrophysics Data System (ADS)
Phan, T. L.; Tho, P. T.; Tran, N.; Kim, D. H.; Lee, B. W.; Yang, D. S.; Thiet, D. V.; Cho, S. L.
2018-01-01
Brownmillerite Ca2Fe2O5 has been observed to exhibit many outstanding properties that are applicable to ecotechnology. However, very little work on doped Ca2Fe2O5 compounds has been carried out to widen their application scope. We present herein a detailed study of the crystalline/geometric and electronic structures and magnetic and electrical properties of Ca2- x La x Fe2O5 ( x = 0 to 1) prepared by conventional solid-state reaction. X-ray diffraction patterns indicated that the compounds with x = 0 to 0.05 exhibited brownmillerite-type single phase. La doping with higher content ( x ≥ 0.1) stimulated additive formation of Grenier- (LaCa2Fe3O8) and perovskite-type (LaFeO3) phases. Extended x-ray absorption fine structure spectroscopy at the Fe K-edge and electron spin resonance spectroscopy revealed presence of Fe3+ in the parent Ca2Fe2O5 ( x = 0) and both Fe3+ and Fe4+ in the doped compounds ( x ≥ 0.05). The Fe4+ content tended to increase with increasing x. This stimulates ferromagnetic exchange interactions between Fe3+ and Fe4+ ions and directly influences the magnetic properties of Ca2- x La x Fe2O5. Electrical resistivity ( ρ) measurements in the temperature range of T = 20 K to 400 K revealed that all the compounds exhibit insulator behavior; the ρ( T) data for x ≥ 0.1 could be described based on the adiabatic small polaron hopping model.
Classification of white wine aromas with an electronic nose.
Lozano, J; Santos, J P; Horrillo, M C
2005-09-15
This paper reports the use of a tin dioxide multisensor array based electronic nose for recognition of 29 typical aromas in white wine. Headspace technique has been used to extract aroma of the wine. Multivariate analysis, including principal component analysis (PCA) as well as probabilistic neural networks (PNNs), has been used to identify the main aroma added to the wine. The results showed that in spite of the strong influence of ethanol and other majority compounds of wine, the system could discriminate correctly the aromatic compounds added to the wine with a minimum accuracy of 97.2%.
NASA Technical Reports Server (NTRS)
Labbe, J.; Friedel, J.
1977-01-01
Equations assuming a Jahn-Teller type effect for the d band electrons in V3Si compounds are given, and the results of free-energy change calculations by using some approximations based on these equations are depicted. The tetragonal structure is converted to cubic as the temperature rises past T sub m which is calculated as 13 K. by the Batterman-Barrett method and is measured to be 20-5 K. Other parameters such as change of C sub p with temperature are predicted better.
Phonon properties of lutetium pnictides
NASA Astrophysics Data System (ADS)
Arya, Balwant Singh; Aynyas, Mahendra; Sanyal, Sankar P.
2018-05-01
Phonon properties of Lutetium pnictides (LuX : X = P, As) have been studied by using breathing shell model (BSM) which includes breathing motion of electrons of the Lu atoms due to f-d hybridization to establish their predominant ionic nature. The calculated phonon dispersion curves of these compounds are presented follow the same trend as observed in ytterbium pnictides (YbP and YbAs). We also report one phonon density of states and specific heat for these compounds. We discuss the significance of this approach in predicting the phonon dispersion curves and examine the role of electron-phonon interaction.
The 13C nuclear magnetic resonance in graphite intercalation compounds
NASA Technical Reports Server (NTRS)
Tsang, T.; Resing, H. A.
1985-01-01
The (13)C NMR chemical shifts of graphite intercalation compounds were calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about -140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.
C-13 nuclear magnetic resonance in graphite intercalation compounds
NASA Technical Reports Server (NTRS)
Tsang, T.; Resing, H. A.
1985-01-01
The C-13 NMR chemical shifts of graphite intercalation compounds have been calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about - 140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal-conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.
NASA Astrophysics Data System (ADS)
Sugiyama, K.; Ónuki, Y.
Recent experimental results of high-field magnetization and de Haas-van Alphen experiments in f-electron systems are presented. The magnetic moment and the electronic state are simultaneously discussed because both properties are connected with each other. The first example is a drastic change of the Fermi surface in the antiferromagnet NdIn3. The second is the metamagnetic transition based on the quadrupolar interaction in PrCu2. The third is the metamagnetic transition in a typical heavy fermion compound CeRu2Si2, together with the heavy fermion uranium compounds such as UPd2Al3, URu2Si2 and UPt3.
Jahn, Michael K.; Haderlein, Stefan B.; Meckenstock, Rainer U.
2005-01-01
Monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene (BTEX) are widespread contaminants in groundwater. We examined the anaerobic degradation of BTEX compounds with amorphous ferric oxide as electron acceptor. Successful enrichment cultures were obtained for all BTEX substrates both in the presence and absence of AQDS (9,10-anthraquinone-2,6-disulfonic acid). The electron balances showed a complete anaerobic oxidation of the aromatic compounds to CO2. This is the first report on the anaerobic degradation of o-xylene and ethylbenzene in sediment-free iron-reducing enrichment cultures. PMID:15933041
Cu-Sn Intermetallic Compound Joints for High-Temperature Power Electronics Applications
NASA Astrophysics Data System (ADS)
Lee, Byung-Suk; Yoon, Jeong-Won
2018-01-01
Cu-Sn solid-liquid interdiffusion (SLID) bonded joints were fabricated using a Sn-Cu solder paste and Cu for high-temperature power electronics applications. The interfacial reaction behaviors and the mechanical properties of Cu6Sn5 and Cu3Sn SLID-bonded joints were compared. The intermetallic compounds formed at the interfaces in the Cu-Sn SLID-bonded joints significantly affected the die shear strength of the joint. In terms of thermal and mechanical properties, the Cu3Sn SLID-bonded joint was superior to the conventional solder and the Cu6Sn5 SLID-bonded joints.
NASA Astrophysics Data System (ADS)
Stürzer, Tobias; Derondeau, Gerald; Bertschler, Eva-Maria; Johrendt, Dirk
2015-01-01
We report superconductivity in polycrystalline samples of the 1038-type compounds (Ca1-xREx) 10(FeAs)10(Pt3As8) up to Tc=35 K with RE=Y, La-Nd, Sm, Gd-Lu. The critical temperatures are nearly independent of the trivalent rare earth element used, yielding a common Tc(xRE) phase diagram for electron doping in all these systems. The absence of superconductivity in Eu2+ doped samples, as well as the close resemblance of (Ca1-xREx) 10(FeAs)10(Pt3As8) to the 1048 compound substantiate that the electron doping scenario in the RE-1038 and 1048 phases is analogous to other iron-based superconductors with simpler crystal structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagare, G., E-mail: gita-pagare@yahoo.co.in; Abraham, Jisha A.; Department of Physics, National Defence Academy, Pune-411023
2015-06-24
A theoretical study of structural, electronic and optical properties of RESn{sub 3} (RE = Pr & Nd) intermetallics have been investigated systematically using first principles density functional theory. The calculations are carried out within the PBE-GGA and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and the calculated lattice parameters show well agreement with the experimental results. We first time predict elastic constants for these compounds. From energy dispersion curves, it is found that these compounds are metallic in nature. The linearmore » optical response of these compounds are also studied and the higher value of static dielectric constant shows the possibility to use them as good dielectric materials.« less
Half-metallicity in the ferrimagnet [MnII(enH)(H2O)][CrIII(CN)6]·H2O: Ab initio study
NASA Astrophysics Data System (ADS)
Li, N.; Yao, K. L.; Zhong, G. H.; Ching, W. Y.
2013-03-01
The density-functional theory (DFT) within the full potential linearized augmented plane wave (FPLAPW) method is applied to study the two-dimensional achiral soft ferrimagnet [MnII(enH)(H2O)][CrIII(CN)6]·H2O. The phase stability, electronic structure, magnetic and conducting properties are investigated. Our results reveal that the compound has a stable ferrimagnetic ground state in good agreement with the experiment. From the spin density distribution, the spin magnetic moment of the compound is mainly from Cr3+ and Mn2+ ions with small contributions from the oxygen, nitrogen and carbon ions. The calculated electronic band structure predicts the compound to be a half-metal with the spin magnetic moment of 1.000 μB per molecule.
Interplay of local structure, charge, and spin in bilayered manganese perovskites
NASA Astrophysics Data System (ADS)
Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; Kapusta, Czesław; Mitchell, John F.
2018-03-01
Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. Here, we show results of high-energy resolution x-ray absorption and emission spectroscopies on a La2 -2 xSr1 +2 xMn2O7 family of bilayered manganites in a broad doping range (0.5 ≤x ≤1 ). We established a relation between local Mn charge and Mn-O distances as a function of doping. Based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.
Theoretical investigation of the electronic structure of a substituted nickel phthalocyanine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Prabhjot, E-mail: prabhphysics@gmail.com; Sachdeva, Ritika; Singh, Sukhwinder
2016-05-23
The optimized geometry and electronic structure of an organic compound nickel phthalocyanine tetrasulfonic acid tetra sodium salt have been investigated using density functional theory. We have also optimized the structure of nickel phthalocyanine tetrasulfonic acid tetra sodium salt in dimethyl sulfoxide to study effects of solvent on the electronic structure and transitions. Experimentally, the electronic transitions have been studied using UV-VIS spectroscopic technique. It is observed that the electronic transitions obtained from the theoretical studies generally agree with the experiment.
The influence of dielectric relaxation on intramolecular electron transfer
NASA Astrophysics Data System (ADS)
Heitele, H.; Michel-Beyerle, M. E.; Finckh, P.
1987-07-01
An unusually strong temperature dependence on the intramolecular electron-transfer rate has been observed for bridged donor-acceptor compounds in propylene glycol solution. In the frame of recent electron-transfer theories this effect reflects the influence of dielectric relaxation dynamics on electron transfer. With increasing dielectric relaxation time a smooth transition from non-adiabatic to solvent-controlled adiabatic behaviour is observed. The electron transfer rate in the solvent-controlled adiabatic limit is dominated by an inhomogeneous distribution of relaxation times.
Shtemenko, O V; Zeleniuk, M A; Shtemenko, N I; Verbyts'ka, Ia S
2002-01-01
The electron absorption spectra of halogenides and halogencarboxylate complex compounds of rhenium (III) having cluster structure with phosphatydilcholine and their lyposome forms were investigated. Some results which evidence for the interaction of these compounds with phosphatydilcholine were obtained. The possible mechanism of this interaction is discussed.
Tailored Organometallic Polymers
1993-01-31
2-4). These synthetic pathways provide access to a wide variety of new silicon compounds for use as reagents in organic syntheses and the electronics...34Si0 2 as a Source of Si Containing Compounds / Polymers", D.J. Ray, R.M. Laine, C. Viney and T.R. Robinson, ACS Polymer Preprints (1991) 32(3), 550...3) as precursors to orgar.osilicon compounds .[10-12] Pentacoordinate silicates are easily prepa’ed frotv tetrasubstituted Si centers containing
Factors determining the average atomic volumes in intermetallic compounds
Pauling, Linus
1987-01-01
In formation of an intermetallic compound from the elementary metals there is usually a contraction in volume. Electron transfer leading to the charge states M+ and M- with increase in valence and decrease in volume explains the more than 2-fold range in contraction for different compounds in the same binary system. In a more thorough analysis, the better packing of atoms of different sizes also needs to be considered. PMID:16578809
Mo(3)Sb(7-x)Te(x) for Thermoelectric Power Generation
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey; Gascoin, Frank S.; Rasmussen, Julia
2009-01-01
Compounds having compositions of Mo(3)Sb(7-x)Te(x) (where x = 1.5 or 1.6) have been investigated as candidate thermoelectric materials. These compounds are members of a class of semiconductors that includes previously known thermoelectric materials. All of these compounds have complex crystalline and electronic structures. Through selection of chemical compositions and processing conditions, it may be possible to alter the structures to enhance or optimize thermoelectric properties.
Method of synthesizing metal doped diamond-like carbon films
NASA Technical Reports Server (NTRS)
Ueno, Mayumi (Inventor); Sunkara, Mahendra Kumar (Inventor)
2003-01-01
A method of synthesizing metal doped carbon films by placing a substrate in a chamber with a selected amount of a metalorganic compound. An electron cyclotron resonance is applied to the chamber in order to vaporize the metalorganic compound. The resonance is applied to the chamber until a metal doped carbon film is formed. The metalorganic compound is preferably selected from the group consisting of an organic salt of ruthenium, palladium, gold or platinum.
NASA Technical Reports Server (NTRS)
Scherer, Kirby V. (Inventor)
1979-01-01
Novel fluorohydrocarbons include a fluoroalkyl unit terminating in a tertiary carbon atom which is directly linked to an aliphatic moiety of the compound. The compounds contain at least 9 carbon atoms and usually no more than 13 carbon atoms. The compounds are synthesized by addition of a fluoride atom to the tertiary carbon atom of a fluorocarbon material to form a carbanion followed by alkylation of the carbanion. The fluorohydrocarbons will find use as blood substitutes or as electronic fluids.
2010-08-01
Corrosion resistant coatings containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications...Transmission Electron Microscopy TRI – Toxic Release Inventory UV – Ultraviolet UVAs – Ultraviolet Absorbers VOCs – Volatile Organic Compounds XPS – X...containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications. The technical effort
Magnetic-field-induced effects in the electronic structure of itinerant d- and f-metal systems
NASA Astrophysics Data System (ADS)
Grechnev, G. E.
2009-08-01
A paramagnetic response of transition metals and itinerant d- and f-metal compounds in an external magnetic field is studied by employing ab initio full-potential LMTO method in the framework of the local spin density approximation. Within this method the anisotropy of the magnetic susceptibility in hexagonal close-packed transition metals is evaluated for the first time. This anisotropy is owing to the orbital Van Vleck-like paramagnetic susceptibility, which is revealed to be substantial in transition-metal systems due to hybridization effects in the electronic structure. It is demonstrated that compounds TiCo, Ni3Al, YCo2, CeCo2, YNi5, LaNi5, and CeNi5 are strong paramagnets close to the quantum critical point. For these systems the Stoner approximation underestimates the spin susceptibility, whereas the calculated field-induced spin moments provide a good description of the large paramagnetic susceptibilities and magnetovolume effects. It is revealed that an itinerant description of hybridized f electrons produces magnetic properties of the compounds CeCo2, CeNi5, UAl3, UGa3, USi3, and UGe3 in close agreement with experiment. In the uranium compounds UX3 the strong spin-orbit coupling together with hybridization effects give rise to peculiar magnetic states in which the field-induced spin moments are antiparallel to the external field, and the magnetic response is dominated by the orbital contribution.
NASA Astrophysics Data System (ADS)
Khan, Sajid; Yazdani-Kachoei, Majid; Jalali-Asadabadi, Saeid; Farooq, Muhammad Bilal; Ahmad, Iftikhar
2018-02-01
Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew-Burke-Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.
Tanaka, Motomasa; Matsuura, Koji; Yoshioka, Shiro; Takahashi, Satoshi; Ishimori, Koichiro; Hori, Hiroshi; Morishima, Isao
2003-01-01
To observe the formation process of compound I in horseradish peroxidase (HRP), we developed a new freeze-quench device with ∼200 μs of the mixing-to-freezing time interval and observed the reaction between HRP and hydrogen peroxide (H2O2). The developed device consists of a submillisecond solution mixer and rotating copper or silver plates cooled at 77 K; it freezes the small droplets of mixed solution on the surface of the rotating plates. The ultraviolet-visible spectra of the sample quenched at ∼1 ms after the mixing of HRP and H2O2 suggest the formation of compound I. The electron paramagnetic resonance spectra of the same reaction quenched at ∼200 μs show a convex peak at g = 2.00, which is identified as compound I due to its microwave power and temperature dependencies. The absence of ferric signals in the electron paramagnetic resonance spectra of the quenched sample indicates that compound I is formed within ∼200 μs after mixing HRP and H2O2. We conclude that the activation of H2O2 in HRP at ambient temperature completes within ∼200 μs. The developed device can be generally applied to investigate the electronic structures of short-lived intermediates of metalloenzymes. PMID:12609902
Chen, Chunlin; Yin, Deqiang; Inoue, Kazutoshi; Lichtenberg, Frank; Ma, Xiuliang; Ikuhara, Yuichi; Bednorz, Johannes Georg
2017-12-26
The quasi-one-dimensional (1D) metallic conductivity of the perovskite-related Sr n Nb n O 3n+2 compounds is of continuing fundamental physical interest as well as being important for developing advanced electronic devices. The Sr n Nb n O 3n+2 compounds can be derived by introducing additional oxygen into the SrNbO 3 perovskite. However, the physical origin for the transition of electrical properties from the three-dimensional (3D) isotropic conductivity in SrNbO 3 to the quasi-1D metallic conductivity in Sr n Nb n O 3n+2 requires more in-depth clarification. Here we combine advanced transmission electron microscopy with atomistic first-principles calculations to unambiguously determine the atomic and electronic structures of the Sr n Nb n O 3n+2 compounds and reveal the underlying mechanism for their quasi-1D metallic conductivity. We demonstrate that the local electrical conductivity in the Sr n Nb n O 3n+2 compounds directly depends on the configuration of the NbO 6 octahedra in local regions. These findings will shed light on the realization of two-dimensional (2D) electrical conductivity from a bulk material, namely by segmenting a 3D conductor into a stack of 2D conducting thin layers.
This report evaluates a high-voltage electron beam (E-beam) technology's ability to destroy volatile organic compounds (VOCs) and other contaminants present in liquid wastes. Specifically, this report discusses performance and economic data from a Superfund Innovative Technology...
MERCURY REDUCTION IN PRODUCTS AND PROCESSES: A REVIEW OF THE ELECTRICAL AND ELECTRONIC INDUSTRIES
The electrical and electronics industries have significantly reduced the amount of mercury from various products and processes. However, the unique electromechanical and photoelectronic properties of mercury and mercury compounds have made replacement of mercury difficult in some...
Electron Spectroscopy: Ultraviolet and X-Ray Excitation.
ERIC Educational Resources Information Center
Baker, A. D.; And Others
1980-01-01
Reviews recent growth in electron spectroscopy (54 papers cited). Emphasizes advances in instrumentation and interpretation (52); photoionization, cross-sections and angular distributions (22); studies of atoms and small molecules (35); transition, lanthanide and actinide metal complexes (50); organometallic (12) and inorganic compounds (2);…
MERCURY REDUCTION IN PRODUCTS AND PROCESSES: A REVIEW OF THE ELECTRICAL AND ELECTRONIC INDUSTRIES
The electrical and electronics industries have significantly reduced the amount of mercury from various products and processes. owever, the unique electromechanical and photoelectronic properties of mercury and mercury compounds have made replacement of mercury difficult in some ...
Potting procedure for electronic components
NASA Technical Reports Server (NTRS)
Rubino, A. G.; Zimmerman, J.
1977-01-01
Potting process is modified to effect a match more closely between embedded electronic components, potting mediums, and thermal environment. Application of room-temperature vulcanizing silicone rubber band cured in modified thermal cycle minimizes coil-to-resin adhesion and thus lowers stresses between transformer and potting compound.
78 FR 2659 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
..., 2201 West End Ave., Nashville, TN 37235. Instrument: Electron Microscope. Manufacturer: FEI Company... St., West Lafayette, IN 47907-2024. Instrument: Electron Microscope. Manufacturer: FEI Company, the..., microorganisms, nanomaterials, and chemical compounds. Justification for Duty-Free Entry: There are no...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, Danielle M.; Lygo, Alexander C.; Esters, Marco
Single- and few-layer metal chalcogenide compounds are of significant interest due to structural changes and emergent electronic properties on reducing dimensionality from three to two dimensions. To explore dimensionality effects in SnSe, a series of [(SnSe) 1+δ] mTiSe 2 intergrowth structures with increasing SnSe layer thickness (m = 1-4) were prepared from designed thin-film precursors. In-plane diffraction patterns indicated that significant structural changes occurred in the basal plane of the SnSe constituent as m is increased. Scanning transmission electron microscopy cross-sectional images of the m = 1 compound indicate long-range coherence between layers, whereas the m >/= 2 compounds showmore » extensive rotational disorder between the constituent layers. For m >/= 2, the images of the SnSe constituent contain a variety of stacking sequences of SnSe bilayers. Density functional theory calculations suggest that the formation energy is similar for several different SnSe stacking sequences. The compounds show unexpected transport properties as m is increased, including the first p-type behavior observed in (MSe)m(TiSe 2) n compounds. The resistivity of the m >/- 2 compounds is larger than for m = 1, with m = 2 being the largest. At room temperature, the Hall coefficient is positive for m = 1 and negative for m = 2-4. The Hall coefficient of the m = 2 compound changes sign as temperature is decreased. The room-temperature Seebeck coefficient, however, switches from negative to positive at m = 3. These properties are incompatible with single band transport indicating that the compounds are not simple composites.« less
NASA Astrophysics Data System (ADS)
Akgemci, Emine Guler; Saf, Ahmet Ozgur; Tasdemir, Halil Ugur; Türkkan, Ercan; Bingol, Haluk; Turan, Suna Ozbas; Akkiprik, Mustafa
2015-02-01
In this study, 2-hydroxy-5-methoxyacetophenone thiosemicarbazone (HMAT) and its novel N(4) substituted derivatives were synthesized and characterized by different techniques. The optical band gap of the compounds and the energy of HOMO were experimentally examined by UV-vis spectra and cyclic voltammetry measurements, respectively. Furthermore, the conformational spaces of the compounds were scanned with molecular mechanics method. The geometry optimization, HOMO and LUMO energies, the energy gap of the HOMO-LUMO, dipole moment of the compounds were theoretically calculated by the density functional theory B3LYP/6-311++G(d,p) level. The minimal electronic excitation energy and maximum wavelength calculations of the compounds were also performed by TD-DFT//B3LYP/6-311++G(d,p) level of theory. Theoretically calculated values were compared with the related experimental values. The combined results exhibit that all compounds have good electron-donor properties which affect anti-proliferative activity. The cytotoxic effects of the compounds were also evaluated against HeLa (cervical carcinoma), MCF-7 (breast carcinoma) and PC-3 (prostatic carcinoma) cell lines using the standard MTT assay. All tested compounds showed antiproliferative effect having IC50 values in different range. In comparison with that of HMAT, it was obtained that while ethyl group on 4(N)-substituted position decreased in potent anti-proliferative effect, the phenyl group on the position increased in anti-proliferative effect for the tested cancer cell line. Considering the molecular energy parameters, the cytotoxicity activities of the compounds were discussed.
Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint
NASA Astrophysics Data System (ADS)
Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai
2018-04-01
Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.
Novel Electronically Conducting Tellurium Oxides
NASA Astrophysics Data System (ADS)
Subramanian, Mas; Siritanon, Theerunan; Sleight, Arthur
2010-03-01
Tellurium oxides seldom show measurable electronic conductivity. Tellurium oxides that appear to have Te^5+ contain Te^4+ and Te^6+ in two distinct crystallographic sites and are electronic insulators. Here we report on the synthesis and characterization of several new tellurium rich oxides of the general formula, CsMxTe2-xO6, crystallizing in modified pyrochlore structure. Most of the compounds reported here are black in color with some exhibiting good electronic conductivities (2 S/cm) and Seebeck measurements indicate all are n-type. The observation of high electronic conductivities in compounds like CsGe0.5Te1.5O6, CsAl0.33Te1.67O6 confirms that observed conductivity is arising from doping of electrons into the empty 5s orbitals of Te^6+. This reduction is apparently accompanied with some small deviation from the ideal formula: oxygen content and/or ratio of cations on octahedral sites. This is in consistent with single-crystal X-ray as well as powder neutron diffraction structure refinements and the observed sign of the Seebeck coefficient. To our knowledge, this is a first observance of high electrical conductivity in mixed valent tellurium oxides.
Electronic structure of negative charge transfer CaFeO3 across the metal-insulator transition
NASA Astrophysics Data System (ADS)
Rogge, Paul C.; Chandrasena, Ravini U.; Cammarata, Antonio; Green, Robert J.; Shafer, Padraic; Lefler, Benjamin M.; Huon, Amanda; Arab, Arian; Arenholz, Elke; Lee, Ho Nyung; Lee, Tien-Lin; Nemšák, Slavomír; Rondinelli, James M.; Gray, Alexander X.; May, Steven J.
2018-01-01
We investigated the metal-insulator transition for epitaxial thin films of the perovskite CaFeO3, a material with a significant oxygen ligand hole contribution to its electronic structure. We find that biaxial tensile and compressive strain suppress the metal-insulator transition temperature. By combining hard x-ray photoelectron spectroscopy, soft x-ray absorption spectroscopy, and density functional calculations, we resolve the element-specific changes to the electronic structure across the metal-insulator transition. We demonstrate that the Fe sites undergo no observable spectroscopic change between the metallic and insulating states, whereas the O electronic configuration undergoes significant changes. This strongly supports the bond-disproportionation model of the metal-insulator transition for CaFeO3 and highlights the importance of ligand holes in its electronic structure. By sensitively measuring the ligand hole density, however, we find that it increases by ˜5 -10 % in the insulating state, which we ascribe to a further localization of electron charge on the Fe sites. These results provide detailed insight into the metal-insulator transition of negative charge transfer compounds and should prove instructive for understanding metal-insulator transitions in other late transition metal compounds such as the nickelates.
Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint
NASA Astrophysics Data System (ADS)
Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai
2018-05-01
Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.
NASA Astrophysics Data System (ADS)
Mahanti, Subhendra D.; Hoang, Khang
2016-12-01
Thermoelectric materials are of great current interest for a number of energy-related applications such as waste heat recovery, terrestrial cooling, and thermoelectric power generation. There have been several significant recent advances in improving the thermoelectric figure of merit ZT; in some instances, ZT > 2 at high temperatures. Concepts like electron-crystal phonon-glass, dimensional confinement, nanostructuring, energy filtering, and intrinsic lattice anharmonicity have not only acted as guiding principles in synthesizing new materials but also for electronic structure engineering using theoretical calculations. In this review paper, we discuss these concepts and present a few examples of theoretical studies of electronic structure and transport properties illustrating how some of these ideas work. The four types of systems we discuss are quaternary chalcogenides LAST-m, nanoscale mixtures of half-Heusler and Heusler compounds, ternary chalcogenide compounds of type ABX2 where the electronic structure near the band gap depends sensitively on the ordering of A and B atoms, and naturally occurring bulk superlattices formed out of alternating ionic and semiconducting bilayers as in SrFAgTe.
Oxide-based method of making compound semiconductor films and making related electronic devices
Kapur, Vijay K.; Basol, Bulent M.; Leidholm, Craig R.; Roe, Robert A.
2000-01-01
A method for forming a compound film includes the steps of preparing a source material, depositing the source material on a base and forming a preparatory film from the source material, heating the preparatory film in a suitable atmosphere to form a precursor film, and providing suitable material to said precursor film to form the compound film. The source material includes oxide-containing particles including Group IB and IIIA elements. The precursor film includes non-oxide Group IB and IIIA elements. The compound film includes a Group IB-IIIA-VIA compound. The oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the source material. Similarly, non-oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the precursor film. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.6 and less than about 1.0, or substantially greater that 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.6 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The oxide-containing particles may include a dopant, as may the compound film. Compound films including a Group IIB-IVA-VA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.
Electron microscopy study of antioxidant interaction with bacterial cells
NASA Astrophysics Data System (ADS)
Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.
2000-10-01
To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.
Synthesis and study of electronic state of Sr2CrO2Co2As2 with CoAs conduction layers
NASA Astrophysics Data System (ADS)
Suzuki, Atsushi; Ohta, Hiroto; Aruga Katori, Hiroko
2017-06-01
We successfully synthesized a new member of compounds with the CoAs layer, Sr2CrO2Co2As2, and its partially substituted systems Sr2CrO2(Tmx Co1- x )2As2 (Tm = Fe, Ni), and measured magnetization and electric resistivity of these polycrystalline compounds. As a result of magnetic measurement for Sr2CrO2Co2As2, magnetic moments of Co do not construct an itinerant electronic ferromagnetism unlike other compounds with the CoPn (Pn=P and As) layers. Both Sr2CrO2(Tmx Co1- x )2As2 with Tm = Fe and Ni also do not show an itinerant electronic ferromagnetism down to 2 K. For each solid solution of Sr2CrO2(Fe x Co1- x )2As2 with x > 0.0, ρ weakly increases with the decrease of T at low temperature region, indicating that the mixed occupancy of Cr and Fe within the conducting layers occurs in Sr2CrO2(Fe x Co1- x )2As2. We conclude that the absence of ferromagnetism in Sr2CrO2Co2As2 is due to the self-electron-doping from Cr to the conduction bands and the attempt to recover the ferromagnetism by the hole-doping effect is prevented by the mixed occupancy of Cr and Fe in Sr2CrO2 (Fe x Co1- x )2As2 with x > 0.0. The result of our structural analysis supports that the disappearance of itinerant electronic ferromagnetism in Sr2CrO2Co2As2 is due to the self-electron-doping from Cr.
NASA Astrophysics Data System (ADS)
Jayalakshmi, D. S.; Sundareswari, M.; Viswanathan, E.; Das, Abhijeet
2018-04-01
The electrical conductivity, resistivity and Seebeck coefficient, Pauli magnetic susceptibility and power factor are computed under temperature (100 K - 800 K) in steps of 100 K for the theoretically designed compounds namely (Ca,Sr,Ba)Fe2Bi2 and their parent compounds namely (Ca,Sr,Ba)Fe2As2 by using Boltzmann transport theory interfaced to the Wien2k program. The Bulk modulus, electron phonon coupling constant, thermoelectric figure of merit (ZT) and transition temperature are calculated for the optimized anti ferromagnetic phase of the proposed compounds. The results are discussed for the novel compounds in view of their superconductivity existence and compared with their parent unconventional superconducting compounds.
Computational investigation of half-Heusler compounds for spintronics applications
NASA Astrophysics Data System (ADS)
Ma, Jianhua; Hegde, Vinay I.; Munira, Kamaram; Xie, Yunkun; Keshavarz, Sahar; Mildebrath, David T.; Wolverton, C.; Ghosh, Avik W.; Butler, W. H.
2017-01-01
We present first-principles density functional calculations of the electronic structure, magnetism, and structural stability of 378 XYZ half-Heusler compounds (with X = Cr, Mn, Fe, Co, Ni, Ru, Rh; Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Ga, In, Si, Ge, Sn, P, As, Sb). We find that a "Slater-Pauling gap" in the density of states (i.e., a gap or pseudogap after nine states in the three atom primitive cell) in at least one spin channel is a common feature in half-Heusler compounds. We find that the presence of such a gap at the Fermi energy in one or both spin channels contributes significantly to the stability of a half-Heusler compound. We calculate the formation energy of each compound and systematically investigate its stability against all other phases in the open quantum materials database (OQMD). We represent the thermodynamic phase stability of each compound as its distance from the convex hull of stable phases in the respective chemical space and show that the hull distance of a compound is a good measure of the likelihood of its experimental synthesis. We find low formation energies and mostly correspondingly low hull distances for compounds with X = Co, Rh, or Ni, Y = Ti or V, and Z = P, As, Sb, or Si. We identify 26 18-electron semiconductors, 45 half-metals, and 34 near half-metals with negative formation energy that follow the Slater-Pauling rule of three electrons per atom. Our calculations predict several new, as-yet unknown, thermodynamically stable phases, which merit further experimental exploration—RuVAs, CoVGe, FeVAs in the half-Heusler structure, and NiScAs, RuVP, RhTiP in the orthorhombic MgSrSi-type structure. Further, two interesting zero-moment half-metals, CrMnAs and MnCrAs, are calculated to have negative formation energy. In addition, our calculations predict a number of hitherto unreported semiconducting (e.g., CoVSn and RhVGe), half-metallic (e.g., RhVSb), and near half-metallic (e.g., CoFeSb and CoVP) half-Heusler compounds to lie close to the respective convex hull of stable phases, and thus may be experimentally realized under suitable synthesis conditions, resulting in potential candidates for various semiconducting and spintronics applications.
Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon
2012-03-16
The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b(558) that donates electrons to a binuclear heme b(595)/heme d center. The reaction with O(2) and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O(2), the O-O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b(595). Compound I accumulates to 0.75-0.85 per enzyme in agreement with its much higher rate of formation (~20,000 s(-1)) compared with its rate of decay (~1,900 s(-1)). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b(558) before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O-O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O-O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species.
NASA Astrophysics Data System (ADS)
Barakat, Assem; Soliman, Saied M.; Al-Majid, Abdullah Mohammed; Lotfy, Gehad; Ghabbour, Hazem A.; Fun, Hoong-Kun; Yousuf, Sammer; Choudhary, M. Iqbal; Wadood, Abdul
2015-10-01
Synthesis of (±)-1,3-dimethyl-5-(1-(3-nitrophenyl)-3-oxo-3-phenylpropyl)pyrimidine-2,4,6(1H,3H,5H)-trione (3) is reported. The structure of compound 3 was deduced by using spectroscopic methods, X-ray crystallography, and DFT calculations. The calculated geometric parameters were found to be in good agreement with the experimental data obtained from the X-ray structure. The NBO calculations were performed to predict the natural atomic charges at the different atomic sites and to study the different intramolecular charge transfer (ICT) interactions. The high LP(3)O6 →z BD*(2)O5-N3 ICT interaction energy (165.36 kcal/mol) indicated very strong n → π* electron delocalization while the small LP(2)O → BD*(1)C-H ICT interaction energies indicated that the C-H … O intramolecular interactions are weak. The 1H and 13C NMR chemical shifts calculated using GIAO method showed good agreement with the experimental data. The calculated electronic spectra of the studied compound using TD-DFT method showed intense electronic transition band at 243.9 nm (f = 0.2319) and a shoulder at 260.2 nm (f = 0.1483) which were due to H-4/H-2/H-1/H → L+2 and H-5 → L electronic excitations, respectively. Compound 3 (IC50 = 305 ± 3.8 μM) was identified as a potent inhibitor of α-glucosidase in vitro and showed several fold more inhibition than the standard drug acarbose (IC50 = 841 ± 1.73 μM). Molecular docking of the synthesized compound was discussed.
Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon
2012-01-01
The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b558 that donates electrons to a binuclear heme b595/heme d center. The reaction with O2 and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O2, the O–O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b595. Compound I accumulates to 0.75–0.85 per enzyme in agreement with its much higher rate of formation (∼20,000 s−1) compared with its rate of decay (∼1,900 s−1). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b558 before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O–O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O–O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species. PMID:22287551
Tian, Haoting; Guo, Yong; Pan, Bo; Gu, Cheng; Li, Hui; Boyd, Stephen A
2015-07-07
A new photoreduction pathway for nitro-aromatic compounds (NACs) and the underlying degradation mechanism are described. 1,3-Dinitrobenzene was reduced to 3-nitroaniline by the widely distributed aromatic molecule indole; the reaction is facilitated by montmorillonite clay mineral under both simulated and natural sunlight irradiation. The novel chemical reaction is strongly affected by the type of exchangeable cation present on montmorillonite. The photoreduction reaction is initiated by the adsorption of 1,3-dinitrobenzene and indole in clay interlayers. Under light irradiation, the excited indole molecule generates a hydrated electron and the indole radical cation. The structural negative charge of montmorillonite plausibly stabilizes the radical cation hence preventing charge recombination. This promotes the release of reactive hydrated electrons for further reductive reactions. Similar results were observed for the photoreduction of nitrobenzene. In situ irradiation time-resolved electron paramagnetic resonance and Fourier transform infrared spectroscopies provided direct evidence for the generation of hydrated electrons and the indole radical cations, which supported the proposed degradation mechanism. In the photoreduction process, the role of clay mineral is to both enhance the generation of hydrated electrons and to provide a constrained reaction environment in the galley regions, which increases the probability of contact between NACs and hydrated electrons.
Fragmentation of mercury compounds under ultraviolet light irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokkonen, E.; Hautala, L.; Jänkälä, K.
2015-08-21
Ultraviolet light induced photofragmentation of mercury compounds is studied experimentally with electron energy resolved photoelectron-photoion coincidence techniques and theoretically with computational quantum chemical methods. A high resolution photoelectron spectrum using synchrotron radiation is presented. Fragmentation of the molecule is studied subsequent to ionization to the atomic-mercury-like d orbitals. State dependent fragmentation behaviour is presented and specific reactions for dissociation pathways are given. The fragmentation is found to differ distinctly in similar orbitals of different mercury compounds.
Device for aqueous detection of nitro-aromatic compounds
Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.
1994-04-26
This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.
Device for aqueous detection of nitro-aromatic compounds
Reagen, William K.; Schulz, Amber L.; Ingram, Jani C.; Lancaster, Gregory D.; Grey, Alan E.
1994-01-01
This invention relates to a compact and portable detection apparatus for ro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound.
[Characteristics of organic pollutants in the sediments from a typical electronics industrial zone].
Liu, Jin; Deng, Dai-Yong; Xu, Mei-Ying; Sun, Guo-Ping
2013-03-01
In order to investigate the contamination status of organic pollutants in a river of a typical electrical equipment industrial area, Ronggui, Foshan, the sediments were sampled for the composition, concentration and occurrence analysis of organic pollutants. The polar and non-polar fractionation methods were employed for the fingerprint establishment of organic pollutants. One hundred and seventy-one of organic chemicals including ten categories of alkanes, alkenes, polycyclic aromatic hydrocarbons, benzene, heterocyclic compounds, phthalate esters, aldehydes, ketones, polar compounds, silicon-containing material as well as alkyl esters were examined. The number of different categories of the detected organic pollutants in a descending order was: alkanes > polar compounds > polycyclic aromatic hydrocarbons > aldehydes and ketones > heterocyclic compounds > benzene homologues, phthalate ester > alkyl esters > silicon material > olefins. The abundance of detected organic pollutants in a descending order was: alkanes > polar compounds > alkyl esters > olefins > polycyclic aromatic hydrocarbons > phthalates > silicon material > aldehydes and ketones > heterocyclic compounds > benzene homologues. Among the 51 kinds of alkanes detected, nonadecane accounted for 14.83%, and the persistent organic pollutants accounted for 2.33% of the total organic matter. Compared to similar studies, there were 51 kinds of alkanes and they accounted for 55.5% of the total organic chemicals, showing high diversity and abundance. In addition, some electronics industry-related organic pollutants such as silicone materials were also detected in high frequency.
Zhang, Wen-Wei; Mao, Wei-Li; Hu, Yun-Xia; Tian, Zi-Qi; Wang, Zhi-Lin; Meng, Qing-Jin
2009-09-17
Two donor-acceptor molecules with different pi-electron conjugative units, 1-((10-methyl-10H-phenothiazin-3-yl)ethynyl)anthracene-9,10-dione (AqMp) and 1,1'-(10-methyl-10H-phenothiazine-3,7-diyl)bis(ethyne-2,1-diyl)dianthracene-9,10-dione (Aq2Mp), have been synthesized and investigated for their photochemical and electrochemical properties. Density functional theory (DFT) calculations provide insights into their molecular geometry, electronic structures, and properties. These studies satisfactorily explain the electrochemistry of the two compounds and indicate that larger conjugative effect leads to smaller HOMO-LUMO gap (Eg) in Aq2Mp. Both compounds show ICT and pi --> pi* transitions in the UV-visible range in solution, and Aq2Mp has a bathochromic shift and shows higher oscillator strength of the absorption, which has been verified by time-dependent DFT (TDDFT) calculations. The differences between AqMp and Aq2Mp indicate that the structural and conjugative effects have great influence on the electronic properties of the molecules.
Mahl, Magnus; Shoyama, Kazutaka; Rühe, Jessica; Grande, Vincenzo; Würthner, Frank
2018-04-24
Herein we report a palladium-catalyzed annulation reaction consisting of a Suzuki-Miyaura cross-coupling and a C-H arylation cascade for the synthesis of tetrachlorinated polycyclic aromatic dicarboximides (PADIs). This convergent synthetic route afforded a broad series of hitherto unknown electron-deficient PADIs under optimized reaction conditions by coupling of a dibromo-tetrachloro-perylene dicarboximide with different polycyclic aromatic hydrocarbon (PAH) boronic acid pinacol esters in up to 89% yields. The new PADI compounds show broad absorption in the visible range and some of them emit in the near-infrared (NIR) region. Cyclic and square wave voltammetric studies revealed that these tetrachlorinated PADIs are more electron-deficient than a non-chlorinated reference compound and they possess lower lying frontier orbitals. Thus, the newly synthesized electron-poor PADIs are potential n-type semiconductors. Moreover, these chlorinated PADIs are interesting building blocks for the construction of large π-extended arrays by metal-mediated coupling reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Halder, S.; Bhuyan, S.; Das, S. N.; Sahoo, S.; Choudhary, R. N. P.; Das, P.; Parida, K.
2017-12-01
A lead-free dielectric material [Bi(Zn2/3Ta1/3)O3] has been prepared using a solid state reaction technique at high-temperature. The resistive, conducting and capacitive characteristics of the prepared electronic material have been studied in different experimental conditions. The determination of basic crystal parameters and reflection indices confirm the development of polycrystalline compound with orthorhombic crystal structure. The study of frequency-temperature dependence of ac conductivity illustrates the nature and conduction mechanism of the material. On the basis of observed impedance data and detailed dielectric analysis, the existence of non-Debye type relaxation has been affirmed. The electronic charge carriers of compound have short range order that has been validated from the complex modulus and impedance spectrum. The detailed studies of resistive, capacitive, microstructural characteristics of the prepared material provide some useful data for considering the material as an electronic component for fabrication of devices.
Machine learning of molecular electronic properties in chemical compound space
NASA Astrophysics Data System (ADS)
Montavon, Grégoire; Rupp, Matthias; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; Anatole von Lilienfeld, O.
2013-09-01
The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Nabarun; Legin, Andrey; Papieva, Irina; Sarkar, Subrata; Kirsanov, Dmitry; Kartsova, Anna; Ghosh, Arunangshu; Bandyopadhyay, Rajib
2011-09-01
Black tea is an extensively consumed beverage worldwide with an expanding market. The final quality of black tea depends upon number of chemical compounds present in the tea. Out of these compounds, theaflavins (TF), which is responsible for astringency in black tea, plays an important role in determining the final taste of the finished black tea. The present paper reports our effort to correlate the theaflavins contents with the voltammetric and potentiometric electronic tongue (e-tongue) data. Noble metal-based electrode array has been used for collecting data though voltammetric electronic tongue where as liquid filled membrane based electrodes have been used for potentiometric electronic tongue. Black tea samples with tea taster score and biochemical results have been collected from Tea Research Association, Tocklai, India for the analysis purpose. In this paper, voltammetric and potentiometric e-tongue responses are combined to demonstrate improvement of cluster formation among tea samples with different ranges of TF values.
Tian, Haoting; Gao, Juan; Li, Hui; Boyd, Stephen A.; Gu, Cheng
2016-01-01
Here we describe a unique process that achieves complete defluorination and decomposition of perfluorinated compounds (PFCs) which comprise one of the most recalcitrant and widely distributed classes of toxic pollutant chemicals found in natural environments. Photogenerated hydrated electrons derived from 3-indole-acetic-acid within an organomodified clay induce the reductive defluorination of co-sorbed PFCs. The process proceeds to completion within a few hours under mild reaction conditions. The organomontmorillonite clay promotes the formation of highly reactive hydrated electrons by stabilizing indole radical cations formed upon photolysis, and prevents their deactivation by reaction with protons or oxygen. In the constrained interlayer regions of the clay, hydrated electrons and co-sorbed PFCs are brought in close proximity thereby increasing the probability of reaction. This novel green chemistry provides the basis for in situ and ex situ technologies to treat one of the most troublesome, recalcitrant and ubiquitous classes of environmental contaminants, i.e., PFCs, utilizing innocuous reagents, naturally occurring materials and mild reaction conditions. PMID:27608658
Electronic structure and magnetic properties of quaternary Heusler alloy Co2CrGa1-xGex (x=0-1)
NASA Astrophysics Data System (ADS)
Seema, K.; Kumar, Ranjan
2015-03-01
The electronic structure of Co-based quaternary Heusler compounds Co2CrGa1-xGex (x=0.00, 0.25, 0.50, 0.75, 1.00) are calculated by first-principles density functional theory. The substitution of Ga by Ge leads to increase in the number of valence electrons. With increasing concentration of Ge, lattice constant decreases linearly whereas bulk modulus and total magnetic moment increases. This shows that the magnetic properties of the compound are dependent on electron concentration of main group element. The calculations show that the alloys with x=0.00, 0.25, 0.50 are not true half-metallic materials whereas alloy with x=0.75, 1.00 exhibit 100% spin polarization at the Fermi level. It shows that the Fermi level can be shifted within the energy-gap to achieve 100% spin polarization. The effect of volumetric and tetragonal strain on magnetic properties is also studied.
Photocatalytic fluoroalkylation reactions of organic compounds.
Barata-Vallejo, Sebastián; Bonesi, Sergio M; Postigo, Al
2015-12-14
Photocatalytic methods for fluoroalkyl-radical generation provide more convenient alternatives to the classical perfluoroalkyl-radical (Rf) production through chemical initiators, such as azo or peroxide compounds or the employment of transition metals through a thermal electron transfer (ET) initiation process. The mild photocatalytic reaction conditions tolerate a variety of functional groups and, thus, are handy to the late-stage modification of bioactive molecules. Transition metal-photocatalytic reactions for Rf radical generation profit from the redox properties of coordinatively saturated Ru or Ir organocomplexes to act as both electron donor and reductive species, thus allowing for the utilization of electron accepting and donating fluoroalkylating agents for Rf radical production. On the other hand, laboratory-available and inexpensive photoorgano catalysts (POC), in the absence of transition metals, can also act as electron exchange species upon excitation, resulting in ET reactions that produce Rf radicals. In this work, a critical account of transition metal and transition metal-free Rf radical production will be described with photoorgano catalysts, studying classical examples and the most recent investigations in the field.
Thermoelectric Properties of Electron-Doped SrMnO3 Single Crystals with Perovskite Structure
NASA Astrophysics Data System (ADS)
Suzuki, T.; Sakai, H.; Taguchi, Y.; Tokura, Y.
2012-06-01
Thermoelectric properties have been investigated for single crystals of Sr(Mn1- x Mo x )O3 with the perovskite structure. Similar to (Sr1- x Ce x )MnO3, the Seebeck coefficient for lightly electron-doped compounds ( x ≤ 0.01) is enhanced upon G-type antiferromagnetic ordering, while maintaining metallic conduction. This results in enhancement of the figure of merit ( ZT). On the other hand, the Seebeck coefficient for the more electron-doped compound ( x = 0.025) changes sign from negative to positive within a spin and orbital ordered phase (with C-type antiferromagnetic configuration and Mn 3 z 2 - r 2 type orbital order) as the temperature is lowered, whereas the Hall coefficient remains negative in the whole temperature range. The enhancement of the ZT value in the G-type antiferromagnetic phase implies the possibility for improvement of the thermoelectric efficiency by using the coupling between charge, spin, orbital, and lattice degrees of freedom in strongly correlated electron systems.
Basics of Sterile Compounding: Particulate Matter.
Akers, Michael J
2017-01-01
This article focuses on the requirements for particulate matter in sterile products. Topics include particles and quality, particulate matter standards (large- and small-volume injectables), development of the small-volume injectable test, electronic (light obscuration) and microscope testing, and special requirements for particulate matter in biopharmaceutical preparations. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Electronic tongue for nitro and peroxide explosive sensing.
González-Calabuig, Andreu; Cetó, Xavier; Del Valle, Manel
2016-06-01
This work reports the application of a voltammetric electronic tongue (ET) towards the simultaneous determination of both nitro-containing and peroxide-based explosive compounds, two families that represent the vast majority of compounds employed either in commercial mixtures or in improvised explosive devices. The multielectrode array was formed by graphite, gold and platinum electrodes, which exhibited marked mix-responses towards the compounds examined; namely, 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT), N-methyl-N,2,4,6-tetranitroaniline (Tetryl) and triacetone triperoxide (TATP). Departure information was the set of voltammograms, which were first analyzed by means of principal component analysis (PCA) allowing the discrimination of the different individual compounds, while artificial neural networks (ANNs) were used for the resolution and individual quantification of some of their mixtures (total normalized root mean square error for the external test set of 0.108 and correlation of the obtained vs. expected concentrations comparison graphs r>0.929). Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Qing-Xiao; Hua, Bao-Zhen
2016-01-01
Mecoptera are unique in holometabolous insects in that their larvae have compound eyes. In the present study the cellular organisation and morphology of the compound eyes of adult individuals of the scorpionfly Panorpa dubia in Mecoptera were investigated by light, scanning electron, and transmission electron microscopy. The results showed that the compound eyes of adult P. dubia are of the apposition type, each eye comprising more than 1200 ommatidia. The ommatidium consists of a cornea, a crystalline cone made up of four cone cells, eight photoreceptors, two primary pigment cells, and 18 secondary pigment cells. The adult ommatidium has a fused rhabdom with eight photoreceptors. Seven photoreceptors extend from the proximal end of the crystalline cone to the basal matrix, whereas the eighth photoreceptor is shorter, extending from the middle level of the photoreceptor cluster to the basal matrix. The fused rhabdom is composed of the rhabdomeres of different photoreceptors at different levels. The adult ommatidia have the same cellular components as the larval ommatidia, but the tiering scheme is different. PMID:27258365
Tengler, Jan; Kapustíková, Iva; Peško, Matúš; Keltošová, Stanislava; Mokrý, Petr; Kollár, Peter; O'Mahony, Jim; Král'ová, Katarína; Jampílek, Josef
2013-01-01
A series of twenty substituted 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(alkoxycarbonyl)amino]benzoates were prepared and characterized. As similar compounds have been described as potential antimycobacterials, primary in vitro screening of the synthesized carbamates was also performed against two mycobacterial species. 2-Hydroxy-3-[2-(2,6-dimethoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride, 2-hydroxy-3-[2-(4-methoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride, and 2-hydroxy-3-[2-(2-methoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride showed higher activity against M. avium subsp. paratuberculosis and M. intracellulare than the standards ciprofloxacin, isoniazid, or pyrazinamide. Cytotoxicity assay of effective compounds was performed using the human monocytic leukaemia THP-1 cell line. Compounds with predicted amphiphilic properties were also tested for their effects on the rate of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. All butyl derivatives significantly stimulated the rate of PET, indicating that the compounds can induce conformational changes in thylakoid membranes resulting in an increase of their permeability and so causing uncoupling of phosphorylation from electron transport. PMID:24288475
Chen, Qing-Xiao; Hua, Bao-Zhen
2016-01-01
Mecoptera are unique in holometabolous insects in that their larvae have compound eyes. In the present study the cellular organisation and morphology of the compound eyes of adult individuals of the scorpionfly Panorpa dubia in Mecoptera were investigated by light, scanning electron, and transmission electron microscopy. The results showed that the compound eyes of adult P. dubia are of the apposition type, each eye comprising more than 1200 ommatidia. The ommatidium consists of a cornea, a crystalline cone made up of four cone cells, eight photoreceptors, two primary pigment cells, and 18 secondary pigment cells. The adult ommatidium has a fused rhabdom with eight photoreceptors. Seven photoreceptors extend from the proximal end of the crystalline cone to the basal matrix, whereas the eighth photoreceptor is shorter, extending from the middle level of the photoreceptor cluster to the basal matrix. The fused rhabdom is composed of the rhabdomeres of different photoreceptors at different levels. The adult ommatidia have the same cellular components as the larval ommatidia, but the tiering scheme is different.
Soft X-ray photoemission study of Co2(Cr1-xFex)Ga Heusler compounds
NASA Astrophysics Data System (ADS)
Tsunekawa, Masanori; Hattori, Yoshiro; Sekiyama, Akira; Fujiwara, Hidenori; Suga, Shigemasa; Muro, Takayuki; Kanomata, Takeshi; Imada, Shin
2015-08-01
We have performed soft X-ray photoemission spectroscopy (SXPES) and X-ray absorption spectroscopy (XAS) of the Co-based Heusler compounds Co2(Cr1-xFex)Ga (x = 0.0, 0.4, and 1.0) in order to study their electronic structures. Band-structure calculation was carried out and compared with the experimental results. SXPES spectra show hν-dependence, revealing the contributions of the Co, Cr, and Fe 3d electronic states in the valence band. The band width observed by the SXPES seems to be narrower than that predicted by the band-structure calculation. XAS spectra depend strongly on the the value of x in Co2(Cr1-xFex)Ga. The electron correlation effects are found to be stronger as x changes from 0.0 to 1.0.
He, Chuan-Shu; Mu, Zhe-Xuan; Yang, Hou-Yun; Wang, Ya-Zhou; Mu, Yang; Yu, Han-Qing
2015-12-01
Microbial fuel cells (MFCs) have gained tremendous global interest over the last decades as a device that uses bacteria to oxidize organic and inorganic matters in the anode with bioelectricity generation and even for purpose of bioremediation. However, this prospective technology has not yet been carried out in field in particular because of its low power yields and target compounds removal which can be largely influenced by electron acceptors contributing to overcome the potential losses existing on the cathode. This mini review summarizes various electron acceptors used in recent years in the categories of inorganic and organic compounds, identifies their merits and drawbacks, and compares their influences on performance of MFCs, as well as briefly discusses possible future research directions particularly from cathode aspect. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cordes, Thorben; Schadendorf, Torsten; Priewisch, Beate; Rück-Braun, Karola; Zinth, Wolfgang
2008-01-31
The photochemical reaction dynamics of a set of photochromic compounds based on thioindigo and stilbene molecular parts (hemithioindigos, HTI) are presented. Photochemical Z/E isomerization around the central double bond occurs with time constants of 216 ps (Z --> E) and 10 ps (E --> Z) for a 5-methyl-hemithioindigo. Chemical substitution on the stilbene moiety causes unusually strong changes in the reaction rate. Electron-donating substituents in the position para to the central double bond (e.g., para-methoxy) strongly accelerate the reaction, while the reaction is drastically slowed by electron-withdrawing groups in this position (e.g., para-nitrile). We correlate the experimental data of seven HTI-compounds in a quantitative manner using the Hammett equation and present a qualitative explanation for the application of ground-state Hammett constants to describe the photoisomerization reaction.
Self-interaction-corrected local-spin-density calculations for rare earth materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svane, A.; Temmerman, W.M.; Szotek, Z.
2000-04-20
The ab initio self-interaction-corrected (SIC) local-spin-density (LSD) approximation is discussed with emphasis on the ability to describe localized f-electron states in rare earth solids. Two methods for minimizing the SIC-LSD total energy functional are discussed, one using a unified Hamiltonian for all electron states, thus having the advantages of Bloch's theorem, the other one employing an iterative scheme in real space. Results for cerium and cerium compounds as well as other rare earths are presented. For the cerium compounds the onset of f-electron delocalization can be accurately described, including the intricate isostructural phase transitions in elemental cerium and CeP. Inmore » Pr and Sm the equilibrium lattice constant and zero temperature equation of state is greatly improved in comparison with the LSD results.« less
Ab-initio study of B{sub 2}-type technetium AB (A=Tc, B=Nb and Ta) intermetallic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, Nikita, E-mail: acharyaniks30@gmail.com; Fatima, Bushra; Sanyal, Sankar P.
2016-05-06
The structural, electronic and elastic properties of AB type (A = Tc, B = Nb and Ta) technetium intermetallic compounds are studied using full potential linearized plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The calculated lattice parameters agree well with the experimental results. The elastic constants obey the stability criteria for cubic system. Ductility for these compounds has been analyzed using the Pugh’s rule and Cauchy’s pressure and found that all the compounds are ductile in nature. Bonding nature is discussed in terms of Fermi surface and band structures.
Hassenbusch, S J; Colvin, O M; Anderson, J H
1995-07-01
A relatively simple, high-sensitivity gas chromatographic assay is described for nitrosourea compounds, such as BCNU [1,3-bis(2-chloroethyl)-1-nitrosourea] and MeCCNU [1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea], in small biopsy samples of brain and other tissues. After extraction with ethyl acetate, secondary amines in BCNU and MeCCNU are derivatized with trifluoroacetic anhydride. Compounds are separated and quantitated by gas chromatography using a capillary column with temperature programming and an electron capture detector. Standard curves of BCNU indicate a coefficient of variance of 0.066 +/- 0.018, a correlation coefficient of 0.929, and an extraction efficiency from whole brain of 68% with a minimum detectable amount of 20 ng in 5-10 mg samples. The assay has been facile and sensitive in over 1000 brain biopsy specimens after intravenous and intraarterial infusions of BCNU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, David; Lawson, Patrick; Adams, Nigel, E-mail: ngadams@uga.edu
Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible,more » using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.« less
Interplay of local structure, charge, and spin in bilayered manganese perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz
Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less
Interplay of local structure, charge, and spin in bilayered manganese perovskites
Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; ...
2018-03-27
Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less
NASA Astrophysics Data System (ADS)
Emirik, Mustafa; Karaoğlu, Kaan; Serbest, Kerim; Menteşe, Emre; Yilmaz, Ismail
2016-02-01
A new ferrocenyl-substituted heterocyclic hydrazide ligand and its Cu(II) complex were prepared. The DFT calculations were performed to determine the electronic and molecular structures of the title compounds. The electronic spectra were calculated by using time-dependent DFT method, and the transitions were correlated with the molecular orbitals of the compounds. The bands assignments of IR spectra were achieved in the light of the theoretical vibrational spectral data and total energy distribution values calculated at DFT/B3LYP/6-311++G(d,p) level. The redox behaviors of the ferrocene derivatives were investigated by cyclic voltammetry. The compounds show reversible redox couple assignable to Fc+/Fc couple. The copper(II) complex behaves as an effective catalyst towards oxidation of 3,5-di-tert-butylcatechol to its corresponding quinone derivative in DMF saturated with O2. The reaction follows Michaelis-Menten enzymatic reaction kinetics with turnover numbers 2.32 × 103.
Hybridization gap in the semiconducting compound SrIr 4In 2Ge 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calta, Nicholas P.; Im, Jino; Fang, Lei
Here, large single crystals of SrIr 4In 2Ge 4 were synthesized using the In flux method. This compound is a hybridization gap semiconductor with an experimental optical band gap of E g = 0.25(3) eV. It crystallizes in the tetragonal EuIr 4In 2Ge 4 structure type with space group 1more » $$\\overline{4}$$2m and unit cell parameters a = 6.9004(5) Å and c = 8.7120(9) Å. The electronic structure is very similar to both EuIr 4In 2Ge 4 and the parent structure Ca 3Ir 4Ge 4, suggesting that these compounds comprise a new family of hybridization gap materials that exhibit indirect gap, semiconducting behavior at a valence electron count of 60 per formula unit, similar to the Heusler alloys.« less
NASA Astrophysics Data System (ADS)
Gorinchoy, N. N.; Bersuker, I. B.
2017-05-01
We show that the pseudo Jahn-Teller effect (PJTE) is instrumental in predicting and rationalizing structural changes in chemical transformations of two-dimensional (2D) molecular systems by means of analyzing the symmetries and electron occupation of the ground and lowest excited electronic states and the energy gap between them, subject to their PJT coupling along the main distortion coordinates. Special attention is paid to rationalizing the PJTE origin of non-planarity of 2D compounds and to the restoration of their planar configurations. Examples of two series of 1,2- and 1,4-dithiin containing tricyclic compounds (carbon sulfide, thianthrene, and antracene and their derivatives) are used to demonstrate in detail the mechanism of (1) enhancement and suppression of the PJTE distortions (puckering) in redox processes, and (2) PJTE induced symmetry breaking and restoration of the planar configuration by chemical substitutions.
Pressure-dependent ground states and fermiology in β- ( BDA-TTP ) 2 M Cl4 ( M=Fe,Ga )
NASA Astrophysics Data System (ADS)
Choi, E. S.; Graf, D.; Brooks, J. S.; Yamada, J.; Akutsu, H.; Kikuchi, K.; Tokumoto, M.
2004-07-01
We have investigated pressure- and magnetic-field-dependent electrical transport properties in the charge transfer salts β-(BDA-TTP)2MCl4(M=Fe,Ga) , both of which show a metal-insulator (MI) transition around 120K at ambient pressure. The zero field temperature-pressure phase diagrams of the two compounds are quite similar; the MI transition temperature decreases with pressure, and superconductivity is observed in both the magnetic and non-magnetic compounds above ˜4.5kbar . Likewise, Shubnikov-de Haas effect measurements show nearly identical Fermi surfaces. These similarities suggest that the magnetic interaction J between the conduction electrons and the magnetic moments in β-(BDA-TTP)2FeCl4 is small. Nevertheless, magnetoresistance measurements show remarkable differences and reveal that magnetic interactions with the conduction electrons are still effective in M=Fe compounds.
NASA Astrophysics Data System (ADS)
Malaeb, Walid; Awad, Ramadan; Hibino, Taku; Kamihara, Yoichi; Kondo, Takeshi; Shin, Shik
2018-05-01
We have implemented laser photoemission spectroscopy (PES) to investigate the electronic structure of the iron-based superconductor (La,Eu)FeAsO1-xFx (LaEu1111) which is an interesting compound in the "1111" family showing a high value of the superconducting (SC) transition temperature (Tc) due to Eu doping. At least two energy scales were observed from the PES data in the SC compound: One at ∼14 meV closing around Tc and thus corresponding to the SC gap. Another energy scale appears at ∼35 meV and survives at temperatures above Tc which represents the pseudogap (PG). The non-SC sample (La,Eu)FeAsO shows a PG at ∼ 41 meV. These observations in this new superconductor are consistent with the general trend followed by other compounds in the "1111" family.
NASA Astrophysics Data System (ADS)
Osborne, David; Lawson, Patrick; Adams, Nigel
2014-01-01
Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible, using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.
Hybridization gap in the semiconducting compound SrIr 4In 2Ge 4
Calta, Nicholas P.; Im, Jino; Fang, Lei; ...
2016-11-18
Here, large single crystals of SrIr 4In 2Ge 4 were synthesized using the In flux method. This compound is a hybridization gap semiconductor with an experimental optical band gap of E g = 0.25(3) eV. It crystallizes in the tetragonal EuIr 4In 2Ge 4 structure type with space group 1more » $$\\overline{4}$$2m and unit cell parameters a = 6.9004(5) Å and c = 8.7120(9) Å. The electronic structure is very similar to both EuIr 4In 2Ge 4 and the parent structure Ca 3Ir 4Ge 4, suggesting that these compounds comprise a new family of hybridization gap materials that exhibit indirect gap, semiconducting behavior at a valence electron count of 60 per formula unit, similar to the Heusler alloys.« less
Alkali layered compounds interfaces for energy conversion and energy storage
NASA Technical Reports Server (NTRS)
Papageorgopoulos, Chris A.
1996-01-01
During year one a new ultra-high vacuum, an Ar(+) ion sputterer, a low energy electron diffraction (LEED) system, an Auger electron spectrometer (AES), a work function measurement device with a Kelvin probe, and related accessories were used. The study found a focus in the adsorption of chalcogenides on Si and III-V compound semiconductors. In the second year, a scanning tunneling microscope was obtained along with a quadrapole mass spectrometer, power supplies, a computer, a chart recorder, etc. We started the systematic study on the adsorption of chalcogenides on the compound semiconductor surfaces. The third year saw the mounting of the scanning tunneling microscope (STM) on the existing UHV system. The investigation continued with the adsorption of Cs (alkali) on S-covered Si(100)2x1 surfaces. Then the adsorption of S on Cs-covered Si(100) surfaces was studied.
Effects of S and N doping on the structural, magnetic and electronic properties of rutile CrO2
NASA Astrophysics Data System (ADS)
Xie, You; Zhou, An-Ning; Sun, Kai-Gang; Zhang, Ya-Ting; Huo, Yi-Ping; Wang, Su-Fang; Zhang, Jian-Min
2016-05-01
Magnetic and electronic properties of S- and N-doped CrO2 are studied by using the first-principle projector augmented wave potential within the generalized gradient approximation. The optimized lattice constants for CrO2 agree well with the previous work. With increasing S doping (N doping), the lattice constants of CrO2-xSx (CrO2-xNx) (x=0.5, 1 and 1.5) all increase (decrease), While these compounds remain the tetragonal structure. CrO1.5S0.5, CrO1.5N0.5 and CrON compounds remain the half-metallicity, while the band gap is determined by different factors. It is also found that the change of the total magnetic moment with equivalent atom S doping in CrO2 compound is small except for x=1.
Kouchakzadeh, Ghazaleh; Nori-Shargh, Davood
2015-11-21
CCSD(T), MP2, LC-BLYP, LC-ωPBE and B3LYP methods with the Def2-TZVPP basis set and natural bond orbital (NBO) interpretations were performed to investigate the correlations between the Pseudo-Jahn-Teller Effect (PJTE) parameters [i.e. vibronic coupling constant values (F), energy gaps between reference states (Δ) and the primary force constant (K0)], structural and configurational properties, global hardness, global electronegativity, natural bond orders, stabilization energies associated with electron delocalizations and natural atomic charges of disilicon tetrafluoride (1), disilicon tetrachloride (2), disilicon tetrabromide (3) and disilicon tetraiodide (4). All levels of theory showed the trans-bent (C2h) configurations as the energy minimum structures of compounds 1-4, and the flap angles between the X2Si planes and the Si=Si bonds in the distorted (C2h) configurations decrease from compound 1 to compound 4. The negative curvatures of the ground state electronic configurations and the positive curvatures of the excited states of the adiabatic potential energy surfaces (APESs) which resulted from the mixing of the ground Ag and excited B2g states are due to the PJTE (i.e. PJT(Ag + B2g) ⊗ b2g problem). Contrary to the usual expectation, with the decrease of the energy gaps between reference states (Δ), the PJTE stabilization energy, E(PJT), decreases from compound 1 to compound 4. The canonical molecular orbital (CMO) analysis revealed that the contributions of the ψ(HOMO)(b3u) and ψL(UMO)(b1u) molecular orbitals in the vibronic coupling constant (F) decrease from compound 1 to compound 4. This fact clearly justifies the decrease of the vibronic coupling constant (F) and the primary force constant (the force constant without the PJTE) values on going from compound 1 to compound 4, leading to the decrease of the negative curvatures of the ground state electronic configuration curves of their corresponding APESs. The results obtained showed that the stabilization energies associated with the mixing of the distorted donor π(Si-Si)(b(u)) bonding and acceptor σ(Si-Si)*(b(u)) antibonding orbitals along the b2g bending distortions decrease from compound 1 to compound 4. This fact reasonably explains the increase of the Si-Si natural bond orders (nbo) on going from compound 1 to compound 4. With the increase of the Si-Si natural bond orders, the corresponding E(PJT) decreases from compound 1 to compound 4. Importantly, the variations of the global hardness (η) differences (Δ[η(C2h) - η(D2h)]) do not correlate with the trend observed for their corresponding total energy differences, justifying that the configurational properties of compounds 1-4 do not obey the maximum hardness principle. Interestingly, the trans-bent (C2h) configurations of compounds 1-4 are more electronegative than their corresponding planar (D2h) forms and the variations of their global electronegativity (χ) differences (Δ[χ(C2h) - χ(D2h)]) succeed in accounting for the decrease of the E(PJT) stabilization energies for the D2h → C2h conversion processes on going from compound 1 to compound 4.
Ab initio study of II-(VI)2 dichalcogenides.
Olsson, P; Vidal, J; Lincot, D
2011-10-12
The structural stabilities of the (Zn,Cd)(S,Se,Te)(2) dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe(2) pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.
Siletsky, Sergey A; Belevich, Ilya; Belevich, Nikolai P; Soulimane, Tewfik; Verkhovsky, Michael I
2011-09-01
The oxidative part of the catalytic cycle of the caa(3)-type cytochrome c oxidase from Thermus thermophilus was followed by time-resolved optical spectroscopy. Rate constants, chemical nature and the spectral properties of the catalytic cycle intermediates (Compounds A, P, F) reproduce generally the features typical for the aa(3)-type oxidases with some distinctive peculiarities caused by the presence of an additional 5-th redox-center-a heme center of the covalently bound cytochrome c. Compound A was formed with significantly smaller yield compared to aa(3) oxidases in general and to ba(3) oxidase from the same organism. Two electrons, equilibrated between three input redox-centers: heme a, Cu(A) and heme c are transferred in a single transition to the binuclear center during reduction of the compound F, converting the binuclear center through the highly reactive O(H) state into the final product of the reaction-E(H) (one-electron reduced) state of the catalytic site. In contrast to previous works on the caa(3)-type enzymes, we concluded that the finally produced E(H) state of caa(3) oxidase is characterized by the localization of the fifth electron in the binuclear center, similar to the O(H)→E(H) transition of the aa(3)-type oxidases. So, the fully-reduced caa(3) oxidase is competent in rapid electron transfer from the input redox-centers into the catalytic heme-copper site. 2011 Elsevier B.V. All rights reserved.
Zhang, Xian-Fu; Feng, Nan
2017-09-19
Pristine BODIPY compounds have negligible efficiency to generate the excited triplet state and singlet oxygen. In this report, we show that attaching a good electron donor to the BODIPY core can lead to singlet oxygen formation with up to 58 % quantum efficiency. For this purpose, BODIPYs with meso-aryl groups (phenyl, naphthyl, anthryl, and pyrenyl) were synthesized and characterized. The fluorescence, excited triplet state, and singlet oxygen formation properties for these compounds were measured in various solvents by UV/Vis absorption, steady-state and time-resolved fluorescence methods, as well as laser flash photolysis technique. In particular, the presence of anthryl and pyrenyl showed substantial enhancement on the singlet oxygen formation ability of BODIPY with up to 58 % and 34 % quantum efficiency, respectively, owing to their stronger electron-donating ability. Upon the increase in singlet oxygen formation, the fluorescence quantum yield and lifetime values of the aryl-BODIPY showed a concomitant decrease. The increase in solvent polarity enhances the singlet oxygen generation but decreases the fluorescence quantum yield. The results are explained by the presence of intramolecular photoinduced electron transfer from the aryl moiety to BODIPY core. This method of promoting T 1 formation is very different from the traditional heavy atom effect by I, Br, or transition metal atoms. This type of novel photosensitizers may find important applications in organic oxygenation reactions and photodynamic therapy of tumors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhong, Aimin; Zhang, Yuexing; Bian, Yongzhong
2010-11-01
The molecular structures, molecular orbitals, atomic charges, electronic absorption spectra, and infrared (IR) and Raman spectra of a series of substituted metal-free phthalocyanine compounds with four (1, 3, 5, 7) or eight (2, 4, 6, 8) methoxyl (1, 2, 5, 6) or methylthio groups (3, 4, 7, 8) on the nonperipheral (1-4) or peripheral positions (5-8) of the phthalocyanine ring are studied by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The calculated structural parameters and simulated electronic absorption and IR spectra are compared with the X-ray crystallography structures and the experimentally observed electronic absorption and IR spectra of the similar molecules, and good agreement between the calculated and experimental results is found. The substitution of the methoxyl or methylthio groups at the nonperipheral positions of the phthalocyanine ring has obvious effects on the molecular structure and spectroscopic properties of the metal-free phthalocyanine. Nonperipheral substitution has a more significant influence than peripheral substitution. The substitution effect increases with an increase in the number of substituents. The methylthio group shows more significant influence than the methoxyl group, despite the stronger electron-donating property of the methoxyl group than the methylthio group. The octa-methylthio-substituted metal-free phthalocyanine compounds have nonplanar structures whose low-lying occupied molecular orbitals and electronic absorption spectra are significantly changed by the substituents. The present systematical study will be helpful for understanding the relationship between structures and properties in phthalocyanine compounds and designing phthalocyanines with typical properties. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Rahul; Chattopadhyaya, Surya
2017-09-01
The effects of doping of Ca atom(s) on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds have been investigated theoretically using DFT based FP-LAPW approach by modeling the rock-salt (B1) ternary alloys CaxSr1-xS, CaxSr1-xSe and CaxSr1-xTe at some specific concentrations 0 ≤ x ≤ 1 and studying their aforesaid properties. The exchange-correlation potentials for their structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) scheme. In addition, we have computed the electronic and optical properties with the traditional BLYP and PBE-GGA schemes for comparison. The atomic and orbital origin of different electronic states in the band structure of each of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.
Regueiro, Jorge; Giri, Anupam; Wenzl, Thomas
2016-06-21
Fast market penetration of electronic cigarettes is leading to an exponentially growing number of electronic refill liquids with different nicotine contents and an endless list of flavors. Therefore, rapid and simple methods allowing a fast screening of these products are necessary to detect harmful substances which can negatively impact the health of consumers. In this regard, the present work explores the capabilities of differential ion mobility spectrometry coupled to tandem mass spectrometry for high-throughput analysis of nicotine and 11 related compounds in commercial refill liquids for electronic cigarettes. The influence of main factors affecting the ion mobility separation, such as modifier types and concentration, separation voltage, and temperature, was systematically investigated. Despite small molecular weight differences among the studied compounds, a good separation was achieved in the ion mobility cell under the optimized conditions, which involved the use of ethanol as a polar gas-phase chemical modifier. Indeed, differential ion mobility was able to resolve (resolution >4) nicotine from its structural isomer anabasine without the use of any chromatographic separation. The quantitative performance of the proposed method was then evaluated, showing satisfactory precision (RSD ≤ 16%) and recoveries ranging from 85 to 100% for nicotine, and from 84 to 126% for the rest of the target analytes. Several commercial electronic cigarette refill liquids were analyzed to demonstrate the applicability of the method. In some cases, significant differences were found between labeled and measured levels of nicotine. Anatabine, cotinine, myosmine, and nornicotine were also found in some of the analyzed samples.
Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.
2004-01-01
An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.
Pyridine radical cation and its fluorine substituted derivatives
Bondybey, V.E.; English, J.H.; Shiley, R.H.
1982-01-01
The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.
Electronic Griffiths phase and quantum interference in disordered heavy-fermion systems
NASA Astrophysics Data System (ADS)
Gnida, Daniel
2018-02-01
We investigated the specific heat and electrical resistivity of disordered heavy-fermion systems Ce2Co0.8Si3.2 and Ce2Co0.4Rh0.4Si3.2 . Results show that pronounced non-Fermi-liquid behavior in these Kondo disordered compounds originates from approaching metal-insulator transition rather than from proximity to magnetic instability. Power-law divergence of the local Kondo temperature distribution, P (TK) , in the limit of TK→0 , and clear signature of the quantum interference corrections in the resistivity detected deep below the onset of Kondo coherent state, point to electronic Griffiths phase formation in the studied compounds.
Electronic and magnetic properties of magnetoelectric compound Ca2CoSi2O7: An ab initio study
NASA Astrophysics Data System (ADS)
Chakraborty, Jayita
2018-05-01
The detailed first principle density functional theory calculations are carried out to investigate the electronic and magnetic properties of magnetoelectric compound Ca2CoSi2O7. The magnetic properties of this system are analyzed by calculating various hopping integrals as well as exchange interactions and deriving the relevant spin Hamiltonian. The dominant exchange path is visualized with Wannier functions plotting. Only intra planer nearest neighbor exchange interaction is strong in this system. The magnetocrystalline anisotropy is calculated for this system, and the results of the calculation reveal that the spin quantization axis lies in the ab plane.
Kim, Tae Kyung; Lee, Jae Hwa; Moon, Dohyun; Moon, Hoi Ri
2013-01-18
A luminescent lithium metal-organic framework (MOF) is constructed from the solvothermal reaction of Li(+) and a well-designed organic ligand, bis(4-carboxyphenyl)-N-methylamine (H(2)CPMA). A Li-based MOF can detect an explosive aromatic compound containing nitro groups as an explosophore, by showing a dramatic color change with concurrent luminescence quenching in the solid state. The detection sites are proven directly through single-crystal-to-single-crystal transformations, which show strong interactions between the aromatic rings of the electron-rich CPMA(2-) molecules and the electron-deficient nitrobenzene.
Temporary anion states of selected amino acids
NASA Astrophysics Data System (ADS)
Aflatooni, K.; Hitt, B.; Gallup, G. A.; Burrow, P. D.
2001-10-01
Vertical attachment energies for the formation of low-lying temporary anion states of glycine, alanine, phenylalanine, tryptophan, and proline in the gas phase are reported using electron transmission spectroscopy. Electron attachment into the empty π* orbital of the -COOH group was observed in all the compounds. Temporary anion states associated with the side groups in phenylalanine and tryptophan are found to be stabilized with respect to those in the reference compounds toluene and indole, respectively, by approximately 0.2 eV. We attribute this to electrostatic effects and explore, using simple theoretical models, the extent to which such anion states could be further stabilized if these amino acids were in zwitterionic form.
NASA Astrophysics Data System (ADS)
Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar; Parey, Vanshree; Pagare, Gitanjali
2017-10-01
The structural, electronic, magnetic and elastic properties of cubic EuMO3 (M = Ga, In) perovskites has been successfully predicted within well accepted density functional theory using full potential linearized augmented plane wave (FP-LAPW). The structural study reveals ferromagnetic stability for both the compounds. The Hubbard correlation (GGA+U) calculated spin polarized electronic band and density of states presents half-metallic nature for both the compounds. The magnetic moments calculated with different approximations were found to be approximately 6 µ B for EuGaO3 and approximately 7 µ B for EuInO3. The three independent elastic constants (C 11, C 12, C 44) have been used for the prediction of mechanical properties like Young modulus (Y), Shear modulus (G), Poisson ratio (ν), Anisotropic factor (A) under pressure. The B/G ratio presents the ductile nature for both compounds. The thermodynamic parameters like specific heat capacity, thermal expansion, Grüneisen parameter and Debye temperature etc have also been analyzed in the temperature range 0-900 K and pressure range from 0 to 30 GPa.
Molybdenum Oxide Nitrides of the Mo2(O,N,□)5 Type: On the Way to Mo2O5.
Weber, Dominik; Huber, Manop; Gorelik, Tatiana E; Abakumov, Artem M; Becker, Nils; Niehaus, Oliver; Schwickert, Christian; Culver, Sean P; Boysen, Hans; Senyshyn, Anatoliy; Pöttgen, Rainer; Dronskowski, Richard; Ressler, Thorsten; Kolb, Ute; Lerch, Martin
2017-08-07
Blue-colored molybdenum oxide nitrides of the Mo 2 (O,N,□) 5 type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting Mo V O 6 units. The new materials are stable up to ∼773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb 9 O 24.9 -type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo 2 O 5 . On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo 2 O 5 , backed by electronic-structure and phonon calculations from first principles, is given.
Lovley, Derek R; Summers, Zarath Morgan; Haveman, Shelley Annette; Izallalen, Mounir
2013-12-03
In preferred embodiments, the present invention provides new isolated strains of Geobacter species that are capable of using a carbon source that is selected from C.sub.3 to C.sub.12 organic compounds selected from pyruvate or metabolic precursors of pyruvate as an electron donor in metabolism and in subsequent energy production. In other aspects, other preferred embodiments of the present invention include methods of making such strains and methods of using such strains. In general, the wild type strain of the microorganisms has been shown to be unable to use these C.sub.3 to C.sub.12 organic compounds as electron donors in metabolic steps such as the reduction of metallic ions. The inventive strains of microorganisms are useful improving bioremediation applications, including in situ bioremediation (including uranium bioremediation and halogenated solvent bioremediation), microbial fuel cells, power generation from small and large-scale waste facilities (e.g., biomass waste from dairy, agriculture, food processing, brewery, or vintner industries, etc.) using microbial fuel cells, and other applications of microbial fuel cells, including, but not limited to, improved electrical power supplies for environmental sensors, electronic sensors, and electric vehicles.
NASA Astrophysics Data System (ADS)
Arjunan, V.; Anitha, R.; Devi, L.; Mohan, S.; Yang, Haifeng
2015-01-01
Aromatic epoxides are causative factors for mutagenic and carcinogenic activity of polycyclic arenes. The 1,2- or 2,3-epoxy compounds are widely used to a considerable extent in the textile, plastics, pharmaceutical, cosmetics, detergent and photochemical industries. The FTIR and FT-Raman spectra of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane are recorded in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. The structure of the compound has been optimised with B3LYP method using 6-311++G** and cc-pVTZ basis sets. The IR and Raman intensities are determined. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of the compounds has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecules have been analysed.
New insulating antiferromagnetic quaternary iridates MLa 10Ir 4O 24 (M=Sr, Ba)
Zhao, Qingbiao; Han, Fei; Stoumpos, Constantinos C.; ...
2015-07-01
Recently, oxides of Ir 4+ have received renewed attention in the condensed matter physics community, as it has been reported that certain iridates have a strongly spin-orbital coupled (SOC) electronic state, J eff = ½, that defines the electronic and magnetic properties. The canonical example is the Ruddlesden-Popper compound Sr 2IrO 4, which has been suggested as a potential route to a new class of high temperature superconductor due to the formal analogy between J eff = ½ and the S = ½ state of the cuprate superconductors. The quest for other iridium oxides that present tests of the underlyingmore » SOC physics is underway. In this spirit, here we report the synthesis and physical properties of two new quaternary tetravalent iridates, MLa 10Ir 4O 24 (M = Sr, Ba). The crystal structure of both compounds features isolated IrO 6 octahedra in which the electronic configuration of Ir is d 5. As a result, both compounds order antiferromagnetically despite the lack of obvious superexchange pathways, and resistivity measurement shows that SrLa 10Ir 4O 24 is an insulator.« less
Density of states, optical and thermoelectric properties of perovskite vanadium fluorides Na3VF6
NASA Astrophysics Data System (ADS)
Reshak, A. H.; Azam, Sikander
2014-05-01
The electronic structure, charge density and Fermi surface of Na3VF6 compound have been examined with the support of density functional theory (DFT). Using the full potential linear augmented plane wave method, we employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA) to treat the exchange correlation potential to solve Kohn-Sham equations. The calculation show that Na3VF6 compound has metallic nature and the Fermi energy (EF) is assessed by overlapping of V-d state. The calculated density of states at the EF are about 18.655, 51.932 and 13.235 states/eV, and the bare linear low-temperature electronic specific heat coefficient (γ) is found to be 3.236 mJ/mol-K2, 9.008 mJ/mol-K2 and 2.295 mJ/mol-K2 for LDA, GGA and EVGGA, respectively. The Fermi surface is composed of two sheets. The chemical bonding of Na3VF6 compound is analyzed through the electronic charge density in the (1 1 0) crystallographic plane. The optical constants and thermal properties were also calculated and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foye, W.O.
1992-09-01
Sulfur-containing compounds have been used in the search for whole-body radiation-protective compounds, in the design of amphetamine derivatives that retain appetite-suppressive effects but lack most behavioral effects characteristic of amphetamines, and in the search for the cause of kidney stone formation in recurrently stoneforming patients. Organic synthetic procedures were used to prepare radiation-protective compounds having a variety of sulfur-containing functional groups, and to prepare amphetamine derivatives having electron-attracting sulfur functions. In the case of the kidney stone causation research, isolation of urinary mucopolysaccharides (MPS) from recurrently stoneforming patients was carried out and the extent of sulfation of the MPS wasmore » determined by electrophoresis. Whole-body radiation-protective agents with a high degree of protection against lethal doses of gamma-radiation in mice were found in a series of quinolinium and pyridinium bis(methylthio) and methylthio amino derivatives. Mechanism studies showed that the copper complexes of these agents mimicked the beneficial action of superoxide dismutase. Electron-attracting sulfur-containing functions on amphetamine nitrogen, as well as 4'-amino nitrogen provided amphetamine derivatives with good appetite-suppressant effects and few or no adverse behavioral effects. Higher than normal levels of sulfation of the urinary MPS of stone formers suggested a cause for recurrent kidney stone formation. A sulfation inhibitor was found to prevent recurrence of stone formation and inhibit growth of existing stones. The inclusion of various sulfur-containing functions in organic molecules yielded compounds having whole-body radiation protection from lethal doses of gamma-radiation in animals. The presence of electron-attracting sulfur functions in amphetamine gave derivatives that retained appetite-suppressant effects and eliminated most adverse behavioral effects.« less
Liu, Xiang-Yang; Zhang, Ya-Hui; Fang, Wei-Hai; Cui, Ganglong
2018-06-28
Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S n ( n = 1-5) and ten excited triplet states, i.e., T n ( n = 1-10), we have found that the intersystem crossing (ISC) processes from the S n to T n are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin-orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence.
Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen
2012-09-01
A new dioxo-molybdenum(VI) complex [MoO(2)(L)(H(2)O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H(2)L) and MoO(2)(acac)(2). The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, (1)H NMR and (13)C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental (1)H NMR spectra. However, the (13)C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6-31+G(2df,p) for other atoms, are in better agreement with experimental (13)C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound. Copyright © 2012 Elsevier B.V. All rights reserved.
Costa, Deyse G; Rocha, Alexandre B; Souza, Wladmir F; Chiaro, Sandra Shirley X; Leitão, Alexandre A
2011-04-07
This ab initio study was performed to better understand the correlation between intercalated water molecules and layered double hydroxides (LDH), as well as the changes that occur by the dehydration process of Zn-Al hydrotalcite-like compounds containing Cl⁻ and CO₃²⁻ counterions. We have verified that the strong interaction among intercalated water molecules, cointercalated anions, and OH groups from hydroxyl layers is reflected in the thermal stability of these compounds. The Zn(2/3)Al(1/3)(OH)₂Cl(1/3)·2/3H₂O hydrotalcite loses all the intercalated water molecules around 125 °C, while the Zn(2/3)Al(1/3)(OH)₂(CO₃)(1/6)·4/6H₂O compound dehydrates at about 175 °C. These values are in good agreement with experimental data. The interlayer interactions were discussed on the basis of electron density difference analyses. Our calculation shows that the electron density in the interlayer region decreases during the dehydration process, inducing the migration of the Cl⁻ anion and the displacement of the hydroxyl layer from adjacent layers. Changes in these compound structures occur to recover part of the hydrogen bonds broken due to the removal of water molecules. It was observed that the chloride ion had initially a lower Löwdin charge (Cl(-0.43)), which has increased its absolute value (Cl(-0.58)) after the water molecules removal, while the charges on carbonate ions remain invariant, leading to the conclusion that the Cl⁻ anion can be more influenced by the amount of water molecules in the interlayer space than the CO₃²⁻ anion in hydrotalcite-like compounds.
Naik, Pradeep K; Santoshi, Seneha; Joshi, Harish C
2012-01-01
We have identified a new class of microtubule-binding compounds-noscapinoids-that alter microtubule dynamics at stoichiometric concentrations without affecting tubulin polymer mass. Noscapinoids show great promise as chemotherapeutic agents for the treatment of human cancers. To investigate the structural determinants of noscapinoids responsible for anti-cancer activity, we tested 36 structurally diverse noscapinoids in human acute lymphoblastic leukemia cells (CEM). The IC(50) values of these noscapinoids vary from 1.2 to 56.0 μM. Pharmacophore models of anti-cancer activity were generated that identify two hydrogen bond acceptors, two aromatic rings, two hydrophobic groups, and one positively charged group as essential structural features. Additionally, an atom-based quantitative structure-activity relationship (QSAR) model was developed that gave a statistically satisfying result (R(2) = 0.912, Q(2) = 0.908, Pearson R = 0.951) and effectively predicts the anti-cancer activity of training and test set compounds. The pharmacophore model presented here is well supported by electronic property analysis using density functional theory at B3LYP/3-21*G level. Molecular electrostatic potential, particularly localization of negative potential near oxygen atoms of the dimethoxy isobenzofuranone ring of active compounds, matched the hydrogen bond acceptor feature of the generated pharmacophore. Our results further reveal that all active compounds have smaller lowest unoccupied molecular orbital (LUMO) energies concentrated over the dimethoxy isobenzofuranone ring, azido group, and nitro group, which is indicative of the electron acceptor capacity of the compounds. Results obtained from this study will be useful in the efficient design and development of more active noscapinoids.
Magnetic, electronic transport and magneto-transport behaviours of (Co1-xMnx)2P compounds
NASA Astrophysics Data System (ADS)
Sun, N. K.; Zhang, Y. Q.; Li, Y. B.; Li, D.; Li, W. F.; Liu, W.; Zhao, X. G.; Zhang, Z. D.
2006-10-01
Magnetic, electronic transport and magneto-transport behaviours of (Co1-xMnx)2P (0.55 <= x <= 0.675) compounds have been systematically investigated. A typical metallic-conductivity behaviour is observed in the ferromagnetic compound (Co0.45Mn0.55)2P. The increase in the Mn concentration gives rise to dramatic changes in magnetic, electronic transport and magneto-transport behaviours. With increasing temperature, a first-order phase transition from antiferromagnetism to ferromagnetism takes place at about 145 K, 185 K and 240 K for x = 0.60, 0.625 and 0.65, respectively. (Co0.4Mn0.6)2P and (Co0.375Mn0.625)2P compounds experience a metal-insulator transition (Anderson transition) with decreasing temperature. An external magnetic field of 5 T strongly influences the Anderson transition, lowering the transition temperature from 80 to 55 K for (Co0.4Mn0.6)2P and from 115 to 70 K for (Co0.375Mn0.625)2P. In contrast with this metal-insulator transition, an insulating behaviour appears in the temperature range from 10 to 300 K for (Co0.35Mn0.65)2P and (Co0.325Mn0.675)2P compounds. Below the antiferromagnetic-ferromagnetic transition temperature TAF-F, a metamagnetic transition can be induced by an external magnetic field. The metamagnetic transition is accompanied by a maximum magnetoresistance ratio of -7%, -6.3% or -3.7% at 5 T in the (Co0.4Mn0.6)2P, (Co0.375Mn0.625)2P or (Co0.35Mn0.65)2P compound at 10 K. The mechanisms of magnetoresistive behaviours are discussed in terms of the formation of a super-zone gap in the antiferromagnetic state.
Effective electromagnetic interference shielding for electronic equipment.
Sheedy, Billy
2003-11-01
With the development of tough, durable compounds, plastics are the preferred material for electronic equipment housings. The availability of economical, effective coating materials that can give plastics some of the desirable properties lost in the switch from metals are helping to allow the design of reliable medical equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg, E-mail: hans-jorg.himmel@aci.uni-heidelberg.de
2015-07-14
The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound.
Sørensen, K.B.; Finster, K.; Ramsing, N.B.
2001-07-01
Anaerobic methane oxidation (AMO) has long remained an enigma in microbial ecology. In the process the net reaction appears to be an oxidation of methane with sulfate as electron acceptor. In order to explain experimental data such as effects of inhibitors and isotopic signals in biomarkers it has been suggested that the process is carried out by a consortium of bacteria using an unknown compound to shuttle electrons between the participants. The overall change in free energy during AMO with sulfate is very small (?22 kJ mol-1) at in situ concentrations of methane and sulfate. In order to share the available free energy between the members of the consortium, the concentration of the intermediate electron shuttle compound becomes crucial. Diffusive flux of a substrate (i.e, the electron shuttle) between bacteria requires a stable concentration gradient where the concentration is higher in the producing organism than in the consuming organism. Since changes in concentrations cause changes in reaction free energies, the diffusive flux of a catabolic product/substrate between bacteria is associated with a net loss of available energy. This restricts maximal inter-bacterial distances in consortia composed of stationary bacteria. A simple theoretical model was used to describe the relationship between inter-bacterial distances and the energy lost due to concentration differences in consortia. Key parameters turned out to be the permissible concentration range of the electron shuttle in the consortium (i.e., the concentration range that allows both participants to gain sufficient energy) and the stoichiometry of the partial reactions. The model was applied to two known consortia degrading ethanol and butyrate and to four hypothetical methane-oxidizing consortia (MOC) based on interspecies transfer of hydrogen, methanol, acetate, or formate, respectively. In the first three MOCs the permissible distances between producers and consumers of the transferred compounds were less than two times prokaryotic cell wall diameters. Consequently, it is not possible that a MOC can be based on inter-species transfer of hydrogen, methanol, or acetate. Formate, on the other hand, is a possible shuttle candidate provided the bacteria are attached to one another. In general the model predicts that members of consortia thriving on low energy such as the MOC must adhere to each other and utilize a compound for the exchange of electrons that has a high permissible concentration range and a high diffusion coefficient and transfers as many electrons as possible per molecule.
Mondal, Bijan; Bhattacharyya, Moulika; Varghese, Babu; Ghosh, Sundargopal
2016-07-05
The syntheses and structural characterization of hypo-electronic di-molybdenum triple-decker sandwich clusters are reported. Thermolysis of [Ru3(CO)12] with an in situ generated intermediate obtained from the reaction of [Cp*MoCl4] with [LiBH4·THF] yielded an electron deficient triple-decker sandwich complex, [(Cp*Mo)2{μ-η(6):η(6)-B4H4Ru2(CO)6}], . In an effort to generate analogous triple-deckers containing group-16 elements, we isolated [(Cp*Mo)2{μ-η(6):η(6)-B4H4ERu(CO)3}] (: E = Te; : E = S; : E = Se). These clusters show a high metal coordination number and cross cluster Mo-Mo bond. The formal cluster electron count of these compounds is four or three skeletal electron pairs less than required for a canonical closo-structure of the same nuclearity. Therefore, these compounds represent a novel class of triple-decker sandwich complex with 22 or 24 valence-electrons (VE), wherein the "chair" like hexagonal middle ring is composed of B, Ru and chalcogen. One of the key differences among the synthesized triple-decker molecules is the puckering nature of the middle ring [B4RuE], which increases in the order S < Se < Ru(CO)3 < Te. In addition, Fenske-Hall and quantum-chemical calculations with DFT methods at the BP86 level of theory have been used to analyze the bonding of these novel complexes. The studies not only explain the electron unsaturation of the molecules, but also reveal the reason for the significant puckering of the middle deck. All the compounds have been characterized by IR, (1)H, (11)B, and (13)C NMR spectroscopy in solution and the solid state structures were established by crystallographic analysis.
Electronic Tongue for Quantitation of Contaminants in Water
NASA Technical Reports Server (NTRS)
Buehler, Marlin; Kuhlman, Gregory
2004-01-01
An assembly of sensors, denoted an electronic tongue, is undergoing development as a prototype of compact devices for use in measuring concentrations of contaminants in water. Thus far, the electronic tongue has been tested on ions of Cu, Zn, Pb, and Fe and shown to respond to concentrations as low as about 10 parts per million. This electronic tongue is expected to be capable of measuring concentrations of other metal ions and organic compounds. Potential uses for electronic tongues include monitoring the chemical quality of water in a variety of natural, industrial, and laboratory settings; detecting micro-organisms indirectly by measuring microbially influenced corrosion; and characterizing compounds of interest to the pharmaceutical and food industries. This version of the electronic tongue includes a heater, a temperature sensor, an array of ion-specific electrodes, an oxidation/ reduction sensor pair, an electrical-conductivity sensor, and an array of galvanic cells, all on one compact ceramic substrate. Special-purpose electronic excitation and readout circuitry for the sensors has also been constructed. The main advantage of the electronic tongue, relative to electrodes of this type used traditionally to assess water quality, is extreme ruggedness. The types of measurements that can be performed by use of the sensors on the electronic tongue are quite varied. The best combination of types of measurements for a given application depends on the specific contaminants that one seeks to detect. Experimental studies to identify such combinations were in progress at the time of reporting the information for this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Pifu; University of the Chinese Academy of Sciences, Beijing 100049; Luo, Siyang
A new alkali tin(II) halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. This compound crystallizes trigonally in space group of R-3c (167), and processes a zero-dimensional (0D) structure consisted of Na{sup +} cations, Cl{sup −} anions and the isolated [SnF{sub 3}]{sup -} trigonal pyramids in which the stereochemically active 5s{sup 2} lone pair electrons are attached to the Sn{sup 2+} cations. Interestingly, the [SnF{sub 3}]{sup −} trigonal pyramids are parallel arranged in the a-b plane, while oppositely arranged in line with rotation along the c- axis. Moreover, the energy bandgap, thermal stability and electronic structure of Na{submore » 3}Sn{sub 2}F{sub 6}Cl are characterized and the results reveal that this compound has and indirect bandgap of 3.88 eV and is stable under 270 °C. - Graphical abstract: A zero-dimensional alkaline tin halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. Interestingly, both the anions and cations coordinating polyhedra exhibit order arranged with the [SnF{sub 3}]{sup -} trigonal pyramids rotating along the c- axis.« less
Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations.
Roknuzzaman, Md; Ostrikov, Kostya Ken; Wang, Hongxia; Du, Aijun; Tesfamichael, Tuquabo
2017-10-25
Lead (Pb) free non-toxic perovskite solar cells have become more important in the commercialization of the photovoltaic devices. In this study the structural, electronic, optical and mechanical properties of Pb-free inorganic metal halide cubic perovskites CsBX 3 (B = Sn, Ge; X = I, Br, Cl) for perovskite solar cells are simulated using first-principles Density Functional Theory (DFT). These compounds are semiconductors with direct band gap energy and mechanically stable. Results suggest that the materials have high absorption coefficient, low reflectivity and high optical conductivity with potential application in solar cells and other optoelectronic energy devices. On the basis of the optical properties, one can expect that the Germanium (Ge) would be a better replacement of Pb as Ge containing compounds have higher optical absorption and optical conductivity than that of Pb containing compounds. A combinational analysis of the electronic, optical and mechanical properties of the compounds suggests that CsGeI 3 based perovskite is the best Pb-free inorganic metal halide semiconductor for the solar cell application. However, the compound with solid solution of CsGe(I 0.7 Br 0.3 ) 3 is found to be mechanically more ductile than CsGeI 3 . This study will also guide to obtain Pb-free organic perovskites for optoelectronic devices.
Phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yugang; Han, Duanfeng, E-mail: handuanfeng@gmail.com; Xu, Xiangfang
2014-07-01
The phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints was investigated using electron microscopy. From the distribution of elements, the transition zone was mainly composed of elements Mg and Fe along with some Al and O. Furthermore, the transition layer consisted mainly of intermetallic compounds and metal oxides. The compounds were identified as Al-rich phases, such as Mg{sub 17}Al{sub 12}, Mg{sub 2}Al{sub 3}, FeAl and Fe{sub 4}Al{sub 13}. More noteworthy was that the thickness of the transition layer was determined by Fe–Al compounds. The presence of FeAl and Fe{sub 4}Al{sub 13} was a result of themore » complex processes that were associated with the interfacial reaction of solid steel and liquid Mg–Al alloy. - Highlights: • A technology of laser penetration brazed Mg alloy and steel has been developed. • The interface of Mg/Fe dissimilar joints was investigated using electron microscopy. • The transition layer consisted of intermetallic compounds and metal oxides. • Moreover, the thickness of transition layer was determined by Fe/Al compounds. • The presence of FeAl and Fe{sub 4}Al{sub 13} was associated with the interfacial reaction.« less
Quantum chemical calculations for polymers and organic compounds
NASA Technical Reports Server (NTRS)
Lopez, J.; Yang, C.
1982-01-01
The relativistic effects of the orbiting electrons on a model compound were calculated. The computational method used was based on 'Modified Neglect of Differential Overlap' (MNDO). The compound tetracyanoplatinate was used since empirical measurement and calculations along "classical" lines had yielded many known properties. The purpose was to show that for large molecules relativity effects could not be ignored and that these effects could be calculated and yield data in closer agreement to empirical measurements. Both the energy band structure and molecular orbitals are depicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausnerova, Berenika; Sanetrnik, Daniel; Paravanova, Gordana
2014-05-15
The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.