Current collection from the space plasma through defects in solar array insulation
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Stillwell, R. P.; Kaufman, H. R.
1985-01-01
Operating high-voltage solar arrays in the space environment can result in anomalously large currents being collected through small insulation defects. Tests simulating the electron collection have shown that there are two major collection modes. The first involves current enhancement by means of a surface phenomenon involving secondary electron emission from the surrounding insulator. In the second mode, the current collection is enhanced by vaporization and ionization of the insulator material, in addition to the surface enhancement of the first mode. The electron collection due to surface enhancement (first mode) has been modeled. Using this model, simple calculations yield realistic predictions.
Hollow cathode plasma coupling study, 1986
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.
1986-01-01
The electron collection and emission characteristics of a simple hollow cathode contactor, an extended anode hollow cathode contactor supplied by JSC, and a ring cusp magnetic field contactor are presented and the effects of discharge power and argon or xenon expellant flowrate on these characteristics are examined. All of the contactors are shown to exhibit good electron emission performance over a wide range of discharge power and expellant type and flowrate. Good electron performance is shown to be more difficult to achieve. Results suggest that the extended anode and ring cusp contactors should perform satisfactorily to electron emission currents beyond 1000 mA and electron collection currents beyond 500 mA. All contactors performed better on xenon than argon. A general theory of plasma contactor operation in both the electron collection and electron emission modes, which describes the current-limiting effects of space-charge phenomena is given. This current-limiting and collecting phenomenon is shown to be a function of driving potential differences and emitting and collecting surface radius ratio for the case of a spherical geometry. Discharge power did not appear to influence the electron collection current substantially in the experiments so it is suggested in light of the model that the contactors are generally not limited by their ion production capabilities under conditions at which they were tested.
NASA Technical Reports Server (NTRS)
Stillwell, R. P.
1983-01-01
For spacecraft operation in the near Earth environment, solar cell arrays constitute the major source of reliable long term power. Optimization of mass and power efficiency results in a general requirement for high voltage solar arrays. The space plasma environment, though, can result in large currents being collected by exposed solar cells. The solution of a protective covering of transparent insulation is not a complete solution, inasmuch as defects in the insulation result in anomalously large currents being collected through the defects. Tests simulating the electron collection from small defects in an insulation have shown that there are two major collection modes. The first mode involves current enhancement by means of a surface phenomenon involving the surrounding insulator. In the second mode the current collection is enhanced by vaporization and ionization of the insulators materials, in addition to the surface enhancement of the first mode. A model for the electron collection is the surface enhanced collection mode was developed. The model relates the secondary electron emission yield to the electron collection. It correctly predicts the qualitative effects of hole size, sample temperature and roughening of sample surface. The theory was also shown to predict electron collection within a factor of two for the polymers teflon and polyimide.
NASA Astrophysics Data System (ADS)
Myers, Neil Brubaker
The CHARGE-2 sounding rocket payload was designed to measure the transient and steady-state electrical charging of a space vehicle at low-Earth-orbit altitudes during the emission of a low-power electron beam from the vehicle. In addition to the electron gun, the payload contained several diagnostics to monitor plasma and waves resulting from the beam/space/vehicle interaction. The payload was separated into two sections, the larger section carried a 1-keV electron gun and was referred to as the mother vehicle. The smaller section, referred to as the daughter, was connected to the mother by an insulated, conducting tether and was deployed to a distance of up to 426 m across the geomagnetic field. Payload stabilization was obtained using thrusters that released cold nitrogen gas. In addition to performing electron beam experiments, the mother vehicle contained a high-voltage power supply capable of applying up to +450 V and 28 mA to the daughter through the tether. The 1-keV electron beam was generated at beam currents of 1 mA to 48 mA, measured at the exit aperture of the electron gun. Steady-state potentials of up to 560 V were measured for the mother vehicle. The daughter attained potentials of up to 1000 V relative to the background ionosphere and collected currents up to 6.5 mA. Thruster firings increased the current collection to the vehicle firing the thrusters and resulted in neutralization of the payload. The CHARGE-2 experiment was unique in that for the first time a comparison was made of the current collection between an electron beam-emitting vehicle and a non-emitting vehicle at high potential (400 V to 1000 V). The daughter current collection agreed well with the Parker-Murphy model, while the mother current collection always exceeded the Parker-Murphy limit and even exceeded the Langmuir-Blodgett predicted current below 240 km. The additional current collection of the mother is attributed to beam-plasma interaction. This additional source of collected current may be very important for successful electron beam emission at altitudes below 240 km.
Positive Voltage Hazard to EMU Crewman from Currents through Plasma
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Kramer, Leonard; Hamilton, Doug; Mikatarian, Ronald
2010-01-01
This paper describes the model of the EMU with a human body in the circuit that has been used by NASA to evaluate the low positive voltage hazard. The model utilizes the electron collection characterization from on orbit Langmuir probe data as representative of electron collection to a positive charged surface with a wide range of on orbit plasma temperature and density conditions. The data has been unified according to non-linear theoretical temperature and density variation of the electron saturated probe current collection theory and used as a model for the electron collection at EMU surfaces. Vulnerable paths through the EMU connecting through the crewman s body have been identified along with electrical impedance of the exposed body parts. The body impedance information is merged with the electron collection characteristics in circuit simulation software (SPICE). The assessment shows that currents can be on the order of 20 mA for a 15 V exposure and of order 4 mA at 3V. These currents formally violate NASA protocol for electric current exposures however the human factors associated with subjective consequences of noxious stimuli from low voltage exposure during the stressful conditions of EVA are an area of active inquiry.
NASA Technical Reports Server (NTRS)
Myers, Neil B.; Raitt, W. John; Gilchrist, Brian E.; Banks, Peter M.; Neubert, Torsten
1989-01-01
Currents measurements obtained by the two sections of the Cooperative High Altitude Rocket Gun Experiment-2 sounding rocket, a mother vehicle carrying a 1-keV electron gun and a daughter vehicle tethered to the mother, are compared with the results of previous models of current collection by a charged conductor in a plasma. The current collection of the daughter vehicle, a conducting body in the ionosphere, is found to agree with the Parker-Murphy (1967) limit. The additional current collection found for the mother vehicle is attributed to beam-plasma interactions.
NASA Astrophysics Data System (ADS)
Myers, Neil B.; Raitt, W. John; Gilchrist, Brian E.; Banks, Peter M.; Neubert, Torsten; Williamson, P. Roger; Sasaki, Susumu
1989-05-01
Currents measurements obtained by the two sections of the Cooperative High Altitude Rocket Gun Experiment-2 sounding rocket, a mother vehicle carrying a 1-keV electron gun and a daughter vehicle tethered to the mother, are compared with the results of previous models of current collection by a charged conductor in a plasma. The current collection of the daughter vehicle, a conducting body in the ionosphere, is found to agree with the Parker-Murphy (1967) limit. The additional current collection found for the mother vehicle is attributed to beam-plasma interactions.
Parasitic current collection by PASP Plus solar arrays
NASA Technical Reports Server (NTRS)
Davis, Victoria Ann; Gardner, Barbara M.
1995-01-01
Solar cells at potentials positive with respect to a surrounding plasma collect electrons. Current is collected by the exposed high voltage surfaces: the interconnects and the sides of the solar cells. This current is a drain on the array power that can be significant for high-power arrays. In addition, this current influences the current balance that determines the floating potential of the spacecraft. One of the objectives of the Air Force (PL/GPS) PASP Plus (Photovoltaic Array Space Power Plus Diagnostics) experiment is an improved understanding fo parasitic current collection. We have done computer modeling of parasitic current collection and have examined current collection flight data from the first year of operations. Prior to the flight we did computer modeling to improve our understanding of the physical processes that control parasitic current collection. At high potentials, the current rapidly rises due to a phenomenon called snapover. Under snapover conditions, the equilibrium potential distribution across the dielectric surface is such that part of the area is at potentials greater than the first crossover of the secondary yield curve. Therefore, each incident electron generates more than one secondary electron. The net effect is that the high potential area and the collecting area increase. We did two-dimensional calculations for the various geometries to be flown. The calculations span the space of anticipated plasma conditions, applied potential, and material parameters. We used the calculations and early flight data to develop an analytic formula for the dependence of the current on the primary problem variables. The analytic formula was incorporated into the EPSAT computer code. EPSAT allows us to easily extend the results to other conditions. PASP Plus is the principal experiment integrated onto the Advanced Photovoltaic and Electronics Experiments (APEX) satellite bus. The experiment is testing twelve different solar array designs. Parasitic current collection is being measured for eight of the designs under various operational and environment conditions. We examined the current collected as a function of the various parameters for the six non-concentrator designs. The results are similar to those obtained in previous experiments and predicted by the calculations. We are using the flight data to validate the analytic formula developed. The formula can be used to quantify the parasitic current collected. Anticipating the parasitic current value allows the spacecraft designer to include this interaction when developing the design.
Space plasma contactor research, 1987
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.
1988-01-01
A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-06
...-5501, Electronic Diversity Visa Entry Form, OMB Control Number 1405-0153 ACTION: Notice of request for... Collection: Electronic Diversity Visa Entry Form. OMB Control Number: 1405-0153. Type of Request: Extension of Currently Approved Collection. Originating Office: Bureau of Consular Affairs, Office of Visa...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... electronic funds transfer information to maintain its vendor (credit union) records to make electronic... maintain current electronic funds transfer data for its vendor (credit union) electronic routing and... the information on the respondents such as through the use of automated collection techniques or other...
Measurement of collective dynamical mass of Dirac fermions in graphene.
Yoon, Hosang; Forsythe, Carlos; Wang, Lei; Tombros, Nikolaos; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Kim, Philip; Ham, Donhee
2014-08-01
Individual electrons in graphene behave as massless quasiparticles. Unexpectedly, it is inferred from plasmonic investigations that electrons in graphene must exhibit a non-zero mass when collectively excited. The inertial acceleration of the electron collective mass is essential to explain the behaviour of plasmons in this material, and may be directly measured by accelerating it with a time-varying voltage and quantifying the phase delay of the resulting current. This voltage-current phase relation would manifest as a kinetic inductance, representing the reluctance of the collective mass to accelerate. However, at optical (infrared) frequencies, phase measurements of current are generally difficult, and, at microwave frequencies, the inertial phase delay has been buried under electron scattering. Therefore, to date, the collective mass in graphene has defied unequivocal measurement. Here, we directly and precisely measure the kinetic inductance, and therefore the collective mass, by combining device engineering that reduces electron scattering and sensitive microwave phase measurements. Specifically, the encapsulation of graphene between hexagonal boron nitride layers, one-dimensional edge contacts and a proximate top gate configured as microwave ground together enable the inertial phase delay to be resolved from the electron scattering. Beside its fundamental importance, the kinetic inductance is found to be orders of magnitude larger than the magnetic inductance, which may be utilized to miniaturize radiofrequency integrated circuits. Moreover, its bias dependency heralds a solid-state voltage-controlled inductor to complement the prevalent voltage-controlled capacitor.
Theory of plasma contactors in ground-based experiments and low Earth orbit
NASA Technical Reports Server (NTRS)
Gerver, M. J.; Hastings, Daniel E.; Oberhardt, M. R.
1990-01-01
Previous theoretical work on plasma contactors as current collectors has fallen into two categories: collisionless double layer theory (describing space charge limited contactor clouds) and collisional quasineutral theory. Ground based experiments at low current are well explained by double layer theory, but this theory does not scale well to power generation by electrodynamic tethers in space, since very high anode potentials are needed to draw a substantial ambient electron current across the magnetic field in the absence of collisions (or effective collisions due to turbulence). Isotropic quasineutral models of contactor clouds, extending over a region where the effective collision frequency upsilon sub e exceeds the electron cyclotron frequency omega sub ce, have low anode potentials, but would collect very little ambient electron current, much less than the emitted ion current. A new model is presented, for an anisotropic contactor cloud oriented along the magnetic field, with upsilon sub e less than omega sub ce. The electron motion along the magnetic field is nearly collisionless, forming double layers in that direction, while across the magnetic field the electrons diffuse collisionally and the potential profile is determined by quasineutrality. Using a simplified expression for upsilon sub e due to ion acoustic turbulence, an analytic solution has been found for this model, which should be applicable to current collection in space. The anode potential is low and the collected ambient electron current can be several times the emitted ion current.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
... Collection Activities: Form G-639, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form G- 639, Freedom of Information/Privacy... technological collection techniques or other forms of information technology, e.g., permitting electronic...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-07
... Collection Activities: Form G-646, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form G- 646, Sworn Statement of Refugee... technological collection techniques or other forms of information technology, e.g., permitting electronic...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... Collection Activities: Form G-646, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form G- 646, Sworn Statement of Refugee... technological collection techniques or other forms of information technology, e.g., permitting electronic...
Effects of neutral gas release on current collection during the CHARGE-2 rocket experiment
NASA Technical Reports Server (NTRS)
Gilchrist, B. E.; Banks, P. M.; Neubert, T.; Williamson, P. R.; Myers, Neil B.; Raitt, W. John; Sasaki, S.
1990-01-01
Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged rocket payload in the ionosphere are reported. These observations were made during the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother/daughter payload system. The current collection enhancement was observed at the daughter payload located 100 to 400 m away from the mother which was firing an energetic electron beam. The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. These results can also be compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode. Experimental observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated daughter payload in the nighttime ionosphere were made. These observations were derived from the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother-daughter payload system. The rocket flew from White Sands Missile Range (WSMR) in December, 1985. The rocket achieved an altitude of 261 km and carried a 1 keV electron beam emitting up to 48 mA of current (Myers, et al., 1989a). The mother payload, carried the electron beam source, while the daughter acted as a remote current collection and observation platform and reached a distance of 426 m away from the main payload. Gas emissions at the daughter were due to periodic thruster jet firings to maintain separation velocity between the two payloads.
Eminaga, O; Semjonow, A; Oezguer, E; Herden, J; Akbarov, I; Tok, A; Engelmann, U; Wille, S
2014-01-01
The integrity of collection protocols in biobanking is essential for a high-quality sample preparation process. However, there is not currently a well-defined universal method for integrating collection protocols in the biobanking information system (BIMS). Therefore, an electronic schema of the collection protocol that is based on Extensible Markup Language (XML) is required to maintain the integrity and enable the exchange of collection protocols. The development and implementation of an electronic specimen collection protocol schema (eSCPS) was performed at two institutions (Muenster and Cologne) in three stages. First, we analyzed the infrastructure that was already established at both the biorepository and the hospital information systems of these institutions and determined the requirements for the sufficient preparation of specimens and documentation. Second, we designed an eSCPS according to these requirements. Finally, a prospective study was conducted to implement and evaluate the novel schema in the current BIMS. We designed an eSCPS that provides all of the relevant information about collection protocols. Ten electronic collection protocols were generated using the supplementary Protocol Editor tool, and these protocols were successfully implemented in the existing BIMS. Moreover, an electronic list of collection protocols for the current studies being performed at each institution was included, new collection protocols were added, and the existing protocols were redesigned to be modifiable. The documentation time was significantly reduced after implementing the eSCPS (5 ± 2 min vs. 7 ± 3 min; p = 0.0002). The eSCPS improves the integrity and facilitates the exchange of specimen collection protocols in the existing open-source BIMS.
Computer modeling of current collection by the CHARGE-2 mother payload
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Lilley, J. R., Jr.; Katz, I.; Neubert, T.; Myers, Neil B.
1990-01-01
The three-dimensional computer codes NASCAP/LEO and POLAR have been used to calculate current collection by the mother payload of the CHARGE-2 rocket under conditions of positive and negative potential up to several hundred volts. For negative bias (ion collection), the calculations lie about 25 percent above the data, indicating that the ions were less dense, colder, or heavier than the input parameters. For positive bias (electron collection), NASCAP/LEO and POLAR calculations show similar agreement with the measurements at the highest altitudes. This agreement indicates that the current is classically magnetically limited, even during electron beam emission. However, the calculated values fall well below the data at lower altitudes. It is suggested that beam-plasma-neutral interactions are responsible for the high values of collected current at altitudes below 240 km.
Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere
NASA Technical Reports Server (NTRS)
Gilchrist, Brian E.; Banks, Peter M.; Neubert, Torsten; Williamson, P. Roger; Myers, Neil B.
1990-01-01
Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). These results are interpreted in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the 'ignited' mode.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... Collection Activities: Form G-28, Revision of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form G- 28, Notice of Entry of Appearance... technology, e.g., permitting electronic submission of responses. Overview of This information collection: (1...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... Collection Activities: Form G-639, Revision of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form G- 639, Freedom of Information/Privacy... other forms of information technology, e.g., permitting electronic submission of responses. Overview of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-01
... Collection Activities: Form G-646, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-day Notice of Information Collection Under Review: Form G- 646, Sworn Statement of Refugee... information technology, e.g., permitting electronic submission of responses. Overview of This information...
76 FR 26776 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... current collection of information to the Office of Management and Budget for approval. The Securities and Exchange Commission has begun the design of a new Electronic Data Collection System database (the Database..., Washington, DC 20549-0213. Extension: Electronic Data Collection System; OMB Control No. 3235-0672; SEC File...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... transfer information to maintain its vendor (credit union) records to make electronic payments to credit... current electronic funds transfer data for its vendor (credit union) electronic routing and transit data... such as through the use of automated collection techniques or other forms of information technology. It...
A Comparative Study on Electronic versus Traditional Data Collection in a Special Education Setting
ERIC Educational Resources Information Center
Ruf, Hernan Dennis
2012-01-01
The purpose of the current study was to determine the efficiency of an electronic data collection method compared to a traditional paper-based method in the educational field, in terms of the accuracy of data collected and the time required to do it. In addition, data were collected to assess users' preference and system usability. The study…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... Collection Activities: Form G-845 and Supplement; Revision of a Currently Approved Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection Under Review: Form G- 845 and Supplement... other forms of information technology, e.g., permitting electronic submission of responses. Overview of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
..., including the use of electronic technology, without reducing the quality of the collected information. All... project includes a literature review of current guidance and practices, a technical report on performance... burden could be minimized, including the use of electronic technology, without reducing the quality of...
ERIC Educational Resources Information Center
Duy, Joanna; Vaughan, Liwen
2003-01-01
Vendor-provided electronic resource usage statistics are not currently standardized across vendors. This study investigates the feasibility of using locally collected data to check the reliability of vendor-provided data. Vendor-provided data were compared with local data collected from North Carolina State University (NCSU) Libraries' Web…
Laboratory experiments on plasma contactors
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.; Williams, John D.
1990-01-01
Experimental results describing the operation of hollow cathode plasma contactors collecting and emitting electrons from and to an ambient plasma at current levels of the order of one ampere are presented. The voltage drops induced between a contactor and an ambient plasma are shown to be a few tens of volts at such current levels. The development of a double sheath and the production of substantial numbers of ions by electrons streaming across it are associated with the electron collection process. The development of a complex potential structure including a high potential hill just downstream of the cathode orifice is shown to characterize typical contactor emitting electrons.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... information technology, e.g., permitting electronic submission of responses. Overview of This Information... additional information should be directed to: John Ramsay, Program (Forms) Manager, U.S. Immigration and... Information Collection Activities: Extension, Without Change, of a Currently Approved Collection; Comment...
Langmuir-Probe Measurements in Flowing-Afterglow Plasmas
NASA Technical Reports Server (NTRS)
Johnsen, R.; Shunko, E. V.; Gougousi, T.; Golde, M. F.
1994-01-01
The validity of the orbital-motion theory for cylindrical Langmuir probes immersed in flowing- afterglow plasmas is investigated experimentally. It is found that the probe currents scale linearly with probe area only for electron-collecting but not for ion-collecting probes. In general, no agreement is found between the ion and electron densities derived from the probe currents. Measurements in recombining plasmas support the conclusion that only the electron densities derived from probe measurements can be trusted to be of acceptable accuracy. This paper also includes a brief derivation of the orbital-motion theory, a discussion of perturbations of the plasma by the probe current, and the interpretation of plasma velocities obtained from probe measurements.
Current-limited electron beam injection
NASA Technical Reports Server (NTRS)
Stenzel, R. L.
1977-01-01
The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.
Electron beam induced current in the high injection regime.
Haney, Paul M; Yoon, Heayoung P; Koirala, Prakash; Collins, Robert W; Zhitenev, Nikolai B
2015-07-24
Electron beam induced current (EBIC) is a powerful technique which measures the charge collection efficiency of photovoltaics with sub-micron spatial resolution. The exciting electron beam results in a high generation rate density of electron-hole pairs, which may drive the system into nonlinear regimes. An analytic model is presented which describes the EBIC response when the total electron-hole pair generation rate exceeds the rate at which carriers are extracted by the photovoltaic cell, and charge accumulation and screening occur. The model provides a simple estimate of the onset of the high injection regime in terms of the material resistivity and thickness, and provides a straightforward way to predict the EBIC lineshape in the high injection regime. The model is verified by comparing its predictions to numerical simulations in one- and two-dimensions. Features of the experimental data, such as the magnitude and position of maximum collection efficiency versus electron beam current, are consistent with the three-dimensional model.
Metal current collect protected by oxide film
Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.
2004-05-25
Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.
77 FR 25438 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-30
... consideration. ADDRESSES: You may submit comments by any of the following methods: Electronic: CFPB_Public_PRA... agencies and the general public. Nearly all information collection will involve the use of electronic communication or other forms of information technology and telephonic means. Current Actions: Request for new...
Code of Federal Regulations, 2011 CFR
2011-01-01
...-on requests, from individuals (including individuals in control groups) under treatment or clinical... electronic format), to place the currently valid OMB control number on the front page of the collection of... valid OMB control number in the instructions, near the title of the electronic collection instrument, or...
Code of Federal Regulations, 2012 CFR
2012-01-01
...-on requests, from individuals (including individuals in control groups) under treatment or clinical... electronic format), to place the currently valid OMB control number on the front page of the collection of... valid OMB control number in the instructions, near the title of the electronic collection instrument, or...
Plasma Interaction with International Space Station High Voltage Solar Arrays
NASA Technical Reports Server (NTRS)
Heard, John W.
2002-01-01
The International Space Station (ISS) is presently being assembled in low-earth orbit (LEO) operating high voltage solar arrays (-160 V max, -140 V typical with respect to the ambient atmosphere). At the station's present altitude, there exists substantial ambient plasma that can interact with the solar arrays. The biasing of an object to an electric potential immersed in plasma creates a plasma "sheath" or non-equilibrium plasma around the object to mask out the electric fields. A positively biased object can collect electrons from the plasma sheath and the sheath will draw a current from the surrounding plasma. This parasitic current can enter the solar cells and effectively "short out" the potential across the cells, reducing the power that can be generated by the panels. Predictions of collected current based on previous high voltage experiments (SAMPIE (Solar Array Module Plasma Interactions Experiment), PASP+ (Photovoltaic Array Space Power) were on the order of amperes of current. However, present measurements of parasitic current are on the order of several milliamperes, and the current collection mainly occurs during an "eclipse exit" event, i.e., when the space station comes out of darkness. This collection also has a time scale, t approx. 1000 s, that is much slower than any known plasma interaction time scales. The reason for the discrepancy between predictions and present electron collection is not understood and is under investigation by the PCU (Plasma Contactor Unit) "Tiger" team. This paper will examine the potential structure within and around the solar arrays, and the possible causes and reasons for the electron collection of the array.
Plasma contactor research - 1991
NASA Technical Reports Server (NTRS)
Buchholtz, Brett; Williams, John D.; Wilbur, Paul J.
1992-01-01
A report describing the operating principles of hollow-cathode-based plasma contactors emitting or collecting electrons from an ambient plasma is summarized. Preliminary experiments conducted to determine the noise generated by these plasma contactors in the emission-current return line and in the plasma near it are described. These noise data are measured as current fluctuations in the return line and to the Langmuir probe and then analyzed using a fast Fourier transform technique. The spectral compositions of the data are characterized using power spectral density plots which are examined to identify possible noise source(s) and production mechanism(s). The precautions taken in the construction and calibration of the instrumentation to assure adequate frequency response are described. Experimental results show that line-current noise levels are typically 2 percent of the electron current being emitted or collected. However, noise levels increase to as much as 20 percent of the electron current at a few electron-collection operating conditions. The frequencies associated with most of the noise were harmonics of the 60 Hz input to system power supplies. Plasma noise had characteristics similar in magnitude and frequency to those for the return-line noise, but they contained additional features at frequencies considered to be related to ion-acoustic instabilities. Also discussed is a new probe positioning system built to facilitate future plasma-contractor research.
High-voltage plasma interactions calculations using NASCAP/LEO
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.
1990-01-01
This paper reviews four previous simulations (two laboratory and two space-flight) of interactions of a high-voltage spacecraft with a plasma under low-earth orbit conditions, performed using a three-dimensional computer code NASCAP/LEO. Results show that NASCAP/LEO can perform meaningful simulations of high-voltage plasma interactions taking into account three-dimensional effects of geometry, spacecraft motion, and magnetic field. Two new calculations are presented: (1) for current collection by 1-mm pinholes in wires (showing that a pinhole in a wire can collect far more current than a similar pinhole in a flat plate); and (2) current collection by Charge-2 mother vehicle launched in December 1985. It is shown that the Charge-2 calculations predicted successfully ion collection at negative bias, the floating potential of a probe outside or inside the sheath under negative bias conditions, and magnetically limited electron collection under electron beam operation at high altitude.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
...] Agency Information Collection Activities: Proposed Collection; Comments Requested: Notification of Change... through the use of appropriate automated, electronic, mechanical, or other technological collection... currently approved collection. (2) Title of the Form/Collection: Notification of Change of Mailing or...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-26
...] Agency Information Collection Activities; Proposed collection; Comments Requested: Notification of Change... technological collection techniques or other forms of information technology, e.g., permitting electronic... currently approved collection. (2) Title of the Form/Collection: Notification of Change of Mailing or...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-11
...] Agency Information Collection Activities: Proposed Collection; Comments Requested; Appeals of Background...., permitting electronic submission of responses. Summary of Information Collection (1) Type of Information Collection: Extension of a currently approved collection. (2) Title of the Form/Collection: Appeals of...
Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells
Poplawsky, Jonathan D.; Parish, Chad M.; Leonard, Donovan N.; ...
2014-05-30
To achieve high-efficiency polycrystalline CdTe-based thin-film solar cells, the CdTe absorbers must go through a post-deposition CdCl 2 heat treatment followed by a Cu diffusion step. To better understand the roles of each treatment with regard to improving grains, grain boundaries, and interfaces, CdTe solar cells with and without Cu diffusion and CdCl 2 heat treatments are investigated using cross-sectional electron beam induced current, electron backscatter diffraction, and scanning transmission electron microscope techniques. The evolution of the cross-sectional carrier collection profile due to these treatments that cause an increase in short-circuit current and higher open-circuit voltage are identified. Additionally, anmore » increased carrier collection in grain boundaries after either/both of these treatments is revealed. The increased current at the grain boundaries is shown to be due to the presence of a space charge region with an intrinsic carrier collection profile width of ≈350 nm. Scanning transmission electron microscope electron-energy loss spectroscopy shows a decreased Te and increased Cl concentration in grain boundaries after treatment, which causes the inversion. Furthermore, each treatment improves the overall carrier collection efficiency of the cell separately, and, therefore, the benefits realized by each treatment are shown to be independent of each other.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trushnikov, D. N., E-mail: trdimitr@yandex.ru; Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg
Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distancemore » between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.« less
NASA Astrophysics Data System (ADS)
Trushnikov, D. N.; Mladenov, G. M.; Belenkiy, V. Ya.; Koleva, E. G.; Varushkin, S. V.
2014-04-01
Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 1016 m-3, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A.m-2, i.e. 8 mA for a 3-10 cm2 collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... collected will be collected through the use of an electronic forms engine or by hand written submission...-0131. Type of Request: Extension of a Currently Approved Collection. Originating Office: Office of...
75 FR 81648 - Agency Information Collection Activities: Proposed Collection; Comments Requested
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... of information collection under review: notification of change of mailing or premise address. The... technological collection techniques or other forms of information technology, e.g., permitting electronic...: Extension of a currently approved collection. (2) Title of the Form/Collection: Notification of Change of...
NASA Technical Reports Server (NTRS)
Mantas, G. P.; Hanson, W. B.
1987-01-01
Approximate expressions for the electron current collected by a planar retarding potential analyzer (RPA) mounted on a moving, conducting, charged spacecraft are derived. They are utilized for the analysis of electron current data obtained by the RPAs on the Viking spacecraft in the ionosphere of Mars and in the disturbed and undisturbed solar wind near this planet. It is shown that contamination currents by photoelectrons emitted from the spacecraft can be distinguished and removed from the signal. Parameters deduced from the analysis of RPA electron sampling data are the multicomponent electron temperatures, the number densities, and the spacecraft potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhichao, E-mail: zcyang.phys@gmail.com; Zhang, Yuewei; Krishnamoorthy, Sriram
We report on a tunneling hot electron transistor amplifier with common-emitter current gain greater than 10 at a collector current density in excess of 40 kA/cm{sup 2}. The use of a wide-bandgap GaN/AlN (111 nm/2.5 nm) emitter was found to greatly improve injection efficiency of the emitter and reduce cold electron leakage. With an ultra-thin (8 nm) base, 93% of the injected hot electrons were collected, enabling a common-emitter current gain up to 14.5. This work improves understanding of the quasi-ballistic hot electron transport and may impact the development of high speed devices based on unipolar hot electron transport.
A model of electron collecting plasma contractors
NASA Technical Reports Server (NTRS)
Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.
1989-01-01
A model of plasma contractors is being developed, which can be used to describe electron collection in a laboratory test tank and in the space environment. To validate the model development, laboratory experiments are conducted in which the source plasma is separated from the background plasma by a double layer. Model calculations show that an increase in ionization rate with potential produces a steep rise in collected current with increasing potential.
76 FR 28791 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... participation for expenditures under their Medicaid Electronic Health Record Incentive Program related to health... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Medicare & Medicaid Services [Document... currently approved collection; Title of Information Collection: State Medicaid Health Information Technology...
NASA Astrophysics Data System (ADS)
Bonilla, L. L.; Carretero, M.; Segura, A.
2017-12-01
When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.
Bonilla, L L; Carretero, M; Segura, A
2017-12-01
When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.
Electronic reserves: copyright and permissions
Graves, Karen J.
2000-01-01
Electronic reserves present a new service option for libraries to provide needed materials during hours that the library is not open and to user groups located some distance from library collections. Possible changes to current copyright law and publishers permissions policies have delayed the development of electronic reserves in many libraries. This paper reviews the current state of electronic reserves materials in the publishing and library communities and presents the results of a survey of publishers to determine permissions policies for electronic materials. Issues of concern to both libraries and publishers are discussed. PMID:10658960
A droplet in the inter-electrode gap during gas metal arc welding
NASA Astrophysics Data System (ADS)
Nemchinsky, Valerian
2011-11-01
Electrical current flowing through a metallic droplet after its detachment from the wire anode during gas metal arc welding (GMAW) is considered. Although the droplet has much higher electrical conductivity compared with the conductivity of the surrounding plasma, current cannot enter the droplet freely since doing so demands igniting of the cathode spot responsible for electron emission. A new mechanism of current flow through a metallic droplet is suggested: one part of the droplet has a potential, which is slightly below the floating potential; this part of the droplet collects ions from the plasma. The remaining portion of the droplet has a potential difference, which is slightly above the floating one. The latter section collects electrons which recombine with the ions collected by the rest of the droplet's surface. The maximum electric current that can flow through the droplet is estimated. It is shown that this current is on the order of a few tens of amperes.
Ballistic-Electron-Emission Microscope
NASA Technical Reports Server (NTRS)
Kaiser, William J.; Bell, L. Douglas
1990-01-01
Ballistic-electron-emission microscope (BEEM) employs scanning tunneling-microscopy (STM) methods for nondestructive, direct electrical investigation of buried interfaces, such as interface between semiconductor and thin metal film. In BEEM, there are at least three electrodes: emitting tip, biasing electrode, and collecting electrode, receiving current crossing interface under investigation. Signal-processing device amplifies electrode signals and converts them into form usable by computer. Produces spatial images of surface by scanning tip; in addition, provides high-resolution images of buried interface under investigation. Spectroscopic information extracted by measuring collecting-electrode current as function of one of interelectrode voltages.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
...-5501, Electronic Diversity Visa Entry Form, OMB Control Number 1405-0153 ACTION: Notice of request for... Visa Entry Form. OMB Control Number: 1405-0153. Type of Request: Extension of currently approved collection. Originating Office: Bureau of Consular Affairs, Office of Visa Services (CA/VO). Form Number: DS...
NASA Astrophysics Data System (ADS)
Chen, Hai-Yang; Jiang, Lan; Li, Da-Rang
2011-05-01
PN junctions and schottky diodes are widely employed as electron-hole pair collectors in electron beam induced current (EBIC) techniques and betavoltaic batteries, in which the recombination in depletion regions is ignored. We measured the beta particles induced electron-hole pairs recombination in the depletion region of a GaAs P+PN+ junction, based on comparisons between measured short currents and ideal values. The results show that only 20% electron-hole pairs in the depletion can be collected, causing the short current. This indicates an electron-hole pair diffusion length of 0.2μm in the depletion region. Hence, it is necessary to evaluate the recombination in the EBIC techniques and betavoltaic design.
Positive Voltage Hazard to EMU Crewman from Currents through Plasma
NASA Astrophysics Data System (ADS)
Kramer, Leonard; Hamilton, Doug; Mikatarian, Ronald; Thomas, Joseph; Koontz, Steven
2010-09-01
The International Space Station(ISS) in its transit through the ionosphere experiences a variable electrical potential between its bonded structure and the overlying ionospheric plasma. The 160 volt solar arrays on ISS are grounded negative and drive structure to negative floating potential(FP) relative to plasma. This potential is a result of the asymmetric collection properties of currents from ions and electrons moderated by geomagnetic; so called v Å~ B induction distributing an additional 20 volts both positive and negative across ISS’s main structural truss element. Since the space suit or extravehicular mobility unit(EMU) does not protect the crewperson from electrical shock, during extra vehicular activity(EVA) the person is exposed to a hazard from the potential when any of the several metallic suit penetrations come in direct contact with ISS structure. The moisture soaked garment worn by the crewperson and the large interior metal contact areas facilitate currents through the crewperson’s body. There are two hazards; Negative and Positive FP. The Negative hazard is the better known risk created by a shock hazard from arcing of anodized material on the EMU. Negative hazard has been controlled by plasma contactor units(PCU) containing a reserve of Xenon gas which is expelled from ISS. The PCU provide a ground path for the negative charge from the structure to flow to exterior plasma bringing ISS FP closer to zero. The understanding has now emerged that the operation of PCUs to protect the crewmen from negative voltage exposes him to low to moderate positive voltage(≤15V). Positive voltage is also a hazard as it focuses electrons onto exposed metal EMU penetrations completing a circuit from plasma through interior contact with the moist crewman’s body and on to ISS ground through any of several secondary isolated metal penetrations. The resulting direct current from positive voltage exposure is now identified as an electrical shock hazard. This paper describes the model of the EMU with a human body in the circuit that has been used by NASA to evaluate the low positive voltage hazard. The model utilizes the electron collection characterization from on orbit Langmuir probe data as representative of electron collection to a positive charged surface with a wide range of on orbit plasma temperature and density conditions. The data has been unified according to nonlinear theoretical temperature and density variation of the electron saturated probe current collection theory and used as a model for the electron collection at EMU surfaces. Vulnerable paths through the EMU connecting through the crewman’s body have been identified along with electrical impedance of the exposed body parts. The body impedance information is merged with the electron collection characteristics in circuit simulation software known as SPICE. The assessment shows that currents can be on the order of 20 mA for a 15 V exposure and of order 4 mA at 3V. These currents formally violate NASA protocol for electric current exposures. However the human factors associated with subjective consequences of noxious stimuli from low voltage exposure during the stressful conditions of EVA are an area of active inquiry.
NASA Technical Reports Server (NTRS)
Williamson, P. R.; Banks, P. M.
1976-01-01
The objectives of the Tethered Balloon Current Generator experiment are to: (1) generate relatively large regions of thermalized, field-aligned currents, (2) produce controlled-amplitude Alfven waves, (3) study current-driven electrostatic plasma instabilities, and (4) generate substantial amounts of power or propulsion through the MHD interaction. A large balloon (a diameter of about 30 m) will be deployed with a conducting surface above the space shuttle at a distance of about 10 km. For a generally eastward directed orbit at an altitude near 400 km, the balloon, connected to the shuttle by a conducting wire, will be positive with respect to the shuttle, enabling it to collect electrons. At the same time, the shuttle will collect positive ions and, upon command, emit an electron beam to vary current flow in the system.
A summary of the CHARGE-2 electron beam rocket experiment
NASA Technical Reports Server (NTRS)
Myers, Neil B.; Raitt, W. John
1990-01-01
The major purpose of the CHARGE-2 experiment was to study the interaction of a vehicle at high potential (up to 1 kV) with the ionosphere. The payload consisted of two parts that were separated during the flight. The high potential was obtained by electron emission from the mother vehicle, and by voltage-biasing of the daughter vehicle. Measurements of transient vehicle potential were obtained with a sample internal of 100 ns. The mother current collection exhibited magnetic limitations above 240 km. Below 240 km the mother collected a current far in excess of the magnetically limited models. This demonstrates the ability of an electron beam to interact with the neutral atmosphere at altitudes below 240 km.
Assessing Ongoing Electronic Resource Purchases: Linking Tools to Synchronize Staff Workflows
ERIC Educational Resources Information Center
Carroll, Jeffrey D.; Major, Colleen; O'Neal, Nada; Tofanelli, John
2012-01-01
Ongoing electronic resource purchases represent a substantial proportion of collections budgets. Recognizing the necessity of systematic ongoing assessment with full selector engagement, Columbia University Libraries appointed an Electronic Resources Assessment Working Group to promote the inclusion of such resources within our current culture of…
A Planar Hall Thruster for Investigating Electron Mobility in ExB Devices (Preprint)
2007-08-24
Hall thruster that emits and collects the Hall current across a planar discharge channel is described. The planar Hall thruster (PHT) is being investigated for use as a test bed to study electron mobility in ExB devices. The planar geometry attempts to de-couple the complex electron motion found in annular thrusters by using simplified geometry. During this initial test, the PHT was operated at discharge voltages between 50-150 V to verify operability and stability of the device. Hall current was emitted by hollow cathode electron sources and
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... technological collection techniques or other forms of information technology, e.g. permitting electronic... Forensic Casework DNA Backlog Programs over time and to diagnose performance problems in current casework... performance problems, but also to better understand whether the benefits of DNA collection and testing is in...
Automated pinhole-aperture diagnostic for the current profiling of TWT electron beams
NASA Astrophysics Data System (ADS)
Wei, Yu-Xiang; Huang, Ming-Guang; Liu, Shu-Qing; Liu, Jin-Yue; Hao, Bao-Liang; Du, Chao-Hai; Liu, Pu-Kun
2013-02-01
The measurement system reported here is intended for use in determining the current density distribution of electron beams from Pierce guns for use in TWTs. The system was designed to automatically scan the cross section of the electron beam and collect the high-resolution data with a Faraday cup probe mounted on a multistage manipulator using the LabVIEW program. A 0.06 mm thick molybdenum plate with a pinhole and a Faraday cup mounted as a probe assembly was employed to sample the electron beam current with 0.5 µm space resolution. The thermal analysis of the probe with pulse beam heating was discussed. A 0.45 µP electron gun with the expected minimum beam radius 0.42 mm was measured and the three-dimensional current density distribution, beam envelope and phase space were presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-05
... Reporting Data Dictionary (available electronically at https://www.federalreporting.gov/federalreporting... the Recipient Reporting Data Dictionary. Below are the basic reporting requirements to be reported on...
76 FR 53712 - Notice of Request for the Extension of a Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
...: http://www.regulations.gov . Follow the instructions for submitting comments on the U.S. Government... accepting electronic comments.) All electronic submissions must be made to the U.S. Government electronic... laws. Respondents: State and local government, private non-profit organizations and public...
3D-measurement using a scanning electron microscope with four Everhart-Thornley detectors
NASA Astrophysics Data System (ADS)
Vynnyk, Taras; Scheuer, Renke; Reithmeier, Eduard
2011-06-01
Due to the emerging degree of miniaturization in microstructures, Scanning-Electron-Microscopes (SEM) have become important instruments in the quality assurance of chip manufacturing. With a two- or multiple detector system for secondary electrons, a SEM can be used for the reconstruction of three dimensional surface profiles. Although there are several projects dealing with the reconstruction of three dimensional surfaces using electron microscopes with multiple Everhart-Thornley detectors (ETD), there is no profound knowledge of the behaviour of emitted electrons. Hence, several values, which are used for reconstruction algorithms, such as the photometric method, are only estimates; for instance, the exact collection efficiency of the ETD, which is still unknown. This paper deals with the simulation of electron trajectories in a one-, two- and four-detector system with varying working distances and varying grid currents. For each detector, the collection efficiency is determined by taking the working distance and grid current into account. Based on the gathered information, a new collection grid, which provides a homogenous emission signal for each detector of a multiple detector system, is developed. Finally, the results of the preceding tests are utilized for a reconstruction of a three dimensional surface using the photometric method with a non-lambert intensity distribution.
Improved Electronic Control for Electrostatic Precipitators
NASA Technical Reports Server (NTRS)
Johnston, D. F.
1986-01-01
Electrostatic precipitators remove particulate matter from smoke created by burning refuse. Smoke exposed to electrostatic field, and particles become electrically charged and migrate to electrically charged collecting surfaces. New microprocessor-based electronic control maintains precipitator power at maximum particulate-collection level. Control automatically senses changes in smoke composition due to variations in fuel or combustion and adjusts precipitator voltage and current accordingly. Also, sensitive yet stable fault detection provided.
A vacuum sealed high emission current and transmission efficiency carbon nanotube triode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Yunsong; Jiangsu Key Laboratory of Optoelectronic Technology, Nanjing Normal University, Nanjing 210023; Wang, Qilong
A vacuum sealed carbon nanotubes (CNTs) triode with a concave and spoke-shaped Mo grid is presented. Due to the high aperture ratio of the grid, the emission current could be modulated at a relatively high electric field. Totally 75 mA emission current has been obtained from the CNTs cathode with the average applied field by the grid shifting from 8 to 13 V/μm. Whilst with the electron transmission efficiency of the grid over 56%, a remarkable high modulated current electron beam over 42 mA has been collected by the anode. Also contributed by the high aperture ration of the grid,more » desorbed gas molecules could flow away from the emission area rapidly when the triode has been operated at a relative high emission current, and finally collected by a vacion pump. The working pressure has been maintained at ∼1 × 10{sup −7} Torr, seldom spark phenomena occurred. Nearly perfect I-V curve and corresponding Fowler-Nordheim (FN) plot confirmed the accuracy of the measured data, and the emission current was long term stable and reproducible. Thusly, this kind of triode would be used as a high-power electron source.« less
Multiscale three-dimensional simulations of charge gain and transport in diamond
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Busby, R.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Chang, X.; Keister, J. W.; Wu, Q.; Muller, E.
2010-10-01
A promising new concept of a diamond-amplified photocathode for generation of high-current, high-brightness, and low thermal emittance electron beams was recently proposed and is currently under active development. Detailed understanding of physical processes with multiple energy and time scales is required to design reliable and efficient diamond-amplifier cathodes. We have implemented models, within the VORPAL computational framework, to simulate secondary electron generation and charge transport in diamond in order to facilitate the investigation of the relevant effects involved. The models include inelastic scattering of electrons and holes for generation of electron-hole pairs, elastic, phonon, and charge impurity scattering. We describe the integrated modeling capabilities we developed and present results on charge gain and collection efficiency as a function of primary electron energy and applied electric field. We compare simulation results with available experimental data. The simulations show an overall qualitative agreement with the observed charge gain from transmission mode experiments and have enabled better understanding of the collection efficiency measurements.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... electronics, small appliances, furniture, and other transactions. (Only consumer leases for more than four... transactions reflect a net decrease from prior FTC estimates, given current market conditions and the new PRA...
NASA Astrophysics Data System (ADS)
Myers, Neil Brubaker
The CHARGE-2 sounding rocket payload was designed to measure the transient and steady-state electrical charging of a space vehicle at low-Earth-orbit altitudes during the emission of a low-power electron beam from the vehicle. In addition to the electron gun, the payload contained several diagnostics to monitor plasma and waves resulting from the beam/space/vehicle interaction. The payload was separated into two sections, the larger section carried a 1-keV electron gun and was referred to as the mother vehicle. The smaller section, referred to as the daughter, was connected to the mother by an insulated, conducting tether and was deployed to a distance of up to 426 m across the geomagnetic field. Payload stabilization was obtained using thrusters that released cold nitrogen gas. In addition to performing electron beam experiments, the mother vehicle contained a high-voltage power supply capable of applying up to +450 V and 28 mA to the daughter through the tether. Steady-state potentials of up to 560 V were measured for the mother vehicle. The daughter attained potentials of up to 1000 V relative to the background ionosphere and collected currents up to 6.5 mA. Thruster firings increased the current collection to the vehicle firing the thrusters and resulted in neutralization of the payload. The CHARGE-2 experiment was unique in that for the first time a comparison was made of the current collection between an electron beam-emitting vehicle and a non-emitting vehicle at high potential.
Experimental Simulation of the Interaction of Biased Solar Arrays with the Space Plasma
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1981-01-01
The phenomenon of unexpectedly large leakage currents collected by small exposed areas of high voltage solar arrays operating in a plasma environment was investigated. Polyimide (Kapton) was the insulating material used in all tests. Both positive bias (electron collection) and negative bias (ion collection) tests were performed. A mode change in the electron collection mechanism was associated with a glow discharge process and was found to be related to the neutral background density. Results indicate that the glow discharge collection mode does not occur in a space environment where the background density is considerably lower than that of the vacuum facility used.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... academic or language-training institution, to include approved private elementary and secondary schools and... appropriate automated, electronic, mechanical, or other technological collection techniques or other forms of... Secretary of Education, to develop and conduct a program to collect information on nonimmigrant foreign...
76 FR 69328 - Proposed Collection; Comment Request; Race and National Origin Identification
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... DEPARTMENT OF THE TREASURY Proposed Collection; Comment Request; Race and National Origin... INFORMATION: OMB Number: 1505-0195. Type of Review: Revision of a currently approved collection. Title: Race...Connector, is used to capture race and national origin information electronically from an applicant. The...
Analysis of ProSEDS Test of Bare-Tether Collection
NASA Technical Reports Server (NTRS)
Sanmartin, J. R.; Lorenzini, E. C.; Estes, R. D.; Charro, M.; Cosmo, M. L.
2003-01-01
NASA's tether experiment ProSEDS will be placed in orbit on board a Delta-II rocket to test bare-tether electron collection, deorbiting of the rocket second stage, and the system dynamic stability. ProSEDS performance will vary because ambient conditions change along the orbit and tether-circuit bulk elements at the cathodic end follow the step-by-step sequence for the current cycles of operating modes (open-circuit, shunt and resistor modes for primary cycles; shunt and battery modes for secondary cycles). In this work we discuss expected ProSEDS values of the ratio L,/L*, which jointly with cathodic bulk elements determines bias and current tether profiles; L, is tether length, and L* (changing with tether temperature and ionospheric plasma density and magnetic field) is a characteristic length gauging ohmic versus baretether collection impedances. We discuss how to test bare-tether electron collection during primary cycles, using probe measurements of plasma density, measurements of cathodic current in resistor and shunt modes, and an estimate of tether temperature based on ProSEDS orbital position at the particular cycle concerned. We discuss how a temperature misestimate might occasionally affect the test of bare-tether collection, and how introducing the battery mode in some primary cycles, for an additional current measurement, could obviate the need of a temperature estimate. We also show how to test bare-tether collection by estimating orbit-decay rate from measurements of cathodic current for the shunt and battery modes of secondary cycles.
Currents between tethered electrodes in a magnetized laboratory plasma
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Urrutia, J. M.
1989-01-01
Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.
EBIC investigation of hydrogenation of crystal defects in EFG solar silicon ribbons
NASA Technical Reports Server (NTRS)
Sullivan, T.; Ast, D. G.
1983-01-01
Changes in the contrast and resolution of defect structures in 205 Ohm-cm EFG polysilicon ribbon subjected to annealing and hydrogenation treatments were observed in a JEOL 733 Superprobe scanning electron microscope, using electron beam induced current (EBIC) collected at an A1 Schottky barrier. The Schottky barrier was formed by evaporation of A1 onto the cleaned and polished surface of the ribbon material. Measurement of beam energy, beam current, and the current induced in the Schottky diode enabled observations to be quantified. Exposure to hydrogen plasma increased charge collection efficiency. However, no simple causal relationship between the hydrogenation and charge collection efficiency could be inferred, because the collection efficiency also displayed an unexpected thermal dependence. Good quality intermediate-magnification (1000X-5400X) EBIC micrographs of several specific defect structures were obtained. Comparison of grown-in and stress-induced dislocations after annealing in vacuum at 500 C revealed that stress-induced dislocations are hydrogenated to a much greater degree than grown-in dislocations. The theoretical approximations used to predict EBIC contrast and resolution may not be entirely adequate to describe them under high beam energy and low beam current conditions.
NASA Astrophysics Data System (ADS)
Zanoni, Enrico; Meneghesso, Gaudenzio; Menozzi, Roberto
2000-03-01
Hot electron in III-V FETs can be indirectly monitored by measuring the current coming out from the gate when the device is biased at high electric fields. This negative current is due to the collection of holes generated by impact ionization in the gate-to drain region. Electroluminescence represents a powerful tool in order to characterize not only hot electrons but also material properties. By using spatially resolved emission microscopy it is possible to show that the light due to cold electron/hole recombination is emitted between the gate and the source (low electric field region), while the contribution due to hot electrons is emitted between the gate and the drain (high electric field region). Deep-traps created in the device by hot carriers can be analysed by means of drain current deep level transient spectroscopy and by transconductance frequency dispersion. Cathodoluminescence, optical beam induced current, X-ray spectroscopy, electron energy loss spectroscopy in combination with a transmission electron microscopy are powerful tools in order to identify and localize surface modification following hot-electron stress tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karas’, V. I., E-mail: karas@kipt.kharkov.ua; Kornilov, E. A.; Manuilenko, O. V.
2015-12-15
The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov–Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and inmore » the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.« less
NASA Astrophysics Data System (ADS)
Karas', V. I.; Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.
2015-12-01
The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov-Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... electronically transmitted federal tax payments. EFTPS (1) establishes and maintains a taxpayer data base which... elements for each taxpayer, and (4) electronically transmits taxpayer payment data to the IRS. Current...
Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals
NASA Astrophysics Data System (ADS)
Marchand, A.; El Hdiy, A.; Troyon, M.; Amiard, G.; Ronda, A.; Berbezier, I.
2012-04-01
Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope—tip in contact mode at a fixed position away from the beam spot of about 0.5 µm. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.
Induced charging of shuttle orbiter by high electron-beam currents
NASA Technical Reports Server (NTRS)
Liemohn, H. B.
1977-01-01
Emission of high-current electron beams that was proposed for some Spacelab payloads required substantial return currents to the orbiter skin in order to neutralize the beam charge. Since the outer skin of the vehicle was covered with approximately 1200 sq m of thermal insulation which has the dielectric quality of air and an electrical conductivity that was estimated by NASA at 10 to the -9 power to 10 to the -10 power mhos/m, considerable transient charging and local potential differences were anticipated across the insulation. The theory for induced charging of spacecraft due to operation of electron guns was only developed for spherical metal vehicles and constant emission currents, which were not directly applicable to the orbiter situation. Field-aligned collection of electron return current from the ambient ionosphere at orbiter altitudes provides up to approximately 150 mA on the conducting surfaces and approximately 2.4 A on the dielectric thermal insulation. Local ionization of the neutral atmosphere by energetic electron bombardment or electrical breakdown may provide somewhat more return current.
75 FR 53999 - Notice of Request for the Extension of Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-02
... identified by the docket number by only one of the following methods: 1. Web site: www.regulations.gov . Follow the instructions for submitting comments on the U.S. Government electronic docket site. (Note: The... comments.) All electronic submissions must be made to the U.S. Government electronic docket site at http...
NASA Astrophysics Data System (ADS)
Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.
1998-02-01
Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented.
78 FR 55238 - Notice of Request for Extension of a Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... performance of the functions of the agency, including whether the information will have practical utility; (b..., utility, and clarity of the information to be collected; and (d) ways to minimize the burden of the..., electronic, mechanical, or other technological collection techniques or other forms of information technology...
75 FR 13073 - Notice of Request for Extension of a Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... performance of the functions of the agency, including whether the information will have practical utility; (b..., utility, and clarity of the information to be collected; and (d) ways to minimize the burden of the..., electronic, mechanical, or other technological collection techniques or other forms of information technology...
Kireeff Covo, Michel
2013-07-09
A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.
78 FR 66077 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... Investigation Professional, Technical, and Administrative Positions.'' 2. Current OMB approval number: 3150-0033... 212, ``Qualifications Investigation, Professional, Technical, and Administrative Positions'' is used... writing or in electronic form will be made available for public inspection. Because your comments will not...
NASA Technical Reports Server (NTRS)
Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.
2010-01-01
The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine acceptable plasma electron current levels that can be collected by a single or combined fleet of ISS-docked VVs.
Preliminary chaotic model of snapover on high voltage solar cells
NASA Technical Reports Server (NTRS)
Mackey, Willie R.
1995-01-01
High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, snapover, is characterized by sudden enlargement of the current collection area across normally insulating surfaces generating enhanced electron current collection. Power drain on solar array power systems results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between glow area and bia potential as a consequence of the fold/cusp bifurcation in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang
2015-08-15
The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. Frommore » the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.« less
Generation of spin currents by surface plasmon resonance
Uchida, K.; Adachi, H.; Kikuchi, D.; Ito, S.; Qiu, Z.; Maekawa, S.; Saitoh, E.
2015-01-01
Surface plasmons, free-electron collective oscillations in metallic nanostructures, provide abundant routes to manipulate light–electron interactions that can localize light energy and alter electromagnetic field distributions at subwavelength scales. The research field of plasmonics thus integrates nano-photonics with electronics. In contrast, electronics is also entering a new era of spintronics, where spin currents play a central role in driving devices. However, plasmonics and spin-current physics have so far been developed independently. Here we report the generation of spin currents by surface plasmon resonance. Using Au nanoparticles embedded in Pt/BiY2Fe5O12 bilayer films, we show that, when the Au nanoparticles fulfill the surface-plasmon-resonance conditions, spin currents are generated across the Pt/BiY2Fe5O12 interface. This spin-current generation cannot be explained by conventional heating effects, requiring us to introduce nonequilibrium magnons excited by surface-plasmon-induced evanescent electromagnetic fields in BiY2Fe5O12. This plasmonic spin pumping integrates surface plasmons with spin-current physics, opening the door to plasmonic spintronics. PMID:25569821
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... matching to meet the reporting required by 7 CFR 210.17(g). The form is an intrinsic part of the accounting system currently being used by the subject programs to ensure proper reimbursement as well as to... reporting system and 100 percent of the information is collected through electronic means. The instructions...
75 FR 79438 - Notice of Request for the Extension of a Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
... Administration (FTA), DOT. ACTION: Notice of Request for Comments. SUMMARY: In accordance with the Paperwork... of Transportation's (DOT's) electronic docket is no longer accepting electronic comments.) All... users, without change, to http://www.regulations.gov . You may review DOT's complete Privacy Act...
78 FR 17470 - Proposed Collection; Comment Request for Regulation Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... Reduction Act of 1995, Public Law 104-13(44 U.S.C. 3506(c)(2)(A)). Currently, the IRS is soliciting comments concerning guidance necessary to facilitate business electronic filing (TD 9300(final)). DATES: Written....gov . SUPPLEMENTARY INFORMATION: Title: Guidance Necessary to Facilitate Business Electronic Filing...
Collective Acceleration with Rotating Relativistic Electron Beams.
1980-04-11
experiments[ where rela- tivistic electron beams were injected into neutral gas filled drift tubes . This paper presents results of recent experiments in...was applied in the drift tube . Rander7 has measured the beamfront velocity, ion yield and ion momentum distribution for non- rotating beams in hydrogen...fields (axial and azimuthal) and currents induced in the drift tube wall.8 Diode voltage and current are V - 900 kV, I - 80 kA for r" - 100 ns, with
Short wavelength limits of current shot noise suppression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nause, Ariel, E-mail: arielnau@post.tau.ac.il; Dyunin, Egor; Gover, Avraham
Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasmamore » wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.« less
E-Books: Are We on the Same Page?
ERIC Educational Resources Information Center
Bozarth, Sandra; Zhong, Ying
2016-01-01
Libraries are making great efforts acquiring, maintaining, and promoting electronic book (e-book) collections; therefore, understanding what preference users have regarding e-books will help with current and future collection-development decisions. For librarians to provide e-book resources and services effectively, a thorough understanding of…
Reading the 'Net--Books in Cyberspace.
ERIC Educational Resources Information Center
Foster, Janet
1999-01-01
Discusses electronic text collections, bookstores on the Web, reader advisories, cyber book reviews, and resources for librarians explaining how to locate online reading materials. Suggests that librarians can exploit online book resources to complement current collection-development strategies or use them as virtual reader's advisories. Cites 17…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
... Safety Assistance Programs (MCSAP).'' The information required consists of grant application preparation, quarterly reports and electronic data documenting the results of driver/vehicle inspections performed by the... Time per Response: Grant application preparation: 79.5 hours each; quarterly report preparation: 8...
NASA Technical Reports Server (NTRS)
Britt, E. J.
1978-01-01
The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.
Electrodynamic Propulsion System Tether Experiment (T-REX)
NASA Technical Reports Server (NTRS)
Johnson, L.; Fujii, H. A.; Sanmartin, J. R.
2010-01-01
A Japanese-led international team is developing a suborbital test of orbital-motion-limited (OML) bare wire anode current collection for application to electrodynamic tether (EDT) propulsion. The tether is a tape with a width of 25 mm, thickness of 0.05 mm, and is 300 m in length. This will be the first space test of OML theory. The mission will launch in the summer of 2010 using an S520 Sounding Rocket. During ascent, and above approximately 100 km in attitude, the tape tether will be deployed at a rate of approximately8 m/s. Once deployed, the tape tether will serve as an anode, collecting ionospheric electrons. The electrons will be expelled into space by a hollow cathode device, thereby completing the circuit and allowing current to flow. The total amount of current collected will be used to assess the validity of OML theory. This paper will describe the objectives of the proposed mission, the technologies to be employed, and the application of the results to future space missions using EDTs for propulsion or power generation
Fortissimo: A Japanese Space Test Of Bare Wire Anode Tethers
NASA Technical Reports Server (NTRS)
Johnson, Les; Fujii, H. A.; Sanmartin, J. R.
2008-01-01
A Japanese led international team is developing a suborbital test of orbital-motion-limited (OML) bare wire anode current collection for application to electrodynamic tether (EDT) propulsion. The tether is a tape with a width of 25 mm, thickness of 0.05 mm, and is 300 m in length. This will be the first space test of OML theory. The mission will launch in the summer of 2009 using an S520 Sounding Rocket. During ascent, and above approx. 100 km in attitude, the tape tether will be deployed at a rate of approx. 8 m/s. Once deployed, the tape tether will serve as an anode, collecting ionospheric electrons. The electrons will be expelled into space by a hollow cathode device, thereby completing the circuit and allowing current to flow. The total amount of current collected will be used to assess the validity of OML theory. This paper will describe the objectives of the proposed mission, the technologies to be employed, and the application of the results to future space missions using EDTs for propulsion or power generation.
Saturation current and collection efficiency for ionization chambers in pulsed beams.
DeBlois, F; Zankowski, C; Podgorsak, E B
2000-05-01
Saturation currents and collection efficiencies in ionization chambers exposed to pulsed megavoltage photon and electron beams are determined assuming a linear relationship between 1/I and 1/V in the extreme near-saturation region, with I and V the chamber current and polarizing voltage, respectively. Careful measurements of chamber current against polarizing voltage in the extreme near-saturation region reveal a current rising faster than that predicted by the linear relationship. This excess current combined with conventional "two-voltage" technique for determination of collection efficiency may result in an up to 0.7% overestimate of the saturation current for standard radiation field sizes of 10X10 cm2. The measured excess current is attributed to charge multiplication in the chamber air volume and to radiation-induced conductivity in the stem of the chamber (stem effect). These effects may be accounted for by an exponential term used in conjunction with Boag's equation for collection efficiency in pulsed beams. The semiempirical model follows the experimental data well and accounts for both the charge recombination as well as for the charge multiplication effects and the chamber stem effect.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
... carriers' costs related to screening passengers and property in calendar year 2000. DATES: Send your... respond, including using appropriate automated, electronic, mechanical, or other technological collection... carriers' aggregate and individual costs, respectively, for screening passengers and property in calendar...
Collective acceleration of ions in picosecond pinched electron beams
NASA Astrophysics Data System (ADS)
Baryshnikov, V. I.; Paperny, V. L.; Shipayev, I. V.
2017-10-01
Сharacteristics of intense electron-ion beams emitted by a high-voltage (280 kV) electron accelerator with a pulse duration of 200 ps and current 5 kA are studied. The capture phenomena and the subsequent collective acceleration of multi charged ions of the cathode material by the electric field of the electron beam are observed. It is shown that the electron-ion beam diameter does not exceed 30 µm therein in the case of lighter ions, and the decay of the pinched beam occurs at a shorter distance from the cathode. It is established that the ions of the cathode material Tin+ captured by the electron beam are accelerated up to an energy of ⩽10 MeV, and the ion fluence reaches 1017 ion cm-2 in the pulse. These ions are effectively embedded into the lattice sites of the irradiated substrate (sapphire crystal), forming the luminescent areas of the micron scale.
Investigation of Collection Ion Acceleration Using Intense Relativistic Electron Beams.
1980-02-01
in these results ’.. . supports the reflecting bea model of Ryutov. IM 1. Introduction Graybill and TUglual appear to have first studied...current (Figure 5). 1600 ~ aupild4 ho a- Doi"e Time Og0s4.Ter E The present model extends that of Ryutov by including 1200a description of the...potential-electron density relation Ech Data POW Is based on measurements of the transmitted beam current. ’L l " j This model is applicable to the
76 FR 23354 - Notice of Request for the Extension of Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... Administration (FTA), DOT. ACTION: Notice of Request for Comments. SUMMARY: In accordance with the Paperwork... electronic docket site. (Note: -The U.S. Department of Transportation's (DOT's) electronic docket is no....gov . You may review DOT's complete Privacy Act Statement in the Federal Register published April 11...
77 FR 40409 - Notice of Request for the Extension of a Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... Administration (FTA), DOT. ACTION: Notice of request for comments. SUMMARY: In accordance with the Paperwork.... Government electronic docket site. (Note: The U.S. Department of Transportation's (DOT's) electronic docket... . You may review DOT's complete Privacy Act Statement in the Federal Register published April 11, 2000...
Non-Self-Maintained Discharge Application for Fuel Activation
2010-09-21
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently ...voltage accelerating tube (1); - An injector of electrons with the thermo emission heated cathode (2); - The high-voltage rectifier (3); - A...auxiliary systems of the accelerator. The electron injector (2) is supplied by the thermo - emission cathode, allowing to generate an electron
Shi, Yushuai; Dong, Xiandui
2013-06-24
A numerical model for interpretation of the light-intensity-dependent nonlinear characteristics of the short-circuit current in dye-sensitized solar cells is suggested. The model is based on the continuity equation and includes the influences of the nongeminate recombination between electrons and electron acceptors in the electrolyte and the geminate recombination between electrons and oxidized dye molecules. The influences of the order and rate constant of the nongeminate recombination reaction, the light-absorption coefficient of the dye, the film thickness, the rate constant of geminate recombination, and the regeneration rate constant on the nonlinear characteristics of the short-circuit current are simulated and analyzed. It is proposed that superlinear and sublinear characteristics of the short-circuit current should be attributed to low electron-collection efficiency and low dye-regeneration efficiency, respectively. These results allow a deep understanding of the origin of the nonlinear characteristics of the short-circuit current in solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Research on Orbital Plasma-Electrodynamics (ROPE)
NASA Technical Reports Server (NTRS)
Wu, S. T.; Wright, K.
1994-01-01
Since the development of probe theory by Langmuir and Blodgett, the problem of current collection by a charged spherically or cylindrically symmetric body has been investigated by a number of authors. This paper overviews the development of a fully three-dimensional particle simulation code which can be used to understand the physics of current collection in three dimensions and can be used to analyze data resulting from the future tethered satellite system (TSS). According to the TSS configurations, two types of particle simulation models were constructed: a simple particle simulation (SIPS) and a super particle simulation (SUPS). The models study the electron transient response and its asymptotic behavior around a three dimensional, highly biased satellite. The potential distribution surrounding the satellite is determined by solving Laplace's equation in the SIPS model and by solving Poisson's equation in the SUPS model. Thus, the potential distribution in space is independent of the density distribution of the particles in the SUPS model but it does depend on the density distribution of the particles in the SUPS model. The evolution of the potential distribution in the SUPS model is described. When the spherical satellite is charged to a highly positive potential and immersed in a plasma with a uniform magnetic field, the formation of an electron torus in the equatorial plane (the plane in perpendicular to the magnetic field) and elongation of the torus along the magnetic field are found in both the SIPS and the SUPS models but the shape of the torus is different. The areas of high potential that exist in the polar regions in the SUPS model exaggerate the elongation of the electron torus along the magnetic field. The current collected by the satellite for different magentic field strengths is investigated in both models. Due to the nonlinear effects present in SUPS, the oscillating phenomenon of the current collection curve during the first 10 plasma periods can be seen (this does not appear in SIPS). From the parametric studies, it appears that the oscillating phenomenon of the current collection curve occurs only when the magnetic field strength is less than 0.2 gauss for the present model.
Establishment of design space for high current gain in III-N hot electron transistors
NASA Astrophysics Data System (ADS)
Gupta, Geetak; Ahmadi, Elaheh; Suntrup, Donald J., III; Mishra, Umesh K.
2018-01-01
This paper establishes the design space of III-N hot electron transistors (HETs) for high current gain by designing and fabricating HETs with scaled base thickness. The device structure consists of GaN-based emitter, base and collector regions where emitter and collector barriers are implemented using AlN and InGaN layers, respectively, as polarization-dipoles. Electrons tunnel through the AlN layer to be injected into the base at a high energy where they travel in a quasi-ballistic manner before being collected. Current gain increases from 1 to 3.5 when base thickness is reduced from 7 to 4 nm. The extracted mean free path (λ mfp) is 5.8 nm at estimated injection energy of 1.5 eV.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0242... (CGMP) for positron emission tomography (PET) drugs. DATES: Submit either electronic or written comments... product. FDA's CGMP regulations at 21 CFR part 212 are intended to ensure that PET drug products meet the...
Current limiting mechanisms in electron and ion beam experiments
NASA Technical Reports Server (NTRS)
Olsen, R. C.
1990-01-01
The emission and collection of current from satellites or rockets in the ionosphere is a process which, at equilibrium, requires a balance between inward and outward currents. In most active experiments in the ionosphere and magnetosphere, the emitted current exceeds the integrated thermal current by one or more orders of magnitude. The system response is typically for the emitted current to be limited by processes such as differential charging of insulating surfaces, interactions between an emitted beam and the local plasma, and interactions between the beam and local neutral gas. These current limiting mechanisms have been illustrated for 20 years in sounding rocket and satellite experiments, which are reviewed here. Detailed presentations of the Spacecraft Charging at High Altitude (SCATHA) electron and ion gun experiments are used to demonstrate the general range of observed phenomena.
NASA Technical Reports Server (NTRS)
Thiemann, H.; Schunk, R. W.
1990-01-01
The interaction between satellite solar arrays and the LEO plasma is presently studied with particle-in-cell simulations in which an electrical potential was suddenly applied to the solar cell interconnector. The consequent temporal response was followed for the real O(+)-electron mass ratio in the cases of 100- and 250-V solar cells, various solar cell thicknesses, and solar cells with secondary electron emission. Larger applied potentials and thinner solar cells lead to greater initial polarization surface charges, and therefore longer discharging and shielding times. When secondary electron emission from the cover glass is brought to bear, however, the potential structure is nearly planar, allowing constant interaction between plasma electrons and cover glass; a large fraction of the resulting secondary electrons is collected by the interconnector, constituting an order-of-magnitude increase in collected current.
Improvement of ion thruster design
NASA Technical Reports Server (NTRS)
Carpenter, R. T.
1986-01-01
Two types of measurements were performed on ion thrustors equipped with SmCo magnets in either ring cusp or line cusp arrangements. Langmuir probes were used to measure plasma potential, electron density, and electron temperture in all regions inside the thruster. Loss fluxes to various surfaces were determined by measuring the currents to foils attached to or imbedded in the surface. Data were obtained for several sets of discharge voltages and currents. The loss currents were determined from current vs voltage characteristics observed on a transistor curve tracer oscilloscope. Both ion and electron currents were measured to all parts of the walls and to all parts of the cathode assembly using collecting plates. These measurement were also made for various parameter sets. In line cusp configuration the plasma density is essentially as predicted by existing calculations. In the ring cusp arrangement the interior of the plasma contains an inhomogeneous and relatively large magnetic field so the geometry is decidely two-dimensional and the models of Self (1967) and of Kino and Sham (1966) do not agree.
The Use of Augmentative and Alternative Communication in Cyprus: Findings from a Preliminary Survey
ERIC Educational Resources Information Center
Pampoulou, Eliada; Theodorou, Eleni; Petinou, Kakia
2018-01-01
Whilst augmentative and alternative communication has been used for over sixty years across many countries, in Cyprus it remains underdeveloped. The current study seeks to investigate the current AAC practices in Cyprus. Data were collected through electronically distributed questionnaires to all registered speech and language therapists (n =…
Electronic conferencing for continuing medical education: a resource survey.
Sternberg, R J
1986-10-01
The use of electronic technologies to link participants for education conferences is an option for providers of Continuing Medical Education. In order to profile the kinds of electronic networks currently offering audio- or videoteleconferences for physician audiences, a survey was done during late 1985. The information collected included range of services, fees, and geographic areas served. The results show a broad diversity of providers providing both interactive and didactic programming to both physicians and other health care professionals.
Plasmonically enhanced hot electron based photovoltaic device.
Atar, Fatih B; Battal, Enes; Aygun, Levent E; Daglar, Bihter; Bayindir, Mehmet; Okyay, Ali K
2013-03-25
Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths.
Peters, John W; Miller, Anne-Frances; Jones, Anne K; King, Paul W; Adams, Michael Ww
2016-04-01
Electron bifurcation is the recently recognized third mechanism of biological energy conservation. It simultaneously couples exergonic and endergonic oxidation-reduction reactions to circumvent thermodynamic barriers and minimize free energy loss. Little is known about the details of how electron bifurcating enzymes function, but specifics are beginning to emerge for several bifurcating enzymes. To date, those characterized contain a collection of redox cofactors including flavins and iron-sulfur clusters. Here we discuss the current understanding of bifurcating enzymes and the mechanistic features required to reversibly partition multiple electrons from a single redox site into exergonic and endergonic electron transfer paths. Copyright © 2016. Published by Elsevier Ltd.
76 FR 7146 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... information electronically. When a member of the public requests a copy of a data set, FS R&D will collect the... release of the data set to the requestor. The collection of Data Use Agreements will be evaluated by the... it displays a currently valid OMB control number. Forest Service Title: Research Data Archive Use...
Heat-Flux Measurements from Collective Thomson-Scattering Spectra
NASA Astrophysics Data System (ADS)
Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.
2015-11-01
Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude is used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer -Härm flux
Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maximenko, S. I., E-mail: sergey.maximenko@nrl.navy.mil; Scheiman, D. A.; Jenkins, P. P.
Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In{sub 0.01}Ga{sub 0.99}As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across themore » MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ∼6.06–9.88 × 10{sup 9} MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.« less
NASA Astrophysics Data System (ADS)
Oudini, N.; Sirse, N.; Taccogna, F.; Ellingboe, A. R.; Bendib, A.
2018-05-01
We propose a new technique for diagnosing negative ion properties using Langmuir probe assisted pulsed laser photo-detachment. While the classical technique uses a laser pulse to convert negative ions into electron-atom pairs and a positively biased Langmuir probe tracking the change of electron saturation current, the proposed method uses a negatively biased Langmuir probe to track the temporal evolution of positive ion current. The negative bias aims to avoid the parasitic electron current inherent to probe tip surface ablation. In this work, we show through analytical and numerical approaches that, by knowing electron temperature and performing photo-detachment at two different laser wavelengths, it is possible to deduce plasma electronegativity (ratio of negative ion to electron densities) α, and anisothermicity (ratio of electron to negative ion temperatures) γ-. We present an analytical model that links the change in the collected positive ion current to plasma electronegativity and anisothermicity. Particle-In-Cell simulation is used as a numerical experiment covering a wide range of α and γ- to test the new analysis technique. The new technique is sensitive to α in the range 0.5 < α < 10 and yields γ- for large α, where negative ion flux affects the probe sheath behavior, typically α > 1.
Acceptance testing of the prototype electrometer for the SAMPIE flight experiment
NASA Technical Reports Server (NTRS)
Hillard, G. Barry
1992-01-01
The Solar Array Module Plasma Interaction Experiment (SAMPIE) has two key instruments at the heart of its data acquisition capability. One of these, the electrometer, is designed to measure both ion and electron current from most of the samples included in the experiment. The accuracy requirement, specified by the project's Principal Investigator, is for agreement within 10 percent with a calibrated laboratory instrument. Plasma chamber testing was performed to assess the capabilities of the prototype design. Agreement was determined to be within 2 percent for electron collection and within 3 percent for ion collection.
Katz, Michael J; Vermeer, Michael J DeVries; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T
2015-06-18
A series of dye-sensitized solar cells (DSCs) was constructed with TiO2 nanoparticles and N719 dye. The standard I3(-)/I(-) redox shuttle and the Co(1,10-phenanthroline)3(3+/2+) shuttle were employed. DSCs were modified with atomic-layered-deposited (ALD) coatings of Al2O3 and/or with the surface-adsorbing additive 4-tert-butyl-pyridine. Current-voltage data were collected to ascertain the influence of each modification upon the back electron transfer (ET) dynamics of the DSCs. The primary effect of the additives alone or in tandem is to increase the open-circuit voltage. A second is to alter the short-circuit current density, JSC. With dependence on the specifics of the system examined, any of a myriad of dynamics-related effects were observed to come into play, in both favorable (efficiency boosting) and unfavorable (efficiency damaging) ways. These effects include modulation of (a) charge-injection yields, (b) rates of interception of injected electrons by redox shuttles, and (c) rates of recombination of injected electrons with holes on surface-bound dyes. In turn, these influence charge-collection lengths, charge-collection yields, and onset potentials for undesired dark current. The microscopic origins of the effects appear to be related mainly to changes in driving force and/or electronic coupling for underlying component redox reactions. Perhaps surprisingly, only a minor role for modifier-induced shifts in conduction-band-edge energy was found. The combination of DSC-efficiency-relevant effects engendered by the modifiers was found to vary substantially as a function of the chemical identity of the redox shuttle employed. While types of modifiers are effective, a challenge going forward will be to construct systems in ways in which the benefits of organic and inorganic modifiers can be exploited in fully additive, or even synergistic, fashion.
Development of an electronic database for Acute Pain Service outcomes
Love, Brandy L; Jensen, Louise A; Schopflocher, Donald; Tsui, Ban CH
2012-01-01
BACKGROUND: Quality assurance is increasingly important in the current health care climate. An electronic database can be used for tracking patient information and as a research tool to provide quality assurance for patient care. OBJECTIVE: An electronic database was developed for the Acute Pain Service, University of Alberta Hospital (Edmonton, Alberta) to record patient characteristics, identify at-risk populations, compare treatment efficacies and guide practice decisions. METHOD: Steps in the database development involved identifying the goals for use, relevant variables to include, and a plan for data collection, entry and analysis. Protocols were also created for data cleaning quality control. The database was evaluated with a pilot test using existing data to assess data collection burden, accuracy and functionality of the database. RESULTS: A literature review resulted in an evidence-based list of demographic, clinical and pain management outcome variables to include. Time to assess patients and collect the data was 20 min to 30 min per patient. Limitations were primarily software related, although initial data collection completion was only 65% and accuracy of data entry was 96%. CONCLUSIONS: The electronic database was found to be relevant and functional for the identified goals of data storage and research. PMID:22518364
The PROPEL Electrodynamic Tether Mission and Connecting to the Ionosphere
NASA Technical Reports Server (NTRS)
Gilchrist, Brian; Bilen, Sven; Hoyt, Rob; Stone,Nobie; Vaughn, Jason; Fuhrhop, Keith; Krause, Linda; Khazanov, George; Johnson, Les
2012-01-01
The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA's Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: "Propulsion using Electrodynamics". The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques.
Technology Area Roadmap for In-Space Propulsion Technologies
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold
2012-01-01
The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA fs Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: \\Propulsion using Electrodynamics.. The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques
The Use of Langmuir Probes in Non-Maxwellian Space Plasmas
NASA Technical Reports Server (NTRS)
Hoegy, Walter R.; Brace, Larry H.
1998-01-01
Disturbance of the Maxwellian plasma may occur in the vicinity of a spacecraft due to photoemission, interactions between the spacecraft and thermospheric gases, or electron emissions from other devices on the spacecraft. Significant non-maxwellian plasma distributions may also occur in nature as a mixture of ionospheric and magnetospheric plasmas or secondaries produced by photoionization in the thermosphere or auroral precipitation. The general formulas for current collection (volt-ampere curves) by planar, cylindrical, and spherical Langmuir probes in isotropic and anisotropic non-maxwellian plasmas are examined. Examples are given of how one may identify and remove the non-maxwellian components in the Langmuir probe current to permit the ionospheric parameters to be determined. Theoretical volt-ampere curves presented for typical examples of non-maxwellian distributions include: two-temperature plasmas and a thermal plasma with an energetic electron beam. If the non-ionospheric electrons are Maxwellian at a temperature distinct from that of the ionosphere electrons, the volt-ampere curves can be fitted directly to obtain the temperatures and densities of both electron components without resorting to differenting the current. For an arbitrary isotropic distribution, the current for retarded particles is shown to be identical for the three geometries. For anisotropic distributions, the three probe geometries are not equally suited for measuring the ionospheric electron temperature and density or for determining the distribution function in the presence of non-maxwellian back-round electrons.
Prevosto, L; Kelly, H; Mancinelli, B
2013-12-01
This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.
Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters
NASA Astrophysics Data System (ADS)
Tran, Jonathan; Eckhardt, Daniel; Martin, Robert
2017-10-01
Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.
Hammoud, Maya M; Margo, Katherine; Christner, Jennifer G; Fisher, Jonathan; Fischer, Shira H; Pangaro, Louis N
2012-01-01
Few studies have reported on the utilization and the effect of electronic health records on the education of medical students. The purpose of this study was to describe the current use of electronic health records by medical students in the United States and explore the opportunities and challenges of integrating electronic health records into daily teaching of medical students. A survey with 24 questions regarding the use of electronic health records by medical students was developed by the Alliance for Clinical Educators and sent to clerkship directors across the United States. Both quantitative and qualitative responses were collected and analyzed to determine current access to and use of electronic health records by medical students. This study found that an estimated 64% of programs currently allow student use of electronic health records, of which only two thirds allowed students to write notes within the electronic record. Overall, clerkship directors' opinions on the effects of electronic health records on medical student education were neutral, and despite acknowledging many advantages to electronic health records, there were many concerns raised regarding their use in education. Medical students are using electronic health records at higher rates than physicians in practice. Although this is overall reassuring, educators have to be cautious about the limitations being placed on student's documentation in electronic health records as this can potentially have consequences on their training, and they need to explore ways to maximize the benefits of electronic health records in medical education.
DC currents collected by a RF biased electrode quasi-parallel to the magnetic field
NASA Astrophysics Data System (ADS)
Faudot, E.; Devaux, S.; Moritz, J.; Bobkov, V.; Heuraux, S.
2017-10-01
Local plasma biasings due to RF sheaths close to ICRF antennas result mainly in a negative DC current collection on the antenna structure. In some specific cases, we may observe positive currents when the ion mobility (seen from the collecting surface) overcomes the electron one or/and when the collecting surface on the antenna side becomes larger than the other end of the flux tube connected to the wall. The typical configuration is when the antenna surface is almost parallel to the magnetic field lines and the other side perpendicular. To test the optimal case where the magnetic field is quasi-parallel to the electrode surface, one needs a linear magnetic configuration as our magnetized RF discharge experiment called Aline. The magnetic field angle is in our case lower than 1 relative to the RF biased surface. The DC current flowing through the discharge has been measured as a function of the magnetic field strength, neutral gas (He) pressure and RF power. The main result is the reversal of the DC current depending on the magnetic field, collision frequency and RF power level.
Theory of the electron sheath and presheath
Scheiner, Brett; Baalrud, Scott D.; Yee, Benjamin T.; ...
2015-12-30
Here, electron sheaths are commonly found near Langmuir probes collecting the electron saturation current. The common assumption is that the probe collects the random flux of electrons incident on the sheath, which tacitly implies that there is no electron presheath and that the flux collected is due to a velocity space truncation of the electron velocity distribution function (EVDF). This work provides a dedicated theory of electron sheaths, which suggests that they are not so simple. Motivated by EVDFs observed in particle-in-cell(PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the model, under low temperaturemore » plasma conditions (T e >> T i), an electron pressure gradient accelerates electrons in the presheath to a flow velocity that exceeds the electron thermal speed at the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. It is found that in many situations, under common plasma conditions, the electron presheath extends much further into the plasma than an analogous ion presheath. PIC simulations reveal that the ion density in the electron presheath is determined by a flow around the electron sheath and that this flow is due to 2D aspects of the sheath geometry. Simulations also indicate the presence of ion acoustic instabilities excited by the differential flow between electrons and ions in the presheath, which result in sheath edge fluctuations. The 1D model and time averaged PIC simulations are compared and it is shown that the model provides a good description of the electron sheath and presheath.« less
Response of the plasma to the size of an anode electrode biased near the plasma potential
Barnat, E. V.; Laity, G. R.; Baalrud, S. D.
2014-10-01
As the size of a positively biased electrode increases, the nature of the interface formed between the electrode and the host plasma undergoes a transition from an electron-rich structure (electron sheath) to an intermediate structure containing both ion and electron rich regions (double layer) and ultimately forms an electron-depleted structure (ion sheath). In this study, measurements are performed to further test how the size of an electron-collecting electrode impacts the plasma discharge the electrode is immersed in. This is accomplished using a segmented disk electrode in which individual segments are individually biased to change the effective surface area of themore » anode. Measurements of bulk plasma parameters such as the collected current density, plasma potential, electron density, electron temperature and optical emission are made as both the size and the bias placed on the electrode are varied. Abrupt transitions in the plasma parameters resulting from changing the electrode surface area are identified in both argon and helium discharges and are compared to the interface transitions predicted by global current balance [S. D. Baalrud, N. Hershkowitz, and B. Longmier, Phys. Plasmas 14, 042109 (2007)]. While the size-dependent transitions in argon agree, the size-dependent transitions observed in helium systematically occur at lower electrode sizes than those nominally derived from prediction. Thus, the discrepancy in helium is anticipated to be caused by the finite size of the interface that increases the effective area offered to the plasma for electron loss to the electrode.« less
76 FR 32406 - Proposed Collection; Comment Request for Form 8878-A
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-06
... 1995, Public Law 104-13 (44 U.S.C. 3506(c)(2)(A)). Currently, the IRS is soliciting comments concerning... used by a corporate officer or agent and an electronic return originator (ERO) to use a personal... extend the filing due date for a corporate income tax return. Current Actions: There are no changes being...
Flowing Plasma Interaction with an Electric Sail Tether Element
NASA Technical Reports Server (NTRS)
Schneider, Todd; Vaughn, Jason; Wright, Kenneth; Andersen, Allen; Stone, Nobie
2017-01-01
Electric sails are a relatively new concept for providing high speed propellant-less propulsion. Employing multiple tethers biased to high positive voltage levels (kV), electric sails are designed to gain momentum from the solar wind by repelling solar wind protons. To maximize the area of the sail that interacts with the solar wind, electric sails rely on the formation of a large plasma sheath around each small diameter tether. Motivated by interest in advancing the development of electric sails, a set of laboratory tests has been conducted to study the interaction of a drifting plasma with a sheath formed around a small diameter tether element biased at positive voltages. The laboratory test setup was created with Debye length scaling in mind to offer a path to extrapolate (via modeling) to full scale electric sail missions. Using an instrument known as a Differential Ion Flux Probe (DIFP) the interaction between a positively biased tether element and a drifting plasma has been measured for several scenarios. Clear evidence of the tether element sheath deflecting ions has been obtained. Maps of the flow angle downstream from the tether element have been made and they show the influence of the plasma sheath. Finally, electron current collection measurements have been made for a wide range of plasma conditions and tether element bias voltages. The electron collection data will have an impact on electric sail power requirements, as high voltage power supplies and electron guns will have to be sized to accommodate the electron currents collected by each tether.
ERIC Educational Resources Information Center
Vinney, Lisa A.; Grade, John D.; Connor, Nadine P.
2012-01-01
The manner in which a communication disorder affects health-related quality of life (QOL) in children is not known. Unfortunately, collection of quality of life data via traditional paper measures is labor intensive and has several other limitations, which hinder the investigation of pediatric quality of life in children. Currently, there is not…
Terazono, Atsushi; Oguchi, Masahiro; Iino, Shigenori; Mogi, Satoshi
2015-05-01
To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6-10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using insulation (tape) on waste batteries to prevent fires, only 2.0% of discarded cylindrical dry batteries were insulated. Our field study of small WEEE showed that batteries made up an average of 4.6% of the total collected small WEEE on a weight basis. Exchangeable batteries were used in almost all of mobile phones, digital cameras, radios, and remote controls, but the removal rate was as low as 22% for mobile phones. Given the safety issues and the rapid changes occurring with mobile phones or other types of small WEEE, discussion is needed among stakeholders to determine how to safely collect and recycle WEEE and waste batteries. Copyright © 2015 Elsevier Ltd. All rights reserved.
High-current plasma contactor neutralizer system
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Williamson, W. S.; Matossian, J. N.; Vourgourakis, E. J.; Burch, J. L.
1989-01-01
A plasma-contactor neutralizer system is described, for the stabilizing the Orbiter's potential during flights of the Atmospheric Laboratory for Applications and Science missions. The plasma contactor neutralizer will include a Xe plasma source that can provide steady-state ion-emission currents of up to 1.5 A. The Orbiter's potential will be maintained near that of the surrounding space plasma during electron-beam accelerator firings through a combination of ion emission from the Xe plasma source and electron collection from the ambient space plasma. Configuration diagrams and block diagrams are presented along with the performance characteristics of the system.
Search for neutrinoless double-electron capture of 156Dy
NASA Astrophysics Data System (ADS)
Finch, S. W.; Tornow, W.
2015-12-01
Background: Multiple large collaborations are currently searching for neutrinoless double-β decay, with the ultimate goal of differentiating the Majorana-Dirac nature of the neutrino. Purpose: Investigate the feasibility of resonant neutrinoless double-electron capture, an experimental alternative to neutrinoless double-β decay. Method: Two clover germanium detectors were operated underground in coincidence to search for the de-excitation γ rays of 156Gd following the neutrinoless double-electron capture of 156Dy. 231.95 d of data were collected at the Kimballton underground research facility with a 231.57 mg enriched 156Dy sample. Results: No counts were seen above background and half-life limits are set at O (1016-1018) yr for the various decay modes of 156Dy. Conclusion: Low background spectra were efficiently collected in the search for neutrinoless double-electron capture of 156Dy, although the low natural abundance and associated lack of large quantities of enriched samples hinders the experimental reach.
Hydrodynamic-to-ballistic crossover in Dirac materials
NASA Astrophysics Data System (ADS)
Svintsov, D.
2018-03-01
We develop an analytically solvable classical kinetic model of spatially dispersive transport in Dirac materials accounting for strong electron-electron (e-e) and electron-hole (e-h) collisions. We use this model to track the evolution of graphene conductivity and properties of its collective excitations across the hydrodynamic-to-ballistic crossover. We find the relaxation rate of electric current by e-e collisions that is possible due to the lack of Galilean invariance and introduce a universal numerical measure of this noninvariance. We find the two branches of collective excitations in the Dirac fluid: plasmons and electron-hole sound. The sound waves persist at frequencies exceeding the e-e collision frequency, have a small viscous damping at the neutrality point, but acquire large damping due to e-h friction even at slight doping. On the contrary, plasmons acquire strong frictional damping at the neutrality point and become well defined in doped samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belomyttsev, S. Ya.; Grishkov, A. A.; Tsygankov, R. V.
2014-03-15
This paper studies the motion of a virtual cathode in a two-section drift tube with the formation and breakup of the “compressed” state of an electron beam. Experimental arrangements to intercept part of the injected current during the voltage pulse and to provide virtual cathode motion toward the collector are proposed. The arrangements were implemented on the SINUS-7 high-current electron accelerator. Theoretical and experimental dependences of the virtual cathode velocity on the injected current and cathode voltage are presented. The experimental data on virtual cathode motion agree with its theoretical model based on analytical solutions of equations assisted by computermore » simulation with the PIC code KARAT. The results of the work demonstrate the feasibility of controlling the virtual cathode motion which can be used in collective ion acceleration and microwave generation.« less
75 FR 44848 - Proposed Collection; Comment Request for Revenue Procedure 98-32
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
... electronic remittance processing system for making federal tax deposits (FTDs) and federal tax payments (FTPs..., FTDs, and FTPs on behalf of multiple taxpayers. Current Actions: There are no changes being made to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoi, Kei Nam; Rahman, S.M.
1996-12-31
Undoubtedly, multimedia electronic mail has many advantages in exchanging information electronically in a collaborative work. The existing design of e-mail systems architecture is inefficient in exchanging multimedia message which has much larger volume, and requires more bandwidth and storage space than the text-only messages. This paper presents an innovative method for exchanging multimedia mail messages in a heterogeneous environment to support collaborative work over YAW on the Internet. We propose a {open_quotes}Parcel Collection{close_quotes} approach for exchanging multimedia electronic mail messages. This approach for exchanging multimedia electronic mail messages integrates the current WWW technologies with the existing electronic mail systems.
Interaction of a neutral cloud moving through a magnetized plasma
NASA Technical Reports Server (NTRS)
Goertz, C. K.; Lu, G.
1990-01-01
Current collection by outgassing probes in motion relative to a magnetized plasma may be significantly affected by plasma processes that cause electron heating and cross field transport. Simulations of a neutral gas cloud moving across a static magnetic field are discussed. The authors treat a low-Beta plasma and use a 2-1/2 D electrostatic code linked with the authors' Plasma and Neutral Interaction Code (PANIC). This study emphasizes the understanding of the interface between the neutral gas cloud and the surrounding plasma where electrons are heated and can diffuse across field lines. When ionization or charge exchange collisions occur a sheath-like structure is formed at the surface of the neutral gas. In that region the crossfield component of the electric field causes the electron to E times B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating. The thermal electron current is significantly enhanced due to this heating.
Jensen, Roxanne E; Rothrock, Nan E; DeWitt, Esi M; Spiegel, Brennan; Tucker, Carole A; Crane, Heidi M; Forrest, Christopher B; Patrick, Donald L; Fredericksen, Rob; Shulman, Lisa M; Cella, David; Crane, Paul K
2015-02-01
Patient-reported outcomes (PROs) are gaining recognition as key measures for improving the quality of patient care in clinical care settings. Three factors have made the implementation of PROs in clinical care more feasible: increased use of modern measurement methods in PRO design and validation, rapid progression of technology (eg, touchscreen tablets, Internet accessibility, and electronic health records), and greater demand for measurement and monitoring of PROs by regulators, payers, accreditors, and professional organizations. As electronic PRO collection and reporting capabilities have improved, the challenges of collecting PRO data have changed. To update information on PRO adoption considerations in clinical care, highlighting electronic and technical advances with respect to measure selection, clinical workflow, data infrastructure, and outcomes reporting. Five practical case studies across diverse health care settings and patient populations are used to explore how implementation barriers were addressed to promote the successful integration of PRO collection into the clinical workflow. The case studies address selecting and reporting of relevant content, workflow integration, previsit screening, effective evaluation, and electronic health record integration. These case studies exemplify elements of well-designed electronic systems, including response automation, tailoring of item selection and reporting algorithms, flexibility of collection location, and integration with patient health care data elements. They also highlight emerging logistical barriers in this area, such as the need for specialized technological and methodological expertise, and design limitations of current electronic data capture systems.
NASA Astrophysics Data System (ADS)
Hirata, M.; Miyake, Y.; Cho, T.; Kohagura, J.; Numakura, T.; Shimizu, K.; Ito, M.; Kiminami, S.; Morimoto, N.; Hirai, K.; Yamagishi, T.; Miyata, Y.; Nakashima, Y.; Miyoshi, S.; Ogura, K.; Kondoh, T.; Kariya, T.
2006-10-01
For the purpose of end-loss-ion and -electron analyses in open-field plasmas, a compact-sized electrostatic end-loss-current detector is proposed on the basis of a self-collection principle for suppressing the effects of secondary-electron emission from a metal collector. For employing this specific method, it is worth noting that no further additional magnetic systems except the ambient open-ended magnetic fields are required in the detector operation. This characteristic property provides a compactness of the total detection system and availability for its use in plasma confinement devices without disturbing plasma-confining magnetic fields. The detector consists of a set of parallel metal plates with respect to lines of ambient magnetic forces of a plasma device for analyzing incident ion currents along with a grid for shielding the collector against strays due to the metal-plate biasing. The characterization experiments are carried out by the use of a test-ion-beam line along with an additional use of a Helmholtz coil system for the formation of open magnetic fields similar to those in the GAMMA 10 end region. The applications of the developed end-loss-current detector in the GAMMA 10 plasma experiments are demonstrated under the conditions with simultaneous incidence of energetic electrons produced by electron-cyclotron heatings for end-loss-plugging potential formation.
NASA Astrophysics Data System (ADS)
Konovalov, Igor; Breitenstein, Otwin
2001-01-01
An iterative algorithm for the derivation of depth profiles of the minority carrier collection probability in a semiconductor with or without a coating on the top is presented using energy-resolved electron-beam-induced current measurements in planar geometry. The calculation is based on the depth-dose function of Everhart and Hoff (Everhart T E and Hoff P H 1971 J. Appl. Phys. 42 5837) and on the penetration-range function of Kanaya and Okayama (Kanaya K and Okayama S 1972 J. Phys. D: Appl. Phys. 5 43) or on that of Fitting (Fitting H-J 1974 Phys. Status Solidi/ a 26 525). It can also be performed with any other depth-dose functions. Using this algorithm does not require us to make any assumptions on the shape of the collection profile within the depth of interest. The influence of an absorbing top contact and/or a limited thickness of the semiconductor layer appear in the result, but can also be taken explicitly into account. Examples using silicon and CIS solar cells as well as a GaAs LED are presented.
Electron current extraction from radio frequency excited micro-dielectric barrier discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun-Chieh; Kushner, Mark J.; Leoni, Napoleon
Micro dielectric barrier discharges (mDBDs) consist of micro-plasma devices (10-100 {mu}m diameter) in which the electrodes are fully or partially covered by dielectrics, and often operate at atmospheric pressure driven with radio frequency (rf) waveforms. In certain applications, it may be desirable to extract electron current out of the mDBD plasma, which necessitates a third electrode. As a result, the physical structure of the m-DBD and the electron emitting properties of its materials are important to its operation. In this paper, results from a two-dimensional computer simulation of current extraction from mDBDs sustained in atmospheric pressure N{sub 2} will bemore » discussed. The mDBDs are sandwich structures with an opening of tens-of-microns excited with rf voltage waveforms of up to 25 MHz. Following avalanche by electron impact ionization in the mDBD cavity, the plasma can be expelled from the cavity towards the extraction electrode during the part of the rf cycle when the extraction electrode appears anodic. The electron current extraction can be enhanced by biasing this electrode. The charge collection can be controlled by choice of rf frequency, rf driving voltage, and permittivity of the dielectric barrier.« less
NASA Astrophysics Data System (ADS)
Tran, Jonathan
Plasma turbulence and the resulting anomalous electron transport due to azimuthal current driven instabilities in Hall-effect thrusters is a promising candidate for developing predictive models for the observed anomalous transport. A theory for anomalous electron transport and current driven instabilities has been recently studied by [Lafluer et al., 2016a]. Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster modeling. Using a reduced dimension particle in cell simulation implemented in the Thermophysics Universal Research Framework developed by the Air Force Research Lab, we show collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field and the plasma density. These high-frequency and short wavelength fluctuations can lead to an effective cross-field mobility many orders of magnitude larger than what is expected from classical electron-neutral momentum collisions in the low neutral density regime. We further adapt the previous study by [Lampe et al., 1971] and [Stringer, 1964] for related current driven instabilities to electric propulsion relevant mass ratios and conditions. Finally, we conduct a preliminary study of resolving this instability with a modified hybrid simulation with the hope of integration with established hybrid Hall-effect thruster simulations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
...The Veterans Benefits Administration (VBA), Department of Veterans Affairs (VA), is announcing an opportunity for public comment on the proposed collection of certain information by the agency. Under the Paperwork Reduction Act (PRA) of 1995, Federal agencies are required to publish notice in the Federal Register concerning each proposed collection of information, including each proposed revision of a currently approved collection, and allow 60 days for public comment in response to the notice. This notice solicits comments for information needed to oversee loan holders processing of loan guaranty homes.
Preliminary Chaotic Model of Snapover on High Voltage Solar Cells
NASA Technical Reports Server (NTRS)
Mackey, Willie R.
1995-01-01
High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, Snapover, is characterized by a sudden enlargement of the electron current collection area across normally insulating surfaces. A power drain on solar array power systems will results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between bia potential and surface glow area. This paper shall explore the potential benefits of modeling the relation between current and bia potential as an aspect of bifurcation analysis in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.
Computation of dark frames in digital imagers
NASA Astrophysics Data System (ADS)
Widenhorn, Ralf; Rest, Armin; Blouke, Morley M.; Berry, Richard L.; Bodegom, Erik
2007-02-01
Dark current is caused by electrons that are thermally exited into the conduction band. These electrons are collected by the well of the CCD and add a false signal to the chip. We will present an algorithm that automatically corrects for dark current. It uses a calibration protocol to characterize the image sensor for different temperatures. For a given exposure time, the dark current of every pixel is characteristic of a specific temperature. The dark current of every pixel can therefore be used as an indicator of the temperature. Hot pixels have the highest signal-to-noise ratio and are the best temperature sensors. We use the dark current of a several hundred hot pixels to sense the chip temperature and predict the dark current of all pixels on the chip. Dark current computation is not a new concept, but our approach is unique. Some advantages of our method include applicability for poorly temperature-controlled camera systems and the possibility of ex post facto dark current correction.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-10
... those who are to respond, including using appropriate automated, electronic, mechanical, or other... establish procedures that airports and airlines must carry out to protect persons and property against acts...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-04
... targets. The research project includes a literature review of current guidance and practices, a technical... information; and (4) ways that the burden could be minimized, including the use of electronic technology...
FOKKER-PLANCK ANALYSIS OF TRANSVERSE COLLECTIVE INSTABILITIES IN ELECTRON STORAGE RINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindberg, R. R.
We analyze single bunch transverse instabilities due to wakefields using a Fokker-Planck model. We expand on the work of Suzuki [1], writing out the linear matrix equation including chromaticity, both dipolar and quadrupolar transverse wakefields, and the effects of damping and diffusion due to the synchrotron radiation. The eigenvalues and eigenvectors determine the collective stability of the beam, and we show that the predicted threshold current for transverse instability and the profile of the unstable agree well with tracking simulations. In particular, we find that predicting collective stability for high energy electron beams at moderate to large values of chromaticitymore » requires the full Fokker-Planck analysis to properly account for the effects of damping and diffusion due to synchrotron radiation.« less
Dawes, Daniel E.; Holden, Kisha B.; Mack, Dominic
2015-01-01
The science of eliminating health disparities is complex and dependent on demographic data. The Health Information Technology for Economic and Clinical Health Act (HITECH) encourages the adoption of electronic health records and requires basic demographic data collection; however, current data generated are insufficient to address known health disparities in vulnerable populations, including individuals from diverse racial and ethnic backgrounds, with disabilities, and with diverse sexual identities. We conducted an administrative history of HITECH and identified gaps between the policy objective and required measure. We identified 20 opportunities for change and 5 changes, 2 of which required the collection of less data. Until health care demographic data collection requirements are consistent with public health requirements, the national goal of eliminating health disparities cannot be realized. PMID:25905840
Studies on probe measurements in presence of magnetic field in dust containing hydrogen plasma
NASA Astrophysics Data System (ADS)
Kalita, Deiji; Kakati, Bharat; Kausik, Siddhartha Sankar; Saikia, Bipul Kumar; Bandyopadhyay, Mainak
2018-04-01
The accuracy of plasma parameters measured by Langmuir probe in presence of magnetic field is studied in our present work. It is observed that the ratio of electron to ion saturation current shows almost identical behavior with that of unmagnetized hydrogen plasma when r L > 10 r p (here r L : Larmor radius and r p : probe radius). At magnetic field strength, B = 594 gauss, the electron temperature ( T e ) shows an overestimated value up to 35-40%, whereas at B ≤ 37 gauss, T e shows around ≤10% overestimated value w.r.t. unmagnetized case. A bi-Maxwellian electron energy probability function is observed for entire magnetic field range for both pristine and dust containing hydrogen plasma. The bulk (cold) electron collection by the Langmuir probe is strongly suppressed whereas the higher energetic electron collection remains unaffected in presence of magnetic field. In presence of dust grains, it is found that the low energy electron population decreases even more than the magnetized plasma and the high-energy tail slightly increases compared to the pristine plasma.
Development and investigation of silicon converter beta radiation 63Ni isotope
NASA Astrophysics Data System (ADS)
Krasnov, A. A.; Legotin, S. A.; Murashev, V. N.; Didenko, S. I.; Rabinovich, O. I.; Yurchuk, S. Yu; Omelchenko, Yu K.; Yakimov, E. B.; Starkov, V. V.
2016-02-01
In this paper the results of the creation and researching characteristics of, experimental betavoltaic converters (BVC), based on silicon are discussed. It was presented the features of structural and technological performance of planar 2 D- structure of BVC. To study the parameters of the converter stream the beta particles of the radioisotope was simulated by 63Ni electron flux from scanning electron microscope. It was investigated the dependence of the collecting electrons efficiency from the beam energy current-voltage characteristic was measured when irradiated by an electron beam, from which the value of the short-circuit current density equal to 126 nA / cm2 and the value of the open circuit voltage of 150 mV were obtained. The maximum power density at 70 mV is 9.5 nW / cm2, and the conversion efficiency is 2.1%. It was presented the results of experimental studies of the current-voltage characteristics of samples by irradiating a film 63Ni. The values of load voltage 111 mV and short circuit current density of 27 nA / cm2 were obtained. Maximum power density was 1.52 nW / cm2.
Preparation, applications, and digital simulation of carbon interdigitated array electrodes.
Liu, Fei; Kolesov, Grigory; Parkinson, B A
2014-08-05
Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltammetry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10(-5) molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts for both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow.
Thin Film Electrodes with an Integral Current Collection Grid for Use with Solid Electrolytes
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Kisor, A.; Williams, R. M.; Jeffries-Nakamura, B.; O'Connor, D.
1994-01-01
Thin film, high performance electrodes which can operate in high temperature environments are necessary for many devices which use a solid electrolyte. Electrodes of rhodium-tungsten alloy have been deposited on solid electrolyte using photolytic chemical vapor deposition (PCVD). A technique for depositing electrodes and current collection grids simultaneously has been developed using the prenucleation characteristics of PCVD. This technique makes it possible to fabricate electrodes which allow vapor transport through the thin (<1 (micro)m) portions of the electrode while integral thick grid lines improve the electronic conductivity of the electrode, thus improving overall performance.
Unconventional transport in ultraclean graphene constriction devices
NASA Astrophysics Data System (ADS)
Pita Vidal, Marta; Ma, Qiong; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo
Under mesoscopic conditions, strong electron-electron interactions and weak electron-phonon coupling in graphene lead to hydrodynamic behavior of electrons, resulting in unusual and unexpected transport phenomena. Specifically, this hydrodynamical collective cooperation of electrons is predicted to enhance the flow of electrical current, leading to a striking higher-than-ballistic conductance through a narrow geometrical constriction. To access the hydrodynamic regime, we fabricated high-quality, low-disorder graphene nano-constriction devices encapsulated by hexagonal boron nitride, where electron-electron scattering dominates impurity scattering. We will report on our systematic four-probe conductance measurements on devices with different constriction widths as a function of number density and temperature. The observation of quantum transport phenomena that are inconsistent with the non-interacting ballistic free-fermion model would suggest a macroscopic transport signature of electron viscosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Yanfeng; Hui, Fei; Shi, Yuanyuan
The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of lightmore » arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.« less
Charge collection and SEU mechanisms
NASA Astrophysics Data System (ADS)
Musseau, O.
1994-01-01
In the interaction of cosmic ions with microelectronic devices a dense electron-hole plasma is created along the ion track. Carriers are separated and transported by the electric field and under the action of the concentration gradient. The subsequent collection of these carriers induces a transient current at some electrical node of the device. This "ionocurrent" (single ion induced current) acts as any electrical perturbation in the device, propagating in the circuit and inducing failures. In bistable systems (registers, memories) the stored data can be upset. In clocked devices (microprocessors) the parasitic perturbation may propagate through the device to the outputs. This type of failure only effects the information, and do not degrade the functionally of the device. The purpose of this paper is to review the mechanisms of single event upset in microelectronic devices. Experimental and theoretical results are presented, and actual questions and problems are discussed. A brief introduction recalls the creation of the dense plasma of electron-hole pairs. The basic processes for charge collection in a simple np junction (drift and diffusion) are presented. The funneling-field effect is discussed and experimental results are compared to numerical simulations and semi-empirical models. Charge collection in actual microelectronic structures is then presented. Due to the parasitic elements, coupling effects are observed. Geometrical effects, in densely packed structures, results in multiple errors. Electronic couplings are due to the carriers in excess, acting as minority carriers, that trigger parasitic bipolar transistors. Single event upset of memory cells is discussed, based on numerical and experimental data. The main parameters for device characterization are presented. From the physical interpretation of charge collection mechanisms, the intrinsic sensitivity of various microelectronic technologies is determined and compared to experimental data. Scaling laws and future trends are finally discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, E. R., E-mail: ewhite@physics.ucla.edu; Kerelsky, Alexander; Hubbard, William A.
2015-11-30
Heterostructure devices with specific and extraordinary properties can be fabricated by stacking two-dimensional crystals. Cleanliness at the inter-crystal interfaces within a heterostructure is crucial for maximizing device performance. However, because these interfaces are buried, characterizing their impact on device function is challenging. Here, we show that electron-beam induced current (EBIC) mapping can be used to image interfacial contamination and to characterize the quality of buried heterostructure interfaces with nanometer-scale spatial resolution. We applied EBIC and photocurrent imaging to map photo-sensitive graphene-MoS{sub 2} heterostructures. The EBIC maps, together with concurrently acquired scanning transmission electron microscopy images, reveal how a device's photocurrentmore » collection efficiency is adversely affected by nanoscale debris invisible to optical-resolution photocurrent mapping.« less
Research data collection methods: from paper to tablet computers.
Wilcox, Adam B; Gallagher, Kathleen D; Boden-Albala, Bernadette; Bakken, Suzanne R
2012-07-01
Primary data collection is a critical activity in clinical research. Even with significant advances in technical capabilities, clear benefits of use, and even user preferences for using electronic systems for collecting primary data, paper-based data collection is still common in clinical research settings. However, with recent developments in both clinical research and tablet computer technology, the comparative advantages and disadvantages of data collection methods should be determined. To describe case studies using multiple methods of data collection, including next-generation tablets, and consider their various advantages and disadvantages. We reviewed 5 modern case studies using primary data collection, using methods ranging from paper to next-generation tablet computers. We performed semistructured telephone interviews with each project, which considered factors relevant to data collection. We address specific issues with workflow, implementation and security for these different methods, and identify differences in implementation that led to different technology considerations for each case study. There remain multiple methods for primary data collection, each with its own strengths and weaknesses. Two recent methods are electronic health record templates and next-generation tablet computers. Electronic health record templates can link data directly to medical records, but are notably difficult to use. Current tablet computers are substantially different from previous technologies with regard to user familiarity and software cost. The use of cloud-based storage for tablet computers, however, creates a specific challenge for clinical research that must be considered but can be overcome.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
... livestock, meat packing and poultry industries. The purpose of this notice is to solicit comments from the... on those who are to respond, including the use of appropriate automated, electronic, mechanical, or...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
... Consular Affairs, Visa Services (CA/VO/L/R). Form Number: DS-261. Respondents: Immigrant beneficiaries... immigrant visa petition to provide the Department with his current address, which will be used for...
Increasing the Extracted Beam Current Density in Ion Thrusters
NASA Astrophysics Data System (ADS)
Arthur, Neil Anderson
Ion thrusters have seen application on space science missions and numerous satellite missions. Ion engines offer higher electrical efficiency and specific impulse capability coupled with longer demonstrated lifetime as compared to other space propulsion technologies. However, ion engines are considered to have low thrust. This work aims to address the low thrust conception; whereby improving ion thruster performance and thrust density will lead to expanded mission capabilities for ion thruster technology. This goal poses a challenge because the mechanism for accelerating ions, the ion optics, is space charge limited according to the Child-Langmuir law-there is a finite number of ions that can be extracted through the grids for a given voltage. Currently, ion thrusters operate at only 40% of this limit, suggesting there is another limit artificially constraining beam current. Experimental evidence suggests the beam current can become source limited-the ion density within the plasma is not large enough to sustain high beam currents. Increasing the discharge current will increase ion density, but ring cusp ion engines become anode area limited at high discharge currents. The ring cusp magnetic field increases ionization efficiency but limits the anode area available for electron collection. Above a threshold current, the plasma becomes unstable. Increasing the engine size is one approach to increasing the operational discharge current, ion density, and thus the beam current, but this presents engineering challenges. The ion optics are a pair of closely spaced grids. As the engine diameter increases, it becomes difficult to maintain a constant grid gap. Span-to-gap considerations for high perveance optics limit ion engines to 50 cm in diameter. NASA designed the annular ion engine to address the anode area limit and scale-up problems by changing the discharge chamber geometry. The annular engine provides a central mounting structure for the optics, allowing the beam area to increase while maintaining a fixed span-to-gap. The central stalk also provides additional surface area for electron collection. Circumventing the anode area limitation, the annular ion engine can operate closer to the Child-Langmuir limit as compared to a conventional cylindrical ion thruster. Preliminary discharge characterization of a 65 cm annular ion engine shows >90% uniformity and validates the scalability of the technology. Operating beyond the Child-Langmuir limit would allow for even larger performance gains. This classic law does not consider the ion injection velocity into the grid sheath. The Child-Langmuir limit shifts towards higher current as the ion velocity increases. Ion drift velocity can be created by enhancing the axially-directed electric field. One method for creating this field is to modify the plasma potential distribution. This can be accomplished by biasing individual magnetic cusps, through isolated, conformal electrodes placed on each magnet ring. Experiments on a 15 cm ion thruster have shown that plasma potential in the bulk can be modified by as much as 5 V and establish ion drift towards the grid plane. Increases in ion current density at the grid by up to 20% are demonstrated. Performance implications are also considered, and increases in simulated beam current of 15% and decreases in discharge losses of 5% are observed. Electron density measurements within the magnetic cusps revealed, surprisingly, as cusp current draw increases, the leak width does not change. This suggests that instead of increasing the electron collection area, cusp bias enhances electron mobility along field lines.
Bissig, Benjamin; Guerra-Nunez, Carlos; Carron, Romain; Nishiwaki, Shiro; La Mattina, Fabio; Pianezzi, Fabian; Losio, Paolo A; Avancini, Enrico; Reinhard, Patrick; Haass, Stefan G; Lingg, Martina; Feurer, Thomas; Utke, Ivo; Buecheler, Stephan; Tiwari, Ayodhya N
2016-10-01
Quantum efficiency measurements of state of the art Cu(In,Ga)Se 2 (CIGS) thin film solar cells reveal current losses in the near infrared spectral region. These losses can be ascribed to inadequate optical absorption or poor collection of photogenerated charge carriers. Insight on the limiting mechanism is crucial for the development of more efficient devices. The electron beam induced current measurement technique applied on device cross-sections promises an experimental access to depth resolved information about the charge carrier collection probability. Here, this technique is used to show that charge carrier collection in CIGS deposited by multistage co-evaporation at low temperature is efficient over the optically active region and collection losses are minor as compared to the optical ones. Implications on the favorable absorber design are discussed. Furthermore, it is observed that the measurement is strongly affected by cross-section surface recombination and an accurate determination of the collection efficiency is not possible. Therefore it is proposed and shown that the use of an Al 2 O 3 layer deposited onto the cleaved cross-section significantly improves the accuracy of the measurement by reducing the surface recombination. A model for the passivation mechanism is presented and the passivation concept is extended to other solar cell technologies such as CdTe and Cu 2 (Zn,Sn)(S,Se) 4 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Use of tablet personal computers for sensitive patient-reported information.
Dupont, Alexandra; Wheeler, Jane; Herndon, James E; Coan, April; Zafar, S Yousuf; Hood, Linda; Patwardhan, Meenal; Shaw, Heather S; Lyerly, H Kim; Abernethy, Amy P
2009-01-01
Notebook-style computers (e/Tablets) are increasingly replacing paper methods for collecting patient-reported information. Discrepancies in data between these methods have been found in oncology for sexuality-related questions. A study was performed to formulate hypotheses regarding causes for discrepant responses and to analyze whether electronic data collection adds value over paper-based methods when collecting data on sensitive topics. A total of 56 breast cancer patients visiting Duke Breast Clinic (North Carolina) participated by responding to 12 subscales of 5 survey instruments in electronic (e/Tablet) format and to a paper version of 1 of these surveys, at each visit. Twenty-one participants (38%) provided dissimilar responses on paper and electronic surveys to one item of the Functional Assessment of Cancer Therapy-General (FACT-G) Social Well-Being scale that asked patients to rate their satisfaction with their current sex life. Among these 21 patients were 8 patients who answered the question in the electronic environment, and 13 patients who answered both paper and electronic versions but with different responses. Eleven patients (29%) did not respond to the item on either e/Tablet or paper; 45 patients (80%) answered it on e/Tablet; and 37 patients (66%) responded on the paper version. The e/Tablet electronic system may provide a "safer" environment than paper questionnaires for cancer patients to answer private or highly personal questions on sensitive topics such as sexuality.
1994-01-01
Dosimetry : Analysis of dosimetry in two dewar/liquid nitrogen systems. TIME Estimate: One hour for setup, irradiation and TLD reading/analysis. IV...point indicates both electron and hole trapping at the boundary ........................ 12 3.3 Relationship between current and dose for irradiated...peak value. Carriers are collected across the vertical junction within a diffusion length. Since the electron diffusion length is much larger than for
Shotorban, B
2015-10-01
A master equation was formulated to study intrinsic charge fluctuations of a grain in a plasma as ions and primary electrons are attached to the grain through collisional collection, and secondary electrons are emitted from the grain. Two different plasmas with Maxwellian and non-Maxwellian distributions were considered. The fluctuations could be bistable in either plasma when the secondary electron emission is present, as two stable macrostates, associated with two stable roots of the charge net current, may exist. Metastablity of fluctuations, manifested by the passage of the grain charge between two macrostates, was shown to be possible.
Operation of a swept Langmuir probe on a sounding rocket
NASA Astrophysics Data System (ADS)
Robertson, S. H.; Dickson, S.; Friedrich, M.; Sternovsky, Z.
2012-12-01
A swept cylindrical Langmuir probe was operated on two sounding rockets from ~ 60-120 km for the purpose of determining both the ambient electron density and the payload potential relative to the ambient plasma. The rockets were part of the CHAMPS (CHarge And mass of Meteoritic smoke ParticleS) rocket campaign and carried mass analyzers and various plasma probes to study charged meteoritic dust in the mesopause region. The payload potential is an important parameter for data interpretation. The rockets were launched in October of 2011 from Andøya Rocket Range, Norway. The launches were a few days apart with one taking place during the day and the other at night. The swept Langmuir probe data provided a current-voltage characteristic that had a distinct "knee" indicating the onset of electron collection; the probe voltage at this "knee" corresponds to the ambient plasma potential. The data indicate a payload potential of about -2 V to -1 V for both launches. The payload potential becomes less negative for altitudes above 80 km on the day launch due to photoemission. The probe current-voltage data are also compared with ion and electron density measurements from ion probes and Faraday rotation antennas, respectively. The data from the various instruments are in general agreement. Further consideration of the Langmuir probe performance shows that if the probe had been operated with feedback control to continuously collect electrons with a current of order 1 microamp, the probe potential would be an accurate, continuous indicator of the payload potential without the need for sweeping which could periodically alter the payload potential.
77 FR 34003 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... is to improve, develop, or finance businesses, industries, and employment and improve the economic..., electronic, mechanical, or other technological collection techniques or other forms of information technology... it displays a currently valid OMB control number. 30-Day Federal Register Notice Rural Business...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
.... Originating Office: CA/VO/L/R. Form Number: DS-261. Respondents: Immigrant beneficiaries requesting change of... allows the beneficiary of an approved immigrant visa petition to provide the Department with his current...
78 FR 11135 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
..., electronic, mechanical or other technological collection techniques or other forms of information technology... unless it displays a currently valid OMB control number. National Agricultural Statistics Service Title... National Agricultural Statistics Service (NASS) is to prepare and issue State and national estimates of...
Jensen, Roxanne E.; Rothrock, Nan E.; DeWitt, Esi Morgan; Spiegel, Brennan; Tucker, Carole A.; Crane, Heidi M.; Forrest, Christopher B.; Patrick, Donald L.; Fredericksen, Rob; Shulman, Lisa M.; Cella, David; Crane, Paul K.
2016-01-01
Background Patient-reported outcomes (PROs) are gaining recognition as key measures for improving the quality of patient care in clinical care settings. Three factors have made the implementation of PROs in clinical care more feasible: increased use of modern measurement methods in PRO design and validation, rapid progression of technology (e.g., touch screen tablets, Internet accessibility, and electronic health records (EHRs)), and greater demand for measurement and monitoring of PROs by regulators, payers, accreditors, and professional organizations. As electronic PRO collection and reporting capabilities have improved, the challenges of collecting PRO data have changed. Objectives To update information on PRO adoption considerations in clinical care, highlighting electronic and technical advances with respect to measure selection, clinical workflow, data infrastructure, and outcomes reporting. Methods Five practical case studies across diverse healthcare settings and patient populations are used to explore how implementation barriers were addressed to promote the successful integration of PRO collection into the clinical workflow. The case studies address selecting and reporting of relevant content, workflow integration, pre-visit screening, effective evaluation, and EHR integration. Conclusions These case studies exemplify elements of well-designed electronic systems, including response automation, tailoring of item selection and reporting algorithms, flexibility of collection location, and integration with patient health care data elements. They also highlight emerging logistical barriers in this area, such as the need for specialized technological and methodological expertise, and design limitations of current electronic data capture systems. PMID:25588135
NASA Technical Reports Server (NTRS)
Luke, K. L.; Cheng, L.-J.
1986-01-01
Heavily doped emitter and junction regions of silicon solar cells are investigated by means of the electron-beam-induced-current (EBIC) technique. Although the experimental EBIC data are collected under three-dimensional conditions, it is analytically demonstrated with two numerical examples that the solutions obtained with one-dimensional numerical modeling are adequate. EBIC data for bare and oxide-covered emitter surfaces are compared with theory. The improvement in collection efficiency when an emitter surface is covered with a 100-A SiO2 film varies with beam energy; for a cell with a junction depth of 0.35 microns, the improvement is about 54 percent at 2 keV.
Valentino, Kristin; De Alba, Ashley; Hibel, Leah C; Fondren, Kaitlin; McDonnell, Christina G
2017-11-01
There has been increasing interest in evaluating whether interventions for child maltreatment can improve and/or prevent child physiological dysregulation via measurement of diurnal cortisol. The assessment of diurnal cortisol typically involves the home-based collection of saliva multiple times per day, bringing forth important methodological considerations regarding adherence to collection instructions. To date, there has been no data regarding adherence to home collection of diurnal cortisol among maltreating families. The current study provides data on adherence to in-home sampling of salivary cortisol among 166 maltreating and demographically similar nonmaltreating mother-child dyads using electronic monitoring devices (Medication Event Monitoring System caps). Mothers collected saliva samples on themselves and their children 3 times per day (waking, midday, and evening) for 2 consecutive days. Analyses reveal that although maltreating families were more likely to be nonadherent to the collection protocol on their initial attempt, with additional support and resampling, maltreating and nonmaltreating families were comparable on most measures of adherence. Suggestions for best practices, including the use of electronic monitoring devices, for diurnal cortisol collection with maltreating families are provided.
Recent developments in hydrologic instrumentation
Latkovich, Vito J.; Futrell, James C.; Kane, Douglas L.
1986-01-01
The programs of the U.S. Geological Survey require instrumentation for collecting and monitoring hydrologic data in cold regions. The availability of space-age materials and implementation of modern electronics and mechanics is making possible the recent developments of hydrologic instrumentation, especially in the area of measuring streamflow under ice cover. Material developments include: synthetic-fiber sounding and tag lines; polymer (plastic) sheaves, pulleys, and sampler components; and polymer (plastic) current-meter bucket wheels. Electronic and mechanical developments include: a current-meter digitizer; a fiber-optic closure system for current-meters; non-contact water-level sensors; an adaptable hydrologic data acquisition system; a minimum data recorder; an ice rod; an ice foot; a handled sediment sampler; a light weight ice auger with improved cutter head and blades; and an ice chisel.
NASA Astrophysics Data System (ADS)
Lopatin, V. S.; Remnev, G. E.; Martynenko, A. A.
2017-05-01
We have studied the collective acceleration of protons and deuterons in an electron beam emitted from plasma formed at the surface of a dielectric anode insert. The experiments were performed with a pulsed electron accelerator operating at an accelerating voltage up to 1 MV, current amplitude up to 40 kA, and pulse duration of 50 ns. Reduction of the accelerating voltage pulse front width and optimization of the diode unit and drift region ensured the formation of several annular structures in the electron beam. As a result, up to 50% of the radioactivity induced in a copper target was concentrated in a ring with 4.5-cm diameter and 0.2-cm width. The formation of high energy density in these circular traces and the appearance of an axial component of the self-generated magnetic field of the electron beam are related with the increasing efficiency of acceleration of the most intense group of ions.
NASA Astrophysics Data System (ADS)
Yakovenko, Victor
2010-03-01
We propose a radically new design for photovoltaic energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. The periodically modulated electric field from SAW spatially separates photogenerated electrons and holes to the maxima and minima of SAW, thus preventing their recombination. The segregated electrons and holes are transported by the moving SAW to the collecting electrodes of two types, which produce dc electric output. Recent experiments [1] using SAWs in GaAs have demonstrated the photon to current conversion efficiency of 85%. These experiments were designed for photon counting, but we propose to adapt these techniques for highly efficient photovoltaic energy conversion. The advantages are that the electron-hole segregation takes place in the whole volume where SAW is present, and the electrons and holes are transported in the organized, collective manner at high speed, as opposed to random diffusion in conventional devices.[4pt] [1] S. J. Jiao, P. D. Batista, K. Biermann, R. Hey, and P. V. Santos, J. Appl. Phys. 106, 053708 (2009).
Wess-Zumino current and the structure of the decay tau- -->K- pi- K+ nu tau.
Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Haynes, J; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, Kevin; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stoeck, H; Yelton, J; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Severini, H; Skubic, P; Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Nam, S; Savinov, V; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H
2004-06-11
We present the first study of the vector (Wess-Zumino) current in tau(-)-->K-pi-K+nu(tau) decay using data collected with the CLEO III detector at the Cornell Electron Storage Ring. We determine the quantitative contributions to the decay width from the vector and axial vector currents. Within the framework of a model by Kühn and Mirkes, we identify the quantitative contributions to the total decay rate from the intermediate states omegapi, rho(')pi, and K*K.
Tavolacci, Marie-Pierre; Vasiliu, Anca; Romo, Lucia; Kotbagi, Gayatri; Kern, Laurence; Ladner, Joël
2016-05-27
There is sparse information on electronic cigarette use and health behaviours among college student populations. Our objectives were to identify the patterns of electronic cigarette use in current and ever users among college students in France. Cross-sectional study. A multicentre cross-sectional study was conducted on two major campuses in France. Students filled in an anonymous questionnaire on their use of electronic cigarettes and on targeted behaviours such as smoking, alcohol consumption, binge drinking, use of cannabis, practice of sport and eating disorders. Ever use of electronic cigarettes was defined as use but not during the previous 30 days, and current use of electronic cigarettes as any use in the previous 30 days. The opinions and motivations of electronic cigarette users were also sought and collected. 1134 college students between October 2014 and February 2015. The 1134 students included had a mean age of 20.8 years. The prevalence of ever use and current use of electronic cigarettes was 23.0% (95% CI (20.5% to 25.3%)) and 5.7% (95% CI (4.4% to 7.1%)), respectively. The prevalence of the combined use of conventional cigarettes and electronic cigarettes was 14.5%. Almost half (45.8%) of the ever users of electronic cigarettes had never smoked conventional cigarettes. Behaviours associated with ever use of electronic cigarettes were current cigarette smoking (adjusted OR (AOR)=3.97, 95% CI 2.71 to 5.83), former smoking (AOR=2.56, 95% CI 1.42 to 4.61), cannabis use (AOR=2.44, 95% CI 1.70 to 3.51) and occasional binge drinking (AOR=1.83, 95% CI 1.28 to 2.64). The only behaviour associated with current use of electronic cigarettes was conventional smoking, either previously (AOR=4.85, 95% CI 1.53 to 15.34) or currently (AOR=14.53, 95% CI 6.81 to 31.02). The ever users have an experimenter's profile with sensation-seeking while the current users are mostly smokers with intention to quit smoking. Our findings are crucial for the accurate targeting of student populations at risk and to implement appropriate awareness campaigns and health education programmes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Daniel, Michael T.
Here in the early 21st century humanity is continuing to seek improved quality of life for citizens throughout the world. This global advancement is providing more people than ever with access to state-of-the-art services in areas such as transportation, entertainment, computing, communication, and so on. Providing these services to an ever-growing population while considering the constraints levied by continuing climate change will require new frontiers of clean energy to be developed. At the time of this writing, offshore wind has been proven as both a politically and economically agreeable source of clean, sustainable energy by northern European nations with many wind farms deployed in the North, Baltic, and Irish Seas. Modern offshore wind farms are equipped with an electrical system within the farm itself to aggregate the energy from all turbines in the farm before it is transmitted to shore. This collection grid is traditionally a 3-phase medium voltage alternating current (MVAC) system. Due to reactive power and other practical constraints, it is preferable to use a medium voltage direct current (MVDC) collection grid when siting farms >150 km from shore. To date, no offshore wind farm features an MVDC collection grid. However, MVDC collection grids are expected to be deployed with future offshore wind farms as they are sited further out to sea. In this work it is assumed that many future offshore wind farms may utilize an MVDC collection grid to aggregate electrical energy generated by individual wind turbines. As such, this work presents both per-phase and per-pole power electronic converter systems suitable for interfacing individual wind turbines to such an MVDC collection grid. Both interfaces are shown to provide high input power factor at the wind turbine while providing DC output current to the MVDC grid. Common mode voltage stress and circulating currents are investigated, and mitigation strategies are provided for both interfaces. A power sharing scheme for connecting multiple wind turbines in series to allow for a higher MVDC grid voltage is also proposed and analyzed. The overall results show that the proposed per-pole approach yields key advantages in areas of common mode voltage stress, circulating current, and DC link capacitance, making it the more appropriate choice of the two proposed interfaces for this application.
Radiative damping and synchronization in a graphene-based terahertz emitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskalenko, A. S., E-mail: andrey.moskalenko@physik.uni-augsburg.de; Mikhailov, S. A., E-mail: sergey.mikhailov@physik.uni-augsburg.de
2014-05-28
We investigate the collective electron dynamics in a recently proposed graphene-based terahertz emitter under the influence of the radiative damping effect, which is included self-consistently in a molecular dynamics approach. We show that under appropriate conditions synchronization of the dynamics of single electrons takes place, leading to a rise of the oscillating component of the charge current. The synchronization time depends dramatically on the applied dc electric field and electron scattering rate and is roughly inversely proportional to the radiative damping rate that is determined by the carrier concentration and the geometrical parameters of the device. The emission spectra inmore » the synchronized state, determined by the oscillating current component, are analyzed. The effective generation of higher harmonics for large values of the radiative damping strength is demonstrated.« less
CHARGE-2 rocket observations of vehicle charging and charge neutralization
NASA Astrophysics Data System (ADS)
Banks, P. M.; Gilchrist, B. E.; Neubert, T.; Myers, N.; Raitt, W. J.; Williamson, P. R.; Fraser-Smith, A. C.; Sasaki, S.
Observations of electrical charging and other phenomena have been made in the ionosphere with the CHARGE-2 tethered rocket system. In this experiment, two electrically connected payloads with a variety of plasma instruments measured effects associated with operation of a 1 keV, 40 mA electron gun and a 450-volt dc power supply. During electron beam operations, it was found that both mother and daughter payloads reached high positive potentials as a consequence of the restricted electron current collecting area of the payloads. During neutral gas thruster firings, the payload potentials were dramatically reduced, indicating that electrical discharges could effectively ground each payload to plasma potential. Other thruster-related effects were also seen, including substantial reductions of return current-associated electrical noise at HF and VLF and large increases in 3914 A light in the plasma sheath.
Radiation Damage From Mono-energetic Electrons Up to 200 keV On Biological Systems
NASA Astrophysics Data System (ADS)
Prilepskiy, Yuriy
2006-03-01
The electron gun of the CEBAF machine at Jefferson lab (Newport News, VA) is capable of delivering electrons with energies up to 200 keV with a resolution of about 10-5. This 1.5 GHz beam permits to generate cellular radiation damage within minutes. We have performed irradiation of cancer cells with different energies and different currents to investigate their biological responses. This study will permit to address the physical processes involved in the RBE and LET at a level that supersedes current data listed in the literature by orders of magnitude. We will discuss the experimental setup and results of the first stage of data collected with this novel system. This research is part of a global program to provide detailed information for the understanding of radiation based cancer treatments.
76 FR 75520 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-02
..., electronic, mechanical, or other technological collection techniques or other forms of information technology... it displays a currently valid OMB control number. Office of Procurement and Property Management Title... Information: The Office of Procurement and Property Management (OPPM) and the Center for Industrial Research...
Nozik, Arthur J.
2018-03-01
In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozik, Arthur J.
In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.
The VESUVIO Spectrometer Now and When?
NASA Astrophysics Data System (ADS)
Seel, A. G.; Krzystyniak, M.; Fernandez-Alonso, F.
2014-12-01
The current layout and mechanics of the VESUVIO spectrometer are presented in light of spectroscopic measurements using electron-volt neutrons. A brief background to the theoretical framework of deep inelastic neutron scattering is presented, with focus on data collection and instrumental design. The current capabilities and research themes for VESUVIO are discussed, and possible future instrumental developments highlighted which will enhance the instrument's ability to meet scientific inquiry and expectation.
Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer
2008-10-01
commercially available dual-channel transimpedance amplifier circuit boards (Boston Electronics, TWAMP). Preliminary results with the imaging probe...connected to a current amplifier via a coaxial cable for diffuse reflectance measurements. This new probe is named P4-3 and schematics of the system and...probe. With the single pixel device a single-channel current amplifier (Terahertz Technologies, PDA-750) could easily read and collect the photocurrent
Plasma contactor design for electrodynamic tether applications
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.; Laupa, Thomas G.
1988-01-01
The plasma contacting process is described and experiments are discussed that suggest the key role that cold ions play in establishing a low impedance plasma bridge that can conduct current in either direction between a contactor electrode and a dilute plasma. A ring cusp contactor is shown to provide from 1000-mA of electron emission to 500-mA of electron collection as its bias relative to a simulated space plasma is varied through an 80-v range.
Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra
NASA Astrophysics Data System (ADS)
Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.
2016-10-01
Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Murakami, Shinsuke; Sakanakura, Hirofumi
2011-09-15
Highlights: > End-of-life electrical and electronic equipment (EEE) as secondary metal resources. > The content and the total amount of metals in specific equipment are both important. > We categorized 21 EEE types from contents and total amounts of various metals. > Important equipment types as secondary resources were listed for each metal kind. > Collectability and possible collection systems of various EEE types were discussed. - Abstract: End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection andmore » metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection methods were suggested for equipment types that currently have no specific collection systems in Japan, particularly for video games, notebook computers, and mid-size ICT and audio/video equipment.« less
Barnes, Piers R F; Anderson, Assaf Y; Juozapavicius, Mindaugas; Liu, Lingxuan; Li, Xiaoe; Palomares, Emilio; Forneli, Amparo; O'Regan, Brian C
2011-02-28
A simple and powerful approach for assessing the recombination losses in dye sensitised solar cells (DSSCs) across the current voltage curve (j-V) as a function of TiO(2) electron concentration (n) is demonstrated. The total flux of electrons recombining with iodine species in the electrolyte and oxidised dye molecules can be thought of as a recombination current density, defined as j(rec) = j(inj)-j where j(inj) is the current of electrons injected from optically excited dye states and j is the current density collected at cell voltage (V). The electron concentration at any given operating conditions is determined by charge extraction. This allows comparison of factors influencing electron recombination rates at matched n. We show that j(rec) is typically 2-3 times higher under 1 sun equivalent illumination (j(inj) > 0) relative to dark (j(inj) = 0) conditions. This difference was increased by increasing light intensity, electrolyte iodine concentration and electrolyte solvent viscosity. The difference was reduced by increasing the electrolyte iodide concentration and increasing the temperature. These results allowed us to verify a numerical model of complete operational cells (Barnes et al., Phys. Chem. Chem. Phys., DOI: 10.1039/c0cp01554g) and to relate the differences in j(rec) to physical processes in the devices. The difference between j(rec) in the light and dark can be explained by two factors: (1) an increase in the concentration of electron acceptor species (I(3)(-) and/or I(2)) when current is flowing under illumination relative to dark conditions where the current is flowing in the opposite direction, and (2) a non-trivial contribution from electron recombination to oxidised dye molecules under light conditions. More generally, the technique helps to assign the observed relationship between the components, processing and performance of DSSCs to more fundamental physical processes.
Suprathermal electrons associated with a plasma discharge on an active sounding rocket experiment
NASA Astrophysics Data System (ADS)
Bale, S. D.; Kellogg, P. J.; Monson, S. J.; Anderson, H. R.; Potter, D. W.
1995-12-01
Electrons with energies up to 600 eV are observed with the retarding potential analyzer (RPA) instrument aboard the Several Compatible Experiments (SCEX) III sounding rocket. The electrons are concomitant with high-energy (2-6 keV) electron gun injections and also evidence themselves by luminosity observed with 3805 Å and 3914 Å photometers. Both the collected electron flux and luminosity measurements are strongly nonlinear with gun injection current. For a typical event, the electron distribution is similar to laboratory beam-plasma discharge (BPD) distributions reported by Sharp (1982) and when backed by HF electric field observations (Goerke et al., 1992; Llobet et al., 1985), the BPD mechanism becomes a most likely explanation. Strong turbulence theories of BPD predict a power law tail in the electron distribution, and we compare our spectral index with some previous observations.
SAMPIE Measurements of the Space Station Plasma Current Analyzed
NASA Technical Reports Server (NTRS)
1996-01-01
In March of 1994, STS-62 carried the NASA Lewis Research Center's Solar Array Module Plasma Interactions Experiment (SAMPIE) into orbit, where it investigated the plasma current collected and the arcs from solar arrays and other space power materials immersed in the low-Earth-orbit space plasma. One of the important experiments conducted was the plasma current collected by a four-cell coupon sample of solar array cells for the international space station. The importance of this experiment dates back to the 1990 and 1991 meetings of the Space Station Electrical Grounding Tiger Team. The Tiger Team determined that unless the electrical potentials on the space station structure were actively controlled via a plasma contactor, the space station structure would arc into the plasma at a rate that would destroy the thermal properties of its surface coatings in only a few years of operation. The space station plasma contactor will control its potentials by emitting electrons into the surrounding low-Earth-orbit plasma at the same rate that they are collected by the solar arrays. Thus, the level at which the space station solar arrays can collect current is very important in verifying that the plasma contactor design can do its job.
The PIX-2 experiment: An overview
NASA Astrophysics Data System (ADS)
Purvis, C. K.
1985-03-01
The second Plasma Interactions Experiment (PIX-2) was launched in January 1983 as a piggyback on the second stage of the Delta launch vehicle that carried IRAS into orbit. Placed in a 870 km circular polar orbit, it returned 18 hrs of data on the plasma current collection and arcing behavior of solar arrays biased to +/-1000 V in steps. The four 500 sq cm solar array segments were biased singly and in combinations. In addition to the array segments PIX-2 carried a Sun sensor, a Langmuir probe to measure electron currents, and a hot-wire filament electron emitter to control vehicle potential during positive array bias sequences. The PIX-2 experiment is reviewed from program and operational perspectives.
Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E
2016-07-01
Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.
Werner, Melanie; Keller, Debora; Haass, Stefan G; Gretener, Christina; Bissig, Benjamin; Fuchs, Peter; La Mattina, Fabio; Erni, Rolf; Romanyuk, Yaroslav E; Tiwari, Ayodhya N
2015-06-10
Solution processing of Cu2ZnSn(S,Se)4 (CZTSSe)-kesterite solar cells is attractive because of easy manufacturing using readily available metal salts. The solution-processed CZTSSe absorbers, however, often suffer from poor morphology with a bilayer structure, exhibiting a dense top crust and a porous bottom layer, albeit yielding efficiencies of over 10%. To understand whether the cell performance is limited by this porous layer, a systematic compositional study using (scanning) transmission electron microscopy ((S)TEM) and energy-dispersive X-ray spectroscopy of the dimethyl sulfoxide processed CZTSSe absorbers is presented. TEM investigation revealed a thin layer of CdS that is formed around the small CZTSSe grains in the porous bottom layer during the chemical bath deposition step. This CdS passivation is found to be beneficial for the cell performance as it increases the carrier collection and facilitates the electron transport. Electron-beam-induced current measurements reveal an enhanced carrier collection for this buried region as compared to reference cells with evaporated CdS.
A comprehensive infectious disease management system.
Marcu, Alex; Farley, John D
2009-01-01
An efficient electronic management system is now an essential tool for the successful management and monitoring of those affected by communicable infectious diseases (Human Immunodeficiency Virus - HIV, hepatitis C - HEP C) during the course of the treatment. The current methods which depend heavily on manual collecting, compiling and disseminating treatment information are labor-intensive and time consuming. Clinics specialized in the treatment of infectious diseases use a mix of electronic systems that fail to interact with each other, result in data duplication, and do not support treatment of the patient as a whole. The purpose of the Infectious Disease Management System is to reduce the administrative overhead associated with data collection and analysis while providing correlation abilities and decision support in accordance with defined treatment guidelines. This Infectious Disease Management System was developed to: Ensure cost effectiveness by means of low software licensing costs, Introduce a centralized mechanism of collecting and monitoring all infectious disease management data, Automate electronic retrieval of laboratory findings, Introduce a decision support mechanism as per treatment guidelines, Seamlessly integrate of application modules, Provide comprehensive reporting capabilities, Maintain a high level of user friendliness.
DOT National Transportation Integrated Search
2013-08-01
Oregon is one of the few states that currently charge a commercial truck weight-mile tax (WMT). The Oregon Department of : Transportation (ODOT) has developed a data-collection system Truck Road Use Electronics (TRUE) to simplify WMT : collec...
Library Services in a Supercomputer Center.
ERIC Educational Resources Information Center
Layman, Mary
1991-01-01
Describes library services that are offered at the San Diego Supercomputer Center (SDSC), which is located at the University of California at San Diego. Topics discussed include the user population; online searching; microcomputer use; electronic networks; current awareness programs; library catalogs; and the slide collection. A sidebar outlines…
Imaging Technology in Libraries: Photo CD Offers New Possibilities.
ERIC Educational Resources Information Center
Beiser, Karl
1993-01-01
Describes Kodak's Photo CD technology, a format for the storage and retrieval of photographic images in electronic form. Highlights include current and future Photo CD formats; computer imaging technology; ownership issues; hardware for using Photo CD; software; library and information center applications, including image collections and…
Study of a high power hydrogen beam diagnostic based on secondary electron emission.
Sartori, E; Panasenkov, A; Veltri, P; Serianni, G; Pasqualotto, R
2016-11-01
In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.
Active space debris charging for contactless electrostatic disposal maneuvers
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Sternovsky, Zoltán
2014-01-01
The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.
Wu, Albert W; Kharrazi, Hadi; Boulware, L Ebony; Snyder, Claire F
2013-08-01
This article presents the current state of patient-reported outcome measures and explains new opportunities for leveraging the recent adoption of electronic health records to expand the application of patient-reported outcomes in both clinical care and comparative effectiveness research. Historic developments of patient-reported outcome, electronic health record, and comparative effectiveness research are analyzed in two dimensions: patient centeredness and digitization. We pose the question, "What needs to be standardized around the collection of patient-reported outcomes in electronic health records for comparative effectiveness research?" We identified three converging trends: the progression of patient-reported outcomes toward greater patient centeredness and electronic adaptation; the evolution of electronic health records into personalized and fully digitized solutions; and the shift toward patient-oriented comparative effectiveness research. Related to this convergence, we propose an architecture for patient-reported outcome standardization that could serve as a first step toward a more comprehensive integration of patient-reported outcomes with electronic health record for both practice and research. The science of patient-reported outcome measurement has matured sufficiently to be integrated routinely into electronic health records and other electronic health solutions to collect data on an ongoing basis for clinical care and comparative effectiveness research. Further efforts and ideally coordinated efforts from various stakeholders are needed to refine the details of the proposed framework for standardization. Copyright © 2013 Elsevier Inc. All rights reserved.
Antolino, Dominick J.; Chapman, Melinda J.
2017-01-06
The U.S. Geological Survey South Atlantic Water Science Center collected borehole geophysical logs and images and continuous water-level data near the GMH Electronics National Priorities List Superfund site near Roxboro, North Carolina, during December 2012 through July 2015. Previous work by the U.S. Geological Survey South Atlantic Water Science Center at the site involved the collection of borehole geophysical log data in 15 wells, in addition to surface geologic mapping and passive diffusion bag sampling. In a continued effort to assist the U.S. Environmental Protection Agency in developing a conceptual groundwater model to assess current contaminant distribution and future migration of contaminants, more than 900 subsurface features (primarily fracture orientations) in 10 open borehole wells were delineated and continuous water-level data information from 14 monitoring wells within close proximity of the initially drilled boreholes was collected to observe any induced water-level fluctuations during drilling operations
Fokker-Planck analysis of transverse collective instabilities in electron storage rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindberg, Ryan R.
We analyze single bunch transverse instabilities due to wakefields using a Fokker-Planck model. We first expand on the work of T. Suzuki, Part. Accel. 12, 237 (1982) to derive the theoretical model including chromaticity, both dipolar and quadrupolar transverse wakefields, and the effects of damping and diffusion due to the synchrotron radiation. We reduce the problem to a linear matrix equation, whose eigenvalues and eigenvectors determine the collective stability of the beam. We then show that various predictions of the theory agree quite well with results from particle tracking simulations, including the threshold current for transverse instability and the profilemore » of the unstable mode. In particular, we find that predicting collective stability for high energy electron beams at moderate to large values of chromaticity requires the full Fokker-Planck analysis to properly account for the effects of damping and diffusion due to synchrotron radiation.« less
Generation of coherent magnons in NiO stimulated by EUV pulses from a seeded free-electron laser
NASA Astrophysics Data System (ADS)
Simoncig, A.; Mincigrucci, R.; Principi, E.; Bencivenga, F.; Calvi, A.; Foglia, L.; Kurdi, G.; Matruglio, A.; Dal Zilio, S.; Masciotti, V.; Lazzarino, M.; Masciovecchio, C.
2017-12-01
The full comprehension of magnetic phenomena at the femtosecond (fs) time scale is of high demand for current material science and technology. Here we report the observation of coherent collective modes in the antiferromagnetic insulator nickel oxide (NiO) identified by a frequency of 0.86 THz, which matches the expected out-of-plane single-mode magnon resonance. Such collective excitations are inelastically stimulated by extreme ultraviolet (EUV) pulses delivered by a seeded free-electron laser (FEL) and subsequently revealed probing the transient optical activity of NiO looking at the Faraday effect. Moreover, the unique capability of the employed FEL source to deliver circularly polarized pulses allows us to demonstrate optomagnetic control of such collective modes at EUV photon energies. These results may set a starting point for future investigations of magnetic materials at time scales comparable or faster than those typical of exchange interactions.
Subradiant spontaneous undulator emission through collective suppression of shot noise
Ratner, D.; Hemsing, E.; Gover, A.; ...
2015-05-01
The phenomenon of Dicke’s subradiance, in which the collective properties of a system suppress radiation, has received broad interest in atomic physics. Recent theoretical papers in the field of relativistic electron beams have proposed schemes to achieve subradiance through suppression of shot noise current fluctuations. The resulting “quiet” beam generates less spontaneous radiation than emitted even by a shot noise beam when oscillating in an undulator. Quiet beams could have diverse accelerator applications, including lowering power requirements for seeded free-electron lasers and improving efficiency of hadron cooling. In this paper we present experimental observation of a strong reduction in undulatormore » radiation, demonstrating the feasibility of noise suppression as a practical tool in accelerator physics.« less
Subradiant spontaneous undulator emission through collective suppression of shot noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratner, D.; Hemsing, E.; Gover, A.
The phenomenon of Dicke’s subradiance, in which the collective properties of a system suppress radiation, has received broad interest in atomic physics. Recent theoretical papers in the field of relativistic electron beams have proposed schemes to achieve subradiance through suppression of shot noise current fluctuations. The resulting “quiet” beam generates less spontaneous radiation than emitted even by a shot noise beam when oscillating in an undulator. Quiet beams could have diverse accelerator applications, including lowering power requirements for seeded free-electron lasers and improving efficiency of hadron cooling. In this paper we present experimental observation of a strong reduction in undulatormore » radiation, demonstrating the feasibility of noise suppression as a practical tool in accelerator physics.« less
Collective Poisson process with periodic rates: applications in physics from micro-to nanodevices.
da Silva, Roberto; Lamb, Luis C; Wirth, Gilson Inacio
2011-01-28
Continuous reductions in the dimensions of semiconductor devices have led to an increasing number of noise sources, including random telegraph signals (RTS) due to the capture and emission of electrons by traps at random positions between oxide and semiconductor. The models traditionally used for microscopic devices become of limited validity in nano- and mesoscale systems since, in such systems, distributed quantities such as electron and trap densities, and concepts like electron mobility, become inadequate to model electrical behaviour. In addition, current experimental works have shown that RTS in semiconductor devices based on carbon nanotubes lead to giant current fluctuations. Therefore, the physics of this phenomenon and techniques to decrease the amplitudes of RTS need to be better understood. This problem can be described as a collective Poisson process under different, but time-independent, rates, τ(c) and τ(e), that control the capture and emission of electrons by traps distributed over the oxide. Thus, models that consider calculations performed under time-dependent periodic capture and emission rates should be of interest in order to model more efficient devices. We show a complete theoretical description of a model that is capable of showing a noise reduction of current fluctuations in the time domain, and a reduction of the power spectral density in the frequency domain, in semiconductor devices as predicted by previous experimental work. We do so through numerical integrations and a novel Monte Carlo Markov chain (MCMC) algorithm based on microscopic discrete values. The proposed model also handles the ballistic regime, relevant in nano- and mesoscale devices. Finally, we show that the ballistic regime leads to nonlinearity in the electrical behaviour.
2015-02-01
with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...the impact of an electronic innovation must include a description of the sociotechnical context as well as the process and outcome metrics for...dissemination, will have a positive effect on nursing knowledge, use of evidence-based practices, and the achievement of nurse-sensitive patient outcomes
Vinney, Lisa A; Grade, John D; Connor, Nadine P
2012-01-01
The manner in which a communication disorder affects health-related quality of life (QOL) in children is not known. Unfortunately, collection of quality of life data via traditional paper measures is labor intensive and has several other limitations, which hinder the investigation of pediatric quality of life in children. Currently, there is not sufficient research regarding the use of electronic devices to collect pediatric patient reported outcomes in order to address such limitations. Thus, we used a cross-over design to compare responses to a pediatric health quality of life instrument (PedsQL 4.0) delivered using a handheld electronic device to those from a traditional paper form. Respondents were children with (n=9) and without (n=10) a speech or voice disorder. For paper versus the electronic format, we examined time to completion, number of incomplete or inaccurate question responses, intra-rater reliability, ease of use, and child and parent preference. There were no significant differences between children's scores, time to complete the measure, or ratings related to ease of answering questions. The percentage of children who made answering errors or omissions with paper and pencil was significantly greater than the percentage of children who made such errors using the device. This preliminary study demonstrated that use of an electronic device to collect QOL or patient-reported outcomes (PRO) data from children is more efficient than and just as feasible, reliable, and acceptable as using paper forms. The development of hardware and software applications for the collection of QOL and/or PRO data in children with speech disorders is likely warranted. The reader will be able to understand: (1) The potential benefits of using electronic data capture via handheld devices for collecting pediatric patient reported outcomes; (2) The Pediatric Quality of Life Inventory 4.0 is a measure of the perception of general health quality that has distinguished between healthy children and those with chronic health conditions; (3) Past research in communication disorders indicates that voice and speech disorders may impact quality of life in children; (4) Based on preliminary data, electronic collection of patient reported outcomes in children with and without speech/voice disorders is more efficient and equally feasible, reliable, and acceptable when compared to paper forms. Copyright © 2011 Elsevier Inc. All rights reserved.
Megaw, R; Rane-Malcolm, T; Brannan, S; Smith, R; Sanders, R
2011-11-01
To determine current knowledge and opinion on revalidation, and methods of cataract surgery audit in Scotland and to outline the current and future possibilities for electronic cataract surgery audit. In 2010 we conducted a prospective, cross-sectional, Scottish-wide survey on revalidation knowledge and opinion, and cataract audit practice among all senior NHS ophthalmologists. Results were anonymised and recorded manually for analysis. In all, 61% of the ophthalmologists surveyed took part. Only 33% felt ready to take part in revalidation, whereas 76% felt they did not have adequate information about the process. Also, 71% did not feel revalidation would improve patient care, but 85% agreed that cataract surgery audit is essential for ophthalmic practice. In addition, 91% audit their cataract outcomes; 52% do so continuously. Further, 63% audit their subspecialist surgical results. Only 25% audit their cataract surgery practice electronically, and only 12% collect clinical data using a hospital PAS system. Funding and system incompatibility were the main reasons cited for the lack of electronic audit setup. Currently, eight separate hospital IT patient administration systems are used across 14 health boards in Scotland. Revalidation is set to commence in 2012. The Royal College of Ophthalmologists will use cataract outcome audit as a tool to ensure surgical competency for the process. Retrospective manual auditing of cataract outcome is time consuming, and can be avoided with an electronic system. Scottish ophthalmologists view revalidation with scepticism and appear to have inadequate knowledge of the process. However, they strongly agree with the concept of cataract surgery audit. The existing and future electronic applications that may support surgical audit are commercial electronic records, web-based applications, centrally funded software applications, and robust NHS connections between community and hospital.
Retarding field energy analyzer for high energy pulsed electron beam measurements.
Hu, Jing; Rovey, Joshua L; Zhao, Wansheng
2017-01-01
A retarding field energy analyzer (RFEA) designed specifically for high energy pulsed electron beam measurements is described in this work. By proper design of the entrance grid, attenuation grid, and beam collector, this RFEA is capable of determining the time-resolved energy distribution of high energy pulsed electron beams normally generated under "soft vacuum" environment. The performance of the RFEA is validated by multiple tests of the leakage current, attenuation coefficient, and response time. The test results show that the retarding potential in the RFEA can go up to the same voltage as the electron beam source, which is 20 kV for the maximum in this work. Additionally, an attenuation coefficient of 4.2 is obtained in the RFEA while the percent difference of the rise time of the electron beam pulse before and after attenuation is lower than 10%. When compared with a reference source, the percent difference of the RFEA response time is less than 10% for fall times greater than 35 ns. Finally, the test results of the 10 kV pseudospark-based pulsed electron beam currents collected under varying retarding potentials are presented in this paper.
Electron-neutrino scattering off nuclei from two different theoretical perspectives
NASA Astrophysics Data System (ADS)
Martini, M.; Jachowicz, N.; Ericson, M.; Pandey, V.; Van Cuyck, T.; Van Dessel, N.
2016-07-01
We analyze charged-current electron-neutrino cross sections on carbon. We consider two different theoretical approaches, on one hand the continuum random phase approximation (CRPA) which allows a description of giant resonances and quasielastic excitations, on the other hand the RPA-based calculations which are able to describe multinucleon emission and coherent and incoherent pion production as well as quasielastic excitations. We compare the two approaches in the genuine quasielastic channel, and find a satisfactory agreement between them at large energies while at low energies the collective giant resonances show up only in the CRPA approach. We also compare electron-neutrino cross sections with the corresponding muon-neutrino ones in order to investigate the impact of the different charged-lepton masses. Finally, restricting to the RPA-based approach, we compare the sum of quasielastic, multinucleon emission, coherent, and incoherent one-pion production cross sections (folded with the electron-neutrino T2K flux) with the charged-current inclusive electron-neutrino differential cross sections on carbon measured by T2K. We find a good agreement with the data. The multinucleon component is needed in order to reproduce the T2K electron-neutrino inclusive cross sections.
Thermoelectronic laser energy conversion for power transmission in space
NASA Technical Reports Server (NTRS)
Britt, E. J.; Yuen, C.
1977-01-01
Long distance transmission of power in space by means of laser beams is an attractive concept because of the very narrow beam divergence. Such a system requires efficient means to both generate the laser beam and to convert the light energy in the beam into useful electric output at the receiver. A plasma-type device known as a Thermo-Electronic Laser Energy Converter (TELEC) has been studied as a method of converting a 10.6 micron CO2 laser beam into electric power. In the TELEC process, electromagnetic radiation is absorbed directly in the plasma electrons producing a high electron temperature. The energetic electrons diffuse out of the plasma striking two electrodes with different areas. Since more electrons are collected by the larger electrode there is a net transport of current, and an EMF is generated in the external circuit. The smaller electrode functions as an electron emitter to provide continuity of the current. Waste heat is rejected from the large electrode. A design for a TELEC system with an input 1 MW laser beam was developed as part of the study. The calculated performance of the system showed an overall efficiency of about 42%.
76 FR 52931 - Notice of Intent To Request Comments on a Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... electronically. Mail: Attention: Phyllis I. Watkins, Agency OMB Clearance Officer, Department of Agriculture....watkins@wdc.usda.gov . All comments received will become a matter of public record and will be posted... INFORMATION CONTACT: Phyllis I. Watkins, Agency OMB Clearance Officer, Department of Agriculture, Natural...
75 FR 34705 - Information Collection; Submission for OMB Review, Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... respond, including the use of appropriate automated, electronic, mechanical, or other technological... Progress Report was published in the Federal Register on March 12, 2010. This comment period ended on May... encouraged the Corporation to retain the current Progress Report submission schedule of semi-annually to help...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
... could be minimized, including the use of electronic technology, without reducing the quality of the... CONTACT: Henry Murdaugh, 703-235-0535, Office of Professional and Corporate Development, Federal Highway... education and research, and attract qualified students to the field of transportation. The Eisenhower...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Business Utilization AGENCY: Departmental Offices, Department of Treasury. ACTION: Notice and request for... Capability Statement will be used by firms that wish to do business with the Department of the Treasury. The... businesses to perform on Treasury contracts. Current Actions: The Electronic Capability Statement was...
77 FR 10804 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-23
.... Title: Electronic Federal Tax Payment System (EFTPS). Forms: 9779, 9779(SP), 9783, 9783(SP), 9787, 9787... a currently approved collection. Title: Orphan Drug Credit. Form: 8820. Abstract: Filers use this form to elect to claim the orphan drug credit, which is 50% of the qualified clinical testing expenses...
78 FR 72818 - Electronic Reporting Under the Toxic Substances Control Act
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-04
... methods of information gathering. EPA's Chemical Information Submission System (CISS) Web-based reporting... respond to a collection of information unless it displays a currently valid OMB control number. The... disposition of information. This action will also improve the quality and use of information to strengthen...
Consistent hydrodynamic theory of chiral electrons in Weyl semimetals
NASA Astrophysics Data System (ADS)
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.
2018-03-01
The complete set of Maxwell's and hydrodynamic equations for the chiral electrons in Weyl semimetals is presented. The formulation of the Euler equation takes into account the explicit breaking of the Galilean invariance by the ion lattice. It is shown that the Chern-Simons (or Bardeen-Zumino) contributions should be added to the electric current and charge densities in Maxwell's equations that provide the information on the separation of Weyl nodes in energy and momentum. On the other hand, these topological contributions do not directly affect the Euler equation and the energy conservation relation for the electron fluid. By making use of the proposed consistent hydrodynamic framework, we show that the Chern-Simons contributions strongly modify the dispersion relations of collective modes in Weyl semimetals. This is reflected, in particular, in the existence of distinctive anomalous Hall waves, which are sustained by the local anomalous Hall currents.
Woehl, Taylor; Keller, Robert
2016-12-01
An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150mrad) and on thick substrates (>50nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses. Copyright © 2016. Published by Elsevier B.V.
Materials Advances for Next-Generation Ingestible Electronic Medical Devices.
Bettinger, Christopher J
2015-10-01
Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tobacco smokers and electronic cigarettes users among Polish universities students.
Zarobkiewicz, Michał K; Wawryk-Gawda, Ewelina; Woźniakowski, Mateusz M; Sławiński, Mirosław A; Jodłowska-Jędrych, Barbara
2016-01-01
Electronic cigarettes (e-cigarettes) are small battery-powered electronic devices, heating the liquid to produce vapour--in most cases the latter contains nicotine and several flavourings. E-cigarettes are highly advertised across the media, mainly as healthy substitute to conventional cigarettes, aid in quitting smoking addiction or way of circumventing ban on smoking in public places. The aim of study was obtaining epidemiological data on cigarette smoking and electronic cigarette usage among Polish universities students. Students of different Polish state universities were asked to fill a self-prepared survey on cigarette-smoking and electronic cigarette usage. 1068 fulfilled questionnaires were gathered. The population was divided into two subgroups--medical universities' students (n=545) and non-medical universities students (n=523). 23.78% of respondents declared current smoking while 57.0% admitted ever smoking. The mean duration of smoking among current smokers was 4.17±2.53 years. 56.30% of current smokers tried quitting at least once. 31.46% of students declared ever using e-cigarettes (37.28% (n=195) among non-medical universities' students and 25.87% (n=141) among medical universities' students and 8.33% current usage. Among the latter 52.81% admitted simultaneous smoking. 26.97% of current e-cigarettes' users declared having experienced side effects of e-cigarettes. 42.70% (n=456) of respondents viewed e-cigarettes as safer than conventional cigarettes, this group comprises of 40.54% (n=212) non-medical and 44.77% (n=244) medical universities' students. 85.39% (n=912) of students viewed e-cigarettes as generally unhealthy, there were 83.56% (n=437) non-medical and 87.16% (n=475) medical universities' students among this group. The frequency of e-cigarettes usage resembles current status in many Western countries. Collected data shows high frequency of e-cigarettes usage and conventional cigarettes smoking among students (also medical universities' students). The situation requires intensive preventive measures to limit and reduce the popularity of tobacco products along with modern equivalents like electronic cigarettes.
Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose
Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.
2017-01-01
We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L−1. PMID:28102316
Graham-Jones, Pierce; Jain, Sachin H; Friedman, Charles P; Marcotte, Leah; Blumenthal, David
2012-03-01
Nationwide, as physicians and health care systems adopt electronic health records, health information technology is becoming integral to the practice of medicine. But current medical education and professional development curricula do not systematically prepare physicians to use electronic health records and the data these systems collect. We detail how training in meaningful use of electronic health records could be incorporated into physician training, from medical school, through licensure and board certification, to continuing medical education and the maintenance of licensure and board certification. We identify six near-term opportunities for professional organizations to accelerate the integration of health information technology into their requirements.
Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose
NASA Astrophysics Data System (ADS)
Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.
2017-01-01
We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L-1.
NASA Technical Reports Server (NTRS)
Hillard, G. Barry
1993-01-01
A sample of Z-93 thermal control paint was exposed to a simulated space environment in a plasma chamber. The sample was biased through a series of voltages ranging from -100 volts to +300 volts and electron and ion currents were measured. Currents were found to be in the micro-ampere range indicating that the material remains a reasonably good insulator under plasma conditions. As a second step, the sample was left in the chamber for six days and retested. Collected currents were reduced by from two to five times from the previous values indicating a substantial loss of conductivity. As a final test, the sample was removed, exposed to room conditions for two days, and returned to the chamber. Current measurements showed that the sample had partially recovered the lost conductivity. In addition to presenting these results, this report documents all of the experimental data as well as the statistical analyses performed.
Electrospinning for nano- to mesoscale photonic structures
NASA Astrophysics Data System (ADS)
Skinner, Jack L.; Andriolo, Jessica M.; Murphy, John P.; Ross, Brandon M.
2017-08-01
The fabrication of photonic and electronic structures and devices has directed the manufacturing industry for the last 50 years. Currently, the majority of small-scale photonic devices are created by traditional microfabrication techniques that create features by processes such as lithography and electron or ion beam direct writing. Microfabrication techniques are often expensive and slow. In contrast, the use of electrospinning (ES) in the fabrication of micro- and nano-scale devices for the manipulation of photons and electrons provides a relatively simple and economic viable alternative. ES involves the delivery of a polymer solution to a capillary held at a high voltage relative to the fiber deposition surface. Electrostatic force developed between the collection plate and the polymer promotes fiber deposition onto the collection plate. Issues with ES fabrication exist primarily due to an instability region that exists between the capillary and collection plate and is characterized by chaotic motion of the depositing polymer fiber. Material limitations to ES also exist; not all polymers of interest are amenable to the ES process due to process dependencies on molecular weight and chain entanglement or incompatibility with other polymers and overall process compatibility. Passive and active electronic and photonic fibers fabricated through the ES have great potential for use in light generation and collection in optical and electronic structures/devices. ES produces fiber devices that can be combined with inorganic, metallic, biological, or organic materials for novel device design. Synergistic material selection and post-processing techniques are also utilized for broad-ranging applications of organic nanofibers that span from biological to electronic, photovoltaic, or photonic. As the ability to electrospin optically and/or electronically active materials in a controlled manner continues to improve, the complexity and diversity of devices fabricated from this process can be expected to grow rapidly and provide an alternative to traditional resource-intensive fabrication techniques.
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.
1986-01-01
Data collected by the ISEE dual-spacecraft mission (on November 7, 1977) on a slowly moving, supercritical, high-beta, quasi-perpendicular bow shock are presented, and the local geometry, spatial scales, and stationarity of this shock wave are assessed in a self-consistent Rankine-Hugoniot-constrained frame of reference. Included are spatial profiles of the ac and dc magnetic and electric fields, electron and proton fluid velocities, current densities, electron and proton number densities, temperatures, pressures, and partial densities of the reflected protons. The observed layer profile is shown to be nearly phase standing and one-dimensional in a Rankine-Hugoniot frame, empirically determined by the magnetofluid parameters outside the layer proper.
2006 Status of the Momentum eXchange Electrodynamic Re-Boost (MXER) Tether Development
NASA Technical Reports Server (NTRS)
Bonometti, Joseph A.; Sorensen, Kirk F.; Dankanich, John W.; Frame, Kyle L.
2006-01-01
The MXER Tether technology development is a high-payoff/high-risk investment area within the NASA In-Space Propulsion Technology (ISPT) Program. The ISPT program is managed by the NASA Headquarters Science Mission Directorate and implemented by the Marshall Space Flight Center in Huntsville, Alabama. The MXER concept was identified and competitively ranked within NASA's comprehensive Integrated In-Space Transportation Plan (IISTP); an agency-wide technology assessment activity. The objective of the MXER tether project within ISPT is to advance the technological maturation level for the MXER system, and its subsystems, as well as other space and terrestrial tether applications. Recent hardware efforts have focused on the manufacturability of space-survivable high-strength tether material and coatings, high-current electrodynamic tether, lightweight catch mechanism, high-accuracy propagator/predictor code, and efficient electron collection/current generation. Significant technical progress has been achieved with modest ISPT funding to the extent that MXER has evolved to a well-characterized system with greater capability as the design has been matured. Synergistic efforts in high-current electrodynamic tethers and efficient electron collection/current generation have been made possible through SBIR and STTR support. The entire development endeavor was orchestrated as a collaborative team effort across multiple individual contracts and has established a solid technology resource base, which permits a wide variety of future space cable/tether applications to be realized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terazono, Atsushi, E-mail: terazono@nies.go.jp; Oguchi, Masahiro; Iino, Shigenori
Highlights: • Consumers need to pay attention to the specific collection rules for each type of battery in each municipality in Japan. • 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. • Despite announcements by producers and municipalities, only 2.0% of discarded cylindrical dry batteries were insulated. • Batteries made up an average of 4.6% of the total collected small WEEE under the small WEEE recycling scheme in Japan. • Exchangeable batteries were used in almost all of mobile phones, but the removal rate was as low as 22% for mobilemore » phones. - Abstract: To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using insulation (tape) on waste batteries to prevent fires, only 2.0% of discarded cylindrical dry batteries were insulated. Our field study of small WEEE showed that batteries made up an average of 4.6% of the total collected small WEEE on a weight basis. Exchangeable batteries were used in almost all of mobile phones, digital cameras, radios, and remote controls, but the removal rate was as low as 22% for mobile phones. Given the safety issues and the rapid changes occurring with mobile phones or other types of small WEEE, discussion is needed among stakeholders to determine how to safely collect and recycle WEEE and waste batteries.« less
Improved analysis techniques for cylindrical and spherical double probes.
Beal, Brian; Johnson, Lee; Brown, Daniel; Blakely, Joseph; Bromaghim, Daron
2012-07-01
A versatile double Langmuir probe technique has been developed by incorporating analytical fits to Laframboise's numerical results for ion current collection by biased electrodes of various sizes relative to the local electron Debye length. Application of these fits to the double probe circuit has produced a set of coupled equations that express the potential of each electrode relative to the plasma potential as well as the resulting probe current as a function of applied probe voltage. These equations can be readily solved via standard numerical techniques in order to determine electron temperature and plasma density from probe current and voltage measurements. Because this method self-consistently accounts for the effects of sheath expansion, it can be readily applied to plasmas with a wide range of densities and low ion temperature (T(i)/T(e) ≪ 1) without requiring probe dimensions to be asymptotically large or small with respect to the electron Debye length. The presented approach has been successfully applied to experimental measurements obtained in the plume of a low-power Hall thruster, which produced a quasineutral, flowing xenon plasma during operation at 200 W on xenon. The measured plasma densities and electron temperatures were in the range of 1 × 10(12)-1 × 10(17) m(-3) and 0.5-5.0 eV, respectively. The estimated measurement uncertainty is +6%∕-34% in density and +∕-30% in electron temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reis de Oliveira, Camila, E-mail: Camilareis.oliveira@hotmail.com; Moura Bernardes, Andrea, E-mail: amb@ufrgs.br; Gerbase, Annelise Engel, E-mail: agerbase@ufrgs.br
Highlights: Black-Right-Pointing-Pointer Review of the different e-waste collection systems and recycling processes. Black-Right-Pointing-Pointer We present the e-waste collection systems used in Europe and in the US. Black-Right-Pointing-Pointer We present e-waste collection systems used in Asia and Latin America. Black-Right-Pointing-Pointer E-waste management between developed and developing countries is very different. Black-Right-Pointing-Pointer We made a comparison of the world situation to the current Brazilian reality. - Abstract: Recycling and the related issue of sustainable development are increasing in importance around the world. In Brazil, the new National Policy on Solid Wastes has prompted discussion on the future of electronic waste (e-waste). Overmore » the last 10 years, different e-waste collection systems and recycling processes have been applied globally. This paper presents the systems used in different countries and compares the world situation to the current Brazilian reality. To establish a recycling process, it is necessary to organize efficient collection management. The main difficulty associated with the implementation of e-waste recycling processes in Brazil is the collection system, as its efficiency depends not only on the education and cooperation of the people but also on cooperation among industrial waste generators, distributors and the government. Over half a million waste pickers have been reported in Brazil and they are responsible for the success of metal scrap collection in the country. The country also has close to 2400 companies and cooperatives involved in recycling and scrap trading. On the other hand, the collection and recycling of e-waste is still incipient because e-wastes are not seen as valuable in the informal sector. The Brazilian challenge is therefore to organize a system of e-waste management including the informal sector without neglecting environmentally sound management principles.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... information on those who are to respond, including using appropriate automated, electronic, mechanical, or... for DCA, the operator must inspect the aircraft and screen the passengers, their carry-on property, and property carried in the cargo hold. For each passenger and crewmember onboard an aircraft that...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
... risk-based approach to the oversight of clinical investigations. It does not create or confer any... a range of approaches to monitoring. FDA currently has OMB approval for the information collection... Interested persons may submit to the Division of Dockets Management (see ADDRESSES) either electronic or...
Counting on COUNTER: The Current State of E-Resource Usage Data in Libraries
ERIC Educational Resources Information Center
Welker, Josh
2012-01-01
Any librarian who has managed electronic resources has experienced the--for want of words--"joy" of gathering and analyzing usage statistics. Such statistics are important for evaluating the effectiveness of resources and for making important budgeting decisions. Unfortunately, the data are usually tedious to collect, inconsistently organized, of…
77 FR 6859 - Proposed Collection; Comment Request for Revenue Procedure 97-22
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... system that either images their paper books and records or transfers their computerized books and records to an electronic storage media, such as an optical disk. The information requested in the revenue... being made to the revenue procedure at this time. Type of Review: Extension of a currently approved...
Breakthrough: micro-electronic photovoltaics
Okandan, Murat; Gupta, Vipin
2018-01-16
Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
... required consists of grant application preparation, quarterly reports and electronic data documenting the...: 52. Estimated Time per Response: Grant application preparation: 79.5 hours each; quarterly report preparation: 8 hours each; and inspection and data upload: 1 minute each. Expiration Date: February 28, 2011...
Brian Vachowski
2006-01-01
The USDA Forest Service Missoula Technology and Development Center (MTDC) offers technical expertise, technology transfer, and new equipment development to Federal, State, and private forest nurseries. Current and recently completed projects at MTDC include a nursery soil moisture meter, remote data collection systems, low cost weather stations, electronic soil...
Improved electrospinning processing of PU/PEDOT:PSS for electronic textile applications
NASA Astrophysics Data System (ADS)
Evke, Erin; Clippinger, Aaron; Spackman, Clayson; Samuel, Johnson; Ozisik, Rahmi
Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate), PEDOT:PSS, is an electrically conductive polymer used in electronic textile (e-textile) applications, such as eletrochromic textiles, strain sensors, and resistive heaters. In the current study, PEDOT:PSS is blended with varying concentrations of polyurethane (PU) to investigate the flexibility of PU/PEDOT:PSS fibers that are produced via a modified electrospinning process where the jet is collected close to the tip of the needle, thereby, enabling the collection of straight fibers by a rotating spool. The electrical conductivity and mechanical properties of PU/PEDOT:PSS fibers are characterized to understand the effect of PU concentration and the processing parameters. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.
Vos, Jolien; Pype, Peter; Deblonde, Jessika; Van den Eynde, Sandra; Aelbrecht, Karolien; Deveugele, Myriam; Avonts, Dirk
2016-07-01
Background and aim Current health-care delivery requires increasingly proactive and inter-professional work. Therefore, collecting patient information and knowledge management is of paramount importance. General practitioners (GPs) are well placed to lead these evolving models of care delivery. However, it is unclear how they are handling these changes. To gain an insight into this matter, the HIV epidemic was chosen as a test case. Data were collected and analysed from 13 semi-structured interviews with GPs, working in urban communities in Flanders. Findings GPs use various types of patient information to estimate patients' risk of HIV. The way in which sexual health information is collected and registered, depends on the type of information under discussion. General patient information and medical history data are often automatically collected and registered. Proactively collecting sexual health information is uncommon. Moreover, the registration of the latter is not obvious, mostly owing to insufficient space in the electronic medical record (EMR). GPs seem willing to systematically collect and register sexual health information, in particular about HIV-risk factors. They expressed a need for guidance together with practical adjustments of the EMR to adequately capture and share this information.
Oguchi, Masahiro; Murakami, Shinsuke; Sakanakura, Hirofumi; Kida, Akiko; Kameya, Takashi
2011-01-01
End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection and metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection methods were suggested for equipment types that currently have no specific collection systems in Japan, particularly for video games, notebook computers, and mid-size ICT and audio/video equipment. Copyright © 2011 Elsevier Ltd. All rights reserved.
X-ray analysis of electron Bernstein wave heating in MST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seltzman, A. H., E-mail: seltzman@wisc.edu; Anderson, J. K.; DuBois, A. M.
2016-11-15
A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. Thismore » provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.« less
Blecic, D D; Hollander, S; Lanier, D
1999-01-01
Academic health sciences libraries in the United States and Canada were surveyed regarding collection development trends, including their effect on approval plan and blanket order use, and use of outsourcing over the past four years. Results of the survey indicate that serials market forces, budgetary constraints, and growth in electronic resources purchasing have resulted in a decline in the acquisition of print items. As a result, approval plan use is being curtailed in many academic health sciences libraries. Although use of blanket orders is more stable, fewer than one-third of academic health sciences libraries report using them currently. The decline of print collections suggests that libraries should explore cooperative collection development of print materials to ensure access and preservation. The decline of approval plan use and the need for cooperative collection development may require additional effort for sound collection development. Libraries were also surveyed about their use of outsourcing. Some libraries reported outsourcing cataloging and shelf preparation of books, but none reported using outsourcing for resource selection. The reason given most often for outsourcing was that it resulted in cost savings. As expected, economic factors are driving both collection development and outsourcing practices. PMID:10219477
Chudow, Joel D; Santavicca, Daniel F; Prober, Daniel E
2016-08-10
Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz impedance of a carbon nanotube can probe this expected 1D Luttinger liquid behavior. We excite terahertz standing-wave resonances on individual antenna-coupled metallic single-walled carbon nanotubes. The terahertz signal is rectified using the nanotube contact nonlinearity, allowing for a low-frequency readout of the coupled terahertz current. The charge velocity on the nanotube is determined from the terahertz spectral response. Our measurements show that a carbon nanotube can behave as a Luttinger liquid system with charge-propagation velocities that are faster than the Fermi velocity. Understanding what determines the charge velocity in low-dimensional conductors is important for the development of next generation nanodevices.
Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...
2015-03-17
There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less
Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...
2015-03-17
There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less
Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Lyubimov, Artem Y; Hattne, Johan; Brewster, Aaron S; Sauter, Nicholas K; Brunger, Axel T; Weis, William I
2015-01-01
There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited. DOI: http://dx.doi.org/10.7554/eLife.05421.001 PMID:25781634
Ultrafast electron microscopy integrated with a direct electron detection camera.
Lee, Young Min; Kim, Young Jae; Kim, Ye-Jin; Kwon, Oh-Hoon
2017-07-01
In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM), which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.
Plasma contactor research, 1989
NASA Technical Reports Server (NTRS)
Williams, John D.
1990-01-01
The characteristics of double layers observed by researchers investigating magnetospheric phenomena are contrasted to those observed in plasma contacting experiments. Experiments in the electron collection mode of the plasma contacting process were performed and the results confirm a simple model of this process for current levels ranging to 3 A. Experimental results were also obtained in a study of the process of electron emission from a hollow cathode plasma contactor. High energy ions are observed coming from the cathode in addition to the electrons and a phenomenological model that suggests a mechanism by which this could occur is presented. Experimental results showing the effects of the design parameters of the ambient plasma simulator on the plasma potential, electron temperature, electron density and plasma noise levels induced in plasma contacting experiments are presented. A preferred simulator design is selected on the basis of these results.
NASA Astrophysics Data System (ADS)
Yakimov, E. B.; Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Pearton, S. J.
2018-05-01
The spatial distribution of electron-hole pair generation in β-Ga2O3 as a function of scanning electron microscope (SEM) beam energy has been calculated by a Monte Carlo method. This spatial distribution is then used to obtain the diffusion length of charge carriers in high-quality epitaxial Ga2O3 films from the dependence of the electron beam induced current (EBIC) collection efficiency on the accelerating voltage of a SEM. The experimental results show, contrary to earlier theory, that holes are mobile in β-Ga2O3 and to a large extent determine the diffusion length of charge carriers. Diffusion lengths in the range 350-400 nm are determined for the as-grown Ga2O3, while processes like exposing the samples to proton irradiation essentially halve this value, showing the role of point defects in controlling minority carrier transport. The pitfalls related to using other popular EBIC-based methods assuming a point-like excitation function are demonstrated. Since the point defect type and the concentration in currently available Ga2O3 are dependent on the growth method and the doping concentration, accurate methods of diffusion length determination are critical to obtain quantitative comparisons of material quality.
Operation of a gated field emitter using an individual carbon nanofiber cathode
NASA Astrophysics Data System (ADS)
Guillorn, M. A.; Melechko, A. V.; Merkulov, V. I.; Ellis, E. D.; Britton, C. L.; Simpson, M. L.; Lowndes, D. H.; Baylor, L. R.
2001-11-01
We report on the operation of an integrated gated cathode device using a single vertically aligned carbon nanofiber as the field emission element. This device is capable of operation in a moderate vacuum for extended periods of time without experiencing a degradation of performance. Less than 1% of the total emitted current is collected by the gate electrode, indicating that the emitted electron beam is highly collimated. As a consequence, this device is ideal for applications that require well-focused electron emission from a microscale structure.
"Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell.
Peter, Laurence
2009-11-17
Dye-sensitized solar cells (DSCs, also known as Gratzel cells) mimic the photosynthetic process by using a sensitizer dye to harvest light energy to generate electrical power. Several functional features of these photochemical devices are unusual, and DSC research offers a rewarding arena in which to test new ideas, new materials, and new methodologies. Indeed, one of the most attractive chemical features of the DSC is that the basic concept can be used to construct a range of devices, replacing individual components with alternative materials. Despite two decades of increasing research activity, however, many aspects of the behavior of electrons in the DSC remain puzzling. In this Account, we highlight current understanding of the processes involved in the functioning of the DSC, with particular emphasis on what happens to the electrons in the mesoporous film following the injection step. The collection of photoinjected electrons appears to involve a random walk process in which electrons move through the network of interconnected titanium dioxide nanoparticles while undergoing frequent trapping and detrapping. During their passage to the cell contact, electrons may be lost by transfer to tri-iodide species in the redox electrolyte that permeates the mesoporous film. Competition between electron collection and back electron transfer determines the performance of a DSC: ideally, all injected electrons should be collected without loss. This Account then goes on to survey recent experimental and theoretical progress in the field, placing particular emphasis on issues that need to be resolved before we can gain a clear picture of how the DSC works. Several important questions about the behavior of "sticky" electrons, those that undergo multiple trapping and detrapping, in the DSC remain unanswered. The most fundamental of these concerns is the nature of the electron traps that appear to dominate the time-dependent photocurrent and photovoltage response of DSCs. The origin of the nonideality factor in the relationship between the intensity and the DSC photovoltage is also unclear, as is the discrepancy in electron diffusion length values determined by steady-state and non-steady-state methods. With these unanswered questions, DSC research is likely to remain an active and fruitful area for some years to come.
Measuring Charge Collection Efficiency in Diamond Vertex Detectors
NASA Astrophysics Data System (ADS)
Josey, Brian; Seidel, Sally; Hoeferkamp, Martin
2011-10-01
As currently used at the Large Hadron Collider, vertex detectors are composed primarily of silicon sensors that image particle tracks by detecting the creation of electron-hole pairs caused by the excitation of the silicon atoms. We are investigating replacing these silicon detectors with detectors made out of diamond. Diamond is advantageous due to its radiation hardness. We are measuring the charge collection efficiency of diamond as a function of fluence. We are building a characterization station. Diamond samples will be placed into the characterization station and exposed to a strontium-90 beta source, before and after I irradiate them with 800 MeV protons at LANL. The radiation from the Sr-90 source will create electron-hole pairs. These will be read out by applying an electric field across the sample. The system is triggered by a scintillator-photomultiplier tube assembly. The goal of this measurement is to record collected charge as a function of bias voltage. The diamond charge collection data will be compared to silicon and predictions about detector operation at the LHC will be made.
SA13B-1900 Auroral Charging of the International Space Station
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Chandler, Michael O.; Wright, Kenneth H., Jr.
2011-01-01
Electrostatic potential variations of the International Space Station (ISS) relative to the space plasma environment are dominated by interaction of the negatively grounded 160 volt US photovoltaic power system with the plasma environment in sunlight and inductive potential variations across the ISS structure generated by motion of the vehicle across the Earth's magnetic field. Auroral charging is also a source of potential variations because the 51.6? orbital inclination of ISS takes the vehicle to sufficiently high magnetic latitudes to encounter precipitating electrons during geomagnetic storms. Analysis of auroral charging for small spacecraft or isolated insulating regions on ISS predict rapid charging to high potentials of hundreds of volts but it has been thought that the large capacitance of the entire ISS structure on the order of 0.01 F will limit frame potentials to less than a volt when exposed to auroral conditions. We present three candidate auroral charging events characterized by transient ISS structure potentials varying from approximately 2 to 17 volts. The events occur primarily at night when the solar arrays are unbiased and cannot therefore be due to solar array current collection. ISS potential decreases to more negative values during the events indicating electron current collection and the events are always observed at the highest latitudes along the ISS trajectory. Comparison of the events with integral >30 keV electron flux measurements from NOAA TIROS spacecraft demonstrate they occur within regions of precipitating electron flux at levels consistent with the energetic electron thresholds reported for onset of auroral charging of the DMSP and Freja satellites. In contrast to the DMSP and Freja events, one of the ISS charging events occur in sunlight.
Study of a high power hydrogen beam diagnostic based on secondary electron emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza; Panasenkov, A.
2016-11-15
In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, wemore » developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.« less
NASA Astrophysics Data System (ADS)
Reddy, Gachumale Saritha; Ramkumar, Sekar; Asiri, Abdullah M.; Anandan, Sambandam
2015-06-01
Two new bi-anchoring organic sensitizers of type D-(π-A)2 comprising the identical π-spacer (thiophene-2-acetonitrile) and electron acceptor (malonic acid) but different aryl amine as electron donors (diphenylamine and carbazole) were synthesized, characterized and fabricated metal free dye-sensitized solar cell devices. The intra molecular charge transfer property and electrochemical property of these dyes were investigated by molecular absorption, emission, cyclic voltammetric experiments and in addition, quantum chemical calculation studies were performed to provide sufficient driving force for the electron injection into the conduction band of TiO2 which leads to efficient charge collection. Among the fabricated devices, carbazole based device exhibits high current conversion efficiency (η = 4.7%) with a short circuit current density (JSC) 15.3 mA/cm2, an open circuit photo voltage (VOC) of 0.59 V and a fill factor of 0.44 under AM 1.5 illumination (85 mW/cm2) compared to diphenylamine based device.
Wireless data collection of self-administered surveys using tablet computers.
Singleton, Kyle W; Lan, Mars; Arnold, Corey; Vahidi, Mani; Arangua, Lisa; Gelberg, Lillian; Bui, Alex A T
2011-01-01
The accurate and expeditious collection of survey data by coordinators in the field is critical in the support of research studies. Early methods that used paper documentation have slowly evolved into electronic capture systems. Indeed, tools such as REDCap and others illustrate this transition. However, many current systems are tailored web-browsers running on desktop/laptop computers, requiring keyboard and mouse input. We present a system that utilizes a touch screen interface running on a tablet PC with consideration for portability, limited screen space, wireless connectivity, and potentially inexperienced and low literacy users. The system was developed using C#, ASP.net, and SQL Server by multiple programmers over the course of a year. The system was developed in coordination with UCLA Family Medicine and is currently deployed for the collection of data in a group of Los Angeles area clinics of community health centers for a study on drug addiction and intervention.
Wireless Data Collection of Self-administered Surveys using Tablet Computers
Singleton, Kyle W.; Lan, Mars; Arnold, Corey; Vahidi, Mani; Arangua, Lisa; Gelberg, Lillian; Bui, Alex A.T.
2011-01-01
The accurate and expeditious collection of survey data by coordinators in the field is critical in the support of research studies. Early methods that used paper documentation have slowly evolved into electronic capture systems. Indeed, tools such as REDCap and others illustrate this transition. However, many current systems are tailored web-browsers running on desktop/laptop computers, requiring keyboard and mouse input. We present a system that utilizes a touch screen interface running on a tablet PC with consideration for portability, limited screen space, wireless connectivity, and potentially inexperienced and low literacy users. The system was developed using C#, ASP.net, and SQL Server by multiple programmers over the course of a year. The system was developed in coordination with UCLA Family Medicine and is currently deployed for the collection of data in a group of Los Angeles area clinics of community health centers for a study on drug addiction and intervention. PMID:22195187
NASA Electronic Library System (NELS): The system impact of security
NASA Technical Reports Server (NTRS)
Mcgregor, Terry L.
1993-01-01
This paper discusses security issues as they relate to the NASA Electronic Library System which is currently in use as the repository system for AdaNET System Version 3 (ASV3) being operated by MountainNET, Inc. NELS was originally designed to provide for public, development, and secure collections and objects. The secure feature for collections and objects was deferred in the initial system for implementation at a later date. The NELS system is now 9 months old and many lessons have been learned about the use and maintenance of library systems. MountainNET has 9 months of experience in operating the system and gathering feedback from the ASV3 user community. The user community has expressed an interest in seeing security features implemented in the current system. The time has come to take another look at the whole issue of security for the NELS system. Two requirements involving security have been put forth by MountainNET for the ASV3 system. The first is to incorporate at the collection level a security scheme to allow restricted access to collections. This should be invisible to end users and be controlled by librarians. The second is to allow inclusion of applications which can be executed only by a controlled group of users; for example, an application which can be executed by librarians only. The requirements provide a broad framework in which to work. These requirements raise more questions than answers. To explore the impact of these requirements a top down approach will be used.
Electron Flow to a Satellite at High Positive Potential
NASA Technical Reports Server (NTRS)
Sheldon, John W.
1996-01-01
The Tethered Satellite System (TSS) is designed to deploy a 1.6 m diameter spherical satellite a distance of 20 km above the space shuttle orbiter on an insulated conducting tether. Because of the passage of the conducting tether through the earth's magnetic field, an emf is generated producing a positive satellite potential of about 5000 V. Electron flow under the influence of this high positive potential is the focus of the present analysis. The ionospheric parameters at TSS orbit altitude are; thermal velocity of electrons, 1.9 x 10(exp 5) M/S, thermal velocity of the ions, 1.1 x 10(exp 3) m/s, velocity of the satellite 8 x 10(exp 3) m/s. The electrons, with a Debye length, lambda(D) = 0.49 cm, spiral about the earth's magnetic field lines (0.4 Gauss) with a radius of about 3 cm and the ions spiral with a radius of 5 m. Under these conditions, the electron thermal energy, kT is 0.17 eV. The TSS satellite radius, r(p) is 163 Debye lengths. There is an extensive literature on the interaction of satellites with the near-earth ionospheric plasma. The space charge limitation to the electron current collected by a sphere at positive electrical potential was calculated by Langmuir and Blodgett (1924). Parker and Murphy (1967) recognized the importance of the influence of the earth's magnetic field and used the guiding center approximation to calculate the electron current collected by a positive charged satellite. More recently Ma and Schunk (1989) have calculated the time dependent flow of electrons to a spherical satellite at positive potential utilizing numerical methods and Sheldon (1994) used similar methods to solve this problem for the steady state. In order to analyze some of the phenomena that occurred in the ionosphere during the TSS flights, it would be useful to have analytic expressions for these electron flows. The governing equations are very complex and an exact analytical solution is not likely. An approximate analytical solution is feasible however, and the results of one attempt are presented herein.
Wu, Albert W.; Kharrazi, Hadi; Boulware, L. Ebony; Snyder, Claire F.
2013-01-01
Objective This paper presents the current state of patient-reported outcome measures, and explains new opportunities for leveraging the recent adoption of electronic health records to expand the application of patient-reported outcomes in both clinical care and comparative effectiveness research. Study Design and Setting Historic developments of patient-reported outcome, electronic health record, and comparative effectiveness research are analyzed in two dimensions: patient-centeredness and digitization. We pose the question: “What needs to be standardized around the collection of patient-reported outcomes in electronic health records for comparative effectiveness research?” Results We identified three converging trends: the progression of patient-reported outcomes toward greater patient centeredness and electronic adaptation; the evolution of electronic health records into personalized and fully digitized solutions; the shift toward patient-oriented comparative effectiveness research. Related to this convergence, we propose an architecture for patient-reported outcome standardization that could serve as a first step toward a more comprehensive integration of patient-reported outcomes with electronic health record for both practice and research. Conclusion The science of patient-reported outcome measurement has matured sufficiently to be integrated routinely into electronic health records and other e-health solutions to collect data on an ongoing basis for clinical care and comparative effectiveness research. Further efforts and ideally coordinated efforts from various stakeholders are needed to refine the details of the proposed framework for standardization. PMID:23849145
Electronic immunization data collection systems: application of an evaluation framework.
Heidebrecht, Christine L; Kwong, Jeffrey C; Finkelstein, Michael; Quan, Sherman D; Pereira, Jennifer A; Quach, Susan; Deeks, Shelley L
2014-01-14
Evaluating the features and performance of health information systems can serve to strengthen the systems themselves as well as to guide other organizations in the process of designing and implementing surveillance tools. We adapted an evaluation framework in order to assess electronic immunization data collection systems, and applied it in two Ontario public health units. The Centers for Disease Control and Prevention's Guidelines for Evaluating Public Health Surveillance Systems are broad in nature and serve as an organizational tool to guide the development of comprehensive evaluation materials. Based on these Guidelines, and informed by other evaluation resources and input from stakeholders in the public health community, we applied an evaluation framework to two examples of immunization data collection and examined several system attributes: simplicity, flexibility, data quality, timeliness, and acceptability. Data collection approaches included key informant interviews, logic and completeness assessments, client surveys, and on-site observations. Both evaluated systems allow high-quality immunization data to be collected, analyzed, and applied in a rapid fashion. However, neither system is currently able to link to other providers' immunization data or provincial data sources, limiting the comprehensiveness of coverage assessments. We recommended that both organizations explore possibilities for external data linkage and collaborate with other jurisdictions to promote a provincial immunization repository or data sharing platform. Electronic systems such as the ones described in this paper allow immunization data to be collected, analyzed, and applied in a rapid fashion, and represent the infostructure required to establish a population-based immunization registry, critical for comprehensively assessing vaccine coverage.
Flight control electronics reliability/maintenance study
NASA Technical Reports Server (NTRS)
Dade, W. W.; Edwards, R. H.; Katt, G. T.; Mcclellan, K. L.; Shomber, H. A.
1977-01-01
Collection and analysis of data are reported that concern the reliability and maintenance experience of flight control system electronics currently in use on passenger carrying jet aircraft. Two airlines B-747 airplane fleets were analyzed to assess the component reliability, system functional reliability, and achieved availability of the CAT II configuration flight control system. Also assessed were the costs generated by this system in the categories of spare equipment, schedule irregularity, and line and shop maintenance. The results indicate that although there is a marked difference in the geographic location and route pattern between the airlines studied, there is a close similarity in the reliability and the maintenance costs associated with the flight control electronics.
NASA Astrophysics Data System (ADS)
Zhao, Qian; Wang, Lei; Wang, Jazer; Wang, ChangAn; Shi, Hong-Fei; Guerrero, James; Feng, Mu; Zhang, Qiang; Liang, Jiao; Guo, Yunbo; Zhang, Chen; Wallow, Tom; Rio, David; Wang, Lester; Wang, Alvin; Wang, Jen-Shiang; Gronlund, Keith; Lang, Jun; Koh, Kar Kit; Zhang, Dong Qing; Zhang, Hongxin; Krishnamurthy, Subramanian; Fei, Ray; Lin, Chiawen; Fang, Wei; Wang, Fei
2018-03-01
Classical SEM metrology, CD-SEM, uses low data rate and extensive frame-averaging technique to achieve high-quality SEM imaging for high-precision metrology. The drawbacks include prolonged data collection time and larger photoresist shrinkage due to excess electron dosage. This paper will introduce a novel e-beam metrology system based on a high data rate, large probe current, and ultra-low noise electron optics design. At the same level of metrology precision, this high speed e-beam metrology system could significantly shorten data collection time and reduce electron dosage. In this work, the data collection speed is higher than 7,000 images per hr. Moreover, a novel large field of view (LFOV) capability at high resolution was enabled by an advanced electron deflection system design. The area coverage by LFOV is >100x larger than classical SEM. Superior metrology precision throughout the whole image has been achieved, and high quality metrology data could be extracted from full field. This new capability on metrology will further improve metrology data collection speed to support the need for large volume of metrology data from OPC model calibration of next generation technology. The shrinking EPE (Edge Placement Error) budget places more stringent requirement on OPC model accuracy, which is increasingly limited by metrology errors. In the current practice of metrology data collection and data processing to model calibration flow, CD-SEM throughput becomes a bottleneck that limits the amount of metrology measurements available for OPC model calibration, impacting pattern coverage and model accuracy especially for 2D pattern prediction. To address the trade-off in metrology sampling and model accuracy constrained by the cycle time requirement, this paper employs the high speed e-beam metrology system and a new computational software solution to take full advantage of the large volume data and significantly reduce both systematic and random metrology errors. The new computational software enables users to generate large quantity of highly accurate EP (Edge Placement) gauges and significantly improve design pattern coverage with up to 5X gain in model prediction accuracy on complex 2D patterns. Overall, this work showed >2x improvement in OPC model accuracy at a faster model turn-around time.
Mueller, David S.
2016-05-12
The software program, QRev computes the discharge from moving-boat acoustic Doppler current profiler measurements using data collected with any of the Teledyne RD Instrument or SonTek bottom tracking acoustic Doppler current profilers. The computation of discharge is independent of the manufacturer of the acoustic Doppler current profiler because QRev applies consistent algorithms independent of the data source. In addition, QRev automates filtering and quality checking of the collected data and provides feedback to the user of potential quality issues with the measurement. Various statistics and characteristics of the measurement, in addition to a simple uncertainty assessment are provided to the user to assist them in properly rating the measurement. QRev saves an extensible markup language file that can be imported into databases or electronic field notes software. The user interacts with QRev through a tablet-friendly graphical user interface. This report is the manual for version 2.8 of QRev.
NASA Astrophysics Data System (ADS)
Yang, Lei; Paulsson, J. J. P.; Wedlund, C. Simon; Odelstad, E.; Edberg, N. J. T.; Koenders, C.; Eriksson, A. I.; Miloch, W. J.
2016-11-01
In 2014 September, as Rosetta transitioned to close bound orbits at 30 km from comet 67P/Churyumov-Gerasimenko, the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) data showed large systematic fluctuations in both the spacecraft potential and the collected currents. We analyse the potential bias sweeps from RPC-LAP, from which we extract three sets of parameters: (1) knee potential, that we relate to the spacecraft potential, (2) the ion attraction current, which is composed of the photoelectron emission current from the probe as well as contributions from local ions, secondary emission, and low-energy electrons, and (3) an electron current whose variation is, in turn, an estimate of the electron density variation. We study the evolution of these parameters between 4 and 3.2 au in heliocentric and cometocentric frames. We find on September 9 a transition into a high-density plasma region characterized by increased knee potential fluctuations and plasma currents to the probe. In conjunction with previous studies, the early cometary plasma can be seen as composed of two regions: an outer region characterized by solar wind plasma, and small quantities of pick-up ions, and an inner region with enhanced plasma densities. This conclusion is in agreement with other RPC instruments such as RPC-MAG, RPC-IES and RPC-ICA, and numerical simulations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... carriers' costs related to screening passengers and property in calendar year 2000. DATES: Send your... information on those who are to respond, including using appropriate automated, electronic, mechanical, or... screening passengers and property in calendar year 2000. 49 U.S.C. 44940(a)(2)(B)(i), (ii). In conjunction...
ERIC Educational Resources Information Center
Shaw, Simon G.; Pedersen, Scott; Cooley, Dean; Callingham, Rosemary A.
2013-01-01
The current expectation of teachers in Australia is that they are able to collect, interpret, and use data related to teaching and learning. Digital technologies in schools, such as electronic methods of record-keeping, offer enhanced opportunities for teachers to perform this skill, and its application has been growing steadily in education. The…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... availability is limited. To facilitate the scheduling of the Food Safety Mobile's visits when it is available... regarding its electronic Food Safety Mobile questionnaire. FSIS is planning to increase the total annual... selected food safety news and information. This service is available at http://www.fsis.usda.gov/news_and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... currently assessing any additional data requirements. In this regard, FDA published an Advance Notice of... report. Here, e-form FDA 3744a and reporting via the Electronic Submission Gateway are provided by FDA... January 17, 2012 (77 FR 2302), FDA published a 60-day notice requesting public comment on the proposed...
John, Ann; McGregor, Joanne; Fone, David; Dunstan, Frank; Cornish, Rosie; Lyons, Ronan A; Lloyd, Keith R
2016-03-15
The robustness of epidemiological research using routinely collected primary care electronic data to support policy and practice for common mental disorders (CMD) anxiety and depression would be greatly enhanced by appropriate validation of diagnostic codes and algorithms for data extraction. We aimed to create a robust research platform for CMD using population-based, routinely collected primary care electronic data. We developed a set of Read code lists (diagnosis, symptoms, treatments) for the identification of anxiety and depression in the General Practice Database (GPD) within the Secure Anonymised Information Linkage Databank at Swansea University, and assessed 12 algorithms for Read codes to define cases according to various criteria. Annual incidence rates were calculated per 1000 person years at risk (PYAR) to assess recording practice for these CMD between January 1(st) 2000 and December 31(st) 2009. We anonymously linked the 2799 MHI-5 Caerphilly Health and Social Needs Survey (CHSNS) respondents aged 18 to 74 years to their routinely collected GP data in SAIL. We estimated the sensitivity, specificity and positive predictive value of the various algorithms using the MHI-5 as the gold standard. The incidence of combined depression/anxiety diagnoses remained stable over the ten-year period in a population of over 500,000 but symptoms increased from 6.5 to 20.7 per 1000 PYAR. A 'historical' GP diagnosis for depression/anxiety currently treated plus a current diagnosis (treated or untreated) resulted in a specificity of 0.96, sensitivity 0.29 and PPV 0.76. Adding current symptom codes improved sensitivity (0.32) with a marginal effect on specificity (0.95) and PPV (0.74). We have developed an algorithm with a high specificity and PPV of detecting cases of anxiety and depression from routine GP data that incorporates symptom codes to reflect GP coding behaviour. We have demonstrated that using diagnosis and current treatment alone to identify cases for depression and anxiety using routinely collected primary care data will miss a number of true cases given changes in GP recording behaviour. The Read code lists plus the developed algorithms will be applicable to other routinely collected primary care datasets, creating a platform for future e-cohort research into these conditions.
THOR Turbulence Electron Analyser: TEA
NASA Astrophysics Data System (ADS)
Fazakerley, Andrew; Moore, Tom; Owen, Chris; Pollock, Craig; Wicks, Rob; Samara, Marilia; Rae, Jonny; Hancock, Barry; Kataria, Dhiren; Rust, Duncan
2016-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Turbulence Electron Analyser (TEA) will measure the plasma electron populations in the mission's Regions of Interest. It will collect a 3D electron velocity distribution with cadences as short as 5 ms. The instrument will be capable of measuring energies up to 30 keV. TEA consists of multiple electrostatic analyser heads arranged so as to measure electrons arriving from look directions covering the full sky, i.e. 4 pi solid angle. The baseline concept is similar to the successful FPI-DES instrument currently operating on the MMS mission. TEA is intended to have a similar angular resolution, but a larger geometric factor. In comparison to earlier missions, TEA improves on the measurement cadence. For example, MMS FPI-DES routinely operates at 30 ms cadence. The objective of measuring distributions at rates as fast as 5 ms is driven by the mission's scientific requirements to resolve electron gyroscale size structures, where plasma heating and fluctuation dissipation is predicted to occur. TEA will therefore be capable of making measurements of the evolution of distribution functions across thin (a few km) current sheets travelling past the spacecraft at up to 600 km/s, of the Power Spectral Density of fluctuations of electron moments and of distributions fast enough to match frequencies with waves expected to be dissipating turbulence (e.g. with 100 Hz whistler waves).
NASA Astrophysics Data System (ADS)
Prilepskiy, Yuriy
2007-03-01
This paper presents continuation data of the series of experiments with the electron gun of the CEBAF machine at Jefferson Lab (Newport News, VA), which is capable of delivering electrons with energies up to 200 keV. This 1.5 GHz beam permits to generate cellular damage within minutes. We have performed irradiation of cancer and normal cells with different electron energies and currents to investigate cell biological responses. The biological response is measured through proteomics analysis before and after irradiation. The living cells are encased in special air containers allowing proper positioning in vacuum where the electrons are present. The containers receive the irradiation from the mono energetic electrons with energy up to 120 keV, resulting in an irradiation from both electrons and a small number of photons from the original beam passing through the thin container window. This window allows approximately half of the beam to come through. The study will permit to address the physical processes involved in the RBE and LET at a level that supersedes current data listed in the literature. We will discuss the experimental setup and the second stage of data collected with the new more developed system. This research is part of a global program to provide detailed information for the understanding of radiation based cancer treatments.
Charge collection in Si detectors irradiated in situ at superfluid helium temperature
NASA Astrophysics Data System (ADS)
Verbitskaya, Elena; Eremin, Vladimir; Zabrodskii, Andrei; Dehning, Bernd; Kurfürst, Christoph; Sapinski, Mariusz; Bartosik, Marcin R.; Egorov, Nicolai; Härkönen, Jaakko
2015-10-01
Silicon and diamond detectors operated in a superfluid helium bath are currently being considered for the upgrade of the LHC beam loss monitoring system. The detectors would be installed in immediate proximity of the superconducting coils of the triplet magnets. We present here the results of the in situ irradiation test for silicon detectors using 23 GeV protons while keeping the detectors at a temperature of 1.9 K. Red laser (630 nm) Transient Current Technique and DC current measurements were used to study the pulse response and collected charge for silicon detectors irradiated to a maximum radiation fluence of 1×1016 p/cm2. The dependence between collected charge and irradiation fluence was parameterized using the Hecht equation and assumption of a uniform electric field distribution. The collected charge was found to degrade with particle fluence for both bias polarities. We observed that the main factor responsible for this degradation was related to trapping of holes on the donor-type radiation-induced defects. In contrast to expectations, along with formation of donors, acceptor-type defects (electron traps) are introduced into the silicon bulk. This suggests that the current models describing charge collection in irradiated silicon detectors require an extension for taking into account trapping at low temperatures with a contribution of shallow levels. New in situ irradiation tests are needed and planned now to extend statistics of the results and gain a deeper insight into the physics of low temperature detector operation in harsh radiation environment.
Chapman, Melinda J.; Clark, Timothy W.; Williams, John H.
2013-01-01
Geologic mapping, the collection of borehole geophysical logs and images, and passive diffusion bag sampling were conducted by the U.S. Geological Survey North Carolina Water Science Center in the vicinity of the GMH Electronics Superfund site near Roxboro, North Carolina, during March through October 2011. The study purpose was to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants. Data compilation efforts included geologic mapping of more than 250 features, including rock type and secondary joints, delineation of more than 1,300 subsurface features (primarily fracture orientations) in 15 open borehole wells, and the collection of passive diffusion-bag samples from 42 fracture zones at various depths in the 15 wells.
Direct evidence of void passivation in Cu(InGa)(SSe){sub 2} absorber layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dongho; Kim, Young-Su; Mo, Chan B.
We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se)more » ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.« less
Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene.
Crossno, Jesse; Shi, Jing K; Wang, Ke; Liu, Xiaomeng; Harzheim, Achim; Lucas, Andrew; Sachdev, Subir; Kim, Philip; Taniguchi, Takashi; Watanabe, Kenji; Ohki, Thomas A; Fong, Kin Chung
2016-03-04
Interactions between particles in quantum many-body systems can lead to collective behavior described by hydrodynamics. One such system is the electron-hole plasma in graphene near the charge-neutrality point, which can form a strongly coupled Dirac fluid. This charge-neutral plasma of quasi-relativistic fermions is expected to exhibit a substantial enhancement of the thermal conductivity, thanks to decoupling of charge and heat currents within hydrodynamics. Employing high-sensitivity Johnson noise thermometry, we report an order of magnitude increase in the thermal conductivity and the breakdown of the Wiedemann-Franz law in the thermally populated charge-neutral plasma in graphene. This result is a signature of the Dirac fluid and constitutes direct evidence of collective motion in a quantum electronic fluid. Copyright © 2016, American Association for the Advancement of Science.
Charge dynamics of MgO single crystals subjected to KeV electron irradiation
NASA Astrophysics Data System (ADS)
Boughariou, A.; Blaise, G.; Braga, D.; Kallel, A.
2004-04-01
A scanning electron microscope has been equipped to study the fundamental aspects of charge trapping in insulating materials, by measuring the secondary electron emission (SEE) yield σ with a high precision (a few percent), as a function of energy, electron current density, and dose. The intrinsic secondary electron emission yield σ0 of uncharged MgO single crystals annealed at 1000 °C, 2 h, has been studied at four energies 1.1, 5, 15, and 30 keV on three different crystal orientations (100), (110), and (111). At low energies (1.1 and 5 keV) σ0 depends on the crystalline orientation wheras at high energies (30 keV) no differentiation occurs. It is shown that the value of the second crossover energy E2, for which the intrinsic SEE yield σ0=1, is extremely delicate to measure with precision. It is about 15 keV±500 eV for the (100) orientation, 13.5 keV±500 eV for the (110), and 18.5 keV±500 eV for the (111) one. At low current density J⩽105 pA/cm2, the variation of σ with the injected dose makes possible the observation of a self-regulated regime characterized by a steady value of the SEE yield σst=1. At low energies 1.1 and 5 keV, there is no current density effects in MgO, but at high energies ≈30 keV, apparent current density effects come from a bad collect of secondary electrons, due to very high negative surface potential. At 30 keV energy, an intense erratic electron exoemission was observed on the MgO (110) orientation annealed at 1500 °C. This phenomenon is the result of a disruptive process similar to flashover, which takes place at the surface of the material.
Amplified Thermionic Cooling Using Arrays of Nanowires
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok; Choi, Daniel; Shcheglov, Kirill; Hishinuma, Yoshikazu
2007-01-01
A class of proposed thermionic cooling devices would incorporate precise arrays of metal nanowires as electron emitters. The proposed devices could be highly miniaturized, enabling removal of heat from locations, very close to electronic devices, that have previously been inaccessible for heat-removal purposes. The resulting enhancement of removal of heat would enable operation of the devices at higher power levels and higher clock speeds. Moreover, the mass, complexity, and bulk of electronic circuitry incorporating these highly miniaturized cooling devices could be considerably reduced, relative to otherwise equivalent circuitry cooled by conventional electromechanical, thermoelectric, and fluidic means. In thermionic cooling, one exploits the fact that because only the highest-energy electrons are thermionically emitted, collecting those electrons to prevent their return to the emitting electrode results in the net removal of heat from that electrode. Collection is effected by applying an appropriate positive bias potential to another electrode placed near the emitting electrode. The concept underlying the proposal is that the thermionic-emission current and, hence, the cooling effect attainable by use of an array of nanowires could be significantly greater than that attainable by use of a single emitting electrode or other electron- emitting surface. The wires in an array according to the proposal would protrude perpendicularly from a planar surface and their heights would be made uniform to within a sub-nanometer level of precision
A novel transparent charged particle detector for the CPET upgrade at TITAN
NASA Astrophysics Data System (ADS)
Lascar, D.; Kootte, B.; Barquest, B. R.; Chowdhury, U.; Gallant, A. T.; Good, M.; Klawitter, R.; Leistenschneider, E.; Andreoiu, C.; Dilling, J.; Even, J.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.
2017-10-01
The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid's entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the "mesh detector." The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user's discretion.
Rethinking the reference collection: exploring benchmarks and e-book availability.
Husted, Jeffrey T; Czechowski, Leslie J
2012-01-01
Librarians in the Health Sciences Library System at the University of Pittsburgh explored the possibility of developing an electronic reference collection that would replace the print reference collection, thus providing access to these valuable materials to a widely dispersed user population. The librarians evaluated the print reference collection and standard collection development lists as potential benchmarks for the electronic collection, and they determined which books were available in electronic format. They decided that the low availability of electronic versions of titles in each benchmark group rendered the creation of an electronic reference collection using either benchmark impractical.
NASA Astrophysics Data System (ADS)
Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.
2017-12-01
Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron vortex magnetic holes by electron temperature anisotropic instability.
Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model
NASA Astrophysics Data System (ADS)
Zhang, Ya; Guo, Bin; Zhai, Feng; Jiang, Wei
2018-03-01
By means of a nonlinear two-component hydrodynamic model, we study the valley-polarized collective motion of electrons in a strained graphene sheet. The self-consistent numerical solution in real space indicates the existence of valley-polarized edge plasmons due to a strain-induced pseudomagnetic field. The valley polarization of the edge pseudomagnetoplasmon can occur in a specific valley, depending on the pseudomagnetic field and the electron density in equilibrium. A full valley polarization is achieved at the edge of the graphene sheet for a pseudomagnetic field of tens of Tesla, which is a realistic value in current experimental technologies.
Modeling International Space Station (ISS) Floating Potentials
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Gardner, Barbara
2002-01-01
The floating potential of the International Space Station (ISS) as a function of the electron current collection of its high voltage solar array panels is derived analytically. Based on Floating Potential Probe (FPP) measurements of the ISS potential and ambient plasma characteristics, it is shown that the ISS floating potential is a strong function of the electron temperature of the surrounding plasma. While the ISS floating potential has so far not attained the pre-flight predicted highly negative values, it is shown that for future mission builds, ISS must continue to provide two-fault tolerant arc-hazard protection for astronauts on EVA.
NASA Technical Reports Server (NTRS)
Vonroos, O.; Zoutendyk, J.
1983-01-01
When an energetic particle (kinetic energy 0.5 MeV) originating from a radioactive decay or a cosmic ray transverse the active regions of semiconductor devices used in integrated circuit (IC) chips, it leaves along its track a high density electron hole plasma. The subsequent decay of this plasma by drift and diffusion leads to charge collection at the electrodes large enough in most cases to engender a false reading, hence the name single-event upset (SEU). The problem of SEU's is particularly severe within the harsh environment of Jupiter's radiation belts and constitutes therefore a matter of concern for the Galileo mission. The physics of an SEU event is analyzed in some detail. Owing to the predominance of nonlinear space charge effects and the fact that positive (holes) and negative (electrons) charges must be treated on an equal footing, analytical models for the ionized-charge collection and their corresponding currents as a function of time prove to be inadequate even in the simplest case of uniformly doped, abrupt p-n junctions in a one-dimensional geometry. The necessity for full-fledged computer simulation of the pertinent equations governing the electron-hole plasma therefore becomes imperative.
Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation
NASA Technical Reports Server (NTRS)
Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.
2014-01-01
The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
...-regulatory organizations (``SRO'') to do so by submitting a single form, fingerprint card and a combined.... 78c(a)(39). FINRA currently collects a fee of $27.50 to process the first and third fingerprint submission by a member, either electronically or via a hard copy fingerprint card. And the fee is $13.00 for...
Center conductor diagnostic for multipactor detection in inaccessible geometries
NASA Astrophysics Data System (ADS)
Chaplin, Vernon H.; Hubble, Aimee A.; Clements, Kathryn A.; Graves, Timothy P.
2017-01-01
Electron collecting current probes are the most reliable diagnostic of multipactor and radiofrequency (RF) ionization breakdown; however, stand-alone probes can only be used in test setups where the breakdown region is physically accessible. This paper describes techniques for measuring multipactor current directly on the center conductor of a coaxial RF device (or more generally, on the signal line in any two-conductor RF system) enabling global multipactor detection with improved sensitivity compared to other common diagnostics such as phase null, third harmonic, and reflected power. The center conductor diagnostic may be AC coupled for use in systems with a low DC impedance between the center conductor and ground. The effect of DC bias on the breakdown threshold was studied: in coaxial geometry, the change in threshold was <1 dB for positive biases satisfying VD C/VR F 0 <0.8 , where VRF0 is the RF voltage amplitude at the unperturbed breakdown threshold. In parallel plate geometry, setting VD C/VR F 0 <0.2 was necessary to avoid altering the threshold by more than 1 dB. In most cases, the center conductor diagnostic functions effectively with no bias at all—this is the preferred implementation, but biases in the range VD C=0 -10 V may be applied if necessary. The polarity of the detected current signal may be positive or negative depending on whether there is net electron collection or emission globally.
Center conductor diagnostic for multipactor detection in inaccessible geometries.
Chaplin, Vernon H; Hubble, Aimee A; Clements, Kathryn A; Graves, Timothy P
2017-01-01
Electron collecting current probes are the most reliable diagnostic of multipactor and radiofrequency (RF) ionization breakdown; however, stand-alone probes can only be used in test setups where the breakdown region is physically accessible. This paper describes techniques for measuring multipactor current directly on the center conductor of a coaxial RF device (or more generally, on the signal line in any two-conductor RF system) enabling global multipactor detection with improved sensitivity compared to other common diagnostics such as phase null, third harmonic, and reflected power. The center conductor diagnostic may be AC coupled for use in systems with a low DC impedance between the center conductor and ground. The effect of DC bias on the breakdown threshold was studied: in coaxial geometry, the change in threshold was <1 dB for positive biases satisfying V DC /V RF0 <0.8, where V RF0 is the RF voltage amplitude at the unperturbed breakdown threshold. In parallel plate geometry, setting V DC /V RF0 <0.2 was necessary to avoid altering the threshold by more than 1 dB. In most cases, the center conductor diagnostic functions effectively with no bias at all-this is the preferred implementation, but biases in the range V DC =0-10V may be applied if necessary. The polarity of the detected current signal may be positive or negative depending on whether there is net electron collection or emission globally.
Preparation, Applications, and Digital Simulation of Carbon Interdigitated Array Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.
2014-12-16
Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltam-metry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10–5 molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts formore » both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science Office of Basic Energy Sciences.« less
A Front-End electronics board for single photo-electron timing and charge from MaPMT
NASA Astrophysics Data System (ADS)
Giordano, F.; Breton, D.; Beigbeder, C.; De Robertis, G.; Fusco, P.; Gargano, F.; Liuzzi, R.; Loparco, F.; Mazziotta, M. N.; Rizzi, V.; Tocut, V.
2013-08-01
A Front-End (FE) design based on commercial operational amplifiers has been developed to read-out signals from a Multianode PhotoMultiplier Tube (MaPMT). The overall design has been optimised for single photo-electron signal from the Hamamatsu H8500. The signal is collected by a current sensitive preamplifier and then it is fed into both a ECL fast discriminator and a shaper for analog output readout in differential mode. The analog signal and the digital gates are then registered on VME ADC and TDC modules respectively. Performances in terms of linearity, gain and timing resolution will be discussed, presenting results obtained on a test bench with differentiated step voltage inputs and also with a prototype electronic board plugged into the H8500 PMT illuminated by a picosecond laser.
Reconstructing Michel Electrons in the MicroBooNE Detector
NASA Astrophysics Data System (ADS)
Caratelli, David
2016-03-01
MicroBooNE is a Liquid Argon Time Projection Chamber (LArTPC) neutrino detector located in the Booster Neutrino Beamline at Fermilab which began collecting neutrino data in October 2015. MicroBooNE aims to explore the low-energy excess in the νe spectrum reported by MiniBooNE as well as perform ν-Ar cross-section measurements. In this talk, we present the current status of reconstructing Michel electrons from cosmic ray muons in the MicroBooNE detector. These Michel electrons are distributed uniformly inside the detector, and serve as a natural and powerful calibration source to study the detector's response for low energy (10s of MeV) interactions as a function of position. We have developed a reconstruction software tool to successfully identify such Michel electrons which could be of benefit to LArTPC experiments generically.
X-ray Diffraction from Membrane Protein Nanocrystals
Hunter, M.S.; DePonte, D.P.; Shapiro, D.A.; Kirian, R.A.; Wang, X.; Starodub, D.; Marchesini, S.; Weierstall, U.; Doak, R.B.; Spence, J.C.H.; Fromme, P.
2011-01-01
Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is <300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 μm. The results demonstrate that there are membrane protein crystals that contain <100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain <200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells. PMID:21190672
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.; Angelopoulos, V.; McFadden, J. P.; Bonnell, J. W.; Ergun, R. E.
2012-01-01
As an airless body in space with no global magnetic field, the Moon is exposed to both solar ultraviolet radiation and ambient plasmas. Photoemission from solar UV radiation and collection of ambient plasma are typically opposing charging currents and simple charging current balance predicts that the lunar dayside surface should charge positively; however, the two ARTEMIS probes have observed energydependent loss cones and high-energy, surface-originating electron beams above the dayside lunar surface for extended periods in the magnetosphere, which are indicative of negative surface potentials. In this paper, we compare observations by the ARTEMIS P1 spacecraft with a one dimensional particle-in-cell simulation and show that the energy-dependent loss cones and electron beams are due to the presence of stable, non-monotonic, negative potentials above the lunar surface. The simulations also show that while the magnitude of the non-monotonic potential is mainly driven by the incoming electron temperature, the incoming ion temperature can alter this magnitude, especially for periods in the plasma sheet when the ion temperature is more than twenty times the electron temperature. Finally, we note several other plasma phenomena associated with these non-monotonic potentials, such as broadband electrostatic noise and electron cyclotron harmonic emissions, and offer possible generation mechanisms for these phenomena.
Sheath effects on current collection by particle detectors with narrow acceptance angles
NASA Technical Reports Server (NTRS)
Singh, N.; Baugher, C. R.
1981-01-01
Restriction of the aperture acceptance angle of an ion or electron trap on an attracting spacecraft significantly alters the volt-ampere characteristics of the instrument in a low Mach number plasma. It is shown when the angular acceptance of the aperture is restricted the current to the collector tends to be independent of the Debye length. Expressions for the RPA characteristics for both a thin sheath and a thick sheath are derived; and it is shown that as the aperture is narrowed the curves tend toward equivalence.
Cost effectiveness of a medical digital library.
Roussel, F; Darmoni, S J; Thirion, B
2001-01-01
The rapid increase in the price of electronic journals has made the optimization of collection management an urgent task. As there is currently no standard procedure for the evaluation of this problem, we applied the Reading Factor (RF), an electronically computed indicator used for consultation of individual articles. The aim of our study was to assess the cost effective impact of modifications in our digital library (i.e. change of access from the Intranet to the Internet or change in editorial policy). The digital OVID library at Rouen University Hospital continues to be cost-effective in comparison with the interlibrary loan costs. Moreover, when electronic versions are offered alongside a limited amount of interlibrary loans, a reduction in library costs was observed.
Emergent functions of quantum materials
NASA Astrophysics Data System (ADS)
Tokura, Yoshinori; Kawasaki, Masashi; Nagaosa, Naoto
2017-11-01
Materials can harbour quantum many-body systems, most typically in the form of strongly correlated electrons in solids, that lead to novel and remarkable functions thanks to emergence--collective behaviours that arise from strong interactions among the elements. These include the Mott transition, high-temperature superconductivity, topological superconductivity, colossal magnetoresistance, giant magnetoelectric effect, and topological insulators. These phenomena will probably be crucial for developing the next-generation quantum technologies that will meet the urgent technological demands for achieving a sustainable and safe society. Dissipationless electronics using topological currents and quantum spins, energy harvesting such as photovoltaics and thermoelectrics, and secure quantum computing and communication are the three major fields of applications working towards this goal. Here, we review the basic principles and the current status of the emergent phenomena and functions in materials from the viewpoint of strong correlation and topology.
Depletion region surface effects in electron beam induced current measurements.
Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B
2016-09-07
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.
The TSS-1R Electrodynamic Tether Experiment: Scientific and Technological Results
NASA Technical Reports Server (NTRS)
Stone, Nobie H.; Raitt, John
1998-01-01
The bi-national, US-Italian, Tethered Satellite System (TSS) program was designed to provide a unique opportunity to explore certain space plasma- electrodynamic processes and the orbital mechanics of a gravity-gradient stabilized system of two satellites linked by a long conducting tether. The second flight, TSS-LR, was launched February 22, 1996 on STS-75 and satellite deployment began at MET 3/00:27. A unique data set was obtained over the next five hours, as the tether was deployed to a length of 19695 meters, which has allowed significant science to be accomplished. This presentation will focus on electrodynamic processes generated by the tether--in particular, the collection of electrical current from the ionospheric plasma. Of particular significance is an apparent transition of the physics of current collection when the potential of the collecting body becomes greater than the ram energy of the ionospheric atomic oxygen ions. Previous theoretical models of current collection were electrostatic--assuming that the orbital motion of the system, which is highly subsonic with respect to electron thermal motion, was un- important. This may still be acceptable for the case of relatively slow-moving sounding rockets. However, the TSS-LR results show that motion relative to the plasma must be accounted for in orbiting systems.
Hoffman, Scott A.; Roland, Mark A.; Schalk, Luther F.; Fulton, John W.
2013-01-01
The U.S. Geological Survey (USGS) conducted velocity, water-quality, and bathymetric surveys from spring 2010 to summer 2011 in the Grays Landing and Maxwell navigation pools of the Monongahela River, Pennsylvania, and selected tributaries in response to elevated levels of total dissolved solids (TDS) recorded in early September 2009. Velocity data were collected using an Acoustic Doppler Current Profiler. Water-quality surveys included the in-situ collection of specific-conductance, water-temperature, and turbidity data using a water-quality sonde. Additionally, discrete water samples were collected and analyzed for TDS, chloride, and sulfate. Bathymetric data were collected using an echo sounder, and the shoreline was delineated using a laser range finder and electronic compass. The data were geo-referenced using a differential global positioning system and navigational software. Horizontal (x, y) coordinates were referenced to the North American Datum of 1983. Depth (z) elevations were referenced to the North American Vertical Datum of 1988. The data are provided in electronic format (appendix 1) and may be downloaded and can be used in a geographic information system for cartographic display and data analysis.
Field-aligned electrostatic potential differences on the Martian night side
NASA Astrophysics Data System (ADS)
Lillis, Rob; Collinson, Glyn; Mitchell, David
2017-04-01
Field-aligned electrostatic potential differences on the Martian night side above 170 km can be inferred with the aid of a kinetic electron transport model and in a statistical sense, by energy-dependent angular shifts in electron loss cones measured in Mars orbit. Potentials between 170 km and 400 km derived from pitch angle distributions measured by the Mars Global Surveyor (MGS) Magnetometer/ Electron Reflectometer experiment (MAG/ER) at 2 a.m. local time are typically small (-10 V to 10 V) but can reach magnitudes of >100 V. Geographically, the strongest negative potential differences (with mean values up to -50 V) are preferentially observed at the boundaries between open and closed strong magnetic field regions, while positive potential differences are preferentially observed further from open field lines. These characteristics may reflect current systems closing at high altitude through cross-tail currents and at low altitude in the conducting night side ionosphere. We will present a synthesis of potentials derived from pitch angle distributions measured by both MGS MAG/ER as mentioned above, and by the MAVEN Solar Wind Electron Analyzer (SWEA) collected at a range of local times and altitudes.
Collective acceleration of ions in a system with an insulated anode
NASA Astrophysics Data System (ADS)
Bystritskii, V. M.; Didenko, A. N.; Krasik, Ya. E.; Lopatin, V. S.; Podkatov, V. I.
1980-11-01
An investigation was made of the processes of collective acceleration of protons in vacuum in a system with an insulated anode and trans-anode electrodes, which were insulated or grounded, in high-current Tonus and Vera electron accelerators. The influence of external conditions and parameters of the electron beam on the efficiency of acceleration processes was investigated. Experiments were carried out in which protons were accelerated in a system with trans-anode electrodes. A study was made of the influence of a charge prepulse and of the number of trans-anode electrodes on the energy of the accelerated electrons. A system with a single anode produced Np=1014 protons of 2Ee < Ep < 3Ee energy. Suppression of a charge prepulse increased the proton energy to (6 8)Ee and the yield was then 1013. The maximum proton energy of 14Ee was obtained in a system with three trans-anode electrodes. A possible mechanism of proton acceleration was analyzed. The results obtained were compared with those of other investigations. Ways of increasing the efficiency of this acceleration method were considered.
Liang, Peng; Wu, Wenlong; Wei, Jincheng; Yuan, Lulu; Xia, Xue; Huang, Xia
2011-08-01
A bioelectrochemical system (BES) can be operated in both "microbial fuel cell" (MFC) and "microbial electrolysis cell" (MEC) modes, in which power is delivered and invested respectively. To enhance the electric current production, a BES was operated in MFC mode first and a capacitor was used to collect power from the system. Then the charged capacitor discharged electrons to the system itself, switching into MEC mode. This alternate charging and discharging (ACD) mode helped the system produce 22-32% higher average current compared to an intermittent charging (IC) mode, in which the capacitor was first charged from an MFC and then discharged to a resistor, at 21.6 Ω external resistance, 3.3 F capacitance and 300 mV charging voltage. The effects of external resistance, capacitance and charging voltage on average current were studied. The average current reduced as the external resistance and charging voltage increased and was slightly affected by the capacitance. Acquisition of higher average current in the ACD mode was attributed to the shorter discharging time compared to the charging time, as well as a higher anode potential caused by discharging the capacitor. Results from circuit analysis and quantitatively calculation were consistent with the experimental observations.
NASA Astrophysics Data System (ADS)
Elsharif, Asma M.
2018-01-01
Semiconductor photonic crystals (MSPhC) were used to convert solar energy into hot electrons. An experimental model was designed by using metallic semiconductor photonic crystals (MSPhC). The designed MSPhC is based on TiO2/Au schottky contact. The model has similar nanocavity structure for broad gold absorption, but the materials on top of the cavity were changed to a metal and a semiconductor in order to collect the hot electrons. Detailed design steps and characterization have shown a broadband sub-bandgap photoresponse at a wavelength of 590 nm. This is due to the surface plasmon absorption by the wafer-scale Au/TiO2 metallic-semiconductor photonic crystal. Analytical calculation of the hot electron transport from the Au thin layer to the TiO2 conduction band is discussed. This theoretical study is based on the quantum tunneling effect. The photo generation of the hot electrons was undertaken at different wavelengths in Au absorber followed by tunneling through a schottky barrier into a TiO2 collector. The presence of a tunnel current from the absorber to the collector under illumination, offers a method to extract carriers from a hot-electron distribution at few bias voltages is presented in this study. The effects of doping different concentrations of the semiconductor on the evolution of the current characteristics were also investigated and discussed. The electrical characteristics were found to be sensitive to any change in the thickness of the barrier.
Tsui, C K; Boedo, J A; Stangeby, P C
2018-01-01
A Child-Langmuir law-based method for accounting for Debye sheath expansion while fitting the current-voltage I-V characteristic of proud Langmuir probes (electrodes that extend into the volume of the plasma) is described. For Langmuir probes of a typical size used in tokamak plasmas, these new estimates of electron temperature and ion saturation current density values decreased by up to 60% compared to methods that did not account for sheath expansion. Changes to the collection area are modeled using the Child-Langmuir law and effective expansion perimeter l p , and the model is thus referred to as the "perimeter sheath expansion method." l p is determined solely from electrode geometry, so the method may be employed without prior measurement of the magnitude of the sheath expansion effects for a given Langmuir probe and can be used for electrodes of different geometries. This method correctly predicts the non-saturating ΔI/ΔV slope for cold, low-density plasmas where sheath-expansion effects are strong, as well as for hot plasmas where ΔI/ΔV ∼ 0, though it is shown that the sheath can still significantly affect the collection area in these hot conditions. The perimeter sheath expansion method has several advantages compared to methods where the non-saturating current is fitted: (1) It is more resilient to scatter in the I-V characteristics observed in turbulent plasmas. (2) It is able to separate the contributions to the ΔI/ΔV slope from sheath expansion to that of the high energy electron tail in high Te conditions. (3) It calculates the change in the collection area due to the Debye sheath for conditions where ΔI/ΔV ∼ 0 and for V = V f .
NASA Astrophysics Data System (ADS)
Tsui, C. K.; Boedo, J. A.; Stangeby, P. C.; TCV Team
2018-01-01
A Child-Langmuir law-based method for accounting for Debye sheath expansion while fitting the current-voltage I-V characteristic of proud Langmuir probes (electrodes that extend into the volume of the plasma) is described. For Langmuir probes of a typical size used in tokamak plasmas, these new estimates of electron temperature and ion saturation current density values decreased by up to 60% compared to methods that did not account for sheath expansion. Changes to the collection area are modeled using the Child-Langmuir law and effective expansion perimeter lp, and the model is thus referred to as the "perimeter sheath expansion method." lp is determined solely from electrode geometry, so the method may be employed without prior measurement of the magnitude of the sheath expansion effects for a given Langmuir probe and can be used for electrodes of different geometries. This method correctly predicts the non-saturating ΔI/ΔV slope for cold, low-density plasmas where sheath-expansion effects are strong, as well as for hot plasmas where ΔI/ΔV ˜ 0, though it is shown that the sheath can still significantly affect the collection area in these hot conditions. The perimeter sheath expansion method has several advantages compared to methods where the non-saturating current is fitted: (1) It is more resilient to scatter in the I-V characteristics observed in turbulent plasmas. (2) It is able to separate the contributions to the ΔI/ΔV slope from sheath expansion to that of the high energy electron tail in high Te conditions. (3) It calculates the change in the collection area due to the Debye sheath for conditions where ΔI/ΔV ˜ 0 and for V = Vf.
Electronic Data Collection Options for Practice-Based Research Networks
Pace, Wilson D.; Staton, Elizabeth W.
2005-01-01
PURPOSE We wanted to describe the potential benefits and problems associated with selected electronic methods of collecting data within practice-based research networks (PBRNs). METHODS We considered a literature review, discussions with PBRN researchers, industry information, and personal experience. This article presents examples of selected PBRNs’ use of electronic data collection. RESULTS Collecting research data in the geographically dispersed PBRN environment requires considerable coordination to ensure completeness, accuracy, and timely transmission of the data, as well as a limited burden on the participants. Electronic data collection, particularly at the point of care, offers some potential solutions. Electronic systems allow use of transparent decision algorithms and improved data entry and data integrity. These systems may improve data transfer to the central office as well as tracking systems for monitoring study progress. PBRNs have available to them a wide variety of electronic data collection options, including notebook computers, tablet PCs, personal digital assistants (PDAs), and browser-based systems that operate independent of or over the Internet. Tablet PCs appear particularly advantageous for direct patient data collection in an office environment. PDAs work well for collecting defined data elements at the point of care. Internet-based systems work well for data collection that can be completed after the patient visit, as most primary care offices do not support Internet connectivity in examination rooms. CONCLUSIONS When planning to collect data electronically, it is important to match the electronic data collection method to the study design. Focusing an inappropriate electronic data collection method onto users can interfere with accurate data gathering and may also anger PBRN members. PMID:15928215
Electronic data collection options for practice-based research networks.
Pace, Wilson D; Staton, Elizabeth W
2005-01-01
We wanted to describe the potential benefits and problems associated with selected electronic methods of collecting data within practice-based research networks (PBRNs). We considered a literature review, discussions with PBRN researchers, industry information, and personal experience. This article presents examples of selected PBRNs' use of electronic data collection. Collecting research data in the geographically dispersed PBRN environment requires considerable coordination to ensure completeness, accuracy, and timely transmission of the data, as well as a limited burden on the participants. Electronic data collection, particularly at the point of care, offers some potential solutions. Electronic systems allow use of transparent decision algorithms and improved data entry and data integrity. These systems may improve data transfer to the central office as well as tracking systems for monitoring study progress. PBRNs have available to them a wide variety of electronic data collection options, including notebook computers, tablet PCs, personal digital assistants (PDAs), and browser-based systems that operate independent of or over the Internet. Tablet PCs appear particularly advantageous for direct patient data collection in an office environment. PDAs work well for collecting defined data elements at the point of care. Internet-based systems work well for data collection that can be completed after the patient visit, as most primary care offices do not support Internet connectivity in examination rooms. When planning to collect data electronically, it is important to match the electronic data collection method to the study design. Focusing an inappropriate electronic data collection method onto users can interfere with accurate data gathering and may also anger PBRN members.
Fisher, Robert D.; Ludwig, Craig A.
2014-01-01
The type collection of Recent mammals in the Division of Mammals, National Museum of Natural History, Smithsonian Institution, contains 945 specimens bearing names of 931 species-group taxa of Rodentia (Myomorpha, Anomaluromorpha, and Hystricomorpha) as of August 2013. This catalog presents an annotated list of these holdings comprised of 905 holotypes, 16 lectotypes, 8 syntypes (48 specimens), and 2 neotypes. In addition, we include 44 specimens that are part of syntype series that should be in the collection but cannot be found or are now known to be in other collections. One hundred and ten of the names are new since the last type catalog covering these suborders A lectotype for Mus peruvianus Peale, 1848, is newly designated herein. Nine specimens previously reported were subsequently sent to the vertebrate paleontology collection and are not included here. Suborders and families are ordered as in Carleton and Musser; within families, currently recognized genera are arranged alphabetically; within each currently recognized genus, accounts are arranged alphabetically by original published name. Information in each account includes original name and abbreviated citation thereto, current name if other than original, citation for first use of current name combination for the taxon (or new name combination if used herein for the first time), type designation, U.S. National Museum catalog number(s), preparation, age and sex, date of collection and collector, original collector number, type locality, and remarks as appropriate. Digital photographs of each specimen will serve as a condition report and will be attached to each electronic specimen record.
Fisher, Robert D.; Ludwig, Craig A.
2012-01-01
The type collection of Recent mammals in the Division of Mammals, National Museum of Natural History, Smithsonian Institution, contains 843 specimens bearing names of 820 species group taxa of Rodentia (Sciuromorpha and Castorimorpha) as of July 2011. This catalog presents a list of these holdings, which comprise 798 holotypes, 14 lectotypes, seven syntypes (30 specimens), and one neotype. In addition, we include three holotypes and 10 specimens that are part of syntype series that should be in the collection but cannot be found and three syntypes that were originally in this collection but are now known to be in other collections. One specimen that no longer has name-bearing status is included for the record. Forty-one of the names are new since the last type catalog. One new lectotype is designated. Suborders and families are listed as in Wilson and Reeder. Within families, currently recognized genera are arranged alphabetically. Within each currently recognized genus, accounts are arranged alphabetically by original published name. Information in each account includes original name and abbreviated citation thereto, current name if other than original, citation for first use of current name combination for the taxon (or new name combination if used herein for the first time), type designation, U.S. National Museum catalog number(s), preparation, age and sex, type locality, date of collection and name of collector, collector’s original number, and comments or additional information as appropriate. Digital photographs of each specimen serve as a condition report and will be linked to each electronic specimen record.
Fisher, Robert D.; Ludwig, Craig A.
2015-01-01
The type collection of Recent Mammals in the Division of Mammals, National Museum of Natural History, Smithsonian Institution, contains 820 specimens bearing names of 809 species-group taxa of Didelphimorphia through Chiroptera, excluding Rodentia, as of June 2014. This catalog presents an annotated list of these holdings comprised of 788 holotypes, 26 lectotypes, 11 syntypes (22 specimens), and 4 neotypes. Included are several specimens that should be in the collection but cannot be found or are now known to be in other collections. One hundred and twenty-seven of the names are new since the last type catalog covering these orders, Poole and Schantz (1942). Five specimens reported in Poole and Schantz (1942) were subsequently sent to the Vertebrate Paleontology collection and are not included here. Orders and families are ordered as in Wilson and Reeder (2005); within families, currently recognized genera are arranged alphabetically; within each currently recognized genus, accounts are arranged alphabetically by original published name. Information in each account includes original name and abbreviated citation thereto, current name if other than original, citation for first use of current name combination for the taxon (or new name combination if used herein for the first time), type designation, U.S. National Museum catalog number(s), preparation, age and sex, date of collection and collector, original collector number, type locality, and remarks as appropriate. Digital photographs of each specimen will serve as a condition report and will be attached to each electronic specimen record.
de Oliveira, Camila Reis; Bernardes, Andréa Moura; Gerbase, Annelise Engel
2012-08-01
Recycling and the related issue of sustainable development are increasing in importance around the world. In Brazil, the new National Policy on Solid Wastes has prompted discussion on the future of electronic waste (e-waste). Over the last 10 years, different e-waste collection systems and recycling processes have been applied globally. This paper presents the systems used in different countries and compares the world situation to the current Brazilian reality. To establish a recycling process, it is necessary to organize efficient collection management. The main difficulty associated with the implementation of e-waste recycling processes in Brazil is the collection system, as its efficiency depends not only on the education and cooperation of the people but also on cooperation among industrial waste generators, distributors and the government. Over half a million waste pickers have been reported in Brazil and they are responsible for the success of metal scrap collection in the country. The country also has close to 2400 companies and cooperatives involved in recycling and scrap trading. On the other hand, the collection and recycling of e-waste is still incipient because e-wastes are not seen as valuable in the informal sector. The Brazilian challenge is therefore to organize a system of e-waste management including the informal sector without neglecting environmentally sound management principles. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ylä-Mella, Jenni; Keiski, Riitta L; Pongrácz, Eva
2015-11-01
This paper examines consumers' awareness and perceptions towards mobile phone recycling and re-use. The results are based on a survey conducted in the city of Oulu, Finland, and analysed in the theoretical framework based on the theories of planned behaviour (TPB) and value-belief-norm (VBN). The findings indicate that consumers' awareness of the importance and existence of waste recovery system is high; however, awareness has not translated to recycling behaviour. The survey reveals that 55% of respondents have two or more unused mobile phones at homes. The more phones stored at homes, the more often reasons 'I don't know where to return' and/or 'have not got to do it yet' were mentioned. This indicates that proximity and the convenience of current waste management system are inadequate in promoting the return of small waste electrical and electronic equipment (WEEE). To facilitate re-use, and the highest level of recovery, consumers will need to be committed to return end-of-use electronics to WEEE collection centres without delays. Further, the supply and demand of refurbished mobile phones do not meet at this moment in Finland due to consumer's storing habits versus expectations of recent features under guarantee and unrealistic low prizes. The study also points out that, in order to change current storing habits of consumers, there is an explicit need for more information and awareness on mobile phone collection in Finland, especially on regarding retailers' take-back. Copyright © 2015 Elsevier Ltd. All rights reserved.
Survival and in-vessel redistribution of beryllium droplets after ITER disruptions
NASA Astrophysics Data System (ADS)
Vignitchouk, L.; Ratynskaia, S.; Tolias, P.; Pitts, R. A.; De Temmerman, G.; Lehnen, M.; Kiramov, D.
2018-07-01
The motion and temperature evolution of beryllium droplets produced by first wall surface melting after ITER major disruptions and vertical displacement events mitigated during the current quench are simulated by the MIGRAINe dust dynamics code. These simulations employ an updated physical model which addresses droplet-plasma interaction in ITER-relevant regimes characterized by magnetized electron collection and thin-sheath ion collection, as well as electron emission processes induced by electron and high-Z ion impacts. The disruption scenarios have been implemented from DINA simulations of the time-evolving plasma parameters, while the droplet injection points are set to the first-wall locations expected to receive the highest thermal quench heat flux according to field line tracing studies. The droplet size, speed and ejection angle are varied within the range of currently available experimental and theoretical constraints, and the final quantities of interest are obtained by weighting single-trajectory output with different size and speed distributions. Detailed estimates of droplet solidification into dust grains and their subsequent deposition in the vessel are obtained. For representative distributions of the droplet injection parameters, the results indicate that at most a few percents of the beryllium mass initially injected is converted into solid dust, while the remaining mass either vaporizes or forms liquid splashes on the wall. Simulated in-vessel spatial distributions are also provided for the surviving dust, with the aim of providing guidance for planned dust diagnostic, retrieval and clean-up systems on ITER.
Optimization of niobium tunnel junctions as X-ray detectors
NASA Technical Reports Server (NTRS)
Saulnier, Gregory G.; Zacher, Robert A.; Van Vechten, Deborah; Boyer, Craig; Lovellette, Michael N.; Fritz, Gilbert G.; Soulen, Robert J.; Kang, Joonhee; Blamire, Mark; Kirk, Eugenie C. G.
1992-01-01
We report on our ongoing work using Nb/Al/AlO(x)/Nb junctions for the detection of X-rays. Detectors based on superconducting tunneling junctions offer the prospect of resolution over an order of magnitude higher than is obtainable with the current generation of semiconductor-based detectors. Results of measurements taken at 1.85 K (a temperature achievable with current space flight technology) include the current-voltage (I-V) curve, subgap current vs temperature, the dependence of the superconducting current on the applied magnetic field (Fraunhofer pattern), X-ray pulses, and the spectra from a 6 keV X-ray source which gave an intrinsic device resolution of approximately 700 eV. The collection of more than 10 exp 5 electrons per 6 keV photon is established.
The new front-end electronics for the ATLAS Tile Calorimeter Phase 2 Upgrade
NASA Astrophysics Data System (ADS)
Gomes, A.
2016-02-01
We present the plans, design, and performance results to date for the new front-end electronics being developed for the Phase 2 Upgrade of the ATLAS Tile Calorimeter. The front-end electronics will be replaced to address the increased luminosity at the HL-LHC around 2025, as well as to upgrade to faster, more modern components with higher radiation tolerance. The new electronics will operate dead-timelessly, pushing full data sets from each beam crossing to the data acquisition system that resides off-detector. The new on-detector electronics contains five main parts: the front-end boards that connect directly to the photomultiplier tubes; the Main Boards that digitize the data; the Daughter Boards that collect the data streams and contain the high speed optical communication links for writing data to the data acquisition system; a programmable high voltage control system; and a new low voltage power supply. There are different options for implementing these subcomponents, which will be described. The new system contains new features that in the current version include power system redundancy, data collection redundancy, data transmission redundancy with 2 QSFP optical transceivers and Kintex-7 FPGAs with firmware enhanced scheme for single event upset mitigation. To date, we have built a Demonstrator—a fully functional prototype of the new system. Performance results and plans are presented.
HRP Data Accessibility Current Status
NASA Technical Reports Server (NTRS)
Sams, Clarence
2009-01-01
Overview of talk: a) Content of Human Life Science data; b) Data archive structure; c) Applicable legal documents and policies; and d) Methods for data access. Life Science Data Archive (LSDA) contains research data from NASA-funded experiments, primarily data from flight experiments and ground analog data collected at NASA facilities. Longitudinal Study of Astronaut Health (LSAH) contains electronic health records (medical data) of all astronauts, including mission data. Data are collected for clinical purposes. Clinical data are analyzed by LSAH epidemiologists to identify trends in crew health and implement changes in pre-, in-, or post-flight medical care.
THOR Turbulence Electron Analyser: TEA
NASA Astrophysics Data System (ADS)
Fazakerley, Andrew; Samara, Marilia; Hancock, Barry; Wicks, Robert; Moore, Tom; Rust, Duncan; Jones, Jonathan; Saito, Yoshifumi; Pollock, Craig; Owen, Chris; Rae, Jonny
2017-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Turbulence Electron Analyser (TEA) will measure the plasma electron populations in the mission's Regions of Interest. It will collect a 3D electron velocity distribution with cadences as short as 5 ms. The instrument will be capable of measuring energies up to 30 keV. TEA consists of multiple electrostatic analyser heads arranged so as to measure electrons arriving from look directions covering the full sky, i.e. 4 pi solid angle. The baseline concept is similar to the successful FPI-DES instrument currently operating on the MMS mission. TEA is intended to have a similar angular resolution, but a larger geometric factor. In comparison to earlier missions, TEA improves on the measurement cadence. For example, MMS FPI-DES routinely operates at 30 ms cadence. The objective of measuring distributions at rates as fast as 5 ms is driven by the mission's scientific requirements to resolve electron gyroscale size structures, where plasma heating and fluctuation dissipation is predicted to occur. TEA will therefore be capable of making measurements of the evolution of distribution functions across thin (a few km) current sheets travelling past the spacecraft at up to 600 km/s, of the Power Spectral Density of fluctuations of electron moments and of distributions fast enough to match frequencies with waves expected to be dissipating turbulence (e.g. with 100 Hz whistler waves). A novel capability to time tag individual electron events during short intervals for the purposes of ground analysis of wave-particle interactions is also planned.
Looking at Biotech’s Crystal Ball
KOBER, SCOTT
2005-01-01
Biotech’s course through 2005 will hinge on five key variables: Use of electronic medical records to speed data collectionClarifying sources of investment capitalKeeping clinicians currentReshaping benefit designs to cope with new and costly productsAnd, above all, defining and proving the value of biotech products Here’s a look at how these issues could play out in the year ahead. PMID:23390402
TRANSIENT ELECTRONICS CATEGORIZATION
2017-08-24
failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE...Recycling Make Sense from an Environmental Perspective?: The Environmental Impacts of the Swiss Take-Back and Recycling Systems for Waste Electrical and...technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings
Obesity and Cigarette Smoking: Extending the Link to E-cigarette/Vaping Use.
Lanza, H Isabella; Pittman, Patricia; Batshoun, Jennifer
2017-05-01
In recent years, electronic tobacco (e-cigarette/vaping) use among young adults has grown exponentially. Given past research linking obesity and cigarette smoking, assessing whether this relationship extends to electronic tobacco use is warranted. The current study examined weight status as a correlate of substance use patterns reflecting electronic tobacco use. Survey data were collected from a convenience sample of 452 (59% female) undergraduates attending a large, public university during the 2015-2016 academic year. Latent class analysis (LCA) was conducted to identify substance use classes and examine weight status as a covariate of class membership. LCA analyses identified 4 classes: High Substance Use (19%), Risky Alcohol Use (14%), Cigarette/Electronic Tobacco Use (17%), and Low Substance Use (50%). Both obesity status and greater deviation from one's group body mass index (BMI) norm were associated with a higher likelihood of belonging to the Cigarette/Electronic Tobacco Use class. Findings suggest that electronic tobacco use may fit well into previously established relationships between higher weight status and tobacco use. Future research should examine the longitudinal processes and pathways underlying the relationship between weight status and electronic tobacco use.
Theory of a cylindrical probe in a collisionless magnetoplasma
NASA Technical Reports Server (NTRS)
Laframboise, J. G.; Rubinstein, J.
1976-01-01
A theory is presented for a cylindrical electrostatic probe in a collisionless plasma in the case where the probe axis is inclined at an angle to a uniform magnetic field. The theory is applicable to electron collection, and under more restrictive conditions, to ion collection. For a probe at space potential, the theory is exact in the limit where probe radius is much less than Debye length. At attracting probe potentials, the theory yields an upper bound and an adiabatic limit for current collection. At repelling probe potentials, it provides a lower bound. The theory is valid if the ratios of probe radius to Debye length and probe radius to mean gyroradius are not simultaneously large enough to produce extrema in the probe sheath potential. The numerical current calculations are based on the approximation that particle orbits are helices near the probe, together with the use of kinetic theory to relate velocity distributions near the probe to those far from it. Probe characteristics are presented for inclination angles from 0 to 90 deg and for probe-radius mean-gyroradius ratios from 0.1 to infinity. For an angle of 0 deg, the end-effect current is calculated separately.
Nanostructured Electron-Selective Interlayer for Efficient Inverted Organic Solar Cells.
Song, Jiyun; Lim, Jaehoon; Lee, Donggu; Thambidurai, M; Kim, Jun Young; Park, Myeongjin; Song, Hyung-Jun; Lee, Seonghoon; Char, Kookheon; Lee, Changhee
2015-08-26
We report a unique nanostructured electron-selective interlayer comprising of In-doped ZnO (ZnO:In) and vertically aligned CdSe tetrapods (TPs) for inverted polymer:fullerene bulkheterojunction (BHJ) solar cells. With dimension-controlled CdSe TPs, the direct inorganic electron transport pathway is provided, resulting in the improvement of the short circuit current and fill factor of devices. We demonstrate that the enhancement is attributed to the roles of CdSe TPs that reduce the recombination losses between the active layer and buffer layer, improve the hole-blocking as well as electron-transporting properties, and simultaneously improve charge collection characteristics. As a result, the power conversion efficiency of PTB7:PC70BM based solar cell with nanostructured CdSe TPs increases to 7.55%. We expect this approach can be extended to a general platform for improving charge extraction in organic solar cells.
An Electronic Pressure Profile Display system for aeronautic test facilities
NASA Technical Reports Server (NTRS)
Woike, Mark R.
1990-01-01
The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.
An electronic pressure profile display system for aeronautic test facilities
NASA Technical Reports Server (NTRS)
Woike, Mark R.
1990-01-01
The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPT) unit which interfaces with a host computer. The host computer collects the pressure data from the DPT unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib
2013-12-04
We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides themore » opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.« less
Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.
Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young
2016-06-29
Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.
The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes
NASA Astrophysics Data System (ADS)
Fan, Liang; Lu, Huimin
2015-06-01
Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.
Ryu, Jia; Jung-Choi, Kyunghee; Choi, Kyung-Hwa; Kwon, Ho-Jang; Kang, Chungwon; Kim, Hyunjoo
2017-11-21
This study aimed to explore the association between shift work and work-related injuries. We collected data on workers from an electronics factory. This cross-sectional study included 13,610 subjects, who were assessed based on a self-reported questionnaire about their shift work experiences, work-related injuries, and other covariates. Multiple logistic regression models were used to evaluate the associations between shift work and work-related injuries and were estimated using the odds ratio. We found that the current and past shift workers, compared to non-shift workers, were associated with a 2.7- and 1.7-fold higher risk of work-related injury. There was a dose-response relationship between shift work duration and work-related injury among current female shift workers. Shift work increased the risk of work-related injuries, and the impact could be different depending on gender.
Ryu, Jia; Jung-Choi, Kyunghee; Choi, Kyung-Hwa; Kwon, Ho-Jang; Kang, Chungwon
2017-01-01
This study aimed to explore the association between shift work and work-related injuries. We collected data on workers from an electronics factory. This cross-sectional study included 13,610 subjects, who were assessed based on a self-reported questionnaire about their shift work experiences, work-related injuries, and other covariates. Multiple logistic regression models were used to evaluate the associations between shift work and work-related injuries and were estimated using the odds ratio. We found that the current and past shift workers, compared to non-shift workers, were associated with a 2.7- and 1.7-fold higher risk of work-related injury. There was a dose-response relationship between shift work duration and work-related injury among current female shift workers. Shift work increased the risk of work-related injuries, and the impact could be different depending on gender. PMID:29160849
Electronic decision support in general practice. What's the hold up?
Liaw, S T; Schattner, P
2003-11-01
The uptake of computers in Australian general practice has been for administrative use and prescribing, but the development of electronic decision support (EDS) has been particularly slow. Therefore, computers are not being used to their full potential in assisting general practitioners to care for their patients. This article examines current barriers to EDS in general practice and possible strategies to increase its uptake. Barriers to the uptake of EDS include a lack of a business case, shifting of costs for data collection and management to the clinician, uncertainty about the optimal level of decision support, lack of technical and semantic standards, and resistance to EDS use by the time conscious GP. There is a need for a more strategic and attractive incentives program, greater national coordination, and more effective collaboration between government, the computer industry and the medical profession if current inertia is to be overcome.
Modulation of auroral electron fluxes in the frequency range 50 kHz to 10 MHz
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Murphree, J. S.; Anderson, H. R.; Loewenstein, R. F.
1976-01-01
A sounding rocket-borne electron detector of high time resolution is used to search for modulation of auroral electron fluxes in the frequency range 50 kHz to 10 MHz and energy range 5-7 keV. Data were telemetered to ground via a 93-kHz subcarrier. A cross-correlation analysis of the data collected indicates low-level modulation near the detection threshold of the instrument. Two U-1 events are observed which are interpreted as indications of modulation. The two modulation events occur during a period of increasing flux for a region marking the boundary between two current sheets detected by the payload magnetometer. The strongest argument against interference contamination is the lack of any observable modulation at times other than those mentioned in the study.
Zhao, H.; Li, X.; Baker, D. N.; ...
2016-04-16
Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lowermore » energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. Here, the results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. Lastly, the ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.« less
The Evolution of the School Library Collection: Implications for Effective Management.
ERIC Educational Resources Information Center
Debowski, Shelda
1999-01-01
Explores some of the collection and service-related issues which should be considered by those developing an electronic collection in a school library. Highlights include principles of electronic collection management; selection of electronic resources; technological infrastructure; user training; online subscriptions; marketing; and technical…
Yakimov, Eugene B
2016-06-01
An approach for a prediction of (63)Ni-based betavoltaic battery output parameters is described. It consists of multilayer Monte Carlo simulation to obtain the depth dependence of excess carrier generation rate inside the semiconductor converter, a determination of collection probability based on the electron beam induced current measurements, a calculation of current induced in the semiconductor converter by beta-radiation, and SEM measurements of output parameters using the calculated induced current value. Such approach allows to predict the betavoltaic battery parameters and optimize the converter design for any real semiconductor structure and any thickness and specific activity of beta-radiation source. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electric current focusing efficiency in a graphene electric lens.
Mu, Weihua; Zhang, Gang; Tang, Yunqing; Wang, Wei; Ou-Yang, Zhongcan
2011-12-14
In the present work, we study theoretically the electron wave's focusing phenomenon in a single-layered graphene pn junction (PNJ) and obtain the electric current density distribution of graphene PNJ, which is in good agreement with the qualitative result in previous numerical calculations (Cheianov et al 2007 Science, 315, 1252). In addition, we find that, for a symmetric PNJ, 1/4 of total electric current radiated from the source electrode can be collected by the drain electrode. Furthermore, this ratio reduces to 3/16 in a symmetric graphene npn junction. Our results obtained by the present analytical method provide a general design rule for an electric lens based on negative refractory index systems. © 2011 IOP Publishing Ltd
Numerical design of an EBIS collector to optimize electron collection and ion extraction
NASA Astrophysics Data System (ADS)
Dietrich, Jürgen
1990-12-01
For the Frankfurt EBIS (R. Becker et al., Nucl. Instr. and Meth. B24/25 (1987) 838, ref. [1]), a new collector was designed using the relativistic electron optics program EGUN (W.B. Herrmannsfeldt, SLAC-331 (1988), ref. [2]) and the magnetic field program INTMAG (R. Becker, Nucl. Instr. and Meth. B42 (1989) 303, ref. [3]). To model the fringing field of the main solenoid, a bucking coil and a cylindrical shim is provided. The current of the bucking coil and the position and shape of the shim are optimized with INTMAG for minimum fringing field to allow expansion of the electron beam by its space charge. The magnetic field data output from INTMAG is directly used as input for EGUN to calculate the electron and ion trajectories. The initial conditions for the trajectories were computed from the paraxial ray equation. Different operation modes of the collector are investigated including the behaviour of secondary electrons.
Validation of ISS Floating Potential Measurement Unit Electron Densities and Temperatures
NASA Technical Reports Server (NTRS)
Coffey, Victoria N.; Minow, Joseph I.; Parker, Linda N.; Bui, Them; Wright, Kenneth, Jr.; Koontz, Steven L.; Schneider, T.; Vaughn, J.; Craven, P.
2007-01-01
Validation of the Floating Potential Measurement Unit (FPMU) electron density and temperature measurements is an important step in the process of evaluating International Space Station spacecraft charging issues .including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on Space Station are due to the combined VxB effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160 V US solar array modules. Ionospheric electron environments are needed for input to the ISS spacecraft charging models used to predict the severity and frequency of occurrence of ISS charging hazards. Validation of these charging models requires comparing their predictions with measured FPMU values. Of course, the FPMU measurements themselves must also be validated independently for use in manned flight safety work. This presentation compares electron density and temperatures derived from the FPMU Langmuir probes and Plasma Impedance Probe against the independent density and temperature measurements from ultraviolet imagers, ground based incoherent scatter radar, and ionosonde sites.
The Electronic Astrophysical Journal Letters Project
NASA Astrophysics Data System (ADS)
Dalterio, H. J.; Boyce, P. B.; Biemesderfer, C.; Warnock, A., III; Owens, E.; Fullton, J.
The American Astronomical Society has developed a comprehensive system for the electronic dissemination of refereed astronomical research results. Our current focus is the production of an electronic version of the Astrophysical Journal Letters. With the help of a recent National Science Foundation grant, we have developed a system that includes: LATEX-based manuscript preparation, electronic submission, peer review, production, development of a database of SGML-tagged manuscripts, collection of page charges and other fees, and electronic manuscript storage and delivery. Delivery options include World-Wide Web access through HTML browsers such as Mosaic and Netscape, an email gateway, and a stand-alone client accessible through astronomical software packages such as IRAF. Our goal is to increase the access and usefulness of the journal by providing enhanced features such as faster publication, advanced search capabilities, forward and backward referencing, links to underlying data and links to adjunct materials in a variety of media. We have based our journal on open standards and freely available network tools wherever possible.
Simulation-Based Approach to Determining Electron Transfer Rates Using Square-Wave Voltammetry.
Dauphin-Ducharme, Philippe; Arroyo-Currás, Netzahualcóyotl; Kurnik, Martin; Ortega, Gabriel; Li, Hui; Plaxco, Kevin W
2017-05-09
The efficiency with which square-wave voltammetry differentiates faradic and charging currents makes it a particularly sensitive electroanalytical approach, as evidenced by its ability to measure nanomolar or even picomolar concentrations of electroactive analytes. Because of the relative complexity of the potential sweep it uses, however, the extraction of detailed kinetic and mechanistic information from square-wave data remains challenging. In response, we demonstrate here a numerical approach by which square-wave data can be used to determine electron transfer rates. Specifically, we have developed a numerical approach in which we model the height and the shape of voltammograms collected over a range of square-wave frequencies and amplitudes to simulated voltammograms as functions of the heterogeneous rate constant and the electron transfer coefficient. As validation of the approach, we have used it to determine electron transfer kinetics in both freely diffusing and diffusionless surface-tethered species, obtaining electron transfer kinetics in all cases in good agreement with values derived using non-square-wave methods.
Electronic astronomical information handling and flexible publishing.
NASA Astrophysics Data System (ADS)
Heck, A.
The current dramatic evolution in information technology is bringing major modifications in the way scientists work and communicate. The concept of electronic information handling encompasses the diverse types of information, the different media, as well as the various communication methodologies and technologies. It ranges from the very collection of data until the final publication of results and sharing of knowledge. New problems and challenges result also from the new information culture, especially on legal, ethical, and educational grounds. Electronic publishing will have to diverge from an electronic version of contributions on paper and will be part of a more general flexible-publishing policy. The benefits of private publishing are questioned. The procedures for validating published material and for evaluating scientific activities will have to be adjusted too. Provision of electronic refereed information independently from commercial publishers in now feasible. Scientists and scientific institutions have now the possibility to run an efficient information server with validated (refereed) material without the help of a commercial publishers.
Agemura, Toshihide; Sekiguchi, Takashi
2018-02-01
Collection efficiency and acceptance maps of typical detectors in modern scanning electron microscopes (SEMs) were investigated. Secondary and backscattered electron trajectories from a specimen to through-the-lens and under-the-lens detectors placed on an electron optical axis and an Everhart-Thornley detector mounted on a specimen chamber were simulated three-dimensionally. The acceptance maps were drawn as the relationship between the energy and angle of collected electrons under different working distances. The collection efficiency considering the detector sensitivity was also estimated for the various working distances. These data indicated that the acceptance maps and collection efficiency are keys to understand the detection mechanism and image contrast for each detector in the modern SEMs. Furthermore, the working distance is the dominant parameter because electron trajectories are drastically changed with the working distance.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
... Request ACTION: 60-day notice of information collection; 10-002; Electronic Funds Transfer Waiver Request... appropriate automated, electronic, mechanical, or other technological collection techniques or other forms of.... (2) Title of the Form/Collection: Electronic Funds Transfer Waiver Request. (3) Agency form number...
Recent High-Intensity Experiments at the Trident Laser
NASA Astrophysics Data System (ADS)
Cobble, James; Palaniyappan, Sasikumar; Gautier, Cort; Kim, Yongho; Huang, Chengkun
2014-10-01
With near-diffraction-limited irradiance of 2 × 1020 W/cm2 on target and prelase contrast better than 10-8, we have accessed the regime of relativistic transparency (RT) at the Trident Laser. The goal was to assess electron debris emitted from the target rear surface with phase-contrast imaging (PCI) and current density measurements (hence, the total electron current). Companion diagnostics show whether the experiments are in the target-normal-sheath-acceleration mode or in the RT regime. The superb laser contrast allows us to shoot targets as thin as 50 nm. PCI at 527 nm is temporally resolved to 600 fs. It has shown the evolution of electron behavior over tens of ps, including thermal electrons accompanying the ion jet, accelerated to many tens of MeV earlier in time. Faraday-cup measurements indicate the transfer of many microC of charge during the laser drive. As a ride-along experiment using a gas Cherenkov detector (GCD), we have detected gamma rays of energy >5 MeV. This radiation has a prompt component and a lesser source, driven by accelerated ions, that is time resolved by the GCD. The ion time of flight is compared to Thomson parabola data. Electron energy spectra are also collected. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under Contract DE-AC52-06NA25396.
Relativistic Transparency Experiments at the Trident Laser
NASA Astrophysics Data System (ADS)
Cobble, J. A.; Palaniyappan, S.; Gautier, D. C.; Kim, Y. H.; Clark, D. D.; Johnson, R. P.; Shimada, T.; Fernandez, J. C.; Herrmann, H. W.
2013-10-01
With near-diffraction-limited irradiance of 3 × 1020 W/cm2 on target and prelase contrast better than 10-9, we have accessed the regime of relativistic transparency (RT) at the Trident Laser. The goal was to assess electron debris emitted from the target rear surface with phase-contrast imaging (PCI) and current density measurements (hence, the total electron current). Companion diagnostics show whether the experiments are in the target-normal-sheath-acceleration mode or in the RT regime. The superb laser contrast allows us to shoot targets as thin as 50 nm. PCI at 527 nm is temporally resolved to 600 fs. It has shown the evolution of electron behavior over tens of ps, including thermal electrons accompanying the ion jet, accelerated to many tens of MeV earlier in time. Faraday-cup measurements indicate the transfer of many uC of charge during the laser drive. As a ride-along experiment using a gas Cherenkov detector (GCD), we have detected gamma rays of energy >5 MeV. This radiation has a prompt component and a lesser source, driven by accelerated ions, that is time resolved by the GCD. The ion time of flight is compared to Thomson parabola data. Electron energy spectra are also collected. This work has been performed under the auspices of the US DOE contract number DE-AC52-06NA25396.
Mass-Gathering Medical Care in Electronic Dance Music Festivals.
FitzGibbon, Kathleen M; Nable, Jose V; Ayd, Benjamin; Lawner, Benjamin J; Comer, Angela C; Lichenstein, Richard; Levy, Matthew J; Seaman, Kevin G; Bussey, Ian
2017-10-01
Introduction Electronic dance music (EDM) festivals represent a unique subset of mass-gathering events with limited guidance through literature or legislation to guide mass-gathering medical care at these events. Hypothesis/Problem Electronic dance music festivals pose unique challenges with increased patient encounters and heightened patient acuity under-estimated by current validated casualty predication models. This was a retrospective review of three separate EDM festivals with analysis of patient encounters and patient transport rates. Data obtained were inserted into the predictive Arbon and Hartman models to determine estimated patient presentation rate and patient transport rates. The Arbon model under-predicted the number of patient encounters and the number of patient transports for all three festivals, while the Hartman model under-predicted the number of patient encounters at one festival and over-predicted the number of encounters at the other two festivals. The Hartman model over-predicted patient transport rates for two of the three festivals. Electronic dance music festivals often involve distinct challenges and current predictive models are inaccurate for planning these events. The formation of a cohesive incident action plan will assist in addressing these challenges and lead to the collection of more uniform data metrics. FitzGibbon KM , Nable JV , Ayd B , Lawner BJ , Comer AC , Lichenstein R , Levy MJ , Seaman KG , Bussey I . Mass-gathering medical care in electronic dance music festivals. Prehosp Disaster Med. 2017;32(5):563-567.
NASA Technical Reports Server (NTRS)
Gilchrist, Brian E.; Hoegy, W. R.; Krause, L. Habash; Minow, J. I.; Coffey, V. N.
2014-01-01
To study the complex interactions between the space environment surrounding the International Space Station (ISS) and the ISS space vehicle, we are exploring a specialized suite of plasma sensors, manipulated by the Space Station Remote Manipulator System (SSRMS) to probe the near-ISS mesosonic plasma ionosphere moving past the ISS. It is proposed that SASSI consists of the NASA Marshall Space Flight Center's (MSFC's) Thermal Ion Capped Hemispherical Spectrometer (TICHS), Thermal Electron Capped Hemispherical Spectrometer (TECHS), Charge Analyzer Responsive to Local Oscillations (CARLO), the Collimated PhotoElectron Gun (CPEG), and the University of Michigan Advanced Langmuir Probe (ALP). There are multiple expected applications for SASSI. Here, we will discuss the study of fundamental plasma physics questions associated with how an emitted plasma plume (such as from the ISS Plasma Contactor Unit (PCU)) responds and expands in a mesosonic magnetoplasma as well as emit and collect current. The ISS PCU Xe plasma plume drifts through the ionosphere and across the Earth's magnetic field, resulting in complex dynamics. This is of practical and theoretical interest pertaining to contamination concerns (e.g. energetic ion scattering) and the ability to collect and emit current between the spacecraft and the ambient plasma ionosphere. This impacts, for example, predictions of electrodynamic tether current performance using plasma contactors as well as decisions about placing high-energy electric propulsion thrusters on ISS. We will discuss the required measurements and connection to proposed instruments for this study.
Cahill, Sean R; Baker, Kellan; Deutsch, Madeline B; Keatley, Joanne; Makadon, Harvey J
2016-04-01
Final rules issued by the Centers for Medicare and Medicaid Services and the Office of the National Coordinator for Health Information Technology in October 2015 require electronic health record software certified for Meaningful Use to include sexual orientation and gender identity (SO/GI) fields. This is a critical step toward making SO/GI data collection a standard practice in clinical settings. Sexual orientation identity-whether one identifies as gay, lesbian, or bisexual-correlates with behavioral health burden, and it is important to collect these data. Providers should also collect sex assigned at birth data as well as current gender identity data. Training of clinical staff in collection and use of SO/GI data, education of LGBT patients, and SO/GI nondiscrimination policies are critical for successful implementation.
Gauging User Interest in Non-Traditional Library Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandberg, Tami; Abbott, Jennifer
The National Renewable Energy Laboratory (NREL) is a government funded research laboratory based in Golden, Colorado. In addition to collecting traditional library resources such as journals, conference proceedings, and print and electronic books, the library also spends a significant portion of its collection development funds on resources not often found in many libraries: technical industry standards (e.g., ISO, IEC, ASTM, IEEE) and energy-related market reports. Assessing user needs for these resources is difficult for a number of reasons, particularly because standardized usage statistics are lacking or non-existent. Standards and market reports are generally costly and include fairly restrictive license agreements,more » which increase the importance of making informed collection development decisions. This presentation will discuss the NREL Library's current collection assessment and development practices as they relate to these unique resources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez-Belis, V.; Bovea, M.D., E-mail: bovea@uji.es; Simó, A.
Highlights: • Consumption/disposal habits of waste electrical and electronic toys. • Environmental education as a key factor to improve WEEE management. • Three environmental education actions to increase the collection of waste toys. - Abstract: This paper reports on a project focused on obtaining the current consumption and disposal habits of electrical and electronic toys from a survey aimed at parents of children of nine pre- and primary schools. In addition, it is also focused on identifying the most effective way of transmitting environmental information to parents and children to promote the collection of electrical and electronic toys at theirmore » end-of-life. The study was implemented in a Spanish municipality. With regard to the consumption habits, aspects related to the amount of toys that children receive annually and percentage of those which are electrical and electronic toys have been obtained and classified according to the family size. Results from Chi-squared analysis and Ordinal Logistic Regression show that there is a statistically significance relationship among these variables. Regarding disposal habits, aspects related to the reasons and way for discarding electrical and electronic toys, time that toys are kept at home or the willingness to rent or buy second hand e-toys have been obtained. What really attracts attention is that, apart from consumers who donate the toy to family or social associations, 67.1% of consumers discard them along with other waste fractions in domestic bins, whereas only 32.9% do so at recycling points, as Directive 2012/19/EU requires. To increase this percentage, three environmental education actions (distinguishing from each other by the way used to transmit the environmental information: paper, audiovisual or personal communication) have been designed, applied and evaluated their efficiency according to the amount of waste toys collected.« less
A Novel Electronic Data Collection System for Large-Scale Surveys of Neglected Tropical Diseases
King, Jonathan D.; Buolamwini, Joy; Cromwell, Elizabeth A.; Panfel, Andrew; Teferi, Tesfaye; Zerihun, Mulat; Melak, Berhanu; Watson, Jessica; Tadesse, Zerihun; Vienneau, Danielle; Ngondi, Jeremiah; Utzinger, Jürg; Odermatt, Peter; Emerson, Paul M.
2013-01-01
Background Large cross-sectional household surveys are common for measuring indicators of neglected tropical disease control programs. As an alternative to standard paper-based data collection, we utilized novel paperless technology to collect data electronically from over 12,000 households in Ethiopia. Methodology We conducted a needs assessment to design an Android-based electronic data collection and management system. We then evaluated the system by reporting results of a pilot trial and from comparisons of two, large-scale surveys; one with traditional paper questionnaires and the other with tablet computers, including accuracy, person-time days, and costs incurred. Principle Findings The electronic data collection system met core functions in household surveys and overcame constraints identified in the needs assessment. Pilot data recorders took 264 (standard deviation (SD) 152 sec) and 260 sec (SD 122 sec) per person registered to complete household surveys using paper and tablets, respectively (P = 0.77). Data recorders felt a lack of connection with the interviewee during the first days using electronic devices, but preferred to collect data electronically in future surveys. Electronic data collection saved time by giving results immediately, obviating the need for double data entry and cross-correcting. The proportion of identified data entry errors in disease classification did not differ between the two data collection methods. Geographic coordinates collected using the tablets were more accurate than coordinates transcribed on a paper form. Costs of the equipment required for electronic data collection was approximately the same cost incurred for data entry of questionnaires, whereas repeated use of the electronic equipment may increase cost savings. Conclusions/Significance Conducting a needs assessment and pilot testing allowed the design to specifically match the functionality required for surveys. Electronic data collection using an Android-based technology was suitable for a large-scale health survey, saved time, provided more accurate geo-coordinates, and was preferred by recorders over standard paper-based questionnaires. PMID:24066147
Space Test of Bare-Wire Anode Tethers
NASA Technical Reports Server (NTRS)
Johnson, L.; Fujii, H. A.; Sanmartin, J. R.
2007-01-01
An international team, lead by Tokyo Metropolitan University, is developing a mission concept for a suborbital test of orbital-motion-limited (OML) bare-wire anode current collection for application to electrodynamic tether propulsion. The tether is a tape with a 50-mm width, 0.05-mm thickness, and 1-km length. This will be the first space test of the OML theory. In addition, by being an engineering demonstration (of space tethers), the mission will demonstrate electric beam generation for "sounding" determination of the neutral density profile in the ionospheric "E-layer." If selected by the Institute of Space and Astronautical Science/Japanese Aerospace Exploration Agency (JAXA), the mission will launch in early 2009 using an $520 Sounding Rocket. During ascent, and above =100 km in attitude, the 1-km tape tether will be deployed at a rate of 8 m/s. Once deployed, the tape tether will serve as an anode, collecting ionospheric electrons. The electrons will be expelled into space by a hollow cathode device, thereby completing the circuit and allowing current to flow.This paper will describe the objectives of the proposed mission, the technologies to be employed, and the application of the results to future space missions using electrodynamic tethers for propulsion or power generation.
ISS Charging Hazards and Low Earth Orbit Space Weather Effects
NASA Technical Reports Server (NTRS)
Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.
2008-01-01
Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.
Gas dynamics in the impulsive phase of solar flares. I Thick-target heating by nonthermal electrons
NASA Technical Reports Server (NTRS)
Nagai, F.; Emslie, A. G.
1984-01-01
A numerical investigation is carried out of the gas dynamical response of the solar atmosphere to a flare energy input in the form of precipitating nonthermal electrons. Rather than discussing the origin of these electrons, the spectral and temporal characteristics of the injected flux are inferred through a thick-target model of hard X-ray bremsstrahlung production. It is assumed that the electrons spiral about preexisting magnetic field lines, making it possible for a one-dimensional spatial treatment to be performed. It is also assumed that all electron energy losses are due to Coulomb collisions with ambient particles; that is, return-current ohmic effects and collective plasma processes are neglected. The results are contrasted with earlier work on conductive heating of the flare atmosphere. A local temperature peak is seen at a height of approximately 1500 km above the photosphere. This derives from a spatial maximum in the energy deposition rate from an electron beam. It is noted that such a feature is not present in conductively heated models. The associated localized region of high pressure drives material both upward and downward.
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2010-01-01
The Large Area Telescope on-board the Fermi Gamma-Ray Space Telescope has collected more than 10 million cosmic ray electrons with energy above 7 GeV since its science operation on orbit. High energy electrons rapidly lose their energy by synchrotron radiation on Galactic magnetic fields and by inverse Compton scattering on the interstellar radiation field. The typical distance over which a 1 TeV electron loses half its total energy is estimated to be 300-400 pc.This makes them a unique tool for probing nearby Galactic space. Observed spectrum has a harder spectral index than was previously reported and suggests the presence of nearby sources of high energy electrons. One of viable candidates are nearby pulsars, possibly some of recently discovered by Fermi. At the same time the dark matter origin of such sources cannot be ruled out. I will also report our current upper limits on cosmic ray electrons anisotropy which helps to set constraints on their local sources.
Hörster, A C; Kulla, M; Brammen, D; Lefering, R
2018-06-01
Emergency department processes are often key for successful treatment. Therefore, collection of quality indicators is demanded. A basis for the collection is systematic, electronic documentation. The development of paper-based documentation into an electronic and interoperable national emergency registry is-besides the establishment of quality management for emergency departments-a target of the AKTIN project. The objective of this research is identification of internationally applied quality indicators. For the investigation of the current status of quality management in emergency departments based on quality indicators, a systematic literature search of the database PubMed, the Cochrane Library and the internet was performed. Of the 170 internationally applied quality indicators, 25 with at least two references are identified. A total of 10 quality indicators are ascertainable by the data set. An enlargement of the data set will enable the collection of seven further quality indicators. The implementation of data of care behind the emergency processes will provide eight additional quality indicators. This work was able to show that the potential of a national emergency registry for the establishment of quality indicators corresponds with the international systems taken into consideration and could provide a comparable collection of quality indicators.
Current structure and flow pattern on the electron separatrix in reconnection region
NASA Astrophysics Data System (ADS)
Guo, Ruilong; Pu, Zuyin; Wei, Yong
2017-12-01
Results from 2.5D Particle-in-cell (PIC) simulations of symmetric reconnection with negligible guide field reveal that the accessible boundary of the electrons accelerated in the magnetic reconnection region is displayed by enhanced electron nongyrotropy downstream from the X-line. The boundary, hereafter termed the electron separatrix, occurs at a few d e (electron inertial length) away from the exhaust side of the magnetic separatrix. On the inflow side of the electron separatrix, the current is mainly carried by parallel accelerated electrons, served as the inflow region patch of the Hall current. The out-of-plane current density enhances at the electron separatrix. The dominating current carriers are the electrons, nongyrotropic distribution functions of which contribute significantly to the perpendicular electron velocity by increasing the electron diamagnetic drift velocity. When crossing the separatrix region where the Hall electric field is enhanced, electron velocity orientation is changed dramatically, which could be a diagnostic indicator to detect the electron separatrix. In the exhaust region, ions are the main carriers for the out-of-plane current, while the parallel current is still mainly carried by electrons. The current density peak in the separatrix region implies that a thin current sheet is formed apart from the neutral line, which can evolve to the bifurcated current sheet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H.; Li, X.; Baker, D. N.
Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lowermore » energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. Here, the results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. Lastly, the ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.« less
Electronic Cigarette Use among Mississippi Adults, 2015.
Mendy, Vincent L; Vargas, Rodolfo; Cannon-Smith, Gerri; Payton, Marinelle; Byambaa, Enkhmaa; Zhang, Lei
2017-01-01
Electronic cigarettes (e-cigarettes) are battery-powered devices that deliver nicotine in the form of aerosol. We identify differences and associations in e-cigarette use by sociodemographic characteristics and describe the reported reasons for initiating use among Mississippi adults. We used the 2015 Mississippi Behavioral Risk Factor Surveillance System, which collected information on e-cigarette use from 6,035 respondents. The prevalence of current e-cigarette use and having ever tried an e-cigarette was determined overall and by sociodemographic characteristics. Weighted prevalences and 95% confidence intervals were calculated, and prevalences for subgroups were compared using the X 2 tests and associations were assessed using logistic regression. In 2015, 4.7% of Mississippi adults currently used e-cigarettes, while 20.5% had ever tried an e-cigarette. The prevalence of current e-cigarette use was significantly higher for young adults, whites, men, individuals unable to work, those with income $35,000-$49,999, and current smokers compared to their counterparts. Similar results were observed for having ever tried an e-cigarette. E-cigarette use was associated with age, race, income, and smoking status. Most (71.2%) of current e-cigarette users and over half (52.1%) of those who have ever tried e-cigarettes reported that a main reason for trying or using e-cigarettes was "to cut down or quit smoking."
The Sheath-less Planar Langmuir Probe
NASA Astrophysics Data System (ADS)
Cooke, D. L.
2017-12-01
The Langmuir probe is one of the oldest plasma diagnostics, provided the plasma density and species temperature from analysis of a current-voltage curve as the voltage is swept over a practically chosen range. The analysis depends on a knowledge or theory of the many factors that influence the current-voltage curve including, probe shape, size, nearby perturbations, and the voltage reference. For applications in Low Earth Orbit, the Planar Langmuir Probe, PLP, is an attractive geometry because the ram ion current is very constant over many Volts of a sweep, allowing the ion density and electron temperature to be determined independently with the same instrument, at different points on the sweep. However, when the physical voltage reference is itself small and electrically floating as with a small spacecraft, the spacecraft and probe system become a double probe where the current collection theory depends on the interaction of the spacecraft with the plasma which is generally not as simple as the probe itself. The Sheath-less PLP, SPLP, interlaces on a single ram facing surface, two variably biased probe elements, broken into many small and intertwined segments on a scale smaller than the plasma Debye length. The SPLP is electrically isolated from the rest of the spacecraft. For relative bias potentials of a few volts, the ion current to all segments of each element will be constant, while the electron currents will vary as a function of the element potential and the electron temperature. Because the segments are small, intertwined, and floating, the assembly will always present the same floating potential to the plasma, with minimal growth as a function of voltage, thus sheath-less and still planar. This concept has been modelled with Nascap, and tested with a physical model inserted into a Low Earth Orbit-like chamber plasma. Results will be presented.
Depletion region surface effects in electron beam induced current measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haney, Paul M.; Zhitenev, Nikolai B.; Yoon, Heayoung P.
2016-09-07
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and chargedmore » surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.« less
Modeling of parasitic current collection by solar arrays in low-earth orbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, V.A.; Gardner, B.M.; Guidice, D.A.
1996-11-01
In this paper we describe the development of a model of the electron current collected by solar arrays from the ionospheric plasma. This model will assist spacecraft designers in minimizing the impact of plasma interactions on spacecraft operations as they move to higher-voltage solar arrays. The model was developed by first examining in detail the physical processes of importance and then finding an analytic fit to the results over the parameter range of interest. The analytic model is validated by comparison with flight data from the Photovoltaic Array for Space Power Plus diagnostics (PASP Plus) flight experiment [D. A. Guidice,more » 34{ital th} {ital Aerospace} {ital Sciences} {ital Meeting} {ital and} {ital Exhibit}, Reno, NV, 1996, AIAA 96-0926 (American Institute of Aeronautics and Astronautics, Washington, DC, 1996)]. {copyright} {ital 1996 American Institute of Physics.}« less
NASA Technical Reports Server (NTRS)
Leon, R. P.
1987-01-01
Diffusion lengths and surface recombination velocities were measured in GaAs diodes and InP finished solar cells. The basic techniques used was charge collection microscopy also known as electron beam induced current (EBIC). The normalized currents and distances from the pn junction were read directly from the calibrated curves obtained while using the line scan mode in an SEM. These values were then equated to integral and infinite series expressions resulting from the solution of the diffusion equation with both extended generation and point generation functions. This expands previous work by examining both thin and thick samples. The surface recombination velocity was either treated as an unknown in a system of two equations, or measured directly using low e(-) beam accelerating voltages. These techniques give accurate results by accounting for the effects of surface recombination and the finite size of the generation volume.
Plasma contactor research, 1990
NASA Technical Reports Server (NTRS)
Williams, John D.; Wilbur, Paul J.
1991-01-01
Emissive and Langmuir probes were used to measure plasma potential profiles, plasma densities, electron energy distributions, and plasma noise levels near a hollow cathode-based plasma contactor emitting electrons. The effects of electron emission current (100 to 1500 mA) and contactor flowrate (2 to 10 sccm (Xenon)) on these data are examined. Retarding potential analyzer (RPA) measurements showing that high energy ions generally stream from a contactor along with the electrons being emitted are also presented, and a mechanism by which this occurs is postulated. This mechanism, which involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice, results in a region of high positive space charge and high positive potential. Langmuir and RPA probe data suggests that both electrons and ions expand spherically from this potential hill region. In addition to experimental observations, a simple one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and is shown to agree qualitatively with these observations. Experimental results of the first stage of bilateral cooperation with the Italian Institute of Interplanetary Space Physics (IFSI CNR) are presented. Sharp, well-defined double layers were observed downstream of a contactor collecting electrons from an ambient plasma created in the IFSI Facility. The voltage drop across these double layers was observed to increase with the current drawn from the ambient plasma. This observation, which was not as clear in previous IFSI tests conducted at higher neutral pressures, is in agreement with previous experimental observations made at both Colorado State University and NASA Lewis Research Center. Greater double layer voltage drops, multiple double layers, and higher noise levels in the region near the double layers were also observed when a magnetic field was imposed and oriented perpendicular to the line joining the contactor and simulator.
Trapping in irradiated p +-n-n - silicon sensors at fluences anticipated at the HL-LHC outer tracker
Adam, W.
2016-04-22
The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200μm thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 3 x 10 15 neq/cm 2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulationmore » assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. Furthermore, the effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations.« less
Graphene Charge Transfer, Spectroscopy, and Photochemical Reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brus, Louis
This project focused on the special electronic and optical properties of graphene and adsorbed molecular species. Graphene makes an excellent substrate for current collection in nanostructured photovoltaic designs. Graphene is almost transparent, and can be used as a solar cell window. It also has no surface states, and thus current is efficiently transported over long distances. Progress in graphene synthesis indicates that there will soon be practical methods for making large pieces of graphene for devices. We now need to understand exactly what happens to both ground state and electronically excited molecules and Qdots near graphene, if we are goingmore » to use them to absorb light in a nano-structured photovoltaic device using graphene to collect photocurrent. We also need to understand how to shift the graphene Fermi level, to optimize the kinetics of electron transfer to graphene. And we need to learn how to convert local graphene areas to semiconductor structure, to make useful spatially patterned graphenes. In this final report, we describe how we addressed these goals. We explored the question of possible Surface Enhanced Raman spectroscopy from molecular Charge Transfer onto Graphene substrates. We observed strong hole doping of graphene by adsorbed halogens as indicated by the shift of the graphene G Raman band. In the case of iodine adsorption, we also observed the anionic species made by hole doping. At low frequency in the Raman spectrum, we saw quite intense lines from I 3 - and I 5 - , suggesting possible SERS. We reported on Fresnel calculations on this thin film system, which did not show any net electromagnetic field enhancement.« less
Clinical Note Creation, Binning, and Artificial Intelligence
Deliberato, Rodrigo Octávio; Stone, David J
2017-01-01
The creation of medical notes in software applications poses an intrinsic problem in workflow as the technology inherently intervenes in the processes of collecting and assembling information, as well as the production of a data-driven note that meets both individual and healthcare system requirements. In addition, the note writing applications in currently available electronic health records (EHRs) do not function to support decision making to any substantial degree. We suggest that artificial intelligence (AI) could be utilized to facilitate the workflows of the data collection and assembly processes, as well as to support the development of personalized, yet data-driven assessments and plans. PMID:28778845
Flaxman, Abraham D; Stewart, Andrea; Joseph, Jonathan C; Alam, Nurul; Alam, Sayed Saidul; Chowdhury, Hafizur; Mooney, Meghan D; Rampatige, Rasika; Remolador, Hazel; Sanvictores, Diozele; Serina, Peter T; Streatfield, Peter Kim; Tallo, Veronica; Murray, Christopher J L; Hernandez, Bernardo; Lopez, Alan D; Riley, Ian Douglas
2018-02-01
There is increasing interest in using verbal autopsy to produce nationally representative population-level estimates of causes of death. However, the burden of processing a large quantity of surveys collected with paper and pencil has been a barrier to scaling up verbal autopsy surveillance. Direct electronic data capture has been used in other large-scale surveys and can be used in verbal autopsy as well, to reduce time and cost of going from collected data to actionable information. We collected verbal autopsy interviews using paper and pencil and using electronic tablets at two sites, and measured the cost and time required to process the surveys for analysis. From these cost and time data, we extrapolated costs associated with conducting large-scale surveillance with verbal autopsy. We found that the median time between data collection and data entry for surveys collected on paper and pencil was approximately 3 months. For surveys collected on electronic tablets, this was less than 2 days. For small-scale surveys, we found that the upfront costs of purchasing electronic tablets was the primary cost and resulted in a higher total cost. For large-scale surveys, the costs associated with data entry exceeded the cost of the tablets, so electronic data capture provides both a quicker and cheaper method of data collection. As countries increase verbal autopsy surveillance, it is important to consider the best way to design sustainable systems for data collection. Electronic data capture has the potential to greatly reduce the time and costs associated with data collection. For long-term, large-scale surveillance required by national vital statistical systems, electronic data capture reduces costs and allows data to be available sooner.
NASA Astrophysics Data System (ADS)
Bastrakova, I.; Pring, J.; Blewett, R.; Champion, D. C.; Poignand, B.; Raymond, O.; Evans, N.; Stewart, A.; Butler, P.
2017-12-01
Since soon after the federation of Australia in 1901 Geoscience Australia, and its predecessors organisations, have gathered a significant collection of microscope slide based items (including: thin sections of rock, micro and nano fossils) from across Australia, Antarctica, Papua New Guinea, the Asia Pacific region and beyond. The samples from which the microscope slides were produced have been gathered via extensive geological mapping programs, work conducted for major Commonwealth building initiatives such as the Snowy Mountain Scheme and science expeditions. The cost of recreating this collection, if at all possible, would be measured in the $100Ms (AUS) even assuming that it was still possible to source the relevant samples. While access to these microscope slides is open to industry, educational institutions and the public it has not been easy to locate specific slides due to the management system. The management of this collection was based largely on an aged card catalogue and ledger system. The fragmented nature of the management system with the increasing potential for the deterioration of physical media and the loss of access to even some of the original contributors meant that rescue work was (and still is) needed urgently. Achieving progress on making the microscope slides discoverable and accessible in the current fiscally constrained environment dictated a departure from what might be considered a traditional approach to the project and saw the extensive use of a citizen science approach. Through the use of a citizen science approach the proof of concept project has seen the transcription of some 35,000 sample metadata and data records (2.5 times our current electronic holdings) from a variety of hardcopy sources by a diverse group of volunteers. The availability of this data has allowed for the electronic discovery of both the microscope slides and their parent samples, and will hopefully lead to a greater utilisation of this valuable resource and enable new geoscientific insights from old resources.
The Sodium Exposure Test Cell to determine operating parameters for AMTEC electrochemical cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, M.A.; Williams, R.M.; Lara, L.
1998-07-01
The Sodium Exposure Test Cell (SETC) is a non-power producing cell which has been developed to evaluate and test components of the electrochemical cell in an Alkali Metal Thermal to Electric Converter. Performance and time dependence of performance of the electrode and the electrolyte in AMTEC cells can be tested in an SETC, and performance parameters which correlate with those taken from AMTEC operation can be calculated from data taken in an SETC. The components of the AMTEC electrochemical cell which are evaluated in an SETC are the electrode, {beta}{double{underscore}prime}-alumina solid electrolyte (BASE), the current collection network, and the containment.more » The components are held in low pressure sodium vapor at a temperature which reflects their operating conditions in an AMTEC device, and operating parameters determined. Electrodes and BASE are evaluated by measuring current-voltage (IV) characteristics and using Electrochemical Impedance Spectroscopy (EIS). Using these techniques, electrode performance parameters such as the exchange current (B), the morphology factor (G), and contact resistance between electrode and current collection network can be determined. The ionic conductivity (s) of BASE can also be determined. IV curves and EIS measurements are made at intervals over periods of several hundreds of hours in order to evaluate degradation of AMTEC electrochemical cell components. Electrode and BASE are analyzed after an SETC experiment using Scanning Electron Microscopy, Electron Dispersive Spectroscopy, and X-Ray Diffraction. These techniques allow evaluation of interaction of materials and changes in the composition and structure of materials. The purpose of these experiments is determination of the changes of operating parameters as a function of time in order to predict the operating lifetime of AMTEC cells.« less
NASA Astrophysics Data System (ADS)
Pucella, G.; Alessi, E.; Amicucci, L.; Angelini, B.; Apicella, M. L.; Apruzzese, G.; Artaserse, G.; Belli, F.; Bin, W.; Boncagni, L.; Botrugno, A.; Briguglio, S.; Bruschi, A.; Buratti, P.; Calabrò, G.; Cappelli, M.; Cardinali, A.; Castaldo, C.; Causa, F.; Ceccuzzi, S.; Centioli, C.; Cesario, R.; Cianfarani, C.; Claps, G.; Cocilovo, V.; Cordella, F.; Crisanti, F.; D'Arcangelo, O.; De Angeli, M.; Di Troia, C.; Esposito, B.; Farina, D.; Figini, L.; Fogaccia, G.; Frigione, D.; Fusco, V.; Gabellieri, L.; Garavaglia, S.; Giovannozzi, E.; Granucci, G.; Iafrati, M.; Iannone, F.; Lontano, M.; Maddaluno, G.; Magagnino, S.; Marinucci, M.; Marocco, D.; Mazzitelli, G.; Mazzotta, C.; Milovanov, A.; Minelli, D.; Mirizzi, F. C.; Moro, A.; Nowak, S.; Pacella, D.; Panaccione, L.; Panella, M.; Pericoli-Ridolfini, V.; Pizzuto, A.; Podda, S.; Ramogida, G.; Ravera, G.; Ricci, D.; Romano, A.; Sozzi, C.; Tuccillo, A. A.; Tudisco, O.; Viola, B.; Vitale, V.; Vlad, G.; Zerbini, M.; Zonca, F.; Aquilini, M.; Cefali, P.; Di Ferdinando, E.; Di Giovenale, S.; Giacomi, G.; Grosso, A.; Mellera, V.; Mezzacappa, M.; Pensa, A.; Petrolini, P.; Piergotti, V.; Raspante, B.; Rocchi, G.; Sibio, A.; Tilia, B.; Tulli, R.; Vellucci, M.; Zannetti, D.; Bogdanovic-Radovic, I.; Carnevale, D.; Casolari, A.; Ciotti, M.; Conti, C.; Dinca, P. P.; Dolci, V.; Galperti, C.; Gospodarczyk, M.; Grosso, G.; Lubiako, L.; Lungu, M.; Martin-Solis, J. R.; Meineri, C.; Murtas, F.; Nardone, A.; Orsitto, F. P.; Perelli Cippo, E.; Popovic, Z.; Ripamonti, D.; Simonetto, A.; Tartari, U.
2017-10-01
Experiments on runaway electrons have been performed for the determination of the critical electric field for runaway generation. A large database of post-disruption runaway beams has been analyzed in order to identify linear dynamical models for new position and current runaway beam controllers, and experiments of electron cyclotron assisted plasma start-up have shown the presence of runaway electrons also below the expected electric field threshold, indicating that the radio-frequency power acts as seeding for fast electrons. A linear micro-stability analysis of neon-doped pulses has been carried out to investigate the mechanisms leading to the observed density peaking. A study of the ion drift effects on the MARFE instability has been performed and the peaking of density profile in the high density regime has been well reproduced using a thermo-diffusive pinch in the particle transport equation. The study of the density limit performed in the past has been extended towards lower values of toroidal magnetic field and plasma current. The analysis of the linear stability of the 2/1 tearing mode observed in high density plasmas has highlighted a destabilization with increasing peaking of the current profile during the density ramp-up, while the final phase of the mode temporal evolution is characterized by limit cycles on the amplitude/frequency plane. A liquid lithium limiter with thermal load capability up to 10 MW m-2 has been tested. The pulse duration has been extended up to 4.5 s and elongated configurations have been obtained for 3.5 s, with the X-point just outside the plasma chamber. A W/Fe sample has been exposed in the scrape-off layer in order to study the sputtering of Fe and the W enrichment of the surface layer. Dusts have been collected and analyzed, showing that the metallic population exhibits a high fraction of magnetic grains. A new diagnostic for in-flight runaway electron studies has allowed the image and the visible/infrared spectrum of the forward and backward synchrotron radiation to be provided simultaneously. A fast infrared camera for thermo-graphic analysis has provided the pattern of the toroidal limiter heating by disruption heat loads, and a triple-GEM detector has been tested for soft x-ray diagnostics. The collective Thomson scattering diagnostic has been upgraded and used for investigations on parametric decay instability excitation by electron cyclotron beams correlated with magnetic islands, and new capabilities of the Cherenkov probe have been explored in the presence of beta-induced Alfvén eigenmodes associated to high amplitude magnetic islands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.
2014-02-03
Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (∼14 μm) and show lower current density (J{sub SC}) compared with their single cells. We found out that the key to achieving higher J{sub SC} in large area devices is optimized photoelectrode volume (V{sub D}), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased J{sub SC} and ∼60% increment in photoelectric conversion efficiency in photoelectrodes of similar V{sub D} (∼3.36 × 10{sup −4} cm{sup 3}) without using any metallic gridmore » or a special interconnections.« less
Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection
Nazirzadeh, Mohammad Amin; Atar, Fatih Bilge; Turgut, Berk Berkan; Okyay, Ali Kemal
2014-01-01
In this work, we propose Silicon based broad-band near infrared Schottky barrier photodetectors. The devices operate beyond 1200 nm wavelength and exhibit photoresponsivity values as high as 3.5 mA/W with a low dark current density of about 50 pA/µm2. We make use of Au nanoislands on Silicon surface formed by rapid thermal annealing of a thin Au layer. Surface plasmons are excited on Au nanoislands and this field localization results in efficient absorption of sub-bandgap photons. Absorbed photons excite the electrons of the metal to higher energy levels (hot electron generation) and the collection of these hot electrons to the semiconductor results in photocurrent (internal photoemission). Simple and scalable fabrication makes these devices suitable for ultra-low-cost NIR detection applications. PMID:25407509
Data quality assurance: an analysis of patient non-response.
Derby, Dustin C; Haan, Andrea; Wood, Kurt
2011-01-01
Patient satisfaction is paramount to maintaining high clinical quality assurance. This study seeks to compare response rates, response bias, and the completeness of data between paper and electronic collection modes of a chiropractic patient satisfaction survey. A convenience sample of 206 patients presenting to a chiropractic college clinic were surveyed concerning satisfaction with their chiropractic care. Paper (in-clinic and postal) and electronic modes of survey administration were compared for response rates and non-response bias. The online data collection mode resulted in fewer non-responses and a higher response rate, and did not evince response bias when compared to paper modes. The postal paper mode predicted non-response rates over the in-clinic paper and online modalities and exhibited a gender bias. This current study was a single clinic study; future studies should consider multi-clinic data collections. Busy clinic operations and available staff resources restricted the ability to conduct a random sampling of patients or to invite all eligible patients, therefore limiting the generalizability of collected survey data. Results of this study will provide data to aid development of survey protocols that efficiently, account for available human resources, and are convenient for patients while allowing for the most complete and accurate data collection possible in an educational clinic setting. Understanding patient responses across survey modes is critical for the cultivation of quality business intelligence within college teaching clinic settings. This study bridges measurement evidence from three popular data collection modalities and offers support for higher levels of quality for web-based data collection.
Friege, Henning; Oberdörfer, Michael; Günther, Marko
2015-03-01
The first European waste from electric and electronic equipment directive obliged the Member States to collect 4 kg of used devices per inhabitant and year. The target of the amended directive focuses on the ratio between the amount of waste from electric and electronic equipment collected and the mass of electric and electronic devices put on the market in the three foregoing years. The minimum collection target is 45% starting in 2016, being increased to 65% in 2019 or alternatively 85% of waste from electric and electronic equipment generated. Being aware of the new target, the question arises how Member States with 'best practice' organise their collection systems and how they enforce the parties in this playing field. Therefore the waste from electric and electronic equipment schemes of Sweden, Denmark, Switzerland, Germany and the Flemish region of Belgium were investigated focusing on the categories IT and telecommunications equipment, consumer equipment like audio systems and discharge lamps containing hazardous substances, e.g. mercury. The systems for waste from electric and electronic equipment collection in these countries vary considerably. Recycling yards turned out to be the backbone of waste from electric and electronic equipment collection in most countries studied. For discharge lamps, take-back by retailers seems to be more important. Sampling points like special containers in shopping centres, lidded waste bins and complementary return of used devices in all retail shops for electric equipment may serve as supplements. High transparency of collection and recycling efforts can encourage ambition among the concerned parties. Though the results from the study cannot be transferred in a simplistic manner, they serve as an indication for best practice methods for waste from electric and electronic equipment collection. © The Author(s) 2015.
Matthews, Karen A; Adler, Nancy E; Forrest, Christopher B; Stead, William W
2016-09-01
Social, psychological, and behavioral factors are recognized as key contributors to health, but they are rarely measured in a systematic way in health care settings. Electronic health records (EHRs) can be used in these settings to routinely collect a standardized set of social, psychological, and behavioral determinants of health. The expanded use of EHRs provides opportunities to improve individual and population health, and offers new ways for the psychological community to engage in health promotion and disease prevention efforts. This article addresses 3 issues. First, it discusses what led to current efforts to include measures of psychosocial and behavioral determinants of health in EHRs. Second, it presents recommendations of an Institute of Medicine committee regarding inclusion in EHRS of a panel of measures that meet a priori criteria. Third, it identifies new opportunities and challenges these recommendations present for psychologists in practice and research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Size dependence in tunneling spectra of PbSe quantum-dot arrays.
Ou, Y C; Cheng, S F; Jian, W B
2009-07-15
Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.
Brace, L H; Theis, R F; Krehbiel, J P; Nagy, A F; Donahue, T M; McElroy, M B; Pedersen, A
1979-02-23
Altitude profiles of electron temperature and density in the ionosphere of Venus have been obtained by the Pioneer Venus orbiter electron temperatutre probe. Elevated temperatutres observed at times of low solar wind flux exhibit height profiles that are consistent with a model in which less than 5 percent of the solar wind energy is deposited at the ionopause and is conducted downward through an unmagnetized ionosphere to the region below 200 kilomneters where electron cooling to the neutral atmosphere proceeds rapidly. When solar wind fluxes are higher, the electron temperatures and densities are highly structured and the ionopause moves to lower altitudes. The ionopause height in the late afternoon sector observed thus far varies so widely from day to (day that any height variation with solar zenith angle is not apparent in the observations. In the neighborhood of the ionopause, measuremnents of plasma temperatures and densities and magnetic field strength indicate that an induced magnetic barrier plays an important role in the pressure transfer between the solar wind and the ionosphere. The bow, shock is marked by a distinct increase in electron current collected by the instrument, a featutre that provides a convenient identification of the bow shock location.
Obesity and Cigarette Smoking: Extending the Link to E cigarette/Vaping Use
Lanza, H. Isabella; Pittman, Patricia; Batshoun, Jennifer
2017-01-01
Objectives In recent years, electronic tobacco (e-cigarette/vaping) use among young adults has grown exponentially. Given past research linking obesity and cigarette smoking, assessing whether this relationship extends to electronic tobacco use is warranted. The current study examined weight status as a correlate of substance use patterns reflecting electronic tobacco use. Methods Survey data were collected from a convenience sample of 452 (59% female) undergraduates attending a large, public university during the 2015–2016 academic year. Latent class analysis (LCA) was conducted to identify substance use classes and examine weight status as a covariate of class membership. Results LCA analyses identified 4 classes: High Substance Use (19%), Risky Alcohol Use (14%), Cigarette/Electronic Tobacco Use (17%), and Low Substance Use (50%). Both obesity status and greater deviation from one’s group body mass index (BMI) norm were associated with a higher likelihood of belonging to the Cigarette/Electronic Tobacco Use class. Conclusions Findings suggest that electronic tobacco use may fit well into previously established relationships between higher weight status and tobacco use. Future research should examine the longitudinal processes and pathways underlying the relationship between weight status and electronic tobacco use. PMID:28376978
Tests of UFXC32k chip with CdTe pixel detector
NASA Astrophysics Data System (ADS)
Maj, P.; Taguchi, T.; Nakaye, Y.
2018-02-01
The paper presents the performance of the UFXC32K—a hybrid pixel detector readout chip working with CdTe detectors. The UFXC32K has a pixel pitch of 75 μm and can cope with both input signal polarities. This functionality allows operating with widely used silicon sensors collecting holes and CdTe sensors collecting electrons. This article describes the chip focusing on solving the issues connected to high-Z sensor material, namely high leakage currents, slow charge collection time and thick material resulting in increased charge-sharring effects. The measurements were conducted with higher X-ray energies including 17.4 keV from molybdenum. Conclusions drawn inside the paper show the UFXC32K's usability for CdTe sensors in high X-ray energy applications.
Horn, Kevin M.
2013-07-09
A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.
Re-Thinking the Use of the OML Model in Electric-Sail Development
NASA Technical Reports Server (NTRS)
Stone, Nobie H.
2016-01-01
The Orbit Motion Limited (OML) model commonly forms the basis for calculations made to determine the effect of the long, biased wires of an Electric Sail on solar wind protons and electrons (which determines the thrust generated and the required operating power). A new analysis of the results of previously conducted ground-based experimental studies of spacecraft-space plasma interactions indicate that the expected thrust created by deflected solar wind protons and the current of collected solar wind electrons could be considerably higher than the OML model would suggest. Herein the experimental analysis will be summarized and the assumptions and approximations required to derive the OML equation-and the limitations they impose-will be considered.
Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC
NASA Astrophysics Data System (ADS)
Meier, D.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Foulon, F.; Friedl, M.; Jany, C.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Manfredi, P. F.; Marshall, R. D.; Mishina, M.; Le Normand, F.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration
1999-04-01
CVD diamond shows promising properties for use as a position-sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardness of diamond we exposed CVD diamond detector samples to 24 Gev/ c and 500 Mev protons up to a fluence of 5×10 15 p/cm 2. We measured the charge collection distance, the average distance electron-hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1×10 15 p/cm 2 and decreases by ≈40% at 5×10 15 p/cm 2. Leakage currents of diamond samples were below 1 pA before and after irradiation. The particle-induced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage current. We conclude that CVD diamond detectors are radiation hard to 24 GeV/ c and 500 MeV protons up to at least 1×10 15p/cm 2 without signal loss.
Parida, Kaushik; Kumar, Vipin; Jiangxin, Wang; Bhavanasi, Venkateswarlu; Bendi, Ramaraju; Lee, Pooi See
2017-10-01
Recently developed triboelectric nanogenerators (TENGs) act as a promising power source for self-powered electronic devices. However, the majority of TENGs are fabricated using metallic electrodes and cannot achieve high stretchability and transparency, simultaneously. Here, slime-based ionic conductors are used as transparent current-collecting layers of TENG, thus significantly enhancing their energy generation, stretchability, transparency, and instilling self-healing characteristics. This is the first demonstration of using an ionic conductor as the current collector in a mechanical energy harvester. The resulting ionic-skin TENG (IS-TENG) has a transparency of 92% transmittance, and its energy-harvesting performance is 12 times higher than that of the silver-based electronic current collectors. In addition, they are capable of enduring a uniaxial strain up to 700%, giving the highest performance compared to all other transparent and stretchable mechanical-energy harvesters. Additionally, this is the first demonstration of an autonomously self-healing TENG that can recover its performance even after 300 times of complete bifurcation. The IS-TENG represents the first prototype of a highly deformable and transparent power source that is able to autonomously self-heal quickly and repeatedly at room temperature, and thus can be used as a power supply for digital watches, touch sensors, artificial intelligence, and biointegrated electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Status and perspectives for the electron beam technology for flue gases treatment
NASA Astrophysics Data System (ADS)
Frank, Norman W.
The electron-beam process is one of the most effective methods of removing SO 2 and NO x from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO 2 and NO x to ammonium sulfate and ammonium sulfate-nitrate. These salts may the be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO 2 and NO x from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmental conscious world.
Ashley, Laura; Jones, Helen; Forman, David; Newsham, Alex; Brown, Julia; Downing, Amy; Velikova, Galina; Wright, Penny
2011-10-26
Cancer survivors can face significant physical and psychosocial challenges; there is a need to identify and predict which survivors experience what sorts of difficulties. As highlighted in the UK National Cancer Survivorship Initiative, routine post-diagnostic collection of patient reported outcome measures (PROMs) is required; to be most informative, PROMs must be linked and analysed with patients' diagnostic and treatment information. We have designed and built a potentially cost-efficient UK-scalable electronic system for collecting PROMs via the internet, at regular post-diagnostic time-points, for linking these data with patients' clinical data in cancer registries, and for electronically managing the associated patient monitoring and communications; the electronic Patient-reported Outcomes from Cancer Survivors (ePOCS) system. This study aims to test the feasibility of the ePOCS system, by running it for 2 years in two Yorkshire NHS Trusts, and using the Northern and Yorkshire Cancer Registry and Information Service. Non-metastatic breast, colorectal and prostate cancer patients (largest survivor groups), within 6 months post-diagnosis, will be recruited from hospitals in the Yorkshire Cancer Network. Participants will be asked to complete PROMS, assessing a range of health-related quality-of-life outcomes, at three time-points up to 15 months post-diagnosis, and subsequently to provide opinion on the ePOCS system via a feedback questionnaire. Feasibility will be examined primarily in terms of patient recruitment and retention rates, the representativeness of participating patients, the quantity and quality of collected PROMs data, patients' feedback, the success and reliability of the underpinning informatics, and the system running costs. If sufficient data are generated during system testing, these will be analysed to assess the health-related quality-of-life outcomes reported by patients, and to explore if and how they relate to disease, treatment and/or individual differences characteristics. There is currently no system in the UK for collecting PROMs online and linking these with patients' clinical data in cancer registries. If feasible, ePOCS has potential to provide an affordable UK-scalable technical platform to facilitate and support longitudinal cohort research, and improve understanding of cancer survivors' experiences. Comprehensive understanding of survivorship difficulties is vital to inform the development and provision of supportive services and interventions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-16
... Notice of Information Collection for review; Electronic Bonds Online (eBonds) Access; OMB Control No... submitting the following information collection request for review and clearance in accordance [[Page 76154... information collection. (2) Title of the Form/Collection: Electronic Bonds Online (eBonds) Access. (3) Agency...
Effects of electron pressure anisotropy on current sheet configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artemyev, A. V., E-mail: aartemyev@igpp.ucla.edu; Angelopoulos, V.; Runov, A.
2016-09-15
Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. Wemore » find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.« less
A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings
NASA Technical Reports Server (NTRS)
Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.
1996-01-01
A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.
Study of Collective Beam Effects in Energy Recovery Linac Driven Free Electron Lasers
NASA Astrophysics Data System (ADS)
Hall, Christpher C.
Collective beam effects such as coherent synchrotron radiation (CSR) and longitudinal space charge (LSC) can degrade the quality of high-energy electron beams used for applications such as free-electron lasers (FELs). The advent of energy recovery linac (ERL)-based FELs brings exciting possibilities for very high-average current FELs that can operate with greater efficiency. However, due to the structure of ERLs, they may be even more susceptible to CSR. It is therefore necessary that these collective beam effects be well understood if future ERL-based designs are to be successful. The Jefferson Laboratory ERL driven IR FEL provides an ideal test-bed for looking at how CSR impacts the electron beam. Due to its novel design we can easily test how CSR's impact on the beam varies as a function of compression within the machine. In this work we will look at measurements of both average energy loss and energy spectrum fragmentation as a function of bunch compression. These results are compared to particle tracking simulations including a 1D CSR model and, in general, good agreement is seen between simulation and measurement. Of particular interest is fragmentation of the energy spectrum that is observed due to CSR and LSC. We will also show how this fragmentation develops and how it can be mitigated through use of the sextupoles in the JLab FEL. Finally, a more complete 2D model is used to simulate CSR-beam interaction. Due to the parameters of the experiment it is expected that a 2D CSR model would yield different results than the 1D CSR model. However, excellent agreement is seen between the two CSR model results.
Plasmons and Polaritons in Low Dimensional Systems
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan
Nearly everything relies on the electromagnetic (EM) force to be in its current form. Therefore, light-matter interaction is both a fundamental and a practical subject in physics. Focusing on the electromagnetic field, the matter degrees of freedom can be encoded into its response to the EM field in the form of charge density and urrent. Reshaped by the EM response, the photons in condensed matter systems appear as various collective modes. In this doctoral dissertation, I present our investigation of the linear and nonlinear EM response theory especially in the hydrodynamic regime of electron systems. Electrons in pristine solids behave as a hydrodynamic fluid in a certain range of temperatures and frequencies. We show that the response of such a fluid to electromagnetic field is different from what is predicted by the usual kinetic theory. Certain aspects of this response are universal, for example, a direct relation between the linear and second-order nonlinear optical conductivities. Discovery of this relation enriches our understanding of the light-matter interaction in diverse electron systems and new materials such as graphene. Subsequently, I study the properties of the charged collective modes, the plasmons and demons in 2D Dirac fluids, e.g., the electron-hole system in graphene. Under non-equilibrium situation, the amplitudes of these collective modes could possibly grow due to an effect of adiabatic amplification. I also present our study of the hyperbolic polaritons, the EM modes in hyperbolic materials. When confined in cavities, they develop isolated eigen modes which could be efficiently predicted by applying semi-classical quantization rules to fictitious particles. We demonstrate this Hamiltonian Optics analytically for cavities of spheroidal shapes, and predict novel geometric patterns of the electric field distribution due to classical periodic orbits.
Blundell, M; Dargan, P; Wood, D
2018-01-01
There is limited published scientific data on vaping recreational drugs other than cannabis. A recent review suggested that 15% of people vaping cannabis have also vaped a synthetic cannabinoid receptor agonist (SCRA) and identified over 300 Internet reports of e-liquid manufacture of recreational drugs and/or new psychoactive substances (NPS). To determine the prevalence of use of electronic vaping devices for recreational drug and NPS delivery in the UK. A voluntary online survey using a convenience sample of UK adult participants (aged 16 years old and over) identified by a market research company. Data was collected regarding demographics, smoking history, electronic vaping device history and recreational drug/NPS use and route of administration. There were 2501 respondents. The mean (±SD) age was 46.2 ± 16.8 years old. The commonest lifetime recreational drug used was Cannabis (818, 32.7%). The majority of respondents had smoked (1545, 61.8%) with 731 (29.2%) being current smokers. The most commonly used SCRA product was 'Spice Gold' (173, 6.9%) and SCRA compound was ADB-CHMICA (48, 1.9%). 861 (34.4%) had used an electronic vaping device; 340 (13.6%) having used them for recreational drug administration; 236 (9.4%) reporting current use. The commonest lifetime recreational drug to be vaped was cannabis (155, 65.7%), with electronic cigarettes (230, 48.2%) being the commonest reported route of SCRA compound administration. 9.4% of respondents currently use electronic vaping devices for recreational drug administration with 6.2% reporting lifetime cannabis vaping use. Further larger scale studies are required to help inform the appropriate treatment and primary prevention strategies. © The Author 2017. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com
23 CFR 950.5 - Requirement to use electronic toll collection technology.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false Requirement to use electronic toll collection technology... technology. (a) Any toll agency operating a toll facility pursuant to authority under a 1604 toll program... agency using electronic toll collection technology must develop and implement reasonable methods to...
23 CFR 950.5 - Requirement to use electronic toll collection technology.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 23 Highways 1 2013-04-01 2013-04-01 false Requirement to use electronic toll collection technology... technology. (a) Any toll agency operating a toll facility pursuant to authority under a 1604 toll program... agency using electronic toll collection technology must develop and implement reasonable methods to...
23 CFR 950.5 - Requirement to use electronic toll collection technology.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 23 Highways 1 2014-04-01 2014-04-01 false Requirement to use electronic toll collection technology... technology. (a) Any toll agency operating a toll facility pursuant to authority under a 1604 toll program... agency using electronic toll collection technology must develop and implement reasonable methods to...
23 CFR 950.5 - Requirement to use electronic toll collection technology.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 23 Highways 1 2012-04-01 2012-04-01 false Requirement to use electronic toll collection technology... technology. (a) Any toll agency operating a toll facility pursuant to authority under a 1604 toll program... agency using electronic toll collection technology must develop and implement reasonable methods to...
78 FR 41971 - 30-Day Notice of Proposed Information Collection: Electronic Diversity Visa Entry Form
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-12
...: Electronic Diversity Visa Entry Form ACTION: Notice of request for public comment and submission to OMB of... collection instrument and supporting documents, to Sydney Taylor, Visa Services, U.S. [[Page [email protected] SUPPLEMENTARY INFORMATION: Title of Information Collection: Electronic Diversity Visa...
23 CFR 950.5 - Requirement to use electronic toll collection technology.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Requirement to use electronic toll collection technology... technology. (a) Any toll agency operating a toll facility pursuant to authority under a 1604 toll program... agency using electronic toll collection technology must develop and implement reasonable methods to...
Numerical Investigation on Electron and Ion Transmission of GEM-based Detectors
NASA Astrophysics Data System (ADS)
Bhattacharya, Purba; Sahoo, Sumanya Sekhar; Biswas, Saikat; Mohanty, Bedangadas; Majumdar, Nayana; Mukhopadhyay, Supratik
2018-02-01
ALICE at the LHC is planning a major upgrade of its detector systems, including the TPC, to cope with an increase of the LHC luminosity after 2018. Different R&D activities are currently concentrated on the adoption of the Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The major challenge is to have low ion feedback in the drift volume as well as to ensure a collection of good percentage of primary electrons in the signal generation process. In the present work, Garfield simulation framework has been adopted to numerically estimate the electron transparency and ion backflow fraction of GEM-based detectors. In this process, extensive simulations have been carried out to enrich our understanding of the complex physical processes occurring within single, triple and quadruple GEM detectors. A detailed study has been performed to observe the effect of detector geometry, field configuration and magnetic field on the above mentioned characteristics.
A note on dust grain charging in space plasmas
NASA Technical Reports Server (NTRS)
Rosenberg, M.; Mendis, D. A.
1992-01-01
Central to the study of dust-plasma interactions in the solar system is the electrostatic charging of dust grains. While previous calculations have generally assumed that the distributions of electrons and ions in the plasma are Maxwellian, most space plasmas are observed to have non-Maxwellian tails and can often be fit by a generalized Lorentzian (kappa) distribution. Here we use such a distribution to reevaluate the grain potential, under the condition that the dominant currents to the grain are due to electron and ion collection, as is the case in certain regions of space. The magnitude of the grain potential is found to be larger than that in a Maxwellian plasma as long as the electrons are described by a kappa distribution: this enhancement increased with ion mass and decreasing electron kappa. The modification of the grain potential in generalized Lorentzian plasmas has implications for both the physics (e.g., grain growth and disruption) and the dynamics of dust in space plasmas. These are also briefly discussed.
Channeling, Volume Reection and Gamma Emission Using 14GeV Electrons in Bent Silicon Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, Brandon
2015-08-14
High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact whenmore » compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.« less
Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC
NASA Astrophysics Data System (ADS)
Chen, Hucheng; ATLAS Liquid Argon Calorimeter Group
The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS and its LAr calorimeters have been operating and collecting proton-proton collisions at LHC since 2009. The current front-end electronics of the LAr calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded high luminosity LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. The complexity of the present electronics and the obsolescence of some of components of which it is made, will not allow a partial replacement of the system. A completely new readout architecture scheme is under study and many components are being developed in various R&D programs of the LAr Calorimeter Group.The new front-end readout electronics will send data continuously at each bunch crossing through high speed radiation resistant optical links. The data will be processed real-time with the possibility of implementing trigger algorithms for clusters and electron/photon identification at a higher granularity than that which is currently implemented. The new architecture will eliminate the intrinsic limitation presently existing on Level-1 trigger acceptance. This article is an overview of the R&D activities which covers architectural design aspects of the new electronics as well as some detailed progress on the development of several ASICs needed, and preliminary studies with FPGAs to cover the backend functions including part of the Level-1 trigger requirements. A recently proposed staged upgrade with hybrid Tower Builder Board (TBB) is also described.
NASA Astrophysics Data System (ADS)
Gamblin, R.; Marrero, E.; Bering, E. A., III; Leffer, B.; Dunbar, B.; Ahmad, H.; Canales, D.; Bias, C.; Cao, J.; Pina, M.; Ehteshami, A.; Hermosillo, D.; Siddiqui, A.; Guala, D.
2014-12-01
This project is currently engaging tweleve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological inovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The UH USIP undergraduate team is currently in the process of build ten such payloads for launch using1500 gm latex weather balloons to be deployed in Houston and Fairbanks, AK as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind speed, wind direction, temperature, electrical conductivity, ozone and odd nitrogen. This instrument payload will also profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students will fly payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Results and best practices learned from lab tests and initial Houston test flights will be discussed.
Electronic journal access: how does it affect the print subscription price?*
Chen, Frances L.; Wrynn, Paul; Rieke, Judith L.
2001-01-01
Objective: This study examined the rates of print journal subscription price increases according to the type of available electronic access. The types of access included: electronic priced separately from the print, combination print with “free online” access, and aggregated, defined here as electronic access purchased as part of a collection. The percentages of print price increases were compared to each other and to that for titles available only in print. The authors were not aware of prior objective research in this area. Methods: The authors analyzed the percentage print price increases of 300 journals over a five-year time period. The titles were grouped according to type of available electronic access. The median and mean percentage print price increases were calculated and plotted for all titles within each group. Results: Using both the median and the mean to look at the percentage print price increases over five years, it was obvious that print prices for journals with electronic access exceeded journals that did not offer an electronic option. Electronic priced separately averaged 3% to 5% higher than print only titles using both measures. Combination print with “free online” access had higher increases from 1996 to 1999, but, in 2000, their percentage increases were about the same as print only titles. The rate of price increases for aggregated titles consistently went down over the past five years. Journals with no electronic option showed the lowest percentage rates of print price increase. Conclusions: The authors' findings reveal that the increases of print prices for their sample of titles were higher if a type of electronic access was offered. According to the results of this study, aggregated collections currently represent the electronic option whose percentage price increase for print prices was lowest. However, the uneven fluctuations in rates of subscription prices revealed that the pricing of journals with electronic access is still evolving. More study is recommended to see if the trends observed in this study are sustained over a longer time period. PMID:11837258
NASA Technical Reports Server (NTRS)
Jacobsen, T. A.; Maynard, N. C.
1980-01-01
The POLAR 5 rocket experiment carried an electron accelerator on a 'daughter' payload which injected a 0.1 A beam of 10 keV electrons in a pulsed mode every 410 ms. With spin and precession, injections were made over a wide range of pitch angles. Measurements from a double probe electric field instrument and from particle detectors on the 'mother' payload and from a crude RPA on the 'daughter' payload are interpreted to indicate that the 'daughter' charges to a potential between several hundred volts and 1 kV. The neutralizing return current to the 'daughter' is shown to be asymmetrically distributed with the majority being collected from the direction of the beam. The additional electrons necessary to neutralize the daughter are thought to be produced and heated through beam-plasma interactions postulated by Maehlum et al. (1980) and Grandal et al. (1980) to explain the particle and optical measurements. Significant electric fields emanating from the charged 'daughter' and the beam are seen at distances exceeding 100 m at the 'mother' payload.
Plasma physics analysis of SERT-2 operation
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1980-01-01
An analysis of the major plasma processes involved in the SERT 2 spacecraft experiments was conducted to aid in the interpretation of recent data. A plume penetration model was developed for neutralization electron conduction to the ion beam and showed qualitative agreement with flight data. In the SERT 2 configuration conduction of neutralization electrons between thrusters was experimentally demonstrated in space. The analysis of this configuration suggests that the relative orientation of the two magnetic fields was an important factor in the observed results. Specifically, the opposed field orientation appeared to provide a high conductivity channel between thrusters and a barrier to the ambient low energy electrons in space. The SERT 2 neutralizer currents with negative neutralizer biases were up to about twice the theoretical prediction for electron collection by the ground screen. An explanation for the higher experimental values was a possible conductive path from the neutralizer plume to a nearby part of the ground screen. Plasma probe measurements of SERT 2 gave the clearest indication of plasma electron temperature, with normal operation being near 5 eV and discharge only operation near 2 eV.
Nurses' perceptions of e-portfolio use for on-the-job training in Taiwan.
Tsai, Pei-Rong; Lee, Ting-Ting; Lin, Hung-Ru; Lee-Hsieh, Jane; Mills, Mary Etta
2015-01-01
Electronic portfolios can be used to record user performance and achievements. Currently, clinical learning systems and in-service education systems lack integration of nurses' clinical performance records with their education or training outcomes. For nurses with less than 2 years' work experience (nursing postgraduate year), use of an electronic portfolio is essential. This study aimed to assess the requirements of using electronic portfolios in continuing nursing education for clinical practices. Fifteen nurses were recruited using a qualitative purposive sampling approach between April 2013 and May 2013. After obtaining participants' consent, data were collected in a conference room of the study hospital by one-on-one semistructured in-depth interviews. Through data analyses, the following five main themes related to electronic learning portfolios were identified: instant access to in-service education information, computerized nursing postgraduate year training manual, diversity of system functions and interface designs, need for sufficient computers, and protection of personal documents. Because electronic portfolios are beginning to be used in clinical settings, a well-designed education information system not only can meet the needs of nurses but also can facilitate their learning progress.
High-Efficiency Selective Electron Tunnelling in a Heterostructure Photovoltaic Diode.
Jia, Chuancheng; Ma, Wei; Gu, Chunhui; Chen, Hongliang; Yu, Haomiao; Li, Xinxi; Zhang, Fan; Gu, Lin; Xia, Andong; Hou, Xiaoyuan; Meng, Sheng; Guo, Xuefeng
2016-06-08
A heterostructure photovoltaic diode featuring an all-solid-state TiO2/graphene/dye ternary interface with high-efficiency photogenerated charge separation/transport is described here. Light absorption is accomplished by dye molecules deposited on the outside surface of graphene as photoreceptors to produce photoexcited electron-hole pairs. Unlike conventional photovoltaic conversion, in this heterostructure both photoexcited electrons and holes tunnel along the same direction into graphene, but only electrons display efficient ballistic transport toward the TiO2 transport layer, thus leading to effective photon-to-electricity conversion. On the basis of this ipsilateral selective electron tunnelling (ISET) mechanism, a model monolayer photovoltaic device (PVD) possessing a TiO2/graphene/acridine orange ternary interface showed ∼86.8% interfacial separation/collection efficiency, which guaranteed an ultrahigh absorbed photon-to-current efficiency (APCE, ∼80%). Such an ISET-based PVD may become a fundamental device architecture for photovoltaic solar cells, photoelectric detectors, and other novel optoelectronic applications with obvious advantages, such as high efficiency, easy fabrication, scalability, and universal availability of cost-effective materials.
Electron-Beam-Induced Current | Materials Science | NREL
Electron-Beam-Induced Current Electron-Beam-Induced Current Photo of a GaAsP-on-Si solar cell. EBIC measure electron-beam-induced current (EBIC). In presence of an electrostatic field (p-n junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, G; Muir, B; Culberson, W
Purpose: The working group on the review and extension of the TG-51 protocol (WGTG51) collected data from American Association of Physicists in Medicine (AAPM) members with respect to their current TG-51 and associated addendum usage in the interest of considering future protocol addenda and guidance on reference dosimetry best practices. This study reports an overview of this survey on dosimetry of external beams. Methods: Fourteen survey questions were developed by WGTG51 and released in November 2015. The questions collected information on reference dosimetry, beam quality specification, and ancillary calibration equipment. Results: Of the 190 submissions completed worldwide (U.S. 70%), 83%more » were AAPM members. Of the respondents, 33.5% implemented the TG-51 addendum, with the maximum calibration difference for any photon beam, with respect to the original TG-51 protocol, being <1% for 97.4% of responses. One major finding is that 81.8% of respondents used the same cylindrical ionization chamber for photon and electron dosimetry, implying that many clinics are foregoing the use of parallel-plate chambers. Other evidence suggests equivalent dosimetric results can be obtained with both cylindrical and parallel-plate chambers in electron beams. This, combined with users comfort with cylindrical chambers for electrons will likely impact recommendations put forward in an upcoming electron beam addendum to the TG-51 protocol. Data collected on ancillary equipment showed 58.2% (45.0%) of the thermometers (barometers) in use for beam calibration had NIST traceable calibration certificates, but 48.4% (42.7%) were never recalibrated. Conclusion: This survey provides a snapshot of TG-51 external beam reference dosimetry practice in radiotherapy centers. Findings demonstrate the rapid take-up of the TG-51 photon beam addendum and raise issues for the WGTG51 to focus on going forward, including guidelines on ancillary equipment and the choice of chamber for electron beam dosimetry.« less
Electronic Collection Development: A Practical Guide.
ERIC Educational Resources Information Center
Lee, Stuart D.
Chapter 1, "Preliminary Issues," explores the historical importance of the electronic publishing revolution, some of the terminology to be used in the book, and the differences and similarities between traditional and electronic collection development. Chapter 2, "What Is an Offer? The Electronic Resources Landscape," covers…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... technological collection techniques or other forms of information technology, e.g., permitting electronic... Information Collection Activities: Extension, With Change, of an Existing Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection for Review; File No. 10-002, Electronic Funds...
The particle carriers of field-aligned currents in the Earth's magnetotail during a substorm
NASA Astrophysics Data System (ADS)
Cheng, Z. W.; Zhang, J. C.; Shi, J. K.; Kistler, L. M.; Dunlop, M.; Dandouras, I.; Fazakerley, A.
2016-04-01
Although the particle carriers of field-aligned currents (FACs) in the Earth's magnetotail play an important role in the transfer of momentum and energy between the solar wind, magnetosphere, and ionosphere, the characteristics of the FAC carriers have been poorly understood. Taking advantage of multiinstrument magnetic field and plasma data collected by the four spacecraft of the Cluster constellation as they traversed the northern plasma sheet boundary layer in the magnetotail on 14 September 2004, we identified the species type and energy range of the FAC carriers for the first time. The results indicate that part of tailward FACs is carried by energetic keV ions, which are probably originated from the ionosphere through outflow, and they are not too small (~2 nA/m2) to be ignored. The earthward (tailward) FACs are mainly carried by the dominant tailward (earthward) motion of electrons, and higher-energy electrons (from ~0.5 to 26 keV) are the main carriers.
A review of studies on ion thruster beam and charge-exchange plasmas
NASA Technical Reports Server (NTRS)
Carruth, M. R., Jr.
1982-01-01
Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
..., Electronic Application for Immigration Visa and Alien Registration, 1405-0185 ACTION: Notice of request for... Collection: Electronic Application for Immigration Visa and Alien Registration. OMB Control Number: 1405-0185... collection: Form DS-260 will be used to elicit information to determine the eligibility of aliens applying...
Strategies to use tablet computers for collection of electronic patient-reported outcomes.
Schick-Makaroff, Kara; Molzahn, Anita
2015-01-22
Mobile devices are increasingly being used for data collection in research. However, many researchers do not have experience in collecting data electronically. Hence, the purpose of this short report was to identify issues that emerged in a study that incorporated electronic capture of patient-reported outcomes in clinical settings, and strategies used to address the issues. The issues pertaining to electronic patient-reported outcome data collection were captured qualitatively during a study on use of electronic patient-reported outcomes in two home dialysis units. Fifty-six patients completed three surveys on tablet computers, including the Kidney Disease Quality of Life-36, the Edmonton Symptom Assessment Scale, and a satisfaction measure. Issues that arose throughout the research process were recorded during ethics reviews, implementation process, and data collection. Four core issues emerged including logistics of technology, security, institutional and financial support, and electronic design. Although use of mobile devices for data collection has many benefits, it also poses new challenges for researchers. Advance consideration of possible issues that emerge in the process, and strategies that can help address these issues, may prevent disruption and enhance validity of findings.
NASA Astrophysics Data System (ADS)
Bacci, A.; Maroli, C.; Petrillo, V.; Serafini, L.
2006-08-01
Collective effects in the radiation emission via Thomson back-scattering of an intense optical laser pulse by high brightness electron beams are analyzed. The micro-bunching of the electron beam on the scale of the wavelength of the emitted radiation and the consequent free-electron-laser instability may significantly enhance the number of photons emitted. Scaling-laws of the radiation properties, both in the collective and incoherent spontaneous regimes versus laser and electron beam parameters are discussed in the framework of the one-dimensional model.
NASA Astrophysics Data System (ADS)
Lee, Junghoon; Zheng, Yili; Yin, Zhye; Doerschuk, Peter C.; Johnson, John E.
2010-08-01
Cryo electron microscopy is frequently used on biological specimens that show a mixture of different types of object. Because the electron beam rapidly destroys the specimen, the beam current is minimized which leads to noisy images (SNR substantially less than 1) and only one projection image per object (with an unknown projection direction) is collected. For situations where the objects can reasonably be described as coming from a finite set of classes, an approach based on joint maximum likelihood estimation of the reconstruction of each class and then use of the reconstructions to label the class of each image is described and demonstrated on two challenging problems: an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the bacteriophage P22.
Picture This... Developing Standards for Electronic Images at the National Library of Medicine
Masys, Daniel R.
1990-01-01
New computer technologies have made it feasible to represent, store, and communicate high resolution biomedical images via electronic means. Traditional two dimensional medical images such as those on printed pages have been supplemented by three dimensional images which can be rendered, rotated, and “dissected” from any point of view. The library of the future will provide electronic access not only to words and numbers, but to pictures, sounds, and other nontextual information. There currently exist few widely-accepted standards for the representation and communication of complex images, yet such standards will be critical to the feasibility and usefulness of digital image collections in the life sciences. The National Library of Medicine is embarked on a project to develop a complete digital volumetric representation of an adult human male and female. This “Visible Human Project” will address the issue of standards for computer representation of biological structure.
An introduction to web scale discovery systems.
Hoy, Matthew B
2012-01-01
This article explores the basic principles of web-scale discovery systems and how they are being implemented in libraries. "Web scale discovery" refers to a class of products that index a vast number of resources in a wide variety formats and allow users to search for content in the physical collection, print and electronic journal collections, and other resources from a single search box. Search results are displayed in a manner similar to Internet searches, in a relevance ranked list with links to online content. The advantages and disadvantages of these systems are discussed, and a list of popular discovery products is provided. A list of library websites with discovery systems currently implemented is also provided.
2017-01-01
comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE...but these strategies are relatively untested. Theory-based research is needed to gain a deeper understanding of all the factors that influence the...improve effectiveness. Hypothesis 1: The innovation, deployed with passive dissemination, will have a positive effect on nurse knowledge and use of EBP
Direct conversion of nuclear radiation energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, George H.
1970-01-01
This book presents a comprehensive study of methods for converting nuclear radiationi directly without resorting to a heat cycle. The concepts discussed primarily involve direct collection of charged particles released by radioisotopes and by nuclear and thermonuclear reactors. Areas considered include basic energy conversion, charged-particle transport theory, secondary-electron emission, and leakage currents and associated problems. Applications to both nuclear instrumentaion and power sources are discussed. Problems are also included as an aid to the reader or for classroom use.
Shearer, Barbara S.; Klatt, Carolyn; Nagy, Suzanne P.
2009-01-01
Objectives: The current study evaluates the results of a previously reported method for creating a core medical electronic journal collection for a new medical school library, validates the core collection created specifically to meet the needs of the new school, and identifies strategies for making cost-effective e-journal selection decisions. Methods: Usage data were extracted for four e-journal packages (Blackwell-Synergy, Cell Press, Lippincott Williams & Wilkins, and ScienceDirect). Usage was correlated with weighted point values assigned to a core list of journal titles, and each package was evaluated for relevancy and cost-effectiveness to the Florida State University College of Medicine (FSU COM) population. Results: The results indicated that the development of the core list was a valid method for creating a new twenty-first century, community-based medical school library. Thirty-seven journals are identified for addition to the FSU COM core list based on use by the COM, and areas of overlapping research interests between the university and the COM are identified based on use of specific journals by each population. Conclusions: The collection development approach that evolved at the FSU COM library was useful during the initial stages of identifying and evaluating journal selections and in assessing the relative value of a particular journal package for the FSU COM after the school was established. PMID:19404499
Shearer, Barbara S; Klatt, Carolyn; Nagy, Suzanne P
2009-04-01
The current study evaluates the results of a previously reported method for creating a core medical electronic journal collection for a new medical school library, validates the core collection created specifically to meet the needs of the new school, and identifies strategies for making cost-effective e-journal selection decisions. Usage data were extracted for four e-journal packages (Blackwell-Synergy, Cell Press, Lippincott Williams & Wilkins, and ScienceDirect). Usage was correlated with weighted point values assigned to a core list of journal titles, and each package was evaluated for relevancy and cost-effectiveness to the Florida State University College of Medicine (FSU COM) population. The results indicated that the development of the core list was a valid method for creating a new twenty-first century, community-based medical school library. Thirty-seven journals are identified for addition to the FSU COM core list based on use by the COM, and areas of overlapping research interests between the university and the COM are identified based on use of specific journals by each population. The collection development approach that evolved at the FSU COM library was useful during the initial stages of identifying and evaluating journal selections and in assessing the relative value of a particular journal package for the FSU COM after the school was established.
Materials and processing approaches for foundry-compatible transient electronics.
Chang, Jan-Kai; Fang, Hui; Bower, Christopher A; Song, Enming; Yu, Xinge; Rogers, John A
2017-07-11
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are ( i ) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, ( ii ) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and ( iii ) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.
Materials and processing approaches for foundry-compatible transient electronics
NASA Astrophysics Data System (ADS)
Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.
2017-07-01
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.
Integrating an Academic Electronic Health Record: Challenges and Success Strategies.
Herbert, Valerie M; Connors, Helen
2016-08-01
Technology is increasing the complexity in the role of today's nurse. Healthcare organizations are integrating more health information technologies and relying on the electronic health record for data collection, communication, and decision making. Nursing faculty need to prepare graduates for this environment and incorporate an academic electronic health record into a nursing curriculum to meet student-program outcomes. Although the need exists for student preparation, some nursing programs are struggling with implementation, whereas others have been successful. To better understand these complexities, this project was intended to identify current challenges and success strategies of effective academic electronic health record integration into nursing curricula. Using Rogers' 1962 Diffusion of Innovation theory as a framework for technology adoption, a descriptive survey design was used to gain insights from deans and program directors of nursing schools involved with the national Health Informatics & Technology Scholars faculty development program or Cerner's Academic Education Solution Consortium, working to integrate an academic electronic health record in their respective nursing schools. The participants' experiences highlighted approaches used by these schools to integrate these technologies. Data from this project provide nursing education with effective strategies and potential challenges that should be addressed for successful academic electronic health record integration.
Quantum stream instability in coupled two-dimensional plasmas
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2014-08-01
In this paper the quantum counter-streaming instability problem is studied in planar two-dimensional (2D) quantum plasmas using the coupled quantum hydrodynamic (CQHD) model which incorporates the most important quantum features such as the statistical Fermi-Dirac electron pressure, the electron-exchange potential and the quantum diffraction effect. The instability is investigated for different 2D quantum electron systems using the dynamics of Coulomb-coupled carriers on each plasma sheet when these plasmas are both monolayer doped graphene or metalfilm (corresponding to 2D Dirac or Fermi electron fluids). It is revealed that there are fundamental differences between these two cases regarding the effects of Bohm's quantum potential and the electron-exchange on the instability criteria. These differences mark yet another interesting feature of the effect of the energy band dispersion of Dirac electrons in graphene. Moreover, the effects of plasma number-density and coupling parameter on the instability criteria are shown to be significant. This study is most relevant to low dimensional graphene-based field-effect-transistor (FET) devices. The current study helps in understanding the collective interactions of the low-dimensional coupled ballistic conductors and the nanofabrication of future graphene-based integrated circuits.
Securing electronic mail: The risks and future of electronic mail
NASA Astrophysics Data System (ADS)
Weeber, S. A.
1993-03-01
The network explosion of the past decade has significantly affected how many of us conduct our day to day work. We increasingly rely on network services such as electronic mail, file transfer, and network newsgroups to collect and distribute information. Unfortunately, few of the network services in use today were designed with the security issues of large heterogeneous networks in mind. In particular, electronic mail, although heavily relied upon, is notoriously insecure. Messages can be forged, snooped, and even altered by users with only a moderate level of system proficiency. The level of trust that can be assigned at present to these services needs to be carefully considered. In the past few years, standards and tools have begun to appear addressing the security concerns of electronic mail. Principal among these are RFC's 1421, 1422, 1423, and 1424, which propose Internet standards in the areas of message encipherment, key management, and algorithms for privacy enhanced mail (PEM). Additionally, three PEM systems, offering varying levels of compliance with the PEM RFC's, have also recently emerged: PGP, RIPEM, and TIS/PEM. This paper addresses the motivations and requirements for more secure electronic mail, and evaluates the suitability of the currently available PEM systems.
Schmitt, S W; Brönstrup, G; Shalev, G; Srivastava, S K; Bashouti, M Y; Döhler, G H; Christiansen, S H
2014-07-21
Vertically aligned silicon nanowire (SiNW) diodes are promising candidates for the integration into various opto-electronic device concepts for e.g. sensing or solar energy conversion. Individual SiNW p-n diodes have intensively been studied, but to date an assessment of their device performance once integrated on a silicon substrate has not been made. We show that using a scanning electron microscope (SEM) equipped with a nano-manipulator and an optical fiber feed-through for tunable (wavelength, power using a tunable laser source) sample illumination, the dark and illuminated current-voltage (I-V) curve of individual SiNW diodes on the substrate wafer can be measured. Surprisingly, the I-V-curve of the serially coupled system composed of SiNW/wafers is accurately described by an equivalent circuit model of a single diode and diode parameters like series and shunting resistivity, diode ideality factor and photocurrent can be retrieved from a fit. We show that the photo-carrier collection efficiency (PCE) of the integrated diode illuminated with variable wavelength and intensity light directly gives insight into the quality of the device design at the nanoscale. We find that the PCE decreases for high light intensities and photocurrent densities, due to the fact that considerable amounts of photo-excited carriers generated within the substrate lead to a decrease in shunting resistivity of the SiNW diode and deteriorate its rectification. The PCE decreases systematically for smaller wavelengths of visible light, showing the possibility of monitoring the effectiveness of the SiNW device surface passivation using the shown measurement technique. The integrated device was pre-characterized using secondary ion mass spectrometry (SIMS), TCAD simulations and electron beam induced current (EBIC) measurements to validate the properties of the characterized material at the single SiNW diode level.
Characterizing the effects of regolith surface roughness on photoemission from surfaces in space
NASA Astrophysics Data System (ADS)
Dove, A.; Horanyi, M.; Wang, X.
2017-12-01
Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.
DE 1 observations of type 1 counterstreaming electrons and field-aligned currents
NASA Technical Reports Server (NTRS)
Lin, C. S.; Burch, J. L.; Barfield, J. N.; Sugiura, M.; Nielsen, E.
1984-01-01
Dynamics Explorer 1 satellite observations of plasma and magnetic fields during type one counterstreaming electron events are presented. Counterstreaming electrons are observed at high altitudes in the region of field-aligned current. The total current density computed from the plasma data in the 18-10,000 eV energy range is generally about 1-2 micro-A/sq m. For the downward current, low-energy electrons contribute more than 40 percent of the total plasma current density integrated above 18 eV. For the upward current, such electrons contribute less than 50 percent of that current density. Electron beams in the field-aligned direction are occasionally detected. The pitch angle distributions of counterstreaming electrons are generally enhanced at both small and large pitch angles. STARE simultaneous observations for one DE 1 pass indicated that the field-aligned current was closed through Pedersen currents in the ionosphere. The directions of the ionospheric current systems are consistent with the DE 1 observations at high altitudes.
Gentil, Marie-Line; Cuggia, Marc; Fiquet, Laure; Hagenbourger, Camille; Le Berre, Thomas; Banâtre, Agnès; Renault, Eric; Bouzille, Guillaume; Chapron, Anthony
2017-09-25
Primary care data gathered from Electronic Health Records are of the utmost interest considering the essential role of general practitioners (GPs) as coordinators of patient care. These data represent the synthesis of the patient history and also give a comprehensive picture of the population health status. Nevertheless, discrepancies between countries exist concerning routine data collection projects. Therefore, we wanted to identify elements that influence the development and durability of such projects. A systematic review was conducted using the PubMed database to identify worldwide current primary care data collection projects. The gray literature was also searched via official project websites and their contact person was emailed to obtain information on the project managers. Data were retrieved from the included studies using a standardized form, screening four aspects: projects features, technological infrastructure, GPs' roles, data collection network organization. The literature search allowed identifying 36 routine data collection networks, mostly in English-speaking countries: CPRD and THIN in the United Kingdom, the Veterans Health Administration project in the United States, EMRALD and CPCSSN in Canada. These projects had in common the use of technical facilities that range from extraction tools to comprehensive computing platforms. Moreover, GPs initiated the extraction process and benefited from incentives for their participation. Finally, analysis of the literature data highlighted that governmental services, academic institutions, including departments of general practice, and software companies, are pivotal for the promotion and durability of primary care data collection projects. Solid technical facilities and strong academic and governmental support are required for promoting and supporting long-term and wide-range primary care data collection projects.
NASA Technical Reports Server (NTRS)
Phan, T. D.; Eastwood, J. P.; Cassak, P. A.; Oieroset, M.; Gosling, J. T.; Gershman, D. J.; Mozer, F. S.; Shay, M. A.; Fujimoto, M.; Daughton, W.;
2016-01-01
We report Magnetospheric Multiscale observations of macroscopic and electron-scale current layers in asymmetric reconnection. By intercomparing plasma, magnetic, and electric field data at multiple crossings of a reconnecting magnetopause on 22 October 2015, when the average interspacecraft separation was approximately 10 km, we demonstrate that the ion and electron moments are sufficiently accurate to provide reliable current density measurements at 30ms cadence. These measurements, which resolve current layers narrower than the interspacecraft separation, reveal electron-scale filamentary Hall currents and electron vorticity within the reconnection exhaust far downstream of the X line and even in the magnetosheath. Slightly downstream of the X line, intense (up to 3 µA/m2) electron currents, a super-Alfvenic outflowing electron jet, and nongyrotropic crescent shape electron distributions were observed deep inside the ion-scale magnetopause current sheet and embedded in the ion diffusion region. These characteristics are similar to those attributed to the electron dissipation/diffusion region around the X line.
Common data elements collected among universities for sport-related concussion studies.
Yang, Jingzhen; Peek-Asa, Corinne; Noble, James M; Torner, James; Schmidt, Paul; Cooper, Martha L
2018-02-12
Universities are increasingly implementing programs to effectively respond to and manage sport-related concussions (SRCs). One such effort is to develop common data elements (CDEs) and standardize data collection methods. The objectives of this study were to describe CDEs currently collected by Big Ten and Ivy League universities for SRC studies, and to compare the data collected with the core CDEs recommended by the National Institute of Neurological Disorders and Stroke (NINDS). We conducted an anonymous cross-sectional online survey among medical staff at the 14 Big Ten and 8 Ivy League universities (one per university) between September and October 2015. The survey instrument, including 9 questions corresponding to the concussion data collected before, during, and after a concussion, was developed and pilot-tested before field use. We analyzed patterns of the concussion CDEs being collected, including when, what, and how the data were collected and stored, and compared them with the NINDS' recommended core CDEs. A total of 19 out of 22 universities were included, with 13 from Big Ten and 6 from Ivy-League universities. All 19 participating universities currently collected concussion data with athletes before, during, and after a concussion. Great similarities in data collection were observed at baseline and acutely post-concussion across participating universities. All 19 universities collected at least one of the ten recommended acute symptoms checklists, and 18 universities collected one of the four recommended core neuropsychological function cognitive measures. However, CDEs in the sub-acute and chronic timeframes were limited, with only 9 (47%) universities collecting post-concussion short to long term outcome data. While over 60% of universities collected and stored concussion data electronically, only 17% to 42% of data collected were readily available for research. Significant inter-institutional similarities in acute concussion CDEs were found. Further efforts should focus on collecting sub-acute and chronic timeframe core CDEs and creating data access protocols to facilitate evidence-based concussion prevention and treatment for all collegiate athletes.
The influence of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions
NASA Astrophysics Data System (ADS)
Boehnstedt, W.
1980-09-01
The paper describes the effect of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions. The dissolution is accelerated by the addition of small quantities of gallium or indium ions to the electrolyte indicated by the shift of the zero current potential by about 250 mV on the current-potential curve. Scanning electron microscope studies showed that gallium ions produce many small cracks in the aluminum electrode and collect at the grain boundary areas, increasing the electrode surface; this enlargement, in combination with increased electrolyte agitation due to greater hydrogen evolution, provides higher current densities at the same potential. It is concluded that this process will widen the possibilities of using aluminum and its alloys in high-rate batteries.
Piezoelectric-based hybrid reserve power sources for munitions
NASA Astrophysics Data System (ADS)
Rastegar, J.; Kwok, P.
2017-04-01
Reserve power sources are used extensively in munitions and other devices, such as emergency devices or remote sensors that need to be powered only once and for a relatively short duration. Current chemical reserve power sources, including thermal batteries and liquid reserve batteries sometimes require more than 100 msec to become fully activated. In many applications, however, electrical energy is required in a few msec following the launch event. In such applications, other power sources are needed to provide power until the reserve battery is fully activated. The amount of electrical energy that is required by most munitions before chemical reserve batteries are fully activated is generally small and can be provided by properly designed piezoelectric-based energy harvesting devices. In this paper, the development of a hybrid reserve power source that is constructed by integration of a piezoelectric-based energy harvesting device with a reserve battery to provide power almost instantaneously upon munitions firing or other similar events is being reported. A review of the state of the art in piezoelectric-based electrical energy harvesting methods and devices and their charge collection electronics for use in the developed hybrid power sources is provided together with the results of testing of the piezoelectric component of the power source and its electronic safety and charge collection electronics.
Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki
2016-05-01
Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.
Macroscopic Quantum Phase-Locking Model for the Quantum Hall = Effect
NASA Astrophysics Data System (ADS)
Wang, Te-Chun; Gou, Yih-Shun
1997-08-01
A macroscopic model of nonlinear dissipative phase-locking between a Josephson-like frequency and a macroscopic electron wave frequency is proposed to explain the Quantum Hall Effect. It is well known that a r.f-biased Josephson junction displays a collective phase-locking behavior which can be described by a non-autonomous second order equation or an equivalent 2+1-dimensional dynamical system. Making a direct analogy between the QHE and the Josephson system, this report proposes a computer-solving nonlinear dynamical model for the quantization of the Hall resistance. In this model, the Hall voltage is assumed to be proportional to a Josephson-like frequency and the Hall current is assumed related to a coherent electron wave frequency. The Hall resistance is shown to be quantized in units of the fine structure constant as the ratio of these two frequencies are locked into a rational winding number. To explain the sample-width dependence of the critical current, the 2DEG under large applied current is further assumed to develop a Josephson-like junction array in which all Josephson-like frequencies are synchronized. Other remarkable features of the QHE such as the resistance fluctuation and the even-denominator states are also discussed within this picture.
Opportunities and challenges in leveraging electronic health record data in oncology.
Berger, Marc L; Curtis, Melissa D; Smith, Gregory; Harnett, James; Abernethy, Amy P
2016-05-01
The widespread adoption of electronic health records (EHRs) and the growing wealth of digitized information sources about patients is ushering in an era of 'Big Data' that may revolutionize clinical research in oncology. Research will likely be more efficient and potentially more accurate than the current gold standard of manual chart review studies. However, EHRs as they exist today have significant limitations: important data elements are missing or are only captured in free text or PDF documents. Using two case studies, we illustrate the challenges of leveraging the data that are routinely collected by the healthcare system in EHRs (e.g., real-world data), specific challenges encountered in the cancer domain and opportunities that can be achieved when these are overcome.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... Notice of Information Collection Under Review; Electronic Bonds Online (eBonds) Access. The Department of... collection request for review and clearance in accordance with the Paperwork Reduction Act of 1995. The...) Title of the Form/Collection: Electronic Bonds Online (eBonds) Access; OMB Control No. 1653-0046. (3...
78 FR 45205 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-26
... associated materials (see ADDRESSES). CMS-10326 Electronic Submission of Medicare Graduate Medical Education... collection; Title of Information Collection: Electronic Submission of Medicare Graduate Medical Education... Education FTE cap slots are valid according to CMS regulations. The affiliation agreements are also used as...
Behavior of Triple Langmuir Probes in Non-Equilibrium Plasmas
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Ratcliffe, Alicia C.
2018-01-01
The triple Langmuir probe is an electrostatic probe in which three probe tips collect current when inserted into a plasma. The triple probe differs from a simple single Langmuir probe in the nature of the voltage applied to the probe tips. In the single probe, a swept voltage is applied to the probe tip to acquire a waveform showing the collected current as a function of applied voltage (I-V curve). In a triple probe three probe tips are electrically coupled to each other with constant voltages applied between each of the tips. The voltages are selected such that they would represent three points on the single Langmuir probe I-V curve. Elimination of the voltage sweep makes it possible to measure time-varying plasma properties in transient plasmas. Under the assumption of a Maxwellian plasma, one can determine the time-varying plasma temperature T(sub e)(t) and number density n(sub e)(t) from the applied voltage levels and the time-histories of the collected currents. In the present paper we examine the theory of triple probe operation, specifically focusing on the assumption of a Maxwellian plasma. Triple probe measurements have been widely employed for a number of pulsed and timevarying plasmas, including pulsed plasma thrusters (PPTs), dense plasma focus devices, plasma flows, and fusion experiments. While the equilibrium assumption may be justified for some applications, it is unlikely that it is fully justifiable for all pulsed and time-varying plasmas or for all times during the pulse of a plasma device. To examine a simple non-equilibrium plasma case, we return to basic governing equations of probe current collection and compute the current to the probes for a distribution function consisting of two Maxwellian distributions with different temperatures (the two-temperature Maxwellian). A variation of this method is also employed, where one of the Maxwellians is offset from zero (in velocity space) to add a suprathermal beam of electrons to the tail of the main Maxwellian distribution (the bump-on-the-tail distribution function). For a range of parameters in these non-Maxwellian distributions, we compute the current collection to the probes. We compare the distribution function that was assumed a priori with the distribution function one would infer when applying standard triple probe theory to analyze the collected currents. For the assumed class of non-Maxwellian distribution functions this serves to illustrate the effect a non-Maxwellian plasma would have on results interpreted using the equilibrium triple probe current collection theory, allowing us to state the magnitudes of these deviations as a function of the assumed distribution function properties.
Simulation of solution phase electron transfer in a compact donor-acceptor dyad.
Kowalczyk, Tim; Wang, Lee-Ping; Van Voorhis, Troy
2011-10-27
Charge separation (CS) and charge recombination (CR) rates in photosynthetic architectures are difficult to control, yet their ratio can make or break photon-to-current conversion efficiencies. A rational design approach to the enhancement of CS over CR requires a mechanistic understanding of the underlying electron-transfer (ET) process, including the role of the environment. Toward this goal, we introduce a QM/MM protocol for ET simulations and use it to characterize CR in the formanilide-anthraquinone dyad (FAAQ). Our simulations predict fast recombination of the charge-transfer excited state, in agreement with recent experiments. The computed electronic couplings show an electronic state dependence and are weaker in solution than in the gas phase. We explore the role of cis-trans isomerization on the CR kinetics, and we find strong correlation between the vertical energy gaps of the full simulations and a collective solvent polarization coordinate. Our approach relies on constrained density functional theory to obtain accurate diabatic electronic states on the fly for molecular dynamics simulations, while orientational and electronic polarization of the solvent is captured by a polarizable force field based on a Drude oscillator model. The method offers a unified approach to the characterization of driving forces, reorganization energies, electronic couplings, and nonlinear solvent effects in light-harvesting systems.
Are electronic health records ready for genomic medicine?
Scheuner, Maren T; de Vries, Han; Kim, Benjamin; Meili, Robin C; Olmstead, Sarah H; Teleki, Stephanie
2009-07-01
The goal of this project was to assess genetic/genomic content in electronic health records. Semistructured interviews were conducted with key informants. Questions addressed documentation, organization, display, decision support and security of family history and genetic test information, and challenges and opportunities relating to integrating genetic/genomics content in electronic health records. There were 56 participants: 10 electronic health record specialists, 18 primary care clinicians, 16 medical geneticists, and 12 genetic counselors. Few clinicians felt their electronic record met their current genetic/genomic medicine needs. Barriers to integration were mostly related to problems with family history data collection, documentation, and organization. Lack of demand for genetics content and privacy concerns were also mentioned as challenges. Data elements and functionality requirements that clinicians see include: pedigree drawing; clinical decision support for familial risk assessment and genetic testing indications; a patient portal for patient-entered data; and standards for data elements, terminology, structure, interoperability, and clinical decision support rules. Although most said that there is little impact of genetics/genomics on electronic records today, many stated genetics/genomics would be a driver of content in the next 5-10 years. Electronic health records have the potential to enable clinical integration of genetic/genomic medicine and improve delivery of personalized health care; however, structured and standardized data elements and functionality requirements are needed.
The Physical and the Virtual: The Relationship between Library as Place and Electronic Collections
ERIC Educational Resources Information Center
Gerke, Jennifer; Maness, Jack M.
2010-01-01
A statistical analysis of responses to a LibQUAL+™ survey at the University of Colorado at Boulder (UCB) was conducted to investigate factors related to patrons' satisfaction with electronic collections. It was found that a respondent's discipline was not related to his or her satisfaction with the Libraries' electronic collection, nor was the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ikjin; Chung, ChinWook; Youn Moon, Se
2013-08-15
In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energymore » distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.« less
Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M. Dolors; Colprim, Jesús; Bañeras, Lluís
2013-01-01
The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427
Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís
2013-01-01
The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.
NASA Astrophysics Data System (ADS)
Toyama, T.; Hanabata, Y.; Hose, J.; Menzel, U.; Mirzoyan, R.; Nakajima, D.; Takahashi, M.; Teshima, M.; Yamamoto, T.
2015-07-01
Currently the standard light sensors for Imaging Atmospheric Cherenkov Telescopes are the classical photo multiplier tubes that are using bialkali photocathodes. About 8 years ago we initiated an improvement program with the Photo Multiplier Tube manufacturers Hamamatsu in Japan, Electron Tubes Enterprises in England and Photonis in France for the needs of Imaging Atmospheric Cherenkov Telescopes. As a result, after about 40 years of "stagnation" of the peak Quantum Efficiency on the level of 25-27%, new PMTs appeared with a peak QE of 35%. These have got the name "super-bialkali". The second significant upgrade has happened very recently, as a result of a dedicated improvement program for the candidate PMT for Cherenkov Telescope Array. The latter is going to be the next generation major instrument in the field of very high energy gamma astrophysics and will consist of over 100 telescopes of three different sizes of 23 m, 12 m and 4-7 m. Now PMTs with average peak Quantum Efficiency of approximately 40% became available. Also, the photo electron collection efficiency of the previous generation PMTs of 80-90% has been enhanced towards 95-98% for the new ones. The after-pulsing of novel PMTs has been reduced towards the level of 0.02% for the set threshold of 4 photo electrons. Hamamatsu produced the PMT R-12992-100 as the final version for Cherenkov Telescope Array project. Electron Tubes produced the latest PMT D569/3SA as intermediate version and will produce the final version in 2015. We will report on the PMT development work by the companies Electron Tubes Enterprises and Hamamatsu Photonics K.K., show the achieved results and the current status.
From nanoelectronics to nano-spintronics.
Wang, Kang L; Ovchinnikov, Igor; Xiu, Faxian; Khitun, Alex; Bao, Ming
2011-01-01
Today's electronics uses electron charge as a state variable for logic and computing operation, which is often represented as voltage or current. In this representation of state variable, carriers in electronic devices behave independently even to a few and single electron cases. As the scaling continues to reduce the physical feature size and to increase the functional throughput, two most outstanding limitations and major challenges, among others, are power dissipation and variability as identified by ITRS. This paper presents the expose, in that collective phenomena, e.g., spintronics using appropriate order parameters of magnetic moment as a state variable may be considered favorably for a new room-temperature information processing paradigm. A comparison between electronics and spintronics in terms of variability, quantum and thermal fluctuations will be presented. It shows that the benefits of the scalability to smaller sizes in the case of spintronics (nanomagnetics) include a much reduced variability problem as compared with today's electronics. In addition, another advantage of using nanomagnets is the possibility of constructing nonvolatile logics, which allow for immense power savings during system standby. However, most of devices with magnetic moment usually use current to drive the devices and consequently, power dissipation is a major issue. We will discuss approaches of using electric-field control of ferromagnetism in dilute magnetic semiconductor (DMS) and metallic ferromagnetic materials. With the DMSs, carrier-mediated transition from paramagnetic to ferromagnetic phases make possible to have devices work very much like field effect transistor, plus the non-volatility afforded by ferromagnetism. Then we will describe new possibilities of the use of electric field for metallic materials and devices: Spin wave devices with multiferroics materials. We will also further describe a potential new method of electric field control of metallic ferromagnetism via field effect of the Thomas Fermi surface layer.
Evaluating the Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, Edward A
2011-01-01
Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer (EDS) of choice, especially for scanning electron microscopy x-ray microanalysis. The complementary features of large active areas (i.e., high collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling and good energy resolution of these detectors. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM is discussed. The larger detector resulted in an significant increase (~3.5x) in geometric collection efficiency compared to the original 10mm2 Si(Li) detector that it replaced. The SEMmore » can provide high beam currents (up to 200nA in some conditions) at small probe diameters. The high count rate capability of the SDD and the high current capability of the SEM compliment each other and provide excellent EDS analytical capabilities for both single point and spectrum imaging applications.« less
Alhuwail, Dari; Koru, Güneş; Mills, Mary Etta
2016-01-01
In the United States, home care clinicians often start the episode of care devoid of relevant fall-risk information. By collecting and analyzing qualitative data from 30 clinicians in one home health agency, this case study aimed to understand how the currently adopted information technology solutions supported the clinicians' fall-risk management (FRM) information domains, and explored opportunities to adopt other solutions to better support FRM. The currently adopted electronic health record system and fall-reporting application served only some information domains with a limited capacity. Substantial improvement in addressing the FRM information domains is possible by effectively modifying the existing solutions and purposefully adopting new solutions.
Technology scan for electronic toll collection.
DOT National Transportation Integrated Search
2008-06-01
The purpose of this project was to identify and assess available technologies and methodologies for electronic toll collection (ETC) and to develop recommendations for the best way(s) to implement toll collection in the Louisville metropolitan area. ...
Electron dynamics in a plasma focus. [electron acceleration
NASA Technical Reports Server (NTRS)
Hohl, F.; Gary, S. P.; Winters, P. A.
1977-01-01
Results are presented of a numerical integration of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields deduced from experiments. Fields due to two different models are investigated. For the first model, the fields are those due to a circular distribution of axial current filaments. As the current filaments collapse toward the axis, large azimuthal magnetic and axial electric fields are induced. These fields effectively heat the electrons to a temperature of approximately 8 keV and accelerate electrons within the radius of the filaments to high axial velocities. Similar results are obtained for the current-reduction phase of focus formation. For the second model, the fields are those due to a uniform current distribution. Both the current-reduction and the compression phases were studied. These is little heating or acceleration of electrons during the compression phase because the electrons are tied to the magnetic field. However, during the current-reduction phase, electrons near the axis are accelerated toward the center electrode and reach energies of 100 keV. A criterion is obtained which limits the runaway electron current to about 400 A.
Time-Resolved Tandem Faraday Cup Development for High Energy TNSA Particles
NASA Astrophysics Data System (ADS)
Padalino, S.; Simone, A.; Turner, E.; Ginnane, M. K.; Glisic, M.; Kousar, B.; Smith, A.; Sangster, C.; Regan, S.
2015-11-01
MTW and OMEGA EP Lasers at LLE utilize ultra-intense laser light to produce high-energy ion pulses through Target Normal Sheath Acceleration (TNSA). A Time Resolved Tandem Faraday Cup (TRTF) was designed and built to collect and differentiate protons from heavy ions (HI) produced during TNSA. The TRTF includes a replaceable thickness absorber capable of stopping a range of user-selectable HI emitted from TNSA plasma. HI stop within the primary cup, while less massive particles continue through and deposit their remaining charge in the secondary cup, releasing secondary electrons in the process. The time-resolved beam current generated in each cup will be measured on a fast storage scope in multiple channels. A charge-exchange foil at the TRTF entrance modifies the charge state distribution of HI to a known distribution. Using this distribution and the time of flight of the HI, the total HI current can be determined. Initial tests of the TRTF have been made using a proton beam produced by SUNY Geneseo's 1.7 MV Pelletron accelerator. A substantial reduction in secondary electron production, from 70% of the proton beam current at 2MeV down to 0.7%, was achieved by installing a pair of dipole magnet deflectors which successfully returned the electrons to the cups in the TRTF. Ultimately the TRTF will be used to normalize a variety of nuclear physics cross sections and stopping power measurements. Based in part upon work supported by a DOE NNSA Award#DE-NA0001944.
Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments
Daghio, Matteo; Vaiopoulou, Eleni; Patil, Sunil A.; Suárez-Suárez, Ana; Head, Ian M.
2015-01-01
Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m−2 and 431 mA m−2 for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer. PMID:26497463
Excitation of collective modes in a quantum flute
NASA Astrophysics Data System (ADS)
Torfason, Kristinn; Manolescu, Andrei; Molodoveanu, Valeriu; Gudmundsson, Vidar
2012-06-01
We use a generalized master equation (GME) formalism to describe the nonequilibrium time-dependent transport of Coulomb interacting electrons through a short quantum wire connected to semi-infinite biased leads. The contact strength between the leads and the wire is modulated by out-of-phase time-dependent potentials that simulate a turnstile device. We explore this setup by keeping the contact with one lead at a fixed location at one end of the wire, whereas the contact with the other lead is placed on various sites along the length of the wire. We study the propagation of sinusoidal and rectangular pulses. We find that the current profiles in both leads depend not only on the shape of the pulses, but also on the position of the second contact. The current reflects standing waves created by the contact potentials, like in a wind musical instrument (for example, a flute), but occurring on the background of the equilibrium charge distribution. The number of electrons in our quantum “flute” device varies between two and three. We find that for rectangular pulses the currents in the leads may flow against the bias for short time intervals, due to the higher harmonics of the charge response. The GME is solved numerically in small time steps without resorting to the traditional Markov and rotating wave approximations. The Coulomb interaction between the electrons in the sample is included via the exact diagonalization method. The system (leads plus sample wire) is described by a lattice model.
2014-02-01
aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information...if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE February 2014 2... Akre , et al., 2006) content and evidence-based clinical decision support (CDS) tools were embedded into the EHR of one large health care system. Since
First-principles study of defects in TlBr
NASA Astrophysics Data System (ADS)
Du, Mao-Hua
2010-03-01
TlBr is a promising radiation detection material due to its high gamma-ray stopping efficiency, high resistivity (that reduces dark current and noise), large enough band gap of 2.68 eV (suitable for room temperature applications), and long electron carrier lifetime (for efficient collection of the radiation-generated carriers). The defect properties obtained from density functional calculations will be presented to discuss their roles in carrier trapping and recombination (which affects the carrier lifetime) and carrier compensation (which affects the resistivity).
2009-03-01
the background, which manifests itself as shot noise ; the second term is dark current noise ; the third is electronics noise ; the fourth is...quantization noise ; and the fifth is spatial noise . Because of the ease at which one can increase the number of frames collected, within the limitations of...a computer and monitor. The FTS, a Bruker OPAG 22, was equipped with a mercury cadmium telluride ( MCT ) single- pixel detector responsive in the
A Measurable Difference: Bridge Versus Loop
NASA Technical Reports Server (NTRS)
1998-01-01
Trig-Tek, Inc.'s Model 251A ACL-8 Anderson Current Loop (ACL) Conditioner is an eight channel device designed to condition variable-resistant sensor signals from Strain Gage and RTD's (Resistance Temperature Device)s. It uses NASA's patented ACL technology instead of the classic wheatstone bridge. The electronic measurement circuit delivers accuracy far beyond previous methods and prevents errors caused by variation in the wires that connect sensors to data collection equipment. This is the first license to market a NASA Dryden Flight Research Center patent.
Digital Copy of the Pulkovo Plate Collection
NASA Astrophysics Data System (ADS)
Kanaev, I.; Kanaeva, N.; Poliakow, E.; Pugatch, T.
Report is devoted to a problem of saving of the Pulkovo plate collection. In total more than 50 thousand astronegatives are stored in the observatory. First of them are dated back to 1893. A risk of emulsion corrupting raises with current of time. Since 1996 the operation on digitization and record of the images of plates on electronic media (HDD, CD) are carried out in the observatory. The database ECSIP - Electronic Collection of the Star Images of the Pulkovo is created. There are recorded in it both complete, and extracted (separate areas) images of astronegatives. The plates as a whole are scanned on the photoscanner with rather rough optical resolution 600-2400 dpi. The matrixes with the separate images are digitized on the precision measuring machine "Fantasy" with high (6000-25400 dpi) resolution. The DB ECSIP allows to accept and to store different types of data of a matrix structure, including, CCD-frames. Structure of the ECSIP's software includes systems of visualization, processing and manipulation by the images, and also programs for position and photometric measurements. To the present time more than 40% completed and 10% extracted images from its total amount are digitized and recorded in DB ECSIP. The project is fulfilled at financial support by the Ministry of Science of Russian Federation, grant 01-54 "The coordinate -measuring astrographic machine "Fantasy".
The European general thoracic surgery database project.
Falcoz, Pierre Emmanuel; Brunelli, Alessandro
2014-05-01
The European Society of Thoracic Surgeons (ESTS) Database is a free registry created by ESTS in 2001. The current online version was launched in 2007. It runs currently on a Dendrite platform with extensive data security and frequent backups. The main features are a specialty-specific, procedure-specific, prospectively maintained, periodically audited and web-based electronic database, designed for quality control and performance monitoring, which allows for the collection of all general thoracic procedures. Data collection is the "backbone" of the ESTS database. It includes many risk factors, processes of care and outcomes, which are specially designed for quality control and performance audit. The user can download and export their own data and use them for internal analyses and quality control audits. The ESTS database represents the gold standard of clinical data collection for European General Thoracic Surgery. Over the past years, the ESTS database has achieved many accomplishments. In particular, the database hit two major milestones: it now includes more than 235 participating centers and 70,000 surgical procedures. The ESTS database is a snapshot of surgical practice that aims at improving patient care. In other words, data capture should become integral to routine patient care, with the final objective of improving quality of care within Europe.
Sun, Lidong; Zhang, Sam; Sun, Xiaowei; He, Xiaodong
2010-07-01
Highly ordered TiO2 nanotube arrays are superior photoanodes for dye-sensitized solar cells (DSSCs) due to reduced intertube connections, vectorial electron transport, suppressed electron recombination, and enhanced light scattering. Performance of the cells is greatly affected by tube geometry, such as wall thickness, length, inner diameter and intertube spacing. In this paper, effect of geometry on the photovoltaic characteristics of DSSCs is reviewed. The nanotube wall has to be thick enough for a space charge layer to form for faster electron transportation and reduced recombination. When the tube wall is too thin to support the space charge layer, electron transport in the nanotubes will be hindered and reduced to that similar in a typical nanoparticle photoanode, and recombination will easily take place. Length of the nanotubes also plays a role: longer tube length is desired because of more dye loading, however, tube length longer than the electron diffusion length results in low collecting efficiency, which in turn, results in low short-circuit current density and thus low overall conversion efficiency. The tube inner diameter (pore size) affects the conversion efficiency through effective surface area, i.e., larger pore size gives rise to smaller surface area for dye adsorption, which results in low short-circuit current density under the same light soaking. Another issue that may seriously affect the conversion efficiency is whether each of the tube stands alone (free from connecting to the neighboring tubes) to facilitate infiltration of dye and fully use the outer surface area.
Modeling of current characteristics of segmented Langmuir probe on DEMETER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imtiaz, Nadia; Marchand, Richard; Lebreton, Jean-Pierre
We model the current characteristics of the DEMETER Segmented Langmuir probe (SLP). The probe is used to measure electron density and temperature in the ionosphere at an altitude of approximately 700 km. It is also used to measure the plasma flow velocity in the satellite frame of reference. The probe is partitioned into seven collectors: six electrically insulated spherical segments and a guard electrode (the rest of the sphere and the small post). Comparisons are made between the predictions of the model and DEMETER measurements for actual ionospheric plasma conditions encountered along the satellite orbit. Segment characteristics are computed numericallymore » with PTetra, a three-dimensional particle in cell simulation code. In PTetra, space is discretized with an unstructured tetrahedral mesh, thus, enabling a good representation of the probe geometry. The model also accounts for several physical effects of importance in the interaction of spacecraft with the space environment. These include satellite charging, photoelectron, and secondary electron emissions. The model is electrostatic, but it accounts for the presence of a uniform background magnetic field. PTetra simulation results show different characteristics for the different probe segments. The current collected by each segment depends on its orientation with respect to the ram direction, the plasma composition, the magnitude, and the orientation of the magnetic field. It is observed that the presence of light H{sup +} ions leads to a significant increase in the ion current branch of the I-V curves of the negatively polarized SLP. The effect of the magnetic field is demonstrated by varying its magnitude and direction with respect to the reference magnetic field. It is found that the magnetic field appreciably affects the electron current branch of the I-V curves of certain segments on the SLP, whereas the ion current branch remains almost unaffected. PTetra simulations are validated by comparing the computed characteristics and their angular anisotropy with the DEMETER measurements, as simulation results are found to be in good agreement with the measurements.« less
Novel High Efficient Organic Photovoltaic Materials
NASA Technical Reports Server (NTRS)
Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)
2001-01-01
In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder the electron-hole recombination. Thus, improved charge separation is expected. In addition, charge migration will also be facilitated due to the expected nano-phase separated and highly ordered block copolymer ultrastructural. The combination of all these factors will result in significant overall enhancement of photovoltaic power conversion efficiency.
Theory and Simulation of Electron Sheaths and Anode Spots in Low Pressure Laboratory Plasmas
NASA Astrophysics Data System (ADS)
Scheiner, Brett Stanford
Electrodes in low pressure laboratory plasmas have a multitude of possible sheath structures when biased at a large positive potential. When the size of the electrode is small enough the electrode bias can be above the plasma potential. When this occurs an electron-rich sheath called an electron sheath is present at the electrode. Electron sheaths are most commonly found near Langmuir probes and other electrodes collecting the electron saturation current. Such electrodes have applications in the control of plasma parameters, dust confinement and circulation, control of scrape off layer plasmas, RF plasmas, and in plasma contactors and tethered space probes. The electron sheaths in these various systems most directly influence the plasma by determining how electron current is lost from the system. An understanding of how the electron sheath interfaces with the bulk plasma is necessary for understanding the behavior induced by positively biased electrodes in these plasmas. This thesis provides a dedicated theory of electron sheaths. Motivated by electron velocity distribution functions (EVDFs) observed in particle-in-cell (PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the presheath model, an electron pressure gradient accelerates electrons to near the electron thermal speed by the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. Using PIC simulations, the form of a sheath near a small electrode with bias near the plasma potential is also studied. When the electrode is biased near the plasma potential, the EVDFs exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, instead the plasma remains quasineutral up to the electrode. Once the bias exceeds the plasma potential an electron sheath is present. In this case, 2D EVDFs indicate that the flow moment has comparable contributions from the flow shift and loss-cone truncation. The case of an electrode at large positive bias relative to the plasma potential is also studied. Here, the rate of electron impact ionization of neutrals increases near the electrode. If this ionization rate is great enough a double layer forms. This double layer can move outward separating a high potential plasma at the electrode surface from the bulk plasma. This phenomenon is known as an anode spot. Informed by observations from the first PIC simulations of an anode spot, a model has been developed describing the onset in which ionization leads to the buildup of positive space charge and the formation of a potential well that traps electrons near the electrode surface. A model for steady-state properties based on current loss, power, and particle balance of the anode spot plasma is also presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... either electronic or written comments on the collection of information by October 1, 2013. ADDRESSES: Submit electronic comments on the collection of information to http://www.regulations.gov . Submit... detecting antibodies to T. cruzi in plasma and serum samples from individual human donors, including donors...
Non-inductive current generation in fusion plasmas with turbulence
NASA Astrophysics Data System (ADS)
Wang, Weixing; Ethier, S.; Startsev, E.; Chen, J.; Hahm, T. S.; Yoo, M. G.
2017-10-01
It is found that plasma turbulence may strongly influence non-inductive current generation. This may have radical impact on various aspects of tokamak physics. Our simulation study employs a global gyrokinetic model coupling self-consistent neoclassical and turbulent dynamics with focus on electron current. Distinct phases in electron current generation are illustrated in the initial value simulation. In the early phase before turbulence develops, the electron bootstrap current is established in a time scale of a few electron collision times, which closely agrees with the neoclassical prediction. The second phase follows when turbulence begins to saturate, during which turbulent fluctuations are found to strongly affect electron current. The profile structure, amplitude and phase space structure of electron current density are all significantly modified relative to the neoclassical bootstrap current by the presence of turbulence. Both electron parallel acceleration and parallel residual stress drive are shown to play important roles in turbulence-induced current generation. The current density profile is modified in a way that correlates with the fluctuation intensity gradient through its effect on k//-symmetry breaking in fluctuation spectrum. Turbulence is shown to deduct (enhance) plasma self-generated current in low (high) collisionality regime, and the reduction of total electron current relative to the neoclassical bootstrap current increases as collisionality decreases. The implication of this result to the fully non-inductive current operation in steady state burning plasma regime should be investigated. Finally, significant non-inductive current is observed in flat pressure region, which is a nonlocal effect and results from turbulence spreading induced current diffusion. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.
Ockenden, Holly; Gunnell, Katie; Giles, Audrey; Nerenberg, Kara; Goldfield, Gary; Manyanga, Taru; Adamo, Kristi
2016-01-01
The aim of this study was to develop and validate an electronic questionnaire, the Electronic Maternal Health Survey (EMat Health Survey), related to women’s knowledge and perceptions of the current gestational weight gain guidelines (GWG), as well as pregnancy-related health behaviours. Constructs addressed within the questionnaire include self-efficacy, locus of control, perceived barriers, and facilitators of physical activity and diet, outcome expectations, social environment and health practices. Content validity was examined using an expert panel (n = 7) and pilot testing items in a small sample (n = 5) of pregnant women and recent mothers (target population). Test re-test reliability was assessed among a sample (n = 71) of the target population. Reliability scores were calculated for all constructs (r and intra-class correlation coefficients (ICC)), those with a score of >0.5 were considered acceptable. The content validity of the questionnaire reflects the degree to which all relevant components of excessive GWG risk in women are included. Strong test-retest reliability was found in the current study, indicating that responses to the questionnaire were reliable in this population. The EMat Health Survey adds to the growing body of literature on maternal health and gestational weight gain by providing the first comprehensive questionnaire that can be self-administered and remotely accessed. The questionnaire can be completed in 15–25 min and collects useful data on various social determinants of health and GWG as well as associated health behaviours. This online tool may assist researchers by providing them with a platform to collect useful information in developing and tailoring interventions to better support women in achieving recommended weight gain targets in pregnancy. PMID:27916921
DOT National Transportation Integrated Search
1993-01-01
ELECTRONIC TOLL COLLECTION OR ETC AND TRAFFIC MANAGEMENT OR ETTM, AUTOMATIC VEHICLE IDENTIFICATION OR AVI : ELECTRONIC TOLL COLLECTION AND TRAFFIC MANAGEMENT (ETTM) SYSTEMS ARE NOT A FUTURISTIC DREAM, THEY ARE OPERATING OR ARE BEING TESTED TODAY I...
IRAC test report. Gallium doped silicon band 2: Read noise and dark current
NASA Technical Reports Server (NTRS)
Lamb, Gerald; Shu, Peter; Mather, John; Ewin, Audrey; Bowser, Jeffrey
1987-01-01
A direct readout infrared detector array, a candidate for the Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC), has been tested. The array has a detector surface of gallium doped silicon, bump bonded to a 58x62 pixel MOSFET multiplexer on a separate chip. Although this chip and system do not meet all the SIRTF requirements, the critically important read noise is within a factor of 3 of the requirement. Significant accomplishments of this study include: (1) development of a low noise correlated double sampling readout system with a readout noise of 127 to 164 electrons (based on the detector integrator capacitance of 0.1 pF); (2) measurement of the readout noise of the detector itself, ranging from 123 to 214 electrons with bias only (best to worst pixel), and 256 to 424 electrons with full clocking in normal operation at 5.4 K where dark current is small. Thirty percent smaller read noises are obtained at a temperature of 15K; (3) measurement of the detector response versus integration time, showing significant nonlinear behavior for large signals, well below the saturation level; and (4) development of a custom computer interface and suitable software for collection, analysis and display of data.
The auroral current circuit and field-aligned currents observed by FAST
NASA Astrophysics Data System (ADS)
Elphic, R. C.; Bonnell, J. W.; Strangeway, R. J.; Kepko, L.; Ergun, R. E.; McFadden, J. P.; Carlson, C. W.; Peria, W.; Cattell, C. A.; Klumpar, D.; Shelley, E.; Peterson, W.; Moebius, E.; Kistler, L.; Pfaff, R.
FAST observes signatures of small-scale downward-going current at the edges of the inverted-V regions where the primary (auroral) electrons are found. In the winter pre-midnight auroral zone these downward currents are carried by upward flowing low- and medium-energy (up to several keV) electron beams. FAST instrumentation shows agreement between the current densities inferred from both the electron distributions and gradients in the magnetic field. FAST data taken near apogee (˜4000-km altitude) commonly show downward current magnetic field deflections consistent with the observed upward flux of ˜109 electrons cm-2 s-1, or current densities of several µA m-2. The electron, field-aligned current and electric field signatures indicate the downward currents may be associated with “black aurora” and auroral ionospheric cavities. The field-aligned voltage-current relationship in the downward current region is nonlinear.
Sathe, Nila A.; Grady, Jenifer L.; Giuse, Nunzia B.
2002-01-01
Purpose: To begin investigating the impact of electronic journals on research processes such as information seeking, the authors conducted a pilot journal-use study to test the hypothesis that patrons use print and electronic journals differently. Methodology: We placed fifteen high-use print titles also available in electronic format behind the circulation desk; patrons were asked to complete a survey upon requesting a journal. We also conducted a parallel survey of patrons using library computers. Both surveys asked patrons to identify themselves by user category and queried them about their journal use. Results: During the month-long study, patrons completed sixty-nine surveys of electronic and ninety surveys of print journal use. Results analysis indicated that fellows, students, and residents preferred electronic journals, and faculty preferred print journals. Patrons used print journals for reading articles and scanning contents; they employed electronic journals for printing articles and checking references. Users considered electronic journals easier to access and search than print journals; however, they reported that print journals had higher quality text and figures. Discussion/Conclusion: This study is an introductory step in examining how electronic journals affect research processes. Our data revealed that there were distinct preferences in format among categories. In addition to collection management implications for libraries, these data also have implications for publishers and educators; current electronic formats do not facilitate all types of uses and thus may be changing learning patterns as well. PMID:11999183
Sustainable Materials Management (SMM) Electronics Challenge Data
On September 22, 2012, EPA launched the SMM Electronics Challenge. The Challenge encourages electronics manufacturers, brand owners and retailers to strive to send 100 percent of the used electronics they collect from the public, businesses and within their own organizations to third-party certified electronics refurbishers and recyclers. The Challenge??s goals are to: 1). Ensure responsible recycling through the use of third-party certified recyclers, 2). Increase transparency and accountability through public posting of electronics collection and recycling data, and 3). Encourage outstanding performance through awards and recognition. By striving to send 100 percent of used electronics collected to certified recyclers and refurbishers, Challenge participants are ensuring that the used electronics they collect will be responsibly managed by recyclers that maximize reuse and recycling, minimize exposure to human health and the environment, ensure the safe management of materials by downstream handlers, and require destruction of all data on used electronics. Electronics Challenge participants are publicly recognized on EPA's website as a registrant, new participant, or active participant. Awards are offered in two categories - tier and champion. Tier awards are given in recognition of achieving all the requirements under a gold, silver or bronze tier. Champion awards are given in two categories - product and non-product. For champion awards, a product is an it
Study of local currents in low dimension materials using complex injecting potentials
NASA Astrophysics Data System (ADS)
He, Shenglai; Covington, Cody; Varga, Kálmán
2018-04-01
A complex potential is constructed to inject electrons into the conduction band, mimicking electron currents in nanoscale systems. The injected electrons are time propagated until a steady state is reached. The local current density can then be calculated to show the path of the conducting electrons on an atomistic level. The method allows for the calculation of the current density vectors within the medium as a function of energy of the conducting electron. Using this method, we investigate the electron pathway of graphene nanoribbons in various structures, molecular junctions, and black phosphorus nanoribbons. By analyzing the current flow through the structures, we find strong dependence on the structural geometry and the energy of the injected electrons. This method may be of general use in the study of nano-electronic materials and interfaces.
Electron collection theory for a D-region subsonic blunt electrostatic probe
NASA Technical Reports Server (NTRS)
Wai-Kwong Lai, T.
1974-01-01
Blunt probe theory for subsonic flow in a weakly ionized and collisional gas is reviewed, and an electron collection theory for the relatively unexplored case, Deybye length approximately 1, which occurs in the lower ionosphere (D-region), is developed. It is found that the dimensionless Debye length is no longer an electric field screening parameter, and the space charge field effect can be negelected. For ion collection, Hoult-Sonin theory is recognized as a correct description of the thin, ion density-perturbed layer adjacent the blunt probe surface. The large volume with electron density perturbed by a positively biased probe renders the usual thin boundary layer analysis inapplicable. Theories relating free stream conditions to the electron collection rate for both stationary and moving blunt probes are obtained. A model based on experimental nonlinear electron drift velocity data is proposed. For a subsonically moving probe, it is found that the perturbed region can be divided into four regions with distinct collection mechanisms.
Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.
NASA Astrophysics Data System (ADS)
Mancusi, Joseph Edward
This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.
Optical Diagnostics on HIT-SI3
NASA Astrophysics Data System (ADS)
Everson, Christopher; Jarboe, Thomas; Morgan, Kyle
2016-10-01
Interferometry and Thomson Scattering are implemented on the HIT-SI3 (Helicity Injected Torus - Steady Inductive 3) device to provide time resolved measurements of electron density and spatially resolved measurements of electron temperature, respectively. HIT-SI3 is a modification of the original HIT-SI apparatus that uses three injectors instead of two. The scientific aim of HIT-SI3 is to develop a deeper understanding of how injector behavior and interactions influence current drive and spheromak stability. The interferometer system makes use of an intermediate frequency between two parallel 184.3 μm Far-Infrared (FIR) laser cavities which are optically pumped by a CO2 laser. The phase shift in this beat frequency due to the plasma index of refraction is used to calculate the line-integrated electron density. To measure the electron temperature, Thomson Scattered light from a 20 J (1 GW pulse) Ruby laser off of free electrons in the HIT-SI3 plasma is measured simultaneously at four locations across the spheromak (nominally 23 cm minor radius). Polychromators bin the collected light into 3 spectral bands to detect the relative level of scattering. Work supported by the D.O.E.
Li, L; Zheng, Q; Zou, Q; Rajput, S; Ijaduola, A O; Wu, Z; Wang, X P; Cao, H B; Somnath, S; Jesse, S; Chi, M; Gai, Z; Parker, D; Sefat, A S
2017-04-19
Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2 As 2 -based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Néel-ordering temperature in BaFe 2 As 2 crystal (T N = 132 K to 136 K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2 As 2 crystal (T c = 23 to 25 K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. While annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c .